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Chapter 1

Ideas & Motivations

Welcome to Set theory (with some theory) by me (Gudfit). The point of these notes is to cover everything I
think is important as I build up to my current knowledge, while keeping it free and accessible for everyone
from kids to adults.

I aim for each set of notes to be max 100 pages, as rigorous as possible, and far-reaching too.

That means I'll cover the axioms and proofs of the most interesting stuff, plus I'll pull in other subjects we’ve
already touched on to show how math builds on itself like funky Lego. These notes build on my existing
logic notes; they’re aimed at keeping the proofs, ideas, and build-up of set theory as informal as possible.

It’ll be a mix of quick ideas and concepts, but in the appendix for each section, I'll go rigorous with the key
axioms pulled from a bunch of books.



Chapter 2

An Introduction to Set Theory

With the development of propositional logic, we have a formal language for rigorous communication. This
language is sufficiently expressive to construct complex arguments from simple truths. With this language
in hand, we are ready to embark on our studies of mathematics proper. The first question we must answer
is: what is our universe of discourse? What are mathematical objects?

The most intuitive objects are numbers. The most fundamental kind of number is the natural number,
which corresponds to the non-negative whole numbers. We can characterise these with a recurrence: zero
is a natural number, and if n is a natural number, then its successor, s(n), is also a natural number. This
notion of a successor is an example of a function: an object that maps inputs from a domain to outputs in
a codomain in a deterministic way.

Since functions map inputs to outputs, we are driven to ask, "inputs from where?" All roads eventually lead
to the idea of a collection of things. In the same way binary numbers form a foundation for the files on
your computer, we will build our mathematical universe using collections as our fundamental unit. We will
call these collections sets, and refer to the objects they contain as their elements. As the most fundamental
object in our universe, we will study sets first and encode their behaviour as axioms. This system is known
as Zermelo-Fraenkel set theory.

To facilitate our discussion, we will adopt standard symbols for the common number systems used in math-
ematics.

Symbol Name Description
N Natural Numbers  {0,1,2,3,...}
Z Integers {..,-2,-1,0,1,2,...}
7+t Positive Integers {1,2,3,...}
Q Rational Numbers {p/q|p € Z,q € Z,q # 0}
R Real Numbers The set of all numbers on the continuous number line.

Remark. As a final note on notation, we will be simplifying our notation from this section forward. We had
previously been introduced to the symbols — and <> for expressing conditional statements and the symbols -
and = in the metalanguage. Given the theorems we proved in the previous notes, the line between these two
classes of symbols has been made blurrier. It is typical in mathematical practice to ignore this distinction. So,
we now introduce the symbol = to denote entailment as a replacement for the — and - symbols. Similarly,
we introduce < as a replacement for <+ and =, denoting logical equivalence in all contexts.

2.1 The Language of Sets

A set is an abstraction of the idea of a collection of objects. This idea implies the need to communicate
two kinds of relationships: equality and elementhood. These will be the two basic predicate symbols of our
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CHAPTER 2. AN INTRODUCTION TO SET THEORY 6

theory.

To identify objects that are the same, we introduce the binary equality predicate, denoted by =. We say
x = y precisely when z is identical to y. We assume axiomatically that equality is an equivalence relation,
meaning it is:

1. Reflexive: Va(z = x)
2. Symmetric: VaVy((z =y) = (y = x))
3. Transitive: VaVyVz(((z = y) A (y = 2)) = (z = 2))

The second, more interesting, predicate relates sets to the elements they contain. We call this predicate
elementhood and denote it with the € symbol. For a set A, the statement x € A asserts that = is an element
of A, while x ¢ A is shorthand for —(z € A).

These two predicates are enough to express anything we need to say about sets. If we wanted to state that
a set A contains exactly the elements 0 and 1, we could write Vaz(z € A < (z =0V x = 1)). This would be
cumbersome to write every time, so we introduce some notation.

Definition 2.1.1. Set-Builder Notation. Given finitely many terms xg,x1,...,Z,_1, we denote by
{zg,21,...,2n_1} the set whose elements are exactly these objects. For any object z, the following holds:
z€{xo,x1,. . yn_1t = (2=20)V(z=21) V...V (2 =2p_1)

This notation is restrictive; it only allows us to describe sets with finitely many elements. To describe larger
sets, such as the set of even numbers, we introduce set-comprehension notation.

Definition 2.1.2. Set-Comprehension Notation. Given a property P(z), we can refer to the collection
of all objects x that satisfy this property by writing {z | P(x)}. The defining equivalence is:

ze{z | P(x)} & P(2)

For example, the set of even natural numbers could be written as {z | z is a natural number A z is even}.

The elementhood predicate naturally implies another relationship two sets can share. It is clear that every
even natural number is also a natural number. This emergent relationship is captured by the following
definition.

Definition 2.1.3. Subset. Given two sets A and B, we say that A is a subset of B, denoted A C B, when
every element of A is also an element of B. Formally:

ACB&eVi(xe A=x € B)

2.2 The Axioms of Set Theory

The notation we have introduced does not assert that any of these sets actually exist. To formally have sets
to talk about, we need to introduce them with axioms.

Axiom of Extensionality

Sets are entirely determined by their elements. If we think of sets as abstract collections, then everything
we need to know about a set should be determined by the elements it contains. We should expect that two
sets are equal precisely when they have the same elements.

Axiom 2.2.1. Extensionality. Two sets are equal if and only if they have the same elements.

VXVY (X =Y & Vz(ze X & 2€Y))
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The Axiom of Extensionality formalises our intuition. For example, if A = {0,1,2} and B = {2,0, 1}, we can
see they contain the same elements, just in a different order. The axiom allows us to conclude that A = B.
The order of elements and their repetition do not matter.

This axiom provides the standard method for proving two sets are equal.
Theorem 2.2.1. For any sets X and Y, we have X =Y & (X CY) A (Y C X).

Proof. Let X and Y be arbitrary sets. Observe the following chain of equivalences.

X=Y&eVz(zeX&zeY) by Extensionality
eVz((zeX=z2zeY)AN(zeY =z X)) by Biconditional Disintegration
& Vz(zeX=zeY)AVz(z€Y =z € X)) by Distributivity of V over A
S (XCY)A(Y CX) by definition of Subset
Therefore, the equivalence holds. |

This gives space for two important definitions, the proper subset and the empty set.

Definition 2.2.1. Proper Subset. A set A is a proper subset of a set B, denoted A C B, if A is a subset
of B but is not equal to B.
ACB& (ACB)AN(A#B)

Definition 2.2.2. Empty Set. A set X is empty if it contains no elements, i.e., Vy(y ¢ X ). We define the
symbol § to denote such a set: 0 := {z | z # z}.

With this definition, we can prove some fundamental properties about (), assuming for a moment that it
exists.

Theorem 2.2.2. The Empty Set is Empty. The set (} contains no elements.
Vz(z ¢ 0)

Proof. Let x be an arbitrary object. Suppose, for the sake of contradiction, that x € (). By the definition of
(), this means = € {z | z # z}. By the definition of set comprehension, this implies that the property defining
the set must be true for x, so  # x. This contradicts the reflexivity of equality (x = z). Therefore, our
initial assumption must be false, and z ¢ 0. |

Theorem 2.2.3. The Empty Set is Unique. There is only one empty set. Any set with no elements is
equal to (.

Proof. Let X be any set that is empty, so Vy(y ¢ X). We wish to show X = (. By the Axiom of
Extensionality, this requires showing Vz(z € X < z € 0)). Let z be an arbitrary object. The statement
2z € X is false by our assumption about X. The statement z € ) is false by the previous theorem. Thus,
z2€ X & z € is equivalent to | < 1, which is true. Since z was arbitrary, we conclude X = §). |

Theorem 2.2.4. The empty set is a subset of every set.
Proof. Let A be an arbitrary set. We wish to show (§ C A, which is equivalent to Vz(z € ) = z € A).

Let z be an arbitrary object. The antecedent, x € (), is false by definition of the empty set. Therefore, the
implication is vacuously true. Since x was arbitrary, the theorem holds. ]
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Axiom Schema of Separation

Our set-comprehension notation {x | P(z)} is powerful, but dangerous if used without restriction. Consider
the predicate P(s) < s ¢ s, and define the set R := {s | s ¢ s}. This is the "set of all sets that are not
elements of themselves". Now, let us ask: is R an element of itself?

e If R € R, then by the definition of R, R must satisfy the property s ¢ s. This means R ¢ R, a
contradiction.

e If R ¢ R, then R satisfies the property s ¢ s. By the definition of R, this means R must be an element
of R, so R € R, another contradiction.

This is Russell’s Paradox. The mere existence of R is inherently contradictory. The problem arose from our
use of unrestricted comprehension. To avoid this, we restrict comprehension to already existing sets. We
can form a new set by separating off elements that satisfy a property from a set we already know exists.

Azxiom 2.2.2. Schema of Separation. For any property P(z) and any set A, there exists a set B whose
elements are precisely those elements of A that satisfy P(z).

VAIB(Vz(x € B & (v € ANP(2))))

Remark. This is called an axiom schema because it is not a single axiom, but an infinite collection of axioms
— one for each possible property P(z).

We denote the set B by {x € A | P(x)}. This axiom now allows us to formally prove the existence of . The
Axiom of Existence, which we have not stated, simply guarantees that at least one set exists. Let A be any
such set. Then by the Schema of Separation, the set B = {z € A |  # z} exists. Since no object = can
satisfy & # z, B has no elements. It is an empty set, and by our uniqueness theorem, it must be 0.

The schema also synergises well with other axioms, allowing us to prove that many useful set-theoretic
constructions are possible.

Definition 2.2.3. Intersection. The intersection of two sets A and B, denoted A N B, is the set of all
elements they share in common.

ANB:={z|z€ ANz € B}

Theorem 2.2.5. Existence of Intersections. For any two sets A and B, the set AN B exists.

Proof. Let A and B be sets. Consider the property P(z) < = € B. By the Schema of Separation, the set
C ={x € A|P(x)} exists. This is precisely {x € A | x € B}, which is the definition of AN B. [ ]

Definition 2.2.4. Set Difference. The difference of sets A and B, denoted A\ B, is the set obtained by
removing every element of B from A.

A\B:={z |z € ANz ¢ B}

Remark. The proof for the existence of the set difference A\ B is analogous to that for intersection and is
left as an exercise.

Further Axioms of Construction

Aziom 2.2.3. Pairing. For any two objects A and B, there exists a set that contains exactly A and B.
VAYBIC(Ve(x € C & (x = AV = B)))

This set C' is denoted {A, B}. If A = B, we get the singleton set {A}. This axiom guarantees that our
set-builder notation is meaningful for pairs and singletons.
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Aziom 2.2.4. Union. For any set of sets S, there exists a set U that contains all the elements of all the

sets in S.
VSAU (Ve (x € U & JA(A € SAz € A)))

This set U is called the union of S and is denoted |JS. For example, if S = {{0,1},{1,2,3}}, then
US = {0,1,2,3}.
This axiom allows us to prove the existence of the familiar union of two sets.

Definition 2.2.5. Union of Two Sets. The union of two sets A and B, denoted A U B, is the set
containing all elements from A or B.

AUB:={z|z€ AVx e B}

Theorem 2.2.6. Existence of Unions. For any two sets A and B, the set AU B exists.

Proof. Let A and B be sets. By the Axiom of Pairing, the set S = {A, B} exists. By the Axiom of Union,
the set |JS exists. An element z is in | .S if and only if there exists a set C' € S such that € C. Since
S = {A, B}, this is equivalent to (C = AV C = B) Az € C, which simplifies to z € AV x € B. This is
precisely the definition of AU B. Thus, AU B = |J{4, B} and therefore exists. ]

Aziom 2.2.5. Power Set. For any set 5, there exists a set containing all the subsets of S.
VSAPVX(X e P& X C9))

This set P is called the power set of S and is denoted P(S). For example, if S = {0,1}, then P(S) =
{0, {0}, {1},{0,1}}.

Axiom of Regularity

You may have wondered whether a set can contain itself as an element. So far, nothing formally prohibits
x € x. The final axiom we will consider is designed to prevent such pathological structures and ensure that
the elementhood relation is well-founded.

Definition 2.2.6. Disjoint Sets. Two sets A and B are said to be disjoint if their intersection is the
empty set, i.e., AN B = ().

Axiom 2.2.6. Regularity. Every non-empty set X contains an element y that is disjoint from X.
VX(X #0=Fylye X AXNny=0))

This axiom has far-reaching consequences, one of which is that there are no infinitely descending €-chains.
For our purposes, it establishes that sets do not contain themselves.

Theorem 2.2.7. Well-Foundedness of Elementhood. No set is an element of itself.

Va(x ¢ x)

Proof. Let x be an arbitrary set and suppose, for a contradiction, that € x. Consider the set A = {x},
which exists by the Axiom of Pairing. Since x € A, A is not empty. By the Axiom of Regularity, there must
be an element y € A such that ANy = (. Since x is the only element of A, we must have y = x. The
condition becomes A Nz = (). However, we know z € A. We also assumed x € x. Therefore, x is in both A
and x, which means x € A N xz. This implies AN x # @), contradicting our deduction from the axiom. Thus,
our initial assumption must be false, so x ¢ x. ]

This result can be used to show that a "set of all sets" cannot exist.

Theorem 2.2.8. The Universe Does Not Exist. There is no set that contains every set.

—-3UVz(x € U)
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Proof. Suppose for a contradiction that such a universal set U exists, satisfying Vz(z € U). Since this holds
for all sets x, it must hold for U itself. This means U € U. However, this contradicts the previous theorem,
which states Vz(z ¢ z). Therefore, no such set U can exist. ]

2.3 Elementary Operations on Sets

The axioms allow us to define standard operations for manipulating sets. For any sets A and B, their
existence is guaranteed by the axioms.

Union: AUB :=J{A,B} ={z|x€ AVvz e B}.
Intersection: ANB:={x € A |z € B}.
Difference: A\ B:={z € A |z ¢ B}.

Symmetric Difference: AAB :=(A\ B)U (B\ A).

We can also define these operations over arbitrary non-empty collections of sets F.

e Union: YF ={z|3JA e F,z € A}
e Intersection: (F = {z |VA € F,z € A}.

Definition 2.3.1. Mutually Disjoint Sets. A collection of sets F is a system of mutually disjoint sets
(or pairwise disjoint sets) if for any two distinct sets A, B € F, it holds that AN B = ). Formally:

VAe FYBeF(A+B= ANB =)

Properties of Set Operations

The operations of union, intersection, and difference obey a set of algebraic laws that are analogous to the
laws of propositional logic.

Theorem 2.3.1. For any sets A, B, C and a universal set U, the following properties hold:

(i) Commutative Laws:
e AUB=BUA
e ANB=BNA
(ii) Associative Laws:
e (AUB)UC=AU(BUC)
e (ANB)NC=AN(BNC)
(iii) Distributive Laws:
e AN(BUC)=(ANB)U(ANC)
e AUBNC)=(AUB)N(AUCQC)
(iv) De Morgan’s Laws:

o U\(AUB) = (U\A)N(U\ B)
o U\(ANB)=(U\A)U(U\ B)

Proof. We prove a selection of these properties. The remaining proofs are left as exercises.

(i) Commutativity of Union: We must show AU B = BU A. By definition, this requires showing that
forany r,r € AUB< € BUA.
r€AUB & (z € A)V(z e B) by definition of Union
S (reB)V(reA by Commutativity of V
SreBUA by definition of Union



CHAPTER 2. AN INTRODUCTION TO SET THEORY 11

(iii) Distributivity of Intersection over Union: We must show AN (BUC)=(ANB)U(ANC).

re€AN(BUC) & (e A)AN(x e BUCQ) by definition of Intersection
SxeAAN(zeB)V(zel)) by definition of Union
S((zeAN(xzeB)V({(zeAA(xel)) by Distributivity of A over V
S xeANB)V(re ANC) by definition of Intersection
srze(ANB)UANC) by definition of Union

(iv) De Morgan’s Law: We must show U\ (AUB) = (U\ A)N (U \ B).

xeU\(AUB)< (z€eU)AN(xz ¢ AUB) by definition of Difference
S (xeU)A-(xe AVa e B) by definition of Union
SxeU)AN(x¢ ANz ¢ B) by De Morgan’s Law for logic
SxeUnc ¢ AN(zeUNz ¢ B) by Associativity and Idempotence of A
< (xeU\NA)AN(xeU\B) by definition of Difference
sze(U\NA)NU\B) by definition of Intersection

2.4 Exercises

Part I: Foundational Concepts & The Axioms

1. Determine whether the following statements are true or false. Justify your answer with a brief expla-
nation or a counterexample. Let A = {1,{2,3}}.

(a) 1€ A

(b) 2€ A
() {1}c A
(d) {2,3} € A
(&) {23} C 4
(f) 0eA
(g) N A

2. Use the Axiom of Extensionality to prove that the sets A = {n € Z | n? = 4} and B = {-2,2} are
equal.

Remark. You must show that (xt € A=z € B) and (x € B=2x € A).

3. List all the elements of the set P(P({0})). How many elements does it contain?

4. Prove that the subset relation is transitive. That is, for any sets A, B,C, if A C B and B C C, then
ACC.

5. Disprove the following statement by providing a counterexample: For any sets A and B, P(AU B) =
P(A) UP(B). Under what condition does equality hold?

6. The text proves the existence of AN B. Using a similar method, prove that for any sets A and B, the
set difference A \ B exists. Explicitly state which axiom you are using and what property P(z) you
have chosen.

7. Using the Axiom of Regularity, prove that for any two sets x,y, it is not possible to have both = € y
and y € x.
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10.

Remark. Assume such sets exist and consider the set {z,y}. Apply the Axiom of Regularity to this
set to derive a contradiction.

. Let a and b be objects. The ordered pair (a, b) is defined as the set {{a}, {a,b}}. Using this definition,

compute the sets corresponding to (1,2) and (2,1). Then determine the following sets in roster form.

(a) (1,2)
(b) (1,2)
(© (1L2)\(2,1)

Let P(x) be a logical formula. Prove the following statements, which connect the logical quantifiers to
set operations.

U(2,1)
n

(a) Vez(r € AUB = P(2)) & (Va(z € A= P(x)) AVz(x € B= P(x)))
(b) Ix(zr € AUBAP(2)) < (Fx(x € AANP(x))VIx(z € BAP(x)))

Find a formula P(z) and sets A and B to show that the following implication is false:

(Fz(xr € ANP(2))) A (Fz(x € BAP(z))) = 3x(z € ANBAP(x))

Part II: Properties of Set Operations

11.

12.

13.

14.

15.

16.

17.

The text proves several algebraic laws for set operations. Prove the following remaining laws for
arbitrary sets A, B, C.

(a) Associativity of Intersection: (ANB)NC =AN(BNC)
(b) Second Distributive Law: AU(BNC)=(AUB)N(AUC)

The symmetric difference of two sets A and B is defined as AAB := (A\ B) U (B\ A). Prove that the
symmetric difference is associative: (AAB)AC = AA(BAC).

Prove the following identities involving the power set.

(a) For any sets A and B, P(A)NP(B) =P(AN B).
(b) For any sets A and B, P(A) UP(B) C P(AUB).

For any sets A, B, C, prove that if A C B, then C\ B C C'\ A.

Prove that the following three statements are equivalent for any sets A and B.

(i) ACB
(i) AUB=B
(i) A\ B =0

Using the result from the previous problem, or otherwise, prove that for any sets A and B, we have
AUB=AnNB if and only if A = B.

Prove that for any sets A, B,C,if ANC=BNC and AUC = BUC, then A = B.

Remark. Consider an element z € A. If € C, what can you conclude? If x ¢ C, what can you
conclude?
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Part III: Families of Sets and Advanced Topics

18.

19.

20.

21.

22,

23.

The generalised intersection (F is defined as {z | VA € F,x € A}. Assuming F is a non-empty
collection of sets, prove that (| F exists.

Remark. Since F is non-empty, there exists some set Sy € F. Show that (| F is a subset of Sy and
then apply the appropriate axiom.

What problem arises if F = (7

Prove for any sets A and B that |J{A4,B} = AU B and ({4,B} = AN B. This demonstrates that
the binary operations are special cases of the generalised operations on families of sets.

Let F be a collection of sets and let X € F. Prove that F C X C JF.
Provide an example of a family of sets F that is disjoint (i.e., [|F = () but not pairwise disjoint.

Let F = {A; | i € I} be a family of sets. Prove the generalised De Morgan’s laws for set difference:

(a) B\Uier Ai = Nier(B\ 4)
(b) B\ Mier Ai = Ui (B \ 4i)
In the next chapter, an ordered pair (a,b) is defined as {{a},{a,b}}. An alternative definition, pro-

posed by Norbert Wiener, is (a,b)w := {{{a},0}, {{b}}}. Prove that this definition also satisfies the
fundamental property of ordered pairs: (a,b)w = (a/,0)w < (a=a’ ANb=1").



Chapter 3

Relations

Central to mathematical practice is the concept of a function, which formalises the idea of an association
between two sets. We have used this notion informally, but to define it within set theory, we must first
construct a way to represent a directed link from an "input" to an "output". An unordered pair {a,b} is
insufficient for this task, as it is indistinguishable from {b,a}. We require a structure where the order of
elements is significant.

3.1 Ordered Pairs and Cartesian Products

We begin by defining an ordered pair using only the axioms of set theory. The following definition, due to
Kazimierz Kuratowski, captures the essential property that the order of the coordinates matters.

Definition 3.1.1. Ordered Pair. Given objects a and b, the ordered pair (a, ) is the set defined as:

(a,6) := {{a}, {a,b}}

The object a is the first coordinate, and b is the second coordinate.

This construction may seem unintuitive, but its sole purpose is to satisfy the fundamental property of ordered
pairs, which we now prove.

Theorem 3.1.1. Equality of Ordered Pairs. For any objects a,b,a’,b’, we have (a,b) = (d/,V) & a =
a nb=1.

Proof. The implication (<) is immediate from the definition. If a = @’ and b = ¥/, then the sets {{a}, {a,b}}
and {{a'},{d’,b'}} are identical.

For the forward implication (=), assume (a,b) = (a’,b’), which means {{a}, {a,b}} = {{da'}, {a’,V'}}. We
consider two cases.

a=1"0 . In this case, (a,b) = {{a},{a,a}} = {{a}}. Our assumption becomes {{a}} = {{a’}, {a’,V'}}. The
set on the left contains one element, {a}. Thus, the set on the right must also contain only one element,
which implies {a'} = {a’,b'}. This equality holds if and only if @’ = ¥’'. Therefore, {{a}} = {{a'}},
which gives {a} = {d'}, and so a = a’. Since a = b and o/ =V, we have a = a’ and b=V'.

a # b. The set {{a},{a,b}} contains two distinct elements: the singleton {a} and the doubleton {a,b}. The
equality {{a},{a,b}} = {{d'}, {a’,V'}} implies that the set on the right must also contain two distinct
elements, so a’ # V. By set equality, the elements must be the same. The singleton {a} must equal
the singleton {a'}, because it cannot equal the doubleton {a’,b'}. From {a} = {a’}, we deduce a = a'.
The remaining elements must also be equal: {a,b} = {a’,b'}. Since we have already shown a = d/, this
simplifies to {a,b} = {a,b'}. As a # b, it must be that b =b'.

14
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In both cases, we conclude a = a’ and b = V'. [ ]
Remark. This principle can be extended recursively to define ordered n-tuples. For instance, an ordered

triple is defined as (a, b, ¢) := ((a,b), ¢).

With a formal definition for ordered pairs, we can define the set of all possible pairs between elements of two
sets. This construction, named in honour of René Descartes , is fundamental to defining relations in this
chapter and functions in the next.

Definition 3.1.2. Cartesian Product. Let A and B be sets. The Cartesian product of A and B, denoted
A x B, is the set of all ordered pairs whose first coordinate is in A and whose second coordinate is in B.

Ax B:={(a,b)|ac ANbeE B}.
We write A2 as shorthand for A x A.

Theorem 3.1.2. Existence of Cartesian Products. For any two sets A and B, the Cartesian product
A x B exists.

Proof. Let a € A and b € B. The ordered pair (a,b) is {{a},{a,b}}. Since a € AUB and b € AU B, the
sets {a} and {a, b} are both subsets of AU B. By the Axiom of Power Set, this means {a} € P(AU B) and
{a,b} € P(AUB). Consequently, the pair (a,b) = {{a}, {a,b}} is a subset of P(AU B). Applying the Power
Set axiom again, this implies (a,b) € P(P(A U B)). Since every element of A x B is an element of the set
P(P(AU B)), which exists, we can use the Schema of Separation to construct A x B:

AxB={peP(P(AUB))|Jae A,3b€ B,p=(a,b)}

Therefore, A x B exists. n

3.2 Relations

A relation describes an association between objects. Formally, a relation between two sets is defined as a
collection of ordered pairs.

Definition 3.2.1. Binary Relation. A set R is a binary relation from a set A to a set B if R is a subset
of the Cartesian product A x B. If A = B, we say R is a relation on A.

Note. If (xz,y) € R, we often write xRy and say that x is related to y by R.

Definition 3.2.2. Restriction of a Relation. Let R be a binary relation on a set A, and let S C A.
The restriction of R to S is the relation Rg on S defined as:

Rs=RN(SxS)={(z,y) eR|xzeSAyeS}

Example 3.2.1. The less-than relation on the set of natural numbers N can be formalised as the set of
ordered pairs:
L={(z,y) eN* |z <y}

Thus, 3L5 because (3,5) € L, but it is not the case that 7L2, because (7,2) ¢ L.

For any relation, we are interested in the sets of all possible first and second coordinates.

Definition 3.2.3. Domain, Range, and Field. Let R be a binary relation.
e The domain of R is the set of all first coordinates:

dom(R) = {z | 3y, (z,y) € R}
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e The range of R is the set of all second coordinates:

van(R) = {y | 3z, (x,9) € R}
e The field of R is the union of its domain and range:

field(R) = dom(R) Uran(R)

Example 3.2.2. Consider the relation R = {(1,3),(2,4),(2,5)}. The set of all first coordinates is {1, 2},
and the set of all second coordinates is {3,4,5}. Therefore, dom(R) = {1,2} and ran(R) = {3,4,5}. The
relation is visualised in Figure 3.1.

dom(R) R ran(R)

Figure 3.1: A visualisation of the relation R = {(1,3),(2,4),(2,5)}.

Proposition 3.2.1. Let R be a binary relation. And let A = J(lUR). Then (z,y) € R implies z € A and
ye A

Proof. If (z,y) = {{z},{x,y}} € R, then {z,y} € UR, and thus z,y € A. ]

Theorem 3.2.1. Existence of Domain and Range. For any binary relation R, the sets dom(R) and
ran(R) exist.

Proof. Let R be a binary relation. For any (z,y) € R, we have (z,y) = {{z},{z,y}}. By definition of the
union of a set, {x} and {x, y} are elements of | J R. Applying the union operation again, x and y are elements
of J(U R). Thus, both dom(R) and ran(R) are subsets of [ J(|J R), which exists by the Axiom of Union. By
the Schema of Separation, dom(R) and ran(R) therefore exist. |

We can define several operations that construct new relations from existing ones.
Definition 3.2.4. Operations on Relations. Let R and S be binary relations.

e The inverse of R, denoted R™!, is the relation obtained by reversing the pairs in R:

R~ ={(y,2)| (z,y) € R}
e The composition of R and S, denoted S o R, links elements through an intermediary:
SoR={(z,2) | Jy,(x,y) € RA(y,z) € S}
Example 3.2.3. The inverse of the less-than relation L on N is:
L™ ={(y,2) | (z,9) € L} = {(y,2) eN* |2 <y} = {(y.2) e N’ | y > «}

This is precisely the greater-than relation on N.
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Figure 3.2: The composition S o R provides a direct path from a to c.

Example 3.2.4. Let R = {(1,3),(2,4),(2,5)} and S = {(0,1),(1,0),(0,2),(2,0)}. To find the composition
Ro S, we look for pairs (z, z) such that (z,y) € S and (y, 2) € R for some intermediary y.

(0,1) € S and (1,3) € R. This gives (0,3) € Ro S.
(0,2) € S and (2,4) € R. This gives (0,4) € Ro S.
(0,2) € S and (2,5) € R. This gives (0,5) € Ro S.

No other links exist. Thus, Ro S = {(0,3),(0,4), (0,5)}. Note that the composition S o R is empty because
ran(R) = {3,4,5} and dom(S) = {0, 1,2} are disjoint.

Theorem 3.2.2. Existence of Inverse and Composition. For any binary relations R and S, the relations
R~! and S o R exist.

Proof. For the inverse, if (y,z) € R™! then y € ran(R) and 2 € dom(R). Thus, R~! C ran(R) x dom(R).
Since the latter set exists, R~! exists by Separation.

For the composition, if (z,z) € S o R, then x € dom(R) and z € ran(S). Thus, S o R C dom(R) x ran(S).
This parent set exists, so .S o R exists by Separation. |

Theorem 3.2.3. Associativity of Composition. For any relations R, .S, T, composition is associative:

To(SoR)=(ToS)oR

Proof. Let R, S,T be arbitrary relations. Then,

(x,w) eTo(SoR) < 3z,(x,2) € SoRA(z,w) €T
< 3z, (Jy, (z,y) e RA (y,2) € S) AN (z,w) € T
< 3z, Jy, (x,y) € RA(y,2) € SA(z,w) €T
< Jy, Iz, (z,y) € RA (y,2) € SA(z,w) €T
< Jy, (xz,y) € RA (32, (y,2) € SA(z,w) €T)
< Jy, (z,y) € RA(y,w) €ToS
& (z,w) € (ToS)oR

Since the conditions for membership are equivalent, the sets are equal. |

Theorem 3.2.4. Inverse and Identity. For any binary relation R, we have Idgomr) € R~ 'oR and
Idran(R) CRo R~

Proof. To prove the first inclusion, let (x,2) € Idgom(r). This implies z € dom(R). By the definition of
domain, there must exist some y such that (z,y) € R. By the definition of the inverse relation, if (x,y) € R,
then (y,z) € R~!. We have found an intermediary y such that (x,3) € R and (y,z) € R~!. By the definition
of composition, this implies that (x,2) € R~! o R. Therefore, Idgom(r) € R 'oR.

The proof for the second inclusion is analogous. Let (y,y) € Idyan(r). This implies y € ran(R). By the
definition of range, there exists some x such that (x,y) € R. This in turn implies (y,z) € R~!. We have found
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an x such that (y,2) € R™! and (x,y) € R. By the definition of composition, this means (y,y) € Ro R™!.
Therefore, Id,an(r) € Ro R L ]

Definition 3.2.5. Special Relations. Let A be a set.
e The identity relation on A, denoted Id 4, is the set of pairs relating each element of A to itself:
Ida = {(a,a) | a € A}
e The membership relation on A, denoted € 4, relates elements of A based on set membership:
€a={(a,b) | a,b € AANa€b}
These relations exist because they are subsets of A x A.

Definition 3.2.6. Image and Inverse Image. Let R be a binary relation and A be a set.

e The image of A under R is the set of all elements in the range of R that are related to some element
of A:
R[A] ={y €ran(R) | 3z € A, (x,y) € R}

e The inverse image of A under R is the set of all elements in the domain of R that are related to some

element of A:
R™[A] = {z € dom(R) | 3y € A, (z,y) € R}

Remark. The notation R~![A] can be ambiguous: does it mean the inverse image of A under R, or the
image of A under the relation R~'? The following theorem shows that both interpretations yield the same
set.

Theorem 3.2.5. Unambiguity of Inverse Notation. For any binary relation R and any set A, the
inverse image of A under R is equal to the image of A under R~

Proof. By definition, the inverse image of A under R is {x € dom(R) | Jy € A, (z,y) € R}. The image
of A under the relation R7! is (R™Y[A] = {z € ran(R™!) | Jy € A,(y,2) € R~'}. We know that
ran(R~!) = dom(R) and that (y,2) € R~ & (2,y) € R. Substituting these into the definition of the image
gives:

(R7H[A] = {2 € dom(R) | Iy € A, (z,y) € R}

This is identical to the definition of the inverse image of A under R. |

3.3 Exercises

1. Let A = {1,2}, B = {z,y,2}, and C = {1,3}. Let R be a relation from A to B defined by R =
{(1,9),(1,2),(2,2)}. Let S be a relation from B to C defined by S = {(y,1), (y,3), (2,3)}.
(a) Compute the relations R~! and S o R. State the domain and range of R, S, and S o R.

(b) Compute the image R[A] and the image R[{1}]. Compute the inverse image S~1[C]. Is this equal
to dom(S)?

2. Prove the following fundamental properties for any binary relation R.
(a) (R"H =R
(b) dom(R) = ran(R™1).
(c) Suppose S is any binary relation for which the composition is defined prove (SoR)™! = R=to S~

3. Let R and S be binary relations with the same domain and codomain. Prove that the inverse operation
distributes over set union and intersection.
(a) (RUS)'=R1us!
(b) (RNS)t=Rtns!
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4. Let R C A x B be a relation. Prove that the identity relations Id4 and Idg act as identity elements
for composition. So Rolds = R and Idg o R = R.

