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0
Divisibility

The set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } forms the bedrock
of number theory. While the arithmetic operations of addition and
multiplication are closed within Z, division is not. The study of
number theory is, in many respects, the study of this breakdown:
when does one integer divide another, and if it does not, what is the
residue?
To answer these questions, we require not just arithmetic intuition
but robust proof techniques. We begin by formalising the principle of
Mathematical Induction, the primary engine for proving statements
over countable sets, before establishing the fundamental algorithm of
Euclidean arithmetic.

0.1 Variants of Mathematical Induction

The Well-Ordering Principle states that every non-empty set of posi-
tive integers contains a least element. This axiom underpins the Prin-
ciple of Mathematical Induction. While the standard form is likely
familiar, number theoretic problems often demand subtler variations.

Standard and Strong Induction

Definition 0.1. First Principle of Mathematical Induction.
Let P(n) be a proposition concerning an integer n. If:

Base Case: P(a) is true for some integer a;

Inductive Step: For any k ≥ a, the assumption that P(k) is true im-
plies P(k + 1) is true;

then P(n) is true for all integers n ≥ a.
定義

Example 0.1. The Frobenius Coin Problem (Specific Case). We
prove that any integer n ≥ 8 can be expressed as a non-negative
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linear combination of 3 and 5. That is, n = 3a + 5b for a, b ∈ N0.

範例

Base Case (n = 8).

8 = 3(1) + 5(1). The proposition holds.
証明終

Inductive Step.

Assume k = 3a + 5b holds for some k ≥ 8. We examine k + 1.

1. If b ≥ 1, we can replace one 5 with two 3s (since 6 − 5 = 1).

k+ 1 = 3a+ 5(b− 1)+ 5+ 1 = 3a+ 5(b− 1)+ 6 = 3(a+2)+5(b− 1).

2. If b = 0, then k = 3a. Since k ≥ 8, 3a ≥ 8 =⇒ a ≥ 3. We replace
three 3s with two 5s (since 10 − 9 = 1).

k + 1 = 3(a − 3) + 9 + 1 = 3(a − 3) + 10 = 3(a − 3) + 5(2).

証明終

In both cases, k + 1 has the required form. By definition 0.1, the state-
ment holds for all n ≥ 8.
Often, knowing P(k) is insufficient to prove P(k + 1); we may need
the history of the sequence.

Definition 0.2. Second Principle (Strong) of Mathematical Induction.

Let P(n) be a proposition. If P(a) is true, and the assumption that P(m)

is true for all a ≤ m ≤ k implies P(k + 1) is true, then P(n) is true for
all n ≥ a.

定義

Example 0.2. A Symmetric Game. Consider two piles of counters,
each containing n items. Two players move alternately. A move
consists of removing any positive number of counters from a single
pile. The player who removes the last counter wins. We prove the
second player has a winning strategy for all n ≥ 1.

範例

Let P(n) be the proposition that the second player wins starting with
configurations (n, n).

Base Case.

If n = 1, Player 1 must take the only counter from one pile. Player 2

takes the counter from the remaining pile and wins.
証明終



6 gudfit

Inductive Step.

Assume the second player wins for all initial sizes 1 ≤ m ≤ k.
Consider a game starting with (k + 1, k + 1). Player 1 must remove l
counters (1 ≤ l ≤ k + 1) from one pile, leaving the state (k +

1, k + 1 − l). Player 2 can now mimic this move on the other pile, re-
moving l counters to reach the state (k + 1 − l, k + 1 − l). Let m =

k + 1 − l. Since l ≥ 1, we have 0 ≤ m ≤ k.

• If m = 0, Player 2 has removed the last counter and won immedi-
ately.

• If m > 0, the game is now in state (m, m) with Player 1 to move.
By the inductive hypothesis, the second player wins from this
state.

Thus, the second player wins for n = k + 1.
証明終

Non-Standard Inductive Patterns

Structure in number theory does not always propagate linearly from
n to n + 1.

Theorem 0.1. Backward Induction.
Let P(n) be a proposition. If:
1. There exists an infinite sequence of integers n1 < n2 < . . . such

that P(ni) is true for all i;

2. The truth of P(k + 1) implies the truth of P(k);
then P(n) is true for all n ≥ n1.

定理

Example 0.3. Fermat’s Little Theorem (Prime Modulus). Let p
be a prime. We prove that np − n is divisible by p for all positive
integers n.

範例

Infinite Step.

Let m = lp. Then (lp)p − lp = p(lp pp−1 − l), which is clearly a mul-
tiple of p. Thus P(lp) is true for all l = 1, 2, . . . .

証明終

Backward Step.

Assume P(k+ 1) is true. That is, (k+ 1)p − (k+ 1) is a multiple of p.
Expanding using the Binomial Theorem:

(k+ 1)p − (k+ 1) =

(
kp +

p−1

∑
i=1

(
p
i

)
ki + 1

)
− k− 1 = (kp − k)+

p−1

∑
i=1

(
p
i

)
ki.
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For 1 ≤ i ≤ p − 1, the binomial coefficient (p
i ) contains the

factor p in the numerator which is not cancelled by the denom-
inator. Thus (p

i ) is a multiple of p. The expression becomes
(kp − k) + p × (Integer). Since the entire sum is a multiple of p
(by assumption P(k + 1)), it follows that kp − k must be a multiple
of p. Thus P(k) is true.

証明終

Theorem 0.2. Seesaw Induction.
Let An and Bn be two indexed propositions. If:
1. A1 is true;
2. An =⇒ Bn;
3. Bn =⇒ An+1;
then both An and Bn are true for all n ≥ 1.

定理

This technique is particularly effective for coupled recurrence rela-
tions.

Example 0.4. Counting Solutions. Let r(m) be the number of non-
negative integer solutions to x + 2y = m. We prove:

Al : r(2l − 1) = l and Bl : r(2l) = l + 1.

範例

Base Case (A1).

Consider x + 2y = 1. Since x, y ≥ 0, the only solution is (1, 0). Thus
r(1) = 1, so A1 holds.

証明終

Step Ak =⇒ Bk.

We assume r(2k − 1) = k. Consider x + 2y = 2k.

Case 1: x = 0. Then 2y = 2k =⇒ y = k. Solution (0, k). (1 solu-
tion).

Case 2: x ≥ 1. Let x′ = x − 1 ≥ 0. The equation becomes (x′ + 1) +
2y = 2k =⇒ x′+ 2y = 2k− 1. The number of solutions is exactly
r(2k − 1).

Thus, r(2k) = 1 + r(2k − 1) = 1 + k. Bk holds.
証明終

Step Bk =⇒ Ak+1.

We assume r(2k) = k + 1. Consider x + 2y = 2k + 1.

Case 1: x = 0. Then 2y = 2k + 1, which has no integer solution.

Case 2: x ≥ 1. Let x′ = x − 1. The equation becomes x′ + 2y = 2k.
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The number of solutions is r(2k).

Thus, r(2k + 1) = 0 + r(2k) = k + 1. This is precisely proposition
Ak+1 (since 2(k + 1)− 1 = 2k + 1).

証明終

By theorem 0.2, the formulae hold for all l.

0.2 Divisibility

We now apply these structural tools to the integers themselves. Un-
less otherwise specified, all lowercase letters a, b, c, . . . denote inte-
gers.

Definition 0.3. Divisibility.
Let b be a non-zero integer. We say that b divides a, denoted b | a, if
there exists an integer q such that a = bq. If b | a, we call b a divisor
or factor of a, and a a multiple of b. If no such integer exists, we write
b ∤ a.

定義

Remark.

If b | a and 1 < |b| < |a|, b is a proper divisor of a.

Proposition 0.1. Linearity and Transitivity.
Let a, b, c be integers with c ̸= 0.
1. Transitivity: If c | b and b | a, then c | a.
2. Linearity: If c | a and c | b, then c | (ma + nb) for any integers

m, n.
3. Cancellation: c | a ⇐⇒ mc | ma for any m ̸= 0.

命題

Proof

We prove (2). Let a = ca1 and b = cb1 for integers a1, b1. Then ma +
nb = m(ca1) + n(cb1) = c(ma1 + nb1). Since Z is closed under mul-
tiplication and addition, the term (ma1 + nb1) is an integer. Thus c |
(ma + nb).

■

Remark.

To be "closed under addition and multiplication" means that if
you take any two numbers from a set (like the integers) and add
or multiply them, the result is always another number that is still
inside that same set.
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Consecutive Integers

A subtle but powerful property of integers is that in any sequence of
consecutive integers, divisibility is guaranteed by the length of the
sequence. For a positive integer k, the factorial k! denotes the product
k(k − 1) . . . 2 · 1.

Theorem 0.3. Product of Consecutive Integers.
The product of any k consecutive integers is divisible by k!.

k! | n(n − 1) . . . (n − k + 1).

定理

Let P(n, k) = n(n − 1) . . . (n − k + 1).

Positive Integers (n ≥ k).

We recall the binomial coefficient (n
k), which counts the number of

subsets of size k from a set of size n. By definition, this count must
be an integer. Algebraically,(

n
k

)
=

n(n − 1) . . . (n − k + 1)
k!

=
P(n, k)

k!
.

Since (n
k) ∈ Z, it follows that k! | P(n, k).

証明終

Integers containing 0.

If the sequence includes 0, the product is 0. Since k! | 0 for all k, the
statement holds.

証明終

Negative Integers.

If the terms are negative, factor out (−1)k. The divisibility depends
only on the magnitude of the product, reducing this to Case 1.

証明終

The Division Algorithm

Though labelled an "algorithm", this is an existence theorem fun-
damental to Euclidean domains. It connects the abstract concept of
divisibility to the concrete geometry of the number line.

Theorem 0.4. The Division Algorithm.
Given integers a and b with b > 0, there exist unique integers q (quo-
tient) and r (remainder) such that:

a = bq + r, 0 ≤ r < b.

定理
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Existence.

Consider the set S = {a − bx | x ∈ Z and a − bx ≥ 0}. We must
show S is non-empty. If a ≥ 0, take x = 0; then a ∈ S. If a < 0,
take x = a; then a − ba = a(1 − b). Since b ≥ 1, 1 − b ≤ 0, so
a(1 − b) ≥ 0. By the Well-Ordering Principle, S contains a least ele-
ment; call it r. By definition, r = a − bq for some q, so a = bq + r
with r ≥ 0. We assert r < b. Suppose for contradiction that r ≥ b.
Then

r − b = (a − bq)− b = a − b(q + 1) ≥ 0.

Thus r − b ∈ S and r − b < r, contradicting the minimality of r.
Hence 0 ≤ r < b.

証明終

Uniqueness.

Suppose a = bq + r = bq′ + r′ with 0 ≤ r, r′ < b. Assume without
loss of generality r ≥ r′.

b(q − q′) = r′ − r.

Thus b | (r′ − r). However, since 0 ≤ r, r′ < b, the difference satisfies
−b < r′ − r < b. The only multiple of b in the interval (−b, b) is 0.
Thus r′ − r = 0 =⇒ r = r′, which implies b(q − q′) = 0 =⇒ q =

q′.
証明終

bq b(q + 1) b(q + 2)

a
r

Figure 1: Geometric interpreta-
tion of the Division Algorithm.
The integer a falls in a unique
interval [bq, b(q + 1)), determin-
ing r.

Example 0.5. Divisibility by 24. Let a be an odd integer. Prove that
24 | a(a2 − 1).
Let a = 2k + 1 for some integer k. Substituting this into the expres-
sion:

a(a2 − 1) = (2k+ 1)((2k+ 1)2 − 1) = (2k+ 1)(4k2 + 4k) = 4(2k+ 1)k(k+ 1).

We rewrite the term (2k + 1) as [(k − 1) + (k + 2)]:

a(a2 − 1) = 4[(k − 1) + (k + 2)]k(k + 1)

= 4(k − 1)k(k + 1) + 4k(k + 1)(k + 2).

By theorem 0.3, the product of 3 consecutive integers is divisible by
3! = 6. Thus, (k − 1)k(k + 1) is divisible by 6, and k(k + 1)(k + 2)
is divisible by 6. Consequently, the entire expression is divisible by
4 × 6 = 24.

範例

Example 0.6. Linear Combination Divisibility. Suppose m | (10a −
b) and m | (10c − d). Prove m | (ad − bc).
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We construct a specific linear combination to eliminate the coeffi-
cient 10:

(10a − b)c − (10c − d)a = 10ac − bc − 10ac + ad = ad − bc.

Since m divides (10a − b) and m divides (10c − d), by the linear-
ity property, m must divide their linear combination. Therefore,
m | (ad − bc).

範例

Example 0.7. Smallest Linear Combination. Let S be the set of val-
ues ax + by. Let d = ax0 + by0 be the smallest positive integer in
this set. Prove that d | (ax + by).
By theorem 0.4, we can write any element n = ax + by as n = dq + r
with 0 ≤ r < d. Rearranging for r:

r = n − dq = (ax + by)− q(ax0 + by0) = a(x − qx0) + b(y − qy0).

Thus r is also a number of the form ax + by. Since d is the smallest
positive integer of this form, and 0 ≤ r < d, the only possibility is
r = 0. Therefore n = dq, which implies d | (ax + by).

範例

Example 0.8. Harmonic Series. Prove S = 1 + 1
2 + · · ·+ 1

n is not an
integer for n > 1.
Let k be the largest integer such that 2k ≤ n. Let P be the product
of all odd positive integers not exceeding n. Consider the number
2k−1PS. Expanding the sum:

2k−1PS = 2k−1P
(

1 +
1
2
+ · · ·+ 1

2k + · · ·+ 1
n

)
.

The term corresponding to 1
2k becomes:

2k−1P · 1
2k =

P
2

.

Since P is a product of odd integers, P is odd, so P
2 is not an inte-

ger. For any other term 1
m in the sum (where m ̸= 2k), the denom-

inator m contains at most 2k−1 as a factor. Since P contains all odd
factors up to n, the term 2k−1P cancels the denominator m com-
pletely, resulting in an integer. Thus, 2k−1PS = Integer + P

2 . This
sum is not an integer, which implies S cannot be an integer.

範例
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Example 0.9. Mersenne Primes and Divisibility. We use algebraic
divisibility to restrict primality candidates. Prove that if 2n − 1 is
prime, then n must be prime.
We use the polynomial factorisation identity:

xm − 1 = (x − 1)(xm−1 + xm−2 + · · ·+ 1).

Let a = 2n − 1. Suppose n is composite, say n = ab with 1 <

a, b < n. Then 2n − 1 = 2ab − 1 = (2a)b − 1. Let x = 2a. Then by
the identity above, (x − 1) | (xb − 1). Substituting back, (2a − 1) |
(2ab − 1). Since 1 < a < n, we have 1 < 2a − 1 < 2n − 1. Thus
2n − 1 has a non-trivial factor (2a − 1), so it is composite. By contra-
positive, if 2n − 1 is prime, n cannot have factors a, b, so n is prime.

範例

0.3 Prime and Composite Numbers

Following our exploration of divisibility and the integers, we observe
that the number 1 possesses a unique structural property: it has
exactly one positive divisor. For any integer n > 1, the set of divisors
includes at least {1, n}. The classification of integers based on the
cardinality of this set is central to number theory.

Definition 0.4. Prime and Composite Numbers.
Let n > 1 be a positive integer. If the only positive divisors of n are
1 and n, then n is called a prime number. If n has a positive divisor
other than 1 and n, then n is called a composite number.

定義

Note

The integer 1 is neither prime nor composite.

We denote the set of prime numbers by a sequence p1, p2, . . . , where
p1 = 2, p2 = 3, p3 = 5, and so on. A divisor p of an integer n is called
a prime factor if p is itself a prime.

Remark.

It should be easy to see why 2 is the only even prime.

The Infinitude of Primes

The fundamental question regarding the distribution of primes was
resolved by Euclid.

Theorem 0.5. Infinitude of Primes.
The set of prime numbers is infinite.
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定理

Proof

Suppose, for the sake of contradiction, that there are only finitely
many prime numbers. Let this complete list be {p1, p2, . . . , pk}.
Consider the integer N constructed by the product of all primes
plus one:

N = p1 p2 . . . pk + 1.

Since N > 1, N must have at least one prime divisor, say q. If q
were in our finite list, then q = pi for some 1 ≤ i ≤ k. Consequently,
pi divides the product p1 p2 . . . pk. By the linearity of divisibility, if
pi | N and pi | (p1 . . . pk), then pi must divide their difference:

pi | (N − p1 . . . pk) =⇒ pi | 1.

This is impossible, as pi ≥ 2. Therefore, the prime divisor q is not
in the list {p1, . . . , pk}. This contradicts the assumption that the list
contained all prime numbers.

■

The construction used in theorem 0.5 provides a weak but certain
bound on the gaps between primes.

Theorem 0.6. Existence of Primes in Intervals.
For any integer n > 2, there exists a prime number p such that n <

p < n!.
定理

Proof

Let p1, p2, . . . , pk be the list of all primes not exceeding n. Con-
sider the integer N = p1 p2 . . . pk + 1. As shown in the proof of
theorem 0.5, N has a prime divisor q that is distinct from p1, . . . , pk.
Since q is not in the list of primes less than or equal to n, it follows
that q > n. Furthermore, since p1, . . . , pk are distinct integers less
than or equal to n, their product is a divisor of n!. Specifically:

N = p1 . . . pk + 1 ≤ n! + 1.

The prime divisor q must be less than or equal to N. Thus, we have
found a prime q such that n < q ≤ n! + 1. For n > 2, n! is not
prime, so we can strengthen the inequality to q < n!.

■

While primes never stop appearing, they can become arbitrarily
sparse.

Theorem 0.7. Arbitrary Gaps Between Primes.
For any integer K ≥ 1, there exist K consecutive integers that are all
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composite.
定理 (K + 1)!

+2
(K + 1)!

+i
(K + 1)!
+(K + 1)

Div by 2 Div by i Div by K + 1

Figure 2: Construction of K
consecutive composite integers
using factorials.

Proof

Consider the sequence of K integers starting from (K + 1)! + 2:

(K + 1)! + 2, (K + 1)! + 3, . . . , (K + 1)! + (K + 1).

Let xi = (K + 1)! + i for 2 ≤ i ≤ K + 1. By construction, i ≤ K + 1,
so i is one of the factors in (K + 1)!. Thus i | (K + 1)!. We also know
i | i. By linearity, i divides the sum (K + 1)! + i. Since 2 ≤ i ≤ K + 1,
the number xi has a divisor i such that 1 < i ≤ xi. To confirm i is a
proper divisor, we note xi = (K + 1)! + i > i. Thus, each term in the
sequence is composite.

■

Primes in Arithmetic Progressions

Euclid’s method can be adapted to prove the infinitude of primes in
certain arithmetic progressions.

Proposition 0.2. Primes of the Form 4n + 3.
There are infinitely many prime numbers of the form 4n + 3.

命題

Proof

Assume there are finitely many such primes, denoted
{p1, p2, . . . , pk}. Construct the integer N = 4p1 p2 . . . pk − 1. This
can be written as N = 4(p1 p2 . . . pk − 1) + 3, so N is of the form
4k + 3. Consider the prime factorisation of N. The number N is
odd, so 2 is not a factor. Any odd prime is either of the form 4m + 1
or 4m + 3. The product of two numbers of the form 4m + 1 is also
of that form:

(4a + 1)(4b + 1) = 16ab + 4a + 4b + 1 = 4(4ab + a + b) + 1.

If all prime factors of N were of the form 4m + 1, their product
N would also be of the form 4m + 1. But N is of the form 4k + 3.
Therefore, N must have at least one prime factor q of the form
4m + 3. If q were in our list {p1, . . . , pk}, then q | (4p1 . . . pk). Since
q | N, it would divide their difference 4p1 . . . pk − N = 1, which is
impossible. Hence, q is a new prime of the form 4n + 3, a contradic-
tion.

■

We now examine specific constraints on prime constellations.
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Example 0.10. Primes in a Short Sequence. Find all primes p such
that p, p + 10, and p + 14 are all prime.
We analyse the forms of primes with respect to division by 3. By
the theorem 0.4, any integer p can be written as 3k, 3k + 1, or 3k + 2.
1. If p = 3, then p + 10 = 13 and p + 14 = 17. All three are prime,

so p = 3 is a solution.

2. If p is of the form 3k + 1 for k ≥ 1 (since p > 3), then p + 14 =

(3k + 1) + 14 = 3k + 15 = 3(k + 5). Since k ≥ 1, k + 5 ≥ 6, so
p + 14 is a multiple of 3 greater than 3, and thus composite.

3. If p is of the form 3k + 2 for k ≥ 1, then p + 10 = (3k + 2) + 10 =

3k + 12 = 3(k + 4). Since k ≥ 1, k + 4 ≥ 5, so p + 10 is a compos-
ite multiple of 3.

The only prime not of the form 3k + 1 or 3k + 2 (for k ≥ 1) is p = 3
itself. Thus, p = 3 is the unique solution.

範例

Proposition 0.3. Square of a Prime and Division by 12.
Let p be a prime greater than 3. The remainder when p2 is divided by
12 is 1.

命題

Proof

Any prime p > 3 is not divisible by 2 or 3. By theorem 0.4, any inte-
ger can be written in the form 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4, 6k + 5.
Since p is prime and p > 3:

• p cannot be 6k, 6k + 2, 6k + 4 (divisible by 2).

• p cannot be 6k + 3 (divisible by 3).

Thus p must be of the form 6k + 1 or 6k + 5. Note that 6k + 5 can be
written as 6(k + 1)− 1. So any prime p > 3 is of the form 6k ± 1 for
some integer k ≥ 1. We square this expression:

p2 = (6k ± 1)2 = 36k2 ± 12k + 1 = 12(3k2 ± k) + 1.

Let q = 3k2 ± k. This is an integer, so p2 = 12q + 1. By the unique-
ness part of the Division Algorithm, the remainder when p2 is
divided by 12 is 1.

■

Example 0.11. Divisibility of the Difference of Prime Squares. Let
p ≥ q ≥ 5 be prime numbers. Prove that 24 | (p2 − q2).
Let X = p2 − q2. First, we show that 3 | X. Since p, q ≥ 5, nei-
ther is divisible by 3. As shown in the preceding proposition, the
square of such a prime leaves a remainder of 1 when divided by 3.
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So p2 = 3k1 + 1 and q2 = 3k2 + 1 for some integers k1, k2. Then
X = (3k1 + 1)− (3k2 + 1) = 3(k1 − k2), so 3 | X.
Next, we show that 8 | X. Any prime p ≥ 5 is odd. Let p = 2m +

1. Then p2 − 1 = (2m + 1)2 − 1 = (4m2 + 4m + 1) − 1 =

4m(m + 1). The product of two consecutive integers m(m + 1) is al-
ways even, so m(m + 1) = 2n for some integer n. Thus, p2 − 1 =

4(2n) = 8n, which means 8 | (p2 − 1). Similarly, since q is an odd
prime, 8 | (q2 − 1). By linearity, 8 | ((p2 − 1)− (q2 − 1)), which sim-
plifies to 8 | (p2 − q2).
So we have established 3 | X and 8 | X. Since 8 | X, we can write
X = 8k for some integer k. Now, since 3 | X, we have 3 | 8k. As 3 is
a prime number and does not divide 8, it must divide k. So k = 3j
for some integer j. Substituting this back, we get X = 8(3j) = 24j.
Therefore, 24 | (p2 − q2).

範例

0.4 Special Types of Primes

Historically, mathematicians sought a "magic formula" — a function
f (n) that produces a prime number for every integer input n. Euler
identified several quadratic polynomials with remarkable properties.
For instance, the polynomial

f (n) = n2 + n + 41

yields prime numbers for every integer 0 ≤ n ≤ 39. Similarly,
n2 + n + 17 produces primes for 0 ≤ n ≤ 15. Despite these successes
over finite intervals, the search for a polynomial that generates only
primes over the integers is futile.

Theorem 0.8. Non-existence of Prime-Generating Polynomials.
Let f (n) = cknk + · · ·+ c1n+ c0 be a polynomial with integer coeffi-
cients and degree k ≥ 1. There is no such function where f (n) is prime
for all positive integers n.

定理

Proof

Assume the contrary: that f (n) takes only prime values for all
n ≥ 1. Fix a specific input n0 and let p = f (n0). By assumption, p is
a prime number. Consider the evaluation of the function at n0 + tp,
where t is any integer. The polynomial term cj(n0 + tp)j can be
expanded using the binomial theorem:

cj(n0 + tp)j = cj

(
nj

0 + terms containing a factor of p
)

.
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Summing over all terms j = 0 to k:

f (n0 + tp) =
k

∑
j=0

cjn
j
0 + p · (Integer) = f (n0) + p · (Integer).

Since f (n0) = p, we can factor out p:

f (n0 + tp) = p(1 + Integer).

Thus, for any integer t, f (n0 + tp) is divisible by p. Since f is a
non-constant polynomial, | f (n)| tends to infinity as n increases. We
can choose t large enough such that | f (n0 + tp)| > p. Consequently,
f (n0 + tp) is a number divisible by p but strictly greater than p,
which implies it is composite. This contradicts the assumption that
f (n) generates only primes.

■

Having established that no simple polynomial captures the primes,
we turn to specific forms of integers that have historically been candi-
dates for primality.

Fermat Primes

Fermat studied numbers of the form 2m + 1. He observed that for
such a number to be prime, the exponent m must possess a specific
structure.

Proposition 0.4. Condition for 2m + 1 to be Prime.
Let m ≥ 1. If 2m + 1 is a prime number, then m must be a power of
2. That is, m = 2n for some integer n ≥ 0.

命題

Proof

Suppose m has an odd divisor k > 1. Let m = k · l. We use the alge-
braic identity for the sum of odd powers:

xk + 1 = (x + 1)(xk−1 − xk−2 + · · · − x + 1).

Substituting x = 2l :

2m + 1 = (2l)k + 1 = (2l + 1)((2l)k−1 − · · ·+ 1).

Since k > 1, the factor 2l + 1 satisfies 1 < 2l + 1 < 2m + 1. Thus 2m +

1 is composite. By contrapositive, if 2m + 1 is prime, m cannot have
any odd divisor greater than 1. Therefore, m must be a power of 2.

■
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Definition 0.5. Fermat Numbers.
Integers of the form Fn = 22n

+ 1 for n ≥ 0 are called Fermat num-
bers. If Fn is prime, it is called a Fermat prime.

定義

The first five Fermat numbers are prime:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

Fermat conjectured that all Fn are prime. This stood until 1732, when
Euler disproved it by factoring F5.

Example 0.12. Euler’s Factorisation of F5. We prove that F5 = 232 +

1 is composite by showing it is divisible by 641.
Let a = 27 = 128 and b = 5. We observe two algebraic relationships:

(i) a − b3 = 128 − 125 = 3.
(ii) 1 + ab − b4 = 1 + 640 − 625 = 1 + 15 = 16 = 24.

We wish to check divisibility by 641 = 1 + ab. Express F5 in terms
of a and b:

F5 = 232 + 1 = 228 · 24 + 1 = (27)4 · 24 + 1 = a424 + 1.

Substitute 24 = 1 + ab − b4:

F5 = a4(1 + ab − b4) + 1

= a4 + a5b − a4b4 + 1

= a4 + a5b − (ab)4 + 1

= 1 + a4 + ab(a4 − a3b3)

= 1 + a4 + ab(a4 − (ab)3).

This direct expansion is cumbersome. Instead, use the relation
1 + ab | (1 − (ab)2) and simpler grouping. From 24 = 1 + ab − b4,
we write:

F5 = a4(1 + ab − b4) + 1 = (1 + ab)a4 − (ab)4 + 1.

Note that 1 − (ab)4 is a difference of squares: (1 − (ab)2)(1 + (ab)2).
Since (1+ ab) divides (1− (ab)2), it divides 1− (ab)4. Thus (1+ ab)
divides both terms on the right hand side. Therefore, 641 | F5.

範例

Despite the failure of primality, Fermat numbers possess a property
that provides an alternative proof for the infinitude of primes.

Theorem 0.9. Coprimality of Fermat Numbers.
For distinct non-negative integers n and m, the Fermat numbers Fn and
Fm are coprime. That is, if d divides both Fn and Fm, then d = 1.
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定理

Proof

We establish the recurrence relation:

Fn − 2 = F0F1F2 . . . Fn−1.

We proceed by induction. For n = 1, F1 − 2 = 5 − 2 = 3 = F0.
Assume the product holds for k. Consider Fk+1 − 2:

Fk+1 − 2 = (22k+1
+ 1)− 2 = 22k+1 − 1 = (22k − 1)(22k

+ 1).

Since 22k
+ 1 = Fk, and by hypothesis 22k − 1 = Fk − 2 = ∏k−1

i=0 Fi, we
have:

Fk+1 − 2 =

(
k−1

∏
i=0

Fi

)
Fk =

k

∏
i=0

Fi.

Now, let m > n and let d be a common divisor of Fm and Fn. From
the recurrence, Fm − 2 = Fn · (product of other Fermat numbers).
Since d | Fn, it follows that d | (Fm − 2). We are given d | Fm. By lin-
earity, d must divide the difference:

d | Fm − (Fm − 2) =⇒ d | 2.

The divisors of 2 are 1 and 2. However, all Fermat numbers are
odd. Thus d ̸= 2. Therefore, d = 1.

■

Remark.

Since each Fn is coprime to all others, each Fn must introduce at
least one new prime factor into the set of all primes. This implies
there are infinitely many primes.

Mersenne Primes

Another form of interest involves powers of 2 minus one.

Definition 0.6. Mersenne Numbers.
Integers of the form Mn = 2n − 1 for n ≥ 1 are called Mersenne num-
bers. If Mn is prime, it is called a Mersenne prime.

定義

Just as with Fermat numbers, the exponent of a Mersenne prime is
restricted.

Proposition 0.5. Necessary Condition for Mersenne Primes.
Let n > 1. If an − 1 is prime, then a = 2 and n is prime.

命題
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Suppose a > 2.

We have the factorisation an − 1 = (a − 1)(an−1 + · · ·+ 1). Since a >

2, a − 1 > 1. Also n > 1 implies the second factor is greater than 1.
Thus an − 1 is composite. So we must have a = 2.

証明終

Suppose n is composite.

Let n = kl with 1 < k < n. Then 2n − 1 = (2k)l − 1. Using the
identity xl − 1 = (x − 1)(xl−1 + · · ·+ 1) with x = 2k: 2k − 1 divides
2n − 1. Since 1 < k < n, we have 1 < 2k − 1 < 2n − 1. Thus 2n − 1
has a non-trivial factor. Therefore, if Mn is prime, n must be prime.

証明終

Remark.

The condition is necessary but not sufficient. For example, M11 =

211 − 1 = 2047 = 23 × 89.

Example 0.13. A Composite Sequence. Let the sequence {g(n)}
satisfy g(1) = 1 and g(n + 1) = g(n)2 + 4g(n) + 2. Prove that if n is
even, g(n) is composite (except for g(2) = 7).
Let h(n) = g(n) + 2. Substituting into the recurrence:

h(n + 1) = g(n + 1) + 2 = g(n)2 + 4g(n) + 4 = (g(n) + 2)2 = h(n)2.

With h(1) = g(1) + 2 = 3, we have the closed form h(n) = 32n−1
.

Thus g(n) = 32n−1 − 2.
When n = 2, g(2) = 32 − 2 = 7, which is prime. When
n > 2 and n is even, we show that g(n) is divisible by 7. We can
rewrite g(n) by introducing a −9 and +7 to factor the expression:

g(n) = 32n−1 − 9 + 7 = 32(32n−1−2 − 1) + 7.

Consider the exponent E = 2n−1 − 2. Factoring out 2, we get E =

2(2n−2 − 1). Since n is even, let n − 2 = 2k. Then 2n−2 − 1 = 22k −
1 = 4k − 1. Using the identity x − 1 | xk − 1, we know that 4 − 1 |
4k − 1, so 3 | (2n−2 − 1). This implies that 6 | 2(2n−2 − 1), so the ex-
ponent E is a multiple of 6. We can therefore write 3E − 1 as 36m − 1
for some integer m. Using the factorisation xm − 1 = (x − 1)(xm−1 +

· · ·+ 1) with x = 36:

(36 − 1) | (36m − 1).

We calculate 36 − 1 = 729 − 1 = 728. Since 728 = 7 × 104, 7 |
(36 − 1). By transitivity, 7 | (3E − 1). Substituting this back into the
expression for g(n):

g(n) = 9(3E − 1) + 7.
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Since 7 divides both terms on the right hand side, 7 | g(n). For n >

2, g(n) > 7, so g(n) is composite.

範例

0.5 Exercises

1. Induction on Exponents. For any positive integer n ≥ 3, prove
that there always exist odd integers x and y such that

2n = 7x2 + y2.

2. The Binet Formula. The Fibonacci sequence { fn} is defined by
f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. Prove via induction
that:

fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1 −
√

5
2

)n]
.

3. Summation of Structured Sequences. Let {an} be a sequence
where a2k = 3k2 and a2k−1 = 3k(k − 1) + 1 for positive integers k.
Let Sn denote the sum of the first n terms. Prove that:

S2l−1 =
1
2

l(4l2 − 3l + 1) and S2l =
1
2

l(4l2 + 3l + 1).

4. Cantor’s Pairing Function. Prove that the function f (m, n) =

m + 1
2 (m + n − 2)(m + n − 1) is a bijection from Z+ × Z+ to

Z+. That is, as m and n range over all positive integers, the value
f (m, n) takes every positive integer value exactly once.

5. Linear Combination Divisibility. Given integers m, n, p, q such
that (m − p) | (mn + pq), prove that (m − p) | (mq + np).

6. Polynomial Integer Values. Prove that for any integer n, the poly-
nomial f (n) = 1

3 n3 + 1
2 n2 + 1

6 n always evaluates to an integer.

7. Divisibility by Square Factors. Let n ̸= 1 be an integer. Prove that
(n − 1)2 | (nk − 1) if and only if (n − 1) | k.

8. Divisibility by 16. Let n be an odd integer. Prove that 16 | (n4 +

4n2 + 11).

9. Inductive Divisibility. Let n be a positive integer. Use mathemati-
cal induction to prove that

11 | (3n+1 + 3n−1 + 68(n−1)).

10. System of Divisors. Find three positive integers greater than 1

such that the product of any two, plus 1, is divisible by the third.
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11. Modular Arithmetic with Powers. Let n be an odd number. Prove
that the last two digits of 22n

(22n+1 − 1) are 28.

12. Propagating Divisibility. Let l be a fixed positive integer. Suppose
d is an integer such that d | (a+ b+ c), d | (al − bl), and d | (bl − 1).
Prove that for any positive integer n,

d | (an+1 + bn+1 + c).

13. Sum and Difference Divisibility. Let a, b be integers not divisible
by 3. Prove that exactly one of a + b or a − b is divisible by 3.

14. Harmonic Sums. Prove that the sum S = 1
3 + 1

5 + · · ·+ 1
2n+1 for

n ≥ 1 is never an integer.

15. Triangular Decomposition. Let n be a positive integer. Prove that
there exists a unique pair of integers k, l such that n = k(k−1)

2 + l,
where 0 ≤ l < k.

16. Base-k Representation. Let k ≥ 2 be an integer. Prove that any
positive integer a can be uniquely expressed in the form

a = bnkn + bn−1kn−1 + · · ·+ b1k + b0,

where 0 < bn < k and 0 ≤ bi < k for i = 0, . . . , n − 1.

17. Sophie Germain Primes. Let p > 5 be a prime. If 2p + 1 is also
prime, prove that 4p + 1 must be composite.

18. Simultaneous Primes. Determine all primes p such that p2 − 2,
2p2 − 1, and 3p2 + 4 are all prime numbers.

19. Primes in Arithmetic Progression. Prove that there are infinitely
many primes of the form 6n + 5.

20. Decomposition into Consecutive Sums. Let n ≥ 3 be an odd
number. Prove that n is prime if and only if n cannot be expressed
as the sum of three or more consecutive positive integers.

21. Wilson’s Theorem Converse Variant. Let m > 1 be a positive
integer. Prove that m | (m − 1)! if and only if m is a composite
number greater than 4. (Note: Text exercise specified > 5, but
4 ∤ 3! = 6. Check boundary cases carefully).

22. Composite Polynomials. Prove that for any integer n ≥ 1, the
number n4 + 4n is composite. (Hint: Consider the cases n even
and n odd separately; use the Sophie Germain Identity for odd n).

23. Composite Neighbours.

(a) De Bouelles asserted that for all n ≥ 1, at least one of 6n − 1
and 6n + 1 is prime. Find a counterexample.

(b) Prove that there are infinitely many n such that 6n − 1 and
6n + 1 are both composite.
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24. Distinct Prime Divisors. Let n > 2. Prove that for the sequence of
n − 1 consecutive integers

n! + 2, n! + 3, . . . , n! + n,

each term has a prime divisor that does not divide any of the
other n − 2 terms.

25. Square Divisibility of Factorials. Find all odd numbers n such
that n2 | (n − 1)!.

26. Growth of Primes. Let p1 = 2, p2 = 3, . . . be the sequence of
primes in increasing order. Prove that pn ≤ 22n−1

.

27. Arithmetic Progressions of Primes. Find 6 primes less than 160

that form an arithmetic progression. Then, prove that there cannot
be 7 primes all less than 200 forming an arithmetic progression.

28. Infinite Product Inequality. Let N be a positive integer, and
p1, . . . , pn be all primes not exceeding N. Prove:

n

∏
i=1

(
1 − 1

pi

)−1
>

N

∑
i=1

1
i

.

Use the divergence of the harmonic series to deduce that there are
infinitely many primes.

29. Fermat Primes Structure. Let m be a positive integer such that
2m + 1 is prime. Prove that m must be a power of 2.

30. Euclid-Mullin Sequence Properties. Let A1 = 2 and An+1 =

A2
n − An + 1 for n ≥ 1.

(a) Prove that An+1 = A1 A2 · · · An + 1.

(b) Prove that if m ̸= n and d > 1 divides An, then d ∤ Am.

(c) Use this mutual coprimality to provide an alternative proof
that there are infinitely many primes.



1
Greatest Common Divisor

While divisibility defines a relationship between two integers, the
study of number theory often requires comparing the multiplicative
structures of multiple integers simultaneously. The central concept in
this comparison is the greatest common divisor.
We generalise the concept of a common divisor to sets of integers.

Definition 1.1. Greatest Common Divisor.
Let a1, a2, . . . , an be integers, not all zero. An integer d is a common di-
visor of the set if d | ai for all i = 1, . . . , n. The greatest common di-
visor (GCD), denoted (a1, a2, . . . , an), is the largest such integer.

定義

Definition 1.2. Coprimality.
The integers a1, a2, . . . , an are coprime (or relatively prime) if their great-
est common divisor is 1. They are pairwise coprime if (ai, aj) = 1 for
all 1 ≤ i < j ≤ n.

定義

Note

The set {6, 10, 15} is coprime because no integer greater than 1

divides all three, but it is not pairwise coprime since (6, 10) = 2.

Since divisibility is defined by integer multiples, the sign of an inte-
ger does not influence its divisors.

Proposition 1.1. Absolute Value Invariance.
Let a1, . . . , an be integers, not all zero. Then:

(a1, a2, . . . , an) = (|a1|, |a2|, . . . , |an|).

命題

Proof

Let d be a common divisor of a1, . . . , an. Since d | ai, it follows that
d | |ai|. Thus d is a common divisor of the absolute values. Con-
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versely, if d | |ai|, then d | ai. Since the sets of common divisors are
identical, their maximum elements must be identical.

■

Proposition 1.2. Zero Element.
For any non-zero integer b, (0, b) = |b|.

命題

Proof

Since b | 0 (as 0 = b · 0) and b | b, |b| is a common divisor. No divi-
sor of b can exceed |b|, so |b| is the greatest common divisor.

■

These properties allow us to restrict our attention to positive integers
without loss of generality.

1.1 The Euclidean Algorithm

The calculation of the GCD does not require factorisation. Instead,
it relies on the repeated application of the Division Algorithm (the-
orem 0.4). We first establish a reduction lemma, known historically
from Euclid’s Elements (Book VII, Proposition 2).

Theorem 1.1. Euclidean Reduction.
If a = bk + c for integers a, b, c, k, then (a, b) = (b, c).

定理

Proof

Let d = (a, b). Since d | a and d | b, by linearity, d | (a − bk), which
implies d | c. Thus d is a common divisor of b and c, so d ≤ (b, c).
Conversely, let e = (b, c). Since e | b and e | c, linearity implies
e | (bk + c), so e | a. Thus e is a common divisor of a and b, so e ≤
(a, b). Therefore, (a, b) = (b, c).

■

This theorem transforms the problem of finding (a, b) into finding the
GCD of smaller numbers (b, r), where r is the remainder when a is
divided by b. Iterating this process yields the Euclidean Algorithm.

Theorem 1.2. The Euclidean Algorithm.
Let a and b be positive integers. By repeated application of the Divi-
sion Algorithm:
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a = bq1 + r1, 0 < r1 < b

b = r1q2 + r2, 0 < r2 < r1

r1 = r2q3 + r3, 0 < r3 < r2

...

rn−2 = rn−1qn + rn, 0 < rn < rn−1

rn−1 = rnqn+1 + 0.

The last non-zero remainder rn is the greatest common divisor of a and
b.

定理

Proof

Applying theorem 1.1 sequentially:

(a, b) = (b, r1) = (r1, r2) = · · · = (rn−1, rn) = (rn, 0).

By the Zero Element property, (rn, 0) = rn.
■

a

b

b × b

r1r1 × r1 r2

Figure 1.1: Geometric visu-
alisation of the Euclidean
Algorithm. We decompose
a rectangle of size a × b into
squares of size b, then squares
of size r1, and so on.

Corollary 1.1. Divisibility of Common Divisors. Every common divisor
of a and b divides (a, b).

推論

Proof

Let d be a common divisor. In the algorithm above, d | a and d |
b =⇒ d | r1. Since d | b and d | r1, d | r2. Inductively, d divides
every remainder, including rn = (a, b).

■

Example 1.1. Calculation of GCD. We find (6731, 2809).

6731 = 2809 × 2 + 1113

2809 = 1113 × 2 + 583

1113 = 583 × 1 + 530

583 = 530 × 1 + 53

530 = 53 × 10 + 0

The last non-zero remainder is 53. Thus (6731, 2809) = 53.

範例

Structural Properties

The GCD behaves linearly with respect to multiplication and is in-
variant under linear shifts.
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Proposition 1.3. Homogeneity and Division.
Let a, b be integers and k be a positive integer. Let (a, b) = d.
1. (ka, kb) = k(a, b) = kd.

2.
(

a
d , b

d

)
= 1.

命題

Proof

For (2), let d′ = (a/d, b/d). Then d′ | (a/d) and d′ | (b/d), so dd′ | a
and dd′ | b. Thus dd′ is a common divisor of a and b. By definition,
dd′ ≤ (a, b) = d, which implies d′ = 1. For (1), let g = (ka, kb). Since
k | ka and k | kb, corollary 1.1 gives k | g, so write g = kg1. Because
g | ka and g | kb, we have g1 | a and g1 | b, so g1 ≤ (a, b) = d. Hence
g ≤ kd. Conversely, kd divides both ka and kb, so kd ≤ g. Therefore
g = kd.

■

Theorem 1.3. Invariance under Linear Combination.
For any integer k, (a, b) = (a, b + ka).

定理

Proof

If d | a and d | b, then d | (b + ka). Thus every common divisor of
a, b is a common divisor of a, b + ka. Conversely, if d | a and d | (b +
ka), then d | (b + ka − ka) = b. Hence the sets of common divisors
coincide, so the GCDs are equal.

■

We can apply these structural theorems to prove properties of number-
theoretic sequences.

Example 1.2. Factorials and Shifted Indices. Find (n! + 1, (n + 1)! +
1).
Using theorem 1.3 with a = n! + 1 and b = (n + 1)! + 1:
Note that

(n+ 1)!+ 1 = (n+1)n!+1 = (n+ 1)(n!+ 1− 1)+ 1 = (n+ 1)(n!+ 1)− (n+ 1)+ 1 = (n+ 1)(n!+ 1)−n.

Thus,

((n + 1)! + 1, n! + 1) = (−n, n! + 1) = (n, n! + 1).

Since n divides n!, any common divisor of n and n! + 1 must divide
1. Therefore, the GCD is 1.

範例

Example 1.3. GCD of Linear Forms. Calculate (30n+ 2, 12n+ 1) for
any integer n.
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We use the Euclidean reduction repeatedly:

(30n + 2, 12n + 1) = (30n + 2 − 2(12n + 1), 12n + 1)

= (6n, 12n + 1)

= (6n, 12n + 1 − 2(6n))

= (6n, 1).

Thus, the GCD is 1 for all n.

範例

GCD of Multiple Integers

The definition of the GCD extends recursively to multiple integers.

Theorem 1.4. Associativity of GCD.
For integers a1, . . . , an:

(a1, a2, . . . , an) = ((a1, a2), a3, . . . , an).

定理

Proof

Let d = (a1, . . . , an) and g = ((a1, a2), a3, . . . , an). If k divides all
ai, then k | (a1, a2). Thus k divides (a1, a2) and a3, . . . , an, so k | g.
Hence d | g. Conversely, if k | g, then k | (a1, a2) and k | ai for i ≥ 3.
Since k | (a1, a2), k | a1 and k | a2. Thus k divides all ai, so g | d.
Therefore d = g.

■

Corollary 1.2. Distributive Property of GCD.

(a1, . . . , an)(b1, . . . , bm) = (a1b1, . . . , aibj, . . . , anbm).

In particular, (a, b)(c, d) = (ac, ad, bc, bd).
推論

Proof

Consider the case n = 2, m = 2. Let d = (a1, a2) and e = (b1, b2). By
proposition 1.3, (a1e, a2e) = e(a1, a2) = de. Since e = (b1, b2), homo-
geneity also gives

(a1e, a2e) = ((a1b1, a1b2), (a2b1, a2b2)).

By theorem 1.4, this equals (a1b1, a1b2, a2b1, a2b2). The general case
follows by induction.

