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In high-frequency trading, assets are typically traded in a limit order book on an electronic 

exchange. The limit order book contains buy and sell orders at different price levels. Agents 

execute trades by posting buy or sell limit orders at the desired price level, or by placing market 

orders in the order book that match the limit orders already in place. Agents may also cancel 

unfulfilled orders. The limit order book's dynamic evolution is complicated and non-linear due 

to the numerous market agents placing orders, many of whom use automated trading strategies. 

My research interest is to apply persistent homological analysis (and possibly generative 

models) to effectively capture the key characteristics and understand the complex dynamics of 

the limit order book. One reason I desire to employ this topological approach is that it can be 

useful in developing new strategies related to systematic risk detection and assessing the 

performance of automated trading systems.  

For many years, researchers have focused on the issue of optimal execution, often known as 

optimal control of execution costs. Determining the dynamics of a market price and a price 

impact function that outlines the influence a trade has on the price are two methods to model 

the execution costs. Bertsimas and Lo (1998), Almgren and Chriss (2001), and Obizhaeva and 

Wang (2013) are a few studies that employ this type of modelling. 

The theory of stochastic processes in queueing theory has also been applied to the study of the 

dynamics of limit order books; relevant works include Cont et al. (2010), Cont and De Larrard 

(2013) and Muni Toke and Yoshida (2017). In order to build a manageable model, the 

dynamics are typically greatly simplified. Markovian limit order books, independent processes 

for order flows at various levels, and constant order sizes are examples of common simplifying 

assumptions. Though they are frequently too unrealistic for practical use, these simplified 

models can still capture significant aspects of the dynamics of the limit order book and enhance 

our understanding of it. While these methods can be helpful in comprehending market 

mechanisms, they are usually not realistic enough to be used in back-testing or in the 

development of trading and risk management strategies. To guarantee tractability, although 

standard stochastic processes for limit order book modelling often yield oversimplified 

representations of real-world dynamics, complementing these with topological methods 



enables detection of persistent multiscale structures that may be crucial for understanding 

systemic behaviour. 

Another method for modelling limit order books is specifying the actions of a collection of 

agents (e.g., see Byrd et al., 2020). While these models are important for improving market 

comprehension, they have some drawbacks: it is difficult to calibrate each agent such that the 

aggregated system resembles the real world. Persistent homological analysis (Gidea & Katz, 

2018) offers a promising approach to address this limitation by characterizing the topological 

structure of the emergent collective behaviour, rather than focusing on individual agent 

calibration. 

Recent developments in machine learning and topological data analysis have led to the 

development of flexible models for analysing complex and high-dimensional dynamics in 

financial networks. Recurrent neural networks (RNNs), when combined with persistent 

homological methods, are naturally suitable for detecting temporal patterns in market structure 

and systemic risk indicators. The temporal dependence is implemented through both feedback 

connections representing internal states (often referred to as memory) and topological features 

capturing the evolution of market networks. The long short-term memory network (LSTM), 

integrated with persistent homology, is a powerful architecture designed to deal with both the 

problem of vanishing and exploding gradients that typically occurs when training vanilla RNNs 

(Hochreiter and Schmidhuber, 1997) and the detection of critical transitions in market 

topology. These hybrid networks are shown to handle both long-range dependence in 

sequential data and persistent features in financial networks, and are successfully applied to 

many applications, for example speech recognition (Graves et al., 2013), handwriting 

generation (Graves, 2013), and machine translation (Sutskever et al., 2014), suggesting 

potential applications in systemic risk detection and market stability analysis. 

Models based on neural networks are currently being implemented in a wide range of complex-

valued number dynamical signal processing (Xiao et al., 2021), model-free situations (Zhang 

et al., 2018), mobile robot trajectory planning (Chen et al., 2021), multiple robot coordination 

(Li et al., 2017) and non-stationary quadratic programs (Qi et al., 2022). It has also been 

implemented in financial applications, including mortgage risk (Sadhwani et al., 2021), 

hedging (Buehler et al., 2019) and computing implied volatility (Horvath et al., 2021). 

However, these approaches can be significantly enhanced through the integration of 

topological data analysis (Gidea and Katz, 2018) and persistent homology for detecting 



systemic risk patterns in financial networks (Gidea, 2017). Furthermore, there are other 

examples of using machine-learning models combined with topological features for limit order 

book data, with particular emphasis on predicting market instabilities. Additionally, Kercheval 

and Zhang (2015) used support vector machines to forecast movements of the mid-price and 

price spread crossing. Following this work, there have been multiple efforts of tackling the task 

of analysing market topology with different architectures of neural networks, including RNNs 

and convolutional neural networks (CNNs) (Doering et al., 2017). Sirignano (2019) used a 

neural network architecture for modelling the joint distribution of ask and bid prices at a future 

time. More recently, there have been some works in applying topological methods to financial 

applications. Particularly, restricted Boltzmann machines (Kondratyev et al., 2020), variational 

autoencoders (Buehler et al., 2020), as well as generative adversarial networks (Wiese et al. 

2019, 2020) have been used to analyse the topological structure of time-series returns for 

systemic risk detection. 

Motivated by the applications of persistent homology in detecting critical transitions in 

complex networks, and building upon the success of recurrent neural networks in processing 

time-varying problems, my PhD research aims to develop an integrated framework that 

combines topological data analysis with RNNs to analyse the dynamic evolution of limit order 

books for systemic risk detection. The framework will output conditional probabilities of 

transitions given both the historical state of the order book and its topological features, 

characterized by event type (market order buy/sell, limit order buy/sell, cancellation buy/sell), 

price level, order size, and temporal persistence of topological features. This hybrid model will 

be trained and evaluated on a synthetic dataset generated from a known continuous time 

Markov chain model, extending the model proposed by Cont et al. (2010) by incorporating 

both random order sizes and persistent homological features, before being applied to real equity 

transaction data downloaded from a stock exchange to detect early warning signals of market 

instability. 
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