5. Let RC Ax B and S C B x C be relations. Prove that S o R = if and only if ran(R) and dom(S)
are disjoint.

6. Let R be a binary relation and let A and B be arbitrary sets. Prove the following properties regarding
the image of a set under a relation.
(a) R[AU B| = R[A]UR|B].
(b) R[AN B] C R[A]N R[B].
(c) Provide a specific example of a relation R and sets A, B for which the inclusion in part (b) is
proper, i.e., R[AN B] # R[A] N R[B].

7. Let R be a relation. Prove that its domain can be expressed as the union of the inverse images of all
singleton sets {y}, where y is an element of the range.

dom(R)= [ J R '[{y}]

yeran(R)

8. Let R be a relation on a set A (i.e., R C A x A). A relation is often classified by certain properties.
We formally define three such properties:

e Risreflexive if Id4 C R.
e R is symmetric if R~! = R.
e R is transitive if Ro R C R.

(a) For the set A = {1,2,3}, provide an example of a relation that is reflexive and symmetric, but
not transitive.

(b) Prove that the definition of transitivity given above is equivalent to the logical statement: Vz, y, z €
A, ((z,y) € RA(y,2) € R= (z,z) € R).

(¢) If arelation R on a non-empty set A is symmetric and transitive, must it also be reflexive? Justify
your answer with a proof or a counterexample.

Remark. Consider the domain of R. Does it have to be equal to A7

3.4 Equivalence Relations

Certain relations are of particular interest because they capture a notion of sameness or equivalence between
distinct objects. For instance, the fractions § and % are different as ordered pairs (1,2) and (2,4), yet they
represent the same rational number. This notion of equivalence is formalised by relations that possess three
specific properties.

Definition 3.4.1. Properties of a Relation. Let ~ be a binary relation on a set A.
e ~ is reflexive if every element is related to itself.
Vo € A, (x ~ x)
e ~ is symmetric if the relation holds in both directions.
Ve,y e A, (x ~y =y~ 1)
e ~ is transitive if a chain of relations implies a direct relation.
Ve,y,z € A, ((x ~yAy~z2)=x~2)

Definition 3.4.2. Equivalence Relation. A relation ~ on a set A is an equivalence relation if it is
reflexive, symmetric, and transitive.

Example 3.4.1. Consider the divisibility relation ‘| on the set of integers Z, where a|b if there exists an

integer k such that b = ak.

L|£
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e Reflexive: For any a € Z, a = a - 1, so aJa. The relation is reflexive.

e Symmetric: 2|4 because 4 = 2 -2, but 4 t 2 because there is no integer k such that 2 = 4k. The
relation is not symmetric.

e Transitive: If a|b and ble, then b = ak; and ¢ = bks for some integers ki, ko. Substituting gives
¢ = (ak1)ke = a(k1ks). Since kiko is an integer, a|c. The relation is transitive.

Since divisibility is not symmetric, it is not an equivalence relation.

Example 3.4.2. Congruence Modulo n. Let n € ZT. For integers a and b, we say a is congruent to b
modulo n, written a = b (mod n), if n divides their difference, i.e., n | (a — b). We will prove this is an
equivalence relation on Z. Let a, b, c € Z.

e Reflexive: a —a =0. Since n | 0 (as 0 =n -0), we have a = a (mod n).

e Symmetric: Suppose a = b (mod n). Then n | (a —b), so a — b = nk for some integer k. It follows
that b — a = n(—k). Since —k is an integer, n | (b — a), so b = a (mod n).

e Transitive: Supposea =b (mod n) and b =c¢ (mod n). Thenn | (a—b) and n | (b—c). So, a—b = nk;
and b — ¢ = nky for some integers k1, k2. Adding these equations gives (a — b) + (b — ¢) = nky + nka,
which simplifies to a — ¢ = n(ky + ko). Since ki + ko is an integer, n | (a — ¢), so a = ¢ (mod n).

Congruence modulo n is an equivalence relation.

Equivalence Classes and Partitions
An equivalence relation on a set naturally groups elements together. All elements that are equivalent to each
other form a single group or class.

Definition 3.4.3. Equivalence Class. Let ~ be an equivalence relation on a set A. For any element
a € A, the equivalence class of a, denoted [a], is the set of all elements in A that are equivalent to a.

[a] ={xr € A|x~a}

Example 3.4.3. For the relation of congruence modulo 3 on Z:

o 0]={z€Z|z=0 (mod 3)} ={...,—6,-3,0,3,6,...}
e l]={z€Z|z=1 (mod 3)} ={...,-5,-2,1,4,7,...}
e [2={zcZ|z=2 ~1,2,5,8,...}

(mod 3)} ={...,—4,
3

Note that [3] = [0] and [-1] = [2], as
equivalence classes.

= 0 (mod 3) and —1 = 2 (mod 3). There are only three distinct

Equivalence classes have a fundamental property: they divide the set into a collection of non-overlapping
subsets.

Theorem 3.4.1. Properties of Equivalence Classes. Let ~ be an equivalence relation on a set A, and
let a,b € A.

(i) a € [al.
(ii) a~b<[a] = [b].
(ili) a £ b< [alNb] =0.

Proof.

a € [a]. By reflexivity, a ~ a, so by definition of [a], a € [a]. This also implies that no equivalence class is
empty.
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a~b<s[al =[b]. (=) Assume a ~ b. We must show [a] = [b] by mutual inclusion. Let = € [a], so z ~ a.
Since a ~ b and ~ is transitive, © ~ b. Thus x € [b], proving [a] C [b]. Now let y € [b], so y ~ b. By
symmetry, from a ~ b we have b ~ a. By transitivity, y ~ a. Thus y € [a], proving [b] C [a]. Therefore,

[a] = [0].

(<) Assume [a] = [b]. Since a € [a], it must be that a € [b]. By definition, this means a ~ b.

a o b« [a] N[b] = 0. This is the contrapositive of the previous statement. Two equivalence classes are either
identical or completely disjoint. Suppose their intersection is not empty, so there exists some ¢ such
that ¢ € [a] and ¢ € [b]. This means ¢ ~ a and ¢ ~ b. By symmetry, a ~ ¢. By transitivity, a ~ b.
From (ii), this implies [a] = [b]. Therefore, if [a] and [b] are not disjoint, they must be equal. The

contrapositive is that if they are not equal (i.e., a 7 b), they must be disjoint.

This theorem shows that an equivalence relation on a set A splits A into a collection of mutually disjoint,
non-empty subsets whose union is A. Such a collection is called a partition (see the formal definition in

Section 3.5).

The set of all equivalence classes of a relation forms a partition of the underlying set. This set of classes is

important enough to have its own name.

Definition 3.4.4. Quotient Set. Let ~ be an equivalence relation on a set A. The quotient set of A by

~, denoted A/ ~, is the set of all equivalence classes of ~.

Af~={ld][ac A}

The quotient set A/~ is a partition of A.

Remark. The process of forming a quotient set gives rise to a canonical projection map (or quotient map),

p:A— A/~ defined by p(a) = [a]. By construction, this map is surjective.

Example 3.4.4. For congruence modulo 3, the quotient set is Z/=, usually written as Zs.

Zs = {[0], [1], [2]}

This is a set containing three elements, where each element is itself an infinite set of integers.

Example 3.4.5. Define a relation ~ on R? such that for (z1,41) and (x2,y2) in R?,
(T1,91) ~ (T2,92) © Y1 — 1 = Y2 — T2
This is an equivalence relation. The equivalence class of a point (a,b) is:

[(a,b)] = {(z,y) ER® |y —x =b—a}
={(z,y) eR* |y =2+ (b—a)}

Each equivalence class is a line with a slope of 1. The quotient set R?/~ is the set of all such lines, which

partition the Cartesian plane, as shown in Figure 3.3.
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Figure 3.3: The plane R? partitioned by the equivalence relation y — 2 = c. Each line is an equivalence class.

3.5 Partitions and Equivalence

The previous section concluded with the observation that the set of equivalence classes partitions the un-
derlying set. We now formalise this relationship, showing that partitions and equivalence relations are two
perspectives on the same fundamental structure.

Definition 3.5.1. Partition. A partition of a non-empty set A is a collection of subsets P C P(A) with
the following properties:

1. No subset in the partition is empty (VS € P, S # 0).
2. The union of all subsets in the partition is the original set A (P = A).
3. The subsets in the partition are mutually disjoint (V.S1,S2 € P, (S1 # So = S1 NSy = 0)).

Example 3.5.1. Let A = {1,2,3,4,5,6}. The collection of sets P = {{1,5}, {2},{3,4,6}} is a partition of
A. Each element of A is in exactly one of these subsets. This is visualised in Figure 3.4.

Figure 3.4: A partition of the set A = {1,2,3,4,5,6} into three disjoint subsets.

Example 3.5.2. Consider the set R2. For each non-negative real number r > 0, define C,. to be the circle
of radius r centred at the origin:
Cr = {(z,y) € R? [ 2? +y* = r?}
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The collection P = {C,. | > 0} is a partition of R?. Every point (z,) in the plane lies on exactly one such
circle, namely the one with radius r = /x2 + y2.

Definition 3.5.2. Set of Representatives. A set X C A is a set of representatives for the equivalence F
(or for the partition S of A) if VC € S, | X NC|=1.

Note. Notation: |Y| denotes the cardinality (size) of the set Y. For finite sets, this is simply the count of
elements. For example, {0, 1,2} = 3.

The Fundamental Correspondence

We now establish the main result: an equivalence relation induces a partition, and conversely, a partition
induces an equivalence relation.

Theorem 3.5.1. Equivalence Relations Induce Partitions. If ~ is an equivalence relation on a non-
empty set A, then the quotient set A/~ is a partition of A.

Proof. Let ~ be an equivalence relation on A. We must verify that the collection of equivalence classes,
A/ ~, satisfies the three properties of a partition.

1. Non-empty subsets: For any class [a] € A/ ~, we know a € [a] by reflexivity. Thus, no equivalence
class is empty.

2. Union is A: For any element a € A, we know a belongs to the equivalence class [a], which is an
element of A/~. Therefore, (J(A/~) = A.

3. Mutually disjoint: Let [a] and [b] be two distinct equivalence classes in A/ ~. From the properties
of equivalence classes, we know that if two classes are not identical, their intersection must be empty.
Therefore, the elements of A/~ are mutually disjoint.

Since all three conditions are met, A/~ is a partition of A. |

This theorem shows how to construct a partition from an equivalence relation. The reverse is also true.

Theorem 3.5.2. Partitions Induce Equivalence Relations. If P is a partition of a non-empty set A,
then the relation ~p defined by

r~py<3ISeP, (xeSAyeS)

is an equivalence relation on A.

Proof. Let P be a partition of A, and define ~p as the relation where two elements are related if they belong
to the same subset in the partition. We verify the three required properties.

1. Reflexive: Let x € A. Since P is a partition, | JP = A, so  must belong to some subset S € P.
Thus, z € S and x € S, which means =z ~p z.

2. Symmetric: Suppose x ~p y. By definition, there is a set S € P such that x € S and y € S. This
statement is symmetric with respect to # and y, so we can also say y € S and € S, which implies
Yy ~p .

3. Transitive: Suppose x ~p y and y ~p z. Then there exists a set S; € P such that z,y € S, and a set
Sy € P such that y,z € Ss. Since y is an element of both S; and S5, their intersection is non-empty.
As P is a partition, its subsets are mutually disjoint, so if their intersection is non-empty, they must
be the same set: S; = S5. Therefore, x,y, and z all belong to the same subset, which implies z ~p z.

Thus, ~p is an equivalence relation on A. |
These two theorems establish a fundamental duality: every equivalence relation on a set corresponds to a

unique partition of that set, and every partition corresponds to a unique equivalence relation. The equivalence
classes of the induced relation are precisely the sets in the original partition.
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3.6 Exercises

10.

11.

12.

13.

. The Kernel Relation. Let A and B be sets and let f be a function mapping A to B. Define a

relation ~ on A by z ~ y & f(x) = f(y). Prove that ~ is an equivalence relation on A. If f maps
words to their first letter (e.g., f("Cat") = "C"), describe the equivalence class ["Dog"].

. Let the relation ~ be defined on R\ {0} such that for all z,y € R\ {0}, = ~ y if and only if zy > 0.

(a) Show that ~ is an equivalence relation.
(b) Identify the distinct equivalence classes that form the partition of R\ {0}.

. Let the relation ~ be defined on Z such that for all z,y € Z, x ~ y if and only if |z| = |y|.

(a) Prove that ~ is an equivalence relation.

(b) Describe the partition of Z induced by this relation. How many elements are in each equivalence
class?

. Let A be a set. Prove that the given relations on P(A) are not equivalence relations by identifying

which properties fail.

(a) For X,Y € P(A), define X ~ Y if and only if X NY # (.
(b) For X,Y € P(A), and a fixed element a € A, define X ~Y ifand only ifa € X NY.

. Let A=1{1,2,3,4,5}. Consider the partition P = {{1,4},{2,3,5}} of A. List all the ordered pairs in

the equivalence relation ~p induced by this partition.

. Consider the set R2. For each of the following collections of subsets, determine if it constitutes a

partition of R? and justify your answer.

(a) Py ={L.|c€ R}, where L, = {(z,y) € R? | 2 = c}.

(b) Py ={I, | n € Z}, where I, = {(z,y) e R* |[n <y <n+1}.

(¢) Ps={Jnm | n,meZ}, where Jpm = {(z,y) ER? | n<z<n+1Am<y<m+l}.

Let ~1 and ~9 be two equivalence relations on a set A.

(a) Prove that their intersection, ~1 N ~sg, is also an equivalence relation on A.

(b) Provide a counterexample to show that their union, ~; U ~s, is not necessarily an equivalence
relation.

. Let R be a binary relation on a set A. Prove the following:

(a) R is reflexive if and only if its inverse R~ is reflexive.
(b) R is symmetric if and only if R = R™1.

(c) R is transitive if and only if its inverse R~! is transitive.

. Let ~ be a symmetric and transitive relation on a set A. Prove that ~ is an equivalence relation if

and only if its domain is the entire set, i.e., dom(~) = A.
Let ~ be an equivalence relation on a set A. Prove that A = J, 4[al.

Let the relation ~ be defined on R x R such that (a,b) ~ (z,y) if and only if a? + b? = 22 + 2.

(a) Show that ~ is an equivalence relation.

(b) Describe the partition of the plane induced by ~.

A relation R on a set A is said to be circular if for all x,y,z € A, (xRy A yRz) = zRx. Prove that a
relation is an equivalence relation if and only if it is reflexive and circular.

Let R and S be relations on A. The symmetric closure of R is defined as the relation S such that
R C S, S is symmetric, and for any symmetric relation 7' on A, if R C T then S C T. Prove that
RU R~ is the symmetric closure of R and that the symmetric closure is unique.
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3.7 Partial Orders

Equivalence relations capture a notion of sameness, generalising equality. We now consider relations that
capture a notion of ordering or hierarchy, generalising the "<" relation on numbers. To do so, we introduce
further properties a relation may possess.

Definition 3.7.1. Let R be a binary relation on a set A.
e R is irreflexive if no element is related to itself.
Ve e A, (z,z) ¢ R
e R is asymmetric if the relation cannot hold in both directions for distinct elements.
Vr,y € A ((z,y) € R= (y,7) ¢ R)
e R is antisymmetric if whenever the relation holds in both directions, the elements must be identical.

Vo,y € A, (((z,y) € RA(y,2) € R) =z =y)

Remark. A relation on a non-empty set cannot be both reflexive and irreflexive, nor can it be both symmetric
and asymmetric. However, a relation may have neither property. For instance, R = {(1,1)} on {1,2} is
neither reflexive (since (2,2) ¢ R) nor irreflexive (since (1,1) € R).

Example 3.7.1. The less-than relation, <, on Z is irreflexive and asymmetric. It is also vacuously antisym-
metric: the premise of the implication ‘if z < y and y < x, then x = y* is always false, making the statement
true. The less-than-or-equal-to relation, <, is also antisymmetric, but it is neither irreflexive nor asymmetric
since, for example, 3 < 3.

Example 3.7.2. Let R = {(1,2)} be a relation on {1,2}. This relation is asymmetric since (1,2) € R
but (2,1) ¢ R. It is also antisymmetric and irreflexive. The relation S = {(1,2),(2,1)} on the same set is
symmetric, but not antisymmetric since (1,2) € S and (2,1) € S but 1 # 2.

Theorem 3.7.1. A relation R on a set A is antisymmetric if and only if RN R~ C Id,.

Proof. (=) Assume R is antisymmetric. Let (z,y) € RN R~!. By definition of intersection and inverse, this
means (z,y) € R and (y,z) € R. Since R is antisymmetric, it must be that x = y. Therefore, the pair is of
the form (x,z), which is an element of Id4. Thus, RN R~ C Ida.

(<) Assume RN R™! C Ida. Let (z,y) € R and (y,z) € R. From (y,z) € R, we have (z,y) € R™%.
Therefore, (x,y) € RN R~1. By our assumption, this implies (x,y) € Id 4, which means x = y. Thus, R is
antisymmetric. [ ]

With these properties, we can define a new structure that generalises familiar orderings. Such a relation is
often denoted by a symbol like <.

Definition 3.7.2. Partial Order. A relation < on a set A is a partial order if it is reflexive, antisymmetric,
and transitive. The ordered pair (A, <) is called a partially ordered set, or poset. For elements z,y € A, the
notation r < y means x = y but = # y.

Note. Given a partial order <, we also define the following relations:

e x =y if and only if y < x.
e z >y if and only if y < z.

Example 3.7.3. The relations < and = are partial orders on R. However, < is not a partial order on R
because it is not reflexive.

Example 3.7.4. Divisibility. The divisibility relation ‘| is a partial order on the set of positive integers Z*.
Let a,b,c € ZT.
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e Reflexive: ala since a =a- 1.

e Antisymmetric: If alb and bla, then b = ak; and a = bky for some ki,ky € ZT. This implies
a = (aky1)ks = a(kiks). Since a # 0, we can divide by a to get 1 = k1ko. As k1 and ko are positive
integers, it must be that k; = ko = 1, which implies a = b.

e Transitive: If a|b and b|c, then b = ak; and ¢ = bky for some ki,ky € Z*. By substitution, ¢ =
(aky)ks = a(kiks), so alc.

Example 3.7.5. The Prefix Order. We can use partial order to define an ordering on strings (something
from automata theory), but first we establish the domain of discourse. Let 3 be a finite set of symbols,
referred to as an alphabet. We construct the set of all strings of length k, denoted X, by taking the k-fold
Cartesian product of ¥ with itself. The set of all finite strings over X, denoted by ¥* and known as the
Kleene star of ¥, is the countable union of these sets:

o0
= Uzk’zzouzluz?u...
k=0

Here, X0 contains a unique element of length zero, the empty string e. For example, if ¥ = {a,b}, then
¥l ={a,b} , ¥? =% x ¥ = {aa, ab, ba, bb} (Strings of length 2), 3 = {aaa, aab, aba, abb, baa, bab, bba, bbb},
and ¥* = {¢, a, b, aa, ab, ba, bb, aaa, . .. }.

We define the prefix relation =< on 3* algebraically using concatenation. For strings s,t € ¥*, we say s is a
prefix of t if s forms the initial segment of ¢. Formally:

s<t <& Juec Y suchthatt=s—~u.

Consider the concrete case where s = ab and ¢ = abcde. Since ¢ can be decomposed as ab —~ cde, we have
s < t. Conversely, if x = ab and y = ac, there exists no u such that ac = ab —~ u; thus A y. Since neither
is a prefix of the other, z and y are termed incomparable (this concept is properly defined later).

This relation < satisfies the axioms of a partial order. Reflexivity is immediate as s = s —~ e. Transitivity
follows from the associativity of concatenation. Antisymmetry is enforced by the length of the strings: if
s 2t and t =< s, their lengths must be equal, implying the suffix u is €, and hence s = t.

To visualise such structures, we employ Hasse diagrams. In these diagrams, we represent elements as vertices.
An edge is drawn from = up to y if y strictly covers  — that is, < y and there is no element z such that
x < z < y. This method produces a transitive reduction of the graph, removing redundant lines to reveal
the hierarchical structure. In Figure 3.5, we present two such diagrams: the prefix order on binary strings
(forming an infinite tree rooted at €) and the divisibility relation on the set D1 = {1,2,3,4,6,12}.

4/12\6 Py
2/ 3 N N\
\ / VAVRVANRVANRVAY

(b) A Hasse diagram for the prefix partial order on {0,1}".
(a) The poset (D12, ]).

Figure 3.5: Visualising partial orders using Hasse diagrams.

The partial order < on R has the property that for any two numbers z,y, either x < y or y < x. A partial
order with this property is called a total order (or linear order). This property does not hold for all posets.

Example 3.7.6. Order on Function Spaces. Let A be a set and let (B, =<p) be a poset. The set of all
functions from A to B, denoted Funct(A, B), can be equipped with a partial order < defined pointwise: for
any two functions f, g € Funct(A, B),

fRgeVreA f(z) <pg(x)
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This relation is a partial order on Funct(A, B). Note that even if (B, <p) is a totally ordered set, Funct(A, B)
is generally not totally ordered unless A is a singleton.

Theorem 3.7.2. Weak-Trichotomy Law. If < is a partial order on a set A, then for any z,y € A, at
most one of the following is true: = <y, y <z, or x = y.

Proof. Let (A, =) be a poset and let z,y € A. Suppose < y. This means x < y and = # y. If we also
had y < z, it would mean y < z. By antisymmetry, x < y and y < « implies x = y, which contradicts our
assumption that z # y. Thus, y < x cannot be true. By definition, if z = y, then neither x < y nor y < «
can be true. The cases are mutually exclusive. |

Example 3.7.7. Subset Relation Let A be a set. The subset relation on its power set, P(A), is the relation
{(X,Y) e P(A) x P(A) | X CY}. We show that (P(A),C) is a poset. Let X,Y,Z € P(A).

e Reflexive: X C X for any set X.
e Antisymmetric: If X CY and Y C X, then by the Axiom of Extensionality, X =Y.
e Transitive: f X CY and Y C Z, then X C Z.

This poset aligns with the Weak-Trichotomy Law. For instance, if X C Y, then it cannot be that Y C X.

Before we finish off this section one final theorem.

Theorem 3.7.3. Correspondence of Partial and Strict Orders. Let A be a set.

(i) If < is a partial order on A, then the relation < defined by © < y & (& 2 y Az # y) is a strict order.
(if) If < is a strict order on A, then the relation < defined by * < y < (z < y V& = y) is a partial order.

Proof. (i) Let < be a partial order.

e Irreflexive: Suppose x < x. This means z < z and = # x, a contradiction. Thus < is irreflexive.

e Asymmetric: Suppose x < y and y < x. This implies x < y and y X x. By antisymmetry of <, we
must have x = y. This contradicts x < y = = # y. Thus < is asymmetric.

e Transitive: Suppose z < y and y < z. This means x <y, x # y, y < z, and y # z. By transitivity of
=<,z =R z. If x = 2z, then from <y we have z < y. With y < z, antisymmetry implies y = z, which is
a contradiction. Thus = # z. Therefore, z < z.

(ii) The proof for the second part is analogous and is left as an exercise for the reader. |

Bounds

Let (A, <) be a poset. If elements [ and I” are both least elements of A, then by definition, I < a and I’ < a
for all a € A. In particular, { <1’ (since I’ € A) and I’ < (since [ € A). By antisymmetry, [ =’. A similar
argument holds for the greatest element. Thus, if they exist, the least and greatest elements of a poset are
unique.

Definition 3.7.3. Least and Greatest Elements. Let (A, <) be a poset. An element [ € A is the least
element of Aif | < x for all z € A. An element g € A is the greatest element of A if x < g for all x € A.

Example 3.7.8. For the poset (P(A),C), the empty set @ is the least element and the set A itself is the
greatest element. For the prefix order on ¥* (??), the empty string ¢ is the least element, but there is no
greatest element. With respect to <, the set Z1 has a least element (1) but no greatest element. The set
7~ has a greatest element (-1) but no least element.

For subsets of a poset, we can define a more general notion of bounding elements.

Definition 3.7.4. Upper and Lower Bounds. Let (A, <) be a poset and let S C A.
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e An element v € A is an upper bound of S if s < u for all s € S.

e The element ug € A is the least upper bound (or supremum) of S if it is an upper bound and for any
other upper bound ' of S, we have ug < u'.

e An clement [ € A is a lower bound of Sif [ < sforall s€ S.

e The element ly € A is the greatest lower bound (or infimum) of S if it is a lower bound and for any
other lower bound !’ of S, we have I’ < .

Note. The supremum of a two-element set {x,y} is often denoted = Vy (read "x join y"), and the infimum
is denoted z Ay (read "x meet y").

Definition 3.7.5. Mazimum and Minimum of a Subset. Let (A4, <) be a poset and let S C A.

e An element m € S is the maximum of S, denoted max(.S), if it is an upper bound of S.
e An element m € S is the minimum of S, denoted min(.S), if it is a lower bound of S.

By antisymmetry, the maximum and minimum of a set, if they exist, are unique.

Remark. It is crucial to distinguish the supremum from the maximum. If sup(S) exists and is an element
of S, then sup(S) = max(S). However, a set may have a supremum that is not in the set itself, in which
case it has no maximum. A symmetric statement holds for the infimum and minimum.

Example 3.7.9. Consider the interval (3,5) as a subset of the poset (R, <). The set of upper bounds is
[5,00), and the least upper bound is 5. The set of lower bounds is (—oo, 3], and the greatest lower bound is
3. Note that neither the supremum nor the infimum are elements of the set (3,5).

Example 3.7.10. Let F be a collection of subsets of a set A, so F C P(A). Consider F as a subset of the
poset (P(A),C). The union |JF is an upper bound for F, since for any set S € F, we have S C |JF. To
show it is the least upper bound, let U be any other upper bound of F. This means S C U for all S € F.
Let « € |J F. By definition, there exists some Sy € F such that z € Sp. Since U is an upper bound, Sy C U,
which implies € U. As z was arbitrary, we conclude | JF C U. Therefore, | J F is the supremum of F.

An analogous argument shows that the intersection (| F is the greatest lower bound (infimum) of F.

Theorem 3.7.4. Basic Properties of Infimum and Supremum. Let (4, <) be an ordered set and
B CA.

(i) B has at most one infimum.
(ii) If b is the least element of B, then b is the infimum of B.
(iii) If b € B is the infimum of B, then b is the least element of B.

Proof. (i) Follows from uniqueness of maximal lower bound. (ii) Least b is a lower bound; any other lower
bound x satisfies x < b (since b € B), so b greatest. (iii) Infimum b € B is a lower bound, hence least in
B. [ |

Remark. This is Symmetric for supremum and thus left as an exercise.
3.8 Structure within Posets

In a partially ordered set, it is not required for every pair of elements to be related. This leads to a rich
structure of comparable and incomparable elements, which we can use to classify posets and their subsets.

Comparability, Maxima, and Minima

We begin by formalising the notion of two elements being related within a poset.

Definition 3.8.1. Comparable Elements. Let (A, <) be a poset. Two elements z,y € A are comparable
if either x <y or y < x. If they are not comparable, they are incomparable.
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Example 3.8.1. In the poset of strings ({0,1}*, <) from our example above with the prefix order, the
strings ’01” and 0110’ are comparable because '01’ is a prefix of ’0110’. However, the strings 010’ and '011’
are incomparable, as neither is a prefix of the other.

Example 3.8.2. In the poset (ZT,]), the integers 4 and 12 are comparable because 4|12. The integers 5
and 7 are incomparable because 517 and 71 5.

This distinction allows us to refine the concepts of least and greatest elements. A poset may not have a
single "smallest" element, but it can have elements that have nothing smaller than them.

Definition 3.8.2. Minimal and Maximal Elements. Let (A, =) be a poset and let m € A.

e m is a minimal element of A if there is no element x € A such that z < m.
e m is a maximal element of A if there is no element x € A such that m < z.

Note. It is crucial to distinguish a mazimal element from a mazimum (or greatest) element. A maximum
element must be comparable to and greater than every other element in the set. A maximal element simply
has no element strictly greater than it. While every greatest element is maximal, the converse is not true.
For example, in the poset of non-empty, proper subsets of {1,2,3} ordered by C, the sets {1,2} and {1, 3}
are both maximal, but neither is a greatest element because they are incomparable. A symmetric distinction
applies to minimal and least elements.

Remark. Every least element is minimal and every greatest element is maximal. However, the converse is
not true. A poset can have multiple minimal or maximal elements, but it can have at most one least and at
most one greatest element.

Example 3.8.3. Let S = P({1,2,3}) \ {0, {1,2,3}} be the set of all non-empty proper subsets of {1, 2,3},
ordered by C.

e The minimal elements are {{1},{2},{3}}. None of these can have a subset within S that is smaller.
There is no least element, as these three are incomparable.

e The maximal elements are {{1,2},{1,3},{2,3}}. None of these is a subset of any other element in S.
There is no greatest element.

Example 3.8.4. Consider the set A = Z*1\ {1} = {2,3,4,...} with the divisibility relation ‘|. The minimal
elements of this poset are precisely the prime numbers, since no prime can be divided by any other element
in A. This poset has no maximal elements.

Theorem 3.8.1. Basic Properties of Least and Minimal Elements. Let (4, <) be an ordered set and
B C A

(i) B has at most one least element.
(ii) The least element of B (if it exists) is also minimal.
(iii) If B is a chain, every minimal element of B is also least.

Proof. (1) If b,V are least, then b < b and V' < b, so b = b’ by antisymmetry. (ii) Let b be least. For z € B
with z < b, also b < x, so « = b by antisymmetry; b minimal. (iii) Let b be minimal. For 2 € B, since chain,
x<borb<uz Ifx <b, then x = b (minimal), so b < x always. [ ]

Note. Analogous results hold for greatest and maximal elements, and thus left as an exercise.

Chains and Antichains

The properties of comparability can be extended to entire subsets of a poset.

Definition 3.8.3. Chain. A subset C of a poset (A,=) is a chain if every pair of elements in C is
comparable.

Example 3.8.5.
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e In (Z, <), any subset of integers, such as the set of even numbers {...,—2,0,2,...}, forms a chain.

e In (P(N), Q), the collection C = {@,{0},{0,1},{0,1,2},...} is a chain because for any two sets in C,
one is a subset of the other.

e In (Z*,]), the set of powers of two, {1,2,4,8,16,...}, is a chain.

Some posets have the special property that the entire set is a chain.

Definition 3.8.4. Linearly Ordered Set. A poset (A, <) is a linearly ordered set (or totally ordered set)
if A itself is a chain. The relation < is then called a linear order (or total order).

For such sets, the Weak-Trichotomy Law can be strengthened.
Theorem 3.8.2. Trichotomy Law. If < is a linear order on a set A, then for any two elements x,y € A,

exactly one of the following holds:
r<y, y<x, Oor =Y

The opposite of a chain is a set where no two distinct elements are comparable.

Definition 3.8.5. Antichain. A subset S of a poset (A4, <) is an antichain if every pair of distinct elements
in S is incomparable.

Example 3.8.6. In the poset (P({1,2,3,4}),C):

e The set of all two-element subsets, {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}, is an antichain.
e The set {{1},{2,3},{4}} is an antichain.

In the poset (ZT,]), the set of prime numbers is an antichain.

Monotone Functions

A function between two posets is of particular interest if it preserves the order structure.

Definition 3.8.6. Monotone Function. Let (A, <4) and (B, =<p) be two posets. A function f: A — B
is:

e increasing (or order-preserving) if for all x,y € A, © <4 y = f(z) <B f(y).
e decreasing (or order-reversing) if for all z,y € A, © <4 y = f(y) <5 f(2).
e strictly increasing if for all z,y € A, z <4 y = f(x) <5 f(y).
e monotone if it is either increasing or decreasing.

Example 3.8.7. Let S be a set. The function f : P(S) — P(S) defined by f(X) = S\ X (the complement)
is a decreasing function with respect to the subset order C, since X CY = S\Y C 5\ X.

3.9 Exercises

1. Let D3p ={1,2,3,5,6,10, 15,30} be the set of positive divisors of 30.

(a) Draw the Hasse diagram for the poset (Dso, |), where ¢|* denotes the divisibility relation.
(b) Identify all minimal, maximal, least, and greatest elements of this poset.

(¢) Find a chain of length 4.

(d) Find an antichain of size 3.

2. Let (A,=<4) and (B, <p) be posets. The product order < on A X B is defined by:
(a1,b1) = (az,b2) < (a1 <4 az and by <p bo)

Prove that (A x B, <) is a poset.
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10.

11.

. Let (Z,<) be the set of integers with the standard order. The lexicographical order <., on Z? is

defined by:
(a,b) Zjes (¢,d) & (a < c)or (a=candb<d)

Prove that <., is a linear order on Z2.

. Let A be a set with at least two elements. Prove that the poset (P(A),C) is not a linear order by

providing an example of two incomparable elements.

. Let S be the set of all functions from {a, b} to {0,1}. Define a relation < on S by f < g if f(z) < g(z)

for all z € {a,b}.