■
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Example 1.4. Algebraic Verification. We verify that (a, b)2 =

(a2, ab, b2).
Using corollary 1.2:

(a, b)(a, b) = (a · a, a · b, b · a, b · b) = (a2, ab, ab, b2).

Since the set of numbers is {a2, ab, b2}, the GCD is (a2, ab, b2).

範例

Application to Special Numbers

The Euclidean Algorithm allows us to compute the GCD of numbers
defined by exponents without expanding the terms.

Example 1.5. Fermat-style GCD. Let m > n ≥ 0. We calculate
(a2m

+ 1, a2n
+ 1).

Let m = n + r with r ≥ 1. Let x = a2n
. Then a2m − 1 = x2r − 1. Since

x2r − 1 = (x − 1)(x + 1)(x2 + 1) · · · (x2r−1
+ 1), we have x + 1 | x2r −

1. Thus a2m − 1 = (a2n
+ 1)M for some integer M.

We can explicitly write:

a2m
+ 1 = (a2m − 1) + 2.

Since (a2n
+ 1) divides (a2m − 1), we can apply theorem 1.1:

(a2m
+ 1, a2n

+ 1) = (a2m − 1 + 2, a2n
+ 1) = (2, a2n

+ 1).

Thus, the GCD is 1 if a is even, and 2 if a is odd.

範例

Theorem 1.5. GCD of Mersenne Numbers.
For positive integers m, n:

(2m − 1, 2n − 1) = 2(m,n) − 1.

定理

Proof

Assume without loss of generality m > n. By theorem 0.4, we write
m = nq + r where 0 ≤ r < n. We decompose the term 2m − 1 as fol-
lows:

2m − 1 = 2nq+r − 1 = 2r(2nq − 1) + (2r − 1).

We recall that x − 1 divides xq − 1. Letting x = 2n, we see that 2n −
1 divides (2n)q − 1 = 2nq − 1. Thus, there exists an integer k such
that 2nq − 1 = k(2n − 1). Substituting this back into our expression:

2m − 1 = 2r · k(2n − 1) + (2r − 1).
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This is a linear combination of the form A = BQ + R, where A =

2m − 1, B = 2n − 1, and R = 2r − 1. By theorem 1.1, the GCD satis-
fies:

(2m − 1, 2n − 1) = (2n − 1, 2r − 1).

This step exactly mirrors the first step of the Euclidean Algorithm
applied to the exponents m and n, where m = nq + r. Repeating
this process follows the Euclidean Algorithm on the exponents:

(2m − 1, 2n − 1) → (2n − 1, 2r − 1) → · · · → (2d − 1, 20 − 1),

where d = (m, n). Since 20 − 1 = 0, the final result is 2d − 1.
■

Example 1.6. Complex Fraction GCD. Prove that(
a

(a, c)
,

b
(b, a)

,
c

(c, b)

)
= 1.

Let X = (a, b)(b, c)(c, a). By the distributive property:

X = (ab, ac, b2, bc)(c, a) = (abc, a2b, ac2, a2c, b2c, ab2, bc2, abc).

Rearranging the terms and removing duplicates in the GCD set:

X = (a2b, a2c, ab2, b2c, ac2, bc2, abc).

Now consider the expression we wish to simplify. Let

Y = (a(a, b)(b, c), b(b, c)(c, a), c(c, a)(a, b)).

Expanding the terms inside Y using distributivity:
1. a(a, b)(b, c) = a(ab, ac, b2, bc) = (a2b, a2c, ab2, abc).

2. b(b, c)(c, a) = b(bc, ab, c2, ac) = (b2c, ab2, bc2, abc).

3. c(c, a)(a, b) = c(ac, bc, a2, ab) = (ac2, bc2, a2c, abc).
Combining these sets, Y is the GCD of all terms listed above. Ob-
serve that the union of these sets is exactly the set of terms defining
X. Thus Y = X. Let G = (a, b)(b, c)(c, a) = X. Then

Y = (a(a, b)(b, c), b(b, c)(c, a), c(c, a)(a, b)) =
(

G · a
(a, c)

, G · b
(b, a)

, G · c
(c, b)

)
.

By proposition 1.3, Y = G
(

a
(a,c) , b

(b,a) , c
(c,b)

)
. Since Y = G, it follows

that
(

a
(a,c) , b

(b,a) , c
(c,b)

)
= 1.

範例
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1.2 The Linear Structure of Divisibility

The Euclidean Algorithm provides more than just the numerical
value of the greatest common divisor; its recursive structure reveals
that (a, b) can be expressed as a linear combination of a and b. This
property, known as Bézout’s Identity, bridges the gap between the
multiplicative structure of integers (divisibility) and their additive
structure.
We begin by formalizing the coefficients generated during the Eu-
clidean Algorithm. These coefficients allow us to "unwind" the algo-
rithm to express the remainder in terms of the initial inputs.

Lemma 1.1. Extended Euclidean Recurrence Let a, b be positive inte-
gers. Consider the sequences of quotients qk and remainders rk gen-
erated by the Euclidean Algorithm, where r0 = b, r−1 = a. Define
the sequences Pk and Qk recursively by:

P0 = 1, P1 = q1, Pk = qkPk−1 + Pk−2 (k ≥ 2);

Q0 = 0, Q1 = 1, Qk = qkQk−1 + Qk−2 (k ≥ 2).

Then for k ≥ 1, the remainders satisfy the identity:

Qka − Pkb = (−1)k−1rk.

引理

We proceed by induction on k.

Base Case (k = 1).

From the definition, Q1 = 1 and P1 = q1. The first step of the Eu-
clidean algorithm is a = bq1 + r1, which rearranges to 1 · a − q1 · b =

r1. Thus, Q1a − P1b = (−1)0r1, and the statement holds.
証明終

Base Case (k = 2).

The next Euclidean step is b = r1q2 + r2, so r2 = b − r1q2. Substitut-
ing r1 = a − bq1 gives

r2 = b − q2(a − bq1) = (1 + q1q2)b − q2a.

Thus −r2 = q2a − (q1q2 + 1)b. Since Q2 = q2 and P2 = q2q1 + 1, we
have Q2a − P2b = −r2 = (−1)1r2.

証明終

Inductive Step.

Assume the identity holds for k − 1 and k. We prove it for k + 1. Re-
call the recurrence rk−1 = rkqk+1 + rk+1, which implies rk+1 =
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rk−1 − rkqk+1. Multiplying by (−1)k:

(−1)krk+1 = (−1)krk−1 − (−1)krkqk+1

= (−1)k−2rk−1 + qk+1[(−1)k−1rk]

= (Qk−1a − Pk−1b) + qk+1(Qka − Pkb) (by hypothesis)

= (Qk−1 + qk+1Qk)a − (Pk−1 + qk+1Pk)b.

By the recursive definitions of P and Q, this simplifies to
Qk+1a − Pk+1b. Thus the identity holds for all steps of the algo-
rithm.

証明終

This constructive lemma leads directly to one of the most fundamen-
tal theorems in elementary number theory.

Theorem 1.6. Bézout’s Identity.
Let a and b be integers, not both zero. There exist integers s and t such
that:

as + bt = (a, b).

定理

Proof

If a or b is zero, the result is trivial (e.g., if a = 0, (0, b) = |b|, so
choose s = 0, t = ±1). Assume a, b > 0. Let the Euclidean algo-
rithm terminate at step n with remainder rn = (a, b). By lemma 1.1,
we have:

Qna − Pnb = (−1)n−1rn.

Multiplying by (−1)n−1 (which is ±1):

(−1)n−1Qna + (−1)nPnb = rn = (a, b).

Let s = (−1)n−1Qn and t = (−1)nPn. These are the required inte-
gers.

■

Remark.

The integers s and t are often called Bézout coefficients. They are
not unique; if (s, t) is a solution, then (s + kb/(a, b), t − ka/(a, b)) is
also a solution for any integer k.

Corollary 1.3. General Linear Combinations. Let a1, . . . , an be integers.
There exist integers k1, . . . , kn such that:

n

∑
i=1

kiai = (a1, . . . , an).

推論
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Proof

This follows by induction using the associative property of the
GCD established in the previous section.

■

Coprimality and Euclid’s Lemma

Bézout’s Identity provides a powerful algebraic characterisation of
coprimality. While the definition of (a, b) = 1 is about the absence of
common divisors, Bézout’s Identity transforms this into the existence
of a solution to a linear equation.

Corollary 1.4. Characterisation of Coprimality. Integers a and b are co-
prime if and only if there exist integers s and t such that:

as + bt = 1.

推論

Necessity.

If (a, b) = 1, theorem 1.6 guarantees s, t exist.
証明終

Sufficiency.

Suppose as + bt = 1. Let d = (a, b). Then d | a and d | b, so by lin-
earity, d | (as + bt), which implies d | 1. Thus d = 1.

証明終

This characterisation allows us to manipulate divisibility relations
algebraically without prime factorisation.

Theorem 1.7. Preservation of GCD.
Let a, b, c be integers. If (a, c) = 1, then (ab, c) = (b, c).

定理

Proof

Since (a, c) = 1, there exist s, t such that as + ct = 1. Multiply this
equation by b:

(as + ct)b = b =⇒ (ab)s + c(bt) = b.

Let d = (ab, c). Then d | ab and d | c. By linearity on the equation
above, d | ((ab)s + c(bt)), so d | b. Thus d is a common divisor of
b and c, implying d ≤ (b, c). Conversely, any divisor of b and c also
divides ab and c, so (b, c) ≤ (ab, c). Therefore, (ab, c) = (b, c).

■

This theorem immediately yields the standard form of Euclid’s
Lemma.
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Corollary 1.5. Euclid’s Lemma. If c | ab and (c, a) = 1, then c | b.
推論

Proof

By theorem 1.7, (ab, c) = (b, c). Since c | ab, we have (ab, c) = |c|.
Therefore, |c| = (b, c), which implies c | b.

■

Corollary 1.6. Product Coprimality. If (ai, bj) = 1 for all 1 ≤ i ≤ n
and 1 ≤ j ≤ m, then: (

n

∏
i=1

ai,
m

∏
j=1

bj

)
= 1.

In particular, if (a, b) = 1, then (an, bm) = 1 for any n, m ≥ 1.
推論

Proof

By repeated application of theorem 1.7. First, fix bj. Then (a1, bj) =

1 =⇒ (a1a2, bj) = (a2, bj) = 1. Inductively, (∏ ai, bj) = 1. Now
let A = ∏ ai. We have (A, bj) = 1 for all j. Applying the logic again,
(A, b1b2) = (A, b2) = 1. Inductively, (A, ∏ bj) = 1.

■

We conclude this section with the property that defines the role of
prime numbers in the multiplicative structure of integers.

Theorem 1.8. Prime Divisibility Property.
Let p be a prime and a be an integer. Then either p | a or (p, a) = 1.
Consequently, if p | a1a2 . . . an, then p divides at least one factor ak.

定理

Proof

Let d = (p, a). Since d | p, d must be either 1 or p. If d = p, then
p | a. If d = 1, they are coprime. For the consequence: Suppose p |
a1 . . . an. If p divides no ak, then (p, ak) = 1 for all k. By the Product
Coprimality corollary, (p, ∏ ak) = 1, contradicting p | ∏ ak.

■

1.3 Applications and Diophantine Examples

Example 1.7. The Measuring Problem. Two containers have capac-
ities of 27 litres and 15 litres. How can one measure exactly 9 litres
of oil from a barrel using only these containers?
We seek integer solutions to the linear combination 27x + 15y = 9.
First, check solvability: (27, 15) = 3. Since 3 | 9, a solution exists.



discrete ii: elementary number theory 35

Apply the Euclidean algorithm to 27 and 15:

27 = 1 × 15 + 12

15 = 1 × 12 + 3

Back-substitute to find the combination for 3:

3 = 15 − 12 = 15 − (27 − 15) = 2 × 15 − 1 × 27.

Multiply by 3 to get 9:

9 = 6 × 15 − 3 × 27.

Operational interpretation: The term 6 × 15 implies filling the
15-litre container 6 times. The term −3 × 27 implies emptying the
27-litre container 3 times.
· Fill B (15L), pour into A (27L). A has 15L.

· Fill B, pour into A. A is full (needs 12L). B has 3L left. Empty A.

· Pour B (3L) into A. A has 3L.

· ... Repeat this process until the net result is achieved.

範例

Example 1.8. Extraction of k-th Powers. Let a, b, c, k be positive
integers such that ab = ck and (a, b) = 1. Prove that a and b are
perfect k-th powers.
Let d = (a, c). Since d | a and d | c, we can write a = da′ and c = dc′

where (a′, c′) = 1. Consider the term (a, c)k = dk. Since (a, b) = 1,
a shares no factors with b. Since ab = ck, all prime factors of a must
appear in ck with multiplicity divisible by k. More formally, we use
the property (x, y) = 1 =⇒ (xn, yn) = 1. We claim a = (a, c)k.
Consider the GCD:

(ak, ck) = (a, c)k.

Also consider (ak, ab). Since (a, b) = 1 =⇒ (ak−1, b) = 1:

(ak, ab) = a(ak−1, b) = a · 1 = a.

Substituting ab = ck:

a = (ak, ck) = (a, c)k.

Thus a is a perfect k-th power. Similarly b = (b, c)k.

範例
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Example 1.9. Divisibility by 11. Prove that 11 | (a2 + 5b2) if and
only if 11 | a and 11 | b.

範例

Sufficiency.

If 11 | a and 11 | b, then a = 11k, b = 11m. a2 + 5b2 = 121k2 + 605m2,
which is clearly divisible by 11.

証明終

Necessity.

Suppose 11 | (a2 + 5b2). We prove 11 | b by contradiction. Assume
11 ∤ b. By theorem 1.8, (11, b) = 1. By Bézout’s Identity, there exists
an inverse-like integer t such that bt + 11s = 1. Consider the expres-
sion a2 + 5b2. Multiply by t2:

t2(a2 + 5b2) = (at)2 + 5(bt)2.

Since bt = 1 − 11s, we have (bt)2 = (1 − 11s)2 = 1 − 22s + 121s2.
Thus (bt)2 = 1 + 11K for some integer K. Substituting back:

t2(a2 + 5b2) = (at)2 + 5(1 + 11K) = (at)2 + 5 + 55K.

Since 11 | (a2 + 5b2), 11 divides the LHS. Thus 11 | ((at)2 + 5). Let
x = at. We apply the Division Algorithm: x = 11q + r where 0 ≤
r ≤ 10. Then x2 + 5 = (11q + r)2 + 5 = 11(11q2 + 2qr) + r2 + 5.
For 11 to divide the whole expression, we must have 11 | (r2 + 5).
We test all possible remainders r ∈ {0, 1, . . . , 10}:
• r = 0 =⇒ r2 + 5 = 5 (No)
• r = 1 =⇒ 6 (No)
• r = 2 =⇒ 9 (No)
• r = 3 =⇒ 14 (No)
• r = 4 =⇒ 21 (No)
• r = 5 =⇒ 30 (No)
• r = 6 =⇒ 41 (No)
• r = 7 =⇒ 54 (No)
• r = 8 =⇒ 69 (No)
• r = 9 =⇒ 86 (No)
• r = 10 =⇒ 105 (No)
This is a contradiction. Thus the assumption 11 ∤ b is false. So 11 |
b. Since 11 | b, 11 | 5b2. Since 11 | (a2 + 5b2), by linearity 11 | a2.
Since 11 is prime, 11 | a.

証明終

Example 1.10. Factorial Divisibility. Let m, n be coprime positive
integers. Prove that m!n! divides (m + n − 1)!.
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Consider the integers:

A =

(
m + n − 1

n

)
=

(m + n − 1)!
n!(m − 1)!

and B =

(
m + n − 1

m

)
=

(m + n − 1)!
m!(n − 1)!

.

Since these are binomial coefficients, A and B are integers. We can
write:

(m + n − 1)! = A · n!(m − 1)! = B · m!(n − 1)!.

Let X = (m + n − 1)!. The equations imply:

X = A · n!
m!
m

=⇒ mX = A · n!m!.

X = B · m!
n!
n

=⇒ nX = B · m!n!.

We see that m!n! divides mX and nX. Let Y = m!n!. Then Y | mX
and Y | nX. Since (m, n) = 1, by Bézout’s Identity, there exist s, t
such that ms + nt = 1. By linearity of divisibility, since Y divides mX
and nX, it divides any linear combination of them:

Y | (mX)s + (nX)t =⇒ Y | X(ms + nt) =⇒ Y | X · 1.

Therefore, m!n! | (m + n − 1)!.

範例

1.4 Least Common Multiple

Parallel to the greatest common divisor is the concept of the least
common multiple. While the GCD captures the intersection of divisor
sets, the least common multiple captures the union of multiple sets.

Definition 1.3. Least Common Multiple.
Let a1, . . . , an be non-zero integers. An integer m is a common multi-
ple if ai | m for all i. The least common multiple (LCM), denoted [a1, . . . , an],
is the smallest positive common multiple.

定義

Proposition 1.4. Basic Properties of LCM.
Let a1, . . . , an be non-zero integers.
1. Absolute Value: [a1, . . . , an] = [|a1|, . . . , |an|].

2. Divisibility: If M is any common multiple, then [a1, . . . , an] | M.

3. Homogeneity: For any k > 0, [ka1, . . . , kan] = k[a1, . . . , an].
命題
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Proof

Property (1) follows immediately from the definition of divisibility.
For (2), let m = [a1, . . . , an] and let M be a common multiple. By
the Division Algorithm, M = mq + r with 0 ≤ r < m. Since ai | M
and ai | m, linearity implies ai | r for all i. Thus r is a non-negative
common multiple strictly smaller than the least positive common
multiple m. This forces r = 0.
For (3), let L = [ka1, . . . , kan]. Since kai | k[a1, . . . , an], we have L |
km. Thus L/k is an integer. Since kai | L =⇒ ai | (L/k), L/k is
a common multiple of the ai’s, so m ≤ L/k =⇒ km ≤ L. Thus
L = km.

■

Theorem 1.9. The GCD-LCM Relation.
For positive integers a and b:

[a, b](a, b) = ab.

定理

Proof

Let d = (a, b). We first show that m = ab
d is a common multiple.

Since b = db′ for some integer b′, m = ab′. Thus a | m. Similarly b |
m. Let M be any common multiple of a and b. Then M = ax = by
for integers x, y. Dividing by d:

a
d

x =
b
d

y.

Since (a/d, b/d) = 1, Euclid’s Lemma implies b
d | x. So x = k b

d for

some integer k. Substituting back: M = a
(

k b
d

)
= k ab

d = km. Thus

any common multiple is a multiple of ab/d. Therefore [a, b] = ab
d .

■

Corollary 1.7. Power Property of LCM. For any positive integer n, [an, bn] =

[a, b]n.
推論

Proof

[an, bn] =
anbn

(an, bn)
=

(ab)n

(a, b)n =

(
ab

(a, b)

)n
= [a, b]n.

■

Theorem 1.10. Associativity of LCM.
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For integers a1, . . . , an:

[a1, . . . , an] = [[a1, a2], a3, . . . , an].

定理
The proof mirrors that of the GCD associativity and relies on the fact
that the set of common multiples of {a1, . . . , an} is identical to the set
of common multiples of {[a1, a2], a3, . . . , an}.

Applications of LCM

Example 1.11. Planetary Alignment. Venus orbits the Sun in 225

days, and Earth in 365 days. If they are aligned today, when will
they align again at the same position?
We seek the least common multiple of 225 and 365. Using the Eu-
clidean Algorithm to find (225, 365):

365 = 225 × 1 + 140

225 = 140 × 1 + 85

140 = 85 × 1 + 55

85 = 55 × 1 + 30

55 = 30 × 1 + 25

30 = 25 × 1 + 5

25 = 5 × 5 + 0.

Thus (225, 365) = 5. By theorem 1.9:

[225, 365] =
225 × 365

5
=

82125
5

= 16425 days.

This corresponds to 16425/365 = 45 Earth years and 16425/225 =

73 Venusian years.

範例

Example 1.12. Counting Solutions to GCD-LCM Constraints. Find
the number of triples (a, b, c) of positive integers satisfying:

(a, b, c) = 10 and [a, b, c] = 100.

Let a = 10x, b = 10y, c = 10z. The conditions simplify to:

(x, y, z) = 1 and [x, y, z] = 10.

The variables x, y, z must be divisors of 10. Thus x, y, z ∈
{1, 2, 5, 10}. We analyse the possible multisets {x, y, z} based on
cardinality of distinct elements.

Case 1: All three are equal. If x = y = z = k, then (k, k, k) = k and
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[k, k, k] = k. We require k = 1 and k = 10 simultaneously, which
is impossible. (0 solutions).

Case 2: Two are equal. Let the set be {k, k, m} with k ̸= m. The
conditions require (k, m) = 1 and [k, m] = 10. We check possible
pairs from {1, 2, 5, 10}:

· If k = 10, we need [10, m] = 10 (always true for divisors) and
(10, m) = 1. The only coprime divisor is m = 1. Set: {10, 10, 1}.

· If k = 5, we need [5, m] = 10 =⇒ m ∈ {2, 10}. We need
(5, m) = 1. If m = 2, (5, 2) = 1 (Valid). Set: {5, 5, 2}. If m = 10,
(5, 10) = 5 ̸= 1 (Invalid).

· If k = 2, we need [2, m] = 10 =⇒ m ∈ {5, 10}. We need
(2, m) = 1. If m = 5, (2, 5) = 1 (Valid). Set: {2, 2, 5}. If m = 10,
(2, 10) = 2 ̸= 1 (Invalid).

· If k = 1, we need [1, m] = 10 =⇒ m = 10. We need (1, 10) = 1
(Valid). Set: {1, 1, 10}.

There are 4 valid multisets. For each multiset with two identical
elements (e.g., {10, 10, 1}), there are 3!

2! = 3 permutations. Total
solutions in this case: 4 × 3 = 12.

Case 3: All three are distinct. We choose 3 distinct elements from
{1, 2, 5, 10}. There are (4

3) = 4 possible sets. We verify if they
satisfy (x, y, z) = 1 and [x, y, z] = 10:

· {10, 5, 2}: GCD is 1, LCM is 10. (Valid).
· {10, 5, 1}: GCD is 1, LCM is 10. (Valid).
· {10, 2, 1}: GCD is 1, LCM is 10. (Valid).
· {5, 2, 1}: GCD is 1, LCM is 10. (Valid).

All 4 sets are valid. For each set of 3 distinct elements, there are
3! = 6 permutations. Total solutions in this case: 4 × 6 = 24.

Summing the cases, the total number of solutions is 12 + 24 = 36.

範例

Example 1.13. Coprimes in Arithmetic Progressions. Let a, b, m be
positive integers with (a, b) = 1. Prove there are infinitely many
terms in the sequence a, a + b, a + 2b, . . . that are coprime to m.

範例

Proof

Let c be the largest divisor of m such that (c, a) = 1. We consider
the term X = a + bc. We calculate (X, m). Let d = (a + bc, m). Since
d | m and c | m, any common factor of d and c must divide m. Also
d | (a + bc). If k | d and k | c, then k | bc, so k | a. But (c, a) = 1, so
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k = 1. Thus (d, c) = 1.
Now consider prime factors of m. Let p | m. If p | c, then p ∤ a (since
(c, a) = 1) and p | bc. Thus p ∤ (a + bc), so p ∤ d. If p ∤ c, then by the
maximality of c, we must have p | a (otherwise cp would be a larger
divisor coprime to a). If p | a and p ∤ c, then p ∤ bc (since (a, b) = 1).
Thus p ∤ (a + bc), so p ∤ d. In all cases, no prime factor of m divides
d. Thus d = 1. So (a + bc, m) = 1. The term a + (c + km)b = (a +
bc) + k(mb) satisfies:

((a + bc) + kmb, m) = (a + bc, m) = 1.

This generates infinitely many such terms as k varies.
■

1.5 Exercises

1. Euclidean Computations. Use the Euclidean algorithm to calcu-
late the greatest common divisor for the following pairs:

(a) (4935, 13912)
(b) (51425, 13310)

2. Coprimality of Power Forms. Let m and n be positive integers.
Prove that if m is odd, then:

(2m − 1, 2n + 1) = 1.

3. Minimal Linear Combinations. Let a, b be integers, not both zero.
Let d = ax0 + by0 be the smallest positive integer expressible in the
form ax + by with x, y ∈ Z. Prove that d = (a, b).

4. Mersenne Coprimality. Prove that (2p − 1, 2q − 1) = 1 if and only
if (p, q) = 1.

5. Coprime Arithmetic Progressions. Let n ≥ 2. Prove that there
exist n composite numbers in arithmetic progression such that any
two of them are coprime.

6. Symbolic GCDs. Evaluate the following greatest common divi-
sors in terms of n:

(a) (2n+1 + 1, 2n−1 + 1) for n > 0.
(b) (n − 1, n2 + n + 1).

7. Setwise vs Pairwise Coprimality. Construct a set of four positive
integers such that their collective greatest common divisor is 1, yet
no subset of three integers is coprime (i.e., every triplet shares a
common factor greater than 1).

8. Multiple GCD Computation. Calculate the greatest common
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divisor of the set (353430, 530145, 165186).

9. GCD Identity. Prove the following identity for any positive inte-
gers a, b, c:

(a, b, c)(ab, bc, ca) = (a, b)(b, c)(c, a).

10. Gear Synchronization. Two meshing gears A and B have 437 and
323 teeth respectively. If a specific tooth on A touches a specific
tooth on B, find the minimum number of revolutions each gear
must make before these two specific teeth touch again.

11. Constrained Solutions. Find all pairs of positive integers (a, b)
such that (a, b) = 10 and [a, b] = 100.

12. Consecutive LCM. Determine the least common multiple of three
consecutive positive integers n, n + 1, n + 2. Express your answer
in terms of n (cases may be required based on the parity of n).

13. Divisibility by 13. Let a, b be integers. Prove that 13 | (a2 − 7b2) if
and only if 13 | a and 13 | b.

14. Bounded Bézout Coefficients. Let a, b > 1 be coprime integers.
Prove that there exist integers ξ, η such that:

aξ − bη = 1

satisfying the bounds 0 < ξ < b and 0 < η < a.

15. Cyclic Divisibility. Find all sets of three distinct positive integers
{x, y, z} such that:

(i) They are pairwise coprime;
(ii) The sum of any two is divisible by the third.

16. Reciprocal Equation and Squares. Let a, b, c be positive integers
satisfying (a, b, c) = 1 and the equation:

1
a
+

1
b
=

1
c

.

Prove that a + b, a − c, and b − c are all perfect squares.

17. Sum of Reciprocals of Coprimes. Let m > n > 1. Let a1 < a2 <

· · · < ak be all positive integers not exceeding m that are coprime
to n. Define the sum S = ∑k

i=1
1
ai

. Prove that S is not an integer.



2
Applications

We have seen that the set of integers Z is equipped with a division
algorithm and a structure of primality. However, the true power of
prime numbers lies not in their definition, but in their role as the
unique building blocks of all integers.

2.1 Fundamental Theorem of Arithmetic

Theorem 2.1. Fundamental Theorem of Arithmetic.
Every integer n > 1 can be represented as a product of prime num-
bers. This representation is unique, up to the order of the factors.

定理

Existence.

We proceed by the Second Principle of Mathematical Induction. For
n = 2, the number is prime, so the statement holds. Assume the
statement holds for all integers k such that 2 ≤ k < n. If n is prime,
the representation exists (it is simply n). If n is composite, there ex-
ist integers a, b such that n = ab with 1 < a, b < n. By the inductive
hypothesis, a and b can be written as products of primes:

a = p1 . . . pr, b = q1 . . . qs.

Thus n = p1 . . . prq1 . . . qs is a product of primes. By the Strong In-
duction Principle, existence holds for all n > 1.

証明終

Uniqueness.

Suppose n has two factorisations. By arranging the prime factors in
non-decreasing order, let:

n = p1 p2 . . . pk = q1q2 . . . qm,

where p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ qm are primes.
We consider p1. Since p1 | n, it follows that p1 | q1q2 . . . qm. By
theorem 1.8 (Prime Divisibility Property), p1 must divide at least one
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factor qj. Since qj is prime, the only positive divisors are 1 and qj.
As p1 > 1, we must have p1 = qj. Since the q’s are sorted, q1 ≤ qj,
so q1 ≤ p1. By symmetry, applying the same argument to q1 yields
q1 | ∏ pi, implying q1 = pi for some i. Thus p1 ≤ pi, so p1 ≤ q1.
Therefore, p1 = q1. We can cancel this common factor from the
equation:

p2 . . . pk = q2 . . . qm.

Repeating this argument yields p2 = q2, and so on. If k < m, we
would eventually reach 1 = qk+1 . . . qm, which is impossible since
qi ≥ 2. Similarly k > m is impossible. Thus k = m and pi = qi for
all i.

証明終

Definition 2.1. Standard Factorisation.
By collecting identical primes, any integer n > 1 can be written uniquely
in the form:

n = pa1
1 pa2

2 . . . pak
k ,

where p1 < p2 < · · · < pk are primes and ai ≥ 1 are integers. This
is called the standard factorisation of n.

定義

Remark.

For theoretical convenience, we may write n = ∏p pvp(n), where the
product extends over all primes and the exponent vp(n) is zero for
all but finitely many primes. The exponent vp(n) is often called the
p-adic valuation of n.

Example 2.1. Factorisation of a Large Integer. Find the standard
factorisation of n = 82, 798, 848.
We extract factors sequentially:

82, 798, 848 = 2 × 41, 399, 424

= 28 × 323, 433 (after removing all factors of 2)

= 28 × 3 × 107, 811

= 28 × 35 × 1, 331 (after removing factors of 3).

Recognising 1, 331 = 113, we achieve the form:

n = 28 · 35 · 113.

範例

Example 2.2. Irrationality of Logarithms. Prove that log10 2 is irra-
tional.
Assume for contradiction that log10 2 ∈ Q. Let log10 2 = a

b for posi-
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tive integers a, b. Then 10a/b = 2, which implies 10a = 2b. Substitut-
ing the standard factorisation of 10 = 2 · 5:

(2 · 5)a = 2b =⇒ 2a · 5a = 2b.

By the uniqueness of the standard factorisation (theorem 2.1), the
exponent of the prime 5 on the left hand side must equal the expo-
nent of 5 on the right hand side. On the LHS, the exponent is a. On
the RHS, it is 0. Thus a = 0. However, a must be a positive integer
since log10 2 > 0 (as 2 > 1). This is a contradiction. Therefore,
log10 2 is irrational.

範例

Divisors and Factorisation

The standard factorisation allows us to characterise all divisors of an
integer.

Corollary 2.1. Structure of Divisors. Let n = pa1
1 . . . pak

k . An integer d
divides n if and only if

d = pb1
1 . . . pbk

k ,

where 0 ≤ bi ≤ ai for all i = 1, . . . , k.
推論

Proof

If d has this form, then n = d · ∏ pai−bi
i , where the cofactor is an in-

teger since ai − bi ≥ 0. Thus d | n. Conversely, if d | n, all prime
factors of d must be prime factors of n. Let d = ∏ pbi

i . If any bi >

ai, then pbi
i would divide n, implying pbi

i | pai
i × (other primes). By

unique factorisation, this is impossible. Thus bi ≤ ai.
■

This characterisation provides an arithmetic formula for the GCD and
LCM.

Theorem 2.2. GCD and LCM via Prime Powers.
Let m = pa1

1 . . . pak
k and n = pb1

1 . . . pbk
k , where we allow exponents to

be zero to include all prime factors of both numbers. Then:

(m, n) = pmin(a1,b1)
1 pmin(a2,b2)

2 . . . pmin(ak ,bk)
k ,

[m, n] = pmax(a1,b1)
1 pmax(a2,b2)

2 . . . pmax(ak ,bk)
k .

定理
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Proof

Let g = ∏ pmin(ai ,bi)
i . Since min(ai, bi) ≤ ai and min(ai, bi) ≤ bi, g

divides both m and n. Suppose d is any common divisor. By corol-
lary 2.1, d = ∏ pei

i with ei ≤ ai and ei ≤ bi. Thus ei ≤ min(ai, bi).
This implies d | g. Hence g is the greatest common divisor.
The proof for the least common multiple is analogous, using the
property that any common multiple must have exponents at least
max(ai, bi).

■
Prime Index i

Exponent

ai

bi

GCD (min)

Figure 2.1: Visualisation of
GCD exponents. For each
prime pi, the exponent of the
GCD is the minimum of the
exponents in m (blue) and n
(red).

Remark.

The identity (m, n)[m, n] = mn follows immediately from this the-
orem, since for any numbers x, y, we have min(x, y) + max(x, y) =

x + y.

Example 2.3. Calculating GCD and LCM. Find
(1008, 1260, 882, 1134) and [1008, 1260, 882, 1134].
We determine the prime factorisations:

1008 = 24 · 32 · 71,

1260 = 22 · 32 · 51 · 71,

882 = 21 · 32 · 72,

1134 = 21 · 34 · 71.

The relevant primes are {2, 3, 5, 7}. We align the exponents:

n v2(n) v3(n) v5(n) v7(n)
1008 4 2 0 1

1260 2 2 1 1

882 1 2 0 2

1134 1 4 0 1

For the GCD, we take the column minima: 21 · 32 · 50 · 71 = 2 · 9 · 1 ·
7 = 126. For the LCM, we take the column maxima: 24 · 34 · 51 · 72 =

16 · 81 · 5 · 49 = 317, 520.

範例

Example 2.4. Bound on Prime Factors. Prove that for any integer
n > 1, log10 n ≥ k log10 2, where k is the number of distinct prime
factors of n.
Let n = pa1

1 . . . pak
k be the standard factorisation. Since the primes

are distinct and the smallest prime is 2, we have pi ≥ 2 for all i.
Also ai ≥ 1. Thus:

n = pa1
1 . . . pak

k ≥ 21 · 21 . . . 21 = 2k.
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Taking logarithms (base 10) is an increasing function:

log10 n ≥ log10(2
k) = k log10 2.

This inequality provides a quick upper bound on the number of
distinct prime factors: k ≤ log10 n

log10 2 .

範例

Square-Free Integers

Integers can be classified by the multiplicity of their factors. An inte-
ger is square-free if it is not divisible by any perfect square greater
than 1.

Proposition 2.1. Square-Free Decomposition.
Every positive integer n can be written uniquely as n = k2l, where l
is a square-free integer.

命題

Proof

Let n = ∏ pai
i . For each exponent ai, by the Division Algorithm, we

can write ai = 2qi + ri, where ri ∈ {0, 1}. We construct:

k = ∏ pqi
i , l = ∏ pri

i .

Then:

k2l =
(
∏ p2qi

i

) (
∏ pri

i
)
= ∏ p2qi+ri

i = ∏ pai
i = n.

Since ri ∈ {0, 1}, every prime factor in l has exponent 1 (or 0), so
l is square-free. Uniqueness follows from the uniqueness of the
quotient and remainder in integer division. If n = k2

1l1 = k2
2l2 with

l1, l2 square-free, then comparing prime exponents shows l1 = l2
and k1 = k2.

■

Example 2.5. Perfect Powers and GCDs. Prove that if n is a perfect
square and a perfect cube, it is a perfect sixth power.
Let n = ∏ pei

i . If n is a perfect square, n = k2, so ei must be even for
all i. Thus 2 | ei. If n is a perfect cube, n = m3, so ei must be a mul-
tiple of 3 for all i. Thus 3 | ei. Since 2 and 3 are coprime, 2 | ei and
3 | ei implies 6 | ei. Let ei = 6ji. Then:

n = ∏ p6ji
i =

(
∏ pji

i

)6
.

Thus n is a perfect sixth power.

範例
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2.2 Primality Testing and Sieves

The Fundamental Theorem of Arithmetic guarantees the existence of a
unique prime factorisation, but it provides no algorithm for finding
it. To determine whether a given integer n is prime, or to generate
the sequence of primes, we rely on the properties of divisors.

Theorem 2.3. Smallest Divisor.
Let n > 1 be a composite integer. The smallest divisor d of n such that
d > 1 is a prime number.

定理

Proof

Suppose d is the smallest divisor of n greater than 1. If d were
composite, there would exist integers a, b such that d = ab with
1 < a < d. By transitivity, a | d and d | n implies a | n. Thus
a is a divisor of n strictly between 1 and d. This contradicts the
minimality of d. Therefore, d must be prime.

■

This observation leads to the standard trial division test.

Theorem 2.4. The Square Root Test.
If n > 1 is not divisible by any prime p ≤

√
n, then n is prime.

定理

Proof

Assume n is composite. By the preceding theorem, let p be the
smallest divisor of n greater than 1. Then p is prime. Since n is
composite, we can write n = p · m where 1 < p ≤ m. Multiplying
by p gives p2 ≤ pm = n. Taking the square root, we obtain p ≤

√
n.

By contrapositive, if no prime p ≤
√

n divides n, then n cannot be
composite.

■

Example 2.6. Primality of 2003. Determine if 2003 is prime.
We estimate

√
2003 ≈ 44.7. It suffices to test di-

visibility by primes p ≤ 43. The list of primes is
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43}.
· 2003 is odd (not divisible by 2).
· Sum of digits is 5 (not divisible by 3).
· Does not end in 0 or 5 (not divisible by 5).
· 2003 = 7 × 286 + 1 (7 ∤ 2003).
· Alternating sum 2 − 0 + 0 − 3 = −1 (not divisible by 11).
Continuing trial division for the remaining primes yields non-zero
remainders in all cases. Therefore, 2003 is prime.

範例
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The Sieve of Eratosthenes

The Square Root Test allows us to generate a table of primes up to
a bound N by systematically eliminating composite numbers. This
method, known as the Sieve of Eratosthenes, relies on the fact that
every composite number n ≤ N has a prime factor p ≤

√
N.

Algorithm:
1. List all integers from 2 to N.
2. Let p = 2. Mark all multiples of p greater than p (i.e., 2p, 3p, . . . )

as composite.
3. Find the smallest unmarked number greater than p; let this be the

new p.
4. Repeat step 2 until p >

√
N.

5. All remaining unmarked numbers are prime.
Example 2.7. Sieve up to 50. We list integers 2, . . . , 50. The sieving
primes are those ≤

√
50 ≈ 7.07, i.e., {2, 3, 5, 7}.

1. Eliminate multiples of 2: 4, 6, 8, . . . , 50.

2. Eliminate multiples of 3: 9, 15, 21, . . . (some like 6, 12 were al-
ready removed).

3. Eliminate multiples of 5: 25, 35, . . . (others like 10, 15, 20 re-
moved).

4. Eliminate multiples of 7: 49 (others like 14, 21, 28, 35, 42 re-
moved).

The remaining numbers are the primes:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

範例

1 2 3 5

7

11 13

17 19

23

4

6 8 10

12 14

16 18 20

22 24

9

15

21 25

Figure 2.2: A visual represen-
tation of sieving for N = 25.
Multiples of 2, 3, 5 are elimi-
nated; primes are circled.

The Sieve of Sundaram

While Eratosthenes sieves by additive multiples, the Sieve of Sun-
daram uses a specific arithmetic progression structure to isolate odd
primes.
Consider the infinite table of integers defined by aij = i + j + 2ij,
where 1 ≤ i ≤ j.

4 7 10 . . .
7 12 17 . . .
10 17 24 . . .
...

...
...

. . .

The first row has common difference 3 (4, 7, 10, . . . ). The second row
has common difference 5 (7, 12, 17, . . . ). The i-th row is an arithmetic
progression with first term 4+ 3(i − 1) and common difference 2i + 1.
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Theorem 2.5. Sundaram’s Primality Condition.
A positive integer N appears in the Sundaram table if and only if 2N +

1 is composite. Consequently, 2N + 1 is prime if and only if N does
not appear in the table.

定理

Proof

Let N be an entry in the table. Then N = i + j + 2ij for some 1 ≤
i ≤ j. We examine 2N + 1:

2N + 1 = 2(i + j + 2ij) + 1 = 4ij + 2i + 2j + 1.

Factoring by grouping:

4ij + 2i + 2j + 1 = 2i(2j + 1) + 1(2j + 1) = (2i + 1)(2j + 1).

Since i, j ≥ 1, the factors 2i + 1 and 2j + 1 are both at least 3. Thus
2N + 1 is composite.
Conversely, suppose M = 2N + 1 is a composite odd integer. Then
M = AB where A, B are odd integers greater than 1. Let A = 2i + 1
and B = 2j + 1 for some integers i, j ≥ 1. Then 2N + 1 = (2i +
1)(2j + 1) = 4ij + 2i + 2j + 1. Subtracting 1 and dividing by 2 yields
N = 2ij + i + j. Assuming without loss of generality i ≤ j, N ap-
pears in the table at row i, column j.

■

Example 2.8. Application of Sundaram’s Sieve. We determine if
M = 17 and M = 9 are prime using the parameter N = (M − 1)/2.
For M = 17, N = 8. We check if 8 can be written as i + j + 2ij. Since
i ≥ 1, we must have 2ij < 8, so ij < 4. Possible pairs (i, j) with 1 ≤
i ≤ j:
· (1, 1) =⇒ 1 + 1 + 2(1) = 4 ̸= 8.

· (1, 2) =⇒ 1 + 2 + 2(2) = 7 ̸= 8.

· (1, 3) =⇒ 1 + 3 + 2(3) = 10 > 8.
Since 8 is not in the table, 2(8) + 1 = 17 is prime.
For M = 9, N = 4. Checking (1, 1) =⇒ 1 + 1 + 2 = 4. Since 4 is in
the table, 2(4) + 1 = 9 is composite.

範例

Properties of Prime Divisors

The distribution of primes often imposes constraints on the structure
of remainders and factorisations.



discrete ii: elementary number theory 51

Example 2.9. Remainder Modulo 30. Let p be a prime such that
when divided by 30, the remainder is r. Prove that if r ̸= 1, then r is
prime.
Let p = 30k + r with 1 < r < 30 (since r ̸= 1). We analyse
the divisibility of r by the prime factors of 30, which are 2, 3, and
5. If p ∈ {2, 3, 5}, then r ∈ {2, 3, 5}, which are primes. Assume
p > 5. Then (p, 30) = 1. Since r = p − 30k, any common divi-
sor of r and 30 must divide p. Thus (r, 30) = (p, 30) = 1. This
implies r is not divisible by 2, 3, or 5. Suppose for contradiction
that r is composite. Then r must have a prime factor q ≤

√
r. Since

r < 30, q ≤
√

29 ≈ 5.38. So q must be 2, 3, or 5. But we established
(r, 30) = 1, so r has no such factors. Contradiction. Thus r is prime.

範例

Example 2.10. Factors of Cube Root Magnitude. Prove that if a
composite integer n has no prime factor less than or equal to 3

√
n,

then n is the product of exactly two primes.
Since n is composite, let n = p1 p2 . . . pk be its prime factorisation
with k ≥ 2. By hypothesis, pi > n1/3 for all i. Suppose k ≥ 3. Then:

n = p1 p2 p3 . . . pk > n1/3 · n1/3 · n1/3 = n.

This implies n > n, a contradiction. Since k ≥ 2 and k < 3, we must
have k = 2. Thus n = p1 p2.

範例

Example 2.11. Odd Primes and Arithmetic Progressions. Prove
that the odd primes less than n2 are exactly the odd numbers
greater than 1 that do not belong to the sequences {r(r + 2k)}k≥0

for any odd r ≥ 3.
Let S be the set of odd numbers greater than 1. Consider the subset
C = {r2, r2 + 2r, r2 + 4r, . . . } where r ranges over all odd integers
≥ 3. The general term of a sequence in C is a = r2 + 2rk = r(r + 2k).
Since r ≥ 3 is odd, and r + 2k ≥ 3 is odd, a represents a composite
odd integer. Conversely, let m < n2 be a composite odd integer. Let
r be the smallest prime factor of m. Since m is odd, r ≥ 3. Since m is
composite, m = r · b where b ≥ r is odd. We can write b = r + 2k for
some integer k ≥ 0. Thus m = r(r + 2k), so m ∈ C. Therefore, the
odd numbers in S \ C are exactly those which are not composite,
i.e., the odd primes.

範例
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2.3 Exercises

1. Factorisation of Large Integers. Determine the standard prime
factorisation of the integer N = 81, 057, 226, 635, 000.

2. GCD and LCM Calculation. Calculate the greatest common divi-
sor and least common multiple of the set {198, 240, 360}.

3. Inverse GCD-LCM Problem. Find all pairs of positive integers
(a, b) such that (a, b) = 24 and [a, b] = 144.

4. Counting LCM Solutions. Let ω(n) denote the number of distinct Consider the prime factorisation of
d = p1 . . . pk and the possible exponents
of pi in d1 and d2.

prime factors of n. Let d be a square-free integer. Prove that the
number of ordered pairs of positive integers (d1, d2) such that
[d1, d2] = d is exactly 3ω(d).

5. Remainder of Prime Squares. If a prime p > 7, prove that the
remainder when p2 is divided by 30 must be 1 or 19.

6. Primality Test Condition. Let n > 5 be an odd integer. Suppose
there exist positive even integers a and b such that:

a − b = n and a + b =
s

∏
i=1

pi,

where p1, . . . , ps are all the odd primes not exceeding
√

n. Prove
that n is prime.

7. Coprimality in Arithmetic Sequences. Let p1, p2, . . . be the se-
quence of primes in increasing order. Let Pn = p1 p2 . . . pn.
Consider the sequence of integers defined by ak = 1 + kPn

for k = 0, 1, . . . , n − 1. Prove that for any distinct indices i, j ∈
{0, . . . , n − 1}, (ai, aj) = 1.

8. Factorial Constraints. Let n be a positive integer. Prove that if n!
is divisible by n2, then n cannot be prime. Determine for which
composite n this divisibility holds.



3
The Gauss Function

While divisibility and primality explore the multiplicative struc-
ture of integers, many number-theoretic problems require analysing
the position of real numbers relative to consecutive integers. We in-
troduce the Gauss function, widely known as the floor function, to
bridge the continuous domain of real numbers R and the discrete
domain of integers Z.

Definition 3.1. The Floor Function.
Let x be a real number. The floor function or Gauss function, denoted
⌊x⌋, is the unique integer satisfying:

⌊x⌋ ≤ x < ⌊x⌋+ 1.