(a) Prove that (59, <) is a poset.
(b) Draw the Hasse diagram for this poset. Is it a linear order?

. Let R be a binary relation on a set A. Prove that R is asymmetric if and only if RN R~ = (). Compare

this to the property that R is antisymmetric if and only if RN R~ C Id4.

Let A be a set. Prove that if F C P(A) \ {0} is a collection of mutually disjoint sets, then F is an
antichain with respect to C. Provide a counterexample to show that the converse is false (i.e., find an
antichain where the sets are not disjoint).

. In the poset (R, <), find the supremum and infimum (if they exist) of the following sets. State whether

these bounds are elements of the set itself.
() 8 = {2 | n € 2*}.
(b) So={reQ|z*<2}

. Let A ={1,2,3}. Provide an example of a relation on A that is:

(a) Transitive and reflexive, but not antisymmetric.
(b) Transitive and antisymmetric, but not reflexive.

Well-Ordering and Infinite Chains. A linearly ordered set (A, <) is said to be well-ordered if every
non-empty subset of A contains a least element. Prove that a linearly ordered set (A, <) is well-ordered
if and only if it contains no infinite descending chain (a sequence 1, T2, 3, ... such that x, 1 < x,
for all n € Z7T).

(a) (=) Assume (A, =) is well-ordered. Prove by contradiction that it cannot contain an infinite
descending chain. (Hint: consider the set of elements in such a chain.)

(b) (<) Assume (A, <) is a linear order with no infinite descending chains. Let S be any non-empty
subset of A. Prove by contradiction that S must have a least element. (Hint: if S has no least
element, construct an infinite descending chain.)

Lattices. A poset (4, <) is a lattice if for every pair of elements z,y € A, the set {z,y} has both a
least upper bound (supremum, denoted x V y) and a greatest lower bound (infimum, denoted z A y).

(a) Show that for any set S, the poset (P(S), C) is a lattice. What familiar set operations correspond
to X VY and X AY?

(b) Show that every linearly ordered set is a lattice. What are x V y and = A y in this case?

(¢) Show that the poset ({1,2,3,4,5,6},|) is not a lattice by finding a pair of elements that lacks a
supremum or an infimum.
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Functions

The concept of a function, familiar from algebra and calculus as a rule that assigns a unique output to each
input, is formalised in set theory as a specific type of relation. This formalisation allows us to rigorously
define and analyse the properties of functions, which are the fundamental building blocks for nearly all areas
of mathematics.

4.1 The Definition of a Function

The defining characteristic of a function is that each input is associated with exactly one output. This
intuition, often visualised with the vertical line test for graphs in the Cartesian plane, is captured precisely
within the language of relations.

Definition 4.1.1. Function. A binary relation f is a function if for every element in its domain, there is
a unique corresponding element in its range. Formally, for any x, vy, yo,

((z,91) € fA(2,92) € F) = y1 = w2

A function is n-ary if its domain is a Cartesian product of n sets. A function is unary if n = 1 and binary if
n=2.

In other words, a function is a relation that does not contain two distinct ordered pairs with the same first
coordinate.

Example 4.1.1.

e The relation f = {(1,2),(4,5),(6,5)} is a function. The first coordinate 1 maps only to 2, 4 maps only
to 5, and 6 maps only to 5. It is permissible for different inputs to map to the same output.

e The relation R = {(1,2),(1,5),(6,5)} is not a function because the input 1 is associated with two
different outputs, 2 and 5.

e The empty set, 0, is a function. The condition in the definition is vacuously true, as there are no
elements (z,y1) or (z,y2) in @ to test.

Remark. In many contexts, especially within set theory, a function is identified with its graph (the set of
ordered pairs). However, in other areas of mathematics, it is common to define a function as an ordered
triple (A4, f, B), where A is the domain, B is the codomain, and f C A x B is the graph. This alternative
definition explicitly includes the codomain as part of the function’s identity.

The standard arithmetic operations can be formalised as functions. For example, addition on the integers is
the binary function + C (Z x Z) x Z defined by:

+={((z,9),2) |z,y,2 € LNz =z +y}
32
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Notation 4.1.1. Other notations for the function F' include:
(Fa)|a€ A), (Fola€A), (Fu)aea.
The range of F' can be denoted by {F(a) |a € A} or {F,}sca-

Function Notation and Terminology

Since the output for any given input in a function’s domain is unique, we can simplify our notation.

Definition 4.1.2. Function Value. Let f be a function. For any element x € dom(f), there exists a
unique element y such that (z,y) € f. We define f(z) = y. If © ¢ dom(f), we say that f(z) is undefined.
We call f(z) the value of the function f at x.

The statement y = f(z) is equivalent to (z,y) € f. When discussing a function, we must specify the set of
allowed inputs (the domain) and a set that contains all possible outputs (the codomain).

Definition 4.1.3. Domain, Codomain, and Range. Let f be a function.

e The domain of f, dom(f), is the set of all first coordinates.
e A codomain of f is any set B such that ran(f) C B.
e The range of f, ran(f), is the set of all second coordinates.

We write f : A — B to denote that f is a function with domain A and codomain B. A function is also called
a map or mapping.

Note. If g is also a function with domain A and codomain B, we can use the abbreviation f,¢g: A — B.

Remark. The range is a property of the function itself, whereas the codomain is part of the function’s
definition and can be any superset of the range.

If y = f(x), we say that y is the image of x under f, and x is a pre-image of y. The set of all images
of elements in a subset S C A is denoted f[S], consistent with the notation for relations. The set of all
pre-images of a set T C B is the inverse image, f~![T]. This relationship is illustrated in Figure 4.1.

A (Domain) B (Codomain)

ftA—=>B

Figure 4.1: A function f mapping elements from its domain A to its codomain B. The range of f is {z,y},
a subset of B. Here, f(a) = z, so x is the image of a. Both a and b are pre-images of x.

Example 4.1.2. Let A be any set. The identity relation Id,4 is a function, called the identity map on A.
For any z € A, Ida(z) = .

Example 4.1.3. Greatest Integer FunctionLet x € R. The greatest integer function, denoted |z ], is defined
as the greatest integer less than or equal to z. For example, |5] =5, |1.4] = 1, and |—3.4] = —4. This
defines a function |-| : R — Z.
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Example 4.1.4. Let A and B be non-empty sets.

e A constant function is a function f: A — B such that for a fixed element ¢ € B, we have f(z) =c¢
for all z € A.

e If A C B, the inclusion map is the function i : A — B defined by i(x) = z. Note that i = Id4 as sets
of pairs, but they are distinct as functions if A # B because their codomains differ.

e The characteristic function of a subset S C A is the function ygs : A — {0,1} defined by:

() 1 ifzesS
xr) =
xS 0 ifzgs

e For a Cartesian product A x B, the projections are the functions 71 : AxB — Aand 7y : AXxB — B
defined by 7 (a,b) = a and 7wa(a,b) = b.

Well-Defined Functions

When defining a function with a rule, particularly on a set of equivalence classes, we must ensure that the rule
produces a unique output regardless of the representation of the input. A rule that satisfies this condition is
said to be well-defined. Proving a function is well-defined is equivalent to proving it is a function according
to our definition.

Example 4.1.5. Let n,m € ZT such that m | n. Define ¢ : Z,, — Z,, by ¢([a],) = [a]m. To show ¢ is
well-defined, assume [a],, = [b],, for some integers a, b.

[aln = [b], = n | (a—b)
=a—b=nk forsomekecZ

Since m | n, we know n = mj for some j € Z. Substituting gives:
a = b= (mj)k = m(jk)

Since jk is an integer, this implies m | (a — b), which means [a],, = [b];». The output is independent of the
representative chosen, and ¢ is a well-defined function.

Example 4.1.6. Define ¢ : Zs — Zs by ¥([a]z) = [a]e. This rule is not well-defined. Consider the
equivalence class [1]3. We have [1]3 = [4]3 since 3 | (4 — 1). According to the rule, 1([1]3) = [1]2. However,
using the representative 4, the rule gives ¢([4]s) = [4]2 = [0]2. Since [1]y # [0]2, the same input [1]5 yields
two different outputs. Therefore, v is not a function.

Equality and the Space of Functions

As functions are sets, two functions are equal if and only if they contain the same set of ordered pairs. This
leads to a more practical criterion for function equality.

Definition 4.1.4. Set of Functions. If A and B are sets, the set of all functions from A to B is denoted
by BA.
BA = {f| f is a function f : A — B}

Example 4.1.7. Let A = {1,2} and B = {0,1}. Then B# is the set of all functions from A to B. A
function f: A — B must assign to each element of A either 0 or 1. There are four such functions, which we
can describe as sets of ordered pairs:

f :{(1,0),(2,0)}7 I2 :{(1,0)7(2,1)}, 3= {(1,1),(270)}, fa :{(171)7(271)}
So in this case, B4 = {f1, f2, f3, fa}-
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Example 4.1.8. A sequence of real numbers (ag, a1, as,...) can be seen as a function f : N — R where
f(n) = a,. Thus, the set of all real sequences is the function space RY. For example, the sequence (1, %, %, cel)
corresponds to the function f:Z* — R defined by f(n) = 1/n.

Proposition 4.1.1. If A and B are sets, then B4 exists.

Proof. If f is a function from A into B, then f C A x B, so f € P(A x B). [ ]

Theorem 4.1.1. Equality of Functions. Two functions f: A — B and g : C — D are equal if and only
if they have the same domain (A = C') and for every element z in that domain, f(z) = g(z).

Proof. (=) Assume f = g. Since they are the same set of ordered pairs, their domains must be identical, so
A =C. Forany x € A, let y = f(z). This means (z,y) € f. Since f = g, we also have (z,y) € g, which
means g(z) =y. Thus, f(z) = g(z).

(<) Assume A = C and f(x) = g(z) for all z € A. Let (z,y) € f. By definition, y = f(z). By our
assumption, g(z) = f(x) = y, which implies (z,y) € g. Thus f C g. A symmetric argument shows g C f, so

f=g. ]
Example 4.1.9. Let f,g : R — R be defined by f(z) = (x — 3)? + 2 and g(x) = 22 — 62 + 11. For any
r €R,

flx)=(xr—3)2+2= (2> —62+9)+2=2°—6x+11 = g(z)
Since they have the same domain and their values agree for all inputs, f = g.

Example 4.1.10. Let f,g:Z — Zg be defined by f(n) = [n]¢ and g(n) = [n + 12]s. We claim that f = g.
For any a € Z, we have g(a) = [a + 12]g. Since 6 | 12, it follows that 6 | ((a + 12) — a), which means
[a + 12]¢ = [a]eé. Thus, g(a) = [ale = f(a) for all @ € Z. As the domains are identical and the values agree
for every input, f = g.

4.2 Operations on Functions

With a formal definition of a function, we can now define standard operations such as composition, restriction,
and extension, which allow for the construction and manipulation of functions.

Composition of Functions

The composition of relations is a particularly meaningful operation when the relations are functions. It
represents the application of one function followed by another.

Theorem 4.2.1.If f : A — B and g : C — D are functions such that ran(f) C C, then the composition
go f is a function from A to D, and for all z € A, (go f)(z) = g(f(x)).

Proof. First, we show that g o f is a function. Let (z,21) € go f and (z,22) € go f. By the definition of
composition, there must exist y1,ys € ran(f) such that:

L4 (33/!/1) S f and (ylwzl) S g

o (z,y2) € fand (y2,22) € g

Since f is a function, (z,y1) € f and (x,y2) € f implies y; = y2. Now, since y; = y2 and g is a function,
(y1,21) € g and (y1, 22) € g implies z; = z3. Therefore, g o f satisfies the definition of a function.

The domain of g o f is the set of all « for which the composition is defined. For any = € A, f(z) exists and
is in ran(f). Since ran(f) C C = dom(g), g(f(x)) is also defined. Thus, the domain of go f is A. The range
of go f is a subset of the range of g, which is a subset of D. Therefore, go f: A — D.
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Finally, for any € A, let y = f(x). Then (z,y) € f. Since y € ran(f) C C, we have (y,g9(y)) € g. By
definition of composition, (z,g(y)) € go f. Thus, (go f)(x) = g(y) = g(f(z)). |
]

Example 4.2.1. Let f: Z — Zbe f(z) =x+2and g : Z — Zs be g(y) = [y*
the composition g o f is well-defined. For any = € Z,

(go @) =g(f(x) =g(z+2) = [(x+2)°]s = [+" + 4o+ 4]5

Example 4.2.2. Let f : R - R be f(z) =2 —1 and g : Rt — R be g(z) = In(z). The range of f is R,
which is not a subset of the domain of g, R*. The composition go f is not defined on all of R. For instance,
(go f)(0) =g(f(0)) = g(—1), which is undefined.

5. Since ran(f) = Z = dom(g),

Commutative Diagrams

Relationships between functions, particularly those involving composition, can be visualised using commu-
tative diagrams. In such a diagram, sets are represented by vertices and functions by arrows. A diagram is
said to commute if following any two paths of arrows from one vertex to another yields the same result via
composition.

For example, given functions f: A — B, g: B — C, and h: A — C, the diagram in Figure 4.2 commutes if
and only if h =go f.

C

Figure 4.2: A commutative diagram illustrating h = g o f.

Restrictions and Extensions

It is often useful to consider a function’s behaviour on a smaller domain or to define a larger function that
agrees with a smaller one.

Definition 4.2.1. Restriction and Extension. Let f: A — B be a function and let S C A.

e The restriction of f to S, denoted f|g, is the function f|s : S — B defined by f|s(z) = f(z) for all
x € S. Formally, fls = fN(S x B).
e A function g : C — D is an extension of f if A C C and f = g|a.

Example 4.2.3. Let f: R — R be f(z) = |z|. The function g : [0,00) — R defined by g(x) = z is equal to
the restriction of f to the non-negative reals, i.e., g = f[0,00). Conversely, f is an extension of g.

Theorem 4.2.2. Let f : A — B be a function and let S,T C A. Then f|sur = (f|s) U (f|r).

Proof. We show the sets are equal by showing an element is in one if and only if it is in the other.

(z,y) € flsur 2z € SUT ANy = f(x)
SxeSvezeT)rny= f(x)
S(@eSAy=f(2)V(@eTNy=f(z))
& (z,y) € fls V(z,y) € flr
& (z,9) € (fls) U (flr) ]
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Compatible Functions and Function Unions

When constructing a new function from several existing ones, it is essential that their definitions do not
conflict. This leads to the idea of compatibility.

Definition 4.2.2. Compatible Functions. Two functions f and g are compatible if their values agree on
the intersection of their domains. That is, for all z € dom(f) Ndom(g), we have f(z) = g(x). A collection
of functions F is a compatible system if every pair of functions in F is compatible.

Compatibility is the precise condition required to ensure that the union of two or more functions is itself a
function.

Theorem 4.2.3.If F is a compatible system of functions, then its union, |JF, is also a function. The
domain of this new function is the union of the domains of the functions in F.

dom(| JF) = (J dom(f)

fer

Proof. Let F be a compatible system of functions. The set h = | JF is a set of ordered pairs, and is thus a
binary relation. To show that & is a function, we must demonstrate that each element in its domain maps
to a unique value.

Let (x,y1) € h and (z,y2) € h. By the definition of a set union, there must exist functions f1, fo € F such
that (xz,y1) € f1 and (z,y2) € fo. This implies € dom(f;) and = € dom(f2), so x is in the intersection
of their domains. Since F is a compatible system, f; and fo are compatible, meaning fi(xz) = fo(x). As
y1 = f1(z) and yo = fo(x), it follows that y; = ys.

Therefore, h = |J F is a function. The statement regarding its domain follows directly from the properties
of set union. |

Remark. This theorem provides the formal justification for defining functions piecewise. For instance, the
absolute value function can be defined as the union of two compatible functions: f(x) = x restricted to
[0,00) and g(z) = —x restricted to (—o0,0).

Binary Operations
A binary operation is a special type of function that takes two elements from a set and produces a single
element within that same set.

Definition 4.2.3. Binary Operation. A binary operation % on a non-empty set A is a function * : Ax A —
A.

Remark. To prove that a rule * defines a binary operation on a set A, one must show two things:

1. * is well-defined: equal inputs produce equal outputs.
2. A is closed under *: for all a,b € A, the result a * b is also in A.

For a binary operation *, we typically use infix notation a * b instead of prefix function notation *(a,b).

Example 4.2.4. Union on a Power Set. Let S be a set. The union operation, U, is a binary operation on
the power set P(S).

e Well-defined: If A; = A; and By = Bs are subsets of S, then A; U By = Ay U By. This holds by the
definition of set equality.

e Closure: For any A, B € P(S), we have A C S and B C S. Their union AU B is also a subset of S,
and is therefore an element of P(5).

Thus, U : P(S) x P(S) — P(S) is a binary operation.
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Example 4.2.5. Operation via Cayley Table. A binary operation on a finite set can be completely specified
using a multiplication table, known as a Cayley table. Let S = {e,a,b,c}. The following table defines a
binary operation * on S:

O R O %
QO Q9 oo
SO 0 Qfe
Q0 0 oo
Q2 oo

The entry in the row corresponding to x and the column corresponding to y represents the result z * y.
For instance, a x b = ¢. The operation is well-defined because each cell has exactly one entry. Closure is
guaranteed because every entry in the table is an element of S.

Example 4.2.6. Addition on Z,,. Let n € Z". Addition on Z, is defined by [a],, + [b],, = [a + b],,. We show
this is a binary operation.

e Well-defined: We must show the result is independent of the representatives a and b. Suppose
[a1]n = [a2]n and [b1]n = [b2]n. This means n | (a; — az) and n | (by — ba). So, a; — as = nk; and
by — by = nko for some integers ki, ky. Adding these gives (a1 + b1) — (ag + be) = n(k; + k2). This
implies n | ((a1 + b1) — (a2 + b2)), so [a1 + b1], = [az + b2],. The operation is well-defined.

e Closure: For any [al,, [b]n € Zy, a + b is an integer, so [a + b],, is an element of Z,,.

Properties of Binary Operations

Binary operations can be classified by properties that they may or may not possess.

Definition 4.2.4. . Let * be a binary operation on a set A.

e x is associative if (axb) x c=ax* (bxc) for all a,b,c € A.

e x is commutative if axb=>bx*a for all a,b € A.

e An element e € A is an identity element if axe =e*xa = a for all a € A.

e If A has an identity element e, an element a’ € A is an inverse of a € Aif axa’ =a' *xa = e.

Theorem 4.2.4. If an identity element exists for a binary operation, it is unique. If an operation is asso-
ciative and an element has an inverse, that inverse is unique.
Proof. Let x be a binary operation on A. Suppose e; and ey are both identity elements. Then e; = e * e

(since ey is an identity) and e * e3 = ey (since e; is an identity). Therefore, e; = es.

Now assume #* is associative and has identity e. Suppose a € A has two inverses, a] and a5. Consider the
expression aj * a * aj.

ay x (a*ah) =a) xe=a)

/ r r_
(a] * a) *xay, = e *xay = a;
By associativity, these two results must be equal. Therefore, a} = aj. [ |

Example 4.2.7. Consider the binary operation of addition on Z,.

e Associative: ([a] +[b]) +[c]=[a+b+[c]=[(a+b)+c]=[a+ (b+c)] =][a] + ([b] + [c])-
e Commutative: [a] + [b] = [a + b] = [b+ a] = [b] + [a].

e Identity: The class [0], is the identity, since [a] 4 [0] = [a + 0] = [a].

e Inverse: For any class [a],, its additive inverse is [—al,, since [a] + [—a] = [a — a] = [0].

Example 4.2.8. Consider the binary operation of union, U, on P(S) for some set S.
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Associative: (AUB)UC =AU (BUC).
Commutative: AUB = BUA.
Identity: The empty set () is the identity, since AU D = A.

Inverse: Only () has an inverse, which is itself. For any non-empty set A € P(S), there is no set
A" € P(S) such that AU A" = 0.

4.3 Exercises

Part I: Foundational Concepts

1. Determine which of the following relations are functions. For those that are not, provide a specific
reason.

(a) f CR xR, where f = {(z,y) | 22 + 3> = 9}.

(b) g CZ x Z, where g = {(z,y) | y = > — x}.

(c) h C Zg x Zg, where h = {([a], [b]) | [a]® = [b]}.

(d) kK CP(Z) x Z, where (A,n) € k if and only if n is the smallest element of A.

2. For each of the following rules, determine the largest possible subset of R that can serve as the domain
(the mazimal domain) and find the corresponding range.

(a) f(z)=+v4—2a2.
(b) g(z) = 5.

h(r) = ———.
3. Let f: R — R be defined by f(x) = 22 — 2x. Find the following sets:

(a) The image f[{0,1,2,3}].

(b) The image f[[—1, 3]].

(c) The pre-image f~'[{0,3}].
(d) The pre-image f~1[[—10,—1]].

4. A rule f: Q — Z is proposed as follows: for any rational number represented as a fraction a/b (where
a,b € Z,b#0), f(a/b) = a — b. Is this rule a well-defined function? Justify your answer.

Remark. Consider the rational number 1. It can be written as 1/1 or 2/2. Do these representations
yield the same output?

5. Let f,g : R — R. Are the functions f(z) = “”:Jr_gg and g(xz) = x — 3 equal? Justify your answer by

carefully applying the theorem on equality of functions.

Part II: Function Construction and Spaces

6. Let f:R— R, g:R—Z,and h : Z — Z4 be defined by f(x) = 22 +1, g(z) = |«] (the floor function),
and h(n) = [n+ 1]4.
(a) Compute (go f)(2.5) and (hog)(—1).
(b) Find an expression for (g o f)(z) and state its domain and range.
(¢) Find an expression for (h o g)(x). Is f o h a meaningful composition? Explain.
7. Associativity of Composition. Let f: A - B, g: B — C, and h : C — D be functions. Prove

that function composition is associative; that is, prove ho (go f) = (hog) o f as functions from A to
D.
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8.

10.

If |A| = n and |B| = m are finite sets, what is the cardinality of the function space B4? Prove your
claim.

Remark. For each element a € A, how many choices are there for its image f(a) in B? Apply the
Multiplication Principle.

. The identity function on a set A is Idsy : A — A defined by Ida(z) = z. Let f : A — B be any

function. Prove that foldy = f and Idg o f = f. This shows that identity functions act as identity
elements for the operation of composition.

Let f : R — R be defined by f(z) = sin(wz) and g : R — R be defined by g(z) = cos(rz). Find a
non-empty set S C R such that the restriction f|g is equal to the restriction g|g. Can you describe all
such sets?

Part III: Binary Operations

11.

12.

13.

14.

15.

For each of the following sets and rules, determine if the rule defines a binary operation on the set.
If so, determine whether it is associative, commutative, has an identity element, and which elements
have inverses.
(a) The set Z with the operation a xb = a + b — ab.
(b) The set R\ {—1} with the operation a *b = a + b+ ab.
(c) The set of all functions f : R — R with the operation of pointwise addition: (f + g)(z) =
f(x) +g(z).

Let A be a set. Consider the function space A#, which is the set of all functions from A to A.

(a) Prove that function composition, o, is a binary operation on A“.

(b) We know from Exercise 7 that o is associative. Prove that o is not, in general, commutative by
providing a counterexample.

Remark. Let A = {1,2} and construct two functions f,g € A4 such that fog# go f.
Cancellation Laws. Let * be an associative binary operation on a set .S with identity element e. Let
a € S be an element that has an inverse, a’. Prove that for any b,c € S:

(a) If axb=a=c, then b = ¢ (Left Cancellation).
(b) If b* a = cx*a, then b = ¢ (Right Cancellation).
* Let S = R x R. Define a binary operation * on S by (a, b) * (¢,d) = (ac — bd, ad + bc). This operation

defines multiplication of complex numbers. Show that this operation is associative and commutative,
find the identity element, and find the inverse for any non-identity element (a, b) # (0,0).

* Characteristic Functions. For any set U, and any subset S C U, the characteristic function of S
is the function xs : U — {0, 1} defined by

(z) = 1 ifzesS
XY= V0 itegs

Let A, B be subsets of U. Prove the following identities relating set operations to arithmetic operations
on their characteristic functions:

(a) xanB = X4 - xB (pointwise product).

(b) XauB = X4 +XB — XA XB-

(c) xa\B = xa(l —xB)-
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4.4 Injective, Surjective, and Bijective Functions

The inverse of a relation R, denoted R~!, is formed by reversing the coordinates of each ordered pair in R.
While this operation is always defined for relations, the inverse of a function is not necessarily a function
itself. For example, if f = {(1,3),(2,3)}, its inverse is the relation f~! = {(3,1),(3,2)}. This relation
fails the definition of a function because the input 3 is mapped to two distinct outputs. This observation
motivates the classification of functions based on properties that govern the behaviour of their inverses.

Injective Functions (Injections)

For an inverse relation f~! to be a function, it must not map any element of its domain to more than one
output. This implies that the original function f must not map more than one element of its domain to the
same output. This property is known as injectivity.

Definition 4.4.1. Injective Function. A function f: A — B is injective (or one-to-one) if for every pair
of distinct elements in the domain, their images are also distinct. Formally:

Vry, 2 € A, (11 # 12 = f(21) # f(22))
The logically equivalent contrapositive is often used in proofs:
Vl‘l,.l?Q S A, (f(l‘l) = f(l‘g) = T = 3;‘2)

An injective function is called an injection.

Geometrically, an injection is a function whose graph passes the horizontal line test: any horizontal line
intersects its graph at most once.

Example 4.4.1. Define f : R — R by f(z) = 5z + 1. To show f is injective, let 21,22 € R and assume
f(x1) = f(x2).

521 +1=5x9+1=5x1 =510 = 11 = 22
Therefore, f is an injection.

Example 4.4.2. Define g : R — R by g(x) = 22. This function is not injective because we can find distinct
inputs that map to the same output. For instance, g(2) = 4 and g(—2) = 4, but 2 # —2.

Remark. A function that is not injective may become injective if its domain is restricted. For the function
g(z) = 2, the restriction gljg o is an injection.

Surjective Functions (Surjections)

Even if a function is injective, its inverse may not be defined on the entirety of the original codomain. For
f~! to be a function from B to A, its domain must be B. This requires that the range of the original function
f is equal to its codomain B.

Definition 4.4.2. Surjective Function. A function f : A — B is surjective (or onto) if every element in
the codomain B is the image of at least one element in the domain A. Formally:

Vye B,z € A, f(z) =y
This is equivalent to the statement ran(f) = B. A surjective function is called a surjection.

Example 4.4.3. Any non-constant linear function f : R — R of the form f(z) = ax + b with a # 0 is a
surjection. To prove this, let y € R be an arbitrary element of the codomain. We must find an z € R such
that f(xz) =y. We solve for a:
—-b
ax+b:y:>ax:y—b:>x:y—
a

Since a # 0, this value of z exists and is in the domain R. Therefore, f is surjective.
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Example 4.4.4. Define a projection map 7 : R® — R2? by 7(z,y,2) = (x,y). This function is surjective.
For any arbitrary (a,b) € R?, we can choose the element (a,b,0) € R®. Then 7(a,b,0) = (a,b). However, 7
is not injective since, for example, 7(1,2,3) = 7(1,2,4) = (1,2).

Bijective Functions and Invertibility

A function whose inverse is also a function with a domain equal to the original codomain must possess both
of the properties discussed above.

Definition 4.4.3. Bijective Function. A function f : A — B is bijective if it is both injective and
surjective. A bijection is also known as a one-to-one correspondence.

Example 4.4.5.

e The function f: R — R defined by f(x) = ax + b with a # 0 is a bijection.
e The function g : (—7/2,7/2) — R defined by g(x) = tan(x) is a bijection.
e The function h : R — (0,00) defined by h(x) = €” is a bijection.

Note. In mathematical literature, special arrows are often used to denote the type of function being de-
scribed.

e An injection f: A — B may be written as f: A — B.
e A surjection f: A — B may be written as f : A - B.
e A bijection f: A — B may be written as f : A < B.

We are now prepared to formally connect these properties to the concept of invertibility.

Definition 4.4.4. Invertible Function. A function f : A — B is invertible if its inverse relation f~!is a
function from B to A.

Theorem 4.4.1. Invertibility Theorem. A function f : A — B is invertible if and only if it is a bijection.

Proof. (=) Assume f is invertible, meaning f~! : B — A is a function.

e Injectivity: Let x1,25 € A and assume f(z1) = f(x2) = y. By definition of the inverse relation,
(y,71) € f~! and (y,22) € f~1. Since f~! is a function, it must be that #; = x5. Thus, f is injective.

e Surjectivity: Let y be an arbitrary element of B. Since B is the domain of f~!, there exists some
x € A such that f~1(y) = x. This implies (y,z) € f~!, which means (z,y) € f, so f(x) = y. Thus, f
is surjective.

Since f is both injective and surjective, it is a bijection.
(<) Assume f is a bijection. We must show that the relation f~! is a function from B to A.

e The domain of f~1 is the range of f. Since f is surjective, ran(f) = B, so the domain of f~! is B.
e To show f~1is a function, let (y,21) € f~! and (y,22) € f~!. This means (x1,y) € f and (22,y) € f,
so f(x1) =y and f(x2) =y. Since f is injective, we must have x; = x5.

Thus, f~! is a function from B to A, and f is invertible. ]

An equivalent characterisation of invertibility involves the identity map. If f : A — B is a bijection, its
inverse function f~1: B — A satisfies f~!(y) = x & f(x) = y. This leads to the following theorem.

Theorem 4.4.2. Characterisation of Invertibility. A function f : A — B is a bijection if and only if
there exists a function g : B — A such that go f = 1da and f o g = Idg. Furthermore, this function g is
unique and is equal to f~1.
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Proof. (=) Assume f : A — B is a bijection. By the Invertibility Theorem, f is invertible and its inverse
f~':B — Ais a function. Let g = f~%.

e For any a € A, let b = f(a). Then g(b) = f~1(b) = a. So, (go f)(a) = g(f(a)) = g(b) = a. Thus,
go f=1da4.
e For any bAE B, let a = g(b). Then f(a) = f(g(b)). Since a = f~1(b), it follows that f(a) = b. So,

(f 0 9)(b) = f(g(b)) = b. Thus, fog=Idp.
(«<=) Assume such a function g : B — A exists.

e Injectivity: Let x1,22 € A and assume f(z1) = f(x2). Applying g to both sides gives g(f(x1)) =
g(f(x2)). Thisis (go f)(z1) = (go f)(x2). Since go f = Id 4, we have Id 4(z1) = Id 4 (x2), which implies
x1 = xo. Thus, f is injective.

e Surjectivity: Let y € B. Consider the element x = g(y) € A. Then f(z) = f(9(y)) = (fog)(y) =
Idg(y) = y. We have found an element x € A that maps to y. Thus, f is surjective.

Since f is a bijection, it is invertible. The uniqueness of g follows because if another function h existed with
the same properties, we would have h = holdg =ho(fog)=(ho f)og=Idaog=g. [ |

Composition and Function Properties

The properties of being injective, surjective, or bijective are preserved under composition.

Theorem 4.4.3. Preservation of Properties under Composition. Let f: A — B and g: B — C be
functions.

(i) If f and g are both injective, then g o f is injective.
(ii) If f and g are both surjective, then g o f is surjective.
(iii) If f and g are both bijective, then g o f is bijective.

Proof.

(i) Assume f and g are injective. Let 1,22 € A and assume (g o f)(z1) = (g o f)(z2). This means
g(f(x1)) = g(f(x2)). Since g is injective, we must have f(z1) = f(x2). Since f is injective, this implies
x1 = x3. Thus, g o f is injective.

(ii) Assume f and g are surjective. Let ¢ be an arbitrary element in C. Since g is surjective, there exists
a b € B such that g(b) = c¢. Since f is surjective, there exists an a € A such that f(a) = b. Therefore,

(go f)(a) =g(f(a)) = g(b) = c. Thus, go f is surjective.
(iii) If f and g are bijections, they are both injective and surjective. By (i) and (ii), their composition go f
is also both injective and surjective, and is therefore a bijection.
]

Theorem 4.4.4. Inverse of a Composition. If f : A — B and g : B — C are bijections, then the
composition g o f is invertible, and its inverse is given by:

(gof)™t=f"Tog™!

Proof. From Theorem 4.4.3, since f and g are bijections, their composition go f : A — C' is also a bijection
and is therefore invertible. To verify the formula for the inverse, we use the identity property from the
previous theorem. We must show that (f~! o g~1) acts as the inverse to (g o f). Consider the composition
(f~tog ') o(go f). Using the associativity of composition:

(flog No(gof)=f"o(g'og)of=f"toldpof=f"'of=1Ida.
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Similarly, consider the composition in the other order:
(goflo(fTlog ) =go(fof Hogt=goldpog ' =gog' =1Idc.

Since f~' o g~ ! satisfies the conditions for being the inverse of g o f, and since the inverse is unique, we
conclude that (go f)™! = f~log™!. ]

-1

Example 4.4.6. The Canonical Factorisation. Let f: A — B be a function. We can define an equivalence
relation ~¢ on the domain A by:

vy s flz) = fy)

This relation is known as the kernel of f. The equivalence class of an element a € A is precisely the set of
all elements mapping to the same output, [a] = f~*({f(a)}).