We refer to ⌊x⌋ as the integer part of x. The fractional part of x is de-
fined as {x} = x − ⌊x⌋.

定義

Note

By definition, 0 ≤ {x} < 1 for all real numbers x.
x

[x]
y = x

Figure 3.1: The graph of the
floor function [x]. It is a step
function that lies on or below
the line y = x.

The floor function behaves predictably under integer translation and
order.

Proposition 3.1. Monotonicity.
For real numbers x and y, if x ≤ y, then ⌊x⌋ ≤ ⌊y⌋.

命題

This follows immediately from the definition, indicating that ⌊x⌋ is a
non-decreasing function.

Proposition 3.2. Integer Translation.
Let x ∈ R and n ∈ Z. Then:

⌊n + x⌋ = n + ⌊x⌋.

Conversely, if ⌊n + x⌋ = n + ⌊x⌋ for all x, then n is an integer.
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命題

Proof

Let k = ⌊x⌋. By definition, k ≤ x < k + 1. Adding the integer n to
the inequality yields:

n + k ≤ n + x < n + k + 1.

Since n + k is an integer, it must be the floor of n + x. Thus
⌊n + x⌋ = n + k = n + ⌊x⌋.

■

Theorem 3.1. Subadditivity.
For any real numbers x and y:

⌊x⌋+ ⌊y⌋ ≤ ⌊x + y⌋.

定理

Proof

From the definition, ⌊x⌋ ≤ x and ⌊y⌋ ≤ y. Adding these gives ⌊x⌋+
⌊y⌋ ≤ x + y. Since the left-hand side is an integer, applying proposi-
tion 3.1 yields:

⌊⌊x⌋+ ⌊y⌋⌋ ≤ ⌊x + y⌋ =⇒ ⌊x⌋+ ⌊y⌋ ≤ ⌊x + y⌋.

■

Example 3.1. Simple Bounds involving Floor. Find all real solu-
tions to x + {x} = 1.6.
We substitute x = ⌊x⌋+ {x} into the equation:

⌊x⌋+ 2{x} = 1.6.

Since ⌊x⌋ is an integer and 0 ≤ {x} < 1, we have bounds on 2{x}:

0 ≤ 2{x} < 2.

Rearranging for the integer part: ⌊x⌋ = 1.6 − 2{x}. Using the
bounds for 2{x}, we have:

1.6 − 2 < ⌊x⌋ ≤ 1.6 − 0 =⇒ −0.4 < ⌊x⌋ ≤ 1.6.

Thus, the possible integer values for ⌊x⌋ are 0 and 1.
1. If ⌊x⌋ = 0, then 2{x} = 1.6 =⇒ {x} = 0.8. Thus x = 0.8.

2. If ⌊x⌋ = 1, then 2{x} = 0.6 =⇒ {x} = 0.3. Thus x = 1.3.
The solutions are x ∈ {0.8, 1.3}.

範例
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Arithmetic Relationships

The interaction between the floor function and arithmetic operations
produces several identities useful for simplifying sums and solving
equations.

Theorem 3.2. Reflection Formula.
For any real number x:

⌊−x⌋ =

−⌊x⌋ − 1 if x /∈ Z,

−⌊x⌋ if x ∈ Z.

定理

Proof

We write x = ⌊x⌋+ {x}. Negating this yields −x = −⌊x⌋− {x}. We
can express this as −x = −⌊x⌋ − 1 + (1 − {x}).

• If x ∈ Z, then {x} = 0, so ⌊−x⌋ = −x = −⌊x⌋.

• If x /∈ Z, then 0 < {x} < 1, which implies 0 < 1 − {x} < 1. Thus,
the integer part of −x is −⌊x⌋ − 1.

Alternatively, using fractional parts: {−x} = 1 − {x} for non-
integers, leading to the same result.

■

Theorem 3.3. Sum of Fractional Parts.
If {x}+ {y} = 1, then ⌊x⌋+ ⌊y⌋ = ⌊x + y⌋ − 1.

定理

Proof

We expand x + y:

x + y = (⌊x⌋+ {x}) + (⌊y⌋+ {y}) = (⌊x⌋+ ⌊y⌋) + ({x}+ {y}).

Given {x} + {y} = 1, this becomes x + y = ⌊x⌋ + ⌊y⌋ + 1. Taking
the floor of both sides (noting the RHS is an integer):

⌊x + y⌋ = ⌊x⌋+ ⌊y⌋+ 1.

Rearranging gives the result.
■

Theorem 3.4. The Halving Identity.
For any real number x:

⌊x⌋+
⌊

x +
1
2

⌋
= ⌊2x⌋.
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定理

Proof

Let x = n + θ where n = ⌊x⌋ and 0 ≤ θ < 1. We consider two cases
for the fractional part θ:

Case 0 ≤ θ < 1/2. Then ⌊x + 1/2⌋ = ⌊n + θ + 1/2⌋ = n, since θ +

1/2 < 1. Also 2x = 2n + 2θ, where 0 ≤ 2θ < 1. Thus ⌊2x⌋ = 2n.
The identity holds: n + n = 2n.

Case 1/2 ≤ θ < 1. Then ⌊x + 1/2⌋ = ⌊n + θ + 1/2⌋ = n + 1, since
1 ≤ θ + 1/2 < 1.5. Also 2x = 2n + 2θ, where 1 ≤ 2θ < 2. Thus
⌊2x⌋ = 2n + 1. The identity holds: n + (n + 1) = 2n + 1.

■

This theorem implies that the sequence of "binary digits" of x affects
the floor of multiples of x. We can generalise the separation of floors
based on the difference of their arguments.

Theorem 3.5. Difference of Floors.
For any real numbers α and β:

⌊α⌋ − ⌊β⌋ = ⌊α − β⌋ or ⌊α − β⌋+ 1.

定理

Proof

We expand ⌊α − β⌋:

⌊α − β⌋ = ⌊(⌊α⌋+ {α})− (⌊β⌋+ {β})⌋
= ⌊(⌊α⌋ − ⌊β⌋) + ({α} − {β})⌋
= ⌊α⌋ − ⌊β⌋+ ⌊{α} − {β}⌋.

Since 0 ≤ {·} < 1, the difference satisfies −1 < {α} −
{β} < 1. Consequently, the term ⌊{α} − {β}⌋ can only take the
value 0 (if {α} ≥ {β}) or −1 (if {α} < {β}). Rearranging yields the
two possible cases.

■

Example 3.2. Nested Floors. Let n be a positive integer and a be a
real number. Prove that ⌊

⌊na⌋
n

⌋
= ⌊a⌋.

Let ⌊na⌋ = nq + r where 0 ≤ r < n. By the definition of the floor, q
is an integer. Then na = nq + r + {na}. Dividing by n:

a = q +
r + {na}

n
.
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We evaluate the RHS of the identity:⌊
⌊na⌋

n

⌋
=

⌊
nq + r

n

⌋
=
⌊

q +
r
n

⌋
= q +

⌊ r
n

⌋
.

Since 0 ≤ r < n, we have 0 ≤ r/n < 1, so ⌊r/n⌋ = 0. Thus the LHS
is q. Now evaluate ⌊a⌋:

⌊a⌋ =
⌊

q +
r + {na}

n

⌋
= q +

⌊
r + {na}

n

⌋
.

Since 0 ≤ r ≤ n − 1 and 0 ≤ {na} < 1, the numerator satisfies
0 ≤ r + {na} < n. Thus the fraction is strictly between 0 and 1, so
its floor is 0. Therefore, ⌊a⌋ = q. The identity holds.

範例

Hermite’s Identity

The The Halving Identity is a specific instance (n = 2) of a more pow-
erful summation property discovered by Charles Hermite. This iden-
tity connects the sum of floors of arithmetic progressions to the floor
of a scaled multiple.

Theorem 3.6. Hermite’s Identity.
For any real number a and positive integer n:

⌊a⌋+
⌊

a +
1
n

⌋
+ · · ·+

⌊
a +

n − 1
n

⌋
= ⌊na⌋.

定理

Proof

Let ⌊na⌋ = nq + r with 0 ≤ r < n. Using the decomposition from
the previous example, we write a = q + r+{na}

n . Consider the gen-
eral term in the sum, denoted Tk = ⌊a + k

n ⌋ for 0 ≤ k ≤ n − 1. Sub-
stituting a:

Tk =

⌊
q +

r + {na}+ k
n

⌋
= q +

⌊
r + k + {na}

n

⌋
.

The value of the floor ⌊ r+k+{na}
n ⌋ depends on the numerator Nk =

r + k + {na}. Since 0 ≤ {na} < 1, the integer part of the fraction is
determined by r + k.

• If r + k < n, then 0 ≤ Nk < n + 1. Since Nk is not an integer (un-
less {na} = 0), ⌊Nk/n⌋ = 0.

• If r + k ≥ n, since r < n and k < n, we have n ≤ r + k < 2n. Thus
1 ≤ Nk/n < 2, so ⌊Nk/n⌋ = 1.
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We split the summation based on the condition r + k ≥ n ⇐⇒ k ≥
n − r:

n−1

∑
k=0

Tk =
n−r−1

∑
k=0

(q + 0) +
n−1

∑
k=n−r

(q + 1).

The first sum has (n − r) terms. The second sum has (n − 1)− (n −
r) + 1 = r terms. Total sum = (n − r)q + r(q + 1) = nq − rq + rq +
r = nq + r. By definition, nq + r = ⌊na⌋.

■

Example 3.3. Calculating a Large Sum. Evaluate S = ∑502
n=0⌊ 305n

503 ⌋.
Note that 503 is prime, so for 1 ≤ n ≤ 502, the term 305n is not
divisible by 503. Thus 305n

503 is never an integer. We pair the term for
n with the term for 503 − n:

xn =
305n
503

, yn =
305(503 − n)

503
= 305 − xn.

Observe that xn + yn = 305, which is an integer. Thus {xn} +

{yn} = 0 (if integer) or 1 (if not). Since xn is not an integer, {xn} +

{yn} = 1. By the The Halving Identity, we have:

⌊xn⌋+ ⌊yn⌋ = ⌊xn + yn⌋ − 1 = ⌊305⌋ − 1 = 304.

The sum runs from n = 0 to 502. The term for n = 0 is 0. The re-
maining 502 terms can be grouped into 251 pairs.

S = 0+
502

∑
n=1

⌊xn⌋ =
1
2

502

∑
n=1

(⌊xn⌋+ ⌊yn⌋) =
1
2
(502×304) = 251× 304 = 76, 304.

範例

Applications and Diophantine Equations

Example 3.4. Parity of Powers. Prove that the sequence un = ⌊(1 +√
2)n⌋ alternates between even and odd integers.

Let α = 1 +
√

2 and β = 1 −
√

2. These are roots of x2 − 2x − 1 =

0. Define Un = αn + βn. The characteristic equation implies Un+2 =

2Un+1 + Un. Since U1 = 2 and U2 = 6, all Un are even by induction.
Since −1 < β < 0:

(i) If n is odd, −1 < βn < 0. Thus ⌊αn⌋ = ⌊Un − βn⌋ = Un.
(Even)

(ii) If n is even, 0 < βn < 1. Thus ⌊αn⌋ = ⌊Un − βn⌋ = Un − 1.
(Odd)

範例



discrete ii: elementary number theory 59

Example 3.5. Inequality of Floors. Prove that for all real numbers
α, β:

⌊2α⌋+ ⌊2β⌋ ≥ ⌊α⌋+ ⌊α + β⌋+ ⌊β⌋.

Assume without loss of generality that {α} ≥ {β}. This implies
2{α} ≥ {α}+ {β}. We expand the LHS:

⌊2α⌋+ ⌊2β⌋ = (2⌊α⌋+ ⌊2{α}⌋) + (2⌊β⌋+ ⌊2{β}⌋).

We expand the RHS:

RHS = ⌊α⌋+ ⌊β⌋+ ⌊(⌊α⌋+ {α}) + (⌊β⌋+ {β})⌋
= 2⌊α⌋+ 2⌊β⌋+ ⌊{α}+ {β}⌋.

Subtracting common integer parts, it suffices to prove:

⌊2{α}⌋+ ⌊2{β}⌋ ≥ ⌊{α}+ {β}⌋.

Since 0 ≤ {β} ≤ {α} < 1, the sum {α}+ {β} is strictly less than 2.
Thus ⌊{α}+ {β}⌋ is either 0 or 1.
· If ⌊{α} + {β}⌋ = 0, the inequality holds trivially as the LHS is

non-negative.

· If ⌊{α} + {β}⌋ = 1, then {α} + {β} ≥ 1. From our assumption
2{α} ≥ {α} + {β}, we have 2{α} ≥ 1, so ⌊2{α}⌋ ≥ 1. Thus the
LHS is at least 1 + 0 = 1. The inequality holds.

範例

Example 3.6. Square Root Identity. Prove that for any positive
integer n, ⌊

√
n +

√
n + 1⌋ = ⌊

√
4n + 2⌋.

We bound the expression X = (
√

n +
√

n + 1)2 = 2n + 1 +

2
√

n(n + 1). Using the arithmetic geometric mean inequality on the
term under the square root:

n <
√

n(n + 1) < n + 1.

Substituting this into the expression for X:

2n + 1 + 2n < X < 2n + 1 + 2(n + 1) =⇒ 4n + 1 < X < 4n + 3.

Taking the square root of the inequality:
√

4n + 1 <
√

n +
√

n + 1 <
√

4n + 3.

Let k = ⌊
√

4n + 1⌋. Then k2 ≤ 4n + 1. Consider the possible values
of perfect squares. Any integer m is either even (2j) or odd (2j + 1).
· If m = 2j, then m2 = 4j2, which is a multiple of 4.

· If m = 2j + 1, then m2 = 4j2 + 4j + 1 = 4(j2 + j) + 1, which is a
multiple of 4 plus 1.
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Thus, no perfect square is of the form 4N + 2 or 4N + 3. This im-
plies that strictly between the integers 4n + 1 and 4n + 4, there are
no perfect squares. Therefore, the floor of the square root remains
constant:

⌊
√

4n + 1⌋ = ⌊
√

4n + 2⌋ = ⌊
√

4n + 3⌋ = k.

Since our target value lies strictly in this interval, its floor is also k.

範例

Example 3.7. Equation with No Solution. Prove that the equation
⌊x⌋ + ⌊2x⌋ + ⌊4x⌋ + ⌊8x⌋ + ⌊16x⌋ + ⌊32x⌋ = 12, 345 has no real
solution.
Let f (x) be the LHS. Using the bound ⌊kx⌋ ≤ kx, we have:

f (x) ≤ x(1 + 2 + 4 + 8 + 16 + 32) = 63x.

If a solution exists, 63x ≥ 12, 345, which implies x ≥ 195 20
21 . We

evaluate f (x) at x = 196:

f (196) = 196 × 63 = 12, 348.

Since f (x) is non-decreasing, the solution must satisfy 195 < x <

196. Let x = 195 + y where 0 < y < 1. By integer translation,
⌊k(195 + y)⌋ = 195k + ⌊ky⌋.

f (195 + y) = 195(63) + f (y) = 12, 285 + f (y).

We maximize f (y) for y < 1:

f (y) =
5

∑
k=0

⌊2ky⌋ < 0 + 1 + 3 + 7 + 15 + 31 = 57.

Thus f (x) < 12, 285 + 57 = 12, 342. Since 12, 342 < 12, 345, there is
no solution.

範例

Example 3.8. Diophantine with Squares. Solve for x ∈ R: ⌊x2⌋ =

⌊x⌋2 + 3.
Let ⌊x⌋ = n. Then n ≤ x < n + 1, which implies n2 ≤ x2 <

(n+ 1)2 = n2 + 2n+ 1. The equation becomes ⌊x2⌋ = n2 + 3. By def-
inition of the floor:

n2 + 3 ≤ x2 < n2 + 4.

For a solution to exist, the interval [n2 + 3, n2 + 4) must overlap
with [n2, n2 + 2n + 1). Specifically, the lower bound of the required
interval must be strictly less than the upper bound of the possible
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values for x2:

n2 + 3 < n2 + 2n + 1 =⇒ 2 < 2n =⇒ n > 1.

We test integer values for n:

If n = 2. Overlap is [7, 8) ∩ [4, 9) = [7, 8). We need x2 ∈ [7, 8). This
corresponds to x ∈ [

√
7,
√

8). One choice is x =
√

7.5 ≈ 2.73.
Then ⌊x⌋ = 2, ⌊x⌋2 + 3 = 7, and ⌊7.5⌋ = 7.

If n = 3. Overlap is [12, 13) ∩ [9, 16) = [12, 13). Solutions x ∈
[
√

12,
√

13).

General solution: For any integer n ≥ 2, x ∈ [
√

n2 + 3,
√

n2 + 4).

範例

3.1 Factorisation of Factorials

The floor function provides the analytic machinery required to de-
termine the prime factorisation of factorials without computing the
products explicitly. This result, attributed to Legendre, relates the
p-adic valuation of n! to the base-p expansion of n.
We begin by establishing a counting lemma for multiples in a bounded
interval.

Lemma 3.1. Counting Multiples Let x be a positive real number and
b be a positive integer. The number of positive integers not exceeding
x that are divisible by b is ⌊x/b⌋.

引理

Proof

The positive multiples of b are b, 2b, 3b, . . . , kb, . . . . We seek the
largest integer k such that kb ≤ x. This inequality is equivalent to
k ≤ x

b . Since k must be an integer, the maximal such k is ⌊x/b⌋.
■

Computations involving higher powers of primes often require
nested applications of the floor function.

Lemma 3.2. Iterated Division Let n, a, b be positive integers. Then:⌊ n
ab

⌋
=

⌊
⌊n/a⌋

b

⌋
.

引理

Proof

Let k = ⌊ n
ab ⌋. By definition, k ≤ n

ab < k + 1. Multiplying by b yields
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bk ≤ n
a < b(k + 1). Since bk is an integer, it satisfies bk ≤ ⌊ n

a ⌋. How-
ever, the strict inequality n

a < bk + b implies ⌊ n
a ⌋ < bk + b. Dividing

by b:

k ≤ ⌊n/a⌋
b

< k + 1.

Thus, the floor of the middle term is k.
■

Remark.

This lemma is particularly useful for calculation. To find ⌊n/pk+1⌋,
one simply divides ⌊n/pk⌋ by p and takes the integer part.

Legendre’s Formula

We now derive the formula for the exponent of a prime p in the
standard factorisation of n!. We denote this exponent by vp(n!).

Theorem 3.7. Legendre’s Formula.
Let n be a positive integer and p be a prime. The exponent of p in the
prime factorisation of n! is:

vp(n!) =
∞

∑
k=1

⌊
n
pk

⌋
.

定理

Note

The sum is finite since ⌊n/pk⌋ = 0 once pk > n.

Proof

Let the standard factorisation of n! be ∏p≤n php . The exponent hp is
the sum of the valuations of the factors 1, 2, . . . , n:

hp =
n

∑
j=1

vp(j).

Instead of summing term-by-term, we count the contribution of
each power of p across the entire set {1, . . . , n}. Let ck be the num-
ber of integers in {1, . . . , n} divisible by pk. By the Counting Mul-
tiples lemma, ck = ⌊n/pk⌋. Let dk be the number of integers in
{1, . . . , n} exactly divisible by pk (i.e., vp(j) = k). By inclusion-
exclusion, an integer is divisible by pk exactly if it is divisible by pk

but not pk+1. Thus, dk = ck − ck+1. The total exponent is:

hp =
∞

∑
k=1

k · dk = 1(c1 − c2) + 2(c2 − c3) + 3(c3 − c4) + . . .
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This is a telescoping sum. Regrouping terms by ck:

hp = c1 + (2 − 1)c2 + (3 − 2)c3 + · · · =
∞

∑
k=1

ck =
∞

∑
k=1

⌊
n
pk

⌋
.

■
1 2 3 4 5 6 7 8 9 10

÷p

÷p2

÷p3

Summing rows: ∑⌊ n
pk ⌋

Summing columns: ∑ vp(j)

Figure 3.2: Visualising Legen-
dre’s Formula for n = 10, p = 2.
Each dot represents a factor of
p. The number 8 contributes 3

dots (vertical), while the row
for p2 counts multiples of 4

(horizontal).

Example 3.9. Exponent of a Prime. Find the exponent of 7 in the
factorisation of 2000!.
We apply Legendre’s formula with n = 2000, p = 7.

v7(2000!) =
⌊

2000
7

⌋
+

⌊
2000
49

⌋
+

⌊
2000
343

⌋
+

⌊
2000
2401

⌋
.

The last term is 0 since 2401 > 2000. Using lemma 3.2 for sequential
calculation:

⌊2000/7⌋ = 285

⌊285/7⌋ = 40

⌊40/7⌋ = 5

Summing these values: 285 + 40 + 5 = 330.

範例

Example 3.10. Trailing Zeros. Determine the number of zeros at
the end of the decimal representation of 1000!.
A trailing zero is produced by a factor of 10 = 2 × 5. The number of
zeros is determined by the number of pairs of prime factors (2, 5).
Since 2 < 5, factors of 2 are much more abundant than factors of
5. Thus, v5(1000!) < v2(1000!), and the number of zeros is simply
v5(1000!).

v5(1000!) =
4

∑
k=1

⌊
1000

5k

⌋
.

Calculation:

⌊1000/5⌋ = 200

⌊200/5⌋ = 40

⌊40/5⌋ = 8

⌊8/5⌋ = 1

Total: 200 + 40 + 8 + 1 = 249. There are 249 trailing zeros.

範例

Example 3.11. Legendre’s Formula and Base Expansion. Let sp(n)
denote the sum of the digits of n when written in base p. Prove
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that:

vp(n!) =
n − sp(n)

p − 1
.

Let the base-p expansion of n be n = ∑m
i=0 ai pi, where 0 ≤ ai < p.

Consider the term ⌊n/pk⌋. Dividing the expansion by pk shifts the
digits: ⌊

n
pk

⌋
=

m

∑
i=k

ai pi−k.

Summing over k ≥ 1:

vp(n!) =
m

∑
k=1

m

∑
i=k

ai pi−k.

We swap the order of summation. For a fixed coefficient ai, it ap-
pears in the sum for k = 1, 2, . . . , i.

vp(n!) =
m

∑
i=1

ai

(
i

∑
k=1

pi−k

)
=

m

∑
i=1

ai(pi−1 + · · ·+ 1).

Using the geometric series formula:

vp(n!) =
m

∑
i=1

ai

(
pi − 1
p − 1

)
=

1
p − 1

(
m

∑
i=0

ai pi −
m

∑
i=0

ai

)
.

Note that the i = 0 term vanishes in the sum on the left but is in-
cluded here for completeness (as p0 − 1 = 0). Recognising the sums:

∑ ai pi = n and ∑ ai = sp(n). Thus, vp(n!) = n−sp(n)
p−1 .

範例

Example 3.12. Inverse Legendre Problem. Does there exist a posi-
tive integer n such that n! ends in exactly 153 trailing zeros?
We seek n such that v5(n!) = 153. Approximating using the for-
mula from the previous example: v5(n!) ≈ n

4 . Estimate n ≈ 4 ×
153 = 612. We test n = 615 (a multiple of 5):

v5(615!) = 123 + 24 + 4 + 0 = 151.

We need 2 more factors of 5. Moving to the next multiple of 5, n =

620: v5(620!) = v5(615!) + v5(616× 617× 618× 619× 620). The only
multiple of 5 is 620. Since 620 = 5 × 124, it contributes one factor of
5. Thus v5(620!) = 151 + 1 = 152. Next multiple n = 625: Since
625 = 54, this number contributes 4 factors of 5. v5(625!) = 152 +

4 = 156. The function v5(n!) jumps from 152 to 156. It never takes
the value 153. Thus, no such integer n exists.

範例
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Divisibility Applications

Legendre’s formula provides a robust method for proving divisibility
relations involving factorials, often reducing the problem to checking
an inequality of floor functions.

Example 3.13. Divisibility of Product Sequences. Prove that 2n

divides the product (n + 1)(n + 2) . . . (2n).
We can rewrite the product as:

P = (n + 1)(n + 2) . . . (2n) =
(2n)!

n!
.

We determine the exponent of 2 in the prime factorisation of P:

v2(P) = v2((2n)!)− v2(n!).

Using Legendre’s formula:

v2((2n)!) =
∞

∑
k=1

⌊
2n
2k

⌋
=

∞

∑
k=1

⌊ n
2k−1

⌋
= n +

∞

∑
k=1

⌊ n
2k

⌋
.

The infinite sum on the right is exactly v2(n!). Therefore:

v2(P) = (n + v2(n!))− v2(n!) = n.

Since the exponent of 2 in P is exactly n, 2n divides P.

範例

Example 3.14. Factorial Divisibility Condition. Let m, n be positive
integers. Prove that (2m)!(2n)! is divisible by m!n!(m + n)!.
We must show that for every prime p, the valuation of the numera-
tor is at least that of the denominator:

vp((2m)!(2n)!) ≥ vp(m!n!(m + n)!).

Applying Legendre’s formula, this inequality is equivalent to:

∞

∑
k=1

(⌊
2m
pk

⌋
+

⌊
2n
pk

⌋)
≥

∞

∑
k=1

(⌊
m
pk

⌋
+

⌊
n
pk

⌋
+

⌊
m + n

pk

⌋)
.

It suffices to prove the inequality term-wise for each k. Let
α = m/pk and β = n/pk. We require:

⌊2α⌋+ ⌊2β⌋ ≥ ⌊α⌋+ ⌊β⌋+ ⌊α + β⌋.

This is precisely the inequality established in the previous section
(Example: Inequality of Floors). Since the inequality holds for every
term in the summation, the divisibility holds.

範例
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3.2 Arithmetic Functions

Many properties of integers depend on their divisors. We now in-
troduce two fundamental arithmetic functions: the divisor counting
function d(n) and the divisor sum function σ(n). These functions are
multiplicative, meaning their value for a product of coprime integers
is the product of their values.

Definition 3.2. Divisor Functions.
Let n be a positive integer. The divisor counting function, denoted d(n),
is the number of positive divisors of n:

d(n) = ∑
d|n

1.

The divisor sum function, denoted σ(n), is the sum of the positive di-
visors of n:

σ(n) = ∑
d|n

d.

定義

Note

The trivial divisors 1 and n are included in these sums.

The Divisor Counting Function d(n)

To compute d(n), we rely on the standard prime factorisation. Every
divisor is built from the prime factors of n.

Theorem 3.8. Formula for d(n).
Let the standard factorisation of n be n = pa1

1 pa2
2 . . . pak

k . Then:

d(n) = (a1 + 1)(a2 + 1) . . . (ak + 1) =
k

∏
i=1

(ai + 1).

定理

Proof

Any divisor d of n must be of the form d = px1
1 px2

2 . . . pxk
k , where

0 ≤ xi ≤ ai for each i. For each prime pi, there are ai + 1 choices
for the exponent xi (specifically, {0, 1, . . . , ai}). By the multiplication
principle, the total number of distinct divisors is the product of the
number of choices for each exponent.

■

Corollary 3.1. Multiplicativity of d(n). If m and n are coprime, then d(mn) =
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d(m)d(n).
推論

Proof

Since (m, n) = 1, they share no prime factors. The prime factorisa-
tion of mn is simply the concatenation of the factorisations of m and
n. The formula in the theorem splits over the distinct sets of primes.

■

Example 3.15. Smallest Integer with Fixed Divisor Count. Find the
smallest positive integer n such that d(n) = 12.
Let n = pa1

1 pa2
2 . . . . Then ∏(ai + 1) = 12. We factor 12 in all possible

ways and assign the largest exponents to the smallest primes to
minimise n. Possible factorisations of 12:
1. 12 =⇒ a1 = 11. n = 211 = 2048.
2. 6 × 2 =⇒ a1 = 5, a2 = 1. n = 25 · 31 = 32 · 3 = 96.
3. 4 × 3 =⇒ a1 = 3, a2 = 2. n = 23 · 32 = 8 · 9 = 72.
4. 3 × 2 × 2 =⇒ a1 = 2, a2 = 1, a3 = 1. n = 22 · 31 · 51 = 4 · 3 · 5 =

60.
The smallest such integer is 60.

範例

Example 3.16. Product of Proper Divisors. Prove that if a posi-
tive integer n is equal to the product of all its proper divisors, then
n = p3 or n = p1 p2 (where p, p1, p2 are primes).
Let P be the product of all positive divisors of n. We can pair divi-
sors d and n/d:

P2 =

∏
d|n

d

∏
d|n

n
d

 = ∏
d|n

(
d · n

d

)
= ∏

d|n
n = nd(n).

Thus P = nd(n)/2. The product of proper divisors excludes n. So the
product is P/n = nd(n)/2−1. We are given that this product equals
n. Thus:

nd(n)/2−1 = n1 =⇒ d(n)
2

− 1 = 1 =⇒ d(n) = 4.

We solve d(n) = 4. The possible factorisations of 4 are:
1. 4 =⇒ a1 = 3. Then n = p3.

2. 2 × 2 =⇒ a1 = 1, a2 = 1. Then n = p1 p2.

範例

Example 3.17. Existence of Solutions. Prove that for any k ≥ 1,
there exists an integer n such that d(n) = k.
Simply choose n = 2k−1. Then d(n) = (k − 1) + 1 = k.
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範例

The Divisor Sum Function σ(n)

The sum of divisors also admits a closed form derived from the geo-
metric series.

Theorem 3.9. Formula for σ(n).
Let n = pa1

1 . . . pak
k . Then:

σ(n) =
k

∏
i=1

pai+1
i − 1
pi − 1

=
k

∏
i=1

(1 + pi + p2
i + · · ·+ pai

i ).

定理

Proof

Consider the expansion of the product:(
a1

∑
j=0

pj
1

)(
a2

∑
j=0

pj
2

)
. . .

(
ak

∑
j=0

pj
k

)
.

A typical term in the expanded sum is of the form px1
1 px2

2 . . . pxk
k

with 0 ≤ xi ≤ ai. By the fundamental theorem of arithmetic, these
terms correspond exactly to the divisors of n, with each divisor ap-
pearing exactly once. Summing the geometric series for each prime
factor yields the formula.

■

Corollary 3.2. Multiplicativity of σ(n). If (m, n) = 1, then σ(mn) =

σ(m)σ(n).
推論

Example 3.18. Solving for σ(n). Find a number of the form
n = 2m · 3k such that σ(n) = 403.
Using the formula:

σ(n) =
2m+1 − 1

2 − 1
· 3k+1 − 1

3 − 1
= (2m+1 − 1)

3k+1 − 1
2

= 403.

Thus (2m+1 − 1)(3k+1 − 1) = 806. Factorising 806 = 2 × 13 × 31.
The term 2m+1 − 1 must be a divisor of 806 of the form 2x − 1. The
divisors of 806 are 1, 2, 13, 26, 31, 62, 403, 806. Numbers of the form
2x − 1:
· x = 1 =⇒ 1 (Trivial, m = 0, but 3k+1 − 1 = 806 has no solution).
· x = 4 =⇒ 15 (Not a divisor).
· x = 5 =⇒ 31. This is a divisor.
If 2m+1 − 1 = 31, then m + 1 = 5 =⇒ m = 4. The remaining factor
is (3k+1 − 1) = 806/31 = 26. 3k+1 = 27 =⇒ k + 1 = 3 =⇒ k = 2.
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Thus n = 24 · 32 = 16 · 9 = 144.

範例

Example 3.19. Perfect Squares in Divisor Sums. Find all primes p
such that σ(p4) is a perfect square.
We have σ(p4) = 1 + p + p2 + p3 + p4 = m2 for some integer m.
Multiply by 4 to complete the square:

4m2 = 4p4 + 4p3 + 4p2 + 4p + 4.

We bound this expression between consecutive squares. Consider
(2p2 + p)2 = 4p4 + 4p3 + p2. Comparing coefficients: 4m2 >

(2p2 + p)2 because 3p2 + 4p+ 4 > 0. Now consider (2p2 + p+ 2)2 =

(2p2 + p)2 + 4(2p2 + p) + 4 = 4p4 + 4p3 + 9p2 + 4p + 4. Comparing
with 4m2, we see 4m2 < (2p2 + p + 2)2 because 4p2 < 9p2. Thus,
the only possible integer square between them is (2p2 + p + 1)2.

4m2 = (2p2 + p+ 1)2 = (2p2 + p)2 + 2(2p2 + p)+1 = 4p4 + 4p3 + 5p2 + 2p+ 1.

Equating the two expressions for 4m2:

4p4 + 4p3 + 4p2 + 4p + 4 = 4p4 + 4p3 + 5p2 + 2p + 1.

Simplifying:

4p2 + 4p + 4 = 5p2 + 2p + 1 =⇒ p2 − 2p − 3 = 0.

Factorising: (p − 3)(p + 1) = 0. Since p is prime, p = 3. Indeed,
σ(34) = 1 + 3 + 9 + 27 + 81 = 121 = 112.

範例

We conclude with a structural property of numbers whose divisor
sum is prime.

Proposition 3.3. Structure of Pre-images of Primes.
If σ(m) is a prime number greater than 3, then m must be of the form
p2k (a perfect square of a prime), where 2k+ 1 does not divide p− 1.

命題

We proceed by eliminating forms of m that force σ(m) to be compos-
ite.

m must be a prime power.

Suppose m has at least two distinct prime factors. We can write
m = ab with gcd(a, b) = 1 and a, b > 1. By the multiplicative prop-
erty of σ, we have σ(m) = σ(a)σ(b). Since a, b > 1, the sums of their
divisors satisfy σ(a) > 1 and σ(b) > 1. Thus σ(m) is the product of
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two integers greater than 1, making it composite. Therefore, m must
be a prime power, say m = pe.

証明終

The exponent e must be even.

Suppose e is odd. Let e = 2k + 1 for k ≥ 0. We can factor the sum of
divisors:

σ(p2k+1) = 1 + p + · · ·+ p2k+1 = (1 + p)(1 + p2 + p4 + · · ·+ p2k).

If k = 0, m = p, so σ(m) = p + 1. For this to be a prime > 3, p + 1
must be odd, implying p is even. But p = 2 =⇒ σ(2) = 3, which is
not greater than 3. If k ≥ 1, both factors (1 + p) and the remaining
sum are greater than 1. Thus σ(pe) is composite. Therefore, e must
be even. Let m = p2k with k ≥ 1.

証明終

The condition on p − 1.

We prove the contrapositive: if (2k + 1) | (p − 1), then σ(m) is com-
posite. Assume p ≡ 1 (mod 2k + 1). Evaluating the sum modulo
2k + 1:

σ(p2k) =
2k

∑
i=0

pi ≡
2k

∑
i=0

1i ≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
2k+1 times

≡ 0 (mod 2k + 1).

Thus (2k + 1) divides σ(p2k). Since p ≥ 2 and k ≥ 1, clearly
σ(p2k) > 2k + 1. Therefore, σ(m) has a non-trivial factor 2k + 1, so
it is composite. Consequently, for σ(m) to be prime, we must have
(2k + 1) ∤ (p − 1).

証明終

3.3 Exercises

1. Floor Identities. Let n > 2 be an integer. Prove that:⌊
n(n + 1)
4n − 2

⌋
=

⌊
n + 1

4

⌋
.

2. Summation with Floors. For any positive integer n, calculate the
sum:

Sn =
n

∑
k=0

⌊
n + 2k

2k+1

⌋
.

3. Solving for Real Variables. Find a positive real number x satisfy-
ing the equation:

⌊x⌋2 = x{x}.
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4. Floor Inequality. Let n be a positive integer and x be a real num-
ber. Verify that:

⌊nx⌋ ≥ ⌊x⌋+
⌊

2x
2

⌋
+ · · ·+

⌊nx
n

⌋
.

5. Primality of a Floor Sum. Let f (n) = ∑n
k=1⌊k2/3⌋. Prove that

in the sequence f (n), the only values that are prime numbers are
f (5) = 17 and f (6) = 29.

6. Infinite Floor Series. Let t > 1 be an integer and x be a real
number. Prove that:

∞

∑
k=0

(⌊
x + tk

tk+1

⌋
+ · · ·+

⌊
x + (t − 1)tk

tk+1

⌋)
equals either ⌊x⌋ or ⌊x⌋+ 1.

7. Condition for Inequality. Let m, n be positive integers and α, β be
real numbers. Prove that the inequality

⌊(m + n)α⌋+ ⌊(m + n)β⌋ ≥ ⌊mα⌋+ ⌊mβ⌋+ ⌊nα + nβ⌋

holds for all α, β if and only if m = n.

8. Decimal Expansion Bounds. Determine the digit immediately
before and the digit immediately after the decimal point of (

√
2 +√

3)1999.

9. Recursive Sequence. Define G(0) = 0 and G(n) = n − G(G(n −
1)) for n ≥ 1. Prove that G(n) = ⌊(n + 1)α⌋, where α =

√
5−1
2 (the

inverse of the Golden Ratio).

10. Factorials and Valuations.

(a) Find the exponent of 7 in the standard factorisation of 300!.

(b) Determine the standard prime factorisation of 30!.

(c) Determine the number of trailing zeros in the decimal repre-
sentation of 2000!.

11. Combinatorial Divisibility.

(a) Prove that (2n
n )

2
is divisible by 4 for all n ≥ 1.

(b) Prove that 2n | (2n−1
n ) but 2n+1 ∤ (2n−1

n ).

(c) Prove that (2n
n ) divides lcm(1, 2, . . . , 2n).

12. Powers of 2 dividing Factorials. Prove that 2n−1 | n! if and only if
n is a power of 2.

13. GCD of Binomial Coefficients. Find the greatest common divisor
of the set of binomial coefficients:{(

2n
1

)
,
(

2n
3

)
, . . . ,

(
2n

2n − 1

)}
.
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14. Divisor Function Calculations.

(a) Compute d(1125).

(b) Find the smallest positive integer n such that d(n) = 8. Do
the same for d(n) = 10.

(c) Find a number less than 10,000 that has exactly 60 divisors.

15. Product of Divisors. Let P(n) = ∏d|n d. Prove that if P(x) = P(y)
for positive integers x, y, then x = y.

16. Sum of Divisors.

(a) Compute σ(232848).

(b) Find all n such that σ(n) is odd.

(c) Find all n such that σ(n) is a power of 2.

17. Generalised Divisor Sums. Let σk(n) = ∑d|n dk. Prove the for-
mula:

σk(n) =
r

∏
i=1

p(ai+1)k
i − 1

pk
i − 1

,

where n = ∏ pai
i .

18. Average Order of Sigma. Let f (n) = ∑n
k=1 σ(k). Prove that for

n ≥ 4:

f (n) >
25
36

n(n + 1).



4
Perfect and Amicable Numbers

Having established the properties of the divisor functions d(n) and
σ(n), we turn our attention to integers that possess specific structural
relationships with their divisors. The study of these numbers dates
back to Pythagorean mysticism, yet their complete characterisation
remains an open problem in modern number theory.

4.1 Perfect Numbers

The most elementary relationship between a number and its divisors
occurs when the sum of the proper divisors equals the number itself.

Definition 4.1. Perfect Number.
A positive integer n is called a perfect number if it is equal to the sum
of its positive divisors excluding itself. Equivalently, n is perfect if and
only if σ(n) = 2n.

定義

Example 4.1. Small Perfect Numbers.
· For n = 6, the divisors are {1, 2, 3, 6}. The sum is σ(6) = 1 + 2 +

3 + 6 = 12 = 2(6). Thus, 6 is perfect.

· For n = 28, the divisors are {1, 2, 4, 7, 14, 28}. The sum is σ(28) =

1 + 2 + 4 + 7 + 14 + 28 = 56 = 2(28). Thus, 28 is perfect.

範例

Even Perfect Numbers

The history of perfect numbers is inextricably linked to Mersenne
primes. Euclid proved that Mersenne primes generate even perfect
numbers, and two millennia later, Euler proved that all even perfect
numbers arise this way.

Theorem 4.1. Euclid’s Condition for Perfect Numbers.
If 2p − 1 is a prime number, then n = 2p−1(2p − 1) is a perfect num-
ber.
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定理

Proof

Let q = 2p − 1. Since q is prime, σ(q) = q + 1 = 2p. Because q is
odd, (2p−1, q) = 1. Using the multiplicative property of σ:

σ(n) = σ(2p−1q)

= σ(2p−1)σ(q).

Using the formula for σ(pk), we have σ(2p−1) = 2(p−1)+1−1
2−1 = 2p −

1 = q. Substituting these values:

σ(n) = q · 2p = (2p − 1)2p = 2 · [2p−1(2p − 1)] = 2n.

Therefore, n is a perfect number.
■

Theorem 4.2. Euler’s Converse.
If n is an even perfect number, then n must be of the form 2p−1(2p −
1), where 2p − 1 is a prime number.

定理

Proof

Let n be an even perfect number. We factor out the powers of 2

from the standard factorisation:

n = 2ku,

where k ≥ 1 (since n is even) and u is odd. Since σ(n) = 2n, we
have:

σ(2ku) = 2(2ku) = 2k+1u.

By the multiplicativity of σ and the fact that (2k, u) = 1:

σ(2k)σ(u) = (2k+1 − 1)σ(u) = 2k+1u.

We rearrange this to express σ(u) in terms of u:

σ(u) =
2k+1u

2k+1 − 1
= u +

u
2k+1 − 1

.

Since σ(u) is an integer, the fraction D = u
2k+1−1

must be an integer.

Thus, 2k+1 − 1 is a divisor of u. Write

u = (2k+1 − 1)t

for some integer t ≥ 1. Then

σ(u) = u +
u

2k+1 − 1
= u + t.
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So the sum of the proper divisors of u is t. Since t divides u, both
1 and t are proper divisors of u when t > 1, giving a sum at least
1 + t, which is impossible. Hence t = 1. Then u = 2k+1 − 1
and σ(u) = u + 1, so u is prime. Thus n = 2k(2k+1 − 1) where
2k+1 − 1 is prime. By the properties of Mersenne primes, if 2k+1 − 1
is prime, the exponent k + 1 must be prime. Let p = k + 1. Then
n = 2p−1(2p − 1), as required.

■

Properties of Perfect Numbers

The structure imposed by σ(n) = 2n leads to several elegant arith-
metic properties.

Example 4.2. Reciprocal Sum of Divisors. Prove that a positive
integer n is perfect if and only if the sum of the reciprocals of its
positive divisors is 2.

∑
d|n

1
d
= 2.

We expand the sum. As d iterates through all divisors of n, the
term n/d also iterates through all divisors of n.

∑
d|n

1
d
= ∑

d|n

1
n/d

=
1
n ∑

d|n
d =

σ(n)
n

.

The condition ∑ 1
d = 2 is equivalent to σ(n)

n = 2, or σ(n) = 2n,
which is the definition of a perfect number.

範例

Example 4.3. Squarefree Perfect Numbers. Prove that if a perfect
number n is squarefree, then n = 6.
Let n = p1 p2 . . . pk be a product of distinct primes with p1 < p2 <

· · · < pk. Then σ(n) = ∏k
i=1(pi + 1). The perfect condition σ(n) =

2n becomes:

(p1 + 1)(p2 + 1) . . . (pk + 1) = 2p1 p2 . . . pk.

We analyse the cases for k:

Case k = 1. p1 + 1 = 2p1 =⇒ p1 = 1, which is impossible.

Case k = 2. We have (p1 + 1)(p2 + 1) = 2p1 p2. If n is odd, both
p1, p2 are odd, so p1 + 1 and p2 + 1 are even. Thus 4 | σ(n) =⇒
4 | 2n =⇒ 2 | n. This contradicts n being odd. Thus n must
be even, so p1 = 2. The equation becomes 3(p2 + 1) = 4p2 =⇒
3p2 + 3 = 4p2 =⇒ p2 = 3. This yields n = 2 × 3 = 6.



76 gudfit

Case k ≥ 3. As shown above, n must be even, so p1 = 2. The
equation implies 3 ∏k

i=2(pi + 1) = 4 ∏k
i=2 pi. This simplifies to

3
2 ∏k

i=2

(
1 + 1

pi

)
= 2. However, for k = 3, the minimum possible

primes are 2, 3, 5. LHS = 3
2

(
1 + 1

3

) (
1 + 1

5

)
= 3

2 · 4
3 · 6

5 = 12
5 =

2.4 > 2. Adding more primes only increases the product, so
there are no solutions for k ≥ 3.

Thus, n = 6 is the unique squarefree perfect number.

範例

Example 4.4. Triangular Structure. Prove that every even perfect
number is a triangular number.
Recall that the k-th triangular number is Tk = k(k+1)

2 . Let n =

2p−1(2p − 1) be an even perfect number. Let k = 2p − 1. Then:

Tk =
(2p − 1)((2p − 1) + 1)

2
=

(2p − 1)2p

2
= (2p − 1)2p−1 = n.

Thus n is the (2p − 1)-th triangular number. For example, 6 = T3

and 28 = T7.

範例

Example 4.5. Last Digits of Even Perfect Numbers. Prove that
every even perfect number ends in 6 or 8.
Let n be an even perfect number. Then n = 2p−1(2p − 1), where p
is a prime and 2p − 1 is also prime. We observe that for any integer
k ≥ 1, powers of 16 always end in 6. Thus, we can write 16k =

10m+ 6 for some positive integer m. We consider the possible forms
of the prime p:
1. If p = 2, then n = 21(22 − 1) = 2(3) = 6. This ends in 6.

2. If p > 2, p must be odd. Thus p is of the form 4k + 1 or 4k + 3.

Case 1: p = 4k + 1 for some integer k ≥ 1. Then n = 24k(24k+1 − 1) =

16k(2 · 16k − 1). Substituting 16k = 10m + 6:

n = (10m + 6)(2(10m + 6)− 1)

= (10m + 6)(20m + 12 − 1)

= (10m + 6)(20m + 11)

= 200m2 + 110m + 120m + 66

= 10(20m2 + 23m + 6) + 6.

Since 10(20m2 + 23m + 6) is a multiple of 10, adding 6 results in
a number ending in 6.
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Case 2: p = 4k + 3 for some integer k ≥ 0. Then n = 24k+2(24k+3 −
1) = 22 · 24k(23 · 24k − 1) = 4 · 16k(8 · 16k − 1). Substituting 16k =

10m + 6:

n = 4(10m + 6)(8(10m + 6)− 1)

= (40m + 24)(80m + 48 − 1)

= (40m + 24)(80m + 47)

= 3200m2 + 1880m + 1920m + 1128

= 10(320m2 + 380m + 112) + 8.