We can construct a function f : A/~;— B from the quotient set to the codomain defined by f([a]) = f(a).
This function is well-defined. Furthermore:

e f is injective (since f([a_]) = f(]p]) = f(a) = f(b) = a ~5b=la] = [b]).
e If f is surjective, then f is also surjective, and thus a bijection.

This result is known as the Canonical Factorisation of a function. It decomposes any function f into the
composition f o p, where p: A — A/~ is the canonical projection mapping a — [a].

4.5 Exercises

1. For each of the following functions, determine if it is injective, surjective, or bijective. Justify your
answer by providing a proof or a specific counterexample.

(a) f:7Z — Z defined by f(n) =2n+ 3.

(b) ¢g: R — R defined by g(z) = sin(z).

(¢) h:P(Z)— P(Z) defined by h(S) = SU{0}.

(d) p:Z — Zs defined by p(n) = [n?]s.

2. Let the function f : R\ {3} — R\ {2} be defined by f(z) = 22£L. Prove that f is a bijection and find
a formula for its inverse function f~1.

3. Let f: A— B and g: B — C be functions. Prove the following two statements:

(a) If the composition g o f is injective, then f must be injective.
(b) If the composition g o f is surjective, then g must be surjective.

For each case, provide a counterexample to show that the other function (g in part (a), f in part (b))
is not necessarily injective/surjective.

4. Let f : R — R be defined by the quadratic f(z) = 2% — 6z + 11.

(a) By completing the square, find the vertex of the parabola y = f(z).
(b) Find a maximal domain A C R and a codomain B C R such that the restriction f|4 : A — B is
a bijection.
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5. A function f : A — B has a left inverse if there exists a function g : B — A such that go f = Id4.
Prove that a function has a left inverse if and only if it is injective.

6. Let A and B be non-empty sets. Consider the function 74 : A x B — A defined by 7m4(a,b) = a. This
function is known as the projection onto A.

(a) Prove that 74 is surjective.
(b) Under what conditions on the set B is w4 injective?

7. Let f : A — B be a function. Prove that the following two statements are equivalent:

(i) f is injective.
(ii) For every subset S C A, f~1[f[S]] = S.

8. Let f: A— C and g : B — D be bijections. Define a new function H : A x B — C' x D by the rule
H(a,b) = (f(a),g(b)). Prove that H is a bijection.

9. A function f: R — R is said to be periodic if there exists a constant P > 0 (called the period) such
that f(z + P) = f(x) for all x € R. Prove that no periodic function can be injective.

10. Prove that the inverse of a bijection is itself a bijection. That is, if f : A — B is a bijection, prove that
its inverse function f~!: B — A is both injective and surjective.

4.6 Order Isomorphisms

A bijection establishes that two sets are of the same size. We can extend this idea to partially ordered sets
to capture the notion of having the same structure. A function that preserves the order relations between
two posets reveals that they are structurally identical.

Consider the sets A = Rx{0} and B = {0} xR. Let (A, <4) be the poset where (21,0) <4 (22,0) & 21 < 29,
and let (B,=p) be the poset where (0,y1) =<p (0,42) < y1 < ya. The function ¢ : A — B defined by
¢(x,0) = (0,x) is a bijection. Furthermore, it preserves the ordering:

(1,0) 24 (22,0) © 21 < z2 & @(21,0) <p ¢(22,0)

The function ¢ demonstrates that these two posets, while composed of different elements, have the exact
same order structure. This leads to the following definitions.

Definition 4.6.1. Order-Preserving Function. Let (A, <4) and (B, <p) be posets. A function f: A —
B is order-preserving if for all z1,z5 € A,

1 24 22 & f(x1) 2B flxe)

Definition 4.6.2. Order Isomorphism. An order-preserving function f : A — B that is also a bijection
is called an order isomorphism. If such a function exists, the posets (A, <4) and (B, =p) are said to be
order isomorphic, denoted (A, <4) = (B, =<p). Posets that are order isomorphic are said to have the same
order type.

Example 4.6.1. Define f : Zt — Z~ by f(x) = —z. This is a bijection. Let us consider the posets (Z", <)
and (Z~,>). For any z1, x5 € ZT, we have:

1 <x9 & —x1 > —x2 & fx1) > flag)

~

Thus, f is an order isomorphism, and (Z*,<) = (Z~,>). This shows that an isomorphism can relate
different ordering relations.

Example 4.6.2. The function f : R — (0,00) defined by f(z) = e is an order isomorphism between the
posets (R, <) and ((0, 0), <).

Lemma 4.6.1. Let (P, <) be a totally ordered set and (@, <) an ordered set. Let h: P — @ be a bijection
such that Vp1,ps € P, (p1 < ps = h(p1) < h(p2)). Then h is an order isomorphism, and (@, <) is totally
ordered.
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Proof. Take any p1,ps € P and assume h(p;) = h(pz). Suppose pa < p1. Then h(p2) = h(p1), implying
h(p1) = h(p2) by antisymmetry, but h injective gives p; = po, contradiction. Thus, p; < pa.

For totality of (Q, <), take ¢1,¢2 € Q. Since surjective, g1 = h(p1), g2 = h(p2). As P total, p; < ps or vice
versa, SO q; = g2 Or reverse. [ |

Theorem 4.6.1. The inverse of an order isomorphism is an order isomorphism.

Proof. Let f: (A,=4) — (B,=p) be an order isomorphism. We know from the Invertibility Theorem that
f~': B — Ais a bijection. We must show it is order-preserving. Let 1,7, € B. Since f is surjective, there
exist unique x1, o € A such that f(x1) = y; and f(x2) = yo, which implies 21 = f~(y1) and x5 = f~(y2).
Because f is an order isomorphism, we know that 1 <4 z2 < f(x1) <p f(x2). Substituting for z1,z5 and
F(w1), () gives:

SN ) 2a f7 w2) & 1 =B w2

This is precisely the condition for f~! to be order-preserving. Thus, f~! is an order isomorphism. |
Theorem 4.6.2. The composition of order isomorphisms is an order isomorphism.
Proof. Let f : (A,=4) — (B,=p) and g : (B,=p) — (C,=¢) be order isomorphisms. We know from

Theorem 4.4.3 that their composition go f : A — C is a bijection. To show it is order-preserving, let
xr1,T2 € A.

1 24 22 & f(r1) 2B f(22) since f is an isomorphism
< g(f(x1)) e 9(f(x2)) since g is an isomorphism
& (9o f)(x1) Zc (g0 f)(2)
Therefore, g o f is an order isomorphism. |

These theorems imply that = is an equivalence relation on the class of all posets. Reflexivity holds via the
identity map, symmetry via the inverse, and transitivity via composition.

Sometimes a poset may be structurally identical to a sub-poset of another. This idea is captured by an
embedding.
Definition 4.6.3. Order Embedding. A function f : (A, <4) — (B, =p) is an order embedding if it is an
order isomorphism from (A, <4) onto (ran(f), <p). That is, for all z1, 25 € A,

z1 24 22 & f(21) 2B f(22)
Note that such a function is necessarily injective.
Example 4.6.3. The function f : Q — R defined by f(z) = z is an order embedding of (Q, <) into (R, <).

Example 4.6.4. Let <., denote the lexicographical order. The function 7 : (R?, <jc,) — (R3, <c.) defined
by 7(z,y) = (v,y,0) is an order embedding. Although R? is not a subset of R?, the image of 7 is a copy of
R? within R? that preserves the order structure.

4.7 Exercises

1. Determine whether the following pairs of posets are order isomorphic. If they are, construct an explicit
order isomorphism and prove it is so. If not, explain why no such isomorphism can exist.
(a) (P({1,2}),Q) and ({1,2,3,6},|), where | denotes the "divides" relation.
(b) (N, <) and (Z, <).

(¢) The set of positive even integers {2,4,6, ...} with the standard order <, and the set of positive
integers Z* with the standard order <.
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2. A strictly increasing function f : (A, <4) — (B,<p) between two totally ordered sets is a function
such that for all z1,z9 € A, if 21 <4 x2 then f(z1) <p f(z2).

(a) Prove that any strictly increasing function is injective.
(b) Prove that if f is a strictly increasing surjection, then it is an order isomorphism.

(c) Use this to construct an order isomorphism between the posets ( (0,1), <) and (R, <).

3. Let f : (A,=<4) — (B,=p) be an order isomorphism. Prove that an element a € A is a minimal
element of A if and only if its image f(a) is a minimal element of B.

4. Duality and Anti-isomorphisms. Given a poset (A, <), its dual poset is (A4, =), where z > y if and
only if y < . A poset is said to be self-dual if it is order isomorphic to its own dual.

(a) Define a function f : (P(S),C) — (P(S), D) for a non-empty set S using the complement opera-
tion.

(b) Prove that your function is an order isomorphism, and therefore that any power set poset is
self-dual.

5. x Classification of Finite Total Orders. Prove that any finite, totally ordered set (A, <) with n
elements is order isomorphic to the poset ({1,2,...,n}, <).

Remark. Construct the isomorphism by mapping the minimal element of A to 1, the minimal element
of the remaining set to 2, and so on. Formally, this can be done by induction on n.

4.8 Images and Inverse Images of Sets
We have defined the image of a single element under a function. This concept can be extended to consider
the set of all images of the elements within a given subset of the domain.

Definition 4.8.1. Image of a Set. Let f: A — B be a function and let S C A. The image of S under f
is the set of all images of elements in S:

fIS)=A{f(=) |z € S}
It follows that f[S] C ran(f) C B and that f[A] = ran(f).

A similar concept applies to subsets of the codomain, where we consider the set of all elements in the domain
that map into the given subset.

Definition 4.8.2. Inverse Image of a Set. Let f : A — B be a function and let 7' C B. The inverse
image of T' under f is the set of all pre-images of elements in T":

T ={zeAl|fx)eT}
Observe that f~1[T] C A and f~![B] = A.

Notation 4.8.1. When the set T is a singleton, T' = {y}, we often abbreviate the notation for its inverse
image. The set f~![{y}] is called the fibre of f over y, and may be written as f~1(y). The fibre is the set
of all solutions to the equation f(z) = y.

Remark. The notation f~![T] is used even if the function f is not invertible. It denotes the set of pre-
images, not the application of an inverse function.

Example 4.8.1. Let f:{1,2,3,4} — {2,4,5} be the function f = {(1,2),(2,4),(3,5),(4,5)}.

e The image of the set {1,3} is f[{1,3}] = {f(1), f(3)} = {2,5}.
e The inverse image of the set {5} is f~1[{5}] = {= | f(z) € {5}} = {3,4}.

Example 4.8.2. Define f : R — R by f(z) = 2% + 1.
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e To find the image f[(1,2)], we note that if 1 < x < 2, then 1 < 22 < 4, which implies 2 < 2% +1 < 5.

Thus, £1(1,2)] = (2.5).
e To find the inverse image f~1[(2,5)], we solve 2 < f(x) < 5:

2<r?’tl<sel<ai<desl<|z)<?

This is true when z € (=2, —1) or z € (1,2). Therefore, f~1[(2,5)] = (-2,—1) U (1,2).
e To find f~1[(—2, —1)], we need to find z such that —2 < 22+1 < —1, which simplifies to —3 < z2 < —2.
Since 22 cannot be negative, no such z exists. Thus, f~![(-=2,—1)] = 0.

The operations of taking images and inverse images interact predictably with set operations like union and

intersection.
Theorem 4.8.1. Properties of Image and Inverse Image. Let f : A — B be a function. Let S, S, S5
be subsets of A, and let T, T7,T» be subsets of B.

(i) Tt S C S, then f[S1] C f[Sa].
(ii) f[S1U Sa] = f[S1] U f[S2].

(ili) f[S1NS2] € f[S1] N f[S2).

(iv) If Ty C Ty, then f~1[T1] C f~1[T3].
(v) TN U] = fHT) U f T3]
(vi) [N D) = fH TN fH T

) fHBN\T] = AN [T,

(vii
The statements concerning unions and intersections generalise to arbitrary families of sets.

Proof. We prove (i) and (iv). The remaining proofs are analogous.

Proof of (i):

yef [U Si] & dr e USZ- such that f(z) =y
il icl
& di € 1,3z € S; such that f(z) =y
< i € I such that y € f[S;]
syel s

iel
Proof of (iv):

vef NI & f@)eT
JjeJ jeJ
evVield flz) eT;
e Vje Jre fHT
sze ()]

jeJ
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The inclusion in property (ii) cannot be strengthened to an equality in general. Let f : {1,2} — {3} be
defined by f = {(1,3),(2,3)}. Let S; = {1} and Sy = {2}. Then S1 NSz = 0, so f[S1 N S2] = f[0] = 0.
However, f{5] = {3} and f[Ss] = {3}, so f[$1] N f[S5] = {3}. Thus, f[S1 N 8] # [1$1] N f[S]. Equality
holds if the function is injective.

Finally, we examine the composition of image and inverse image operations.
Theorem 4.8.2. Let f: A — B be a function. For any S C A and T' C B:

(

i) S C f71[f[S]]. Equality holds for all S C A if and only if f is injective.

(i) f[f~[T]] € T. Equality holds for all T C B if and only if f is surjective.

Proof.

Proof of (i): Let x € S. Then f(z) € f[S]. By definition of the inverse image, this means x € f~1[f[S]].

Thus, S C f~L[f[S]]. Now, assume f is injective. Let € f~1[f[S]]. This means f(z) € f[5], so there
exists some s € S such that f(z) = f(s). Since f is injective, x+ = s, which implies z € S. Thus,
FLfIS]] € S, giving equality. Conversely, assume S = f~1[f[S]] for all S C A. Let 21,20 € A with
f(z1) = f(x2). Let S = {x1}. Then f[S] = {f(z1)}. The inverse image is f~1[f[S]] ={z € A| f(2) =
f(x1)}. Since f(z2) = f(x1), we know z2 € fI[f[S]]. By our assumption, this means x5 € S, so
x9 = x1. Thus, f is injective.

Proof of (ii): Let y € f[f![T]]. By definition, there exists an x € f~1[T] such that f(z) = y. The fact

that x € f~![T] means that f(x) € T. Therefore, y € T. Thus, f[f ![T]] € T. Now, assume f is
surjective. Let y € T'. Since f is surjective, there exists an x € A such that f(z) =y. Asy € T, we have
f(x) € T, which means z € f~1[T]. Since we have found an element z in f~![T], its image, f(z) = v,
must be in f[f~[T]]. Thus, T C f[f}[T]], giving equality. Conversely, assume f[f~1[T]] = T for all
T C B. In particular, this holds for T = B. Then f[f~![B]] = B. Since f~![B] = A, this becomes
f[A] = B, which is the definition of surjectivity.

4.9 Exercises

1. Let the function f : R — R be defined by f(z) = cos(z). Find the following sets, providing brief

justification.
(a) The image f HO7 ?jf]]
(b) The inverse image f~1[{1}].
(c) The inverse image f~! [(%,oo)]

. Let f : A — B be a function, let S1, S5 be subsets of A, and let T7,T5 be subsets of B. The provided text

proves that the image operation distributes over arbitrary unions and that the inverse image operation
distributes over arbitrary intersections. Prove the other two fundamental properties for pairs of sets:

(a) f[S1NS] C fIS1]N f[Sa].
(b) fFHTUT] = fHT] U fH ).

. As established in the text and the previous exercise, the inclusion f[S1 N S2] C f[S1] N f[S2] holds for

any function. Prove that a function f : A — B is injective if and only if this inclusion is an equality
for all subsets S1,5; C A.

. Let f : A — B be a function and let T7, T C B. Prove that the inverse image operation is well-behaved

with respect to set difference, that is:

SN T = fHT) N\ (T
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5. The forward image is less well-behaved with respect to set difference. Let f : A — B be a function
and S C A.

(a) Prove that f[A]\ f[S] C flA\ S].
(b) Provide a specific counterexample using a function f : Z — Z to show that equality does not
generally hold.

6. Let f: A— B and g: B — C be functions. The composition g o f is a function from A to C. Prove
the following identities relating composition to images and inverse images:

(a) For any S C A, (g0 f)[S] = glf[5]]-
(b) Forany T'C C, (go f)'[T]= f~'[g~![T]].

7. * A function is injective if and only if it keeps distinct elements separate. We can extend this idea to
sets. Prove that a function f : A — B is injective if and only if for any two disjoint subsets S7, S of
A (i.e., S; NSy = 0), their images are also disjoint (i.e., f[S1] N f[S2] = 0).



Chapter 5

Infinite Sets and the Axiom of Choice

The axioms introduced thus far provide a robust framework for constructing finite sets and defining fun-
damental mathematical structures. However, they do not guarantee the existence of any infinite sets. To
formalise concepts like the natural numbers, and subsequently calculus, we must introduce axioms that
explicitly posit the existence of infinite collections.

5.1 The Axiom of Infinity

To construct an infinite set, we can envision a process that begins with the empty set and iteratively generates
new, larger sets. This process is formalised using the concept of a successor.

Definition 5.1.1. Successor of a Set. The successor of a set z, denoted S(z), is the set defined as:

S(x) =2 U{z}

Applying this operation repeatedly starting from () generates a sequence of distinct sets:

SO =0u{0} = {0}
S({0}) = {03 U {{0}} = {0, {0}}
S{0.{0}}) = {0,{0}} U {{0, {0} }} = {0, {0}, {0, {0}}}

This sequence never repeats, suggesting an infinite collection. We capture the essence of such a collection
with the following definition.

Definition 5.1.2. Inductive Set. A set I is called inductive if it contains the empty set and is closed
under the successor operation. Formally:

Bel)NNVe(xel= Sx)el))

To ensure such a set exists, we introduce a new axiom.

Axiom 5.1.1. Infinity. There exists at least one inductive set.

This axiom guarantees the existence of a set A such that § € A, and if z € A, then 2 U {z} € A. Such a set
necessarily contains the infinite sequence of successors starting from (). The Axiom of Infinity does not state
that there is only one such set. To define the natural numbers uniquely, we take the intersection of all such
sets.

Definition 5.1.3. The Set of Natural Numbers. The set of natural numbers, denoted N, is the set
containing all elements that belong to every inductive set.

N := {x | VI(] is an inductive set =z € I)}
51
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The existence of N is guaranteed. By the Axiom of Infinity, there is at least one inductive set, say A. We
can then use the Schema of Separation to construct N as a subset of A:

N={x € A|VI(] is an inductive set = z € I)}

This construction defines N as the smallest inductive set.

Theorem 5.1.1. Properties of the Natural Numbers. The set N is inductive. Furthermore, for any
inductive set I, we have N C 1.

Proof. By definition, @) is an element of every inductive set I, so ) € N. Now, let n € N. This means n
is in every inductive set I. By the definition of an inductive set, the successor S(n) must also be in every
inductive set I. Therefore, S(n) € N. Since N contains () and is closed under the successor operation, it is
an inductive set. The inclusion N C [ for any inductive set I follows directly from the definition of N. W

This construction provides a set-theoretic foundation for the natural numbers. We adopt the following
standard notation.

Note. The natural numbers are defined as:

e 0:=10

e 1:=5(0) = {0} = {0}

e 2:=5(1)={0,{0}} ={0,1}

e In general, n+1:=S5(n)=nU{n}={0,1,...,n}.

This representation naturally induces an ordering on N.

Definition 5.1.4. Order on N. The strict order relation < on N is defined by set membership:
m<n&sSmen

The non-strict order < is defined as m < n < (m < n Vm = n), which is equivalent to m C n.

It can be shown that this definition makes (N, <) a linearly ordered set.

5.2 The Axiom Schema of Replacement

The Axiom of Infinity guarantees the existence of one infinite set. The Axiom Schema of Replacement
provides a powerful principle for constructing new sets from existing ones. It formalises the intuition that
if the domain of a function-like rule is a set, then its range should also be a set. The Schema of Separation
allows us to form a subset of an existing set, whereas Replacement allows us to form a new set by applying
a transformation to each element of an existing set.

Azxiom 5.2.1. Schema of Replacement. Let P(z,y) be a formula in the language of set theory whose
free variables are among z,y and some other variables wq, ..., wg. If for any set A, the formula P acts like
a function on the elements of A, then the collection of all outputs y forms a set. Formally:

VA (Vz € A, 3y, P(z,y)] = 3IB,Vy (y € B< 3z € A,P(z,y)))

The notation Jly is shorthand for "there exists a unique y".

Remark. This is an axiom schema because it generates a separate axiom for every possible formula P(x, y).

The primary application of this axiom is to guarantee the existence of sets that are constructed by indexing
over another set. For instance, let I be a set (the index set), and for each i € I, let A; be a set. We can use
Replacement to prove that the indexed family {A; | i € I'} is a set. Let P(i,Y) be the formula Y = A;. For
any ¢ € I, the output Y is uniquely determined. By the Axiom Schema of Replacement, there exists a set
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B whose elements are precisely the sets A; for ¢ € I. This justifies operations over arbitrary families of sets,
such as (J;o; As.

The Axiom Schema of Replacement also provides a more direct proof for the existence of the Cartesian
product. Given sets A and B, for each a € A, the set {a} x B exists. The formula P(a,Y) <Y ={a} x B
defines a unique output for each a € A. By Replacement, the set F = {{a} x B | a € A} exists. The
Cartesian product A x B is then simply the union |JJF, whose existence is guaranteed by the Axiom of
Union.

5.3 The Axiom of Choice

The preceding axioms allow for the construction of sets in a deterministic manner. However, many areas of
mathematics require the ability to make an infinite number of simultaneous selections, even when no explicit
rule for selection exists. The Axiom of Choice provides the formal basis for such non-constructive existence
proofs.

Aziom 5.3.1. Choice. For any family F of non-empty, mutually disjoint sets, there exists a set C' that
contains exactly one element from each set in F. Formally:

VSeF,|CnS =1

The set C' is called a choice set or selector for F.

The axiom asserts the existence of C' without specifying how its elements are to be chosen. This is particularly
powerful when F is an infinite family. A more common and equivalent formulation involves the concept of
a choice function.

Definition 5.3.1. Choice Function. Let F be a family of non-empty sets. A function f: F = (JF is a
choice function for F if for every set S € F, we have f(S) € S.

The Axiom of Choice is equivalent to stating that every family of non-empty sets has a choice function. This
form leads to another powerful, equivalent principle.

Theorem 5.3.1. The Axiom of Choice is equivalent to the statement that for every binary relation R, there
exists a function f C R such that dom(f) = dom(R).

Proof. Assume the Axiom of Choice. Let R be a binary relation. For each z € dom(R), the image set
R[{z}] ={y | (z,y) € R} is non-empty. Consider the family of sets F = {{z} x R[{z}] | « € dom(R)}. Each
set in F is a collection of ordered pairs starting with z. These sets are non-empty and mutually disjoint. By
the Axiom of Choice, there exists a choice set f for F. For each € dom(R), f contains exactly one element
from {z} x R[{x}]. This element must be of the form (x,y) for some unique y. Thus, f is a function with
domain dom(R) and f C R.

The converse, showing this principle implies the existence of a choice function, is left as an exercise. |

Zorn’s Lemma

Perhaps the most frequently used equivalent of the Axiom of Choice in higher mathematics is Zorn’s Lemma.
It provides a condition for guaranteeing the existence of maximal elements in a partially ordered set.

Theorem 5.3.2. Zorn’s Lemma. Let (A, <) be a non-empty partially ordered set. If every chain in A has
an upper bound in A, then A contains at least one maximal element.

The proof that the Axiom of Choice implies Zorn’s Lemma is highly non-trivial. Conversely, we can prove
that Zorn’s Lemma implies the Axiom of Choice.

Theorem 5.3.3. Equivalence of Zorn’s Lemma and the Axiom of Choice. Zorn’s Lemma is equiv-
alent to the Axiom of Choice.
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Proof that Zorn’s Lemma = Aziom of Choice. We will prove the equivalent form from the previous theorem.
Let R be a binary relation. We want to show there exists a function f C R with dom(f) = dom(R).

Let A be the collection of all functions that are subsets of R:
A={g|gisafunction Ag C R}

The collection (A, C) is a partially ordered set. We wish to apply Zorn’s Lemma to find a maximal element

in A.
Let C be an arbitrary chain in (A, C). We must show that C has an upper bound in A. Let h = JC.

e Since each g € C is a subset of R, their union A is also a subset of R.

e We must show h is a function. Let (x,y1) € h and (x,y2) € h. By definition of union, there exist
g1, 92 € C such that (z,y1) € g1 and (z,y2) € g2. Since C is a chain, g; and g2 are comparable. Without
loss of generality, assume g; C go. Then both (z,y;) and (z,y2) are in go. Since g is a function, it
must be that y; = yo. Thus, h is a function.

Since h is a function and h C R, we have h € A. Furthermore, for any g € C, we have g C h, so h is an
upper bound for C.

The conditions of Zorn’s Lemma are satisfied. Therefore, A has a maximal element, let’s call it f. This f is
a function and f C R. We claim dom(f) = dom(R). Suppose, for a contradiction, that dom(f) # dom(R).
Then there exists an element g € dom(R) such that zo ¢ dom(f). Since zg € dom(R), there is some yq
such that (zg,yo) € R. Consider the set f' = f U {(xo,90)}. Since zy ¢ dom(f), f’ is a function. Also,
/" € R. Thus, f’ € A. However, f C f’, which contradicts the maximality of f. Therefore, our assumption
must be false, and dom(f) = dom(R). This completes the proof. ]

The Axiom of Choice was once controversial due to its non-constructive nature. Unlike other axioms, it
asserts the existence of a set without providing a rule for its construction. Over time, it has been accepted
by the majority of mathematicians, as its omission would invalidate a vast number of important results
across many fields of mathematics.

5.4 Recursion on the Natural Numbers

Many functions on the natural numbers are defined by specifying a base case, f(0), and a recursive rule that
defines f(S(n)) in terms of f(n). The Recursion Theorem provides the formal justification that such a rule
uniquely specifies a function, which is a set of ordered pairs.

Theorem 5.4.1. Recursion. Let A be a set, let a € A, and let g : A — A be a function. There exists a
unique function f: N — A such that:

(ii) f(S(n)) =g(f(n)) for all n € N.

Proof. We first prove its Existence. We construct f as the intersection of all relations satisfying the recursive
property. Let F be the collection of all relations A C N x A such that:

(a) (0,a) € h
(b) Vn e N,Vy € A, ((n,y) € h= (S(n),g(y)) € h)

The collection F is a set, and it is non-empty as N x A € F. Let f = [ F. The relation f also satisfies
properties (a) and (b).

We now show that f is a function with domain N. Let I = {n € N | 3ly € A, (n,y) € f}. We prove that I is
an inductive set.
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e Base Case: We know (0,a) € f. If there were another pair (0,a’) € f with o’ # a, then the relation
= f\{(0,a')} would still be in F. This would mean f’ C f, contradicting that f is the intersection
of all sets in F. Thus, the element associated with 0 is unique, and 0 € I.

e Successor Step: Assume n € I. Then there is a unique y € A such that (n,y) € f. By property
(b), (S(n),g(y)) € f. A similar argument to the base case shows that if there were another pair
(S(n),z) € f, we could remove it to create a smaller relation in F, a contradiction. Thus, the element
associated with S(n) is unique, and S(n) € I.

Since I is an inductive set and I C N, it follows from the definition of N as the smallest inductive set that
I = N. Therefore, f is a function with domain N.

Now we prove its Uniqueness. Suppose h : N — A is another function satisfying the properties. Let
J={neN]| f(n)=h(n)}

e f(0)=a=hn(0),s00€J.
e Assume n € J, s0o f(n) = h(n). Then f(S(n)) = g(f(n)) = g(h(n)) = h(S(n)). Thus, S(n) € J.

As J is an inductive subset of N, we conclude J = N, which implies f = h. |

Application: Arithmetic Operations

The Recursion Theorem provides the formal tool needed to define the standard arithmetic operations on the
natural numbers.

Definition 5.4.1. Addition on N. For any fixed m € N, we define the function "add m", denoted
add,, : N — N. We apply the Recursion Theorem with A = N, base case a = m, and the successor function
g = S. The theorem guarantees a unique function add,, such that:

e add,(0) =m
o add,,(S(n)) = S(add,,(n))

The binary operation of addition is then defined as m 4+ n := add,,(n). This gives the familiar recursive
properties of addition: m + 0 =m and m + S(n) = S(m + n).

Definition 5.4.2. Multiplication on N. With addition defined, we can define multiplication. For any
fixed m € N, we define the function "multiply by m", mult,, : N — N. We apply the Recursion Theorem
with A = N, base case a = 0, and the function g(y) = y + m. The theorem guarantees a unique function
mult,, such that:

e mult,,(0) =0
o mult,(S(n)) = mult,(n) +m

The binary operation of multiplication is then defined as m - n := mult,,(n). This yields m -0 = 0 and
m-S(n)=(m-n)+m.

5.5 Exercises

Part I: The Natural Numbers and Infinity

1. Using the set-theoretic definition 0 = () and S(n) = n U {n}, write out the explicit set representations
for the natural numbers 3 and 4.

2. Consider the successor function S : N — N defined by S(n) = n U {n}.

(a) Prove that S is an injective function.
(b) Prove that S is not a surjective function. What is the one element of N that is not in the range

of S7
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3. Using the definition of order on N (m < n < m € n), prove that for any n € N, we have n < S(n).
4. Let k € N be a fixed natural number. Is the set A = N\ {k} an inductive set? Justify your answer.

5. Prove that for any two natural numbers m,n € N, if m € n, then it is also true that m C n (i.e., m is
a proper subset of n).

Remark. Use induction on n. The base case n = 0 is vacuously true. For the inductive step, assume
the property holds for n and consider an element m € S(n).

Part II: The Axiom of Choice and Zorn’s Lemma

6. For which of the following families of sets F is the Axiom of Choice required to guarantee the existence
of a choice function? For those where it is not needed, explicitly define a choice function.
(a) F is a finite family of non-empty subsets of R.
(b) F is the family of all non-empty subsets of N.
(c) F is the family of all open intervals (a,b) in R where a < b.

7. The text mentions that the existence of a choice function for any family of non-empty sets is equivalent
to the Axiom of Choice as stated for disjoint families. Prove the forward direction: Assume that for
any family G of non-empty sets, there exists a choice function f : G — [JG. Use this to prove that for
any family F of non-empty, mutually disjoint sets, there exists a choice set C.

8. Let (A, <) be a partially ordered set. A chain in A is a subset C' C A that is totally ordered by =.
Use Zorn’s Lemma to prove that every non-empty poset contains at least one maximal chain.
Remark. Consider the collection C of all chains in A, ordered by set inclusion C. Show that this new
poset (C, C) satisfies the condition of Zorn’s Lemma.

9. Determine if Zorn’s Lemma can be applied to the following posets. If so, identify a maximal element.
If not, explain which condition fails.

(a) The set P(N)\ {N} of all proper subsets of N, ordered by set inclusion C.
(b) The set of all finite subsets of R, ordered by set inclusion C.

Part III: Recursion and Arithmetic

10. Using the Recursion Theorem, provide a formal definition for the exponentiation function exp,,(n) =
m™ for m,n € N with m # 0. Specify the set A, the base case element a, and the function g used in
the theorem.

Remark. For a fixed m, define m® and then define m®(™ in terms of m™ and multiplication.

11. Using only the recursive definition of addition (m + 0 = m and m + S(n) = S(m + n)) and the fact
that N is the smallest inductive set (i.e., proof by induction), prove that 0 + n = n for all n € N.

12. Following on from the previous exercise, prove the associativity of addition in N. That is, prove that
for all m,n,k € N,
(m+n)+k=m+ (n+k)

Remark. Fix m and n and proceed by induction on k.

13. % The order relation < on N was defined set-theoretically as m < n < m € n. We can also define an
arithmetic order m <, n to mean that there exists a non-zero natural number k£ such that m + k = n.
Prove that these two definitions are equivalent for all m,n € N.

5.6 Arithmetic Operations on N

Having justified the existence of arithmetic operations using the Recursion Theorem, we now examine their
properties.
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Addition

Recall that for any m,n € N, the sum m + n is determined by the recursive rules:
m+0=m and m+S(n)=S(m+n)

This definition immediately gives m +1 = m + S(0) = S(m 4+ 0) = S(m). The fundamental properties of
addition can be established from this definition. The proofs rely on showing that the set of numbers for
which a property holds is an inductive set.

Lemma 5.6.1. For all m,n € N:

(i) 0+n=n
(ii) S(m)+n=S(m+n)

Proof. (i) Let I ={n € N|0+4+n = n}. The base case 0+ 0 = 0 holds by definition, so 0 € I. Assume k € I,
s0 0+ k = k. Then 0+ S(k) = S(0+ k) = S(k), which implies S(k) € I. Thus, I is an inductive set, and
I=N.

(ii) Fix m € Nand let I = {n € N| S(m) +n = S(m + n)}. For the base case, S(m) +0 = S(m) b
definition, and S(m+0) = S(m). Thus, 0 € I. Assume k € I, so S(m)+k = S(m+k). Then S(m)+S(k)
S(S(m) + k) =S(S(m+k)). Also, S(m+ S(k)) = S(S(m + k)). Therefore, S(m) + S(k) = S(m + S(k)
which means S(k) € I. Thus, I = N.

=

)

|

Theorem 5.6.1. Properties of Addition. For all m,n,p € N:

(i) Associativity: (m+n)+p=m+ (n+p)
(i) Commutativity: m+n=n+m

The number 0 is the unique additive identity.

Proof. (i) The proof for associativity is left as an exercise.

(ii) To prove commutativity, we fix m € N and let I ={n € N| m +mn =n+ m}. The base case m+0=m
and 0 +m = m (by the previous lemma) shows 0 € I. Assume k € I, so m + k = k + m. We must show
m+ S(k) = S(k) +m.

m+ S(k) =S(m+k) by definition of addition
= S(k+m) by the inductive hypothesis
=Sk)+m by the previous lemma
Thus, S(k) € I. This proves I = N, establishing commutativity. The role of 0 as the identity follows from
the definition and the lemma. |
Multiplication

Similarly, multiplication is defined recursively. Recall that for any m,n € N, the product m - n satisfies:
m-0=0 and m-S(n)=(m-n)+m

Analogous to addition, we establish key properties needed for the main proofs.

Lemma 5.6.2. For all m,n € N:

(i) 0-n=0
(ii) S(m)-n=(m-n)+n
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{n € N|0-n = 0}. The base case 0-0 = 0 holds, so 0 € I. Assume k € I. Then

Proof. (i) Let I =
(0-k)+0=0+40=0. Thus, S(k) € I, which implies I = N.

0-S(k) =
(ii) This proof is similar and is left as an exercise. [ |

Theorem 5.6.2. Properties of Multiplication and Distributivity. For all m,n,p € N:

(i) Associativity: (m-n)-p=m-(n-p)
(ii) Commutativity: m-n=n-m
(iii) Distributivity: m - (n+p) = (m-n)+ (m - p)

The number 1 = S(0) is the unique multiplicative identity.

Proof. We prove distributivity. The proofs for associativity, commutativity, and the identity property are
left as exercises. Fix m,n € Nandlet I = {p e N| m-(n+p) = (m-n)+ (m-p)}. For the base case
p=0,m-(n+0)=m-n. Also, (m-n)+ (m-0)=(m-n)+0=m-n. Thus, 0 € I. Assume k € I, so
m-(n+k)=(m-n)+ (m-k). We examine the case for S(k).

m-(n+Sk)=m-Sn+k) by definition of addition
=(m-(n+k)+m by definition of multiplication
=((m-n)+(m-k))+m by inductive hypothesis
=(m-n)+((m-k)+m) by associativity of addition
=(m-n)+ (m-S(k)) by definition of multiplication
Therefore, S(k) € I, which implies I = N. [ |

Finally, we establish the cancellation laws, which are crucial for solving equations.

Theorem 5.6.3. Cancellation Laws. Let m,n,p € N.

(i) fm+p=n+p, then m =n.
(ii)) Im-p=n-pand p # 0, then m = n.

Proof. (i) Let I = {p € N | Vm,n(m +p = n+p = m = n)}. The base case p = 0 is trivial, as
m+0=n4+0=m=mn. So0 € Assumek € I. Let m+ S(k) = n+ S(k). By definition, this is
S(m + k) = S(n+ k). Since the successor function is injective (a consequence of the properties of N), we
have m + k = n + k. By the inductive hypothesis, m = n. Thus S(k) € I, and the result follows.

(ii) The proof for multiplication is left as an exercise. |

5.7 Exercises

14. Prove the following properties of multiplication in N.
(i) Commutativity property of multiplication in N. That is, for all m,n € N, prove that m-n = n-m.

Remark. Fix m and proceed by induction on n. You will first need to prove the lemma that
S(m)-n = (m-n)+ n, which was left as an exercise in the text.

(ii) Associativity property of multiplication in N. That is, for all m,n,p € N, prove that (m-n)-p =
m-(n-p).
Remark. Fix m and n and proceed by induction on p. The distributive law, which was proven
in the text, will be essential.

15. Using the arithmetic definition of order from the previous exercise set (m < n if there exists k € N\ {0}
such that m + k = n), prove that the order is compatible with the arithmetic operations:

(a) If m < n, then m+p<n+pforall peN.
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(b) If m<mnandp+#0, then m-p<mn-p.

16. Prove that the natural numbers have no zero divisors. That is, for any m,n € N, if m - n = 0, then
m=0orn=0.

Remark. Assume for contradiction that m # 0 and n # 0. This implies m = S(k;) and n = S(k2)
for some k1, ks € N. Show that their product cannot be 0.

17. x Complete the proof of the Cancellation Laws by proving the law for multiplication. For all m,n,p € N,
ifm-p=n-pandp#0, then m =n.

Remark. Assume for contradiction that m # n. By the trichotomy of order (which you may assume),
one must be larger, say m < n. Then apply the result from exercise 16.

5.8 Constructing the Integers

The set of natural numbers N is closed under addition and multiplication. However, an equation of the
form z +n = m may have no solution within N (for instance, z + 5 = 2). To provide a system where such
equations are always solvable, we must construct the negative integers and formalise the concept of zero.

The intuition is to represent an integer as a formal difference m — n for some m,n € N. Since multiple pairs
can represent the same integer (e.g., 5 —2 and 4 — 1 both correspond to 3), we define an equivalence relation
on the set of pairs N x N to group them appropriately. The condition m —n = p — q is rewritten using only
addition on Nas m+ ¢ =n+p.

Definition 5.8.1. Equivalence Relation for Integers. Let ~ be a binary relation on N x N defined such
that for any pairs (m,n) and (p,q),

(m,n) ~(p,q) ©m-+qg=n-+p
Remark. It is a straightforward exercise to show that ~ is an equivalence relation on N x N.

Definition 5.8.2. The Set of Integers. The set of integers, denoted Z, is the quotient set of N x N by
the equivalence relation ~.
Z:=(NxN)/~

An element of Z is an equivalence class, denoted [(m,n)].

Note. Each equivalence class corresponds to an integer:

e Positive integers are classes of the form [(n,
e Negative integers are classes of the form [(0
e The integer zero is the class [(0,0)] = {(k, k

0)] for n > 0. For example, +3 = [(3,0)].
,n)] for n > 0. For example, —3 = [(0, 3)].
) |

k € N}.
Example 5.8.1. The class [(1,4)] represents the integer —3, as does [(0,3)] and [(5,8)], since 1 +3 =440
and 14+8 =4+45.

Order and Arithmetic on the Integers

The order and arithmetic operations on Z are defined in terms of the corresponding structures on N.

Definition 5.8.3. Order on Z. Let o = [(m,n)] and 8 = [(p, q)] be integers. The order relation < on Z is
defined by:
a<pem+qg<n+p

where the < on the right is the order on N.

Theorem 5.8.1. The pair (Z, <) is a linearly ordered set.
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Proof. Reflexivity, antisymmetry, and transitivity follow from the corresponding properties of < on N. To

show it is a linear order, we must show any two elements are comparable. For any a = [(m,n)] and
B = [(p, q)], consider the natural numbers m+¢q and n+p. Since (N, <) is a linear order, either m+¢ < n+p
or n+p < m+ q. This implies either a« <  or 8 < a. |

Definition 5.8.4. Arithmetic on Z. Let a = [(m,n)] and 8 = [(p, ¢)] be integers.

e Addition: a+ 8 :=[(m+p,n + q)]
e Multiplication: a - 8 := [(mp + ng, mq + np)]

Remark. For these definitions to be valid, we must show they are well-defined; that is, the result of an
operation is independent of the choice of representatives from the equivalence classes. We prove this for
addition.

Suppose (m,n) ~ (m’,n’) and (p,q) ~ (p',¢’). This means m+n’ =n+m’ and p+ ¢ = ¢+ p’. We must
show that [(m+p,n+q)] = [(m’+p’,n' +¢')], which requires showing (m+p)+(n’ +¢') = (n+q)+(m'+p’).
By associativity and commutativity of addition on N:

(m+p)+('+¢)=m+n)+{p+d)=n+m)+(q+p)=n+q) + (m +p)

The operation is well-defined. The proof for multiplication is analogous.

These operations inherit their algebraic properties from the operations on N.
Theorem 5.8.2. Properties of Integer Arithmetic. Let o, 5,7 € Z.

i) Addition and multiplication are associative and commutative.

(ii) The additive identity is [(0,0)], and the multiplicative identity is [(1,0)].
(iii) Every integer o = [(m,n)] has a unique additive inverse, —a: = [(n, m)].
iv)
(v)

(iv) The distributive law holds: a - (8 4+7v) = (a- 8) + (a - 7).
7 is an integral domain.

v
Proof of (i) and (v). (iii) Let a = [(m,n)]. Its additive inverse is claimed to be —a = [(n,m)]. We verify
this:

a+ (=a) = [(m,n)] + [(n,m)] = [(m + n,n +m)]
Since m +n =n+ m in N, we have (m + n,n +m) ~ (0,0). Thus, [(m + n,n +m)] = [(0,0)], which is the
additive identity. The other properties follow similarly from the properties of arithmetic on N.

(v) The preceding points establish that (Z, +, ) is a commutative ring with unity. To show it is an integral
domain, we must prove it has no zero divisors. Let o = [(m,n)] and 8 = [(p, ¢)] be elements of Z such that
their product is the additive identity, « - 8 = [(0,0)]. By the definition of multiplication on Z, we have:

a- = [(mp+ ng,mq+np)] = [(0,0)]

This equivalence implies mp + ng = mq + np, an equality within the natural numbers N. We analyse this
relation under the assumption that « # [(0, 0)], which means m # n. Since (N, <) is a linear order, we have
two sub-cases.

e Case 1: m > n. There exists a non-zero natural number d such that m = n + d. Substituting this
into our equality:

(n+d)p +ng = (n+d)g+np
np + dp +nqg = nq + dq + np by distributivity in N
(np +nq) + dp = (np + nq) + dq by associativity and commutativity in N

By the cancellation law for addition on N, we conclude dp = dgq. As d # 0, the cancellation law for
multiplication on N implies p = ¢. This means 8 = [(p,p)] = [(0,0)].
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e Case 2: n > m. A symmetric argument holds. There exists d € N\ {0} such that n = m + d.
Substituting this leads to mp + (m + d)g = mq + (m + d)p, which simplifies to dg = dp, and again
yields p = ¢. Thus, 8 = [(0,0)].

In all scenarios where « # [(0, 0)], we are forced to conclude that 8 = [(0,0)]. Therefore, if - = 0, it must
be that either « = 0 or 8 = 0. Z has no zero divisors and is an integral domain. |

The existence of additive inverses allows for a formal definition of subtraction.

Algebraic Structures: Rings and Fields

The properties established for Z are characteristic of a general mathematical structure known as a ring.
Formalising this concept provides a powerful language for discussing number systems.

Definition 5.8.5. Ring. A set R equipped with two binary operations, addition (+) and multiplication
(+), is a ring if for all a,b,c € R:

(i) Additive Group Properties: Addition is associative ((a + b) + ¢ = a + (b + ¢)), commutative
(a+b=">b+a), possesses an identity element 0, and every element a has an additive inverse —a.
(ii) Multiplicative Associativity: Multiplication is associative ((a-b)-c=a-(b-c)).
(iii) Distributive Law: Multiplication distributes over addition (a-(b+¢) = (a-b)+(a-c) and (a+b)-¢c =
(a-c)+(b-0)).

A ring is commutative if its multiplication is commutative. A ring with unity possesses a multiplicative
identity 1.

Remark. From the properties previously established, the set of integers (Z, +, -) forms a commutative ring
with unity.

Lemma 5.8.1. Properties of Rings. Let R be a ring with additive identity 0. For all a,b € R:

Proof. (i) Wehavea-0=a-(0+0)=a-0+a-0. Adding the inverse —(a - 0) to both sides gives 0 = a - 0.
The proof for 0-a = 0 is analogous. (ii) From b + (—b) = 0, the distributive law gives a - (b + (=b)) = a - 0.
This implies a-b+ a- (—b) = 0. By the uniqueness of the additive inverse, a - (—b) = —(a - b). (iii) Using the
previous result twice, we find (—a) - (—=b) = —(a- (b)) = —(—(a - b)). Since the inverse of an inverse is the
element itself, this simplifies to a - b. |

Remark. An important property of some rings is the absence of zero divisors. An element a # 0 in a ring
R is a zero divisor if there exists a non-zero element b € R such that a-b=0or b-a = 0.

Definition 5.8.6. Integral Domain. An integral domain is a commutative ring with unity 1 # 0 that has
no zero divisors. That is, for any a, b in the ring, if a - b = 0, then either a =0 or b = 0.

While every element in Z has an additive inverse, the same is not true for multiplication. This motivates
the definition of a field, where division by non-zero elements is always possible.

Definition 5.8.7. Field. A field is a commutative ring with unity 1 % 0 in which every non-zero element
possesses a multiplicative inverse. That is, for every a # 0, there exists an element ¢~ such that a-a=' = 1.

The existence of multiplicative inverses for all non-zero elements ensures that a field can have no zero divisors.
Suppose a-b =0 and a # 0. Since a has an inverse a~!, we can write a=! - (a-b) = a~!- 0. By associativity,
this becomes (a~! - a) - b = 0, which simplifies to 1-b =0, or b = 0. Thus, every field is an integral domain.
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Remark. The integers Z do not form a field, as only 1 and —1 have multiplicative inverses within Z. The
construction of the rational numbers remedies this deficiency.

Definition 5.8.8. Subtraction. For any integers «, 3, subtraction is defined as the addition of the inverse:

a—Bi=a+(-B).

Rational Numbers

The set of integers Z is closed under addition, subtraction, and multiplication. However, it is not closed
under division; an equation like 22 = 1 has no solution in Z. To create a number system where division by
non-zero elements is always possible, we construct the rational numbers.

A rational number is conceived as a fraction m/n, where m,n € Z and n # 0. This representation is not
unique, as, for example, 1/2 = 2/4. The general rule for equivalence is m/n = p/q < mq = np. We use this
rule to define an equivalence relation on pairs of integers.

Definition 5.8.9. Fquivalence Relation for Rationals. Let ~ be a binary relation on Z x (Z \ {0})
defined such that for any pairs (m,n) and (p, q),
(m,n)~ (p,q) &m-qg=n-p

Definition 5.8.10. The Set of Rational Numbers. The set of rational numbers, denoted Q, is the
quotient set of Z x (Z\ {0}) by the equivalence relation ~.

Q:=(Z x (2\{0}))/~

An element of Q, denoted [(m,n)], is commonly written as the fraction m/n.

The structures on QQ are defined in a way that mimics the familiar rules of fraction arithmetic.

Definition 5.8.11. Order on Q. Let a = [(m,n)] and 8 = [(p, q)] be rational numbers. We can always
choose representatives such that n > 0 and ¢ > 0, since [(m,n)] = [(—m, —n)]. With this convention, the
order relation < on Q is defined by:

a<fBem-gq<n-p

where the < on the right is the order on Z.

It can be shown that (Q, <) is a linearly ordered set.

Definition 5.8.12. Arithmetic on Q. Let o = [(m,n)] and 8 = [(p, ¢)] be rational numbers.

e Addition: a+ S := [(mq + np, nq)]
e Multiplication: « - S := [(mp,nq)]

These operations are well-defined, meaning the result is independent of the choice of representatives for the
equivalence classes.

Theorem 5.8.3. Properties of Rational Arithmetic. The set Q with the operations of addition and
multiplication has the following properties:

i)
ii) The additive identity is 0 = [(0,1)], and the multiplicative identity is 1 = [(1,1)].
(iii) Every rational number « has a unique additive inverse, —a.
)
)

(
(i
(

Addition and multiplication are associative and commutative.

v) Every non-zero rational number o = [(m,n)] has a unique multiplicative inverse, o~ = [(n, m)].

v) The distributive law holds.

Proof. The proofs of these properties follow from the definitions and the corresponding properties of the
integers. We prove the existence of the multiplicative inverse. Let a = [(m,n)] be a non-zero rational
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number, which implies m # 0 and n # 0. Its inverse is a~! = [(n,m)], which is a valid rational number as
m %% 0. Then:

1

a-a " =[(m,n)]-[(n,m)] = [(mn, nm)]

Since mn = nm in Z, we have (mn,nm) =~ (1,1), so [(mn,nm)] = [(1,1)], which is the multiplicative
identity. |

The properties established demonstrate that (Q,+,-) is a field. Furthermore, the order relation < is com-
patible with these algebraic operations. This structure is known as an ordered field.

Definition 5.8.13. Ordered Field. An ordered field is a field K together with a total order relation <
such that for all z,y,z € K:

(OR1) If x <y, then x4+ z < y + 2.
(OR2) If x > 0 and y > 0, then x - y > 0.

Theorem 5.8.4. Properties of Ordered Fields. Let K be an ordered field. For all z,y,a € K:

yr>ysr—y>0.

) If x >y and a > b, then z +a > y + b.

) If x > 0, then —z < 0. If z < 0, then —z > 0.
iv) Ife >0and y >0, then x -y > 0. If z > 0 and y < 0, then z -y < 0.
(v) If a > 0 and x > y, then az > ay.

) If a < 0 and = > y, then ax < ay.

) 22 >0 for all # € K. In particular, 1 =12 > 0.

) If 2 >0, then 271 > 0.

yIfx>y>0,then0 <o ! <yt

Proof. These properties are direct consequences of the axioms. As an example, we prove (iii). If a < 0, then
—a > 0. Given z >y, we have x — y > 0. By (OR2), (—a)(x — y) > 0, which simplifies to —az + ay > 0, or
ay > ax. The other proofs are left as exercises. |

Definition 5.8.14. Complete Ordered Field. An ordered field (K, +,-, <) is complete if every non-
empty subset S C K that is bounded above has a least upper bound in K. A complete ordered field is an
ordered field with this property.

Remark. The existence of multiplicative inverses for all non-zero elements means that Q is a field. With
these constructions, we have built the number systems N, Z, and Q from the ground up using only the axioms
of set theory. Since the defined operations and orderings on these sets possess the standard properties we
associate with these number systems, we hereafter treat them as the familiar sets of numbers used throughout
mathematics.

5.9 Exercises
18. The text states that the relation ~ on N x N, defined by (m,n) ~ (p,q) & m +q¢ = n+ p, is an
equivalence relation. Prove this by showing that ~ is reflexive, symmetric, and transitive.

19. The text provides a proof that addition on 7Z is well-defined. Prove that multiplication on Z is also
well-defined. That is, if (m,n) ~ (m/,n’) and (p,q) ~ (p',¢’), show that

[(mp + ng,mq + np)] = [(m'p" +n'q",m'q" +n'p")]

20. Prove the distributive law for the integers. Using the definitions of addition and multiplication on Z,
show that for any «, 5,7 € Z,

a-(B+7)=(a-f)+(a-7)

21. The set of natural numbers N can be seen as a subset of the integers Z via an embedding. Consider
the function ¢ : N — Z defined by i(n) = [(n,0)].
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22,

23.

24.

25.

(a) Prove that this function 4 is injective.
(b) Prove that this function preserves addition; that is, show that for all m,n € N, i(m + n) =
i(m) +i(n).

* The construction of the rational numbers Q uses the set Z x (Z \ {0}), explicitly forbidding zero in
the second coordinate. Suppose we had ignored this and tried to define the same equivalence relation
~ on the set Z x Z. Prove that this relation would no longer be an equivalence relation on this larger
set.

Remark. Investigate which property of an equivalence relation fails. Consider pairs of the form (m, 0).

Well-Definedness of Rational Addition. In the text, we stated that arithmetic operations on Q
are well-defined. Prove this for addition. Suppose a = [(m,n)] and 8 = [(p,q)]- Let (m,n) = (m/,n’)
and (p,q) = (p',¢'). Show that the sum is independent of the representative chosen:

(m,n) + (p,q) = (m',n) + (', ¢')

Remark. You need to show that if mn’ = nm’ and pq’ = qp’, then (mg+np)(n'q’) = (ng)(m'q' +n'p’).

Properties of Ordered Fields I. Using the axioms (OR1) and (OR2) and the properties of fields,
prove the following statements from the Properties of Ordered Fields theorem:
(a) Additivity of Order: If z > y and a > b, prove that  +a > y + b.
Remark. Use (OR1) twice: first add a to « > y, then add y to a > b.

(b) Positivity of Squares: Prove that for any x # 0, 22 > 0. Conclude that 1 > 0.
Remark. Consider two cases: > 0 and x < 0 (where —z > 0). Use (OR2).

Properties of Ordered Fields II. Continuing with the properties of ordered fields, prove the fol-
lowing regarding inverses:

(a) Positivity of Inverses: If x > 0, prove that 27! > 0.

Remark. Proof by contradiction: Assume 7! < 0. If 27! =0, z-27' =0# 1. If 27! <0,
multiply by @ (which is positive) and check the sign of 1.

(b) Ordering of Inverses: If x > y > 0, prove that 271 < y~!.

Remark. Multiply the inequality = > y by the positive quantity z !y ~1.



Chapter 6

Mathematical Induction

To prove a formula P(n) for all integers n greater than or equal to some integer ng, one might attempt
to prove it for each n individually. This approach is impossible as it requires infinitely many steps. An
alternative, rigorous method is provided by the principle of mathematical induction.

6.1 The Principle of Induction

The validity of proofs by induction rests upon the following theorem, which formalises the structure of such
arguments.

Theorem 6.1.1. Principle of Mathematical Induction. Let P(n) be a formula. For any integer ng, if
P(no) AVn € Z((n>no AP(n)) = P(n+1))
then
Vn € Z(n > ng = P(n)).
Proof. Assume P(ng) and that for all integers n > ng, P(n) = P(n + 1). Define the set
S={keN|P(no+k)}
We demonstrate that S is an inductive set.

e Base Case: By hypothesis, P(ng) is true, which implies 0 € S.

e Inductive Step: Assume k € S. By definition of S, this means P(ng + k) is true. Let n = ng + k.
Since k € N, we have n > ng. Our initial assumption states that for such n, P(n) = P(n + 1).
Therefore, P(ng + k) = P(ng + k + 1). As the antecedent is true, P(ng + k + 1) must be true. This
implies k+1 € S.

Since S contains 0 and is closed under the successor operation, S = N. This means P(ng + k) holds for all
k € N, which is equivalent to stating that P(n) holds for all integers n > ny. |

An analogy is often drawn with a row of dominoes. Proving the first part of the premise, P(ng), is akin to
tipping the first domino. Proving the second part, the implication, ensures that the dominoes are positioned
such that each one will knock over the next. The conclusion follows by modus ponens: P(ng) implies
P(no + 1), which in turn implies P(ng 4+ 2), and so on, with each proposition falling in sequence. This
two-step process is characteristic of proofs by induction.

Basis Case The proof of P(ny).

65
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Induction Step The proof that for an arbitrary integer n > ng, the implication P(n) = P(n + 1) holds.
The assumption that P(n) is true for the purpose of proving this implication is known as the induction
hypothesis.

Applications of Induction

We now demonstrate the application of this principle with several examples.

Example 6.1.1. Let z be a positive rational number. We prove by induction that for any n € ZT,
(1+2)" >1+nz.

e Basis Case: For n = 1, the statement is (1 + z)! > 1+ (1)x, which is an equality and therefore true.
e Induction Step: Let k € Z* and assume the induction hypothesis: (1 + z)* > 1+ kx. We aim to
show (1 +2)k*1 > 1+ (k + 1)z. We begin with the left-hand side of the target inequality:
(1+2)" =1 +2)" (1 +2)
>(1+kx)(1+x) by the induction hypothesis, since 1 +x > 0
=14+ kx + ka?
=1+ (k+ 1)z + ka?
>14+(k+ 1z since k€ ZT and x € Q1 kz? > 0

Thus, (1 + z)**! > 1+ (k + 1)z. By the principle of mathematical induction, the inequality holds for all
nezr.

Example 6.1.2. We prove by induction that n? < n! for all integers n > 6.

e Basis Case: For n = 6, we have 6% = 216 and 6! = 720. The inequality 216 < 720 is true.
e Induction Step: Let k > 6 be an integer and assume the induction hypothesis k> < k!. We must
show that (k + 1) < (k + 1)!. We expand the left-hand side:

(k+1)° =k +3k*>+ 3k + 1
By the induction hypothesis, k3 < k!, so we have:
(k+1)% < k! +3k* + 3k + 1

To complete the proof, we must show that k! + 3k + 3k +1 < (k+1)!. We observe that for k > 6, the
terms 3k2, 3k, and 1 are all smaller than k!. Specifically, 3k% < k3 < k! for k > 3, and 3k < k3 < k!
for k > /3. Therefore:

k! 3k% + 3k +1 < k! + k! + k! + k! = 4k!

Now we need to show that 4k! < (k + 1)!. This is equivalent to 4k! < (k 4 1)k!, which simplifies to
4 < k41, or k> 3. Since our assumption is £ > 6, this condition is satisfied. We have established the

chain of inequalities:
(k+1)% < k! 4+ 3k* + 3k + 1 < 4k! < (k + 1)!

By the principle of induction, the statement holds for all integers n > 6.

6.2 Exercises

1. Let B, Ay, Ay, ..., A, be sets. Prove the generalised distributive law by induction for all n € Z*:
BN (UAZ> =JBnA4)
i=1 i=1

You may assume the law for two sets, BN (A; U A2) = (BN A;) U (BN Az), as a known property.
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2. Let Ay, As, ..., A, be a finite collection of sets within some universal set U. Prove the generalised De
Morgan’s Law by induction for all n € Z*:

n ¢ n
i=1 i=1
You may assume the law for two sets, (A3 U A2)¢ = A§ N AS, as a known property.

3. Let fi1, fo,..., fn be a sequence of bijective functions, where each function f; maps a set A to itself
(fi : A — A). Prove by induction that the composition F,, = f, o f,_10---0 fi is also a bijection from
AtoAforallneZ™.

Remark. You may use the theorem stating that the composition of two bijections is a bijection.

4. Let R be a symmetric binary relation on a set A. Define the powers of R recursively by R! = R and
R = R" o R for n € Z*. Prove by induction that R" is a symmetric relation for all n € Z*.

5. A sequence of sets is defined recursively as follows:
o So = {0}
® Spt1 =S, UP(S,) foralln e N

Prove by induction that for every n € N, every element of S, is also a subset of S,,. That is, prove
YneN, (Ve e S, =z CS,).

6.3 Advanced Induction

The principle of mathematical induction discussed in section 6.1 is sometimes called weak induction. Its
induction step involves assuming P(k) to prove P(k + 1). However, in some contexts, particularly with
recursively defined sequences where a term depends on multiple predecessors, a stronger assumption is
required. The principle of strong induction provides this more powerful hypothesis.

Strong Induction

The intuition behind strong induction is that by the time we consider the (k + 1)-th case, we have already
established the truth of all preceding cases, from the basis up to the k-th case. We are therefore justified in
assuming all of them to prove the next one.

Theorem 6.3.1. Principle of Strong Induction. Let P(n) be a formula. For any integer ng, if
P(no) A\Vk € Z((k > ng AVi € Z(ng <i < k= P(i))) = P(k))

then
Vn € Z(n > nyg = P(n)).

Proof. Assume the premise of the theorem holds. Let Q(k) be the formula Vi € Z(ng <i < k = P(i)). We
will use the principle of weak induction to prove that Q(k) holds for all k& > ny.

e Basis Case: We show Q(ng). This is the statement P(ng), which is true by the first part of our
assumption.

e Induction Step: Assume Q(k) for some k > ng. This means P(¢) is true for all integers ¢ such that
ng < i < k. By the second part of our assumption, this conjunction implies that P(k + 1) is true.
Therefore, P(4) is true for all ng <i < k and for ¢ = k + 1. This is precisely the statement Q(k + 1).

By the principle of weak induction, Q(k) is true for all k > ng. Since Q(k) implies P(k), it follows that
P(n) is true for all integers n > ng. |
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The Well-Ordering Principle

The principles of weak and strong induction are not the only ways to formalise proofs concerning the natural
numbers. An equivalent, and often more direct, axiom is the Well-Ordering Principle, which states that the
standard order on N has a crucial property.

Theorem 6.3.2. The Well-Ordering Principle. Every non-empty subset of the natural numbers N
contains a least element.

Proof. Let S be a non-empty subset of N. We prove by contradiction that S must have a least element.
Assume S does not have a least element. Let P(n) be the statement "n ¢ S". We use induction to prove
that P(n) is true for all n € N.

e Basis Case: Consider n = 0. If 0 € S, then since 0 is the smallest natural number, it would be the
least element of S. This contradicts our assumption. Therefore, 0 ¢ S, so P(0) is true.

e Induction Step: Assume P(k) is true for all k¥ < n. This means no natural number from 0 to n is in
S. Consider the number n+ 1. If n4+ 1 € S, then since all numbers smaller than it are not in S, n+ 1
would be the least element of S. This is a contradiction. Therefore, n +1 ¢ S, so P(n + 1) is true.

By the principle of strong induction, P(n) is true for all n € N. This implies that S contains no elements,
i.e., S = (. This contradicts our initial premise that S is a non-empty set. Therefore, the assumption that
S has no least element must be false. ]

The Well-Ordering Principle provides an elegant method for proofs. A common application is to prove the
existence of a prime factorisation for every natural number greater than one.

Theorem 6.3.3. The Division Algorithm. For each m € N\ {0} and n € N, there exist unique numbers
k,l € N such that
n=km+10 and l<m

The number k is the quotient and [ is the remainder.

Proof. We first prove existence by induction on n. Fix m € N\ {0}. Let I be the set of natural numbers for
which the statement holds:

I={neN]|3k,leNsuchthat n =Ekm+IAl<m}

e Base Case: For n = 0, we may choose £k = 0 and [ = 0. Since m # 0, we have 0 < m, so 0 =0m +0
is a valid representation. Thus, 0 € I.
e Inductive Step: Assume n € I. Then there exist k,l € N such that n = km 41 and [ < m. Consider
n+ 1
n+1=km+(I+1)

If I+ 1 < m, then we have found the required representation for n + 1, with quotient k£ and remainder
I+1. Thusn+1el Ifi4+1=m,thenn+1=km+m = (k+ 1)m. We can write this as
n+1=(k+1)m+0. Since 0 < m, this is a valid representation with quotient k£ + 1 and remainder 0.
Thusn+1€l.

Since [ is an inductive subset of N, we have I = N, proving existence.

To prove uniqueness, suppose n = kym + Iy and n = kom + Il where I; < m and Iy < m. Assume, without
loss of generality, that I < ls. Then

k1m+11:k2m+l2:>(k1—k2)m:lg—ll

Since l; < ls < m, we have 0 < Iy —1; < m. The equation implies that lo — [ is a multiple of m. As the only
multiple of m that is smaller than m is 0, it must be that Iy —I; = 0, so I; = ls. This gives (k1 — ka)m = 0.
Since m # 0, the cancellation law for multiplication implies k1 — ko = 0, so k1 = ky. The representation is
unique. |
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Definition 6.3.1. Prime Number. A natural number p € N is prime if p > 2 and its only divisors are 1
and p.

Theorem 6.3.4. The Fundamental Theorem of Arithmetic. Every natural number n > 1 can be
written as a product of prime numbers. This factorisation is unique up to the order of the factors.

Proof. Existence: Let S be the set of all natural numbers n > 1 that cannot be written as a product of
primes. Assume for contradiction that S is non-empty. By the Well-Ordering Principle, S must have a
least element, let us call it m. Since m € S, m cannot be prime (otherwise it would be a product of one
prime, itself). Thus, m must be composite, meaning there exist natural numbers a,b such that m = ab
where 1 < a < b < m. Because a and b are smaller than m, they cannot be in S. Therefore, both a and
b can be written as a product of primes. But if this is so, their product m = ab can also be written as
a product of primes (by concatenating their prime factorisations). This contradicts the fact that m € S.
The contradiction implies our assumption was false; the set S must be empty. Thus, every natural number
greater than 1 has a prime factorisation.

Uniqueness: Let T be the set of natural numbers n > 1 that have more than one distinct prime factorisation.
Assume for contradiction that T is non-empty, and let p be its least element. So,

pP=pip2-- Pk = q1492° - q1

where {p;} and {g;} are two different sets of prime factors. We can assume p; < py < --- < p; and
q1 < g2 < -+ < . Since the factorisations are different, p; # ¢1. Assume without loss of generality that
p1 < q1. Consider the number p’ = p — p1g2 - - - q;. We can factor out py:

P =pi(p2- Pk —q2 @)

So p1 divides p’. We can also express p’ using the second factorisation of p:

P/ = (fh *Pl)(Jz"'CIl

Since p1 < q1, g1 —p1 > 0, 50 p’ > 0. Also, p’ < p, because p1g2---q; < q1g2---q = p. Since p’ < p, p’ must
have a unique prime factorisation. From the second expression for p’, we see that its prime factors must be
the prime factors of (g1 — p1) together with the primes g, ..., q. However, we know that p; divides p’. Since
p1 is prime, it must be equal to one of the prime factors in the factorisation of p’.

e p; cannot be equal to any of ¢, ..., q, because we assumed the two original factorisations of p were
distinct and sorted, so p; < ¢; < g; for all j.

e Therefore, p; must divide ¢; — p1. If py divides g1 — p;, then it must also divide (g1 — p1) + p1 = q1.
But since ¢ is prime, its only divisors are 1 and ¢;. Since p; > 1, this implies p; = ¢;.