Since the first term is a multiple of 10, adding 8 results in a num-
ber ending in 8.

In all cases, n ends in either 6 or 8.

範例

Note

If k = 0, then p = 3, and n = 22(7) = 28, which ends in 8 and fits
this form.

Example 4.6. Product of Divisors of Perfect Numbers. Let n be
an even perfect number generated by the prime p. Prove that the
product of the positive divisors of n is np.
Let P(n) = ∏d|n d. From the properties of the divisor function,
P(n) = nd(n)/2. For n = 2p−1(2p − 1), the prime factors are 2

(with exponent p − 1) and q = 2p − 1 (with exponent 1). Using the
formula for d(n):

d(n) = ((p − 1) + 1)(1 + 1) = p · 2 = 2p.

Substituting this into the product formula:

P(n) = n2p/2 = np.

範例

4.2 Amicable Numbers

While perfect numbers relate to themselves, amicable numbers re-
late to each other. They occur in pairs where the sum of the proper
divisors of one number equals the other.

Definition 4.2. Amicable Numbers.
Two positive integers m and n form an amicable pair if:

σ(m)− m = n and σ(n)− n = m.
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Equivalently, σ(m) = σ(n) = m + n.
定義

Example 4.7. The Classical Pair. The smallest amicable pair is
(220, 284).
· 220 = 22 · 5 · 11. σ(220) = (1 + 2 + 4)(1 + 5)(1 + 11) = 7 · 6 · 12 =

504. Sum of proper divisors: 504 − 220 = 284.

· 284 = 22 · 71. σ(284) = (1 + 2 + 4)(1 + 71) = 7 · 72 = 504. Sum of
proper divisors: 504 − 284 = 220.

範例

In the 9th century, Thabit ibn Qurra discovered a rule to generate
amicable pairs, similar to Euclid’s rule for perfect numbers.

Theorem 4.3. Thabit ibn Qurra’s Theorem.
Let e ≥ 2 be an integer. Define:

p = 3 · 2e−1 − 1, q = 3 · 2e − 1, r = 9 · 22e−1 − 1.

If p, q, and r are all prime numbers, then M = 2e pq and N = 2er form
an amicable pair.

定理

Proof

We compute σ(M) and σ(N). Note that p, q, r are distinct odd
primes (since e ≥ 2).

σ(M) = σ(2e)σ(p)σ(q)

= (2e+1 − 1)(p + 1)(q + 1)

= (2e+1 − 1)(3 · 2e−1)(3 · 2e)

= (2e+1 − 1)(9 · 22e−1).

Similarly for N:

σ(N) = σ(2e)σ(r)

= (2e+1 − 1)(r + 1)

= (2e+1 − 1)(9 · 22e−1).

Thus σ(M) = σ(N). We must now show this common sum equals
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M + N.

M + N = 2e pq + 2er

= 2e(pq + r)

= 2e[(3 · 2e−1 − 1)(3 · 2e − 1) + (9 · 22e−1 − 1)]

= 2e[(9 · 22e−1 − 3 · 2e−1 − 3 · 2e + 1) + 9 · 22e−1 − 1]

= 2e[18 · 22e−1 − 3 · 2e−1(1 + 2)]

= 2e[9 · 22e − 9 · 2e−1]

= 9 · 22e−1(2e+1 − 1).

This matches the value of σ(M) derived above. Thus M and N are
amicable.

■

Note

For e = 2, we obtain primes p = 5, q = 11, r = 71, yielding the pair
(220, 284).

Properties and Non-Existence Results

Example 4.8. Reciprocal Sums for an Amicable Pair. Prove that if m
and n are amicable, then∑

d|m

1
d

−1

+

∑
k|n

1
k

−1

= 1.

Recall that ∑d|x
1
d = σ(x)

x . Let K = σ(m) = σ(n) = m + n. Then the
sum of inverses is:(

σ(m)

m

)−1

+

(
σ(n)

n

)−1

=
m
K

+
n
K

=
m + n

K
=

K
K

= 1.

範例

Example 4.9. Primes cannot be Amicable. Prove that a prime num-
ber p cannot belong to an amicable pair.
Suppose (p, n) is an amicable pair. Then σ(p) = p + n. Since p is
prime, σ(p) = p + 1. The equation becomes p + 1 = p + n, which
implies n = 1. If n = 1, the pair is (p, 1). This requires σ(1) = 1 + p.
But σ(1) = 1. Thus 1 = 1 + p =⇒ p = 0, which is not prime. Con-
tradiction.

範例
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Example 4.10. Squares of Primes cannot be Amicable. Prove that
p2 (where p is a prime) cannot belong to an amicable pair.
Suppose (p2, n) is an amicable pair. Then σ(p2) = p2 + n. We calcu-
late σ(p2) = 1 + p + p2. So 1 + p + p2 = p2 + n =⇒ n = p + 1. The
condition for amicable numbers requires σ(n) = σ(p2) = 1+ p + p2.
Substituting n = p + 1:

σ(p + 1) = p2 + p + 1.

We estimate the growth of σ(k). Generally, σ(k) < k2 for k > 1. For
k = p + 1, we consider the maximum possible sum of divisors.

σ(p + 1) ≤
p+1

∑
i=1

i =
(p + 1)(p + 2)

2
=

p2 + 3p + 2
2

=
1
2

p2 +
3
2

p + 1.

We compare this upper bound with the required value p2 + p + 1.
For p ≥ 2, p2 + p + 1 > 1

2 p2 + 3
2 p + 1 ⇐⇒ 1

2 p2 − 1
2 p >

0 ⇐⇒ p(p − 1) > 0. Since p ≥ 2, this inequality strictly holds.
Thus σ(p + 1) < p2 + p + 1. This contradicts the requirement for be-
ing an amicable pair.

範例

4.3 Exercises

1. Perfect Squares and Perfect Numbers. Prove: A square number
cannot be a perfect number.

2. Perfect Numbers and Division by 9. Let n be an even perfect
number greater than 6. Prove that when n is divided by 9, the
remainder is 1.

Remark.

Use the form 2p−1(2p − 1) and list the possible remainders of
cubes upon division by 9.

3. Verifying Amicable Pairs. Prove that 9,363,584 and 9,437,056 are
an amicable pair.

Remark.

This pair was discovered by Descartes.

4. Power Condition for Amicable Pairs. Suppose a prime power pa

is one of an amicable pair. Prove that:

σ(pa) = σ

(
pa − 1
p − 1

)
.
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5. Structure of Odd Perfect Numbers. Prove: Any odd perfect num-
ber must be of the form p4a+1Q2, where p is an odd prime, a is a
nonnegative integer, and Q is a positive integer. Analyse the parity of σ(n) factors. Since

n is odd, σ(n) = 2n is even but not
divisible by 4. How does σ(pe) behave
when p is odd?



5
The Principle of Stepwise Elimination

A recurring theme in the previous chapters has been the need to
count integers satisfying specific divisibility properties. For instance,
the Sieve of Eratosthenes systematically removes multiples of primes
to isolate the remaining prime numbers.
We now formalise this counting technique. Known in combinatorics
as the Inclusion-Exclusion Principle, and in number theory as the
Principle of Stepwise Elimination, this tool allows us to enumerate
objects that do not satisfy a set of properties by systematically adding
and subtracting counts of objects that do.

5.1 The Inclusion-Exclusion Principle

We consider a finite set of objects and a collection of properties that
these objects may possess. We wish to count the number of objects
that possess none of these properties.

Theorem 5.1. Principle of Stepwise Elimination.
Let S be a finite set of N objects. Let α1, α2, . . . , αs be a set of s distinct
properties. For any subset of indices {i1, . . . , ik} ⊆ {1, . . . , s}, let Nαi1

...αik
denote the number of objects in S that possess all the properties αi1 , . . . , αik
simultaneously. The number of objects in S that possess none of the
properties α1, . . . , αs is given by:

E = N − ∑
1≤i≤s

Nαi + ∑
1≤i<j≤s

Nαiαj − ∑
1≤i<j<k≤s

Nαiαjαk + · · ·+ (−1)sNα1 ...αs

= N +
s

∑
k=1

(−1)k

(
∑

1≤i1<···<ik≤s
Nαi1

...αik

)
.

定理

N
α1

α2 α3

∩

None

Figure 5.1: Visualisation for
s = 3. To count the region
outside the circles ("None"), we
start with the total N, subtract
single circles, add back pair-
wise intersections, and subtract
the triple intersection.

We determine the contribution of an arbitrary object x ∈ S to the total
sum on the right-hand side.
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x possesses none of the properties.

The object x is counted once in the term N. It does not appear in
any Nαi or subsequent terms because it has no properties. Total
contribution: 1. This is correct.

証明終

x possesses exactly k properties (1 ≤ k ≤ s).

Assume x possesses properties αj1 , . . . , αjk .
• In the term N, x is counted 1 time (coefficient (k

0)).
• In the sum ∑ Nαi , x is counted (k

1) times (once for each of its k
properties).

• In the sum ∑ Nαiαj , x is counted (k
2) times (once for each pair of

its properties).
• Generally, in the m-th summation, x is counted ( k

m) times.
The total contribution of x to the alternating sum is:

C =

(
k
0

)
−
(

k
1

)
+

(
k
2

)
−
(

k
3

)
+ · · ·+ (−1)k

(
k
k

)
.

By the Binomial Theorem, this sum corresponds to the expansion of
(1 − 1)k:

C = (1 − 1)k = 0.

Thus, any object possessing at least one property contributes 0 to
the total.

証明終

Since only objects with no properties are counted (exactly once), the
formula yields the number of such objects.

Applications to Divisibility

In number theory, the "properties" are typically divisibility condi-
tions. Recall from the previous chapter that the number of multiples
of an integer b not exceeding x is ⌊x/b⌋. This allows us to calculate
Nαi and intersections explicitly.

Example 5.1. Counting Integers with Missing Factors. Find the
number of positive integers not exceeding 100 that are not divisible
by 2, 3, 5, or 7.
Let S = {1, 2, . . . , 100}, so N = 100. We define four properties:
α1: divisible by 2; α2: divisible by 3; α3: divisible by 5; α4: divisible
by 7. We seek the number of elements with none of these proper-
ties. The count of numbers divisible by a set of coprime integers is
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determined by the floor of N divided by their product.

Count = 100 −
(⌊

100
2

⌋
+

⌊
100
3

⌋
+

⌊
100

5

⌋
+

⌊
100

7

⌋)
+

(⌊
100

6

⌋
+

⌊
100
10

⌋
+

⌊
100
14

⌋
+

⌊
100
15

⌋
+

⌊
100
21

⌋
+

⌊
100
35

⌋)
−
(⌊

100
30

⌋
+

⌊
100
42

⌋
+

⌊
100
70

⌋
+

⌊
100
105

⌋)
+

⌊
100
210

⌋
.

Evaluating these terms:

Count = 100 − (50 + 33 + 20 + 14)

+ (16 + 10 + 7 + 6 + 4 + 2)

− (3 + 2 + 1 + 0)

+ 0

= 100 − 117 + 45 − 6 = 22.

There are 22 such integers.

範例

The principle extends beyond simple counting; it is a linear operator
that can be applied to summations.

Example 5.2. Summation of Non-Multiples. Calculate the sum of
all positive integers not exceeding 100 that are not divisible by 2, 3,
5, or 7.
Let A be the set of integers {1, . . . , 100} satisfying the condition.
We compute ∑n∈A n. Using the Stepwise Elimination Principle, we
replace the count of elements ⌊100/k⌋ with the sum of multiples of
k. The sum of multiples of k up to N is:

S(N, k) =
⌊N/k⌋

∑
j=1

jk = k
⌊N/k⌋(⌊N/k⌋+ 1)

2
.

Applying the formula:

Sum = S(100, 1)

− (S(100, 2) + S(100, 3) + S(100, 5) + S(100, 7))

+ (S(100, 6) + S(100, 10) + S(100, 14) + S(100, 15) + S(100, 21) + S(100, 35))

− (S(100, 30) + S(100, 42) + S(100, 70)).

Calculating individual terms:
· Total sum: 100×101

2 = 5050.

· Singles: 2 50×51
2 + 3 33×34

2 + 5 20×21
2 + 7 14×15

2 = 2550+ 1683+ 1050+
735 = 6018.
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· Pairs: 6(136) + 10(55) + 14(28) + 15(21) + 21(10) + 35(3) = 816 +
550 + 392 + 315 + 210 + 105 = 2388.

· Triples: 30(6) + 42(3) + 70(1) = 180 + 126 + 70 = 376.
Total Sum = 5050 − 6018 + 2388 − 376 = 1044.

範例

Counting Permutations (Derangements)

To demonstrate the versatility of theorem 5.1 beyond strictly arith-
metic progressions, we consider a classical combinatorial problem
involving permutations. This structure mirrors the divisibility prob-
lems: we subtract cases that violate a condition, then add back the
overlaps.

Example 5.3. The Derangement Problem. A derangement of n el-
ements is a permutation σ of the set {1, 2, . . . , n} such that σ(i) ̸= i
for all i (i.e., no element remains in its original position). Find the
number of derangements Dn.
Let S be the set of all n! permutations. Let property αi be the condi-
tion that σ(i) = i. We seek the number of permutations possessing
none of the properties α1, . . . , αn.
· N = n!.

· Nαi : The number of permutations where i is fixed. The remaining
n − 1 elements can be permuted in (n − 1)! ways. There are (n

1)

such choices for i. Sum = (n
1)(n − 1)!.

· Nαiαj : The number of permutations where i and j are fixed (i ̸= j).
The remaining n − 2 elements can be permuted in (n − 2)! ways.
There are (n

2) such pairs. Sum = (n
2)(n − 2)!.

· Generally, for k fixed points, the sum is (n
k)(n − k)!.

Applying theorem 5.1:

Dn = n! −
(

n
1

)
(n − 1)! +

(
n
2

)
(n − 2)! − · · ·+ (−1)n

(
n
n

)
(n − n)!

= n! − n!
1!(n − 1)!

(n − 1)! +
n!

2!(n − 2)!
(n − 2)! − · · ·+ (−1)n n!

n!0!
0!

= n!
(

1 − 1
1!

+
1
2!

− 1
3!

+ · · ·+ (−1)n

n!

)
.

Thus, Dn = n! ∑n
k=0

(−1)k

k! .

範例
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5.2 Counting Primes

The Sieve of Eratosthenes is an algorithm. By applying the Princi-
ple of Stepwise Elimination, we can convert this algorithm into an
explicit formula for π(N), the prime-counting function.

Theorem 5.2. Legendre’s Formula for π(N).
Let N be a positive integer. Let p1, p2, . . . , ps be the distinct prime num-
bers not exceeding

√
N. Then:

π(N) = N + s− 1−∑
i

⌊
N
pi

⌋
+∑

i<j

⌊
N

pi pj

⌋
− ∑

i<j<k

⌊
N

pi pj pk

⌋
+ · · ·+(−1)s

⌊
N

p1 . . . ps

⌋
.

定理

Proof

Consider the set of integers S = {1, 2, . . . , N}. An integer x ∈ S
is composite if and only if it is divisible by some prime p ≤

√
x ≤√

N. Conversely, if x > 1 is not divisible by any prime p ≤
√

N,
then x must be a prime number greater than

√
N.

We define the property αi as "being divisible by pi", for i = 1, . . . , s.
We apply the Principle of Stepwise Elimination to count integers in
S not divisible by any pi. Let M be this count.

M = N − ∑
⌊

N
pi

⌋
+ ∑

⌊
N

pi pj

⌋
− . . .

The set of numbers counted by M contains:

1. The number 1 (which has no prime factors).

2. All primes q such that
√

N < q ≤ N.

The primes p1, . . . , ps are not included in M because they are divisi-
ble by themselves (property αi). Therefore, the total count of primes
up to N is the number of primes in the "sieved" set (which is M − 1)
plus the s small primes we used for sieving.

π(N) = (M − 1) + s.

Substituting the formula for M yields the result.
■

Example 5.4. Calculating π(100). We find the number of primes
up to 100. The primes not exceeding

√
100 = 10 are 2, 3, 5, 7. Thus

s = 4. We use the calculation from the first example in this chapter,
where we found that the number of integers up to 100 not divisible
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by 2, 3, 5, or 7 is 22. Thus M = 22. Using Legendre’s Formula:

π(100) = M − 1 + s = 22 − 1 + 4 = 25.

This matches the actual count of primes up to 100.

範例

Structure of Coprime Integers

We can generalize Legendre’s formula to count integers coprime
to any general number n, not just the product of primes up to

√
N.

This leads to the formula for Euler’s Totient Function, which will be
central to later chapters.

Example 5.5. Counting Coprimes to a Composite Number. Let n =

pa1
1 pa2

2 . . . pak
k . Find the number of integers x ∈ {1, . . . , n} such that

(x, n) = 1.
An integer x is coprime to n if and only if x is not divisible by any
of the prime factors p1, . . . , pk. We apply Stepwise Elimination
with N = n and properties αi: divisible by pi. The number of such
integers is:

ϕ(n) = n − ∑
i

n
pi

+ ∑
i<j

n
pi pj

− ∑
i<j<l

n
pi pj pl

+ . . .

Notice that we do not need the floor function symbols ⌊. . . ⌋ be-
cause we are dividing n by its own divisors; the results are always
integers. We can factor the expression. Consider the expansion of
the product:

n
k

∏
i=1

(
1 − 1

pi

)
= n

(
1 − ∑

1
pi

+ ∑
1

pi pj
− . . .

)
.

Multiplying n through the brackets yields exactly the inclusion-
exclusion sum derived above. Thus, the number of coprime integers
is:

ϕ(n) = n
(

1 − 1
p1

)(
1 − 1

p2

)
. . .
(

1 − 1
pk

)
.

For example, if n = 12 = 22 · 3, then ϕ(12) = 12(1− 1/2)(1− 1/3) =
12(1/2)(2/3) = 4. The coprime integers are {1, 5, 7, 11}.

範例
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5.3 The Drawer Principle

We now turn our attention to a fundamental logical tool used to
prove the existence of mathematical objects without necessarily con-
structing them. This principle, often attributed to Dirichlet, posits
a simple combinatorial truth: if one distributes a sufficiently large
number of items into a fixed number of containers, at least one con-
tainer must hold multiple items. Despite its apparent simplicity, this
"Drawer Principle" (or Pigeonhole Principle) allows us to demonstrate
the existence of complex number-theoretic structures.
We begin by formalising the simplest case.

Theorem 5.3. The First Drawer Principle.
If n+ 1 or more objects are placed into n drawers, then at least one drawer
must contain 2 or more objects.

定理

Proof

We proceed by contradiction. Assume that n + 1 objects are dis-
tributed into n drawers such that no drawer contains more than
1 object. Then every drawer contains either 0 or 1 object. Conse-
quently, the total number of objects S satisfies:

S ≤ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

This contradicts the hypothesis that there are at least n + 1 objects.
Thus, the assumption is false, and at least one drawer contains 2 or
more objects.

■

This concept generalises naturally when the number of objects far
exceeds the number of drawers.

Theorem 5.4. The Generalised Drawer Principle.
If m objects are placed into n drawers, then at least one drawer contains
at least ⌊m−1

n ⌋+ 1 objects.
定理

Proof

Let k = ⌊m−1
n ⌋. The largest multiple of n strictly less than m is nk.

We wish to show some drawer has at least k + 1 objects. Assume
for the sake of contradiction that every drawer contains at most
k objects. Since there are n drawers, the total number of objects S
satisfies:

S ≤ nk = n
⌊

m − 1
n

⌋
≤ n

(
m − 1

n

)
= m − 1.
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This implies the total number of objects is strictly less than m, a
contradiction. Therefore, at least one drawer holds k + 1 or more
objects.

■

The Drawer Principle is particularly effective when the "drawers"
represent remainders or structural partitions of the integers.

Example 5.6. Parity Subsets. Prove that among any 3 integers,
there are at least 2 whose sum is a multiple of 2.
We classify integers by their parity. There are 2 possible categories
("drawers"): odd and even. We are given 3 integers. By theorem 5.3,
since 3 > 2, at least 2 integers must belong to the same category.
Let these two integers be a and b.
1. If both are even, a = 2k and b = 2j. Then a + b = 2(k + j), which

is a multiple of 2.

2. If both are odd, a = 2k + 1 and b = 2j+ 1. Then a+ b = 2k + 2j+
2 = 2(k + j + 1), which is a multiple of 2.

In either case, the sum is divisible by 2.

範例

We can extend the logic of remainders to general divisors.
Example 5.7. Subset Sum Divisibility. Prove that among any set
of n positive integers a1, a2, . . . , an, there exists a non-empty subset
whose sum is a multiple of n.
Consider the n partial sums:

S1 = a1, S2 = a1 + a2, . . . , Sn = a1 + a2 + · · ·+ an.

We examine the remainders of these sums when divided by
n. By the Division Algorithm, the possible remainders are
{0, 1, . . . , n − 1}.
· Case 1: If any sum Sk has a remainder of 0, then Sk is a multiple

of n, and the subset {a1, . . . , ak} satisfies the condition.

· Case 2: If no sum Sk has a remainder of 0, then the n val-
ues S1, . . . , Sn must map to the n − 1 non-zero remainders
{1, . . . , n − 1}.

By theorem 5.3, placing n sums into n − 1 remainder classes implies
that at least two sums, say Sk and Sm (with k > m), leave the same
remainder. It follows that their difference is a multiple of n:

Sk − Sm = (a1 + · · ·+ ak)− (a1 + · · ·+ am) = am+1 + am+2 + · · ·+ ak.

Thus, the sum of the subset {am+1, . . . , ak} is divisible by n.

範例
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Example 5.8. Divisibility in Intervals. Prove that for any integer
n ≥ 1, if one selects n + 1 integers from the set {1, 2, . . . , 2n}, then at
least one selected integer divides another.
Every positive integer x can be written uniquely in the form
x = 2k · q, where k ≥ 0 and q is an odd integer. For any
x ∈ {1, . . . , 2n}, the odd part q must also be in the range
1 ≤ q < 2n. The possible odd parts in this range are the odd
integers {1, 3, 5, . . . , 2n − 1}. The number of such odd integers is
exactly n. We define these n odd integers as our "drawers". We are
given n + 1 numbers. By the Drawer Principle, two distinct num-
bers x and y must share the same odd part q. Let x = 2a · q and
y = 2b · q. Since x and y are distinct, we must have a ̸= b. If a < b,
then x | y (since y = 2b−ax). If b < a, then y | x. Thus, one number
divides the other.

範例

Geometric and Additive Applications

The principle applies equally to coordinate geometry and sequence
construction.

Example 5.9. Midpoints of Lattice Points. Prove that among any
5 integer points in the Cartesian plane, there exist 2 points whose
midpoint is also an integer point.
A point (x, y) is an integer point if x, y ∈ Z. The midpoint of
A(x1, y1) and B(x2, y2) is:

M =

(
x1 + x2

2
,

y1 + y2

2

)
.

For M to be an integer point, x1 + x2 and y1 + y2 must both be
even. This occurs if and only if x1 and x2 have the same parity, and
y1 and y2 have the same parity. We classify integer points by the
parity of their coordinates. There are 4 such classes:

(odd, odd), (odd, even), (even, odd), (even, even).

We are selecting 5 points. By theorem 5.3, since 5 > 4, at least two
points A and B must belong to the same parity class. Consequently,
their midpoint is an integer point.

範例

Example 5.10. Additive Relations in Sets. Let n be a positive inte-
ger. Prove that given any set of n + 1 distinct positive integers each
strictly less than 2n, there exist three elements x, y, z in the set such
that x + y = z.
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Let the set of integers be A = {a0, a1, . . . , an}. Sort the elements
such that:

1 ≤ a0 < a1 < · · · < an < 2n.

We define a new sequence of n numbers based on A:

b1 = a1 − a0, b2 = a2 − a0, . . . , bn = an − a0.

Note that bi > 0 for all i. Also, since an < 2n and a0 ≥ 1:

bn = an − a0 < 2n − 1.

Consider the combined collection of numbers:

C = {a1, . . . , an} ∪ {b1, . . . , bn}.

There are n numbers in the first set and n in the second, totalling 2n
numbers. However, all elements of C are positive integers strictly
less than 2n (the maximum possible value is 2n − 1). By the Drawer
Principle (placing 2n items into 2n − 1 values), at least two numbers
in C must be equal. Since the sequence ai is strictly increasing, all
ai are distinct. Similarly, all bi are distinct. Thus, the equality must
be between an element of the first set and an element of the sec-
ond. There exist indices j and k such that ak = bj. Substituting the
definition of bj:

ak = aj − a0 =⇒ ak + a0 = aj.

Let x = a0, y = ak, z = aj. These are elements of the original set sat-
isfying x + y = z.

範例

The Averaging Principle

A variation of the Drawer Principle deals with sums and averages.
If a total resource is distributed among n consumers, someone must
possess at least the average amount.

Theorem 5.5. The Weighted Drawer Principle.
Let q1, . . . , qn be positive integers. If

S = q1 + q2 + · · ·+ qn − n + 1

objects are placed into n drawers, then either the first drawer contains
at least q1 objects, or the second contains at least q2, . . . , or the n-th con-
tains at least qn.

定理
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Proof

Assume the contrary: that for every drawer i, the number of objects
oi satisfies oi ≤ qi − 1. Summing over all drawers:

Total Objects =
n

∑
i=1

oi ≤
n

∑
i=1

(qi − 1) =

(
n

∑
i=1

qi

)
− n = S − 1.

This contradicts the fact that there are S objects.
■

Corollary 5.1. The Average Principle. Let m1, . . . , mn be integers. If their
arithmetic mean is greater than r− 1, then at least one integer is greater
than or equal to r.

1
n

n

∑
i=1

mi > r − 1 =⇒ ∃k, mk ≥ r.

推論

a1
a2

a3

a4

a5
a6

a7

a8

a9

a10

Sum S1

Figure 5.2: Ten integers ar-
ranged on a circle. We consider
sums of triplets like (a1, a2, a3).

Example 5.11. Sums on a Circle. The integers from 1 to 10 are
arranged in a circle in an arbitrary order. Prove that there exist 3

adjacent numbers whose sum is at least 17.
Let the arrangement be a1, a2, . . . , a10 in clockwise order. We form
the 10 sums of 3 adjacent numbers:

S1 = a1 + a2 + a3, S2 = a2 + a3 + a4, . . . , S10 = a10 + a1 + a2.

We calculate the sum of these sums. In the total ∑ Si, each number
ak appears exactly 3 times (once as the first element, once as the
second, once as the third).

10

∑
i=1

Si = 3(a1 + a2 + · · ·+ a10).

Since the numbers are a permutation of 1, . . . , 10, their sum is 55.

10

∑
i=1

Si = 3(55) = 165.

The average value of the sums is:

S̄ =
165
10

= 16.5.

Since the average is 16.5, by the Average Principle (with r = 17, not-
ing 16.5 > 17− 1), at least one sum Sk must be greater than or equal
to 17.

範例
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Example 5.12. Decimal Expansions. Prove that for any integer n >

0, the decimal expansion of 1
n is eventually repeating.

Consider the process of long division of 1 by n. At each step k, we
obtain a remainder rk when dividing by n. By the Division Algo-
rithm, the possible values for the remainder rk are {0, 1, . . . , n − 1}.
There are only n possible values for these remainders. Consider the
sequence of n + 1 remainders generated by the division process:
r1, r2, . . . , rn+1. By the Drawer Principle, since there are n + 1 re-
mainders and only n possible values, at least two remainders must
be identical. Let ri = rj with i < j. Since the algorithm for long
division is deterministic (the next digit and next remainder depend
entirely on the current remainder), the sequence of digits generated
after ri will be identical to the sequence generated after rj. Thus,
the decimal expansion repeats with a period of length at most j − i.

範例

5.4 Exercises

1. Sieve Count. Find the number of positive integers not exceeding
500 that are not divisible by any of 5, 7, or 11.

2. Sieve Sum. Calculate the sum of all positive integers not exceed-
ing 500 that are not divisible by any of 5, 7, or 11.

3. Divisibility by Sets. Consider the integers from 1 to 2000.

(a) How many are divisible by at least two of the numbers 2, 3,
5?

(b) How many are divisible by exactly one of the numbers 2, 3,
5?

4. Counting Primes. Use Legendre’s Formula (theorem 5.2) to calcu-
late π(150), the number of primes not exceeding 150.

5. Bertrand’s Postulate. Prove that for any real number x ≥ 1, there
exists at least one prime number in the interval (x, 2x].

Remark.

This is a deep theorem; try to prove a weaker version first, you
may use the properties of binomial coefficients (2n

n ).

6. Parity and Difference. Prove that among any 4 integers, there are
at least 2 whose difference is divisible by 3.

7. Sum Divisibility. Prove that among any 5 integers, there are at
least 3 integers whose sum is divisible by 3.

8. Divisor Existence. Prove that if n + 1 integers are selected from
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the set {1, 2, . . . , 2n}, there must exist two integers such that one
divides the other.

9. Maximising the Minimum. Let m > n > 0. Suppose m books are
placed into n drawers. Let r be the maximum integer such that we
can guarantee at least one drawer contains r books. Determine r in
terms of m and n.

10. Sum Matching. Let A and B be two sets of distinct positive in-
tegers such that every element in A ∪ B is strictly less than n.
Suppose |A|+ |B| ≥ n. Prove that there exists a ∈ A and b ∈ B
such that a + b = n.



6
Congruence

Having established the properties of divisibility and prime factori-
sation in the preceding chapters, we now turn to one of the most
powerful tools in elementary number theory: the theory of con-
gruences. Developed systematically by Carl Friedrich Gauss in his
Disquisitiones Arithmeticae (1801), this theory formalises the arithmetic
of remainders. It provides a natural framework for treating divisibil-
ity problems as algebraic equations, greatly simplifying arguments
that would otherwise require cumbersome manipulation of linear
combinations.

6.1 The Concept of Congruence

The notion of congruence is an extension of the divisibility relation. It
classifies integers based on their remainders when divided by a fixed
positive integer.

Definition 6.1. Congruence.
Let m be a fixed positive integer, termed the modulus. Two integers
a and b are said to be congruent modulo m if they leave the same re-
mainder when divided by m. This relationship is denoted by:

a ≡ b (mod m).

If the remainders are distinct, a and b are said to be incongruent mod-
ulo m, denoted by a ̸≡ b (mod m).

定義

While the definition relies on the Euclidean Division Algorithm, it is
often more operationally convenient to express congruence in terms
of divisibility.

Theorem 6.1. Characterisation of Congruence.
Let m be a positive integer. Then a ≡ b (mod m) if and only if m di-
vides the difference a − b.

定理
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Necessity.

Suppose a ≡ b (mod m). By theorem 0.4, we can write a = mq1 + r
and b = mq2 + r, where 0 ≤ r < m. Subtracting the two equations
yields:

a − b = (mq1 + r)− (mq2 + r) = m(q1 − q2).

Since q1 − q2 is an integer, m | (a − b).
証明終

Sufficiency.

Suppose m | (a − b). Then a − b = mk for some integer k. Let b =

mq + r with 0 ≤ r < m. Substituting this into the expression for a:

a = b + mk = (mq + r) + mk = m(q + k) + r.

Thus, a leaves the same remainder r as b when divided by m, so
a ≡ b (mod m).

証明終

This theorem establishes the bridge between the notation of congru-
ence and the theory of linear Diophantine equations. The expression
a ≡ b (mod m) is equivalent to the existence of an integer k such that
a = b + mk.

Properties of Congruence

The utility of congruence lies in its structural similarity to equality.
We begin by verifying that congruence behaves as an equivalence
relation.

Theorem 6.2. Equivalence Relation.
Congruence modulo m is an equivalence relation on the set of integers.
That is, for all integers a, b, c:
1. Reflexivity: a ≡ a (mod m).
2. Symmetry: If a ≡ b (mod m), then b ≡ a (mod m).
3. Transitivity: If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c

(mod m).
定理

Proof

1. a − a = 0 = m · 0, so m | (a − a).
2. If m | (a − b), then a − b = mk. Thus b − a = m(−k), so m | (b −

a).
3. If m | (a − b) and m | (b − c), then a − b = mk and b − c = mj.

Adding these yields (a − b) + (b − c) = a − c = m(k + j). Thus
m | (a − c).

■

0

1

2

3

4

5

m = 6
7 ≡ 1

Figure 6.1: Visualising congru-
ence modulo 6. Integers map
to points on the circle; 1 and 7
occupy the same position.
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Crucially, congruences preserve the basic arithmetic operations of
addition and multiplication. This allows us to perform arithmetic on
"remainders" without converting back to the original integers.

Theorem 6.3. Arithmetic Properties.
If a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then:
1. a1 ± a2 ≡ b1 ± b2 (mod m).
2. a1a2 ≡ b1b2 (mod m).

定理

Proof

By hypothesis, there exist integers k and j such that a1 − b1 = mk
and a2 − b2 = mj.
1. Consider the sum (or difference):

(a1 ± a2)− (b1 ± b2) = (a1 − b1)± (a2 − b2) = mk±mj = m(k± j).

Since k ± j is an integer, m divides the difference.
2. Consider the product. We use the identity a1a2 − b1b2 = a2(a1 −

b1) + b1(a2 − b2).

a1a2 − b1b2 = a2(mk) + b1(mj) = m(a2k + b1 j).

Since a2k + b1 j is an integer, m | (a1a2 − b1b2).
■

The following corollaries are immediate consequences of theorem 6.3
and are used frequently in calculation.

Corollary 6.1. Congruence Operations. Let a, b, k be integers and m, n
be positive integers. If a ≡ b (mod m), then:
1. a ± k ≡ b ± k (mod m).

2. ak ≡ bk (mod m).

3. an ≡ bn (mod m).
推論

These properties extend to polynomials with integer coefficients.

Corollary 6.2. Let P(x) = ∑n
i=0 cixi be a polynomial with integer co-

efficients. If a ≡ b (mod m), then P(a) ≡ P(b) (mod m). Further-
more, if two polynomials f (x) and g(x) have coefficients that are con-
gruent modulo m term-by-term, then f (x) ≡ g(x) (mod m).

推論

Example 6.1. Divisibility by 9. Using the polynomial property,
we can derive the standard test for divisibility by 9. Let n be a
positive integer with decimal representation dkdk−1 . . . d1d0. Then
n = ∑k

i=0 di10i. Consider the polynomial P(x) = ∑k
i=0 dixi. Then
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n = P(10). Since 10 ≡ 1 (mod 9), we have:

P(10) ≡ P(1) (mod 9).

Calculating P(1):

P(1) =
k

∑
i=0

di(1)i = d0 + d1 + · · ·+ dk.

Thus, n ≡ sum of digits of n (mod 9). An integer is divisible by 9 if
and only if the sum of its digits is divisible by 9.

範例

6.2 Simplification and Cancellation

While addition and multiplication behave intuitively, division re-
quires care. The congruence ac ≡ bc (mod m) does not necessarily
imply a ≡ b (mod m). For example, 2 · 3 ≡ 2 · 1 (mod 4), but 3 ̸≡ 1
(mod 4).
However, we can cancel a factor if it is coprime to the modulus.

Theorem 6.4. Cancellation Law.
If ac ≡ bc (mod m) and (c, m) = 1, then a ≡ b (mod m).

定理

Proof

The congruence ac ≡ bc (mod m) implies m | (ac − bc), or equiv-
alently m | c(a − b). Since (c, m) = 1, Euclid’s Lemma (established
in the chapter on Divisibility) implies that m must divide the other
factor, a − b. Thus a ≡ b (mod m).

■

We can now apply these tools to solve specific number-theoretic
problems.

Example 6.2. Roots of Quadratic Congruences. Let p be a prime
not dividing a, and let k ≥ 1. Determine the solutions to n2 ≡ an
(mod pk).
We seek n such that pk | (n2 − an), or pk | n(n − a).

Case k = 1: Since p is prime, p | n(n − a) implies p | n or p | (n − a).
Thus n ≡ 0 (mod p) or n ≡ a (mod p).

Case k ≥ 2: Suppose p divides both factors. Then p | n and
p | (n − a). By linearity, p | n − (n − a) =⇒ p | a. But we as-
sumed p ∤ a. This is a contradiction. Therefore, the prime power
pk cannot be "split" between the two factors; it must divide one
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entirely. Let vp(x) denote the exponent of p in the prime factori-
sation of x. Since pk | n(n − a), we have vp(n) + vp(n − a) ≥ k.
The argument above shows at most one of vp(n), vp(n − a) is
positive, so one is 0 and the other is at least k. This leaves two
solutions: n ≡ 0 (mod pk) or n ≡ a (mod pk).

範例

Example 6.3. Non-Existence of Integer Roots. Prove that the equa-
tion x2 + y2 = 4k + 3 has no integer solutions.
We analyse the equation modulo 4. The right-hand side is congru-
ent to 3 modulo 4. For any integer z, we check the possible values
of z2 (mod 4):
· If z is even (z = 2m), z2 = 4m2 ≡ 0 (mod 4).

· If z is odd (z = 2m + 1), z2 = 4m2 + 4m + 1 ≡ 1 (mod 4).
Thus, squares modulo 4 are always 0 or 1. The sum of two squares
x2 + y2 (mod 4) can therefore only take the values:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 2.

The value 3 is impossible. Thus, no integers x, y satisfy the equa-
tion.

範例

Composite Numbers and Factorials

Congruences provide elegant tests for primality and properties of
composite numbers. The following result complements Wilson’s
Theorem (which we shall prove in a later section).

Example 6.4. Factorials of Composite Numbers. Let n > 4 be a
composite integer. Prove that (n − 2)! ≡ 0 (mod n).
Since n is composite, we can write n = d1d2 with 1 < d1 ≤ d2 < n.
We consider the term (n − 2)! = 1 · 2 · · · · · (n − 2).

Case 1: d1 ̸= d2. Since n is composite, its smallest divisor d1 ≤
√

n.
If n > 4, then d2 = n/d1 < n − 1. Since d2 is an integer and
d2 < n − 1, we have d2 ≤ n − 2. Thus both d1 and d2 are distinct
integers appearing in the product 1× · · · × (n− 2). Their product
d1d2 = n divides (n − 2)!.

Case 2: d1 = d2. Here n = d2
1 is a perfect square. Since n > 4, we

have d1 > 2. We need to find two factors in (n − 2)! that multiply
to n. We use d1 and 2d1. We check if 2d1 ≤ n − 2. Since d1 ≥ 3,
d1(d1 − 2) ≥ 3(1) = 3 > 0, so d2

1 > 2d1. Also n = d2
1. Is 2d1 ≤

d2
1 − 2? For d1 ≥ 3, d2

1 − 2d1 − 2 = (d1 − 1)2 − 3. If d1 = 3, n = 9.
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(n − 2)! = 7!. d1 = 3, 2d1 = 6. Both are in 7!. 3 × 6 = 18, which is
divisible by 9. Generally for d1 ≥ 3, 2d1 < d2

1 − 2 = n − 2. Thus
both d1 and 2d1 appear in the product (n − 2)!. Since n = d2

1 di-
vides d1 · 2d1 = 2d2

1, it follows that n | (n − 2)!.

Conversely, if (n − 2)! ≡ 0 (mod n) and n > 4, n must be compos-
ite. If n were prime, then from n | (n − 2)! we would have n | k for
some k ∈ {1, . . . , n − 2}, because a prime dividing a product divides
a factor. This is impossible, so n cannot be prime.

範例

6.3 Applications to Periodicity and Sums

The cyclical nature of modular arithmetic makes it ideal for detecting
patterns in powers and calendars.

Example 6.5. Mersenne Numbers and Modulo 7. Find all positive
integers n such that 2n − 1 is divisible by 7.
We observe the powers of 2 modulo 7:

21 ≡ 2, 22 ≡ 4, 23 = 8 ≡ 1 (mod 7).

Since 23 ≡ 1, the powers repeat with period 3. We express n in
terms of its remainder modulo 3. Let n = 3k + r, where r ∈ {0, 1, 2}.

2n − 1 = 23k+r − 1 = (23)k · 2r − 1 ≡ 1k · 2r − 1 ≡ 2r − 1 (mod 7).

We test the possible values of r:
· If r = 0, 20 − 1 = 0 ≡ 0.

· If r = 1, 21 − 1 = 1 ̸≡ 0.

· If r = 2, 22 − 1 = 3 ̸≡ 0.
Thus, 2n − 1 is divisible by 7 if and only if n is a multiple of 3.

範例

Example 6.6. Calendar Cycles. February 1996 had 5 Thursdays.
Determine the next years before 2100 in which this occurs.
February usually has 28 days (4 weeks exactly). In a non-leap
year, days of the week do not shift within the month, and there
are exactly 4 of each weekday. For a February to have 5 Thurs-
days, it must have 29 days. Thus, the year must be a leap year,
and February 1st must be a Thursday (so that the 1st, 8th, 15th,
22nd, and 29th are Thursdays). We track the shift in weekdays
for February 1st between consecutive leap years. A normal year
has 365 days, which is 52 × 7 + 1 days. (Shift of +1). A leap



discrete ii: elementary number theory 101

year has 366 days. (Shift of +2). The interval between one leap
year’s February 1st and the next (4 years later) consists of three
normal years and one leap year (the current one). Total days =
3(365) + 366 = 3(52 × 7 + 1) + (52 × 7 + 2) = 1461.

1461 ≡ 3(1) + 2 ≡ 5 (mod 7).

The day of the week for Feb 1st shifts forward by 5 days (or back-
wards by 2) every 4 years. Let 1996 correspond to day 0 (Thursday).
The sequence of shifts modulo 7 for subsequent leap years is:
· 1996: 0 (Thursday)

· 2000: 0 + 5 ≡ 5

· 2004: 5 + 5 ≡ 10 ≡ 3

· 2008: 3 + 5 ≡ 8 ≡ 1

· 2012: 1 + 5 ≡ 6

· 2016: 6 + 5 ≡ 11 ≡ 4

· 2020: 4 + 5 ≡ 9 ≡ 2

· 2024: 2 + 5 ≡ 7 ≡ 0 (Thursday again)
The cycle repeats every 7 leap years (28 years). The years are 1996 +

28 = 2024, 2024 + 28 = 2052, and 2052 + 28 = 2080.

範例

Example 6.7. Sum of Fourth Powers. Prove that the sum of the 4th
powers of four consecutive integers cannot be the 4th power of an
integer.
We examine 4th powers modulo 4. For any integer x:
· If x is even (x = 2k), x4 = 16k4 ≡ 0 (mod 4).

· If x is odd (x = 2k + 1), x2 = 4k2 + 4k + 1 ≡ 1 (mod 4). Squaring
again: x4 ≡ 12 ≡ 1 (mod 4).

Any set of four consecutive integers {n, n + 1, n + 2, n + 3} contains
two even numbers and two odd numbers. Let S be the sum of their
4th powers.

S ≡ 0 + 1 + 0 + 1 ≡ 2 (mod 4).

However, we have just shown that any perfect 4th power must be
congruent to 0 or 1 modulo 4. Since S ≡ 2 (mod 4), S cannot be a
4th power.

範例
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6.4 Modulus Transformations

Many number-theoretic problems require us to manipulate the mod-
ulus itself — scaling it, dividing it, or combining multiple moduli.
This flexibility is essential for solving systems of linear congruences
and for analysing the structure of composite numbers.
We begin by establishing how the congruence relation behaves when
the modulus is multiplied by an integer.

Theorem 6.5. Modulus Scaling.
Let a, b, m be integers with m > 0. If a ≡ b (mod m), then for any
positive integer k,

ak ≡ bk (mod mk).

定理

Proof

Since a ≡ b (mod m), there exists an integer q such that a − b = mq.
Multiplying both sides by k, we obtain:

k(a − b) = k(mq) =⇒ ak − bk = (mk)q.

Since q is an integer, mk divides ak − bk, which implies ak ≡ bk
(mod mk).

■

Conversely, we can reduce the modulus by dividing out a common
factor, provided that factor also divides the integers involved in the
congruence.

Theorem 6.6. Modulus Division.
Let a ≡ b (mod m). If d is a positive common divisor of a, b, and m,
then

a
d
≡ b

d
(mod

m
d
).

定理

Proof

Let a = b + mq for some integer q. Since d divides a, b, and m, we
can divide the entire equation by d:

a
d
=

b
d
+

m
d

q.

Since a/d and b/d are integers, and m/d is an integer, this equation
represents a valid congruence relation modulo m/d.

■

Often, we encounter a fixed relationship a ≡ b that holds for several
distinct moduli. The following theorem allows us to combine these
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into a single congruence involving the least common multiple.

Theorem 6.7. LCM of Moduli.
Let m1, m2, . . . , mk be positive integers. If a ≡ b (mod mi) for all i =
1, . . . , k, then

a ≡ b (mod [m1, m2, . . . , mk]),

where [m1, . . . , mk] denotes the least common multiple of the moduli.

定理

Proof

By definition, a ≡ b (mod mi) implies that mi | (a − b) for each
i. From the properties of divisibility, if an integer N is divisible
by several integers, it is divisible by their least common multiple.
Thus, [m1, . . . , mk] | (a − b), which is equivalent to the stated con-
gruence.

■

Corollary 6.3. Coprime Moduli. If a ≡ b (mod mi) for pairwise coprime
integers m1, . . . , mk, then

a ≡ b (mod m1m2 . . . mk).

This follows immediately because the LCM of pairwise coprime num-
bers is their product.

推論

Finally, we observe that congruence is preserved when the modulus
is replaced by any of its divisors.

Theorem 6.8. Modulus Reduction.
If a ≡ b (mod m) and d is a positive divisor of m, then a ≡ b (mod d).

定理

Proof

We are given that m | (a − b). Since d | m, the transitivity of divisi-
bility implies d | (a − b).

■

Proposition 6.1. GCD Invariance.
If a ≡ b (mod m), then (a, m) = (b, m).

命題

Proof

Let (a, m) = d1 and (b, m) = d2. Since a ≡ b (mod m), we have
a = b + mk for some integer k. Because d2 | b and d2 | m, it follows
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that d2 | (b + mk), so d2 | a. Thus d2 is a common divisor of a and
m, implying d2 ≤ d1. By symmetry, writing b = a − mk, we deduce
that d1 | b, so d1 ≤ d2. Therefore, d1 = d2.

■

Applications of Modulus Properties

We now demonstrate the power of these theorems in establishing
divisibility results for general algebraic expressions.

Example 6.8. A Large Divisibility Problem. Let n be any positive
integer. Prove that the expression

E = 2000n + 855n − 572n − 302n

is divisible by 1981.
First, we calculate the prime factorisation of the modulus: 1981 =

7 × 283. Since 7 and 283 are prime (and thus coprime), it suffices to
show that E ≡ 0 (mod 7) and E ≡ 0 (mod 283).

Modulo 7: We reduce the bases modulo 7:

2000 ≡ 5, 855 ≡ 1, 572 ≡ 5, 302 ≡ 1.

Substituting these into E:

E ≡ 5n + 1n − 5n − 1n ≡ 0 (mod 7).

Modulo 283: We reduce the bases modulo 283:

2000 = 7 × 283 + 19 =⇒ 2000 ≡ 19 (mod 283).

855 = 3 × 283 + 6 =⇒ 855 ≡ 6 (mod 283).

572 = 2 × 283 + 6 =⇒ 572 ≡ 6 (mod 283).

302 = 1 × 283 + 19 =⇒ 302 ≡ 19 (mod 283).

Substituting these into E:

E ≡ 19n + 6n − 6n − 19n ≡ 0 (mod 283).

Since E is divisible by both 7 and 283, and (7, 283) = 1, theorem 6.7
implies E is divisible by 7 × 283 = 1981.

範例

Example 6.9. Fourth Powers and Modulo 240. Prove that if p is a
prime greater than 5, then p4 ≡ 1 (mod 240).
The prime factorisation of the modulus is 240 = 24 · 3 · 5 = 16 · 3 · 5.
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We verify the congruence for each factor separately.

Modulo 3: Since p > 5, p is not divisible by 3. Thus p ≡ ±1
(mod 3). Squaring gives p2 ≡ 1 (mod 3), so p4 ≡ 1 (mod 3).

Modulo 5: Since p > 5, p ̸≡ 0 (mod 5). The possible residues for p
are {1, 2, 3, 4}. Calculating fourth powers:

14 = 1, 24 = 16 ≡ 1, 34 = 81 ≡ 1, 44 = 256 ≡ 1.

Thus p4 ≡ 1 (mod 5).

Modulo 16: Since p is an odd prime, let p = 2k + 1.

p2 = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1.

Notice that k(k + 1) is the product of two consecutive integers, so
it is always even. Let k(k + 1) = 2m.

p2 = 4(2m) + 1 = 8m + 1.

Now we calculate p4:

p4 = (p2)2 = (8m + 1)2 = 64m2 + 16m + 1.

Since 16 | 64m2 and 16 | 16m, we have p4 ≡ 1 (mod 16).

Since p4 ≡ 1 modulo 3, 5, and 16, and these moduli are pairwise co-
prime,

p4 ≡ 1 (mod 3 × 5 × 16) =⇒ p4 ≡ 1 (mod 240).

範例

Example 6.10. Cyclic System of Congruences. Find all triples of
positive integers (a, b, c) satisfying the system:

a ≡ b (mod c), b ≡ c (mod a), c ≡ a (mod b).

Without loss of generality, assume an ordering a ≤ b ≤ c. From the
first congruence, c | (a − b). Since a ≤ b, the difference a − b ≤ 0.
However, the absolute difference |a − b| = b − a must be a multiple
of c. Since b ≤ c and a ≥ 1, we have b − a < c. The only non-
negative multiple of c strictly less than c is 0. Thus b − a = 0 =⇒
a = b.
Substituting a = b into the remaining conditions:

a ≡ c (mod a) =⇒ a | (c − a) =⇒ a | c.

c ≡ a (mod a) =⇒ a | (c − a) =⇒ a | c.
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Let c = ka for some integer k. The solutions are of the form
(a, a, ka) for any positive integers a, k. The coprime solutions (where
(a, b, c) = 1) occur when a = 1, yielding the triple (1, 1, k).

範例

6.5 Divisibility Criteria

The decimal representation of an integer is a polynomial in powers of
10. By analysing the properties of 10 modulo m, we can derive effi-
cient criteria for divisibility. Let N be a positive integer with decimal
expansion:

N = anan−1 . . . a1a0 =
n

∑
i=0

ai10i,

where 0 ≤ ai ≤ 9 are the digits. Let P(x) = ∑n
i=0 aixi, so that

N = P(10). If 10 ≡ k (mod m), then by the polynomial property of
congruences, N = P(10) ≡ P(k) (mod m).

Theorem 6.9. Divisibility by powers of 2 and 5.
Let m be a positive integer. An integer N is divisible by 2m (respectively
5m) if and only if the number formed by its last m digits is divisible by
2m (respectively 5m).

定理

Proof

Note that 10 ≡ 0 (mod 2) and 10 ≡ 0 (mod 5). Consequently, for
i ≥ m, 10i ≡ 0 (mod 2m) and 10i ≡ 0 (mod 5m). We can separate
the summation for N:

N =
n

∑
i=m

ai10i +
m−1

∑
i=0

ai10i ≡ 0 + am−1 . . . a0 (mod 2m or 5m).

Thus N is congruent to the number formed by its last m digits.
■

Theorem 6.10. Divisibility by 3 and 9.
An integer N is divisible by 3 (respectively 9) if and only if the sum of
its digits is divisible by 3 (respectively 9).

定理

Proof

We observe that 10 ≡ 1 (mod 3) and 10 ≡ 1 (mod 9). Therefore,
10i ≡ 1i ≡ 1 for all i ≥ 0.

N =
n

∑
i=0

ai10i ≡
n

∑
i=0

ai(1) ≡
n

∑
i=0

ai (mod 3 or 9).

■
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Theorem 6.11. Divisibility by 11.
An integer N is divisible by 11 if and only if the alternating sum of its
digits is divisible by 11. Specifically, the difference between the sum
of digits in even positions and the sum of digits in odd positions must
be a multiple of 11.

定理

Proof

We observe that 10 ≡ −1 (mod 11). Thus 10i ≡ (−1)i (mod 11).

N =
n

∑
i=0

ai10i ≡
n

∑
i=0

ai(−1)i ≡ a0 − a1 + a2 − a3 + . . . (mod 11).

■

Block Divisibility Tests

For divisors that do not divide 10 or 10 ± 1 simply, we can often find
a power of 10 that provides a clean residue.

A0A1A2

Groups of 3 digits

N = . . . A2 A1 A0

Figure 6.2: Visualisation of
block decomposition for Theo-
rem 2.15.

Theorem 6.12. Divisibility by 7, 11, and 13.
Partition the digits of N into blocks of three, starting from the right:
A0 (last 3 digits), A1 (next 3), etc. N is divisible by 7, 11, or 13 if and
only if the alternating sum of these blocks S = A0 − A1 + A2 − . . .
is divisible by 7, 11, or 13 respectively.

定理

Note

7 · 11 · 13 = 1001.

Proof

Since 1000 ≡ −1 (mod 1001), it follows that 1000 ≡ −1 modulo 7,
11, and 13. We write N in base 1000:

N =
m

∑
k=0

Ak(1000)k.

Taking the modulus d ∈ {7, 11, 13}:

N ≡
m

∑
k=0

Ak(−1)k ≡ A0 − A1 + A2 − . . . (mod d).

■

Theorem 6.13. Divisibility by 37.
N is divisible by 37 if and only if the sum of its 3-digit blocks is divis-
ible by 37.

定理
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Proof

We observe that 3 × 37 = 111 and 27 × 37 = 999. Thus 1000 ≡ 1
(mod 37).

N =
m

∑
k=0

Ak(1000)k ≡
m

∑
k=0

Ak(1)
k ≡

m

∑
k=0

Ak (mod 37).

■

Example 6.11. Application of Block Rules. Is the number
N = 75, 312, 289 divisible by 13?
We split N into 3-digit blocks: A0 = 289, A1 = 312, A2 = 75. Com-
pute the alternating sum:

S = A0 − A1 + A2 = 289 − 312 + 75 = 52.

Since 52 = 4 × 13, S is divisible by 13. Therefore, N is divisible by
13.

範例

While the block method is powerful for large numbers, a recursive
test exists for divisibility by 7 using only the last digit.

Proposition 6.2. The "Osculation" Test for 7.
An integer N = 10a + b is divisible by 7 if and only if a − 2b is di-
visible by 7.

命題

Note

10 ≡ 3 (mod 7).

Proof

We require a condition equivalent to 10a + b ≡ 0 (mod 7). Since
(10, 7) = 1, we can multiply the congruence by the modular inverse
of 10. We seek an inverse x such that 3x ≡ 1 (mod 7). Testing val-
ues: 3 × (−2) = −6 ≡ 1 (mod 7). Thus, the inverse is −2. Multi-
plying by −2:

−2(10a + b) ≡ −2(0) =⇒ −20a − 2b ≡ 0 (mod 7).

Since −20 ≡ 1 (mod 7), this simplifies to:

a − 2b ≡ 0 (mod 7).

■

Remark (Application).

Test 392. a = 39, b = 2. Check 39 − 2(2) = 35. Since 35 is divisible
by 7, 392 is divisible by 7.
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Example 6.12. Reconstructing Missing Digits. The number
N = 341d52 is known to be divisible by 8 and 9. Determine the
digit d.

Divisibility by 8. N is divisible by 8 if and only if the number
formed by the last three digits, 100d + 52, is divisible by 8. We
check values for d. Note 100 ≡ 4 (mod 8).

100d + 52 ≡ 4d + 52 ≡ 4d + 4 (mod 8).

We require 4(d + 1) to be a multiple of 8. This implies d + 1 must
be even, so d must be odd. Possible values for d ∈ {1, 3, 5, 7, 9}.

Divisibility by 9. The sum of digits must be divisible by 9.

Sum = 3 + 4 + 1 + d + 5 + 2 = 15 + d.

We require 15 + d ≡ 0 (mod 9), which implies 6 + d ≡ 0
(mod 9). Thus d ≡ −6 ≡ 3 (mod 9). The only digit satisfying
this is d = 3.

Verification: Since d = 3 is odd, it satisfies the condition
derived from the modulo 8 check. The number is 341352.
341352/8 = 42669 and 341352/9 = 37928.

範例

Example 6.13. Smallest Multiple with Distinct Digits. Find the
smallest six-digit number with distinct digits that is divisible by 5

and 11.
Let the number be N. For N to be minimal:

(i) The leading digit should be as small as possible (1).
(ii) The subsequent digits should be small (0, then 2, 3...).

Let’s try the form N = 10abcd. The digits used so far are {0, 1}. For
divisibility by 5, the last digit d must be 0 or 5. Since 0 is already
used, d = 5. So N = 10abc5. The remaining digits a, b, c must be
distinct and chosen from {2, 3, 4, 6, 7, 8, 9}. For divisibility by 11:

(1+ a+ c)− (0+ b+ 5) ≡ 0 (mod 11) =⇒ a+ c− b− 4 ≡ 0 (mod 11).

So a + c − b = 4 or a + c − b = 15 (since digits sum to at most 9 +

8 = 17).
To minimise N, we want smallest a, then smallest b. Try to satisfy
a + c − b = 4 with small a.
· Try a = 2. Then 2 + c − b = 4 =⇒ c − b = 2 =⇒ c = b +

2. We need small b. If b = 3, then c = 5. But 5 is used for the last
digit. Reject. If b = 4, then c = 6. Digits used: {0, 1, 2, 4, 6, 5}. All
distinct. This gives the number 102465.
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Let’s check if we could have obtained a smaller number with
a + c − b = 15. This would require large a or c, which contradicts
minimality. Is there a solution with a = 2 and b < 4? If b = 3, c = 5
(Fail). If b < 3, say b = 2 (Fail, a ̸= b). Thus, 102465 is the smallest
solution.

範例

6.6 Exercises

1. The Freshman’s Dream. Let p be a prime. Prove that for any
integers a and b:

(a + b)p ≡ ap + bp (mod p).

Remark.

Expand the binomial and consider the divisibility of the coeffi-
cient (p

k).

2. Divisibility Conditions on Exponents. Find all positive integers n
such that 52n + 32n is divisible by 17.

3. Calendar Calculation. The 30th National Day (October 1st) in Account for the leap years between
1979 and 2049.

1979 was a Monday. Determine the day of the week for the 100th
National Day in 2049.

4. Cubes Modulo 5. Prove that the difference of the cubes of two
consecutive integers cannot be divisible by 5.

5. Sum of Powers. Prove that 1n + 2n + 3n + 4n is divisible by 5 if
and only if n is not a multiple of 4.

6. Non-Existence of Perfect Powers. An integer is a perfect power if
it can be written as ak for a > 1, k > 1. Prove that for any prime p,
the number 2p + 3p is not a perfect power.

7. Power Towers Modulo Powers of 2. Let a be an odd positive
integer. Prove that for any n ≥ 1:

a2n ≡ 1 (mod 2n+2).

8. Solitary Numbers. A number n is solitary if no m ̸= n satis-
fies σ(m)/m = σ(n)/n. Prove that any power of 2, n = 2r,
is solitary. Note: The text exercise defined solitary differently
(σ(n) = σ(m) = n + m), but this is the standard definition re-
lated to friendly numbers. Stick to the text’s definition if required:
prove no m exists such that σ(n) = σ(m) = n + m.

9. Composite Divisibility. Let n be a positive integer. Prove that
330 | (62n − 52n − 11).
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10. Square of Primes Modulo 24. Prove that for any prime p > 3,
p2 ≡ 1 (mod 24).

11. Non-Existence of Special Integers. Let p1, . . . , pn be distinct odd
primes (n ≥ 2) and N = ∏ pj. Let mj = N/pj. Prove that it is
impossible for p2

j | (mj − 1) to hold for all j = 1, . . . , n.

12. Divisibility Verification. Verify explicitly using congruence crite-
ria:

(a) 237293 is divisible by 7.
(b) 4553294 is divisible by 37.

13. Criterion for 101. Derive a divisibility criterion for the number
101 based on blocks of digits.

14. Palindromes and 11.

(a) Prove that every four-digit palindrome is divisible by 11.

(b) Is every six-digit palindrome divisible by 11? Prove or pro-
vide a counterexample.

15. Digit Reconstruction. The eight-digit number 141x28y3 is divisi-
ble by 99. Find the digits x and y.

16. Smallest 3-7 Number. Find the smallest positive integer com-
posed entirely of the digits 3 and 7 such that both the number
itself and the sum of its digits are divisible by both 3 and 7.



7
Residue Classes and Complete Systems

Building upon the theory of congruence, we now formalise the clas-
sification of integers based on their remainders. This leads to the
concept of residue classes, which partition the set of integers into
disjoint sets. By selecting representatives from these sets, we form
complete residue systems—fundamental structures that allow us to
reduce infinite problems over Z to finite computations.

7.1 Residue Classes

The congruence relation modulo m is an equivalence relation, and
like any equivalence relation, it partitions the underlying set into
equivalence classes.

Definition 7.1. Residue Class.
Let m be a positive integer. For any integer r where 0 ≤ r < m, the
residue class corresponding to r is the set of all integers congruent to
r modulo m:

Sr = {mq + r | q ∈ Z}.

The set of integers is the disjoint union of the m residue classes S0, S1, . . . , Sm−1.

定義

For instance, modulo 2 partitions the integers into two classes: the
evens (S0) and the odds (S1).
To perform arithmetic modulo m, we typically select a single repre-
sentative from each class.

Definition 7.2. Complete Residue System.
A set of m integers is called a complete residue system modulo m if
it contains exactly one element from each residue class S0, . . . , Sm−1.
Equivalently, a set A is a complete residue system modulo m if |A| =
m and for every integer n, there exists a unique a ∈ A such that n ≡
a (mod m).

定義
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While any set of representatives suffices, two specific systems are
standard due to their symmetry and simplicity.

Definition 7.3. Standard Residue Systems.

1. The least non-negative complete residue system modulo m is the
set:

{0, 1, 2, . . . , m − 1}.

2. The absolute least complete residue system modulo m balances rep-
resentatives around zero to minimise their absolute values.

· If m is odd, the system is:{
−m − 1

2
, . . . ,−1, 0, 1, . . . ,

m − 1
2

}
.

· If m is even, one typically chooses:{
−m

2
+ 1, . . . ,−1, 0, 1, . . . ,

m
2

}
or

{
−m

2
, . . . ,−1, 0, 1, . . . ,

m
2
− 1
}

.

定義

Z

Least Non-negative (m = 5)

Absolute Least (m = 5)

Figure 7.1: Comparison of
residue systems for m = 5. The
least non-negative system cor-
responds to standard division
remainders, while the absolute
least system minimises magni-
tude.

Example 7.1. Verifying a System. Verify that the set A =

{−10,−6,−1, 2, 10, 12, 14} is a complete residue system modulo
7. We compute the least non-negative residue of each element mod-
ulo 7:

−10 ≡ 4 (mod 7)

−6 ≡ 1 (mod 7)

−1 ≡ 6 (mod 7)

2 ≡ 2 (mod 7)

10 ≡ 3 (mod 7)

12 ≡ 5 (mod 7)

14 ≡ 0 (mod 7)

The set of remainders is {4, 1, 6, 2, 3, 5, 0}. Rearranging these yields
{0, 1, 2, 3, 4, 5, 6}, which is the standard least non-negative system.
Since A contains 7 elements that map to distinct residue classes, A
is a complete residue system.

範例

Arithmetic Applications

The choice of residue system often simplifies divisibility proofs.
The absolute least system is particularly useful when evaluating
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polynomials, as it keeps the base values small.
Example 7.2. Quadratic Residues and Factorials.
1. Squares modulo 5: Prove that an integer congruent to 2 or 3

modulo 5 cannot be a perfect square.

Let x be an integer. We test x using the absolute least complete
residue system modulo 5: {0,±1,±2}.

· If x ≡ 0, then x2 ≡ 0.

· If x ≡ ±1, then x2 ≡ 1.

· If x ≡ ±2, then x2 ≡ 4.

The possible residues of a square modulo 5 are {0, 1, 4}. Thus,
no square is congruent to 2 or 3 modulo 5.

2. Sums of Factorials: Prove that for n > 3, the sum Sn = ∑n
k=1 k! is

not a perfect square.

For n = 4, S4 = 1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33. This
is not a square. For n ≥ 5, we observe that k! ≡ 0 (mod 5) for all
k ≥ 5. Thus, for n ≥ 5:

Sn = S4 +
n

∑
k=5

k! ≡ 33 + 0 ≡ 3 (mod 5).

From part (1), we established that a perfect square cannot be
congruent to 3 modulo 5. Therefore, Sn is never a perfect square
for n > 3.

範例

Example 7.3. Divisibility of Cubic Products. Prove that the product
of three consecutive integers, where the middle term is a perfect
cube, is divisible by 504. Let the integers be n3 − 1, n3, n3 + 1. The
product is N = (n3 − 1)n3(n3 + 1). We observe that 504 = 7 × 8 × 9.
Since these factors are pairwise coprime, it suffices to show divisi-
bility by 7, 8, and 9 individually.

Modulo 7: We consider n in the absolute least residue system mod-
ulo 7: {0,±1,±2,±3}.

· If n ≡ 0, then n3 ≡ 0, so 7 | N.

· If n ≡ ±1, then n3 ≡ ±1, so n3 ∓ 1 ≡ 0, implying 7 | N.

· If n ≡ ±2, then n3 ≡ ±8 ≡ ±1, so n3 ∓ 1 ≡ 0, implying 7 | N.

· If n ≡ ±3, then n3 ≡ ±27 ≡ ±6 ≡ ∓1, so n3 ± 1 ≡ 0, implying
7 | N.

In all cases, 7 | N.

Modulo 9: Similar to the modulo 7 case, the cubes modulo 9
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are 03 = 0, (±1)3 = ±1, (±2)3 = ±8 ≡ ∓1, (±3)3 ≡ 0,
(±4)3 ≡ ±64 ≡ ±1. The residues of n3 modulo 9 are restricted to
{0, 1, 8}. Thus, one of the factors n3 (if 0), n3 − 1 (if 1), or n3 + 1
(if 8) is divisible by 9.

Modulo 8: If n is even, n3 is divisible by 8. If n is odd, then n3 is
odd. The neighbours n3 − 1 and n3 + 1 are consecutive even inte-
gers. One is divisible by 2 and the other by 4, so their product is
divisible by 8.

Since N is divisible by 7, 8, and 9, it is divisible by 504.

範例

Structural Properties

We now establish criteria for determining whether a set of integers
forms a complete residue system without manually calculating every
remainder.

Theorem 7.1. Characterisation of Complete Residue Systems.
Let m be a positive integer. A set of m integers {a1, a2, . . . , am} forms
a complete residue system modulo m if and only if the integers are pair-
wise incongruent modulo m.

定理

Proof

Since there are m distinct residue classes modulo m, a set of m in-
tegers constitutes a complete system if and only if each integer
belongs to a distinct class. This is equivalent to the condition that
no two integers are congruent modulo m.

■

A powerful feature of residue systems is their invariance under affine
transformations, provided the scaling factor is coprime to the modu-
lus.

Theorem 7.2. Affine Transformations.
Let m be a positive integer and let a be an integer such that (a, m) =

1. If x runs through a complete residue system modulo m, then for any
integer b, the expression ax+ b also runs through a complete residue
system modulo m.

定理

Proof

Let {x1, . . . , xm} be a complete residue system. By theorem 7.1, it
suffices to show that the m values {ax1 + b, . . . , axm + b} are pair-
wise incongruent. Suppose, for the sake of contradiction, that for
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some i ̸= j:
axi + b ≡ axj + b (mod m).

Subtracting b from both sides gives axi ≡ axj (mod m). Since
(a, m) = 1, theorem 6.4 implies xi ≡ xj (mod m). This contra-
dicts the hypothesis that the xk are distinct modulo m. Thus, the
transformed values are pairwise incongruent and form a complete
residue system.

■

Example 7.4. Generating a New System. Let m = 12. The set S =

{0, 1, . . . , 11} is the standard system. Let a = 5 and b = 7. Since
(5, 12) = 1, the set {5x + 7 | x ∈ S} is also a complete residue sys-
tem. For example, if x = 2, the element is 17 ≡ 5. If x = 3, the ele-
ment is 22 ≡ 10. This transformation permutes the residue classes.

範例

Another fundamental property concerns the sum of the elements in a
complete residue system.

Theorem 7.3. Sum of Residues.
Let S = {y1, . . . , ym} be a complete residue system modulo m.
1. If m is odd, ∑m

i=1 yi ≡ 0 (mod m).

2. If m is even, ∑m
i=1 yi ≡ m

2 (mod m).
定理

Proof

Since S is a complete residue system, its elements are congruent
(in some order) to the least non-negative system {0, 1, . . . , m − 1}.
Thus,

m

∑
i=1

yi ≡
m−1

∑
k=0

k =
m(m − 1)

2
(mod m).

(m is odd). Since m is odd, m − 1 is even, so (m − 1)/2 is an integer
k. The sum is mk ≡ 0 (mod m).

(m is even). Let m = 2k. Then m − 1 is odd. The sum is

2k(2k − 1)
2

= k(2k − 1) = 2k2 − k = mk − m
2

.

Modulo m, this is congruent to −m/2, which is equivalent to
m/2.

■

This theorem imposes a strong constraint on the structure of sums of
residue systems.
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Example 7.5. Additive Incompatibility. Let n be an even posi-
tive integer. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be two
complete residue systems modulo n. Prove that the set of sums
C = {a1 + b1, . . . , an + bn} cannot be a complete residue system
modulo n.
We sum the elements of the sets. By theorem 7.3, since n is even:

∑ ai ≡
n
2

(mod n) and ∑ bi ≡
n
2

(mod n).

If C were a complete residue system, its sum would also satisfy:

∑(ai + bi) ≡
n
2

(mod n).

However, by linearity:

∑(ai + bi) = ∑ ai + ∑ bi ≡
n
2
+

n
2
= n ≡ 0 (mod n).

This leads to the contradiction n
2 ≡ 0 (mod n), which is impossible

for n > 0. Thus, C cannot be a complete residue system.

範例

Example 7.6. Sum Constraint Verification. Consider m = 6. Sup-
pose we form a set S = {x, x + 2, x + 4, x + 6, x + 8, x + 10}. Can S
be a complete residue system for any integer x? The elements are
an arithmetic progression with difference 2. Since (2, 6) = 2 ̸= 1,
theorem 7.2 does not apply. Let us calculate the sum of elements in
S:

Σ = 6x + (2 + 4 + 6 + 8 + 10) = 6x + 30.

Modulo 6, Σ ≡ 0 + 30 ≡ 0 (mod 6). However, by theorem 7.3, the
sum of a complete residue system modulo 6 (even) must be congru-
ent to 6/2 = 3. Since 0 ̸≡ 3 (mod 6), S is never a complete residue
system.

範例

Composite Moduli Constructions

When the modulus is composite, we can construct complete residue
systems by combining systems modulo the factors. This is the foun-
dation for the Chinese Remainder Theorem, which we will treat fully
in a later chapter.

Theorem 7.4. Coprime Linear Combination.
Let m1, m2 be coprime positive integers. If x1 runs through a complete
residue system modulo m1 and x2 runs through a complete residue sys-
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tem modulo m2, then the linear combination

m2x1 + m1x2

runs through a complete residue system modulo m1m2.
定理

Proof

The set of values generated is of size m1m2, which matches the
modulus size. By theorem 7.1, we need only show that these values
are distinct modulo m1m2. Assume:

m2x1 + m1x2 ≡ m2x′1 + m1x′2 (mod m1m2).

This implies divisibility by both m1 and m2.

1. Modulo m1: m2x1 ≡ m2x′1 (mod m1). Since (m2, m1) = 1, we
cancel m2 to get x1 ≡ x′1 (mod m1). Since x1, x′1 are from a CRS
mod m1, x1 = x′1.

2. Modulo m2: m1x2 ≡ m1x′2 (mod m2). Similarly, (m1, m2) = 1 im-
plies x2 ≡ x′2 (mod m2), so x2 = x′2.

Since the components are identical, the values are distinct.
■

Note

(3, 4) = 1.

Example 7.7. Constructing a System Modulo 12. Let m1 = 3 and
m2 = 4. Let S3 = {0, 1, 2} and S4 = {0, 1, 2, 3}. We form the set
S = {4x1 + 3x2 | x1 ∈ S3, x2 ∈ S4}. For instance:
· x1 = 0, x2 = 1 =⇒ 3.

· x1 = 1, x2 = 0 =⇒ 4.

· x1 = 2, x2 = 3 =⇒ 4(2) + 3(3) = 17 ≡ 5 (mod 12).
This construction generates exactly 12 distinct integers modulo 12,
providing a structured way to decompose the modulus.

範例

This principle generalizes to products of arbitrary length.

Theorem 7.5. Polyadic Expansion.
Let m1, . . . , mk be positive integers. If xi runs through a complete residue
system modulo mi for each i, then the sum

x1 + m1x2 + m1m2x3 + · · ·+ (m1 . . . mk−1)xk

runs through a complete residue system modulo M = m1m2 . . . mk.
定理
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Proof

We proceed by induction or direct uniqueness verification. The
expression is analogous to a mixed-radix representation. Consider
two such sums S and S′ being congruent modulo M.

k

∑
j=1

Pj−1xj ≡
k

∑
j=1

Pj−1x′j (mod M),

where P0 = 1 and Pj = m1 . . . mj. Considering the congruence mod-
ulo m1:

x1 ≡ x′1 (mod m1).

Thus x1 = x′1. We subtract this term and divide by m1:

x2 + m2x3 + · · · ≡ x′2 + m2x′3 + . . . (mod m2 . . . mk).

Repeating the argument modulo m2 yields x2 = x′2, and so forth.
All coefficients must be identical, proving distinctness.

■

Corollary 7.1. Base-n Representation. By setting m1 = m2 = · · · =

mk = n, we recover the standard base-n expansion. If xi ∈ {0, . . . , n−
1}, the sum

x1 + nx2 + · · ·+ nk−1xk

generates the complete residue system {0, 1, . . . , nk − 1} modulo nk.

推論

Advanced Examples

We conclude with two results illustrating the interaction between
residue systems and real analysis or combinatorics.

Example 7.8. Sum of Fractional Parts. Let m > 0 and (a, m) = 1.
Prove that if x runs through a complete residue system modulo m,
then

∑
x

{
ax + b

m

}
=

m − 1
2

,

where {y} = y − ⌊y⌋ denotes the fractional part.
By theorem 7.2, the values z = ax + b form a complete residue sys-
tem modulo m. Modulo m, the set {z} is congruent to {0, 1, . . . , m −
1}. For each z, the term z

m can be written as I + r
m , where I is an in-

teger and r ∈ {0, . . . , m − 1}. The fractional part is simply r
m . Sum-

ming over the system:

m−1

∑
r=0

r
m

=
1
m

m−1

∑
r=0

r =
1
m

(m − 1)m
2

=
m − 1

2
.
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範例

Example 7.9. Legendre’s Property for Binomial Coefficients. Let p
be a prime. Verify that(

n
p

)
≡
⌊

n
p

⌋
(mod p).

Consider the set of p consecutive integers S = {n, n − 1, . . . , n − p +

1}. By theorem 7.1, S is a complete residue system modulo p. Thus,
exactly one element in S is divisible by p. Let this element be n − i,
where 0 ≤ i ≤ p − 1. We can express the floor function as:⌊

n
p

⌋
=

n − i
p

.

Now consider the binomial coefficient:(
n
p

)
=

n(n − 1) . . . (n − p + 1)
p!

.

Rearranging terms to isolate the multiple of p:

p!
(

n
p

)
= n(n − 1) . . . (n − p + 1).

Let M = ∏j ̸=i(n − j). This product contains p − 1 integers form-
ing a reduced residue system (excluding the multiple of p), so it
is a permutation of {1, . . . , p − 1} modulo p. Hence M ≡ (p − 1)!
(mod p). Substituting n − i = p⌊n/p⌋:

p!
(

n
p

)
= M · p

⌊
n
p

⌋
.

Dividing by p:

(p − 1)!
(

n
p

)
= M

⌊
n
p

⌋
.

Modulo p, since M ≡ (p − 1)! (mod p):

(p − 1)!
(

n
p

)
≡ (p − 1)!

⌊
n
p

⌋
(mod p).

Since (p − 1)! is coprime to p, we can cancel it to obtain:(
n
p

)
≡
⌊

n
p

⌋
(mod p).

範例
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7.2 Euler’s Totient Function

Lets now restrict our attention to integers that are coprime to the
modulus. This restriction isolates the multiplicative structure of the
integers modulo m, leading to the definition of Euler’s Totient Func-
tion and Reduced Residue Systems.
We denote the count of positive integers up to a given integer m that
are relatively prime to m by φ(m).

Definition 7.4. Euler’s Totient Function.
For a positive integer m, Euler’s function φ(m) is defined as the car-
dinality of the set of integers {k ∈ Z | 1 ≤ k ≤ m, (k, m) = 1}.

定義

For example, if m = 10, the integers in the range [1, 10] coprime
to 10 are {1, 3, 7, 9}. Thus φ(10) = 4. By convention, φ(1) = 1.
If p is a prime, every positive integer less than p is coprime to p.
Consequently, φ(p) = p − 1.
To calculate φ(m) for composite m, we rely on the theorem 5.1 (Inclusion-
Exclusion) established in the previous chapter.

Theorem 7.6. Euler’s Product Formula.
Let the canonical factorisation of a positive integer m be m = pa1

1 pa2
2 . . . pak

k .
Then:

φ(m) = m
k

∏
i=1

(
1 − 1

pi

)
=

k

∏
i=1

(pai
i − pai−1

i ).

定理

Proof

Let S = {1, 2, . . . , m}. We wish to count the elements of S that
share no prime factors with m. The prime factors of m are exactly
p1, . . . , pk. Let property αi be that an integer is divisible by pi. We
seek the number of elements satisfying none of these properties.
The number of multiples of a divisor d in S is exactly m/d. By
theorem 5.1:

φ(m) = m − ∑
m
pi

+ ∑
m

pi pj
− · · ·+ (−1)k m

p1 . . . pk

= m

(
1 − ∑

1
pi

+ ∑
1

pi pj
− . . .

)
.

This alternating sum factors exactly into the product:

φ(m) = m
k

∏
i=1

(
1 − 1

pi

)
.

Multiplying m = ∏ pai
i into the product term-wise yields the second
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form:

φ(m) =
k

∏
i=1

pai
i

(
1 − 1

pi

)
=

k

∏
i=1

(pai
i − pai−1

i ).

■

Corollary 7.2. Multiplicativity of φ. If m and n are coprime positive in-
tegers, then φ(mn) = φ(m)φ(n).

推論

1
2

3

4

5

6
7

8

9

10

11

12

φ(12) = 4

Figure 7.2: Visualisation of
φ(12). We eliminate multiples
of 2 (red) and 3 (blue). The re-
maining integers {1, 5, 7, 11} are
circled.

Example 7.10. Calculating Totients. We compute φ(2008). The
prime factorisation is 2008 = 8 × 251 = 23 × 251.

φ(2008) = 2008
(

1 − 1
2

)(
1 − 1

251

)
= 2008 · 1

2
· 250

251
= 1000.

範例

The Sum of Coprime Integers

While φ(m) counts the integers coprime to m, we can also determine
their sum using the symmetry of the greatest common divisor.

Theorem 7.7. Sum of Coprimes.
Let ε(m) denote the sum of positive integers not exceeding m that are
coprime to m. For m ≥ 2:

ε(m) =
m
2

φ(m).

定理

Proof

Let K = {k1, k2, . . . , kφ(m)} be the set of integers in [1, m] coprime to
m. We observe that (k, m) = 1 if and only if (m − k, m) = 1. Let d =

(m, m − k). Then d | m and d | (m − k), which implies d | k. Since
(m, k) = 1, we must have d = 1. Thus, the set K is invariant under
the mapping k 7→ m − k. We can express the sum ε(m) in two ways:

ε(m) =
φ(m)

∑
i=1

ki

ε(m) =
φ(m)

∑
i=1

(m − ki) = mφ(m)−
φ(m)

∑
i=1

ki.

Adding these equations yields 2ε(m) = mφ(m), from which the re-
sult follows.

■
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Example 7.11. Sum Calculation. Calculate ε(420). First, factorise
420 = 42 × 10 = 22 · 3 · 5 · 7. Compute φ(420):

φ(420) = 420
(

1 − 1
2

)(
1 − 1

3

)(
1 − 1

5

)(
1 − 1

7

)
= 420 · 1

2
· 2

3
· 4

5
· 6

7
= 96.

Then calculate the sum:

ε(420) =
420
2

× 96 = 210 × 96 = 20160.

範例

7.3 Reduced Residue Systems

Analogous to the complete residue system, which contains repre-
sentatives for all residue classes, the reduced residue system focuses
solely on the classes coprime to the modulus.

Definition 7.5. Reduced Residue System.
A reduced residue system modulo m is a set of φ(m) integers such that:
1. Each integer in the set is coprime to m.

2. No two integers in the set are congruent modulo m.
Equivalently, it is a set containing exactly one representative from each
residue class coprime to m.

定義

For m = 8, the complete system is {0, 1, 2, 3, 4, 5, 6, 7}. Removing
those sharing factors with 8 (evens) leaves {1, 3, 5, 7}, which is a
reduced residue system.

Theorem 7.8. Preservation under Multiplication.
Let (a, m) = 1. If {x1, . . . , xφ(m)} is a reduced residue system mod-
ulo m, then the set {ax1, . . . , axφ(m)} is also a reduced residue system
modulo m.

定理

Proof

Since (xi, m) = 1 and (a, m) = 1, it follows that (axi, m) = 1.
Thus, the new elements are coprime to m. To check distinctness,
assume axi ≡ axj (mod m). Since (a, m) = 1, theorem 6.4 implies
xi ≡ xj (mod m). As the original set was distinct modulo m, so is
the new set. Being a set of φ(m) distinct residues coprime to m, it is
a reduced residue system.

■

We can also construct reduced systems for composite moduli using
linear combinations of systems for the factors.
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Theorem 7.9. Composite Construction.
Let m1 and m2 be coprime positive integers. If x1 runs through a re-
duced residue system modulo m1 and x2 runs through a reduced residue
system modulo m2, then

m2x1 + m1x2

runs through a reduced residue system modulo m1m2.
定理

Proof

There are φ(m1) choices for x1 and φ(m2) choices for x2. The total
number of generated values is φ(m1)φ(m2) = φ(m1m2) (by mul-
tiplicativity). By theorem 7.4, linear combinations of this form are
pairwise incongruent modulo m1m2. It remains to show that each
value is coprime to m1m2. Let N = m2x1 + m1x2. Since (x1, m1) = 1
and (m2, m1) = 1, we have (m2x1, m1) = 1. Thus:

(N, m1) = (m2x1 + m1x2, m1) = (m2x1, m1) = 1.

Similarly, (x2, m2) = 1 implies (N, m2) = 1. Since N is coprime to
both m1 and m2, and (m1, m2) = 1, N is coprime to m1m2. Thus, the
values form a reduced residue system.

■

Applications and Examples

Example 7.12. Power Properties of Totients. Prove that φ(nk) =

nk−1 φ(n) for any integer n ≥ 1 and k ≥ 1.
Using theorem 7.6, let the prime factorisation of n be ∏ pei

i . Then
nk = ∏ pkei

i .

φ(nk) = nk ∏
p|n

(
1 − 1

p

)

= nk−1 · n ∏
p|n

(
1 − 1

p

)
= nk−1 φ(n).

This identity is useful for simplifying totient calculations of powers.

範例

Proposition 7.1. Primality Conditions.
Let n ≥ 2. Prove that n is prime if and only if φ(n) | (n− 1) and (n+

1) | σ(n).
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命題

Necessity.

If n is prime, φ(n) = n − 1 (divides itself) and σ(n) = n + 1 (divides
itself). The conditions hold.

証明終

Sufficiency.

Assume φ(n) | (n − 1) and (n + 1) | σ(n) for n ≥ 3. Since φ(n) is
even for n > 2, n − 1 must be even, so n is odd.
Suppose n is not square-free, i.e., p2 | n. Then p | φ(n), which im-
plies p | (n − 1). But p | n, so p | 1, a contradiction. Thus n is
square-free, n = p1 p2 . . . pk. Then φ(n) = ∏(pi − 1) and σ(n) =

∏(pi + 1).
If k > 1, then φ(n) is divisible by 2k. Since φ(n) | (n − 1), n − 1 is
divisible by 2k. Consequently, n + 1 = (n − 1) + 2 is not divisible by
4, only by 2.
We are given (n + 1) | σ(n). Since σ(n) is divisible by 2k (product
of k even terms), and n + 1 is only divisible by 2, consider the ratio
R = σ(n)/(n + 1). We have 2k−1 | R.
However,

R =
σ(n)
n + 1

<
σ(n)

n
= ∏

(
1 +

1
pi

)
.

Since pi ≥ 3, 1 + 1/pi ≤ 4/3. Thus R < (4/3)k. We require 2k−1 ≤
(4/3)k. But (4/3)k

2k−1 = 2
( 2

3
)k ≤ 8

9 for k ≥ 2, so the inequality fails for
all k ≥ 2. Thus k = 1, and n is prime.

証明終

Example 7.13. Sum of Powers. Let p be an odd prime and m be a
positive integer such that 2m ̸≡ 1 (mod p). Verify that ∑

p−1
i=1 im ≡ 0

(mod p).
The set S = {1, 2, . . . , p − 1} is a reduced residue system modulo p.
Since (2, p) = 1, the set 2S = {2, 4, . . . , 2(p − 1)} is also a reduced
residue system (by preservation under multiplication). The sum of
m-th powers must be congruent modulo p:

∑
x∈S

xm ≡ ∑
x∈2S

xm (mod p).

Substituting the elements:

p−1

∑
i=1

im ≡
p−1

∑
i=1

(2i)m ≡ 2m
p−1

∑
i=1

im (mod p).

Let Σ = ∑ im. Then Σ ≡ 2mΣ (mod p), or Σ(2m − 1) ≡ 0 (mod p).
Since 2m ̸≡ 1 (mod p), p does not divide 2m − 1. By corollary 1.5, p |
Σ, so the sum is congruent to 0.

範例
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Example 7.14. Sum of Fractional Parts. Let m > 1 and (a, m) = 1.
Prove that if y runs through a reduced residue system modulo m,
then

∑
y

{ ay
m

}
=

1
2

φ(m).

The set {ay} forms a reduced residue system modulo m. Let the
residues modulo m be r1, . . . , rφ(m). Then { ay

m } = { ri
m} = ri

m (since
0 < ri < m). The sum is 1

m ∑ ri. This is exactly 1
m ε(m). Using

theorem 7.7:

Sum =
1
m

(m
2

φ(m)
)
=

1
2

φ(m).

Alternatively, observe that residues in a reduced system pair up as
r and m − r. Then r

m + m−r
m = 1. There are φ(m)/2 such pairs.

範例

Example 7.15. Totient Lower Bound. Show that if a composite inte-
ger n has k distinct prime factors, then φ(n) ≥ 2k. Note that this is a
loose bound for large primes but illustrative for structure.

範例

Proof

Let n = pa1
1 . . . pak

k .

φ(n) =
k

∏
i=1

pai−1
i (pi − 1).

Since each (pi − 1) ≥ 2, we have φ(n) ≥ ∏k
i=1(pi − 1) ≥

2k. If n is odd, each pi is odd, so pi − 1 is even and the product con-
tains at least k factors of 2. Hence 2k | φ(n). This confirms the struc-
tural result used in the primality test example earlier.

■

7.4 Euler’s Theorem and Fermat’s Little Theorem

We now arrive at two of the most significant results in elementary
number theory. By exploiting the structure of reduced residue sys-
tems, we can generalise the periodic behaviour of powers modulo
m.

Theorem 7.10. Euler’s Theorem.
Let m be an integer greater than 1. If a is an integer coprime to m, then

aφ(m) ≡ 1 (mod m).

定理
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Proof

Let R = {r1, r2, . . . , rφ(m)} be a reduced residue system modulo m.
Since (a, m) = 1, the set aR = {ar1, ar2, . . . , arφ(m)} is also a reduced
residue system modulo m (as proved in the previous section). Con-
sequently, the product of elements in aR must be congruent to the
product of elements in R modulo m:

φ(m)

∏
i=1

(ari) ≡
φ(m)

∏
i=1

ri (mod m).

Factoring out a from each term on the left:

aφ(m)

(
φ(m)

∏
i=1

ri

)
≡

φ(m)

∏
i=1

ri (mod m).

Let P = ∏ ri. Since each ri is coprime to m, their product P is also
coprime to m. By the Cancellation Law, we can divide both sides by
P:

aφ(m) ≡ 1 (mod m).

■

In the special case where the modulus is a prime p, we have φ(p) =

p − 1. This yields Fermat’s result, dating back to 1640.

Theorem 7.11. Fermat’s Little Theorem.
If p is a prime number and p ∤ a, then

ap−1 ≡ 1 (mod p).

定理

Proof

This follows immediately from theorem 7.10 with m = p and φ(p) =

p − 1.
■

Corollary 7.3. Fermat’s Theorem (Alternative Form). If p is a prime num-
ber, then for any integer a:

ap ≡ a (mod p).

推論

Proof

If p ∤ a, we multiply the congruence ap−1 ≡ 1 (mod p) by a to get
ap ≡ a (mod p). If p | a, then a ≡ 0 (mod p), so ap ≡ 0 ≡ a
(mod p).

■
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Computational Applications

These theorems are indispensable for reducing large exponents.
Example 7.16. Calculating Remainders of Towers. Find the
last three digits of 243402. This is equivalent to finding 243402

(mod 1000). We first compute φ(1000). Since 1000 = 23 × 53:

φ(1000) = 1000
(

1 − 1
2

)(
1 − 1

5

)
= 1000 · 1

2
· 4

5
= 400.

Note that (243, 1000) = 1 (as 243 = 35). By Euler’s Theorem,
243400 ≡ 1 (mod 1000). Thus:

243402 = 243400 · 2432 ≡ 1 · 2432 (mod 1000).

Calculating the square:

2432 = (200+ 43)2 = 40000+ 2(200)(43)+ 432 ≡ 17200+ 1849 ≡ 49 (mod 1000).

The last three digits are 049.

範例

Example 7.17. Date Calculation. If today is Monday, what day of
the week will it be after 101010

days? We compute 101010
(mod 7).

By Fermat’s Little Theorem, since (10, 7) = 1, we have 106 ≡ 1
(mod 7). The exponent we need to reduce is E = 1010 modulo 6.

10 ≡ 4 (mod 6) =⇒ 1010 ≡ 410 (mod 6).

Notice that 41 = 4, 42 = 16 ≡ 4 (mod 6). By induction, 4k ≡ 4
(mod 6) for all k ≥ 1. Thus E ≡ 4 (mod 6), so E = 6k + 4 for some
integer k.

10E = 106k+4 = (106)k · 104 ≡ 1k · 34 ≡ 81 ≡ 4 (mod 7).

Monday + 4 days is Friday.

範例

Example 7.18. Large Divisibility. If a, b are coprime to 2730,
prove that a12 − b12 is divisible by 2730. Factorising the modu-
lus: 2730 = 2 × 3 × 5 × 7 × 13. The factors are distinct primes. We
show N = a12 − b12 ≡ 0 modulo each prime p ∈ {2, 3, 5, 7, 13}.
· p = 13: By Fermat, a12 ≡ 1 and b12 ≡ 1 (mod 13). Thus N ≡ 1 −

1 = 0.

· p = 7: By Fermat, a6 ≡ 1. Thus a12 = (a6)2 ≡ 1. Similarly b12 ≡ 1.
N ≡ 0.