This contradicts our assumption that p; < ¢;. The set T" must be empty, proving uniqueness. |

6.4 Exercises

1. The Fibonacci sequence is defined by Fy = 0, F; = 1, and the recursive relation F,, = F},_1 + F,,_» for
all integers n > 2.

(a) Explain why the principle of weak induction is insufficient to prove a property of F,, that relies
on its recursive definition.

(b) Let ¢ = # (the golden ratio). Prove by strong induction that F,, > ¢"~2 for all integers n > 3.

2. A prime number is an integer greater than 1 that has no positive divisors other than 1 and itself. Use
the principle of strong induction to prove that every integer n > 2 can be written as a product of one
or more prime numbers.

Remark. For the induction step, consider an integer k. There are two cases: either k is prime, or k
is composite. If it is composite, it can be factored as k = ab, where a and b are smaller than k.
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3. Consider a chocolate bar made of n squares arranged in a single line. A "break" consists of choosing
one piece of chocolate and breaking it into two smaller pieces along one of the dividing lines. Use
strong induction to prove that for any integer n > 1, it takes exactly n — 1 breaks to separate the bar
into n individual squares.

4. A sequence is defined by a1 = 1, as = 3, and a,, = 2a,_1 — an_o for all n > 3. Use strong induction
to prove that a, = 2n — 1 for all integers n > 1.

5. Use strong induction to prove that any integer amount of postage n > 8 cents can be formed using
only 3-cent and 5-cent stamps.

Remark. For the induction step, consider an amount k. You can form this amount if you could
previously form the amount k& — 3. This logic does not work for all initial values of k, so you will need
to establish more than one basis case.

6.5 The Real Numbers

The sets of natural numbers, integers, and rational numbers have been constructed using set-theoretic
principles. However, the set of rational numbers, Q, is fundamentally incomplete. There are "gaps" in
the rational number line. For instance, the set of rational numbers S = {x € Q | 22 < 2} is non-empty
and bounded above in Q (by 2, for example), but it has no least upper bound within Q. The object that
"should" be the supremum, v/2, is not rational.

Example 6.5.1. Proof that Q is not complete. Let us formally prove that the set S = {z € Q | 2% < 2}
has no supremum in Q. Assume for contradiction that a least upper bound ¢ € Q for S exists. First, note
that 1 € S (since 12 < 2). Since c is an upper bound for S, it must be greater than or equal to every element
in S, so ¢ > 1. By the law of trichotomy, exactly one of ¢ < 2, ¢ > 2, or ¢ = 2 must be true.

e We know that no rational number squares to 2, so ¢ = 2 is impossible.

e Suppose ¢? < 2. We will construct a rational number ¢ + § with § > 0 such that (¢ + §)? < 2. This
would mean ¢+ § € S, contradicting the assumption that ¢ is an upper bound for S. Consider the
number 6 = 2;5. Since ¢ > 1, the denominator ¢ + 2 is positive, and since ¢? < 2, the numerator is

positive. Thus, § is a positive rational number. Let’s examine the square of ¢ + §:

2 _ 2 92— 2\ 2
(c+6)?=c+2e0+62=c*+2¢ ) ¢
c+2 c+2

To avoid complex algebra, consider a simpler approach. We want to find a small rational h > 0 such
that (¢ + h)? = ¢® + 2ch + h? < 2. This requires h(2c + h) < 2 — c2. If we choose h < 1, then

2c+h <2c+1,s0 weneed h(2c+1) <2 —c2 or h < Sc’fi Since 2 —¢? > 0 and 2¢+ 1 > 3, such a

positive rational h exists. This contradicts ¢ being an upper bound.

Since all three possibilities lead to a contradiction, our initial assumption that S has a least upper bound in
Q must be false.

The goal of this chapter is to construct a set that formalises the intuitive idea of the real number line, a set
that is a complete ordered field. The construction, due to Richard Dedekind, builds the real numbers from
the rational numbers by characterising each real number by the set of all rational numbers less than it.

Initial Segments and Dedekind Cuts

The construction of the real numbers relies on specific subsets of partially ordered sets.

Definition 6.5.1. Initial Segment. Let (A, <) be a poset. A subset S C A is an initial segment of A if
it is downward closed, meaning that for all z,y € A, if y € S and = < y, then x € S. An initial segment S
is proper if S # A.
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For any element a in a poset (4, <), the set of all elements strictly less than a forms a canonical initial
segment.

Definition 6.5.2. . Let (A, <) be a poset and let a € A. Define < (A,a) ={z € A|z < a}.

While any set of this form is an initial segment, not every initial segment must be of this form. However,
for well-ordered sets, this is the only possibility.

Lemma 6.5.1. If (A, <) is a well-ordered set and S is a proper initial segment of A, then there exists a
unique a € A such that S == (4, a).

Proof. Let (A, <) be well-ordered and let S be a proper initial segment. Since S is proper, the set difference
A\ S is non-empty. As A is well-ordered, A\ S must contain a least element; let this element be a. We will
show S ==< (4, a).

e Let z € S. Since a is the least element of A\ S, x cannot be in A\ S, s0o x ¢ A\ S. If we had a < z,
then since S is downward closed, we would have a € S, a contradiction. Therefore, by trichotomy, it
must be that x < a. This implies €< (4,a), so S C=< (4, a).

e Let x €< (A, a), which means x < a. If x were an element of A\ S, this would contradict the fact that
a is the least element of A\ S. Thus,  must be an element of S. This implies < (4,a) C S.

We have shown S == (A, a). To prove uniqueness, suppose there exists another element o’ € A such that
S ==x(A,d). If a # d, then either a < a’ or @’ < a. If a < o/, then a €< (A,ad’) = S, which is impossible
as a € A\ S. A symmetric argument holds if «’ < a. Thus, a = d’. |

We now define a real number as a special type of initial segment of the rational numbers.

Definition 6.5.3. Dedekind Cut. A set x C Q is a Dedekind cut (or a real number) if it satisfies three
properties:

1. z is a non-empty, proper subset of Q (z # 0 and z # Q).
2. z is an initial segment of (Q, <).
3. x does not have a greatest element.

The set of all Dedekind cuts is denoted by R.

The rational numbers can be embedded into this new set. For any ¢ € Q, the set q = {r € Q | r < ¢}
is a Dedekind cut. The function ¢ : Q — R defined by ¢(q) = q is an order embedding. The elements
of R\ ran(¢) are the irrational numbers. For instance, the number 7 corresponds to the Dedekind cut

{g€eQlg<m}.

Order and Completeness

To show that R is a suitable model for the real numbers, we must define an order on it and prove that it is
complete.

Definition 6.5.4. . Let x,y € R. We define < y if and only if  C y. The strict order x < y means x C y.

This definition naturally extends the order from Q to R. For ¢q1,¢2 € Q, ¢1 < ¢2 < q1 C qz.
Theorem 6.5.1. The relation < is a linear order on R, but it is not a well-order.

The defining property of the real numbers is that they do not suffer from the gaps present in the rationals.
This is formalised by the completeness property.

Theorem 6.5.2. Completeness of the Real Numbers. Every non-empty subset of R that has an upper
bound has a least upper bound in R.
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A rational number ¢

cut
1
. > Q
q
Thecut q={reQ|r < q}
An irrational number o
cut
1
1 y Q

The cut a*:{re(@\rl<a}

Figure 6.1: A Dedekind cut partitions Q into two sets. If the cut corresponds to a rational number ¢, then ¢
is the least element of Q \ q. If it corresponds to an irrational number «, then Q \ o has no least element,
representing a "gap" in the rationals.

Proof. Let F be a non-empty subset of R that is bounded above by some m € R. The supremum of F with
respect to the subset relation C is its union, |JF. We must show that this union is itself a Dedekind cut,
i.e., an element of R. Let U = |J F.

1. Since F is non-empty, it contains at least one cut x € F. Since z is a Dedekind cut, x # (), which
implies U # 0. Every x € F is a subset of the upper bound m, so U C m. Since m is a proper subset
of Q, sois U. Thus, U is a non-empty, proper subset of Q.

2. Let uw € U and let ¢ € Q with ¢ < u. Since u € U, there must be some cut z € F such that u € z. As
x is a cut, it is downward closed, so ¢ € x. This implies ¢ € U. Therefore, U is an initial segment of
@.2).

3. Let u € U. Then u belongs to some cut « € F. Since x has no greatest element, there exists an element
r € x such that u < r. Since r € x, we also have r € U. This shows that no element u € U can be its
greatest element.

We have shown that U = |JF is a Dedekind cut, and thus an element of R. As the union of a collection of
sets ordered by inclusion, it is their least upper bound. Therefore, R is complete. |

Definition 6.5.5. Ordered and Complete Ordered Field. An ordered field is a field (K, +, ) together
with a total order < on K such that for all a,b,c € K:

1. Ifa<b thena+c<b+e.
2. If 0 <aand 0 < b, then 0 < ab.

An ordered field is complete if every non-empty subset S C K that is bounded above has a least upper
bound in K. A complete ordered field is an ordered field that is complete in this sense.

6.6 Arithmetic on the Real Numbers

Having constructed the set R of Dedekind cuts and established its order properties, we now define the
arithmetic operations that will give R the structure of a complete ordered field.

¢ 0:={¢€Q|g<0}
1:={¢geQ|qg<1}

Henceforth, we will use the symbols 0 and 1 to denote these specific cuts.

Definition 6.6.1. Arithmetic Operations on R. Let xz,y € R.
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(i) The sum of x and y is defined as:

r+y:={pt+qlpcriqey}

(ii) The product of  and y is defined piecewise:

{pg|p€x,qey,p>0,g>0U0 ifx>0Ay>0
{pglp€x,qey,p<0,¢g<0}UO0 fz<0Ay<O0
{pglpewr,qgey,q>0} ifz<0Ay>0
{pg|p€x,qeyp>0} ifz>0Ay<0

Ty =

It can be verified that the sets resulting from these operations are themselves Dedekind cuts. For addition,
this is left as an exercise. For multiplication, the argument is analogous to that for showing a set is a Dedekind
cut, involving proofs of non-emptiness, properness, downward closure, and the absence of a greatest element.

Field Properties of the Real Numbers

The operations of addition and multiplication on R satisfy the axioms for a field.

Theorem 6.6.1. Addition and multiplication of real numbers are associative and commutative.

Proof. Let z,y,z € R. We prove that addition is associative. The remaining properties are established by
similar arguments.

r+y+z)=x+{g+r|lqgeyArez}
={p+s|pexnsec{gt+r|qgeynrecz}}
={p+(q+r)|pexAgeynrez}

={lp+qg +r|lpcaxhgeynrez} by associativity of + in Q
={s+r|se{ptqlpexngeytrrez}
=(x+y) +=z [ |

The cuts 0 and 1 function as the identity elements.
Theorem 6.6.2. The set R has additive and multiplicative identities.

Proof. Let x € R. We first show x + 0 = x. Let p € . Since x has no greatest element, there exists p’ € x
such that p < p’. We can write p = p’ + (p — p'). Since p —p’ <0, p—p’ € 0. Thus, p € z + 0, which shows
x C 2+ 0. Conversely, let p+q € x + 0, where p € z and ¢ € 0. Since ¢ < 0, we have p+q < p. As x is
downward closed, p + g € . This shows x + 0 C . Therefore, x + 0 = .

Next, we show x -1 = 2. We consider the case where 0 < x. By definition, -1 = {pg | p € x,q € 1,p >
0,g >0}U0. Let s€ z-1. If s <0, thenas 0 < z,0 C z,s0 s € z. If s > 0, then s = pq for some p € z,p > 0
and g € 1,¢ > 0. Since ¢ < 1, pg < p, so s < p. As p € z and z is downward closed, s € z. Thus z -1 C x.
Conversely, take p € z. If p < 0, then p € 0 C z- 1. If p > 0, since x has no greatest element, there exists
p’ € x with p < p’. Then p/p’ < 1, so p/p’ € 1. We can write p = p' - (p/p’). Since p’ € xz and p/p’ € 1,
pe€x-1. Thus x Cx-1. The case x < 0 is analogous. |

The remaining field axioms also hold for the set of Dedekind cuts.
Theorem 6.6.3. For the set R with the defined operations:

(i) Every element has an additive inverse.
(ii) Every non-zero element has a multiplicative inverse.
(iii) The distributive law of multiplication over addition holds.
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Proof. The proofs are constructive but lengthy and are omitted here (and way above these notes pay grade).
But they follow from the properties of the rational numbers. |

Corollary 6.6.1. . With the operations and order defined above, (R, +, -, <) is a complete ordered field.

Proof. We have shown that (R, +, -, <) is an ordered field, and by the Completeness of the Real Numbers
theorem above, every non-empty subset of R that is bounded above has a least upper bound in R. Hence
(R, 4+, -, <) is a complete ordered field. [ ]

The Extended Real Number Line

The completeness property ensures that every bounded subset of R has a supremum. To formalise the
concept of "unboundedness" and simplify the treatment of limits, we extend the real numbers by adjoining
two elements at infinity.

Definition 6.6.2. Extended Real Numbers. The extended real number line, denoted R, is the set
R U {—00,00}. The order < on R is extended such that for all z € R:

—00 < x < 00
This makes R a totally ordered set with a minimum —oo and a maximum oc.

We partially extend the arithmetic operations to R. These definitions are chosen to be consistent with limits
in calculus.

Definition 6.6.3. Arithmetic in R. Let z € R.

(i) Addition: x + co = oo and z 4 (—00) = —oo. Furthermore, co + 0o = co and —o0 + (—00) = —o0.
(ii) Multiplication: If 2 > 0, then - 00 = 0o and = - (—o0) = —o0. If 2 < 0, then z - 0o = —o0 and
x - (—00) = 0.
(iii) Inversion: & = - =0.
Note: The expressions co — oo, 000, 2, and § remain undefined. Consequently, R is not a field.

The primary utility of R lies in the existence of suprema and infima for all subsets.

Theorem 6.6.4. Every subset A C R has a supremum and an infimum in R.

e If A is not bounded above in R, sup(A) = cc.
e If A is not bounded below in R, inf(4) = —oo.
e By convention, sup(f)) = —oco and inf(0)) = co.

The Complex Numbers

The final number system we introduce is the set of complex numbers, which extends the real numbers to
provide solutions for equations such as z? +1 = 0.

Definition 6.6.4. Complex Numbers. The set of complex numbers, denoted C, is the Cartesian product

R x R. An element (a,b) € C is typically written as a + bi.

The function ¢ : R — C defined by ¢(x) = (z,0) is an embedding that allows us to consider R as a subset
of C.

Definition 6.6.5. Arithmetic on C. Let a + bi and ¢ + di be complex numbers.

e Addition: (a+ bi) + (c+di) :=(a+c¢)+ (b+d)i
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e Multiplication: (a + bi) - (¢ + di) := (ac — bd) + (ad + be)i

With these operations, C forms a field.

Theorem 6.6.5. The set of complex numbers C with the operations of addition and multiplication satisfies
the field axioms. In particular:

i) If we define i := 0+ 14, then ¢* = —1 + 0i.

ii) Addition and multiplication are associative and commutative.

(iii) The additive identity is 0 4+ 0i and the multiplicative identity is 1 + 0i.

(iv) Every element has an additive inverse, and every non-zero element has a multiplicative inverse.

Proof. These properties are verified by direct computation using the definitions. For instance, i2 = (0 + 14) -
(041)=(0-0-1-1)4+(0-1+1-0)i = —1+ 0i. The remaining proofs are left as an exercise. |

6.7 Exercises

1. Another canonical example of an irrational Dedekind cut is the one corresponding to v/3. Let the set
x C Q be defined as:

z={qgeQlqg<0Vg <3}

Prove from the definition that x is a Dedekind cut. Show that for any prime p that \/p is an irrational
Dedekind cut.

2. The text proves that for a bounded-above set of cuts F, its union |JF is a Dedekind cut. A similar
argument is needed for the arithmetic operations. Let z,y € R be two Dedekind cuts. Prove that their
sum, defined as

r+y:={pt+qlpcriqey}

is also a Dedekind cut.

3. Let z,y,z € R. The text proves that addition is associative. Prove that the order on R is transitive.
That is, using the definition z < y < x C y, prove that if x <y and y < z, then z < z.

4. For any real number x € R, its additive inverse can be constructed as the set

—z:={qeQ|IreQr>0AN—q—r¢ux)}
Let © = {q € Q| ¢ < 2}. Describe the set —z and show that it corresponds to the real number —2.

5. Suppose we relax the definition of a Dedekind cut by removing the third condition (that it has no
greatest element). Let us call such a set a generalised cut. Prove that if a generalised cut x has a
greatest element, then that greatest element must be a rational number.

6. Let a + bi and ¢+ di be two complex numbers. Verify by direct computation from the definitions of
the operations on C that:

(a) Addition is commutative: (a + bi) 4+ (¢ + di) = (¢ + di) + (a + bi).
(b) Multiplication is distributive over addition.
7. % For any non-zero complex number z = a + bi, its multiplicative inverse is given by

1 a b

P _a2+b21'

Using the definition of multiplication on C, prove that z-z~! =1 + 0s.

8. Let (A, <) be a poset. Assume that S; and S; are initial segments of A. Prove that S; NSy is an initial
segment. Then, either prove that S; U Sy is always an initial segment or provide a counterexample.
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9. Prove from the definition that the sets corresponding to the additive and multiplicative identities,
0={¢eQ|g<0}and 1 ={qgeQ|q< 1}, are Dedekind cuts.

10. Let z,y € R be non-negative real numbers (z > 0 and y > 0). Using the definition of multiplication
for non-negative cuts, prove that if x -y = 0, then z =0 or y = 0.

11. Prove that the real numbers are dense. That is, for any two real numbers x,y € R with x < y, there
exists a real number z such that z < z < y.

12. Prove that the rational numbers are dense in the real numbers. That is, for any two real numbers
z,y € R with ¢ < y, there exists a rational number ¢ such that * < q < y, where q is the cut
corresponding to q.

13. The function ¢ : Q — R defined by ¢(q) = {r € Q | r < ¢} embeds the rationals into the reals. Prove
that ¢ is an order embedding; that is, prove it is injective and that for all p,q € Q, p < ¢ < ¢(p) C ¢(q).

14. The absolute value of a real number x € R is defined as |z| = max{x, —z}, where the maximum is
taken with respect to the order <.

(a) Prove from this definition that for any z € R, x < |z| and —z < |z|.
(b) Let a € R with a > 0. Prove that |z| < a if and only if —a < x < a.

6.8 Abstract Algebraic Structures

In the preceding section, we constructed the number systems Z, Q, R, and C to satisfy specific arithmetic
requirements. We observed that these systems share common properties, such as associativity and the
existence of identities. In this section, we abstract these properties to define general algebraic structures.
This abstraction allows us to derive theorems that apply to any system satisfying the axioms, not just the
specific number systems we have built.

Groups

The most fundamental algebraic structure captures the essence of symmetry and reversible operations.

Definition 6.8.1. Group. A group is a pair (G, *) consisting of a non-empty set G and a binary operation
*: G X G — @G satisfying three axioms:

(G1) Associativity: For all g, h,k € G, (gxh) xk = g* (hx k).

(G2) Identity Element: There exists an element e € G such that for all g € G, gxe=exg=g.

(G3) Inverse Element: For each g € G, there exists an element g~! € G such that gxg ' =g lxg=ce.
If the operation * is commutative (i.e., g h = h* g for all g, h € G), the group is called Abelian.

Remark. Consider the set of integers under addition, (Z,+). It forms an Abelian group with identity 0
and inverse —n. Similarly, the non-zero rationals under multiplication, (Q \ {0}, ), form an Abelian group
with identity 1 and inverse 1/q. In contrast, the integers under multiplication, (Z,-), do not form a group
because most elements (like 2) have no multiplicative inverse within the set of integers.

Theorem 6.8.1. Uniqueness Properties. Let (G, x) be a group.

(i) The identity element e is unique.
(ii) For every g € G, the inverse g~ ! is unique.
(iii) Cancellation Laws: For any a,b,z € G, if a xx = b x, then a = b. Similarly, if  xa = x x b, then
a="b.

Proof. (i) Suppose e and ¢’ are identity elements. Then e = e x ¢’ = ¢’. (ii) Suppose h and k are inverses of
g. Then h=hxe=hx(gxk) = (hxg)*k =exk = k. (iii) Multiply both sides by 2! from the right (or
left). [ |
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Examples of Groups

e Trivial Group: Let G = {e}. With the operation e x e = e, this is the smallest possible group.

e Permutation Groups: Let X be a non-empty set. The set Sx of all bijections from X to itself forms
a group under function composition, denoted (Sx,o). The identity is the identity function idx, and
the inverse is the inverse function f~'. If X has n elements, this group is denoted S,, and is called the
symmetric group of degree n. Note that for n > 3, S, is non-Abelian.

e Direct Products: If (G,*) and (H,¢) are groups, their direct product G x H is a group with the
operation defined component-wise: (g1, h1) - (g2, ha) = (g1 * g2, h1 © ha).

Subgroups and Cosets

Just as Z is a subset of Q and both are groups under addition, groups often contain smaller groups within
them.

Definition 6.8.2. Subgroup. A subset H C G is a subgroup of (G,*) if H forms a group under the
restricted operation *.

Theorem 6.8.2. Subgroup Test. A non-empty subset H C G is a subgroup if and only if it is closed
under the group operation (i.e., z,y € H = xxy € H) and closed under inverses (i.e., v € H = ! € H).

Proof. (=) If H is a subgroup, it is a group by definition. Thus, the operation * must be a binary operation
on H (closure) and every element must have an inverse in H.

(<) Assume H is non-empty, closed under x, and closed under inverses. We check the group axioms:

e Associativity: Since elements of H are also elements of G, the operation is associative for them.

e Identity: Since H is non-empty, let h € H. By hypothesis, h~! € H. By closure, h+«h~! € H. Since
hxh~! =e, we have e € H.

e Inverses: This is given by hypothesis.

Thus, H satisfies all group axioms and is a subgroup. |

Given a subgroup N of G and an element g € G, we can define the coset of g with respect to N.
gxN:={gxn|neN}

This concept generalises the arithmetic modulo n. For instance, in Z, if we take the subgroup of multiples
of 3, 3Z, the coset 1 + 3Z is the set {...,—2,1,4,7,...}.

Definition 6.8.3. Quotient Group. If N is a subgroup satisfying g * N = N x g for all g € G (called a
normal subgroup), the set of cosets G/N = {g* N | g € G} forms a group under the induced operation:

(g*xN)-(h*N)=(g*xh)*N

This group is called the quotient group of G modulo N.

The construction of Z from N x N and Q from Z x (Z \ {0}) in previous chapters can be rigorously viewed
through the lens of quotient structures.

Homomorphisms and Isomorphisms

To compare two groups, we examine functions that preserve the group structure.
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Definition 6.8.4. Homomorphism. Let (G,*) and (H,o) be groups. A function ¢ : G — H is a
homomorphism if for all z,y € G:

Pz *y) = p(x) o dy)
Remark. A homomorphism maps the identity of G to the identity of H and inverses to inverses: ¢(eq) = eq
and ¢(g~1) = ¢(g) "
The kernel of a homomorphism ¢ is the set of elements in G' that map to the identity in H: ker(¢) = {g €

G | ¢(g) = e }. The kernel is always a normal subgroup of G.

Definition 6.8.5. Isomorphism. A homomorphism that is bijective is called an isomorphism. If there
exists an isomorphism between groups G and H, we say they are isomorphic, denoted G = H.

Isomorphic groups are structurally identical; they differ only in the labelling of their elements. For example,
the group of symmetries of an equilateral triangle is isomorphic to Ss, the group of permutations of three
elements.

Polynomial Rings

We previously defined a ring as a set equipped with two operations, addition and multiplication, satisfying
properties (R1)-(R3) (Abelian group under addition, associative multiplication, and distributivity). We
conclude by introducing a crucial ring in analysis and algebra.

Definition 6.8.6. Polynomial Ring. Let K be a field (such as Q, R, or C). The polynomial ring in one
variable over K, denoted K[X], is the set of sequences (ag, ay,az,...) of elements from K where a,, = 0 for
almost all n (i.e., only finitely many coefficients are non-zero). We typically represent an element P € K[X]
as a formal sum:

P(X) = ZaiXi :ao+a1X+a2X2+...+aan
i=0
Addition and multiplication are defined in the standard way:

e Addition: Sum corresponding coefficients.
e Multiplication: Convolution of coefficients (distributive expansion).

Properties of Polynomial Rings

To prove that K[X] is an integral domain, we must show that the product of two non-zero polynomials is
never zero. The primary tool for this analysis is the degree of a polynomial.

Definition 6.8.7. Degree of a Polynomial. Let P(X) =" a;X" be a non-zero polynomial in K[X]
with a,, # 0. The integer n is called the degree of P, denoted deg(P).

e The degree of a non-zero constant is 0.
e The zero polynomial, 0, does not have a standard integer degree (often defined as —c0).

The coefficient a,, is called the leading coefficient.

Lemma 6.8.1. Degree of a Product. Let P,@Q € K[X] be non-zero polynomials. Then:

deg(P - Q) = deg(P) + deg(Q)

Proof. Let n = deg(P) and m = deg(Q). We can write:

PX)=ap, X"+ --+ap and Q(X)=0b,X"+ --+by
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where a,, # 0 and b, # 0. The product P(X) - Q(X) is defined by the convolution of coefficients. Consider
the coefficient of the term X"*™. The only way to form X"t™ by multiplying a term a;X* from P and
bj X7 from Q is if i +j = n+ m. Since i < n and j < m, the only solution is i = n and j = m. Thus, the
coefficient of X™™ in the product is a,, - b,,. Since K is a field (or an integral domain), and a,, # 0, b,, # 0,
their product a,b,, must be non-zero. Therefore, the highest power of X in P -(@Q with a non-zero coefficient
is X"t which proves the lemma. [ |

Theorem 6.8.3. Integral Domain Property. If K is a field, then K[X] is an integral domain.

Proof. We must verify the axioms of an integral domain:

(i) Commutative Ring with Unity: The polynomial ring inherits commutativity, associativity, and
distributivity from the coeflicient field K. The unity is the constant polynomial 1, which is distinct
from 0.

(ii) No Zero Divisors: We must show that if P-Q = 0, then either P = 0 or @ = 0. We prove the
contrapositive: if P # 0 and @ # 0, then P-Q # 0. Let P and @ be non-zero polynomials. By
the previous lemma, the degree of their product is deg(P) + deg(Q). Since degrees are non-negative
integers, deg(P - @) > 0. A polynomial with a non-negative degree cannot be the zero polynomial
(which has undefined or negative degree). Thus, P - Q # 0.

Since K[X] is a commutative ring with unity and has no zero divisors, it is an integral domain. |

Square Roots in Ordered Fields

Having established the structure of polynomial rings, we turn our attention to the roots of specific poly-
nomials. The solvability of algebraic equations is a central theme in field theory. We consider the specific
quadratic equation 2 = a within an arbitrary ordered field K. This investigation bridges the gap between
algebra and the analytic properties of real numbers.

Lemma 6.8.2. Solutions to x> = a. Let K be an ordered field and a € K \ {0}. If the equation 2% = a
possesses a solution in K, then a > 0. Furthermore, if b € K is a solution, then the equation has exactly
two solutions in K, namely b and —b.

Proof. First, assume a solution b exists. Since a # 0, it follows that b # 0. In an ordered field, the square of
any non-zero element is positive; thus a = b > 0. Secondly, observe that (—b)? = (=1-b)? = (—1)?-b% =
1-b% = b? = a. Hence, —b is also a solution. To prove uniqueness, suppose « is any solution. Then z? = b2,
implying 22 — b? = 0. Factoring yields (x — b)(z + b) = 0. Since K is a field and contains no zero divisors,
it must be that t —b=0orz+b=10,s0 z =b or x = —b. Since b # 0, b # —b, establishing exactly two
distinct solutions. |

This lemma allows us to define the square root function rigorously by selecting the positive solution.
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Definition 6.8.8. Square Root. Let K be an ordered field and @ € K with a > 0. If the equation 2 = a
has a solution in K, the unique positive solution is called the square root of a, denoted y/a. Additionally,
we define v/0 := 0.

Remark. Properties of Square Roots:

(a) Multiplicativity: If \/a and v/b exist for some a,b > 0, then vab exists and Vab = \/Zz\/l; Proof:
Let z = \/a and y = Vb. Then 22 = a and y? = b. Consequently, (ry)? = 2%y? = ab. Since x,y > 0,
their product xy > 0. Thus, zy is the unique non-negative number squaring to ab.

(b) Relation to Absolute Value: For all z € K, |z| = V22. Proof: If z > 0, then x is the non-negative
solution to y2 = 22, so Va2 =z = |z|. If < 0, then —z > 0 and (—x)% = 22, so Va2 =—z = |].

(c) Square Roots in Q: For an integer a € Z, v/a exists in Q if and only if a is the square of a natural
number. If a is not a perfect square (e.g., a = 2), v/a exists in R but not in Q.

6.9 Exercises

1. The "Shoes and Socks" Property. Let (G,*) be a group. Prove that for any elements a,b € G,
the inverse of the product a x b is the product of the inverses in reverse order. That is:

(axb) ™' =b"txa?

Remark. Multiply (a xb) by (b=! xa™!) and use the associative property to show the result is the
identity e.

2. Uniqueness of the Identity. The text proves the uniqueness of the identity element assuming it
acts as an identity from both the left and the right. Suppose an element e € G satisfies only exg =g
for all g € G (a left identity). Suppose €’ € G satisfies only g x €’ = g for all g € G (a right identity).
Prove that e = ¢’.

3. Sudoku Property (Latin Squares). Let (G,*) be a finite group. Prove that in the multiplication
table (Cayley table) of the group, every element of G appears exactly once in each row and exactly
once in each column.

Remark. Use the Cancellation Laws proved in the text. To show an element appears at most once,
assume it appears twice and derive a contradiction. To show it appears at least once, consider the
equation a x x = b and use the existence of inverses.

4. Intersection of Subgroups. Let H and K be two subgroups of a group G. Prove that their
intersection H N K is also a subgroup of G.

Remark. You must verify the three conditions for a subgroup: non-emptiness (does it contain e?),
closure under the operation, and closure under inverses.

5. The Exponential Map. Consider the additive group of real numbers (R, +) and the multiplicative
group of positive real numbers (RT-). Let ¢ : R — R™ be defined by ¢(x) = e®.

(a) Prove that ¢ is a group homomorphism.

(b) Prove that ¢ is an isomorphism.

6. Polynomial Units. Let K be a field. An element P € K[X] is called a unit (or invertible) if there
exists a polynomial @ € K[X] such that P-@Q = 1. Show that the units of K[X] are exactly the
non-zero constant polynomials.

Remark. Recall that deg(1) = 0. Use the degree formula deg(P - Q) = deg(P) + deg(Q). Does this
formula hold if P or @ is the zero polynomial? Recall that K[X] is an integral domain.



Chapter 7

Ordinal Numbers

In chapter 4, we established that two sets have the same size if a bijection exists between them. For partially
ordered sets, the concept of an order isomorphism allows for a more refined comparison, identifying when
two posets share the same order structure, or order type. This chapter generalises this idea, seeking to
classify all well-ordered sets. We aim to define a canonical representative for each possible order type of a
well-ordered set. These representatives will be called ordinal numbers.

7.1 Ordinals

A critical tool in this endeavour is a generalisation of the principle of induction to any well-ordered set,
known as transfinite induction.
Theorem 7.1.1. Transfinite Induction. Let (A, <) be a well-ordered set. If S C A has the property that
for every a € A,

VezeA(r<a = z€S85)) = a€S

then S = A.

Proof. Let (A, =) be a well-ordered set and let S C A be a set satisfying the given property. Suppose, for a
contradiction, that S # A. Then the set difference A\ S is non-empty. Since A is well-ordered, A \ S must
have a least element, which we will call m.

By the definition of m, for any element © € A, if © < m, then ¢ A\ S, which means z € S. We have
thus shown that Va € A, (x < m = z € S). By the hypothesis of the theorem, this implication forces the
conclusion that m € S. However, this contradicts our choice of m as the least element of A\ S. The initial
assumption must be false; therefore, S = A. |

Remark. The principle of strong induction is a special case of transfinite induction where the well-ordered
set is (N, <).

Our first application of this principle is to demonstrate that an order-preserving function from a well-ordered
set to itself cannot map an element to something strictly smaller.

Lemma 7.1.1. Let (A, <) be a well-ordered set. If f : A — A is an order-preserving function, then x < f(x)
for all x € A.