· p = 5: a4 ≡ 1 =⇒ a12 = (a4)3 ≡ 1. N ≡ 0.
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· p = 3: a2 ≡ 1 =⇒ a12 ≡ 1. N ≡ 0.

· p = 2: a is odd, so a12 ≡ 1. N ≡ 0.
Since N is divisible by all pairwise coprime factors, it is divisible by
their product 2730.

範例

Primality Testing and Pseudoprimes

Fermat’s Little Theorem provides a necessary condition for primality.
If aN−1 ̸≡ 1 (mod N) for some (a, N) = 1, then N is composite.
However, the converse is not true; there exist composite numbers that
satisfy the congruence.

Definition 7.6. Pseudoprime.
A composite integer n is called a pseudoprime to base a if an−1 ≡ 1
(mod n). If n satisfies an ≡ a (mod n) for all integers a, it is called
an absolute pseudoprime or Carmichael number.

定義

Example 7.19. Verifying Composition. Show that N = 91 is com-
posite using Fermat’s test with base 2. We calculate 290 (mod 91).
Powers of 2 modulo 91:

26 = 64

27 = 128 ≡ 37

28 = 74 ≡ −17

216 ≡ (−17)2 = 289 ≡ 16 (289 − 3(91) = 289 − 273 = 16)

232 ≡ 162 = 256 ≡ 74 ≡ −17

264 ≡ (−17)2 ≡ 16.

Decompose the exponent: 90 = 64 + 16 + 8 + 2.

290 = 264 · 216 · 28 · 22 ≡ 16 · 16 · (−17) · 4 (mod 91).

≡ 256 · (−68) ≡ 74 · (−68) (mod 91).

Since 74 ≡ −17, the product is (−17)(−68) = 1156. 1156 = 12 ×
91 + 64. Thus 290 ≡ 64 ̸≡ 1 (mod 91). N is composite.

範例

Despite the existence of pseudoprimes, we can formulate a partial
converse to Fermat’s Little Theorem under stronger assumptions.

Theorem 7.12. Lucas’ Primality Test.
If there exists an integer a such that:
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1. am−1 ≡ 1 (mod m),

2. For every prime factor q of m − 1, a(m−1)/q ̸≡ 1 (mod m),
then m is a prime number.

定理

Proof

Let d be the order of a modulo m (the smallest exponent such that
ad ≡ 1). Condition (1) forces (a, m) = 1; otherwise a prime p | (a, m)

would give am−1 ≡ 0 (mod p), contradicting am−1 ≡ 1 (mod m).
Thus the order is well-defined, and from condition (1) we have
d | (m − 1). Suppose d < m − 1. Write m − 1 = dk with k > 1, and
let q be any prime divisor of k. Then d | (m − 1)/q, so a(m−1)/q ≡ 1
(mod m). This contradicts condition (2). Therefore, the order of a
is exactly m − 1. Since (a, m) = 1, Euler’s Theorem applies and the
order d divides φ(m). Thus (m − 1) | φ(m). Since φ(m) ≤ m − 1 for
all m, we must have φ(m) = m − 1. This equality holds if and only
if m is prime.

■

This theorem underpins proofs for the infinity of primes of certain
forms.

Example 7.20. Primes of the Form 4k + 1. Prove there are infinitely
many primes of the form 4k + 1.

範例

Proof

Consider the number N = (m!)2 + 1 for m > 1. Let p be any prime
divisor of N. Then (m!)2 ≡ −1 (mod p). Squaring gives (m!)4 ≡ 1
(mod p). Since N is odd, p ̸= 2. Let a = m!. Then a2 ≡ −1 ̸≡ 1
(mod p), so the order of a is not 1 or 2. Because a4 ≡ 1 (mod p),
the order of a modulo p is 4. By Fermat’s Little Theorem (equiv-
alently, by the size of (Z/pZ)×), the order divides p − 1. Thus
4 | (p − 1), implying p ≡ 1 (mod 4). Since N > 1, it has at least
one prime factor, and all such factors are of the form 4k + 1. To
show there are infinitely many, assume there are finitely many and
set m to be the product of all such primes. Any prime factor p of
(m!)2 + 1 cannot divide m!, so p > m. This yields a new prime of
the form 4k + 1, a contradiction.

■

7.5 Exercises

1. Pythagorean Triples and Moduli. Let a, b, c be integers satisfying
a2 + b2 = c2. Prove that at least one of a, b, c is divisible by 5.
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2. Non-Divisibility of Series. Let an = ∑n
k=0 23k(2n+1

2k+1). Prove that for
any positive integer n, an is not divisible by 5.

3. Reciprocity Sum. Let m > 0 and (a, m) = 1. Verify the identity:

m−1

∑
x=1

⌊ ax
m

⌋
=

1
2
(m − 1)(a − 1).

4. Prime Power CRS Construction. Let p be a prime. Verify that the
set of integers of the form x = u + ps−tv, where u ∈ {0, . . . , ps−t −
1} and v ∈ {0, . . . , pt − 1}, forms a complete residue system
modulo ps for any 0 ≤ t ≤ s.

5. Polyadic CRS. Let m1, . . . , mk be pairwise coprime integers. Let
Mi = m/mi where m = ∏ mj. Verify that if xi runs through a
complete residue system modulo mi, then ∑ Mixi runs through a
complete residue system modulo m.

6. Squares are not CRS. Prove that for any integer m > 2, the set
of squares {02, 12, . . . , (m − 1)2} cannot form a complete residue
system modulo m.

7. Arithmetic Function Calculations. Calculate:

(a) φ(1963).
(b) φ(25296).
(c) ε(1001).

8. Parity of Totient. Prove that for any integer m > 2, φ(m) is even.

9. Gauss’s Sum. Prove that ∑d|n φ(d) = n.

10. Additive Totient Equation. Find all pairs of positive integers
(m, n) such that φ(mn) = φ(m) + φ(n).

11. Euclid via Euler. Use the properties of Euler’s totient function to
provide an alternative proof that there are infinitely many primes.

12. Inverse Totient Problems. Find all positive integers n such that:

(a) φ(n) = 24.
(b) φ(n) = 64.

13. Divisibility by Totient. Find all positive integers n such that
φ(n) | n.

14. Arithmetic Identity for Primes. Prove that a positive integer n is
prime if and only if σ(n) + φ(n) = n · d(n).

15. Shifted Totient Equation. Let n be a positive integer satisfying
φ(n + 3) = φ(n) + 2. Prove that n must be of the form 2pr or
2pr − 3, where p is a prime congruent to 3 modulo 4.

16. Reduced System Floor Sum. Let m > 1 and (a, m) = 1. Verify
that if y runs through the least positive reduced residue system
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modulo m, then:

∑
y

⌊ ay
m

⌋
=

1
2

φ(m)(a − 1).

17. Polyadic Reduced System. Let m1, . . . , mk be pairwise coprime.
Let Mi = m/mi. If ξi runs through a reduced residue system
modulo mi, verify that ∑ Miξi runs through a reduced residue
system modulo m.

18. Product of Reduced Residues. Let r1, . . . , rφ(m) be a reduced
residue system modulo m. Let A = ∏ ri. Verify that A2 ≡ 1
(mod m).

19. Calendar Prediction. If today is Sunday, determine the day of the
week after 32008 days.

20. Power Calculation. Calculate the remainder when 17771855 is
divided by 41.

21. Decimal Endings. Find the last two digits of 7355.

22. Factorial Divisibility. For any positive integer n, prove that n7 +

720n is divisible by 7.

23. Binomial Difference.

(a) Let p be a prime. Prove that for any integer k:

(k + 1)p − kp ≡ 1 (mod p).

(b) Use this identity to derive Fermat’s Little Theorem.

24. Verifying Pseudoprimality. Prove that the composite number Check 2n−1 (mod n).

161038 is a pseudoprime to base 2.

25. Wieferich Primes. An odd prime p satisfies ap−1 ≡ 1 (mod p2) This is a computationally intensive
verification historically significant for
Fermat’s Last Theorem.

for base a if a is a Fermat solution for p. Prove that 2 is a Fermat
solution for p = 1093.

26. Symmetric Exponents. Let p and q be distinct odd primes such
that (p, q − 1) = 1 and (q, p − 1) = 1. Prove that:

(p − 1)q−1 ≡ (q − 1)p−1 (mod pq).

27. Euler’s Sum. Let m, n be coprime positive integers. Prove that:

mφ(n) + nφ(m) ≡ 1 (mod mn).

28. Power Stabilisation. Let m = pk1
1 . . . pks

s and k = max(k1, . . . , ks).
Prove that for any integer a:

ak+φ(m) ≡ ak (mod m).
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29. Erdős-Ginzburg-Ziv Theorem. Let n ≥ 2. Prove that from any set
of 2n − 1 integers, one can always select exactly n integers whose
sum is divisible by n.

Remark.

Consider the remainders modulo n.



8
Finite Decimal Expansions

We investigate the conditions under which a fraction admits a finite
representation in a positional numeral system. While our primary
focus remains on the decimal system (base 10), we will also consider
general bases, applying the divisibility properties established in
earlier chapters.

8.1 Finite Decimals

We begin by formalising the fractions under consideration. A fraction
a
b with 0 < a < b is termed a proper fraction. If the numerator
and denominator are coprime, that is (a, b) = 1, the fraction is said
to be irreducible. Since any proper fraction can be reduced to an
irreducible form by dividing out common factors, we restrict our
analysis to irreducible proper fractions without loss of generality.
We seek a necessary and sufficient condition for such a fraction to be
expressible as a finite decimal.

Theorem 8.1. Condition for Finite Decimal Expansion.
Let a

b be an irreducible proper fraction. The fraction can be converted
into a finite decimal if and only if the prime factorisation of the denom-
inator is of the form b = 2α · 5β, where α and β are non-negative in-
tegers. Furthermore, the number of decimal places in the expansion
is max{α, β}.

定理

Sufficiency.

Assume b = 2α · 5β. We consider two cases based on the relative
magnitude of the exponents.

• If α ≥ β, we multiply the numerator and denominator by 5α−β:

a
b
=

a
2α · 5β

=
a · 5α−β

2α · 5β · 5α−β
=

a · 5α−β

2α · 5α
=

a · 5α−β

10α
.

Since α ≥ β, the term a · 5α−β is an integer. Thus, a
b is a finite dec-

imal with α decimal places.
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• If α < β, we multiply by 2β−α:

a
b
=

a
2α · 5β

=
a · 2β−α

2α · 2β−α · 5β
=

a · 2β−α

2β · 5β
=

a · 2β−α

10β
.

Here, a · 2β−α is an integer, yielding a finite decimal with β deci-
mal places.

In both cases, the number of places is max{α, β}.
証明終

Necessity.

Conversely, suppose the irreducible fraction a
b represents a finite

decimal. Then there exists a positive integer k and an integer c such
that:

a
b
=

c
10k .

Assume, for the sake of contradiction, that b contains a prime factor
p distinct from 2 and 5. We may write b = b1 p. Substituting this
into the equation:

a
b1 p

=
c

10k =⇒ a · 10k = b1 pc.

Expanding the power of 10, we have a · 2k · 5k = b1 pc. It follows that
p divides the left-hand side: p | (a · 2k · 5k). Since p is distinct from
2 and 5, we have (p, 2k · 5k) = 1. By corollary 1.5, p must divide a.
However, p is a factor of b. This implies p is a common divisor of a
and b, contradicting the hypothesis that a

b is irreducible. Therefore,
b cannot contain any prime factors other than 2 and 5.

証明終
α

β

1 1
2

1
5

1
20

α = β

Dominated by 2

Dominated by 5

Figure 8.1: The denominators
of finite decimals map to lattice
points (α, β). The number of
decimal places is determined by
the distance from the origin in
the maximum norm.

This theorem provides a direct method for determining the length of
a decimal expansion without performing long division.

Example 8.1. Calculating Decimal Lengths. Determine the number
of decimal places for the following irreducible fractions:
1. 1

3125

2. 1
1024

3. 97
31250

4. 3947
20480

範例

Solution

1. The denominator factorises as 3125 = 55. Here α = 0, β = 5. The
number of places is max{0, 5} = 5.

2. 1024 = 210. Here α = 10, β = 0. The number of places is 10.
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3. 31250 = 3125 × 10 = 55 × 2 × 5 = 21 · 56. The number of places is
max{1, 6} = 6.

4. 20480 = 2048 × 10 = 211 × 2 × 5 = 212 · 51. The number of places
is max{12, 1} = 12.

■

Example 8.2. Checking Finite Expansion. Determine whether 3
40

and 3
14 have finite decimal expansions.

For 3
40 , we check the prime factors of 40.

40 = 8 × 5 = 23 · 51.

The denominator contains only prime factors 2 and 5. Thus, it
has a finite expansion. The length is max{3, 1} = 3. Indeed,
3

40 = 75
1000 = 0.075.

For 3
14 , we factorise 14 = 2 · 7. The factor 7 is neither 2 nor 5. Since

(3, 14) = 1, the fraction is irreducible. By theorem 8.1, it does not
have a finite decimal expansion.

範例

Expansions in General Bases

The divisibility condition for finite representations generalises natu-
rally to any base b. Just as the prime factors 2 and 5 dictate behaviour
in base 10, the prime factors of the base b determine which fractions
terminate in that system.

Proposition 8.1. Finite Expansion in Base b.
Let n and b be positive integers. Let the expansion of 1

n in base b be given
by:

1
n
=

d1

b
+

d2

b2 +
d3

b3 + . . . (0 ≤ dk < b).

If this expansion is finite, then every prime factor of n is a factor of b.

命題

Proof

Suppose the expansion terminates after t terms. We can write:

1
n
=

d1

b
+

d2

b2 + · · ·+ dt

bt .

Multiplying the entire equation by bt yields:

bt

n
= d1bt−1 + d2bt−2 + · · ·+ dt.
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The right-hand side is an integer composed of integer sums and
products. Therefore, the left-hand side bt

n must be an integer. By the
definition of divisibility, n | bt. If n divides a power of b, then every
prime factor of n must also divide b.

■

Example 8.3. Base 12 Expansion. Consider the fraction 1
6 . In base

10, this is 0.166 . . . (infinite) because 3 | 6 but 3 ∤ 10. In base 12,
however, the denominator n = 6 has prime factors 2 and 3. The
base b = 12 has prime factorisation 22 · 3. Since every prime factor
of 6 is a factor of 12, 1

6 has a finite expansion in base 12. Explicitly:

1
6
=

2
12

= 0.212.

Conversely, 1
5 is finite in base 10 but infinite in base 12, as 5 is not a

factor of 12.

範例

Example 8.4. Non-Existence of Finite Representation. Prove that 1
3

cannot be represented as a finite decimal in base 2 (binary).
Here n = 3 and the base b = 2. The prime factor of n is 3. Since
3 is not a factor of 2, the condition of the proposition fails. Thus,
1
3 has an infinite binary expansion. Explicitly, one can verify that
1
3 = 0.010101 . . .2.

範例

8.2 Infinite Recurring Decimals

Extending our analysis to those irreducible fractions that do not
satisfy this condition, we are led to the theory of infinite recurring
decimals.

Definition 8.1. Infinite and Recurring Decimals.
Let x be a real number with decimal expansion 0.a1a2a3 . . . , where 0 ≤
ai ≤ 9.
1. If for every integer j, there exists k > j such that ak ̸= 0, the rep-

resentation is termed an infinite decimal.

2. The decimal is recurring (or periodic) if there exist integers s ≥ 0
and t > 0 such that

as+i = as+kt+i

for all i ∈ {1, . . . , t} and k ≥ 1. We denote this by

0.a1 . . . as ȧs+1 . . . ȧs+t.
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3. If s = 0, the decimal is purely recurring.

4. If s > 0, the decimal is mixed recurring.

5. The smallest such t is the period length.
定義

Pure Recurring Decimals

We first determine the algebraic structure of fractions that yield
purely recurring expansions.

Theorem 8.2. Condition for Pure Recurrence.
Let a

b be an irreducible proper fraction. The fraction can be converted
into a pure recurring decimal if and only if (b, 10) = 1. Furthermore,
the period length is the smallest positive integer t such that 10t ≡ 1
(mod b).

定理

Necessity.

Suppose a
b is a pure recurring decimal with period t. Then:

a
b
= 0.ȧ1a2 . . . ȧt.

Multiplying by 10t:

10t · a
b
= a1a2 . . . at.ȧ1a2 . . . ȧt = N +

a
b

,

where N is the integer formed by the repeating block. Rearranging
terms:

a
b
(10t − 1) = N =⇒ a(10t − 1) = bN.

Since (a, b) = 1, it follows that b | (10t − 1). This implies 10t − 1 =

bk for some integer k, so 10t ≡ 1 (mod b). If a prime p divides both
b and 10, then p | 10t and p | (10t − 1), so p | 1, a contradiction.
Hence (b, 10) = 1.

証明終

Sufficiency.

Assume (b, 10) = 1. By theorem 7.10, 10φ(b) ≡ 1 (mod b). Thus,
there exists a smallest positive integer t such that 10t ≡ 1 (mod b).
Consequently, b | (10t − 1), so there exists an integer N such that
10t − 1 = bN. Multiplying by a:

a
b
(10t − 1) = aN =⇒ a

b
=

aN
10t − 1

.

Since a < b, we have aN < bN = 10t − 1. The term aN is an integer
strictly less than 10t − 1, so it can be represented as a t-digit integer
(padding with leading zeros if necessary). Division of aN by 10t − 1
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yields the geometric series sum corresponding to 0.q̇1 . . . q̇t, where
q1 . . . qt are the digits of aN. Thus, a

b is purely recurring with period
t.

証明終

The period length is tied intrinsically to the order of 10 modulo b.
This relationship allows us to bound the period length using the
totient function.

Theorem 8.3. Period Length Divisibility.
Let b be a positive integer with (b, 10) = 1. If t is the period length
of 1

b , then t | φ(b).
定理

Proof

By theorem 8.2, t is the smallest integer satisfying 10t ≡ 1 (mod b).
By theorem 7.10, 10φ(b) ≡ 1 (mod b). Applying the Division Algo-
rithm, we write φ(b) = qt + r with 0 ≤ r < t.

1 ≡ 10φ(b) ≡ (10t)q · 10r ≡ 1q · 10r ≡ 10r (mod b).

Since t is the smallest positive integer with this property, r must be
0. Thus t | φ(b).

■

Example 8.5. Calculating Period Lengths. Determine the period
lengths of the decimals for 1

7 and 1
13 .

1. For b = 7, φ(7) = 6. We test divisors of 6.

101 ≡ 3, 102 ≡ 2, 103 ≡ 6 ≡ −1 (mod 7).

Since 103 ≡ −1, it follows 106 ≡ (−1)2 ≡ 1. The order is 6. In-
deed, 1

7 = 0.1̇42857̇.

2. For b = 13, φ(13) = 12. We compute powers of 10 modulo 13:

101 ≡ 10, 102 ≡ 100 ≡ 9, 103 ≡ 90 ≡ 12 ≡ −1.

Since 103 ≡ −1, we have 106 ≡ 1 (mod 13). The period length is
6. Note that 6 | 12. (Fact: 1

13 = 0.076923.)

範例

Mixed Recurring Decimals

If the denominator shares factors with 10, the decimal expansion is
not purely recurring. However, we can reduce this case to the pure
case by shifting the decimal point.
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Theorem 8.4. Structure of Mixed Recurring Decimals.
Let a

b be an irreducible proper fraction where b = 2α · 5β · b1, with b1 >

1 and (b1, 10) = 1. The decimal expansion of a
b is mixed recurring.

1. The length of the non-recurring part is s = max{α, β}.

2. The length of the recurring part is the multiplicative order of 10 mod-
ulo b1.

定理

Proof

Let s = max{α, β}. We can write:

a
b
=

a
2α5βb1

=
1

10s ·
a · K
b1

,

where K is the integer required to equate the powers of 2 and 5

to 10s. Let A = a · K. We perform Euclidean division of A by b1:
A = qb1 + r, with 0 < r < b1.

a
b
=

1
10s

(
q +

r
b1

)
=

q
10s +

1
10s ·

r
b1

.

The term q
10s represents a terminating decimal. The term r

b1
is a

proper fraction with (b1, 10) = 1. By theorem 8.2, r
b1

is a purely
recurring decimal with period length t equal to the order of 10

modulo b1. Multiplying a pure recurring decimal by 10−s simply
shifts the digits s places to the right, creating a non-recurring prefix
of length s.

■

Example 8.6. Analysis of Denominators. Analyze the decimal
structure of fractions with denominators 12 and 808.
1. 12 = 22 · 3. Here α = 2, β = 0, so s = 2. b1 = 3. Order of 10

modulo 3: 10 ≡ 1 (mod 3), so t = 1. Structure: 2 non-recurring
digits, period 1. Check: 1

12 = 0.083̇.

2. 808 = 8 · 101 = 23 · 101. Here s = 3. b1 = 101. We deter-
mine the order of 10 modulo 101. 102 = 100 ≡ −1 (mod 101).
104 ≡ (−1)2 ≡ 1 (mod 101). Period length is 4. Structure: 3

non-recurring digits, period 4. Check: 1
808 ≈ 0.00123762376 · · · =

0.0012376.

範例

Properties of the Period

The digits within a period often exhibit surprising symmetry. A
famous result, often attributed to Midy, describes the sum of the
digits in the two halves of a period of even length.
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Theorem 8.5. Sum of Half-Periods.
Let a

b be an irreducible proper fraction forming a pure recurring dec-
imal with period length t = 2k. Let the period be q1q2 . . . qkt1t2 . . . tk.
If (b, 10k − 1) = 1, then:

qi + ti = 9 for all i = 1, . . . , k.

定理

Proof

We have 102k ≡ 1 (mod b). Factorising the difference of squares:

b | (102k − 1) =⇒ b | (10k − 1)(10k + 1).

Given the condition (b, 10k − 1) = 1, Euclid’s Lemma implies b |
(10k + 1). Thus 10k + 1 = b · M for some integer M. From the deci-
mal expansion a

b = 0.q̇1 . . . tk, we can write:

a
b
=

N
102k − 1

,

where N is the integer q1 . . . tk. Then a(102k − 1) = bN. Substituting
102k − 1 = (10k − 1)(10k + 1) = (10k − 1)bM:

a(10k − 1)bM = bN =⇒ N = aM(10k − 1).

We have a
b · 10k = integer+ 0.ṫ1 . . . tkq1 . . . qk. The sum of the fraction

and its shifted version shifted by k places corresponds to:

a
b
(10k + 1) =

a
b
· bM = aM.

This is an integer. In terms of the decimal parts, let X = 0.q̇1 . . . tk

and Y = 0.ṫ1 . . . qk. X + Y must be an integer. Since 0 < X < 1 and
0 < Y < 1, their sum must be exactly 1 (the expansion is purely re-
curring, so it cannot terminate).

0.q̇1 . . . tk + 0.ṫ1 . . . qk = 0.9̇9 . . . 9 = 1.

Write the period as a pair of k-digit blocks: N = Q · 10k + T with
0 ≤ T < 10k. Since N = aM(10k − 1) and 0 < aM < 10k (otherwise
the period would collapse to 0.9̇), we have

N = aM · 10k − aM = (aM − 1)10k + (10k − aM).

Thus Q = aM − 1 and T = 10k − aM, so Q + T = 10k − 1. This
forces digit-wise summation qi + ti = 9 with no carries.

■

1

4

2

8

5

7

Sums to 9

Figure 8.2: The period of 1/7
is 142857. Pairing digits sep-
arated by k = 3 positions
(1 + 8, 4 + 5, 2 + 7) yields 9.
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Example 8.7. Midy’s Theorem on 1/7. Consider 1
7 = 0.1̇42857̇. The

period length is t = 6, so k = 3. Check the condition: (7, 103 − 1) =

(7, 999). Since 999 = 27 × 37, the gcd is 1. The theorem applies. The
first half is 142; the second half is 857.

1 + 8 = 9, 4 + 5 = 9, 2 + 7 = 9.

範例

Finally, we present an algorithmic method for generating the digits of
the period of 1

b in reverse order, which is particularly computation-
ally efficient for large periods.

Theorem 8.6. Reverse Digit Algorithm.
Let b be a positive integer with (b, 10) = 1, and let b1 be the units digit
of b. The expansion 1

b = 0.ȧ1a2 . . . ȧt can be computed from right to
left (at down to a1) as follows:
1. The last digit at is determined by at · b1 ≡ 9 (mod 10).

2. Let M = atb+1
10 . This integer M serves as a multiplier.

3. Each subsequent digit (moving left) is the units digit of the prod-
uct of the previous digit and M, plus any carry from the previous
step.

定理

Proof

The relationship stems from the identity derived in the expansion:

atb ≡ −1 ≡ 9 (mod 10).

This uniquely determines at because b is coprime to 10. The re-
cursive step at−k incorporates the modular arithmetic of the long
division process run in reverse. Specifically, if Rk is the remainder
at step k, the reverse process reconstructs the dividend using the
multiplier M.

■

Example 8.8. Generating 1/19. We compute the period of 1
19 . Here

b = 19, so b1 = 9.
1. Find at: 9 × at ≡ 9 (mod 10) =⇒ at = 1.

2. Find Multiplier M: M = 1·19+1
10 = 20

10 = 2.

3. Generate sequence (multiply by 2, add carry):

· a18 = 1. (Carry 0)

· 1 × 2 + 0 = 2. =⇒ a17 = 2.

· 2 × 2 + 0 = 4. =⇒ a16 = 4.
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· 4 × 2 + 0 = 8. =⇒ a15 = 8.

· 8 × 2 + 0 = 16. =⇒ a14 = 6. (Carry 1)

· 6 × 2 + 1 = 13. =⇒ a13 = 3. (Carry 1)

· 3 × 2 + 1 = 7. =⇒ a12 = 7.

· 7 × 2 + 0 = 14. =⇒ a11 = 4. (Carry 1)

· 4 × 2 + 1 = 9. =⇒ a10 = 9.

At this point, we have the second half of the period: 947368421.
By theorem 8.5, since 19 is prime, the first half is the 9-
complement of this sequence: 052631578. Thus

1
19

= 0.0̇52631578947368421̇.

範例

8.3 Wilson’s Theorem

In 1770, Edward Waring published a conjecture of his student John
Wilson, stating that if p is a prime number, then p divides (p − 1)! +
1. This elegant condition was proven later that year by Lagrange. We
now present this fundamental result and its converse.

Theorem 8.7. Wilson’s Theorem.
An integer p > 1 is a prime number if and only if

(p − 1)! ≡ −1 (mod p).

定理

Necessity.

For p = 2, (2 − 1)! = 1 ≡ −1 (mod 2).
For p = 3, (3 − 1)! = 2 ≡ −1 (mod 3).
Assume p > 3. Consider the set of integers S = {2, 3, . . . , p − 2}.
Since Zp is a field, for every x ∈ S, there exists a unique inverse y ∈
{1, . . . , p − 1} such that xy ≡ 1 (mod p). Since x ∈ S, x ̸≡ 1
and x ̸≡ −1. The only elements that are their own inverses are the
solutions to x2 ≡ 1 (mod p), namely 1 and p − 1. Thus, for every
x ∈ S, its inverse y is distinct from x and also belongs to S (since
y ̸= 1, p − 1). We can therefore partition S into (p − 3)/2 disjoint
pairs {x, x−1}. The product of each pair is congruent to 1.

∏
x∈S

x ≡ 1(p−3)/2 ≡ 1 (mod p).
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Including the boundary terms 1 and p − 1:

(p − 1)! = 1 ·
(

∏
x∈S

x

)
· (p − 1) ≡ 1 · 1 · (−1) ≡ −1 (mod p).

証明終

Sufficiency.

Assume p is composite. Then p has a proper divisor d with 1 < d <

p. Since d ≤ p − 1, d appears as a factor in the product (p − 1)!.
Thus d | (p − 1)!. If the congruence (p − 1)! ≡ −1 (mod p) holds,
then (p − 1)! = kp − 1. Since d | p and d | (p − 1)!, it follows that d
divides their difference:

d | (kp − (p − 1)!) =⇒ d | 1.

This implies d = 1, contradicting the assumption that d is a proper
divisor. Thus p must be prime.

証明終

Example 8.9. Generalised Factorial Product. Let p be an odd
prime. Verify that

12 · 32 · · · · · (p − 2)2 ≡ (−1)(p+1)/2 (mod p).

Consider the factorial (p − 1)!. We can write the even terms 2k
as −(p − 2k) (mod p). Specifically, observe the symmetry in the
product:

(p − 1)! = 1 · 2 · 3 · · · · · (p − 1)

=
(p−1)/2

∏
k=1

(2k − 1)(2k).

Modulo p, we have 2k ≡ −(p − 2k). Note that as k runs from
1 to (p − 1)/2, the values p − 2k run through the odd integers
{p − 2, p − 4, . . . , 1} in reverse order. However, it is simpler to
rearrange the terms of (p − 1)! into odds and evens directly.

(p − 1)! = [1 · 3 · · · · · (p − 2)] · [2 · 4 · · · · · (p − 1)].

The second bracket contains (p − 1)/2 even terms. We can write
2j ≡ −(p − 2j). Let m = (p − 1)/2. The even terms are 2, 4, . . . , 2m.

m

∏
j=1

(2j) = 2 · 4 · · · · · (p − 1).

This does not immediately yield the square form. Let us use the
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reflection property x ≡ −(p − x).

(p− 1)! =
(p−1)/2

∏
k=1

k ·
(p−1)/2

∏
k=1

(p− k) ≡
(p−1)/2

∏
k=1

k ·
(p−1)/2

∏
k=1

(−k) ≡ (−1)(p−1)/2
[(

p − 1
2

)
!
]2

.

This is the standard corollary. To obtain the specific result for
odd squares, let us pair k with −(p − k). The product of odd
numbers is O = 1 · 3 · · · · · (p − 2). The product of even num-
bers is E = 2 · 4 · · · · · (p − 1). Notice E = (−1)(p−1)/2 · O
(mod p) because p − 1 ≡ −1, p − 3 ≡ −3, etc. Thus (p − 1)! =

O · E ≡ O · (−1)(p−1)/2O ≡ (−1)(p−1)/2O2. By Wilson’s Theorem,
(p − 1)! ≡ −1.

−1 ≡ (−1)(p−1)/2O2 (mod p).

Multiplying by (−1)(p−1)/2:

(−1)(p+1)/2 ≡ (−1)p−1O2 ≡ O2 (mod p).

Thus O2 ≡ (−1)(p+1)/2 (mod p).

範例

Twin Primes

Wilson’s Theorem can be adapted to characterise pairs of primes.

Theorem 8.8. Clement’s Theorem for Twin Primes.
Let p be a positive integer with p ̸= 1. The integers p and p + 2 are
twin primes if and only if

4((p − 1)! + 1) + p ≡ 0 (mod p(p + 2)).

定理

Necessity.

Assume p and p + 2 are primes. Since p is part of a pair (and p ̸=
1), p must be odd. By Wilson’s Theorem:

1. (p − 1)! ≡ −1 (mod p). Thus 4((p − 1)! + 1) + p ≡ 4(0) + 0 ≡ 0
(mod p).

2. (p + 1)! ≡ −1 (mod p + 2).

We manipulate the expression modulo p + 2:

4(p − 1)! + 4 + p = 4(p − 1)! + p + 4.

Note that (p + 1)! = (p + 1)p(p − 1)! ≡ (−1)(−2)(p − 1)! = 2(p −
1)! (mod p + 2). Since 2(p − 1)! ≡ (p + 1)! ≡ −1 (mod p + 2), we
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have:

4(p − 1)! = 2[2(p − 1)!] ≡ 2(−1) = −2 (mod p + 2).

Substituting this back:

4(p − 1)! + p + 4 ≡ −2 + p + 4 = p + 2 ≡ 0 (mod p + 2).

Since the expression is divisible by p and p + 2, and (p, p + 2) = 1
(as p is odd), it is divisible by p(p + 2).

証明終

Sufficiency.

Assume the congruence holds. This implies 4((p − 1)! + 1) ≡ 0
(mod p), so (p − 1)! ≡ −1 (mod p). By theorem 8.7, p is prime.
Now consider modulo p + 2. The congruence implies:

4(p− 1)!+ p+ 4 ≡ 0 (mod p+ 2) =⇒ 4(p−1)! ≡ −(p+ 4) ≡ −2 (mod p+ 2).

We multiply by the invertible elements to reconstruct the factorial.
Multiply by p(p + 1) = p2 + p. Note p ≡ −2 (mod p + 2), so
p(p + 1) ≡ (−2)(−1) = 2.

2 · 4(p − 1)! ≡ 2(−2) =⇒ 4[2(p − 1)!] ≡ −4 (mod p + 2).

Recall 2(p − 1)! ≡ p(p + 1)(p − 1)! = (p + 1)! (mod p + 2).

4(p + 1)! ≡ −4 (mod p + 2).

For p > 2, p + 2 is odd and coprime to 4. We can cancel 4:

(p + 1)! ≡ −1 (mod p + 2).

By theorem 8.7, p + 2 is prime.
証明終

Prime-Generating Functions

A remarkable theoretical application of Wilson’s Theorem is the con-
struction of functions that generate prime numbers. While computa-
tionally inefficient, these formulae demonstrate that primes are the
solution set of Diophantine equations.

Theorem 8.9. A Prime-Generating Function.
For positive integers n and m, let

Q = m(n + 1)− (n! + 1).
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Define the function

f (m, n) =
n − 1

2

(
|Q2 − 1| − (Q2 − 1)

)
+ 2.

Then the set of values taken by f (m, n) is exactly the set of prime num-
bers.

定理

Proof

We analyse the term T = |Q2 − 1| − (Q2 − 1).

• If Q2 ≥ 1 (i.e., Q ̸= 0), then |Q2 − 1| = Q2 − 1. Thus T = 0, and
f (m, n) = 2.

• If Q = 0, then Q2 − 1 = −1, so | − 1| − (−1) = 2. Thus f (m, n) =
n−1

2 (2) + 2 = n + 1.

The condition Q = 0 is equivalent to m(n + 1) = n! + 1. This
equality holds for some integer m if and only if n + 1 divides n! + 1,
or equivalently:

n! ≡ −1 (mod n + 1).

By theorem 8.7, this occurs if and only if n + 1 is prime.
Thus:

• If n + 1 is composite or Q ̸= 0, f (m, n) = 2 (which is prime).

• If n + 1 is prime and m is chosen to make Q = 0, f (m, n) = n + 1.

By varying n, we can generate every odd prime p = n + 1 (by set-
ting n = p − 1 and m = (p−1)!+1

p ). Thus, the range of the function is
exactly the set of prime numbers.

■

Example 8.10. Non-Existence of Factorial Solutions. Find all pairs
of positive integers (n, k) such that (n − 1)! = nk − 1.
· For n = 1, 0! = 1 ̸= 0.

· For n = 2, 1! = 1, 2k − 1 = 1 =⇒ 2k = 2 =⇒ k = 1. Solution
(2, 1).

· For n = 3, 2! = 2, 3k − 1 = 2 =⇒ k = 1. Solution (3, 1).

· For n = 4, 3! = 6, 4k − 1 is odd (impossible).

· For n = 5, 4! = 24, 5k − 1 = 24 =⇒ k = 2. Solution (5, 2).
Assume n > 5. From (n − 1)! = nk − 1, we have (n − 1)! ≡
−1 (mod n). By theorem 8.7, n must be prime. Since n > 5, n − 1
is composite and greater than 4. Thus n− 1 has a divisor d with 1 <

d < n − 1, or n − 1 is a square of a prime. In any case, n − 1 divides
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(n − 2)!. We rewrite the equation:

(n − 1)(n − 2)! = nk − 1 = (n − 1)(nk−1 + nk−2 + · · ·+ 1).

Dividing by n − 1:

(n − 2)! = nk−1 + · · ·+ 1 =
nk − 1
n − 1

.

Since n > 5, we have n − 1 < (n − 2)!. Also n ≡ 1 (mod n − 1), so:

(n − 2)! =
k−1

∑
j=0

nj ≡
k−1

∑
j=0

1j ≡ k (mod n − 1).

Since n − 1 | (n − 2)! (for n > 5), we must have k ≡ 0 (mod n − 1).
Let k = m(n − 1) for m ≥ 1. Then nk − 1 = (nn−1)m − 1 ≥ nn−1 − 1.
However, it is easily shown by induction that for n > 5, (n − 1)! <

nn−1 − 1. Contradiction. Thus there are no solutions for n > 5.

範例

8.4 Exercises

1. Finite Decimal Lengths. Determine the number of decimal places
for the following irreducible proper fractions:

(a) 1
128

(b) 17
320

(c) 81
800

2. General Base Expansion. Prove that in base b, the expansion of 1
n

terminates if and only if every prime factor of n divides b.

3. Period Length Calculation. Determine the period length of the
decimal expansions for:

(a) 1
7

(b) 1
19

(c) 1
27

4. Classification of Decimals. For irreducible fractions with the
following denominators, classify them as finite, pure recurring, or
mixed recurring decimals. Calculate the number of non-recurring
digits and the period length.

(a) 11

(b) 14

(c) 16
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5. Decimal Construction. Write out the full recurring decimal ex-
pansion for:

(a) 5
17

(b) 1
23

6. Wilson’s Theorem Variations. Let p be an odd prime. Prove that:

(a) 22 · 42 · · · (p − 1)2 ≡ (−1)
p+1

2 (mod p).

(b)
((

p−1
2

)
!
)2

≡ (−1)
p+1

2 (mod p).

7. Unified Congruence.

(a) Let p be a prime and a be any integer. Prove that a(p − 1)! ≡
−a (mod p).

(b) Deduce that ap(p − 1)! ≡ a(p − 1)! ≡ −a (mod p), and
use this to derive Fermat’s Little Theorem and the sufficiency
condition of Wilson’s Theorem.

8. Factorial Reflection. Let p be an odd prime. Prove that if there
exists an integer r such that (−1)rr! ≡ 1 (mod p), then

(p − r − 1)! + 1 ≡ 0 (mod p).

Use this to show that 61! + 1 ≡ 0 (mod 71) and 63! + 1 ≡ 0
(mod 71).

9. Quadratic Factorials. Let p = 2n + 1 be a prime. Prove that:

(n!)2 + (−1)n ≡ 0 (mod p).



9
Indefinite Equations

Having developed the properties of divisibility and the greatest com-
mon divisor in the preceding chapters, we now apply these tools to
the study of indefinite equations. Historically known as Diophantine
equations these are polynomial equations for which we seek integer Diophantine Equations are named after

the Greek mathematician Diophantus of
Alexandria (c. 3rd century AD)

solutions.
The study of such equations is one of the oldest branches of number
theory, with significant early contributions from ancient Chinese
mathematicians. In this chapter, we focus on linear equations in
two variables, establishing criteria for solvability and methods for
constructing general solutions.

9.1 Linear Indefinite Equations in Two Variables

We begin by defining the class of equations under consideration.

Definition 9.1. Linear Indefinite Equation.
A linear indefinite equation in two variables is an equation of the form

ax + by = c,

where a, b are non-zero integers and c is an arbitrary integer. A solu-
tion is a pair of integers (x, y) satisfying the equation.

定義

The solvability of such an equation is strictly determined by the
greatest common divisor of the coefficients.

Theorem 9.1. Existence of Solutions.
The linear indefinite equation ax+ by = c has integer solutions if and
only if (a, b) divides c.

定理

Necessity.

Let (a, b) = d. By the definition of the greatest common divisor,
there exist integers q1, q2 such that a = dq1 and b = dq2. Sup-
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pose the equation has an integer solution (x0, y0). Substituting the
expressions for a and b:

c = ax0 + by0 = (dq1)x0 + (dq2)y0 = d(q1x0 + q2y0).

Since q1, x0, q2, y0 are integers, their linear combination is an integer.
Thus d | c.

証明終

Sufficiency.

Suppose (a, b) = d and d | c. Then c = dm for some integer m.
From the properties of the greatest common divisor (specifically the
linear combination property established in the previous chapter),
there exist integers u, v such that:

au + bv = d.

Multiplying this identity by m:

a(um) + b(vm) = dm = c.

Let x0 = um and y0 = vm. Then (x0, y0) is an integer solution to the
equation.

証明終

This theorem yields two immediate consequences regarding the
existence of solutions.

Corollary 9.1. If (a, b) ∤ c, the equation ax + by = c has no integer
solutions.

推論

Corollary 9.2. If (a, b) = 1, the equation ax+ by = c always possesses
integer solutions.

推論

Consequently, when seeking solutions, we may divide the entire
equation by (a, b) to obtain an equivalent equation with coprime
coefficients. We henceforth assume (a, b) = 1 unless stated otherwise.

Method of Solution

To find a particular solution, one may employ the Euclidean Algo-
rithm to express the GCD as a linear combination of a and b. Alterna-
tively, for coefficients of manageable size, an algebraic "trial method"
is often efficient. This involves isolating one variable and interpreting
the resulting fraction as an integer condition.
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Example 9.1. Basic Solution via Algebraic Manipulation. Find a set
of integer solutions for the equation 3x + 4y = 23.
We express x in terms of y:

3x = 23 − 4y =⇒ x =
23 − 4y

3
.

We separate the integer part of the quotient:

x =
21 + 2 − 3y − y

3
= 7 − y +

2 − y
3

.

For x to be an integer, 3 must divide 2 − y. Let 2 − y = 3k for some
integer k. Then y = 2 − 3k. Setting k = 0, we obtain y = 2. Substi-
tuting back into the expression for x:

x = 7 − 2 + 0 = 5.

Thus, (5, 2) is a solution. Verification: 3(5) + 4(2) = 15 + 8 = 23.

範例

Once a single solution is found, the complete set of solutions follows
a predictable structure.

Theorem 9.2. General Solution Structure.
Let a, b be coprime non-zero integers. If (x0, y0) is a particular integer
solution to the equation ax + by = c, then the general integer solu-
tion is given by: x = x0 + bt

y = y0 − at
for any t ∈ Z.

定理

Proof

Let (x, y) be any integer solution. Since ax + by = c and ax0 + by0 =

c, we have:

ax + by = ax0 + by0 =⇒ a(x − x0) = −b(y − y0).

Thus b divides a(x − x0). Since (a, b) = 1, Euclid’s Lemma implies
b | (x − x0). Therefore, x − x0 = bt for some integer t, yielding x =

x0 + bt. Substituting this back into the relation:

a(bt) = −b(y − y0).

Since b ̸= 0, we divide by b to get at = −(y − y0), or y = y0 − at.
Conversely, substituting these expressions into the original equation
verifies they are solutions for any t.

■
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Example 9.2. General Solution Construction. Find the general
solution of 11x + 15y = 7.
Since (11, 15) = 1, solutions exist. Isolate x (the variable with the
smaller coefficient):

x =
7 − 15y

11
=

7 − 4y − 11y
11

= −y +
7 − 4y

11
.

We require 11 | (7 − 4y). We test small values for y:
· y = 1 =⇒ 7 − 4 = 3 (No).

· y = −1 =⇒ 7 − 4(−1) = 11 (Yes).
Using y0 = −1, we find x0 = −(−1) + 1 = 2. The particular solu-
tion is (2,−1). Applying theorem 9.2, the general solution is:x = 2 + 15t

y = −1 − 11t
t ∈ Z.

範例

Example 9.3. Constrained Solutions. Find the smallest positive
integer solution to 5x − 14y = −11.
We isolate x:

5x = 14y− 11 =⇒ x =
14y − 11

5
=

15y − y − 10 − 1
5

= 3y−2− y + 1
5

.

For x to be an integer, 5 | (y + 1). Let y + 1 = 5k, so y = 5k − 1. Sub-
stituting back:

x = 3(5k − 1)− 2 − k = 15k − 3 − 2 − k = 14k − 5.

The general solution is x = 14k − 5 and y = 5k − 1. We seek the
smallest positive solution, so x > 0 and y > 0.

14k − 5 > 0 =⇒ k > 5/14, and 5k − 1 > 0 =⇒ k > 1/5.

The smallest integer k satisfying these is k = 1.

x = 14(1)− 5 = 9, y = 5(1)− 1 = 4.

The smallest positive solution is (9, 4).

範例

We now consider a problem requiring the formulation of such an
equation from a text description.

Example 9.4. Partitioning an Integer. Divide the integer 239 into
two positive parts, such that one part is divisible by 17 and the
other by 24.
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Let the two parts be 17x and 24y, where x, y are positive integers.
The condition is:

17x + 24y = 239.

We solve for x:

17x = 239− 24y =⇒ x =
239 − 24y

17
=

238 + 1 − 17y − 7y
17

= 14− y+
1 − 7y

17
.

We require 17 | (1 − 7y). Testing values:

1 − 7(5) = 1 − 35 = −34 = 17(−2).

Thus y0 = 5 is a solution. Substituting y0 = 5 into the expression
for x:

x0 = 14 − 5 + (−2) = 7.

The general solution is:

x = 7 + 24t, y = 5 − 17t.

Since the parts must be positive, we require x > 0 and y > 0:

7 + 24t > 0 =⇒ t > −7/24, 5 − 17t > 0 =⇒ t < 5/17.

The only integer t in the interval (−0.29, 0.29) is t = 0. Thus the so-
lution is unique: x = 7, y = 5. The two parts are 17(7) = 119 and
24(5) = 120. Note that 119 + 120 = 239.

範例

Often, Diophantine equations appear in geometric contexts involving
integer coordinates or lattice points.

Example 9.5. Lattice Points on a Line. Determine the number of
integer coordinate points (x, y) lying on the line 12x + 25y = 331 in
the first quadrant (i.e., x > 0, y > 0).
First, we find a particular solution. Isolate x:

x =
331 − 25y

12
=

324 + 7 − 24y − y
12

= 27 − 2y +
7 − y

12
.

We set 7 − y = 12k, so y = 7 − 12k. For k = 0, y0 = 7. Then x0 =

27− 2(7)+ 0 = 13. The particular solution is (13, 7). The general so-
lution is:

x = 13 + 25t, y = 7 − 12t.

For the points to lie in the first quadrant:13 + 25t > 0 =⇒ t > −13/25 = −0.52

7 − 12t > 0 =⇒ t < 7/12 ≈ 0.58
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The only integer satisfying −0.52 < t < 0.58 is t = 0. Thus, there is
exactly one such point: (13, 7).

範例

x

y

(13, 7)

331
12

331
25

Figure 9.1: The line 12x + 25y =

331. The unique integer solu-
tion in the positive quadrant is
marked.

9.2 The Frobenius Number for n = 2

A classic problem in the theory of indefinite equations asks for the
largest integer that cannot be expressed as a linear combination of
two coprime positive integers a and b with non-negative coefficients.
This value is known as the Frobenius number of the set {a, b}.

Theorem 9.3. The Coin Problem Bound.
Let a, b be coprime positive integers greater than 1.
1. The equation ax + by = N has non-negative integer solutions for

all integers N > ab − a − b.

2. The equation ax + by = ab − a − b has no non-negative integer
solutions.

定理

Proof

1. Let N > ab − a − b. The general integer solution to ax + by = N
is:

x = x0 + bt, y = y0 − at.

We can choose an integer t such that the y-value falls in the
interval [0, a − 1]. Specifically, since the values of y form an arith-
metic progression with step −a, there exists a unique y such that
0 ≤ y ≤ a − 1. With this specific y, we examine the correspond-
ing x. From the equation ax = N − by:

ax > (ab − a − b)− b(a − 1) = ab − a − b − ab + b = −a.

Thus ax > −a. Since a > 0, this implies x > −1. Since x is an
integer, x ≥ 0. Therefore, a solution exists with both x ≥ 0 and
y ≥ 0.

2. Assume, for the sake of contradiction, that ax + by = ab − a − b
has a solution with x ≥ 0 and y ≥ 0. Rearranging the equation:

ax+ by = ab− a− b =⇒ ax+ a+ by+ b = ab =⇒ a(x+ 1)+ b(y+1) = ab.

Since (a, b) = 1, we must have a | b(y + 1), which implies a |
(y + 1). So y + 1 ≥ a. Similarly, b | a(x + 1) implies b | (x + 1). So
x + 1 ≥ b. Substituting these inequalities back into the derived
equation:

a(x + 1) + b(y + 1) ≥ a(b) + b(a) = 2ab.
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Thus ab ≥ 2ab. Since a, b > 1, ab > 0, so this inequality is impos-
sible. Hence, no non-negative solution exists.

■

Example 9.6. Non-Representable Amounts. Consider stamps of
value 5 and 7. What is the largest postage value that cannot be
formed using only these stamps?
Here a = 5 and b = 7. They are coprime. The largest non-
representable integer is:

N = 5(7)− 5 − 7 = 35 − 12 = 23.

Any integer greater than 23 can be written as 5x + 7y with x, y ≥ 0.
For instance, 24 = 5(2) + 7(2). However, 23 cannot be so expressed.
If 23 = 5x + 7y, possible values for 7y are 0, 7, 14, 21.
· 7y = 0 =⇒ 5x = 23 (No solution).

· 7y = 7 =⇒ 5x = 16 (No solution).

· 7y = 14 =⇒ 5x = 9 (No solution).

· 7y = 21 =⇒ 5x = 2 (No solution).

範例

Example 9.7. Rectangle Dissection. Consider a rectangle parti-
tioned into squares of unequal sizes. Let the smallest two squares
have side lengths x and y. By analyzing the geometry of the spe-
cific spiral dissection described in Example 5 of the source text, one
derives the condition:

9x − 16y = 0.

Determine the smallest integer dimensions for such a dissection.
The general solution is x = 16t, y = 9t. For the smallest positive di-
mensions, let t = 1. Then x = 16, y = 9. These values correspond to
the side lengths of the initiating squares in the dissection.

範例

13

8

5
3

2 1
1

21 = 13 + 8

13 = 8 + 5

Figure 9.2: A Fibonacci squared
rectangle (21 × 13). The side
lengths satisfy the recurrence
Fn = Fn−1 + Fn−2, illustrating
how geometric tiling constraints
impose Diophantine conditions
on square dimensions.
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9.3 Solvability and General Theory

We extend our study of Diophantine equations to linear equations
involving three or more variables. These equations typically take the
form

a1x1 + a2x2 + · · ·+ anxn = c,

where n ≥ 3, the coefficients ai are non-zero integers, and c is an
integer. While the increase in variables introduces more degrees of
freedom, the fundamental solvability criteria remain rooted in the
theory of the greatest common divisor.
The existence of integer solutions is governed by the collective divisi-
bility of the coefficients.

Theorem 9.4. Existence of Solutions for n Variables.
The linear indefinite equation

a1x1 + a2x2 + · · ·+ anxn = c

has integer solutions if and only if (a1, a2, . . . , an) | c.
定理

Necessity.

Let d = (a1, a2, . . . , an). By definition, d | ai for all i = 1, . . . , n. If in-
tegers k1, . . . , kn satisfy the equation, then:

c =
n

∑
i=1

aiki.

Since d divides every term in the sum, d | c.
証明終

Sufficiency.

We proceed by induction on n. For n = 2, the result holds by the-
orem 9.1. Assume the condition is sufficient for equations in n − 1
variables. Consider the equation:

a1x1 + · · ·+ anxn = c.

Let d2 = (a1, a2). The equation can be viewed as

(a1x1 + a2x2) + a3x3 + · · ·+ anxn = c.

Since any integer linear combination of a1 and a2 is a multiple of d2,
we introduce an auxiliary variable y such that a1x1 + a2x2 = d2y.
This auxiliary equation is solvable for any integer y because
(a1, a2) = d2. Substituting this into the original equation yields
a new equation in n − 1 variables:

d2y + a3x3 + · · ·+ anxn = c.
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The greatest common divisor of the coefficients is (d2, a3, . . . , an) =

((a1, a2), a3, . . . , an) = (a1, . . . , an). By hypothesis, since (a1, . . . , an) |
c, this reduced equation has integer solutions for y, x3, . . . , xn. Once
y is determined, we solve a1x1 + a2x2 = d2y for x1 and x2. Thus, the
original equation has integer solutions.

証明終

Corollary 9.3. If (a1, . . . , an) = 1, the equation always possesses in-
teger solutions.

推論

Methods of Solution

We present three distinct approaches for constructing the general
solution.

Method 1: Iterative Reduction

Following the logic of the induction proof, we can reduce an n-
variable equation to a system of 2-variable equations.

Example 9.8. Iterative Reduction. Find the general solution of 9x +

24y − 5z = 1000.
First, observe that (9, 24) = 3. We introduce a parameter t such that:

9x + 24y = 3t.

This allows us to rewrite the original equation as:

3t − 5z = 1000.

We now solve these two equations sequentially.
1. Solve 9x + 24y = 3t: Dividing by 3 gives 3x + 8y = t.

Since (3, 8) = 1, we can express t as a linear combination. A
particular solution for t = 1 is x = −5, y = 2 (since
3(−5) + 8(2) = 1). For a general t, a particular solution is x =

−5t, y = 2t. Using theorem 9.2, the general solution for x, y in
terms of t and an arbitrary integer u is:

x = −5t + 8u, y = 2t − 3u.

(Note: The choice of particular solution is flexible. The source
uses 3x + 8y = t =⇒ x = 3t + 8u, y = −t − 3u, which is also
valid).

2. Solve 3t − 5z = 1000: Since (3, 5) = 1, solutions exist. Particu-
lar solution: 3(1000) − 5(400) = 3000 − 2000 = 1000. So t0 =

1000, z0 = 400. General solution in terms of parameter v:

t = 1000 + 5v, z = 400 + 3v.
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Substituting the expression for t into the solutions for x and y:

x = −5(1000 + 5v) + 8u = −5000 − 25v + 8u

y = 2(1000 + 5v)− 3u = 2000 + 10v − 3u

z = 400 + 3v

Here u, v are arbitrary integers.

範例

Method 2: Coefficient Reduction

Similar to the single-variable trial method, we can isolate variables
with small coefficients to reduce the complexity of the constraints.

Example 9.9. Coefficient Reduction. Find the general solution of
25x − 13y + 7z = 4.
We isolate z, the variable with the coefficient of smallest magnitude
(excluding the sign), and split the right-hand side into a multiple of
7 plus a remainder:

7z = 13y − 25x + 4 = 7(−4x + 2y) + (3x − y + 4),

so
z = −4x + 2y +

3x − y + 4
7

.

Let 3x − y + 4 = 7t1. Then y = 3x + 4 − 7t1. Substitute y back into
the expression for z:

z = −4x+ 2(3x+4− 7t1)+ t1 = −4x+ 6x+ 8− 14t1 + t1 = 2x− 13t1 + 8.

Now x can be chosen arbitrarily. Let x = t2. The general solution is:
x = t2

y = 4 − 7t1 + 3t2

z = 8 − 13t1 + 2t2

where t1, t2 are arbitrary integers.

範例

Method 3: Parametric Construction

If a particular solution is known, one can construct a general solution
using homogeneous generators. Specifically, if x0 is a solution to
∑ aixi = c, and we can find n − 1 linearly independent vectors ηj such
that ∑ ai(ηj)i = 0, then x0 + ∑ tjηj generates solutions.
A simple set of generators can be formed by coupling the last vari-
able xn with each xi (i < n). The vectors ηi where the i-th component
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is an, the n-th component is −ai, and others are 0, satisfy the homo-
geneous equation.

Example 9.10. Parametric Formula. Find the general solution of
2x1 + 3x2 + 5x3 + 7x4 = 19.
By inspection, a particular solution is x1 = 5, x2 = −1, x3 =

1, x4 = 1. (2(5) + 3(−1) + 5(1) + 7(1) = 10 − 3 + 5 +

7 = 19). We construct the general solution by varying x1, x2, x3 in-
dependently with step a4 = 7, and adjusting x4 to compensate.

x1 = 5 + 7t1

x2 = −1 + 7t2

x3 = 1 + 7t3

x4 = 1 − (2t1 + 3t2 + 5t3)

Checking the sum:

2(7t1) + 3(7t2) + 5(7t3) + 7(−2t1 − 3t2 − 5t3) = 0.

This form captures integer solutions generated by this specific basis
of the null space.

範例

9.4 Systems of Indefinite Equations

Many problems, particularly those of historical significance, involve
systems of linear Diophantine equations. These can be solved by
eliminating variables to reduce the system to a single indefinite equa-
tion.

Example 9.11. The Hundred Fowls Problem. A classic problem
from 5th-century China states:
"A rooster is worth 5 coins, a hen 3 coins, and 3 chicks 1 coin. 100

coins buy 100 fowls. How many of each are there?"
Let x, y, z be the number of roosters, hens, and chicks respectively.
The constraints are:x + y + z = 100 (Quantity)

5x + 3y + 1
3 z = 100 (Value)

Multiply the second equation by 3 to clear the fraction:

15x + 9y + z = 300.

We subtract the first equation (x + y + z = 100) from this new equa-
tion to eliminate z:

(15x + 9y + z)− (x + y + z) = 300 − 100 =⇒ 14x + 8y = 200.
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Dividing by 2:
7x + 4y = 100.

This is a standard 2-variable indefinite equation. Isolating y:

4y = 100 − 7x =⇒ y = 25 − 7x
4

= 25 − x − 3x
4

.

For y to be an integer, x must be a multiple of 4. Let x = 4t. Then
y = 25 − 7t. Substituting x and y back into z = 100 − x − y:

z = 100 − 4t − (25 − 7t) = 75 + 3t.

The general integer solution is:

x = 4t, y = 25 − 7t, z = 75 + 3t.

Since the quantities must be non-negative:
4t ≥ 0 =⇒ t ≥ 0

25 − 7t ≥ 0 =⇒ t ≤ 3.57

75 + 3t ≥ 0 =⇒ t ≥ −25

The possible integer values for t are {0, 1, 2, 3}. The solutions
(x, y, z) are:
· t = 0 : (0, 25, 75)

· t = 1 : (4, 18, 78)

· t = 2 : (8, 11, 81)

· t = 3 : (12, 4, 84)

範例

Example 9.12. Egyptian Fraction Decomposition. Express 77
60 as a

sum of three proper irreducible fractions with denominators 4, 3,
and 5.
We set:

77
60

=
x
4
+

y
3
+

z
5

.

Multiplying by 60:
15x + 20y + 12z = 77.

We use Method 2 (Coefficient Reduction). Isolate z:

12z = 77− 15x− 20y =⇒ z =
77 − 15x − 20y

12
= 6− x− y+

5 − 3x − 8y
12

.

We need 12 | (5− 3x − 8y). Let us test small integers. Try x = 3: 5−
9− 8y = −4− 8y. We need 12 | (−4− 8y), or 3 | (−1− 2y). If y = 1,
−1 − 2 = −3 (divisible by 3). So x = 3, y = 1 works. Substitute back



162 gudfit

to find z:

12z = 77 − 15(3)− 20(1) = 77 − 45 − 20 = 12 =⇒ z = 1.

The solution is (3, 1, 1).

77
60

=
3
4
+

1
3
+

1
5

.

範例

Example 9.13. Making Change. Find the general non-negative
integer solution to the equation 6x + 10y + 15z = 31.
Note (6, 10, 15) = 1, so solutions exist. We simplify modulo 5 (since
two coefficients are multiples of 5).

6x + 0 + 0 ≡ 31 (mod 5) =⇒ x ≡ 1 (mod 5).

Let x = 1 + 5t. Since x ≥ 0 and 6x ≤ 31 =⇒ x ≤ 5, possible
values for x are restricted. If x = 1: 6(1) + 10y + 15z = 31 =⇒
10y + 15z = 25 =⇒ 2y + 3z = 5. This simple 2-variable equa-
tion has non-negative solutions (y, z) ∈ {(1, 1)}. (2(1) + 3(1) = 5).
If x = 6: 36 > 31, impossible. Thus the unique non-negative solu-
tion is (1, 1, 1).

範例

Geometric Dissection

We conclude with an application to geometric tiling, where a rectan-
gle is partitioned into squares of unequal integer sides.

Example 9.14. Rectangle Dissection. Consider a rectangle parti-
tioned into 9 squares with side lengths determined by three initial
parameters x, y, z as shown in figure 9.3. The side lengths of the
squares are derived from the geometric adjacency as:

x, y, z, x + y, 2x + y, y − z, y − 2z, y − 3z, 2y − 5z.

By equating the lengths of opposite sides of the composite rectan-
gle, one derives the homogeneous system:3x − 2y + 8z = 0

x − 4z = 0

Substituting x = 4z into the first equation:

3(4z)− 2y + 8z = 0 =⇒ 20z = 2y =⇒ y = 10z.

The general integer solution is (4t, 10t, t). For the smallest positive
solution, we take t = 1, yielding x = 4, y = 10, z = 1. This gener-
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ates a rectangle of size 33 × 32. The side lengths of the component
squares are {4, 10, 1, 14, 18, 9, 8, 7, 15}.

範例

18

14

15

4

10

7

8
9

1

Figure 9.3: Decomposition of a
32 × 33 rectangle into squares.
The squares labelled 4, 10, and
1 correspond to x, y, z.

9.5 Exercises

1. General Solutions of Linear Diophantine Equations. Find the
general integer solution for each of the following equations. If no
solution exists, state why.

(a) 11x − 13y = 8

(b) 6x + 17y = −5

(c) 34x + 109y = 20

(d) 31x − 127y = 53

(e) 54x + 37y = 20

(f) 306x − 360y = 630

2. Constrained Solutions. Find all positive integer solutions (x, y)
such that x < 100 for the equation:

8x − 5y = −200.

3. Logistics Optimisation. A logistics company needs to transport
exactly 46 tons of goods. They have two types of vehicles: trucks
with a 4-ton capacity and vans with a 2.5-ton capacity. Every ve-
hicle used must be fully loaded. Determine the number of trucks
and vans required if the company wants to use the fewest vehicles.

4. Counting Non-Negative Solutions. Let a, b be coprime positive
integers. Prove that the number of non-negative integer solutions
to ax + by = N is either ⌊ N

ab ⌋ or ⌊ N
ab ⌋+ 1.

5. Frobenius Bound for Three Variables. Let a, b, c be pairwise
coprime positive integers. Consider the equation:

bcx + cay + abz = N.

(a) Prove that if N = 2abc − ab − bc − ca, there are no non-
negative integer solutions.

(b) Prove that if N > 2abc − ab − bc − ca, there exists at least one
non-negative integer solution.

6. Solvability of Systems. Determine whether the following equa-
tions possess integer solutions:

(a) 12x + 6y + 9z = 83
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(b) −7x + 28y + 91z − 35t = 161

7. General Solutions for Systems. Find the general integer solution
for:

(a) 25x − 13y + 7z = 4

(b) 39x − 24y + 9z = 78

8. The Generalised Coin Problem. Let a1, . . . , an be pairwise co-
prime positive integers. Let A = ∏ ai and Ai = A/ai. Consider the
linear form L = ∑ Aixi with xi ≥ 0. Prove that the largest integer
not representable in this form is:

(n − 1)A −
n

∑
i=1

Ai.

9. Egyptian Fraction Decomposition. Express the fraction 181
180 as a

sum of three proper irreducible fractions with pairwise coprime
denominators.

10. The Monkey and the Coconuts. Five sailors and a monkey are
stranded on an island with a pile of coconuts. During the night,
the first sailor wakes up, divides the pile into 5 equal shares, finds
1 coconut left over, gives it to the monkey, hides his share, and re-
combines the rest. The second sailor wakes up and does the same
(divides remaining into 5, 1 left for monkey, hides share). This
continues for the third, fourth, and fifth sailors. In the morning,
the remaining pile is divided into 5 equal shares with no coconuts
left over. Find the smallest possible number of original coconuts
and the total number each sailor received.



10
Pythagorean Triples

Following our investigation of linear indefinite equations, we now
turn our attention to the quadratic case. The most fundamental of
these is the homogeneous equation

x2 + y2 = z2,

which governs the side lengths of right-angled triangles. Historically,
integer solutions to this equation have been studied since antiquity.
In this chapter, we derive a complete parameterisation of the integer
solutions to this equation and extend our methods to related non-
linear Diophantine problems.

10.1 The Structure of Solutions

We seek all integer triples (x, y, z) satisfying the Pythagorean equa-
tion. We may assume without loss of generality that x, y, z are posi-
tive.

Definition 10.1. Pythagorean Triples.
A set of positive integers x, y, z satisfying

x2 + y2 = z2

is called a Pythagorean triple. If (x, y, z) = 1, the triple is termed prim-
itive.

定義

We first observe that it suffices to determine the primitive triples. If
(x, y) = d, then d2 | (x2 + y2), implying d2 | z2 and thus d | z.
Writing x = dx1, y = dy1, z = dz1, we obtain the reduced equation
x2

1 + y2
1 = z2

1 with (x1, y1) = 1. Consequently, any Pythagorean triple
is a scalar multiple of a primitive one.
For a primitive triple (x, y, z), the integers x, y, z are pairwise co-
prime. It is impossible for both x and y to be even, as (x, y) = 1.
Suppose both x and y are odd. Then x2 ≡ 1 (mod 4) and y2 ≡ 1
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(mod 4), yielding:

z2 = x2 + y2 ≡ 1 + 1 ≡ 2 (mod 4).

However, a perfect square must be congruent to 0 or 1 modulo 4.
This contradiction implies that x and y must have opposite parity.
Without loss of generality, we assume x is even and y is odd. Conse-
quently, z must be odd.
To classify these solutions, we require a preliminary lemma regarding
the factorization of squares.

Lemma 10.1. Square Product of Coprime Integers.
Let u, v, w be positive integers such that uv = w2 and (u, v) = 1. Then
u and v are both perfect squares. That is, there exist integers a, b such
that

u = a2, v = b2, and w = ab.

引理

Proof

Consider the prime factorisation of u and v:

u = ∏ pei
i , v = ∏ q

f j
j .

Since (u, v) = 1, the sets of primes {pi} and {qj} are disjoint. The
equation uv = w2 implies

∏ pei
i ∏ q

f j
j = w2.

By the Fundamental Theorem of Arithmetic, the exponent of every
prime factor in w2 must be even. Since the prime sets are disjoint,
each ei and f j must be even. Let ei = 2ki and f j = 2mj. Then

u =
(
∏ pki

i

)2
and v =

(
∏ q

mj
j

)2
.

Thus u and v are perfect squares.
■

We now present the classical parameterisation of primitive Pythagorean
triples.

Theorem 10.1. Classification of Primitive Triples.
All primitive Pythagorean triples x, y, z with x even are given by the
formulae:

x = 2ab, y = a2 − b2, z = a2 + b2,

where a, b are integers satisfying:
1. a > b > 0,

2. (a, b) = 1,
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3. a and b have opposite parity (one is even, the other odd).
定理

Proof

Let (x, y, z) be a primitive triple with x even. Then y and z are
odd, so z + y and z − y are both even integers. We can rewrite the
Pythagorean equation as:

x2 = z2 − y2 = (z + y)(z − y).

Dividing by 4, we obtain:( x
2

)2
=

(
z + y

2

)(
z − y

2

)
.

Let u = z+y
2 and v = z−y

2 . Note that u and v are integers. Let d =

(u, v). Then d divides their sum u + v = z and their difference u −
v = y. Since (y, z) = 1, we must have d = 1. Thus uv = (x/2)2 with
(u, v) = 1. By lemma 10.1, u and v are perfect squares. We write

z + y
2

= a2,
z − y

2
= b2,

for some coprime positive integers a, b. Solving for z and y:

z = a2 + b2, y = a2 − b2.

Since y > 0, we require a > b. Also, x/2 = ab, so x = 2ab. It
remains to satisfy the parity condition. Since z = a2 + b2 is odd, a2

and b2 must have opposite parity, which implies a and b have oppo-
site parity. Conversely, substituting these expressions into x2 + y2

verifies the equation. One can also check that these conditions
ensure (x, y, z) = 1.

■

X

Y

(−1, 0)

(
a2−b2

a2+b2 , 2ab
a2+b2

)

slope = b
a

Figure 10.1: The line from
(−1, 0) with slope b/a in-
tersects the unit circle at the
rational point corresponding to
the primitive triple.

This result extends naturally to the rational numbers, providing a
correspondence between Pythagorean triples and rational points on
the unit circle.

Corollary 10.1. Rational Points on the Unit Circle. Every rational point
(X, Y) on the unit circle X2 + Y2 = 1 (excluding (−1, 0)) can be ex-
pressed as(

a2 − b2

a2 + b2 ,
2ab

a2 + b2

)
or

(
2ab

a2 + b2 ,
a2 − b2

a2 + b2

)
,

for some coprime integers a, b.
推論
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Proof

Let X, Y ∈ Q satisfy X2 + Y2 = 1. We restrict our attention to the
first quadrant (X, Y > 0). Write X = q/p and Y = r/p with a com-
mon denominator p. The condition becomes q2 + r2 = p2. This is an
integer Pythagorean triple. Applying theorem 10.1, we substitute the
parametric forms of q, r, p to obtain the result. Symmetry handles
the other quadrants.

■

Properties and Applications

We illustrate the utility of the classification theorem with several
examples relating to divisibility and geometric constraints.

Example 10.1. Divisibility by 60. Let x, y, z be a primitive
Pythagorean triple. Prove that 60 | xyz.
We use the parameterisation x = 2ab, y = a2 − b2, z = a2 + b2. The
product is xyz = 2ab(a4 − b4). We analyse the prime factors of 60: 3,
4, and 5.

Divisibility by 4 Since one of a, b is even, 2ab is divisible by 4.
Thus 4 | xyz.

Divisibility by 3 If 3 | a or 3 | b, then 3 | xyz. If neither is divisible
by 3, then a2 ≡ 1 (mod 3) and b2 ≡ 1 (mod 3). Thus a2 − b2 ≡ 0
(mod 3). In all cases, 3 | xyz.

Divisibility by 5 If 5 | a or 5 | b, then 5 | xyz. If not, by Fermat’s
Little Theorem, a4 ≡ 1 (mod 5) and b4 ≡ 1 (mod 5). Thus a4 −
b4 ≡ 0 (mod 5).

Since 3, 4, and 5 are pairwise coprime, their product 60 divides xyz.

範例

Example 10.2. Inradius of Pythagorean Triangles. Determine the
primitive Pythagorean triples with an inradius of r = 3.
The inradius r of a right-angled triangle with legs x, y and hy-
potenuse z is given by r = x+y−z

2 . Substituting the parametric
forms:

r =
2ab + (a2 − b2)− (a2 + b2)

2
=

2ab − 2b2

2
= b(a − b).

We are given b(a − b) = 3. Since b is an integer, b must be a factor
of 3.
1. b = 1: Then a − 1 = 3 =⇒ a = 4. Check conditions: (4, 1) = 1

and opposite parity. Valid. Triple: x = 2(4)(1) = 8, y = 16 − 1 =

15, z = 16 + 1 = 17.
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2. b = 3: Then a − 3 = 1 =⇒ a = 4. Check conditions: (4, 3) = 1
and opposite parity. Valid. Triple: x = 2(4)(3) = 24, y = 16 −
9 = 7, z = 16 + 9 = 25.

The solutions are (8, 15, 17) and (24, 7, 25).

範例

Example 10.3. Fixed Hypotenuse. Find all Pythagorean triples
(primitive and non-primitive) with hypotenuse z = 65.
We solve k(a2 + b2) = 65. The divisors of 65 are 1, 5, 13, 65.
· k = 1 =⇒ a2 + b2 = 65. Solutions: 82 + 12 and 72 + 42. For (8, 1):

x = 16, y = 63, z = 65. (Primitive) For (7, 4): x = 56, y = 33, z =

65. (Primitive)

· k = 5 =⇒ a2 + b2 = 13. Solution: 32 + 22. For (3, 2) scaled by 5:
x = 5(12) = 60, y = 5(5) = 25, z = 65.

· k = 13 =⇒ a2 + b2 = 5. Solution: 22 + 12. For (2, 1) scaled by 13:
x = 13(4) = 52, y = 13(3) = 39, z = 65.

The set of solutions is {(16, 63, 65), (33, 56, 65), (25, 60, 65), (39, 52, 65)}.

範例

Example 10.4. Fixed Perimeter. Find the primitive Pythagorean
triple with perimeter P = 40.
The perimeter is P = x + y + z = 2ab + a2 − b2 + a2 + b2 = 2a2 +

2ab = 2a(a + b). We require 2a(a + b) = 40 =⇒ a(a + b) = 20.
Since a < a + b, a2 < 20, so a ∈ {1, 2, 3, 4}. We test values for a:
· If a = 1, 1 + b = 20 =⇒ b = 19. Both odd (invalid).

· If a = 2, 2 + b = 10 =⇒ b = 8. Not coprime (invalid).

· If a = 3, 3(3 + b) = 20 has no integer solution.

· If a = 4, 4 + b = 5 =⇒ b = 1. Even/odd, coprime. Valid.
This yields the triple x = 2(4)(1) = 8, y = 15, z = 17.

範例

Example 10.5. Leg and Hypotenuse Difference. Prove that if
the difference between the hypotenuse and a leg of a primitive
Pythagorean triangle is 1, the sides are of the form 2b + 1, 2b2 +

2b, 2b2 + 2b + 1.
Note that z − y = 2b2 cannot equal 1, so the leg must be the even
one. Let z − x = 1. Since z is odd (in a primitive triple), x must be
even. Using the parameterisation:

z − x = (a2 + b2)− 2ab = (a − b)2 = 1.

Thus a − b = 1, or a = b + 1. Substituting a = b + 1 into the formu-
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lae:
x = 2(b + 1)b = 2b2 + 2b

y = (b + 1)2 − b2 = 2b + 1

z = (b + 1)2 + b2 = 2b2 + 2b + 1

範例

Generalised Quadratic Equations

The method of descent and parameterisation can be applied to
higher-degree variations of the Pythagorean equation.

Proposition 10.1. Solutions to x2 + y2 = z4.
All primitive positive integer solutions to x2 + y2 = z4 with x even
are given by:

x = 4ab(a2 − b2), y = |a4 + b4 − 6a2b2|, z = a2 + b2,

where a, b are coprime integers of opposite parity.
命題

Proof

If (x, y) = 1, then (x, y, z2) is a primitive Pythagorean triple. Thus:

x = 2rs, y = r2 − s2, z2 = r2 + s2,

for coprime r, s of opposite parity. The equation r2 + s2 = z2 indi-
cates that (r, s, z) is itself a Pythagorean triple (ignoring parity of
r, s for a moment). However, since r, s are coprime and one is even,
(r, s, z) is primitive. We consider two cases based on parity:

s is even. We can write s = 2ab, r = a2 − b2 (since r is odd). Then
x = 2(a2 − b2)(2ab) = 4ab(a2 − b2). And y = (a2 − b2)2 −
(2ab)2 = a4 − 2a2b2 + b4 − 4a2b2 = a4 + b4 − 6a2b2.

r is even. We write r = 2ab, s = a2 − b2. Then y = (2ab)2 − (a2 −
b2)2 = −(a4 + b4 − 6a2b2).

Combining these yields the magnitude form for y.
■

Example 10.6. Sum of Sides is a Square. Determine the form of
primitive triples where x + y + z is a perfect square.
Using the parameterisation x = 2ab, y = a2 − b2, z = a2 + b2:

x + y + z = 2ab + 2a2 = 2a(a + b).

Since (a, b) = 1, we have (a, a + b) = 1. For 2a(a + b) to be a square,
the factors must complement each other to form squares. Because
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a and b have opposite parity, a + b is odd, so (2a, a + b) = 1. Thus
both factors must be squares. Hence

2a = (2m)2 and a + b = n2,

with n odd. This gives a = 2m2 and b = n2 − 2m2 (with n2 > 2m2).
There are no solutions with a odd because then 2a cannot be a
square.

範例

Finally, we consider a weighted quadratic form involving an odd
prime p.

Theorem 10.2. The Equation x2 + py2 = z2.
Let p be an odd prime. The positive integer solutions to x2 + py2 =

z2 with (x, y) = 1 fall into two classes:
1. x = 1

2 |a2 − pb2|, y = ab, z = 1
2 (a2 + pb2), where a, b are co-

prime odd integers.

2. x = |a2 − pb2|, y = 2ab, z = a2 + pb2, where a, b are coprime
integers of opposite parity.

定理

Proof

The equation implies z2 − x2 = py2, so (z − x)(z + x) = py2. Since
p is prime, p | (z − x) or p | (z + x). Replacing x by −x if neces-
sary (absorbed by the absolute values), we may assume p | (z − x)
and write z = x + pk. Then y2 = k(2x + pk). Because (x, y) = 1, we
cannot have p | x (otherwise p | z and hence p | y). Thus (x, k) = 1
and

(k, 2x + pk) = (k, 2x) ∈ {1, 2}.

If (k, 2x) = 1, then k is odd and the two factors are coprime squares.
Write k = b2 and 2x + pk = a2 with (a, b) = 1. Then a, b are odd and

x =
1
2
|a2 − pb2|, y = ab, z =

1
2
(a2 + pb2).

If (k, 2x) = 2, write k = 2b2 and 2x + pk = 2a2 with (a, b) = 1. Then

x = |a2 − pb2|, y = 2ab, z = a2 + pb2.

Since x is odd, a and b must have opposite parity.
■
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10.2 Fermat’s Last Theorem and Infinite Descent

In 1637, Pierre de Fermat famously noted in the margin of his copy
of Diophantus’ Arithmetica that the equation xn + yn = zn possesses
no non-zero integer solutions for n ≥ 3. While his "truly marvelous
proof" for the general case remains a historical mystery, Fermat did The theorem was not fully proven until

1994 by Andrew Wilesleave a rigorous proof for the case n = 4.
The method he developed, known as the Method of Infinite De-
scent, is a powerful tool in number theory. The logical foundation is
the well-ordering principle introduced in Chapter 0 of the positive
integers. To show that a Diophantine equation has no solutions, we
assume the existence of a solution and construct a strictly smaller
positive integer solution. Repeating this process generates an infinite
sequence of decreasing positive integers, which is impossible.

The Case n = 4

We begin by establishing Fermat’s Last Theorem for the exponent
4. In fact, we prove a stronger result: the sum of two fourth powers
cannot be a perfect square.

Theorem 10.3. Fermat’s Last Theorem for n = 4.
The Diophantine equation

x4 + y4 = z2

has no solutions in positive integers.
定理

Proof

Suppose, for the sake of contradiction, that there exists a positive
integer solution. Let u be the smallest positive integer such that
x4 + y4 = u2 for some positive integers x, y. We may assume
(x, y) = 1; otherwise, we could divide by the common factor to
obtain a smaller solution.
The equation can be written as (x2)2 + (y2)2 = u2. Thus, (x2, y2, u)
is a primitive Pythagorean triple. Since x2 and y2 cannot both be
odd (as their sum u2 ≡ 2 (mod 4) is impossible for a square), one
is even and one is odd. Without loss of generality, let x2 be even. By
theorem 10.1, there exist coprime integers a, b of opposite parity such
that:

x2 = 2ab, y2 = a2 − b2, u = a2 + b2.

Consider the equation y2 = a2 − b2, or y2 + b2 = a2. Since (a, b) = 1,
this forms a primitive Pythagorean triple (y, b, a). Since y is odd
(from the first triple), b must be even and a must be odd. We apply
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the parameterisation of Pythagorean triples again to y2 + b2 = a2.
There exist coprime integers p, q of opposite parity such that:

b = 2pq, y = p2 − q2, a = p2 + q2.

Substituting these back into the expression for x2:

x2 = 2ab = 2(p2 + q2)(2pq) = 4pq(p2 + q2).

Since (p, q) = 1, the terms p, q, and p2 + q2 are pairwise coprime.
For their product to be a perfect square (x2/4), each term must be a
perfect square. Let

p = r2, q = s2, p2 + q2 = t2.

Substituting the first two into the third yields:

(r2)2 + (s2)2 = t2 =⇒ r4 + s4 = t2.

Thus, (r, s, t) is a positive integer solution to the original equation.
We observe the size of t:

t2 = p2 + q2 = a ≤ a2 + b2 = u.

Since u is a sum of squares of positive integers, u > a, so t2 < u,
which implies t <

√
u < u. This contradicts the minimality of u.

Hence, no such solution exists.
■

Assume minimal
x4 + y4 = u2

(x2, y2, u)
Pythagorean

(y, b, a)
Pythagorean

x2 = 4pq(p2 + q2)
Factorisation

Found solution
r4 + s4 = t2

with t < u

Contradiction

Figure 10.2: The descent pro-
cess for x4 + y4 = u2.

Corollary 10.2. The equation x4 + y4 = z4 has no positive integer so-
lutions.

推論

Proof

If x4 + y4 = z4, then x4 + y4 = (z2)2. This would provide a solution
to x4 + y4 = w2 with w = z2, which is impossible by theorem 10.3.

■

The Equation x4 − y4 = z2

The method of infinite descent can be applied to variations of the
quartic equation.

Theorem 10.4. Non-existence for Difference of Fourth Powers.
The indefinite equation

x4 − y4 = z2

has no solutions in positive integers with (x, y) = 1.
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定理

Proof

We proceed by infinite descent. Let x be the smallest positive inte-
ger in any such solution. Since (x, y) = 1, x and y cannot both be
even. If they are both odd, x4 − y4 ≡ 1 − 1 ≡ 0 (mod 2), while z2

is divisible by a high power of 2, leading to parity constraints. More
directly, we rewrite the equation as:

(y2)2 + z2 = (x2)2.

Thus (y2, z, x2) is a primitive Pythagorean triple. Since (x, y) = 1, x2

is odd, so y2 and z have opposite parity.

y is odd. Then z is even. By theorem 10.1, there exist coprime a, b
(a > b > 0) such that:

y2 = a2 − b2, z = 2ab, x2 = a2 + b2.

Multiplying the expressions for x2 and y2:

x2y2 = (a2 + b2)(a2 − b2) = a4 − b4.

This yields a4 − b4 = (xy)2. This is an instance of the original
equation with solution (a, b, xy). However, x2 = a2 + b2 > a2, so
x > a. This contradicts the minimality of x.

y is even. Then z is odd. By the structure of Pythagorean triples:

z = a2 − b2, y2 = 2ab, x2 = a2 + b2.

Since y2 = 2ab and (a, b) = 1, one of a, b is even. If a is odd and
b is even, x2 = a2 + b2 ≡ 1 (mod 4). This is consistent. If a is
even and b is odd, x2 = a2 + b2 ≡ 1 (mod 4). However, looking
at y2 = 2ab, let a = 2u2 and b = v2 (or vice versa). Then x2 =

4u4 + v4. Thus (v2, 2u2, x) is a primitive Pythagorean triple:

v2 = r2 − s2, 2u2 = 2rs, x = r2 + s2.

From u2 = rs with (r, s) = 1, we have r = m2, s = n2. Then
v2 = m4 − n4. This is m4 − n4 = v2, another instance of the origi-
nal equation. We check the size: m =

√
r ≤

√
u2 = u <

√
2u2 ≤√

a < x. Thus m < x, contradicting the minimality of x.

■

This theorem allows us to resolve the area problem for right-angled
triangles.
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Example 10.7. Fermat’s Right Triangle Theorem. Prove that the
area of a right-angled triangle with integer sides cannot be a perfect
square.
Let the sides be u, v, w with u2 + v2 = w2. The area is A = 1

2 uv.
Assume A = k2 for some integer k. Then uv = 2k2. We may assume
(u, v) = 1 (otherwise divide out the common factor), so (u, v, w) is
primitive and w is odd. Any prime divisor of w cannot divide k, so
(w, 2k) = 1. We have a system:

u2 + v2 = w2, 2uv = 4k2.

Adding and subtracting these equations:

(u + v)2 = w2 + 4k2, (u − v)2 = w2 − 4k2.

Multiplying them:

(u2 − v2)2 = (u + v)2(u − v)2 = w4 − 16k4.

Let X = w, Y = 2k, Z = |u2 − v2|. Then X4 − Y4 = Z2. By theo-
rem 10.4, this equation has no integer solutions, so the area cannot
be a square.

範例

Descent by Divisibility

Infinite descent does not always require the Pythagorean structure.
It often arises from divisibility properties, particularly when a prime
factor must divide variables to infinite order.

Example 10.8. A Cubic Equation. Prove that x3 = 2y3 + 4z3 has no
positive integer solutions.
Assume a solution (x0, y0, z0) exists. The equation implies x3

0 is
even, so x0 is even. Let x0 = 2x1. Substituting: 8x3

1 = 2y3
0 + 4z3

0.
Dividing by 2:

4x3
1 = y3

0 + 2z3
0.

This implies y3
0 is even, so y0 = 2y1. Substituting: 4x3

1 = 8y3
1 + 2z3

0.
Dividing by 2:

2x3
1 = 4y3

1 + z3
0.

This implies z3
0 is even, so z0 = 2z1. Substituting: 2x3

1 = 4y3
1 + 8z3

1.
Dividing by 2:

x3
1 = 2y3

1 + 4z3
1.

Thus (x1, y1, z1) is a solution with x1 < x0. This process can be re-
peated indefinitely (xn = x0/2n), which is impossible for integers.

範例
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We present a geometric application of this divisibility argument.
Example 10.9. Diophantine Constraints on Coordinates. Prove that
the equation x2 + y2 = 3z2 has no non-zero integer solutions.
Assume a minimal positive solution (x, y, z). Consider the equation
modulo 3.

x2 + y2 ≡ 3z2 ≡ 0 (mod 3).

The quadratic residues modulo 3 are 0 and 1. If x2 ≡ 1, then x2 +

y2 ≡ 1 + 0 or 1 + 1, neither of which is 0 (mod 3). Thus, we must
have x2 ≡ 0 and y2 ≡ 0. This implies 3 | x and 3 | y. Let x = 3x1

and y = 3y1. Substituting back:

(3x1)
2 + (3y1)

2 = 3z2 =⇒ 9x2
1 + 9y2

1 = 3z2 =⇒ 3(x2
1 + y2

1) = z2.

This implies 3 | z2, so 3 | z. Let z = 3z1.

3(x2
1 + y2

1) = 9z2
1 =⇒ x2

1 + y2
1 = 3z2

1.

We have constructed a solution (x1, y1, z1) where z1 = z/3 < z. This
contradicts the minimality of the original solution.

範例

Constructing Solutions via Reverse Descent

While infinite descent is typically used to prove non-existence, the
logic can be reversed to find solutions. If we can reduce a complex
equation to a simpler form (descent), we can sometimes solve the
simple form and retrace our steps (ascent) to generate large solutions.
We examine the equation:

z2 + 2(2xy)2 = (x2 − y2 + 2xy)2.

Let X = x4 + y4 − 6x2y2 and Y = 4x3y − 4xy3. The equation is
equivalent to X + Y = z2, and one checks that X2 + Y2 = (x2 + y2)4.
Let s = x2 + y2. Let t = X − Y. The system becomes:X + Y = z2

X2 + Y2 = s4

Substituting X = 1
2 (z

2 + t) and Y = 1
2 (z

2 − t) into the second equation
yields:

1
4
((z2 + t)2 +(z2 − t)2) = s4 =⇒ 1

2
(2z4 + 2t2) = s4 =⇒ 2s4 − z4 = t2.

This is a reduced equation of the form 2s4 − z4 = t2.
From the original equation, (z, 2xy, x2 − y2 + 2xy) satisfies

U2 + 2V2 = W2.
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For primitive solutions, we may write

U = |a2 − 2b2|, V = 2ab, W = a2 + 2b2,

where a, b are coprime positive integers and a is odd. Hence

z = |a2 − 2b2|, 2xy = 2ab, x2 − y2 + 2xy = a2 + 2b2.

From 2xy = 2ab we obtain x
a = b

y . Let the reduced fraction be d
c , and

set
x = Kd, a = Kc, b = Ld, y = Lc,

with integers K, L ̸= 0. Substituting into x2 − y2 + 2xy = a2 + 2b2

gives

(c2 + 2d2)

(
L
K

)2
− 2cd

(
L
K

)
+ (c2 − d2) = 0.

Since L
K is rational, the discriminant must be a square:

∆ = 4c2d2 − 4(c2 + 2d2)(c2 − d2) = 4(2d4 − c4) = (2e)2,

so
2d4 − c4 = e2.

Then
L
K

=
cd ± e

c2 + 2d2 .

The smallest solution to 2d4 − c4 = e2 is c = d = e = 1, which yields
L
K = 2

3 . Taking L = 2, K = 3 gives

x = 3, y = 2, z = 1,

and indeed 12 + 2(12)2 = 172. For the next solution, note that
2(13)4 − 1 = 2392, so c = 1, d = 13, e = 239. Then

L
K

= −2
3

or
84

113
.

Taking L = 84 and K = 113 yields

x = 1469, y = 84, z = 2372159,

which also satisfies the equation.

Example 10.10. Solving x4 − 2y4 = 1. Prove that x4 − 2y4 = 1 has
no positive integer solutions.

範例

Proof

Assume a positive integer solution exists. Then x is odd, so x2 ± 1
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are even. Write
x2 − 1 = 2u, x2 + 1 = 2v,

so uv = y4 and (u, v) = 1 because (x2 − 1, x2 + 1) = 2. Since
uv is a fourth power and u and v are coprime, each of u and v is
a fourth power. Indeed, in the prime factorization of u and v, the
exponents add to multiples of 4 and the prime sets are disjoint, so
each exponent is a multiple of 4. Thus

u = a4, v = b4

for some positive integers a, b. Then

x2 − 1 = 2a4, x2 + 1 = 2b4,

so subtracting gives
b4 − a4 = 1.

Factor:
(b2 − a2)(b2 + a2) = 1.

The only positive integer factorization of 1 is 1 · 1, which forces b2 −
a2 = 1 and b2 + a2 = 1, hence a = 0, a contradiction to positivity.
Therefore no positive integer solutions exist.

■

10.3 Exponential Diophantine Equations

Following our investigation of the quadratic Pythagorean equation
x2 + y2 = z2, we naturally extend our inquiry to higher powers. The
general exponential equation

xn + yn = zn, n ≥ 3

stands as one of the most famous problems in the history of math-
ematics. Known as Fermat’s Last Theorem, its study has driven the
development of algebraic number theory for over three centuries. In
this chapter, we explore the solvability of this and related exponen-
tial Diophantine equations, establishing criteria for the existence of
solutions and methods for their construction.

Fermat’s Last Theorem

The study of the equation xn + yn = zn traditionally begins with a
reduction of the exponent.

Claim 10.1. Reduction to Prime Exponents. If the equation xn + yn =

zn has no positive integer solutions for n = 4 and for all odd primes
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p, then it has no positive integer solutions for any integer n ≥ 3.
主張

Proof

Any integer n ≥ 3 is either divisible by 4 or by an odd prime p. If
n = kr, the equation can be rewritten as:

(xk)r + (yk)r = (zk)r.

If n is a multiple of 4, we set r = 4. As established in the previous
chapter (Fermat’s Last Theorem for n = 4), the case r = 4 has no
solutions, implying the general case has no solutions. If n is not
divisible by 4, it possesses an odd prime factor p. Setting r = p, if
the equation Xp + Yp = Zp has no solutions, then neither does the
original equation.

■

Historically, proofs were attempted prime by prime. Euler (1770) pro-
vided a proof for p = 3, though it required later refinement. The case
p = 5 was settled independently by Legendre and Dirichlet (1825),
with Lamé (1839) resolving p = 7. A significant advance occurred
in 1847 when Kummer proved the theorem for all "regular" primes,
covering all primes less than 100 except 37, 59, and 67. Kummer later
resolved the cases for 59 and 67 in 1857.
The bounds on n were pushed progressively higher—Mirimanoff
(p = 37, 1892), Wagstaff (p < 125, 000, 1976), and Rosser (n <

41, 000, 000, 1985). The topological nature of the solution space was
clarified by Faltings (1983), who proved that for n ≥ 3, the equation
has at most finitely many primitive solutions.
The complete resolution was finally announced by Andrew Wiles
in 1993 at the Newton Institute in Cambridge. After correcting a
subtle flaw with his student Richard Taylor, the proof was published
in 1995, establishing that xn + yn = zn has no solution in positive
integers for n ≥ 3.

Solvable Exponential Equations

While the equation xn + yn = zn permits no solutions, relaxing the
constraints on the exponents yields rich families of solutions. We
consider equations of the form xn + yn = zm.