Proof. Let S = {x € A |z =< f(z)}. We use transfinite induction to show that S = A. Let a € A and assume
that for all z < a, we have z € S, meaning x < f(x). We must show a € S.

Suppose, for a contradiction, that f(a) < a. Since f is order-preserving, applying f to this inequality gives
f(f(a)) < f(a). Let y = f(a). We have found an element y € A such that y < a and f(y) < y. However,

81
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since y < a, our inductive hypothesis states that y € S, which means y < f(y). This is a contradiction.
Therefore, our assumption that f(a) < a must be false. By trichotomy, it must be that a < f(a), which
means a € S.

By the principle of transfinite induction, S = A. ]

This lemma leads to several fundamental results about the structure of well-ordered sets.

Lemma 7.1.2. For any well-ordered sets (A, <4) and (B, <p), there exists at most one order isomorphism
from A to B.

Proof. Let f : A — B and g : A — B be two order isomorphisms. The inverse function ¢~ : B — A is
also an order isomorphism. Consequently, the composition h = g~! o f is an order isomorphism from A to
A. As a composition of order-preserving functions, h is itself order-preserving. By the preceding lemma, we
must have z <4 h(x) for all x € A. Let us apply this same argument to the inverse function, h=! = f~1og,
which is also an order-preserving map from A to A. This gives * <4 h~!(z) for all z € A. Applying the
order-preserving function h to this inequality yields h(z) <4 h(h~1(z)), which simplifies to h(z) <4 z. We
have established both z <4 h(z) and h(xz) <4 z. By the antisymmetry of <4, we conclude that h(z) = z
for all z € A. Thus, h = Id4. This implies g~' o f = Id4, and composing with g on the left gives f =¢g. W

Lemma 7.1.3. No well-ordered set is order isomorphic to any of its proper initial segments.

Proof. Let (A, =) be a well-ordered set and let S be a proper initial segment of A. Suppose, for a contra-
diction, that an order isomorphism f : A — S exists. Since f is an order-preserving function from A to A
(as S C A), the lemma states that < f(z) for all z € A. However, since S is a proper initial segment,
there exists some element a € A\ S. The image of this element, f(a), must be in the range of f, which is
S. As S is an initial segment and a ¢ S, it cannot be that a < f(a). In fact, we must have f(a) < a, which
contradicts the lemma. Therefore, no such isomorphism can exist. |

These results culminate in a trichotomy theorem for well-ordered sets, which asserts that any two such sets
are comparable in a precise sense.

Theorem 7.1.2. Trichotomy for Well-Ordered Sets. If (A, <4) and (B, <) are well-ordered sets, then
exactly one of the following holds:

(i) (A, =4) is order isomorphic to (B, <p).
(ii) (A, =4) is order isomorphic to a proper initial segment of (B, <p).
(iii) (B, =p) is order isomorphic to a proper initial segment of (A, <4).

This theorem suggests that we can select canonical representatives for the different order types of well-ordered
sets. We now define these representatives.

Definition 7.1.1. Ordinal Number. A set « is an ordinal number if it is a transitive set that is well-ordered
by the elementhood relation €.

Note. The natural numbers as we have defined them (0 =0, 1 = {0}, 2 = {0, 1}, etc.) are all ordinals. For
any natural number n, the set n is transitive and is well-ordered by €.

We now establish a sequence of fundamental properties of ordinals.

Theorem 7.1.3. Every element of an ordinal is also an ordinal.

Proof. Let a be an ordinal and let S € «. Since « is a transitive set, 5 C a. As a subset of a set that is
well-ordered by €, § is also well-ordered by €. We must show that g is transitive. Let v € 5 and ¢ € 7.
Since § € a and v € B, the transitivity of « implies 7 € «. Similarly, since v € « and § € ~, transitivity
implies § € a. Now we have 9,7, 8 are all elements of «, with § € v and v € 5. Since « is well-ordered by
€, and this relation is transitive on «, we conclude that § € 5. Therefore, § is a transitive set. As [ is a
transitive set that is well-ordered by €, it is an ordinal. |
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A crucial property linking the subset relation to the elementhood relation for ordinals is the following.
Theorem 7.1.4. Let a and 8 be ordinals. Then a C § if and only if a € 5.

Proof. (<) Assume « € 8. Since § is a transitive set, every element of 3 is also a subset of 3. Thus o C S.
As no set can be an element of itself, a # 3, so a C .

(=) Assume « C . Since « is a proper subset of 3, the set difference 5\ o is non-empty. As j3 is well-ordered
by €, this non-empty subset must have a least element; let us call it v. We will show that o = ~. First, we
show a C 7. Let & € . Since 7 is the least element of 5\ «, we have z ¢ §\ «. If we had y = or v € z,
then = would not be in «, a contradiction. As [ is totally ordered by €, the only remaining possibility is
z € 7. Thus a C . Next, we show v C a. Let x € . Since v € 8 and S is transitive, we have v C 3, so
x € B. Since 7 is the least element of 5\ «,  cannot be in 8\ «, so z € a. Thus v C a. We have shown
a =7. Since v € 3, we conclude « € 5. ]

This theorem, combined with the fact that ordinals are well-ordered by €, allows us to prove a trichotomy
law for ordinals.

Theorem 7.1.5. Trichotomy for Ordinals. For any two ordinals o and 3, exactly one of the following
holds:
a€ef, PEa, or a=p

Proof. Consider the set aN 3. This set is well-ordered by € because it is a subset of the ordinal a. Let us
show it is transitive. If x € y and y € a N B, then y € o and y € . Since a and B are transitive, z € o and
z € fB,s0x € anpf. Thus, aNf is an ordinal.

Let vy =anp. We have v C a and v C 8. Suppose v # « and v # S. Then v C o and v C 5. By the
previous theorem, this implies 7 € a and v € . Therefore, v € a N B, which means v € v, a contradiction.
Thus, our supposition must be false. At least one of v = a or v =  must be true.

o If v =, then @« = aN B, which implies a C .
o If v =4, then § = a N B, which implies 5 C «a.

So, for any two ordinals «, 3, we have a C 8 or § C «. If both hold, then a = 3. If a C 3, then a € 5. If
B C «, then B € a. These three cases are mutually exclusive. [ |

Finally, we show that the class of ordinals is closed under the operation of taking arbitrary unions.

Theorem 7.1.6. If F is a set of ordinals, then its union, | J F, is also an ordinal.

Proof. Let o = |JF. We must show that « is a transitive set well-ordered by €.

e Transitivity: Let § € a and v € B. Since f € «, there must exist some ordinal § € F such that
B € 6. Since ¢ is an ordinal, it is transitive, so 8 C §. As vy € 3, it follows that v € §. Since § C «, we
have v € a. Thus, « is transitive.

e Well-ordering by €: Let S be a non-empty subset of a. Let 8 be any element of S. Since S C a, we
have 8 € a. The set SN S is either empty or non-empty. If SN G is non-empty, then as a non-empty
subset of the ordinal 3, it has a least element v with respect to €. This « is the least element of S. If
S N B is empty, then for every x € S, we have x ¢ 5. Since 8 and x are ordinals, the trichotomy law
implies that for each x € S, either x = B or 8 € z. As SN B is empty, we must have 8 € x for all
x € S. Therefore, B is the least element of S.

In both cases, S has a least element, so « is well-ordered by €. As « is a transitive set well-ordered by €, it
is an ordinal. ]

Remark. This theorem shows that for any set of ordinals, there exists a least upper bound, which is simply
their union. This property is crucial for constructing larger and larger ordinals.
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The Classification of Ordinals

Having established the fundamental properties of ordinals, we can now classify them into three disjoint
categories: the zero ordinal, successor ordinals, and limit ordinals. This classification is exhaustive and
provides the basis for a more structured form of transfinite induction.

For any ordinal o, we can construct its successor, denoted o+, by taking the union of o with the singleton
set containing it.

Definition 7.1.2. Successor Ordinal. o := a U {a}. An ordinal 3 is a successor ordinal if there exists
an ordinal « such that 3 = a™.

Every positive natural number is a successor ordinal. For example, 3 = 2U {2}, so 3 = 27. It can be verified
that if o is an ordinal, then ot is also an ordinal. The successor operation provides a way to generate a
new, larger ordinal from any given one.

Ordinals that are not zero and cannot be reached by the successor operation form the second category.

Definition 7.1.3. Limit Ordinal. A non-zero ordinal X is a limit ordinal if it is not a successor ordinal.

Limit ordinals are characterised by the property that they are the union of all the ordinals they contain.
Theorem 7.1.7. An ordinal A is a limit ordinal if and only if A = [J .

Proof. Let A be an ordinal. (=) Assume A is a limit ordinal. Since A is transitive, for any S € A, we have
B C A. Therefore, the union of all elements of A must be a subset of A, so |JA C \. For the reverse inclusion,
let B € A. Since X is not a successor, 8 # X implies 37 C X. By a previous theorem, this means 8T € \.
Since 8 € 87, we have found an element of A (namely, 31) that contains 8. Therefore, 3 € |J A, which shows
ACUA

(<) Assume A = [JA. Suppose, for a contradiction, that A is a successor ordinal, so A = a™ for some ordinal
a. Then « is the greatest element of A with respect to €. However, [J A cannot have a greatest element.
This is a contradiction, so A must be a limit ordinal. |

The smallest limit ordinal is w, the set of all natural numbers. We can now state the fundamental classification
theorem for ordinals.

Theorem 7.1.8. Every ordinal is either the zero ordinal, a successor ordinal, or a limit ordinal.

This classification allows us to view the ordinals as a transfinite sequence, generated by repeatedly applying
the successor operation and taking unions at limit stages:

0cle2e---cwewrecwe. ..

This structure gives rise to a more practical version of transfinite induction.

Theorem 7.1.9. Transfinite Induction, Second Form. Let P(a) be a property of ordinals. If the
following three conditions hold, then P(«) is true for all ordinals a.

(i) P(0) is true.
(ii) For any ordinal o, if P(«) is true, then P(a™) is true.
(iii) For any limit ordinal A, if P(5) is true for all 8 € A, then P()\) is true.

We are now equipped to prove the main theorem of this chapter: that ordinals serve as the canonical
representatives for all well-ordered sets.

Theorem 7.1.10. Representation of Well-Ordered Sets. Every well-ordered set is order isomorphic to
a unique ordinal.
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Proof. The proof of uniqueness follows from the fact that no two distinct ordinals can be order isomorphic.
For existence, let (A, <) be a well-ordered set. We construct an order isomorphism f from an ordinal to A.
The idea is to map 0 to the least element of A, 1 to the least element of the remainder, and so on. Formally,
we define a function f on the class of ordinals by transfinite recursion:

f(a) = the least element of A\ {f(5) | B € o}

The domain of this function is the set of all ordinals « for which the set A\ {f(8) | 8 € a} is non-empty.
Let this domain be v. It can be shown that - is an ordinal and that the function f : v — A is an order
isomorphism. Since the range of f must exhaust A, we have ran(f) = A, and therefore (A, <) = (v,€). A

This unique ordinal is called the order type of the well-ordered set.

The Burali-Forti Paradox

The theory of ordinals, while powerful, leads to some profound limitations of set theory. One might be
tempted to consider the "set of all ordinals". However, as discovered by Cesare Burali-Forti, the existence
of such a set leads to a direct contradiction.

We first establish a preparatory lemma.

Theorem 7.1.11. Any set of ordinals has a strict upper bound which is also an ordinal.

Proof. Let F be a set of ordinals. Let o = |JF. We have already proven that « is an ordinal. Counsider its
successor, at. For any 8 € F, we have 8 C a. By the trichotomy for ordinals, this means either 8 € o or
B = a. In either case, 8 € at. Therefore, ot is an ordinal that is a strict upper bound for the set F. |

This result leads directly to the paradox.

Theorem 7.1.12. Burali-Forti Paradox. There is no set of all ordinals.

Proof. Suppose, for a contradiction, that there exists a set O containing all ordinals. Since O is a set of
ordinals, we can take its union, 2 = |J O, which must itself be an ordinal. As Q is an ordinal, it must be an
element of the set of all ordinals, so 2 € O. Since € is an element of O, by the definition of a union, 2 must
be a subset of |J O. This gives  C Q. However, consider the successor ordinal Q7. As an ordinal, Q" must
be in O. But Q € QT and QF C |JO = Q, which implies Q2 € Q. This contradicts the Axiom of Regularity,
which states that no set can be an element of itself. Therefore, the initial assumption must be false, and no
set of all ordinals can exist. |

An important consequence of this paradox is Hartogs’ theorem, which states that for any set, there is an
ordinal that cannot be injected into it, meaning there is always an ordinal that is "larger" in some sense
than any given set.

Theorem 7.1.13. Hartogs’ Theorem. For every set A, there exists an ordinal « such that there is no
injective function from « to A.

Proof. Let A be a set. Define the collection of ordinals
€ ={a | ais an ordinal and there exists an injection f : o« — A}
Our first objective is to demonstrate that £ is a set.

For each a € &€, let f, : @ — A be an injective function. The range of this function, ran(f,), is a subset of A.
We can use the bijection between « and its range to transport the well-ordering € from a to a well-ordering
<o on ran(f,). Specifically, for any x,y € ran(f,), we define x <, y & f,1(z) € f;'(y). This makes
(ran(fa), =) a well-ordered set that is, by construction, order isomorphic to (a, €).
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Now, consider the collection of all possible well-orderings on subsets of A:
F={(B,xX)| BC Aand =< is a well-ordering of B}

Each element (B, <) of F is a pair where B € P(A) and < is a subset of B x B, and therefore also a subset
of A x A. Consequently, F is a subset of the Cartesian product P(A) x P(A x A). Since A is a set, the
Power Set axiom guarantees that P(A) and P(A x A) are sets. Their product is a set, and by the Schema
of Separation, F is a set.

By the Representation of Well-Ordered Sets theorem, for each pair (B, <) € F, there exists a unique ordinal,
its order type. This defines a function G : F — Ordinals where G((B, <)) is the unique ordinal isomorphic
to (B, X). Since the domain F is a set, the Axiom of Replacement ensures that the range of this function,
ran(@G), is also a set.

For any ordinal o € £, we constructed a well-ordered set (ran(f,), <o) € F which is order isomorphic to a.
This means that every ordinal in £ is the order type of some element of F, and is therefore in the range of
G. Thus, £ C ran(@). Since ran(G) is a set, £ must also be a set by the Schema of Separation.

As & is a set of ordinals, the Burali-Forti Paradox implies that £ cannot contain all ordinals. Therefore, there
must exist an ordinal « such that o ¢ £. By the definition of £, this means there is no injective function
from « to A. |

7.2 Transfinite Recursion and the Well-Ordering Theorem

The principle of transfinite induction provides a method for proving that a property holds for all elements
of a well-ordered set. A related principle, transfinite recursion, provides a method for defining functions on
well-ordered sets. Just as standard recursion on the natural numbers defines a function’s value at n+ 1 based
on its value at n, transfinite recursion defines a function’s value at an ordinal a based on its values for all
ordinals smaller than a.

To state the theorem formally, we require some notation. For a set A and an ordinal o, let A< denote the
set of all functions whose domain is an ordinal smaller than « and whose codomain is A.

A<= J AP ={f|3Bea,f:B— A}

BEa

Theorem 7.2.1. Transfinite Recursion. Let o be an ordinal and let G : A<® — A be a function. There
exists a unique function F': o — A such that for every 8 € «,

F(B) = G(Fls)

where F|g is the restriction of F' to the domain f.

Proof. We first prove existence and then uniqueness.

Consider the collection of all functions that satisfy the recursive definition on some initial segment of «a:

H=A{f1F¥ecau{a},(f:0>AANYB G f(B)=GC(fls)}

The condition defining # is a first-order formula, and H C P(a x A). By the Axiom of Power Set and
the Schema of Separation, H is a set. Note that the empty function () (with domain 0) is in H, so H is
non-empty.

Let f,g € H with domains § and e respectively. By the trichotomy for ordinals, either 6 C ¢ or ¢ C 4.
Assume without loss of generality that § C e. We claim that f C g. If not, theset S = {5 €d | f(B) # g(B)}
is non-empty and has a least element, §y. By minimality, f(y) = g(v) for all v € By, so f|g, = ¢lg,- The
recursive definition then implies f(58y) = G(flg,) = G(9l5,) = 9(Bo), a contradiction. Thus, S is empty and
f € g. This shows that (#, C) is a chain.
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Let F = JH. Since H is a chain of compatible functions, their union F' is also a function. The domain of
F, dom(F) = J{dom(f) | f € H}, is a union of ordinals and therefore is itself an ordinal, which we will call
dp. It can be shown, by the same logic as above, that F satisfies the recursive definition for all § € dp.

We must show that the domain of F' is all of a. Suppose, for a contradiction, that §z C «. Then g is an
ordinal and an element of a.. Since F : d0p — A, F € A<® so G(F) is defined. We can construct a new
function F/ = F U {(6p,G(F))}. The domain of F’ is 6}, and F’ satisfies the recursive definition on its
domain. Therefore, F' € H. But F' C F’, which contradicts the fact that F' is the union of all functions in
‘H. Thus, our assumption was false, and dom(F') = a.

As for Uniqueness. Suppose Fy, Fs : o — A both satisfy the recursion equation. Let S = { € a | F1(5) #
F5(B)}. If S is non-empty, it has a least element By. By minimality, Fi(y) = Fa(y) for all v € S, so
the restrictions Fi|g, and Fh|g, are equal. This implies Fi(8y) = G(Filg,) = G(F:|s,) = F2(fo), which
contradicts By € S. Therefore, S must be empty, and F; = F. ]

A common application of this theorem is to define sequences indexed by ordinals.

Proposition 7.2.1. Let A be a set, ag € A be a starting element, and g : A — A be a successor function.
For any ordinal «, there exists a unique function F': a — A such that:

(0) = ao

F(p*T) = ( (B)) for all 3 such that 8T € a.

(/\) = Upgea{F(B)} for all limit ordinals A € «, provided a suitable notion of union or limit is defined
on

The Well-Ordering Theorem

The Representation Theorem established that every well-ordered set has the order type of an ordinal. How-
ever, it does not apply to sets like (Z, <) or (R, <) which are not well-ordered. A landmark result, first
proved by Ernst Zermelo, states that the Axiom of Choice implies that *every* set can be equipped with a
well-ordering.

Theorem 7.2.2. Well-Ordering Theorem. Every set can be well-ordered.

Proof. Let A be an arbitrary set. We will show there exists a relation < on A such that (A, <) is a well-
ordered set. This theorem is equivalent to the Axiom of Choice. We prove it using Zorn’s Lemma.

Let W be the collection of all well-orderings on subsets of A. An element of W is a pair (S, <g) where S C A
and =g is a well-ordering of S. We define a partial order C on W as follows:

(S1,21) E (S2,=2)

if S is an initial segment of So; and the ordering < is the restriction of <5 to 7.

Let C = {(S;,=;) | i € I} be a chain in (W, C). We must show it has an upper bound in W. Let U =
and let <py={J
chain C.

zEI

ier i It can be verified that (U, <y) is a well-ordered set and is an upper bound for the

Since every chain has an upper bound, by Zorn’s Lemma, there exists a maximal element in W; let this be
(M, <pr). We claim that M = A. Suppose, for a contradiction, that M # A. Then there exists an element
x € A\ M. We can construct a new well-ordered set (M’,<,s/) by defining M’ = M U {z} and extending
the order <, such that m < x for all m € M. This makes M a proper initial segment of M’. The pair
(M’,=<pp) is an element of W, and we have (M, =<y) C (M’,<pp). This contradicts the maximality of
(M, =r). Therefore, our assumption that M # A must be false.

We have found a maximal well-ordering (A4, <) on the entirety of A. [ |
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The Well-Ordering Theorem is often considered the most counter-intuitive consequence of the Axiom of
Choice, as it implies the existence of a well-ordering on sets like the real numbers, even though no such
ordering can be explicitly constructed. This theorem, along with Zorn’s Lemma, completes what is often
called the "grand equivalency" of fundamental principles in set theory.

7.3 Exercises

1. Use the principle of transfinite induction to prove that for any ordinal «, it is not the case that o € «.

Remark. Let S be the collection of all ordinals § such that 8 ¢ 8. Assume there is an ordinal not in
S, and consider the least such ordinal.

2. Prove that there is no largest ordinal. That is, for any ordinal «, prove there exists an ordinal # such
that a € 8.

3. The text classifies ordinals as zero, successor, or limit.

(a) Prove that if « is a successor ordinal, say o =T, then Ja = 7.
(b) Conversely, prove that if « is an ordinal and |J o € «a, then o must be a successor ordinal.

4. Ordinal Addition. We can define addition of ordinals using transfinite recursion. For a fixed ordinal
«, we define a function f, on the class of all ordinals as follows:

(i) fa(0) =a
(i) fa(BT) = (fo(B))* for any ordinal 3.
(ili) fa(A) =U,ex fa(v) for any limit ordinal A.
We then define oo + 3 := f, (). Using this definition, compute 1 + w and w + 1. Are they equal?

Note. Recall that w is the set of natural numbers, so it is the limit of the sequence 0,1,2,.... Thus,
for the calculation of 1+ w, you will need to evaluate the union of 1+ n for all n < w.

5. Let (4, <) be a well-ordered set. Use the Representation of Well-Ordered Sets theorem to prove that
every element a € A, except for a possible greatest element, has an immediate successor.

Remark. Consider the order isomorphism f : @« — A for some ordinal a. What ordinal corresponds
to the successor of an element a?

6. Let a and 3 be ordinals. Prove that if there exists a surjective function f : o — 3, then 8 C «, which
by the trichotomy for ordinals means § € a or 8 = «.

Remark. For each v € 3, the pre-image f~'[{v}] is a non-empty subset of a. Construct an injective
function from S to a.

7. The text proves the Well-Ordering Theorem using Zorn’s Lemma. Prove the converse for a specific
case: Show how the Well-Ordering Theorem implies the existence of a choice function for any family
F of non-empty sets.

8. x Use Hartogs’ Theorem to prove that there can be no "set of all sets".

Remark. Suppose a set V' containing all sets exists. Apply Hartogs’ Theorem to V' to find an ordinal
« that cannot be injected into V. Since « is itself a set, what does this imply?

7.4 Equinumerosity

The concept of an order type classifies well-ordered sets according to their structure. We now introduce
a more general criterion for comparing the size of any two sets, finite or infinite. The foundational idea,
developed by Georg Cantor, is that two sets have the same size if their elements can be placed into a
one-to-one correspondence. This is formalised using the concept of a bijection.
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Definition 7.4.1. Equinumerous Sets. Two sets A and B are equinumerous, denoted A ~ B, if there
exists a bijection f : A — B. If no such bijection exists, we write A % B.

Example 7.4.1.

e Let m € Z with m # 0. The set of all multiples of m, denoted mZ, is equinumerous with Z. The
function f : Z — mZ defined by f(n) = mn is a bijection. It is injective because if f(ni) = f(n2),
then mn; = mny, which implies n1 = ny as m # 0. It is surjective because any element of mZ is of
the form mk for some k € Z, which is the image of k£ under f.

e The set of integers Z is equinumerous with the set of positive integers Z*. A bijection g : ZT — Z can
be defined piecewise:

—n/2 if n is even

o(n) = {(n— 1)/2 ifnis odd

This function maps the odd positive integers to the non-negative integers {0,1,2,...} and the even
positive integers to the negative integers {—1,—2,—3, ...}, covering all of Z.

The relation of equinumerosity behaves like an equivalence relation, although it cannot be one in the formal
sense.
Theorem 7.4.1. For any sets A, B,C:

(i) A~ A (Reflexivity).
(ii) If A~ B, then B ~ A (Symmetry).
(iii) If A~ B and B =~ C, then A = C (Transitivity).

Proof.

(i) The identity map Id4 : A — A is a bijection.
(ii) If f: A — B is a bijection, then its inverse f~! : B — A is also a bijection.
(iii) If f: A — B and g : B — C are bijections, their composition go f: A — C' is a bijection.

Remark. These properties do not make ~ a formal equivalence relation because its domain would have to
be a "set of all sets", which does not exist by the Burali-Forti Paradox.

Example 7.4.2. The open interval (0,1) is equinumerous with the set of all real numbers R. First, the
linear function f : (0,1) — (—7/2,7/2) defined by f(x) = mx — 7/2 is a bijection. Second, the function
g : (—7/2,7/2) = R defined by g(z) = tan(z) is a bijection. By transitivity, the composition g o f is a
bijection from (0,1) to R, so (0,1) =~ R.

Cardinal Dominance

If equinumerosity corresponds to equality of size, the existence of an injection from one set to another
corresponds to an inequality.

Definition 7.4.2. Cardinal Dominance. A set B dominates a set A, denoted A < B, if there exists an
injective function f: A — B. If A <X B but A % B, we write A < B.

Example 7.4.3. If A C B, then A < B, since the inclusion map ¢ : A — B defined by i(x) = = is an
injection. For instance, N <7Z < Q < R.

The existence of a surjection in the opposite direction is an equivalent condition for dominance.

Theorem 7.4.2. For any non-empty sets A and B, A < B if and only if there exists a surjective function
g:B— A
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Proof. (=) Assume A =< B, so there is an injection f : A — B. Since A is non-empty, fix an element ay € A.
Define g : B — A by

1) ity e ran(f)
9(”‘{% if y ¢ ran(f)

This function is surjective because for any a € A, its image f(a) is in ran(f), and g(f(a)) = f~1(f(a)) = a.

(<) Assume there is a surjection g : B — A. For each a € A, the pre-image set g~![{a}] is non-empty. By
the Axiom of Choice, we can choose one element from each of these pre-image sets. This defines a function
f + A — B such that for every a € A, g(f(a)) = a. To show f is injective, let aj,as € A and assume
f(la1) = f(az). Applying g gives g(f(a1)) = g(f(a2)), which implies a; = as. Thus, f is an injection and
A=< B. |

A fundamental theorem in set theory states that this dominance relation is antisymmetric when viewed
through the lens of equinumerosity.

Theorem 7.4.3. Cantor—Schréder—Bernstein. For any sets A and B, if A < Band B < A, then A ~ B.

Proof. Let f: A — B and g : B — A be injective functions. We partition the set A into three disjoint
subsets based on the "ancestry" of its elements. An element = € A can be traced back through alternating
applications of g=! and f~!. The chain of ancestors for z is the sequence z, g~ (), f (g7 ()),.. ..

e Let A4 be the set of elements whose chain of ancestors terminates in A (i.e., at an element of A\ran(g)).
e Let Ap be the set of elements whose chain of ancestors terminates in B (i.e., at an element of B\ran(f)).
e Let A be the set of elements whose chain of ancestors is infinite.

These three sets form a partition of A. Similarly, we can partition B into B4, Bp, Boo. The function f maps
Ag to By and Ay to Bs. The function ¢ maps Bg to Ag. We can now define a bijection h : A — B
piecewise:
f(x) ifx e AgUAx
h(z) =497 | .
g '(z) ifzeAp

The function f provides a bijection from A4 U Ay, to B4 U B,. The function g~! provides a bijection from
Ap to Bg. Combining these gives a bijection from A to B. |

Example 7.4.4. The closed interval [0, 1] is equinumerous with the open interval (0, 1).

e The inclusion map 4 : (0,1) — [0, 1] where i(z) = z is an injection, so (0,1) < [0, 1].
e The linear function f : [0,1] — (0,1) defined by f(z) = 1z + 1 maps the interval [0,1] to the interval
[1,2], which is a subset of (0,1). This function is an injection, so [0,1] < (0,1).

By the Cantor—Schréder-Bernstein theorem, we conclude that [0,1] =~ (0, 1).

Diagonalization

To prove that two sets are equinumerous, we must construct a bijection. To prove that one set dominates
another, we must construct an injection. Proving a strict dominance, A < B, is more difficult, as it requires
showing not only that an injection from A to B exists, but also that no bijection between them can possibly
exist. Cantor’s diagonalization argument is a powerful and elegant proof technique for establishing such
non-equinumerosity.

The method is best illustrated with its classic application: proving that the set of natural numbers is not
equinumerous with the set of all infinite sequences of binary digits. Let S be the set of all functions from N
to {0,1}. Each such function can be viewed as an infinite binary sequence. We will show N < S.
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First, N < S is straightforward to establish. The function that maps each natural number n to the sequence
containing a 1 at position n and Os elsewhere is an injection. The core of the argument is to show that
N % S. We do this by demonstrating that no function from N to S can be surjective.

Let f: N — S be any arbitrary function. We can create a list of the sequences in the range of f:

f(o) = ((l()“m ap,1,Q0,2; - - )
f(l) = (al,Oaal,laal,Qa .. )
f(2) (02,07 21,022, .. )

f(n) = (amOvan,la Ap. 25y Unmy-- )

We now construct a new binary sequence, sy, which is not in this list. The construction proceeds "down the
diagonal" of the matrix of a; ; values. We define the n-th term of s4 to be the opposite of the n-th term of
the sequence f(n). Formally, let sq = (do,d1,ds,...), where for each n € N,

dp=1—any

The sequence sq is an element of S. However, by its very construction, s4 cannot be in the range of f. For
any n € N, the sequence sq differs from the sequence f(n) in the n-th position, since d,, # ay, . Therefore,
sq ¢ ran(f). Since our choice of f was arbitrary, we have shown that no function from N to S can be
surjective. Consequently, no bijection exists, and N % S. We conclude that N < S.

As the set of real numbers in [0, 1] can be put into one-to-one correspondence with the set of infinite binary
sequences, this argument also shows N < [0, 1], and by extension, N < R.

Cantor’s Theorem

The diagonalization argument can be generalised to prove a profound result about the relationship between
any set and its power set. This result, known as Cantor’s Theorem, establishes that there is an infinite
hierarchy of sizes of infinity.

The proof uses the concept of a characteristic function. For any subset S C A, its characteristic function
Xs : A — {0,1} is defined by
1 ifzes
Xs(x) =

0 ifx¢gs

The set of all such functions, {0,1}4, is equinumerous with the power set P(A).
Theorem 7.4.4. Cantor’s Theorem. For any set A, A < P(A).

Proof. We must prove two claims: A < P(A) and A % P(A).

(i) To show A < P(A), we must find an injection from A to its power set. The function f: A — P(A)
defined by f(a) = {a} is an injection. If f(a1) = f(az), then {a;} = {az}, which implies a; = as.

(ii) To show A % P(A), we prove that no function from A to P(A) can be surjective. Let g : A — P(A)
be an arbitrary function. We will construct a set D € P(A) that is not in the range of g.
Consider the following subset of A, which is constructed by a "diagonal" argument:

D={zeAlzd¢g(x)}

This set contains every element of A that is not a member of the subset to which it is mapped by g.
Since D C A, D is an element of P(A). We claim that D is not in the range of g. Suppose, for a
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contradiction, that it is. Then there must exist some element d € A such that g(d) = D. We now ask:
is the element d in the set D?
e If d € D, then by the definition of D, we must have d ¢ g(d). But since g(d) = D, this means
d ¢ D. This is a contradiction.
o If d ¢ D, then by the definition of D, it is not the case that d ¢ g(d), which means d € g(d). But
since g(d) = D, this means d € D. This is also a contradiction.
Both possibilities lead to a contradiction. Therefore, our initial assumption must be false: there is no
element d € A such that g(d) = D. The function ¢ is not surjective.

Since we have shown that an injection exists but no surjection (and therefore no bijection) can exist, we
conclude that A < P(A). |

Cantor’s Theorem has a staggering implication: there is no "largest set". For any set, we can always find
a set that is strictly larger in cardinality, namely its power set. This gives rise to an endless hierarchy of
infinite magnitudes:

N<P(N)<P(P(N)) <P(P(P(N))) < ...

7.5 Exercises

Part I: Equinumerosity and Cardinal Dominance

1. Prove that the following pairs of sets are equinumerous by constructing an explicit bijection between
them.

(a) The set of positive integers Z* and the set of negative integers Z~.
(b) Any two open intervals of real numbers, (a,b) and (¢, d), where a < b and ¢ < d.

(c) The set of points on a line, {(z,y) € R? | y = 2z + 4}, and the set R.
2. Let A and B be non-empty sets. Prove that A < A x B.

3. Prove the following properties for any non-empty sets A, B,C, D.

(a) If A< Band B~ C, then A <XC.
(b) f Ax Band C = D, then Ax C~ B x D.

4. Let A be an infinite set and let S = {a1,aq,...,a,} be a finite set of distinct elements from A. Prove
that A~ A\ S.

Remark. This is a generalisation of Hilbert’s Hotel problem. Recall that every infinite set contains a
countably infinite subset (a subset equinumerous with N). Use this subset to absorb the finite set S.

5. Prove that if A < B, then P(A) < P(B).

Remark. Let f : A — B be an injection. Use this function to define a new function g : P(A4) — P(B)
by considering the image of subsets under f.

Part II: The Cantor-Schroder-Bernstein Theorem

6. Use the Cantor-Schréder-Bernstein theorem to prove that any two closed intervals [a, b] and [¢, d] (with
a < b, ¢ < d) are equinumerous.