Theorem 10.5. Existence of Solutions for Coprime Exponents.
Let n, m be coprime positive integers. The Diophantine equation

xn + yn = zm

possesses at least one family of positive integer solutions.
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定理

Proof

We construct a solution using the method of common bases. Let
x = (ac)u and y = (bc)u, where a, b, c, u are positive integers to be
determined. Substituting these into the equation:

(ac)nu + (bc)nu = cnu(anu + bnu) = zm.

We set z = cv for some integer v. The equation becomes:

cnu(anu + bnu) = cmv.

We impose the condition anu + bnu = c. Then the left-hand side be-
comes cnu · c = cnu+1. We require cnu+1 = cmv, which implies:

mv − nu = 1.

Since (m, n) = 1, the linear Diophantine equation mv − nu = 1
has positive integer solutions for u and v (refer to the theory of the
GCD from previous chapters). Once u is determined, we choose
arbitrary positive integers a, b, set c = anu + bnu, and derive x, y, z
accordingly.

■

This theorem allows us to generate solutions for exponents that are
close in value.

Corollary 10.3. The indeterminate equations xn + yn = zn+1 and xn +

yn = zn−1 (for n > 1) always possess positive integer solutions.
推論

Example 10.11. Parametrising xn + yn = zn+1. We apply the con-
struction from theorem 10.5 with m = n + 1. The condition on the
exponents is

(n + 1)v − nu = 1.

Taking u = n2 and v = n2 − n + 1 satisfies this, since

(n + 1)(n2 − n + 1)− n(n2) = n3 + 1 − n3 = 1.

Let a, b be any positive integers and set

c = an3
+ bn3

, x = an2
cn2

, y = bn2
cn2

, z = c n2−n+1.

Then

xn + yn = an3
cn3

+ bn3
cn3

= (an3
+ bn3

)cn3
= cn3+1.

Also,

zn+1 =
(

c n2−n+1
)n+1

= c(n
2−n+1)(n+1) = cn3+1.
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Hence this provides a family of positive integer solutions.

範例

n

m

n = m
No Solutions (FLT)

m = n + 1

Solvability Space

Figure 10.3: The line m = n rep-
resents Fermat’s Last Theorem
(no solutions). The adjacent
diagonals m = n ± 1 permit
infinite families of solutions.

Inductive Constructions

Mathematical induction can be utilized to extend solutions from
small exponents to arbitrary ones.

Example 10.12. Sums of Squares as Powers. Prove that the equa-
tion x2 + y2 = zn has positive integer solutions for all n ∈ Z+.

範例

Base Cases.

For n = 1, 32 + 42 = 25 = 251. For n = 2, 32 + 42 = 52.
証明終

Inductive Step.

Assume there exist integers x0, y0, z0 such that x2
0 + y2

0 = zk
0. We

construct a solution for n = k + 2. Let x1 = x0z0, y1 = y0z0, and
z1 = z0. Substituting these into the sum of squares:

x2
1 + y2

1 = (x0z0)
2 + (y0z0)

2 = z2
0(x2

0 + y2
0).

Using the inductive hypothesis:

z2
0(z

k
0) = zk+2

0 = zk+2
1 .

Thus, the existence of a solution for k implies existence for k + 2.
Since solutions exist for n = 1, 2, they exist for all positive integers
n.

証明終

Solutions with Prime Constraints

When exponents are variables or results are constrained to be prime,
we rely on congruences and parity arguments.

Example 10.13. Variable Exponents with Prime Sum. Find all solu-
tions in primes x, y, z to the equation xy + yx = z.

範例

Solution

Since z is prime, x and y cannot both be odd; otherwise xy + yx is
even and greater than 2. Thus one of x, y is even. Because x and y
are primes, this forces x = 2 or y = 2. Without loss of generality, let
x = 2 and y be an odd prime.
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If y = 2, then z = 22 + 22 = 8 is not prime. If y = 3, then z = 23 +

32 = 17 is prime. Now assume y ≥ 5 is an odd prime. Then

2y + y2 = (2y + 1)+ (y2 − 1) = 3(2y−1 − 2y−2 + · · ·+1)+ (y− 1)(y+ 1).

Since y ̸= 3, the product (y − 1)(y + 1) is divisible by 3, and so is
the alternating sum. Hence 3 | (2y + y2), and z cannot be prime.
Therefore y = 3 is the only possibility.
Thus the only prime solutions are (x, y, z) = (2, 3, 17) and (3, 2, 17).

■

Modular Constraints and Diophantine Systems

For equations involving fixed constants and powers, modulo arith-
metic often restricts the possible exponents, reducing the problem to
a finite set of cases.

Example 10.14. The Equation x2 + 615 = 2y. Find all positive inte-
ger solutions to x2 + 615 = 2y.

範例

Solution

We analyze the equation modulo 5. Powers of 2 modulo 5 follow
the cycle: 21 ≡ 2, 22 ≡ 4, 23 ≡ 3, 24 ≡ 1. The term 615 is a mul-
tiple of 5, so x2 ≡ 2y (mod 5). Quadratic residues modulo 5 are
02 ≡ 0, 12 ≡ 1, 22 ≡ 4, 32 ≡ 4, 42 ≡ 1. Thus x2 ∈ {0, 1, 4} (mod 5).
Comparing this with the cycle of 2y:

• If y ≡ 1 (mod 4), 2y ≡ 2 (Not a residue).

• If y ≡ 3 (mod 4), 2y ≡ 3 (Not a residue).

Therefore, y must be even. Let y = 2z. The equation becomes x2 +

615 = (2z)2, or:

22z − x2 = 615 =⇒ (2z − x)(2z + x) = 615.

We factor 615 = 3 × 5 × 41. We must find factors u, v such that uv =

615 and v > u. Then 2z + x = v and 2z − x = u. Adding the equa-
tions yields 2z+1 = u + v. Possible pairs (u, v):

1. (1, 615) : u + v = 616. 2z+1 = 616. No integer solution (512 <

616 < 1024).

2. (3, 205) : u + v = 208. 2z+1 = 208. No integer solution (128 <

208 < 256).

3. (5, 123) : u + v = 128 = 27. Thus z + 1 = 7 =⇒ z = 6. If z = 6,
26 − x = 5 =⇒ 64 − x = 5 =⇒ x = 59. Check: 592 + 615 =

3481 + 615 = 4096 = 212. This is a valid solution.
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4. (15, 41) : u + v = 56. No integer solution (32 < 56 < 64).

The unique solution is x = 59, y = 12.
■

We conclude with two additional examples illustrating the applica-
tion of these techniques to similar Diophantine problems.

Example 10.15. Constraint by Modulo 3. Prove that the equation
x2 + 5 = 3y has only one positive integer solution.

範例

Proof

We consider the equation modulo 3 and modulo 4. Modulo 3:

x2 + 2 ≡ 0 (mod 3) =⇒ x2 ≡ 1 (mod 3).

This is consistent for any x not divisible by 3. Modulo 4:

x2 + 1 ≡ 3y ≡ (−1)y (mod 4).

If y is odd, x2 + 1 ≡ −1 ≡ 3 (mod 4), which implies x2 ≡ 2
(mod 4). This is impossible for any integer square. Thus y must be
even. Let y = 2k. Rearranging the equation:

5 = 32k − x2 = (3k − x)(3k + x).

Since 5 is prime, the only factors are 1 and 5.3k − x = 1

3k + x = 5

Adding the equations: 2 · 3k = 6 =⇒ 3k = 3 =⇒ k = 1. Substi-
tuting back, 31 − x = 1 =⇒ x = 2. Then y = 2k = 2. Verification:
22 + 5 = 4 + 5 = 9 = 32. The unique solution is (x, y) = (2, 2).

■

Example 10.16. Construction for x3 + y3 = z4. Find a non-trivial in-
teger solution to x3 + y3 = z4 using the common factor method.

範例

Solution

We use the strategy from theorem 10.5 with exponents n = 3, m = 4.
Let x = cua and y = cub (where we simplify the form (ac)u to just
scaling by cu). Substitute into x3 + y3 = z4:

c3u(a3 + b3) = z4.

We choose a, b arbitrarily, say a = 1, b = 1. Then a3 + b3 = 2. The
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equation becomes 2c3u = z4. We need to choose c and u such that
the left side is a perfect fourth power.
Let c = 2. The expression becomes 2 · 23u = 23u+1. We require 3u +

1 to be a multiple of 4.
Let 3u + 1 = 4k. For k = 1, 3u = 3 =⇒ u = 1. Then z4 = 24 =⇒
z = 2. And x = 21(1) = 2, y = 21(1) = 2. Check: 23 + 23 = 8 + 8 =

16 = 24.
For distinct x, y, choose a = 1, b = 2. Then a3 + b3 = 1 + 8 = 9.
Equation: 9c3u = z4.
Let c = 3. Then 32 · 33u = 33u+2 = z4. We need 3u + 2 divisible by 4.
Let u = 2. Then 3(2) + 2 = 8. z4 = 38 =⇒ z = 32 = 9. x =

32(1) = 9, y = 32(2) = 18. Check: 93 + 183 = 729 + 5832 = 6561.
z4 = 94 = 6561. Solution: (9, 18, 9).

■

10.4 Exercises

1. Small Primitive Triples. Find all primitive Pythagorean triples
(x, y, z) satisfying z < 30.

2. Odd-Odd Parameterisation. Prove that all positive integer solu-
tions to x2 + y2 = z2 with (x, y) = 1 and x odd can be expressed
as:

x = uv, y =
u2 − v2

2
, z =

u2 + v2

2
,

where u, v are coprime odd positive integers with u > v.

3. Weighted Quadratic Form 1. Prove that all positive integer solu-
tions to x2 + 2y2 = z2 with (x, y) = 1 are given by:

x = |a2 − 2b2|, y = 2ab, z = a2 + 2b2,

where a, b > 0, (a, b) = 1, and a is odd.

4. Weighted Quadratic Form 2. Prove that all positive integer so-
lutions to x2 + y2 = 2z2 with (x, y) = 1 and x > y are given
by:

x = m2 − n2 + 2mn, y = |m2 − n2 − 2mn|, z = m2 + n2,

where m > n > 0, (m, n) = 1, and m, n have opposite parity.

5. Quartic-Quadratic Equation. Find all positive integer solutions to
x4 + y2 = z2 where x, y, z are pairwise coprime.

6. Generalised Pell-Type Forms. Let m be square-free.

(a) If m ≡ 1 or 3 (mod 4) (m = 2k − 1), prove that solutions to
x2 + my2 = z2 take two forms involving parameters m1m2 =

m.
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(b) If m ≡ 2 (mod 4) (m = 4k − 2), prove that solutions take the
form x = |m1a2 − 2m2b2|, y = 2ab, z = m1a2 + 2m2b2 where
m = 2m1m2.

7. Counting Special Triples. Let p1 < p2 < · · · < ps be odd primes.
Prove that the number of primitive Pythagorean triples (x, y, z)
satisfying

2p1 p2 . . . ps(x + y + z) = xy

is exactly 4 · 3s.

8. Sum of Inverse Squares. Prove that all positive integer solutions
to 1

x2 +
1
y2 = 1

z2 with (x, y, z) = 1 and y even are given by:

x = r4 − s4, y = 2rs(r2 + s2), z = 2rs(r2 − s2),

where r > s > 0, (r, s) = 1, and r, s have opposite parity.

9. Congruent Numbers. A positive integer n is a congruent number
if it is the area of a right triangle with rational sides. Prove:

(a) n is congruent if and only if there exists a rational x such that
x, x + n, x − n are all squares of rationals.

(b) n is congruent if and only if the system a2 + nb2 = c2 and
a2 − nb2 = d2 has an integer solution (a, b, c, d) with b ̸= 0.

10. Infinite Descent Proofs. Use infinite descent to prove that the
following equations have no positive integer solutions:

(a) x2 + y2 + z2 = 2xyz.

(b) x4 + 27y4 = z2 with (x, y) = 1.

11. Sum of Squares Product. Find all integer solutions to x2 + y2 +

z2 = x2y2.

12. Negative Pell Equation. Find all positive integer solutions to
x4 − 2y2 = −1.

13. Higher Power Non-Existence. Prove that x4 + 4y4 = z2 has
no positive integer solutions. Deduce that x4 + y2 = z4 has no
positive integer solutions.

14. Fermat’s Triangle Problem. Find a right-angled triangle with This is a problem posed by Fermat in a
letter to Mersenne in 1643.integer legs x, y and hypotenuse z such that x + y and z are both

perfect squares.

15. General Solutions for Shifted Powers. Let n > 1 be an integer.
Construct a parametric family of positive integer solutions to the
equation:

xn + yn = zn−1.

16. Parity Conditions on Exponents. Consider the equation x2 +

3y2 = 2n. Prove that:
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(a) If n is even, there exist positive integer solutions.

(b) If n is odd, there are no positive integer solutions.

17. Consecutive Product and Squares. Prove that the product of five
consecutive integers is never a perfect square. That is, the equation

(x − 2)(x − 1)x(x + 1)(x + 2) = y2

has no integer solutions.

18. Polynomial Diophantine Equation. Find all integer solutions to: Bound the polynomial between squares
of quadratic expressions.

x4 + x3 + x2 + x + 1 = y2.

19. Prime Variables. Find all solutions to xy + 1 = z where x, y, z are
all prime numbers.

20. Infinite Families for Mixed Powers. Prove that the equation x2 +

y5 = z3 possesses infinitely many solutions in positive integers.

21. Fermat-Type Non-Existence. Let n ≥ 2. Prove that the equation Reduce this to the case X4 + Y4 = Z2.

x2n + y2n = z2 has no positive integer solutions.

22. Unique Solution for Specific Primes. Let p be a prime such that
p ≡ 3 (mod 4). Prove that the only positive integer solution
(x, y, z) to the equation

px +

(
p2 − 1

2

)y

=

(
p2 + 1

2

)z

is x = y = z = 2.



11
Methods for Indefinite Equations

We now broaden our scope to general indeterminate equations. Un-
like linear or Pythagorean equations, which possess systematic al-
gorithms for their complete solution, general Diophantine equations
often require a diverse toolbox of heuristic methods.
In this chapter, we systematise these approaches into four primary
categories: algebraic factorisation, modular constraints, analytic esti-
mation, and constructive techniques.

11.1 The Factorisation Method

A fundamental strategy in solving non-linear Diophantine equations
is to convert a sum of terms into a product. If an equation can be
manipulated into the form

f (x1, . . . , xn) = K,

where K is a constant or a simple term, the Fundamental Theorem of
Arithmetic allows us to equate factors of f with divisors of K.
We begin with a classical application to reciprocal equations, often
arising in geometric contexts.

Example 11.1. The Symmetric Reciprocal Equation. Find all posi-
tive integer solutions to the equation

1
x
+

1
y
=

1
n

,

where n is a fixed positive integer.
Multiplying through by nxy, we obtain the algebraic form
ny + nx = xy. Rearranging terms to group variables:

xy − nx − ny = 0.

To factorise the left-hand side, we add n2 to both sides, completing
the rectangle:

xy − nx − ny + n2 = n2 =⇒ (x − n)(y − n) = n2.



188 gudfit

Since x, y > 0, we must have 1
x < 1

n and 1
y < 1

n , which implies x > n
and y > n. Thus x − n and y − n are positive integers. The solutions
correspond to the divisor pairs of n2. For each divisor d | n2, we ob-
tain a solution:x − n = d

y − n = n2/d
=⇒

x = n + d

y = n + n2/d

The number of solutions is exactly τ(n2), the number of divisors of
n2.

範例

This technique extends to higher-degree equations where factoriza-
tion over the integers restricts the possible values of variables.

Example 11.2. Quartic-Quadratic constraints. Prove that the equa-
tion x4 − 2y2 = 1 has only the integer solutions (x, y) = (±1, 0).
Rearranging the equation implies x4 − 1 = 2y2. We factor the differ-
ence of squares:

(x2 − 1)(x2 + 1) = 2y2.

Since x must be odd (if x were even, x4 − 1 would be odd, but 2y2 is
even), let x = 2k + 1. The greatest common divisor of the two fac-
tors is:

(x2 − 1, x2 + 1) = (x2 − 1, 2) = 2.

We can rewrite the equation as:

x2 − 1
2

· x2 + 1
2

= 2
(y

2

)2
.

Note that y must be even. Let y = 2Y. The equation becomes:

x2 − 1
2

· x2 + 1
2

= 2Y2.

The two factors on the left are coprime integers. Their product is
twice a square. Thus, one factor is a square and the other is twice a

square. Since x2+1
2 = (2k+1)2+1

2 = 2k2 + 2k + 1 is odd, it must be the
square term.  x2+1

2 = u2

x2−1
2 = 2v2

From the second equation, x2 − 1 = 4v2, or x2 − (2v)2 = 1. The
only consecutive perfect squares are 0 and 1, so we must have 2v =

0 =⇒ v = 0. Consequently, x2 = 1 =⇒ x = ±1. Substituting
back, y = 0. The solutions are (1, 0) and (−1, 0).

範例
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Pythagorean Quadruples

We can generalize the parameterisation of Pythagorean triples (Classi-
fication of Primitive Triples) to sums of three squares using factorisation
in the Gaussian integers or simple algebraic manipulation.

Theorem 11.1. Parametrisation of Pythagorean Quadruples.
The primitive integer solutions to x2 + y2 + z2 = w2 are generated
by the formulae:

x = 2ac/d,

y = 2bc/d,

z = (c2 − a2 − b2)/d,

w = (c2 + a2 + b2)/d,

where a, b, c are integers and d is a scaling factor chosen to ensure co-
primality.

定理

Proof

Let x = tA and y = tB. Then

t2(A2 + B2) = w2 − z2 = (w − z)(w + z).

Choose a rational parameter λ = c
u with (c, u) = 1 and set

w + z = λt, w − z =
t
λ
(A2 + B2).

Then
u(w + z) = ct, c(w − z) = ut(A2 + B2).

Since (c, u) = 1, we have u | t; write t = ut1. Substituting gives

w + z = ct1, c(w − z) = t1
(
(uA)2 + (uB)2).

Let a = uA and b = uB. Solving for w and z yields

2cw = t1(c2 + a2 + b2), 2cz = t1(c2 − a2 − b2),

and x = t1a, y = t1b. Clearing the common factor 2ct1 gives

x : y : z : w = 2ac : 2bc : (c2 − a2 − b2) : (c2 + a2 + b2).

Choosing d to clear common factors yields the stated parametrisa-
tion.

■ x

y

z

w

x

y

z

Figure 11.1: The Pythagorean
Quadruple represents the in-
teger diagonal of an integer
cuboid.

Sometimes, factorisation requires assumption of coprimality to isolate
powers.
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Example 11.3. Coprimality and Powers. Prove that the equation
x(x + 1)n = yn+1 has only the integer solutions (0, 0) and (−1, 0)
for any integer n ≥ 1.
When x = 0 or x = −1, we have y = 0, so (0, 0) and (−1, 0) are so-
lutions. Now assume x ̸= 0,−1, so y ̸= 0. Since (x, x + 1) = 1, we
can write

x = an+1, (x + 1)n = bn+1, y = ab,

with integers a, b and (a, b) = 1. Because (n, n + 1) = 1, the second
equation implies b = cn for some integer c, hence

x + 1 = cn+1.

Substituting gives
an+1 + 1 = cn+1.

If a > 0, then c > a and

1 = cn+1 − an+1 = (c − a)(cn + cn−1a + · · ·+ an) ≥ n + 1,

which is impossible. If a < 0 and n + 1 is even, the left-hand side is
positive while the right-hand side is nonpositive. If a < 0 and n + 1
is odd, then a < −1 and c < 0, and taking absolute values gives

|c|n+1 + 1 = |a|n+1,

which contradicts the previous argument. Therefore no solutions
occur when x ̸= 0,−1, and the only solutions are (0, 0) and (−1, 0).

範例

11.2 Modular Constraints and Valuation

When algebraic manipulation fails, examining the equation modulo
n or analyzing the powers of prime factors (valuation) can reveal
contradictions.

Congruence Obstructions

Example 11.4. Factorial Sums. Find all positive integer solutions to
∑n

s=1(s!)m = ∑m
t=1(t!)

n.
It is clear that n = m is a solution. Suppose m < n. Then

2n − 2m = 2m(2n−m − 1) =
n

∑
s=3

(s!)m −
m

∑
t=3

(t!)n.

The right-hand side is divisible by 3, so 3 | (2n−m − 1), and hence
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n − m is even. Thus n ≥ m + 2. Now

m

∑
t=2

(t!)n = 2n + 6n +
m

∑
t=4

(t!)n = 2n(1 + 3n) +
m

∑
t=4

(t!)n.

Since n ≥ m + 2, each term (t!)n with t ≥ 4 is divisible by 2m+3, and
2n(1 + 3n) is also divisible by 2m+3. Hence

m

∑
t=2

(t!)n ≡ 0 (mod 2m+3).

If the original equation holds, then

n

∑
s=1

(s!)m ≡ 0 (mod 2m+3).

But modulo 8 we have

n

∑
s=1

(s!)m ≡ 1 + 2m + 6m ≡ 1 (mod 8),

contradiction. Thus there are no solutions with m < n. Similarly,
there are no solutions with m > n, and therefore the only solutions
are m = n.

範例

Example 11.5. Sum of Factorials as a Power. Find all positive inte-
ger solutions to 1! + 2! + · · ·+ x! = yz for z ≥ 2.
For x = 1, Sx = 1, so y = 1 and any z ≥ 2 works. For x = 2, Sx = 3
is not a perfect power. For x = 3, Sx = 9 = 32 gives (x, y, z) =

(3, 3, 2).
Now assume x ≥ 4. Since 4! is divisible by 8, we have

Sx ≡ 1 + 2 + 6 ≡ 1 (mod 8),

so y is odd. If x ≥ 5, then Sx ≡ 33 ≡ 3 (mod 5), so z must be odd.
For x ≥ 8, note that 8! ≡ 9 (mod 27) and k! ≡ 0 (mod 27) for k ≥
9, while S7 = 5913 ≡ 0 (mod 27). Hence

Sx ≡ 9 (mod 27),

so v3(Sx) = 2. If z ≥ 3, then yz is divisible by 27, contradiction.
Thus z = 2, but this contradicts Sx ≡ 3 (mod 5). Hence there are
no solutions for x ≥ 8.
For x = 4, 5, 6, 7, direct checks give

S4 = 33, S5 = 153, S6 = 873, S7 = 5913.

For x = 4, 52 < 33 < 62 and 33 < 33 < 43, so S4 is not a perfect
power. For x = 5, 122 < 153 < 132, 53 < 153 < 63, and 34 < 153 <
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44. For x = 6, 292 < 873 < 302, 93 < 873 < 103, and 54 < 873 < 64.
For x = 7, 762 < 5913 < 772, 183 < 5913 < 193, and 84 < 5913 < 94.
Thus none of these is a perfect power with exponent ≥ 2. Therefore
the only solutions are

(x, y, z) = (1, 1, z) for z ≥ 2, and (3, 3, 2).

範例

Comparing Powers of Primes

A powerful variation of the modular method is to compare the ex-
ponent of the highest power of a prime p dividing both sides of an
equation. We denote the exponent of p in the prime factorisation of n
as vp(n).

Theorem 11.2. The Quotient of Fermat Differences.
Let p be an odd prime and k > 1 be an integer. The equation

xp − yp

x − y
= pkz, with (x, y) = 1

has no integer solutions.
定理

Proof

Assume a solution exists. From xp − yp = pkz(x − y), we see that
xp ≡ yp (mod p). By Fermat’s Little Theorem, x ≡ y (mod p). Let
x = y + mp. Since (x, y) = 1, p ∤ y. We expand the numerator using
the Binomial Theorem:

xp − yp = (y + mp)p − yp =
p

∑
i=1

(
p
i

)
yp−i(mp)i.

The first term of the sum (for i = 1) is (p
1)y

p−1(mp) =

p · yp−1 · mp = mp2yp−1. The second term (for i = 2) is
(p

2)y
p−2(mp)2 = p(p−1)

2 yp−2m2 p2, which is divisible by p3 (since
p is odd). Higher order terms are divisible by p3 or higher. Thus,
the sum is dominated by the first term modulo p3:

xp − yp ≡ mp2yp−1 (mod p3).

Dividing by x − y = mp:

xp − yp

x − y
≡ mp2yp−1

mp
≡ pyp−1 (mod p2).

The valuation of the LHS is therefore exactly vp(LHS) = 1. How-
ever, the RHS is pkz with k > 1, so its valuation is at least 2. This
contradiction implies no solution exists.
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■

11.3 Analytic Methods: Estimation and Cases

When discrete methods yield ambiguous results, analytic con-
straints—such as inequalities and magnitude estimates—can narrow
the search space to a finite set of cases.

Classification Discussion

Example 11.6. Cyclic Exponential Equation. Find all integer solu-
tions to xy + yz + zx = 0.
Let (x, y, z) be a solution. Clearly xyz ̸= 0 and at least one of x, y, z
is negative. Since the equation is cyclic in x, y, z, we discuss the
following cases.
1. Case x > 0, y > 0, z < 0. The equation becomes

xy + zx = − 1
y−z .

This holds if and only if y = 1. Then x + zx = −1, which yields
x = 1 and z = −2. Hence (x, y, z) = (1, 1,−2). Permuting x, y, z
gives the three solutions

(−2, 1, 1), (1,−2, 1), (1, 1,−2).

2. Case x > 0, y < 0, z < 0. Then

1
x−y +

1
y−z = −zx.

This holds only if |zx| ≤ 2. Hence z = −2, x = 1 or z = −1.
When z = −2 and x = 1, we have y = −1, so (x, y, z) =

(1,−2,−1), and permuting x, y, z gives

(1,−1,−2), (−1,−2, 1), (−2, 1,−1).

When z = −1, the equation becomes

1
x−y = (−1)x+1 − 1

y
.

If y = −2k with k > 0, then

x2k =
2k

1 + (−1)x+1 · 2k
,

which is impossible. If y = −(2k − 1) with k > 0, then

x2k−1 =
2k − 1

1 + (−1)x+1 · (2k − 1)
,

which is also impossible.
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3. Case x < 0, y < 0, z < 0. Then

1
x−y +

1
y−z +

1
z−x = 0.

If x, y, z are all odd, the left side is negative; if all even, the left
side is positive, both contradictions. If exactly one of x, y, z is
even, say x even and y, z odd, then

y−zz−x + z−xx−y + x−yy−z = 0,

whose left-hand side is odd while the right-hand side is even, a
contradiction. Hence exactly two of x, y, z are even. Without loss
of generality, let 2 | x, 2 | y, and 2 ∤ z. Write

x = 2sa, y = 2tb, M = z−x,

where s, t ≥ 1, a, b are negative integers, and 2 ∤ abM. Substitut-
ing gives

(2tb)−z(M + (2sa)−2tb) = −M(2sa)−2tb.

Comparing the powers of 2 on both sides yields tz = 2tsb, which
is impossible since 2 ∤ z.

Therefore the equation has exactly six solutions:

(−2, 1, 1), (1,−2, 1), (1, 1,−2), (1,−1,−2), (−1,−2, 1), (−2, 1,−1).

範例

Estimation

Inequalities are particularly effective for sums of reciprocals, as the
value of the function drops rapidly.

Example 11.7. Factorial Reciprocals. Find positive integers satisfy-
ing 4

w! =
1
x! +

1
y! +

1
z! .

Since the equation is unchanged by permuting x, y, z, assume x ≤
y ≤ z. Then

4
w!

=
1
x!

+
1
y!

+
1
z!

≤ 3
x!

,

so w > x. If w ≥ x + 2, then

4
(x + 2)!

− 1
x!

≥ 4
w!

− 1
x!

=
1
y!

+
1
z!

> 0,

which implies

4 >
(x + 2)!

x!
= (x + 2)(x + 1) ≥ 6,
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a contradiction. Hence w = x + 1.
Since x ≤ y ≤ z, we have

4
(x + 1)!

≥ 3
z!

,

so z ≤ x + 1. Thus z = x or z = x + 1.
If z = x, then 4

(x+1)! =
3
x! , giving x = 1

3 , impossible. If z = x + 1, the
equation becomes

4
(x + 1)!

=
2
x!

+
1

(x + 1)!
or

4
(x + 1)!

=
1
x!

+
2

(x + 1)!
.

The first gives x = 1
2 , impossible, while the second gives x = 1.

Hence
(x, y, z, w) = (1, 2, 2, 2),

and by permuting x, y, z the solutions are

(1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2).

範例

11.4 Constructive Methods

When an equation has infinitely many solutions, we can often con-
struct them by identifying a pattern or an identity.

Construction via Identities

Example 11.8. Sums of Fourth Powers. Prove that x4 + y4 + z4 = w2

has infinitely many integer solutions.
Let w = z2 + m. Then

w2 − z4 = m2 + 2z2m.

Since
(u + v)4 + (u − v)4 = 2(u2 − v2)2 + 16u2v2,

we obtain

16u2v2((u + v)4 + (u − v)4) = 2(u2 − v2)2(16u2v2) + (16u2v2)2.

Comparing with m2 + 2z2m, take

m = 16u2v2, z = u2 − v2.

Then
w2 − (u2 − v2)4 = 16u2v2((u + v)4 + (u − v)4).
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Let u = s2 and v = t2. This gives

((s4 − t4)2 + 16s4t4)2 − (s4 − t4)4 = (2st(s2 + t2))4 + (2st(s2 − t2))4.

Hence the equation has infinitely many solutions:

x = 2st(s2 + t2), y = 2st(s2 − t2), z = s4 − t4, w = (s4 − t4)2 + 16s4t4.

範例

Rational Parametrisation

Just as the unit circle x2 + y2 = 1 can be parametrised by rational
points to solve a2 + b2 = c2, higher degree surfaces can sometimes be
projected to finding rational points.

Example 11.9. Weighted Fourth Powers. Find infinitely many
integer solutions to x4 + y4 + 4z4 = w4.
Divide by w4 to work with rational numbers X, Y, Z:

X4 + Y4 + 4Z4 = 1.

We set X2 + 2YZ = 1. This reduces the degree of freedom. Substi-
tuting X2 = 1 − 2YZ into the equation:

(1 − 2YZ)2 + Y4 + 4Z4 = 1.

1 − 4YZ + 4Y2Z2 + Y4 + 4Z4 = 1.

Y4 + 4Y2Z2 − 4YZ + 4Z4 = 0.

Note that Y4 + 4Z4 + 4Y2Z2 = (Y2 + 2Z2)2. So (Y2 + 2Z2)2 = 4YZ.
This relates the square of a quadratic to a linear term. Let Y = t2Z.
Then (t4Z2 + 2Z2)2 = 4t2Z2.

Z4(t4 + 2)2 = 4t2Z2.

Assuming Z ̸= 0, we divide by Z2 to get

Z(t4 + 2) = 2t,

so

Z =
2t

t4 + 2
, Y =

2t3

t4 + 2
.

Moreover,

(Y2 − 2Z2)2 = 4YZ(1 − 2YZ) = 4t2Z2X2,

so

X =
Y2 − 2Z2

2tZ
=

t4 − 2
t4 + 2

.
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Let t = a/b with integers a, b and b ̸= 0. Clearing denominators
gives

x = a4 − 2b4, y = 2a3b, z = 2ab3, w = a4 + 2b4.

範例

Exponential Constructions

We now consider equations where the exponents themselves are part
of the variable structure.

Example 11.10. Self-Exponent Product. Prove that

k

∏
i=1

xxi
i = zz (k ≥ 2, xi > 1)

has infinitely many sets of positive integer solutions:

x1 = kkn(kn+1−2n−k)+2n(kn − 1)2(kn−1),

x2 = kkn(kn+1−2n−k)(kn − 1)2(kn−1)+2,

x3 = · · · = xk = kkn(kn+1−2n−k)+n(kn − 1)2(kn−1)+1,

z = kkn(kn+1−2n−k)+n+1(kn − 1)2(kn−1)+1,

where k = 2, n > 1 or k ≥ 3, n > 0.
Let d = (x1, . . . , xk, z) and write

xi = dti (i = 1, . . . , k), z = du.

Substituting gives

d∑k
i=1 ti−u

k

∏
i=1

tti
i = uu.

If ∑k
i=1 ti − u = 1 and ∏k

i=1 tti
i | uu, then

d =
uu

∏k
i=1 tti

i

produces a solution. Take

t1 = k2n, t2 = (kn − 1)2, t3 = · · · = tk = (kn − 1)kn, u = kn+1(kn − 1).

Then

k

∑
i=1

ti − u = k2n + (kn − 1)2 + (k − 2)(kn − 1)kn − kn+1(kn − 1) = 1.

Moreover,
uu

∏k
i=1 tti

i

= kh(kn − 1)l ,
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where
h = kn(kn+1 − k − 2n), l = 2(kn − 1).

For k = 2, n > 1 or k ≥ 3, n > 0, we have h > 0 and l > 0, so

d = kkn(kn+1−k−2n)(kn − 1)2(kn−1).

Substituting gives the stated family of solutions.

範例

11.5 Generating Functions and Counting Solutions

While the methods discussed earlier focus on the existence or con-
struction of specific solutions, a frequent question in number theory
concerns the quantity of solutions. For linear indeterminate equations,
this counting problem connects number theory with combinatorics.
The most powerful tool for this analysis is the method of generating
functions.

Formal Power Series

To count solutions systematically, we map sequences of numbers to
analytic objects.

Definition 11.1. Generating Function.
The generating function of a finite sequence a0, a1, . . . , an is the poly-
nomial

A(x) = a0 + a1x + a2x2 + · · ·+ anxn.

For an infinite sequence a0, a1, . . . , the generating function is the for-
mal power series

A(x) =
∞

∑
n=0

anxn.

定義

We use the term "formal" because we are not initially concerned with
the convergence of the series for specific values of x. Instead, we treat
the series as an algebraic object where the position of a coefficient
(the exponent of x) serves as a label.

Definition 11.2. Operations on Formal Power Series.
Let A(x) = ∑ anxn and B(x) = ∑ bnxn. We define:
1. Equality: A(x) = B(x) if and only if an = bn for all n ≥ 0.

2. Sum: A(x) + B(x) = ∑∞
n=0(an + bn)xn.

3. Product: A(x)B(x) = ∑∞
n=0 cnxn, where cn is the Cauchy product
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cn = ∑n
k=0 akbn−k.

定義

The fundamental identity for our purposes is the expansion of the
geometric series and its powers.

Theorem 11.3. Geometric Series Expansion.
In the ring of formal power series:

1
1 − x

=
∞

∑
r=0

xr.

定理

Proof

Let 1
1−x = ∑∞

n=0 cnxn. By definition of the quotient, we have:

1 = (1 − x)
∞

∑
n=0

cnxn =
∞

∑
n=0

cnxn −
∞

∑
n=0

cnxn+1.

Shift the index of the second sum (k = n + 1):

1 = c0 +
∞

∑
n=1

(cn − cn−1)xn.

Comparing coefficients, c0 = 1 and cn − cn−1 = 0 for n ≥ 1. Thus
cn = 1 for all n.

■

Using mathematical induction, we can generalize this to negative
integer powers.

Theorem 11.4. Negative Binomial Expansion.
For any positive integer n,

1
(1 − x)n =

∞

∑
r=0

(
n + r − 1

n − 1

)
xr.

定理

Proof

For n = 1, the coefficient is (r
0) = 1, which matches the geometric

series. Assume the formula holds for n = k. Then for n = k + 1:

1
(1 − x)k+1 =

1
(1 − x)k · 1

1 − x
=

(
∞

∑
j=0

(
k + j − 1

k − 1

)
xj

)(
∞

∑
m=0

xm

)
.

The coefficient of xr in the product is the sum of coefficients ajbr−j:

cr =
r

∑
j=0

(
k + j − 1

k − 1

)
· 1.
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We apply the combinatorial identity ∑n
i=r (

i
r) = (n+1

r+1) (often called
the Hockey-stick identity).

r

∑
j=0

(
k + j − 1

k − 1

)
=

(
k − 1
k − 1

)
+

(
k

k − 1

)
+ · · ·+

(
k + r − 1

k − 1

)
=

(
k + r

k

)
.

Thus, the coefficient is ((k+1)+r−1
(k+1)−1 ), satisfying the inductive step.

■

Linear Equations with Unit Coefficients

We now apply this machinery to the counting of integer solutions.

Theorem 11.5. Solutions to x1 + · · ·+ xn = r.
The number of non-negative integer solutions to the linear indetermi-
nate equation

x1 + x2 + · · ·+ xn = r

is given by (n+r−1
n−1 ).

定理

Proof

Let ar be the number of solutions. Consider the product of n geo-
metric series:

P(x) =

(
∞

∑
k=0

xk

)n

= (1 + x + x2 + . . . ) . . . (1 + x + x2 + . . . ).

A term xr in this expansion is formed by choosing xm1 from the
first factor, xm2 from the second, ..., and xmn from the n-th, such that
∑ mi = r. Thus, the coefficient of xr in P(x) is exactly the number
of solutions to m1 + · · · + mn = r in non-negative integers. Since
P(x) = 1

(1−x)n , by theorem 11.4, the coefficient is (n+r−1
n−1 ).

■

Corollary 11.1. The number of positive integer solutions to x1 + · · ·+
xn = r is (r−1

n−1) (provided r ≥ n).
推論

Proof

Let xi = yi + 1 where yi ≥ 0. The equation becomes:

(y1 + 1) + · · ·+ (yn + 1) = r =⇒ y1 + · · ·+ yn = r − n.

By theorem 11.5, the number of non-negative solutions for yi is:(
n + (r − n)− 1

n − 1

)
=

(
r − 1
n − 1

)
.

■

Stars and Partitions

Figure 11.2: Combinatorial
representation of a solution to
x1 + x2 + x3 = 5. The arrange-
ment corresponds to (2, 1, 2).
The number of arrangements is
(5+3−1

3−1 ).
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This result can also be visualised combinatorially. To partition r iden-
tical items into n distinct bins, we arrange r items and n − 1 dividers
(partitions) in a line. The total number of positions is r + n − 1, and
we choose n − 1 positions for the dividers.

Example 11.11. Constraints and Transformations. Find the number
of integer solutions to x + y + z = 24 subject to:
1. x, y, z > 1.

2. x > 1, y > 2, z > 3.

1. Let x = X + 2, y = Y + 2, z = Z + 2 where X, Y, Z ≥ 0. The equa-
tion becomes X + Y + Z = 24 − 6 = 18. The number of solutions
is (3+18−1

3−1 ) = (20
2 ) = 190.

2. Let x = X + 2, y = Y + 3, z = Z + 4 where X, Y, Z ≥ 0. The equa-
tion becomes X + Y + Z = 24 − (2 + 3 + 4) = 15. The number of
solutions is (3+15−1

2 ) = (17
2 ) = 136.

範例

General Linear Equations

Consider the equation with coefficients si ∈ Z+:

s1x1 + s2x2 + · · ·+ snxn = r.

Following the logic of theorem 11.5, a term xsi contributes to the sum
mi times, resulting in a term (xsi )mi . The generating function for the
number of solutions br is:

B(x) =
1

(1 − xs1)(1 − xs2) . . . (1 − xsn)
.

This formulation allows us to solve problems with complex upper
bound constraints by manipulating polynomials.

Example 11.12. Solutions with Upper Bounds. Find the number of
positive integer solutions to x1 + x2 + x3 + x4 = 23 subject to the
constraints:

x1 ≤ 9, x2 ≤ 8, x3 ≤ 7, x4 ≤ 6.

Since we require positive integers (xi ≥ 1), the generating function
for each variable xi with upper bound Ui is the polynomial:

Pi(x) = x + x2 + · · ·+ xUi = x
1 − xUi

1 − x
.

The generating function for the system is the product ∏4
i=1 Pi(x):

G(x) = x4 (1 − x9)(1 − x8)(1 − x7)(1 − x6)

(1 − x)4 .
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We seek the coefficient of x23. Let f (x) = x4(1 − x9)(1 − x8)(1 −
x7)(1 − x6)∑∞

k=0 (
k+3

3 )xk. Factoring out x4, we look for the coeffi-
cient of x19 in the expansion of

H(x) = (1 − x9)(1 − x8)(1 − x7)(1 − x6)(1 − x)−4.

Expanding the numerator (keeping terms with degree ≤ 19):

Num(x) = 1 − (x6 + x7 + x8 + x9) + (x13 + x14 + 2x15 + x16 + x17)− . . .

The coefficient of x19 in H(x) is formed by pairing terms xj from
the numerator with x19−j from the series (1 − x)−4 (which has
coefficient ((19−j)+3

3 )).

N =

(
22
3

)
· 1

−
[(

16
3

)
+

(
15
3

)
+

(
14
3

)
+

(
13
3

)]
+

[(
9
3

)
+

(
8
3

)
+ 2
(

7
3

)
+

(
6
3

)
+

(
5
3

)]
.

Calculation: 1540− (560+ 455+ 364+ 286)+ (84+ 56+ 2(35)+ 20+
10) = 115. Thus, there are 115 such solutions.

範例

Approximation via Partial Fractions

For equations with unequal coefficients, exact formulas can be de-
rived using partial fraction decomposition over the complex roots of
unity.

Example 11.13. The Frobenius-Type Problem. Find the number of
non-negative integer solutions br to x1 + 2x2 + 3x3 = r.
The generating function is G(x) = 1

(1−x)(1−x2)(1−x3)
. We factor the

denominators using roots of unity. Let ω = ei2π/3.

(1 − x3) = (1 − x)(1 − ωx)(1 − ω2x).

(1 − x2) = (1 − x)(1 + x).

The decomposition is:

G(x) =
1

6(1 − x)3 +
1

4(1 − x)2 +
17

72(1 − x)
+

1
8(1 + x)

+
1

9(1 − ωx)
+

1
9(1 − ω2x)

.

The coefficient br is the sum of the coefficients of each term:

br =
1
6

(
r + 2

2

)
+

1
4

(
r + 1

1

)
+

17
72

+
(−1)r

8
+

ωr + ω2r

9
.
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Using ωr + ω2r = 2 cos(2πr/3), and expanding the binomials:

br =
(r + 3)2

12
− 7

72
+

(−1)r

8
+

2
9

cos
2πr

3
.

While this formula is exact, the oscillatory terms are small.∣∣∣∣− 7
72

+
(−1)r

8
+

2
9

cos
2πr

3

∣∣∣∣ ≤ 7
72

+
1
8
+

2
9
=

32
72

<
1
2

.

Therefore, br is simply the nearest integer to the dominant
quadratic term:

br =

⌊
(r + 3)2

12
+

1
2

⌋
.

範例

11.6 Exercises

1. Cubic Identity. Find all integer solutions to the equation x3 + Factorise the expression x3 + y3 + z3 −
3xyz.y3 + z3 = 3xyz.

2. Factorials and Mersenne Numbers. Find all positive integer solu-
tions (n, m) to ∑n

k=1 k! = 2m − 1.

3. Exponential Commutativity. Find all integer solutions to the
equation xy = yx.

4. Unique Positive Solutions.

(a) Prove that the equation 4x4 − 3y2 = 1 has the unique positive
integer solution (x, y) = (1, 1).

(b) Deduce that x3 + 1 = 2y2 has only the positive integer solu-
tions (1, 1) and (23, 78).

5. Quartic-Quadratic Non-Existence. Prove that x4 − 3y2 = 1 has
only the integer solutions (x, y) = (±1, 0).

6. Sum of Squares as a Square. Find all integer solutions to ∑n
i=1 x2

i =

y2 for n ≥ 2, satisfying the condition gcd(x1, . . . , xn) = 1.

7. Exponential Inequality. Prove that (x + 2)2y = xz + 2 has no
positive integer solutions.

8. Sums of Fourth Powers. Prove that x4 + y4 = z4 + w4 possesses
infinitely many integer solutions.

9. Reciprocal Sum with Product Term. Prove that 1
x = 1

y + 1
z +

1
w +

1
xyzw has infinitely many positive integer solutions.

10. Cubic Sum equal to Cube. Construct a parametric family of posi-
tive integer solutions to x3 + y3 + z3 = t3.
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11. Arbitrary Powers. Provide a method to find infinitely many posi-
tive integer solutions to x2 + y2 = zn for any n ≥ 2.

12. Generalised Coprime Powers. Let l, m, n be positive integers with
gcd(nl, m) = 1. Prove that xl + ym = zn has infinitely many
positive integer solutions.

13. Catalan-type Equation. Find all positive integer solutions to 3x −
2y = 1.

14. Self-Power Product. Find a family of positive integer solutions to
xyyx = zz with variables greater than 1.

15. Polynomial Product Constraints. Let p be an odd prime and
k ≥ 1. Prove that the equation

y(y + 1)(y + 2)(y + 3) = p2kx(x + 1)(x + 2)(x + 3)

has no positive integer solutions.

16. Quartic Difference with Prime. Let p be an odd prime such that
p ≡ 3 (mod 8). Prove that x4 − y4 = pz2 has no positive integer
solutions.

17. Sums of Four Cubes. Prove that x3 + y3 + z3 + w3 = n has integer
solutions for n in the forms 18k, 18k ± 1, . . . , 18k ± 9.

18. Cubic Form Solvability. Let n = 2r ∏ pri
i with odd primes p1 <

· · · < pk. Prove that x3 + y3 + z3 − 3xyz = n has non-negative
integer solutions if and only if p1 ̸= 3 or (p1 = 3 and r1 ≥ 2). Find
a solution for n = 123480.

19. Shifted Linear Solutions. Find the number of integer solutions to
x + y + z = 1 such that x, y, z > −5.

20. Combinatorial Equivalence. Prove that the number of non-
negative integer solutions to ∑7

i=1 xi = 13 equals the number of
such solutions to ∑14

j=1 yj = 6.

21. Lower Bounded Solutions. Determine the number of integer
solutions to ∑n

i=1 xi = r subject to xi > ai.

22. Box Constraints. Find the number of integer solutions to x + y +

z = 24 subject to 1 ≤ x ≤ 5, 12 ≤ y ≤ 18, and −1 ≤ z ≤ 12.

23. Weighted Linear Count. Find the number of non-negative integer
solutions to x + 2y = r.

24. System Count. Find the number of non-negative integer solutions
to 5x + 2y + z = 10n for a positive integer n.
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