7. Use the Cantor-Schroder-Bernstein theorem to prove that the set of all infinite binary sequences is
equinumerous with the power set of the natural numbers, P(N).

8. A classic and powerful result is that R &~ R x R.
(a) Prove that R < R x R.
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(b) Prove that R x R < R.

Remark. Consider representing each real number in (0, 1) by its unique, non-terminating decimal
expansion. An injection f : (0,1) x (0,1) — (0,1) can be constructed by interleaving the digits of
the two input numbers.

(c) Conclude that R ~ R x R and, by extension, that R ~ C.

9. x Without using the Cantor-Schroder-Bernstein theorem, prove that the open interval (0, 1) is equinu-
merous with the closed interval [0, 1] by constructing an explicit bijection.

Part III: Diagonalization and Cantor’s Theorem

10. The text showed N < {0, 1}" using binary sequences. Use a diagonalization argument to prove directly
that the set of natural numbers N is not equinumerous with the open interval (0, 1).

Remark. Construct a decimal number 0.d;dsds ... where each digit d, is chosen to differ from the
n-th digit of the n-th number in the list. To avoid issues with non-unique decimal representations (like
0.199--- =0.200...), avoid using the digits 0 and 9 in your construction.

11. Prove that N~ N x N.

Remark. Cousider arranging the pairs (m,n) in an infinite grid and finding a path that visits every
pair exactly once.

12. A number is called algebraic if it is a root of a polynomial with integer coefficients. Prove that the set
of all algebraic numbers is equinumerous with N, and use this to show that there exist transcendental
(non-algebraic) numbers.

13. Let A be any set. Prove that the set of its power set, P(A), is equinumerous with the set of all functions
from A to {0, 1}, denoted {0, 1}4.

Remark. Use the concept of the characteristic function.

14. Use Cantor’s Theorem to prove that there is no "set of all sets".

Remark. Suppose a set V containing all sets exists. Apply Cantor’s Theorem to V to derive a
contradiction.

15. Does there exist a set A such that P(A) < A? Justify your answer using the theorems from this
chapter.

7.6 Cardinal Numbers

Having established that every well-ordered set is order isomorphic to a unique ordinal, we now seek a more
general method for comparing the size of any two sets. The concept of equinumerosity, defined by the
existence of a bijection, partitions the class of all sets into equivalence classes. We aim to select a canonical
representative from each of these classes, which will serve as a measure of a set’s size.

By the Well-Ordering Theorem, any set A can be well-ordered, and is therefore order isomorphic to some
ordinal a. Consequently, the collection of ordinals equinumerous to A,

Ha ={a|aisan ordinal and o ~ A}

is non-empty. As this is a collection of ordinals, it has a least element. This least element is the initial ordinal
equinumerous to A, meaning it is not equinumerous to any smaller ordinal. This motivates the following
definition.
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Definition 7.6.1. Cardinal Number. An ordinal x is a cardinal number if it is not equinumerous to any
of its elements. That is, for every a € k, kK % a.

The natural numbers 0,1, 2,... are all cardinal numbers. An infinite ordinal « that is a cardinal must be a
limit ordinal; if o were a successor ordinal, say o = 37, then a ~ f3 for infinite 3, which would contradict
the definition of a cardinal. However, not every limit ordinal is a cardinal. For example, w + w is a limit
ordinal, but it is equinumerous with w, an element of w + w.

The crucial property of cardinals is that they serve as unique representatives for each equinumerosity class.

Theorem 7.6.1. Every set is equinumerous to exactly one cardinal number.

Proof. Let A be a set. The existence of at least one such cardinal follows from the argument that the
collection H 4 has a least element, which is a cardinal. For uniqueness, suppose A =~ k1 and A ~ ko where
k1 and ko are cardinals. By transitivity, k1 & k9. Since they are both ordinals, the Trichotomy for Ordinals
states that either k1 € ko, kKo € K1, Or K1 = Ko. If K1 € Ko, then ko would be equinumerous to one of its
elements, contradicting that it is a cardinal. A symmetric argument holds if ko € k1. The only remaining
possibility is kK1 = ko. |

Definition 7.6.2. Cardinality. The cardinality of a set A, denoted |A|, is the unique cardinal equinumerous
to A.

Note. By this definition, the cardinality of a cardinal x is k itself.

Finite Sets

The concept of a finite set, intuitively understood as one whose elements can be counted, is formalised by
identifying its cardinality with a natural number.

Definition 7.6.3. Finite and Infinite Sets. A set A is finite if its cardinality is a natural number, i.e.,
|A] € w. If a set is not finite, it is infinite.

A fundamental property, which distinguishes finite from infinite sets, is that a finite set cannot be put into
one-to-one correspondence with a part of itself. We establish this first for the natural numbers. A preparatory
lemma is required.

Lemma 7.6.1. Let n be a positive natural number. If k € n, then n\ {k} = n — 1.

Proof. We proceed by induction on n. The basis case n = 1 is trivial. Assume the statement holds for some
n > 1, and consider n + 1. Let k € n+ 1. If kK = n, then (n+ 1) \ {n} = n, which is equinumerous to
(n+1) —1. If k < n, by the induction hypothesis there is a bijection g : n \ {k} — n — 1. We define a
bijection h : (n+ 1)\ {k} — n by h(z) = g(z) for all z € n\ {k} and h(n) =n — 1. [ ]

Theorem 7.6.2. No natural number is equinumerous to a proper subset of itself.

Proof. Let n € w be the smallest natural number for which there exists a proper subset S C n and a bijection
f:n — S. The cases n = 0 and n = 1 are trivial, so n > 2. Let k be any element in n \ S. Since f is a
bijection, there exists an element j € n such that f(j) = k. This contradicts the fact that the range of f is
S. This proof seems too simple. Let us reconsider the structure.

Let n € w be minimal such that there exists S C n and a bijection f :n — S. Let k € S. The restriction of
fton\{f~(k)} is a bijection to S\ {k}. By the previous lemma, n\ {f~1(k)} ~n — 1. The set S\ {k} is
a proper subset of n — 1, because if it were equal, then S would equal n, which is not the case. Therefore,

we have found that n — 1 is equinumerous to a proper subset of itself, which contradicts the minimality of
n. ]
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This theorem immediately implies that the cardinality of a finite set is unique.
Corollary 7.6.1. Every finite set is equinumerous to exactly one natural number.

Proposition 7.6.1. A bijection from a finite set to itself is called a permutation. If |A| = n for some n € w,
the number of distinct permutations of A is n!.

Proof. We proceed by induction on n.

e Base Case (n = 0): If A = (), there is exactly one function §) — @, the empty function, which is a
bijection. Since 0! = 1, the statement holds.

e Inductive Step: Assume that for any set of size n, there are n! permutations. Let A be a set with
|A| = n + 1. Let us fix an element ap € A. A permutation of A must map ag to some element a € A.
There are n+1 choices for this element a. Once the image of ag is fixed, say f(ag) = a, the permutation
must map the remaining n elements of A\ {ap} bijectively to the remaining n elements of A\ {a}. By
the induction hypothesis, there are n! ways to do this.

By the rule of product, the total number of permutations of A is (n + 1) -n! = (n + 1)!. The result follows
by induction. (]

Further consequences follow, including the Pigeonhole Principle.

Corollary 7.6.2. Pigeonhole Principle. Let A and B be finite sets with |A| > |B|. There is no injective
function from A to B.

Proof. Let |A| =n and |B| = m with n,m € w and n > m. Assume an injection f: A — B exists. Then A
is equinumerous with the subset f[A] C B, so |f[A]| = n. However, f[A] is a subset of B, so its cardinality
cannot exceed that of B. This would imply n < m, a contradiction. |

Corollary 7.6.3. No finite set is equinumerous to a proper subset of itself.

This corollary’s contrapositive provides the defining characteristic of an infinite set, often known as Dedekind-
infinitude.

Corollary 7.6.4. A set equinumerous to a proper subset of itself is infinite.

Example 7.6.1. The set of natural numbers, w, is infinite. The function f : w — w \ {0} defined by
f(n) =n+1is a bijection from w to a proper subset of itself.

Finally, the properties of finiteness are downward-hereditary, while infiniteness is upward-hereditary.
Corollary 7.6.5. Let A C B. If B is finite, then A is finite. If A is infinite, then B is infinite.

Countable Sets and the Aleph Hierarchy

The natural numbers, w, constitute the smallest infinite ordinal and, as it is not equinumerous with any of
its elements, it is also the smallest infinite cardinal. Cantor introduced the notation Ry (aleph-nought) for
this fundamental cardinality. Sets that are no larger than w are considered the "smallest" infinite sets and
are given a special classification.

Definition 7.6.4. Countable Set. A set A is countable if A < w. If a set is countable but not finite, it is
countably infinite.

A non-empty set is countable if its elements can be arranged in a list (finite or infinite), indexed by the
natural numbers. For instance, the set of integers 7Z is countably infinite, as demonstrated by the bijection
g : w — Z defined by g(n) = (n+ 1)/2 for odd n and g(n) = —n/2 for even n. More surprisingly, the set of
rational numbers is also countable.

Theorem '7.6.3. A subset of a countable set is countable.
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Proof. Let A be a countable set and let S C A. By definition, there exists an injection f : A — w. The
restriction of this function, f|s : S — w, is also an injection. Therefore, S < w, and S is countable. |

Example 7.6.2. The set of rational numbers Q is countable. We can construct a bijection from w to Q by
systematically listing all rational numbers. Arrange the positive rationals p/q in an infinite grid where the
rows are indexed by the numerator p and the columns by the denominator g. We can then traverse this grid
along diagonals where p + ¢ is constant, starting with p + ¢ = 2, then p 4+ ¢ = 3, and so on. By skipping
any fraction that is not in its lowest terms (e.g., skipping 2/2 as we have already listed 1/1), we create an
exhaustive list of all positive rational numbers. A similar process can be used for the negative rationals, and
by interleaving these two lists with 0, we can list all of Q.

3 3 3 3
1 2 3 4
2 2 2 2
1 2 3 4

S

The existence of a surjection from the natural numbers provides an equivalent characterisation of countability.

==
N|—=
ol
=

Theorem 7.6.4. A non-empty set A is countable if and only if there exists a surjective function from w
onto A.

Proof. If A is countable, then A < w. This means there is an injection f: A — w. If A is infinite, f can be
extended to a bijection, whose inverse is a surjection from w to A. If A is finite, say A = {ag,...,an—1}, the
function g : w — A defined by g(k) = ay for k < n and g(k) = a,,—1 for k > n is a surjection. Conversely, if
a surjection g : w — A exists, then by the Axiom of Choice, there is an injection f: A - w,s0 A <w. N

This criterion simplifies proofs about the closure of countability under certain operations.

Theorem 7.6.5. The union of a countable family of countable sets is countable.

Proof. Let {A;};cr be a family of sets where the index set I is countable and each set A; is countable. Since
I is countable, there is a surjection g : w — I. For each i € I, since A; is countable, there is a surjection
fi:w— A;. We know that w X w = w, so there exists a bijection h : w — w X w. We can define a function
F:wxw— U Ai by F(n,m) = fgn)(m). This function is surjective. Let = € (J;.; Ai. Then x € A; for
some i € I. Since g is surjective, there is an n € w with g(n) = i. Since f; is surjective, there is an m € w
with fi;(m) = x. Thus, F(n,m) = x. The composition F'oh : w — (J;c; A; is a surjection from w to the
union, which proves the union is countable. |

Theorem 7.6.6. The Cartesian product of a finite number of countable sets is countable.

Proof. We proceed by induction on the number of sets, n.

e Base Case (n = 2): Let A; and A, be countable sets. There exist surjections f; : w — A; and
fo :w — As. We can define a function g : w X w — Ay X As by g(m,n) = (f1(m), f2(n)). This function
is surjective. Since there exists a bijection h : w — w X w, the composition goh : w — Ay X Ay is a
surjection, which proves A; x Ay is countable.

e Inductive Step: Assume that for some n > 2, the product of n countable sets is countable. Consider
a collection of n + 1 countable sets, Aj,..., A,+1. We can write their product as A; X -+ x A1 =
(A x -+ X Ap) X Apt1. Let B= A; x -+ x A,. By the induction hypothesis, B is countable. By the
base case, the product B x A, 41 is countable.
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Therefore, by the principle of induction, the theorem holds for any finite n > 2. The case n = 1 is trivial. W

The existence of uncountable sets, such as R, demonstrated by Cantor’s diagonalization, implies the existence
of infinite cardinals larger than Ny. This leads to an infinite hierarchy of cardinal numbers, indexed by the
ordinals. This sequence is defined by transfinite recursion.

Definition 7.6.5. The Aleph Sequence. For any ordinal «, the cardinal X, is defined by the recursion:

R, = the least infinite cardinal not in {Ng | § € a}

This definition generates the sequence of infinite cardinals:

e N is the least infinite cardinal, which is w.
e X; is the least infinite cardinal strictly greater than Y.
e X, is the least infinite cardinal strictly greater than all X,, for n € w.

A fundamental result, which follows from the Well-Ordering Theorem, is that this sequence exhausts all
possible infinite cardinalities.

Theorem 7.6.7. Every infinite cardinal is equal to X, for some ordinal «.

Proof. Suppose there is an infinite cardinal s that is not in the aleph sequence. By the Well-Ordering
Principle applied to the class of infinite cardinals, there must be a least such k. Consequently, every infinite
cardinal smaller than x is an aleph. The set of all infinite cardinals strictly smaller than x is thus S =
{Xg | Rg < k}. The supremum of this set is x. However, the definition of the aleph sequence for limit
ordinals ensures that the supremum of a set of alephs is itself an aleph (specifically, sup S = XN, where
v =sup{f | Xz € S}). Therefore, x must be an aleph, which contradicts our initial assumption. [ ]

The aleph hierarchy gives rise to one of the most famous open questions in mathematics. Cantor conjectured
that there are no cardinals between Xy and the cardinality of the real numbers, |R|.

Definition 7.6.6. Continuum Hypothesis (CH). The Continuum Hypothesis is the statement X; = |R|.
It was later proven that CH is independent of the standard axioms of set theory (ZFC); it can be neither

proved nor disproved within that system. A more general version extends this idea to the entire aleph
hierarchy.

Definition 7.6.7. Generalised Continuum Hypothesis (GCH). The Generalised Continuum Hypoth-
esis is the statement that for every ordinal a, |P(Ry)| = Rayi1-

Finally, just as ordinals are classified as successor or limit, so too are the cardinals.

Definition 7.6.8. Successor and Limit Cardinals. A cardinal x is a successor cardinal if it is of the
form N+ for some ordinal a. Otherwise, it is a limit cardinal.

The cardinals N;, Ny, ... are successor cardinals. The cardinals Ng, R,,, N4y, ... are limit cardinals.

7.7 Exercises

Part I: Finite and Countable Sets

1. Let A and B be finite sets. Using the principle of induction or other established properties, prove that:

(a) |[AUB| = |A|[+|B] - |AN B
(b) |Ax B| =[A[-|B|
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2.

A set A is called Dedekind-finite if it is not equinumerous to any of its proper subsets. The text shows
that all finite sets are Dedekind-finite. Prove the converse for a specific case: if R and R~! are both
well-orderings of a set A, prove that A must be finite.

. Prove that the union and Cartesian product of any two countable sets are also countable.

Remark. For the product, you may use the fact that w x w =~ w.

. Let A be an infinite set. Prove that A can be partitioned into two disjoint infinite subsets, B and C,

such that A = BUC.

Remark. Since A is infinite, it has a countably infinite subset. Partition this subset into two disjoint
infinite sets.

. Prove that the set of all algebraic numbers is countable. An algebraic number is a real number that is

a root of a non-zero polynomial with integer coeflicients.

Remark. First, argue that for any fixed degree n, the set of polynomials of degree n is countable.
Then, use the fact that a countable union of countable sets is countable.

. Use the result from the previous exercise to prove that the set of transcendental numbers (real numbers

that are not algebraic) is uncountable.

Part II: Cardinal Arithmetic and the Aleph Hierarchy

10.

11.

12.

13.

14.

Let o and 8 be ordinals. Prove that if o € 8, then R, < Ng.

. Prove that for any set of cardinals F, their union | J F is also a cardinal number.

. Show that while removing a single element from an infinite set does not change its cardinality, the

same is not true for ordinals. Let o be an infinite successor ordinal. Prove that |a| = |a\ {5} for any
B € a.. As a challenge prove this is true for any infinite set (or ordinal), not just successors.

Let A be a set. The cardinal J(A) (Hartogs’ number of A) is defined as the least ordinal a such that
there is no injection from « into A.

(a) Prove that 3(A) is a cardinal number.
(b) Prove that for any cardinal &, if £ < |A|, then k < J(A).

Assuming the Generalised Continuum Hypothesis (GCH), what is the cardinality of P(P(P(Ry)))?
Express your answer in the Aleph hierarchy.

The Beth sequence is defined by transfinite recursion: Jy = Rg, o+ = |P(Jn)|, and Iy = Uwe)\ 3, for
a limit ordinal A\. Restate the Generalised Continuum Hypothesis using the Aleph and Beth hierarchies.

Prove that for any countable set A, its power set P(A) is equinumerous with the set of real numbers
R.

Let A and B be sets. If there is a surjection f : A — B, what relationship can you deduce between |A]
and |B|? Prove your assertion.

7.8 Arithmetic on Ordinals

The arithmetic operations on the natural numbers can be generalised to the class of all ordinals. As the
class of all ordinals is not a set, these operations cannot be formalised as single functions. Instead, we define
them by transfinite recursion, with the understanding that for any two ordinals «, 3, their sum a + 3 is a
uniquely defined ordinal, independent of any particular bounding set.
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Ordinal Addition

Let a be an ordinal. We define the sum « + 3 for all ordinals § by transfinite recursion:

(i) a+0=a
(ii) a+ B%T = (a+ B)T for any ordinal 3.
(iii) o+ A=, ey(a + ) for any limit ordinal A.

By the Transfinite Recursion theorem, this uniquely defines the sum for any two ordinals. Intuitively, the
ordinal a + 8 corresponds to the order type of a well-ordered set of type « followed by a well-ordered set of

type B.
Ordinal addition is associative and has 0 as its identity element. However, it is not commutative. For

example, let us compute 1 + w and w + 1.

¢ 14+w=,c,(1+n). Since 1 +n is just the natural number n + 1, this union is {1,2,3,...}, which
is equinumerous and order isomorphic to w. Thus, 1 +w = w.
ew+l=w+0t=(w+0)" =wt.

Since w # w™, we have 1 + w # w + 1.

Ordinal Multiplication

Similarly, we define the product « - g for a fixed ordinal « by transfinite recursion on f:

(i) «-0=0
(ii) a-B%T = (a-B) + « for any ordinal .
(iii) a- A=, er(a ) for any limit ordinal A.

Ordinal multiplication is associative, has 1 as its identity, and distributes over addition from the left. How-
ever, it is not commutative.

e 2-w=),c,(2-n). Since 2n is a finite ordinal for each n € w, their union is w. Thus, 2w = w.
e w2=w-1"=(w-)+w=w+w.

Since w # w + w, multiplication is not commutative. The right distributive law also fails in general.

Theorem 7.8.1. For any ordinals «, 3,7:

(i) a4+ (B+7) = (a+ B)+ v (Associativity of +).
(ii) a-(B-v) = (a-pB) - v (Associativity of -).
(iii) a- (B+7) = a- B+ a -~ (Left Distributivity).

The operations interact with the ordinal ordering in a predictable way from the left, but less so from the
right. For example, 1 <2but 1 +w =2+ w = w.

Theorem 7.8.2. Let «, 3, be ordinals.
sa<fevyta<y+0.
e a<fB=a+ty<B+y.

e Fory>0,a<fey a<y: B
e a<f=a-vy<[-7.

Ordinal Exponentiation

Finally, we define exponentiation o’ by transfinite recursion on the exponent 3:
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(i) a® =1
(i) o' =aP - o for any ordinal S.
(iii) o* = U, ex @ for any limit ordinal A > 0.

This definition preserves the standard laws of exponents.
Theorem 7.8.3. Let «, 3,7 be ordinals.

e APt =af . an.
o (&) =af.

As with the other operations, exponentiation is not commutative. For example, 2¢ = [ J

w?=w- -w=w+w-+...is a much larger ordinal.

new 2" = w, whereas

Cardinal Arithmetic

While every finite cardinal is also a finite ordinal, their arithmetic operations are generalised to the infinite
case in fundamentally different ways. Ordinal arithmetic is recursive and sensitive to order, reflecting the
concatenation of well-ordered sets. Cardinal arithmetic, in contrast, is defined directly in terms of set
operations and reflects the size of the resulting sets, irrespective of order.

Definition 7.8.1. Cardinal Arithmetic Operations. Let k and A be cardinal numbers.

(i) Addition: k+ X := |(k x {0}) U (A x {1})]. This represents the cardinality of the disjoint union of two
sets with cardinalities £ and A.
(ii) Multiplication: k- A := |k x A|. This is the cardinality of the Cartesian product.
(iii) Exponentiation: x* := |s*|. This is the cardinality of the set of all functions from a set of size A to
a set of size k.

These definitions are consistent with arithmetic on the natural numbers. For example, 2 + 3 = |({0,1} x
{0}h) U ({0,1,2} x {1})| = |{(0,0),(1,0),(0,1),(1,1),(2,1)}] = 5. Unlike their ordinal counterparts, these
operations possess the familiar properties of commutativity and associativity.

Theorem 7.8.4. For any cardinals &, A, u:

(i) k+A=X+kand (k+A)+p=rK+ (A4 u). The identity is 0.
(ii)) k- A=X-kand (k- A) - p=#k-(A-p). The identity is 1.
(iii) k- (A4 p) = k- A+ k- p (Distributivity).

Proof. These properties follow directly from the existence of bijections between the corresponding set con-
structions. For example, commutativity of addition holds because there is a simple bijection between
(k x {0} U (A x{1}) and (A x {0}) U (k x {1}). |

Cardinal exponentiation also satisfies the standard laws of exponents.

Theorem 7.8.5. For any cardinals , A, u:

(i) kAP =K RH
(i) (k- A)H = kKH AP
(iii) (KM)H = A

Proof. Each identity is proven by constructing a bijection between the corresponding sets of functions. For
(iii), we establish a bijection between the set of functions (k*)* and the set xk***. [ |

The arithmetic of infinite cardinals is governed by a powerful absorption property.
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Theorem 7.8.6. For any infinite cardinal x and any cardinal A\ such that A\ < k&,

k+A=k and k-A=xk (for A >0)

A particularly important consequence of this is that for any infinite cardinal x, Kk + kK = k and kK - kK = k.
This simplifies the arithmetic of alephs significantly.

Theorem 7.8.7. For any infinite cardinal k, k - kK = k.

Proof. We prove this by transfinite induction on k. The base case Ny - Ry = Ny is known. Assume the
property holds for all infinite cardinals A\ < k.Define a well-ordering < on the set of pairs x x k (called the
canonical well-ordering) by:

(o, 8) < (7,d) <= max(q, ) < max(y,0)V (...)

It can be shown that for any infinite cardinal &, the order type of (k X k,<) is exactly k. Since the set k X K
has cardinality & - k, and its order type is , it follows that k- kK = k. |

Theorem 7.8.8. For any ordinals o and S,
N, + NB =R - Nﬂ = Nmax{a,ﬁ}
Proof. Let k = Rpjaxfa,p)- Then R, <k and Rg < £.The sum R, + Rp is at least £ and at most k + x =

2.k < K-k = K. By the Cantor-Schroder-Bernstein theorem, X, + Ng = £.The product X, - Nz is at least
x and at most K - k = k. By the same theorem, X, - Ng = k. |

For example, N5 + g = Ng and Ny - N, = N,. This simple arithmetic stands in stark contrast to the
complexity of ordinal arithmetic.

7.9 Exercises

Part I: Ordinal Arithmetic

1. Using the recursive definitions, compute the following ordinal sums and products.
(a) (w+1)+2
(b) 2-(w+1)
(€) (w+1)-2
(d) 2

2. Prove the associativity of ordinal addition: (a+ 8) +v = a+ (8 + «) for all ordinals «, 3, .

UJ

Remark. Fix a and 8 and proceed by transfinite induction on .

3. The text states that the right distributive law fails for ordinals. Provide a specific counterexample by
computing (w+ 1) - w and (w-w) + (1 - w) and showing they are not equal.

4. Prove the left cancellation law for ordinal addition: For any ordinals «, 3,7, if v + o = v + 3, then
a=p.

Remark. Use the property that a < 8 < y+a < v+ (proved in the text) along with the trichotomy
law. If o # (8, say a < 3, what does this imply about the sums?

5. Show by counterexample that the right cancellation law for ordinal addition does not hold. That is,
find ordinals «, 8, such that a £ S but a +~v =5+ 1.

6. Find ordinals «, 3,7y such that o € 8 but a -y = -, demonstrating that right cancellation for
multiplication also fails.
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Part II: Cardinal Arithmetic

7.

10.

Let s, \, u be cardinals. Prove the associativity of cardinal addition, (k + A) + p = & + (A + p), by
constructing an explicit bijection between the corresponding sets.

. Prove the law of exponents (k)* = x** by constructing an explicit bijection between the set of

functions (k*)* and the set x**H.

Remark. A function f € (k)" is a function f : 4 — k. For an element z € p, f(2) is itself a function
from A to k. Use this to define a function whose domain is A x p.

. Using the absorption properties of infinite cardinals, compute the following:

(a
(b
(¢
(d

Ny7 + N3o

Ro - Ny,

Nots - Ropo

IR| + RX; (assuming CH is false and |R| > N;)

= D

Let n be a finite cardinal (n € w,n > 0) and let x be an infinite cardinal. Prove from the definition of
cardinal multiplication that n -k = k.

Part III: Comparing Ordinal and Cardinal Arithmetic

11.

12.

13.

14.

15.

Prove that for any natural number n > 2, the ordinals n +w and n - w are not equal, but the cardinals
|n 4+ w| and |n - w| are equal.

Prove that the ordinal w + w is not a cardinal number.

Does a general cancellation law for multiplication hold for cardinals? That is, if k- = A-p and p # 0,
does it follow that k = A? Justify your answer.

Prove that for any infinite cardinal x, the set of all finite sequences of elements from  has cardinality
K.

Remark. The set of all such sequences can be written as J,,c,, #". Apply the properties of cardinal
arithmetic.

* The proof that k- k = k for any infinite cardinal x is a cornerstone of cardinal arithmetic. While the
full proof is complex, it can be outlined for the specific case kK = Ry. Provide an explicit bijection to
prove that |w X w| = |w|, thereby showing Ng - g = V.

7.10 Large Cardinals

The arithmetic of infinite cardinals simplifies to an absorption rule where the larger cardinal dominates.
This simplicity masks a rich underlying structure, which can be investigated by considering how a cardinal
can be constructed as a limit of smaller ordinals. This leads to the concept of cofinality, a measure that
distinguishes different "types" of limit ordinals and cardinals, and ultimately points towards cardinalities
whose existence cannot be proven within the standard framework of set theory.

Cofinality

Every infinite cardinal is a limit ordinal, meaning it is the union of all smaller ordinals it contains: x = | &.
However, it is often possible to express k as a union of a much smaller collection of ordinals. The cofinality
of a limit ordinal measures the smallest possible size of such a collection.
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Definition 7.10.1. Cofinality. Let A be a limit ordinal. A subset F C A is cofinal in X if JF = A.
The cofinality of A, denoted cf(\), is the least cardinal x such that there exists a cofinal subset 7 C A\ with
|F| = k.

By definition, cf(A\) < |A|, since A is itself a cofinal subset of A.
Example 7.10.1.

e The limit ordinal w can be expressed as the union of the finite ordinals it contains, w = |J,,c,, 7. The
index set {n | n € w} has cardinality Rg. No smaller index set can have a union equal to w, as the
union of a finite number of finite ordinals is finite. Therefore, cf(w) = V.

e Consider the limit cardinal ®,,. It can be expressed as the union of the preceding alephs: X, = [, ., Nn.
The index set has cardinality Rg. Thus, cf(X,) < Rg. Since the cofinality of any infinite ordinal must
be infinite, we conclude cf(R,,) = Ny.

e For the cardinal Ny, its cofinality must be X;. If F were a cofinal subset of N; with |F| = R, then
Ny = JF. Each element of F is an ordinal smaller than Ny, meaning each element is a countable
ordinal. The union of a countable collection of countable sets is countable. This would imply Ry is

countable, a contradiction. Therefore, cf(R;) = Rj.

Regular and Singular Cardinals

The cofinality of an infinite cardinal provides a fundamental classification.

Definition 7.10.2. Regular and Singular Cardinals. An infinite cardinal k is regular if cf(k) = k.
Otherwise, if cf(k) < &, it is singular.

From the preceding examples, Ny and N; are regular cardinals, whereas N, is a singular cardinal. The
following theorems further clarify this classification.

Theorem 7.10.1. Every successor cardinal is regular.

Proof. Let X441 be a successor cardinal. Let F be a cofinal subset of Ry41, so Ro41 = JF. For any ordinal
B € F, we must have 8 < R, 1, which implies |§| < X,. Using properties of cardinal arithmetic, we have:

Rasr = |JF| = D0 181 217 sup |8] = 1F] - Ra
BeF per
If | F| < R, this would imply R,11 < R, R, = R,, a contradiction. Therefore, we must have |F| > RX,. Since
| F| is a cardinal and X, 41 is the immediate successor of X, we must have |F| > R,11. As |F| can be X441

(by taking F = R,11), the least possible cardinality for a cofinal subset is Ryy1. Thus, cf(Rqq1) = g1,
and N, is regular. [ ]

Since Ny is also regular (as a successor cardinal if we consider the finite cardinals), it follows that any singular
cardinal must be an uncountable limit cardinal. The next theorems provide a deeper connection between
the cofinality of a limit ordinal and its corresponding aleph.

Theorem 7.10.2. If « is a limit ordinal, then cf(R,) = cf(«).
This theorem confirms our earlier calculation that cf(R,) = cf(w) = Rg. It also implies that for any limit

ordinal «, its cofinality must be a regular cardinal.

Theorem 7.10.3. For any limit ordinal «, cf(«) is a regular cardinal.

Ko6nig’s Theorem and Inaccessible Cardinals

A powerful result due to Julius Kénig places a strict bound on cardinal exponentiation, connecting it to
cofinality. Its proof is a generalisation of Cantor’s diagonal argument.
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Theorem 7.10.4. Konig’s Theorem. For any infinite cardinal &, k < cf(2").

An immediate and significant consequence is a non-trivial fact about the cofinality of the continuum.

Corollary 7.10.1. The cofinality of the continuum, cf(2%°), is uncountable.

Proof. By Theorem 7.10.4, we have Xy < cf(2%°). Since ¥, is the first uncountable cardinal, this implies
cf (2%0) > ;. [ ]

This result allows us to rule out certain values for the cardinality of the continuum. For example, it proves
that 280 £ R, because cf (R,,) = Ng, which contradicts the corollary.

The study of cofinality reveals that X, is the only regular limit cardinal whose existence is provable in ZFC.
The potential existence of others leads to the notion of large cardinals.

Definition 7.10.3. Inaccessible Cardinal. An uncountable cardinal x is weakly inaccessible if it is a
regular limit cardinal. It is strongly inaccessible if it is regular and for every cardinal A < &, we have 2* < k.

Every strongly inaccessible cardinal is also weakly inaccessible. The existence of either type of inaccessible
cardinal cannot be proven from the axioms of ZFC. These cardinals mark the beginning of the large cardinal
hierarchy, a sequence of increasingly strong axioms asserting the existence of cardinals with properties that
make them vastly larger than those constructible within ZFC alone. The consistency of these axioms is a
central topic in modern set theory.

7.11 Exercises

1. Compute the cofinality of the following limit ordinals and state whether the corresponding cardinal is
regular or singular.
(a) w-2 (also written as w + w)
(b) Nw+w
<C> NNl

2. Prove that for any limit ordinal ), its cofinality, cf(A), must be a regular cardinal.

Remark. Let k = cf(\) and suppose, for a contradiction, that x is singular. Then x can be written
as a union of a smaller number of smaller ordinals. Use this to show that A could also be expressed as
a union of a set of ordinals with cardinality less than x, contradicting the definition of cofinality.

3. A cardinal « is said to have the countable cofinality property if cf(k) = Xg. Use Konig’s theorem to
prove that the cardinality of the continuum, 28°, cannot be equal to N,,.

Remark. Recall that cf(R,,) = Xo. What does Kénig’s theorem say about the cofinality of 2%0?

4. The Generalised Continuum Hypothesis (GCH) states that 2%« = R, for every ordinal a. Prove
that GCH implies that every uncountable regular limit cardinal is strongly inaccessible.

5. * Let x be an infinite regular cardinal. Prove that if {A;};ec; is a family of sets such that |I| <  and
|Ai| < s for all i € I, then the cardinality of their union is also less than . That is, |J;c; Ai| < &.
Remark. Show that the cardinality of the union is bounded by |I|-sup;c; |A;|. Since & is regular and

the number of sets |I| is less than k, the supremum of their cardinalities must also be less than k.
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