Discrete II: Elementary Number Theory

Gudfit



Contents

Divisibility

0.1 Variants of Mathematical Induction
0.2 Divisibility

0.3 Prime and Composite Numbers

0.4 Special Types of Primes

0.5 Exercises

Greatest Common Divisor
1.1 The Euclidean Algorithm
1.2 The Linear Structure of Divisibility

1.3 Applications and Diophantine Examples

1.4 Least Common Multiple
1.5 Exercises

Applications

2.1 Fundamental Theorem of Arithmetic
2.2 Primality Testing and Sieves

2.3 Exercises

The Gauss Function

3.1 Factorisation of Factorials
3.2 Arithmetic Functions

3.3 Exercises

Perfect and Amicable Numbers
4.1 Perfect Numbers

4.2 Amicable Numbers

4.3 Exercises

The Principle of Stepwise Elimination
5.1 The Inclusion-Exclusion Principle
5.2 Counting Primes

5.3 The Drawer Principle

5.4 Exercises

®

12
16
21

24
25
31
34
37
41
43
43
48
52
53

61
66

70
73

73
77
8o
82
82
86
88

93



10

11

Congruence

6.1 The Concept of Congruence

6.2 Simplification and Cancellation

6.3 Applications to Periodicity and Sums
6.4 Modulus Transformations

6.5 Divisibility Criteria

6.6 Exercises

Residue Classes and Complete Systems

7.1 Residue Classes

7.2 Euler’s Totient Function

7.3 Reduced Residue Systems

7.4 Euler’s Theorem and Fermat’s Little Theorem
7.5 Exercises

Finite Decimal Expansions
8.1 Finite Decimals

8.2 Infinite Recurring Decimals
8.3 Wilson’s Theorem

8.4 Exercises

Indefinite Equations

9.1 Linear Indefinite Equations in Two Variables
9.2 The Frobenius Number for n = 2

9.3 Solvability and General Theory

9.4 Systems of Indefinite Equations

9.5 Exercises

Pythagorean Triples

10.1 The Structure of Solutions

10.2 Fermat’s Last Theorem and Infinite Descent
10.3 Exponential Diophantine Equations

10.4 Exercises

Methods for Indefinite Equations

11.1 The Factorisation Method

11.2 Modular Constraints and Valuation

11.3 Analytic Methods: Estimation and Cases

11.4 Constructive Methods

11.5 Generating Functions and Counting Solutions
11.6 Exercises

DISCRETE II: ELEMENTARY NUMBER THEORY 3

95
95
98
100
102
106
110

112
112
121
123
126
130

134
134
137
143
148
150
150
155
157
160
163

165
165
172
178
184

187
187
190
193
195
198
203



0.1

0
Divisibility

The set of integers Z = {...,—2,—1,0,1,2,...} forms the bedrock
of number theory. While the arithmetic operations of addition and
multiplication are closed within Z, division is not. The study of
number theory is, in many respects, the study of this breakdown:
when does one integer divide another, and if it does not, what is the
residue?

To answer these questions, we require not just arithmetic intuition
but robust proof techniques. We begin by formalising the principle of
Mathematical Induction, the primary engine for proving statements
over countable sets, before establishing the fundamental algorithm of
Euclidean arithmetic.

Variants of Mathematical Induction

The Well-Ordering Principle states that every non-empty set of posi-
tive integers contains a least element. This axiom underpins the Prin-
ciple of Mathematical Induction. While the standard form is likely
familiar, number theoretic problems often demand subtler variations.

Standard and Strong Induction

Definition o.1. First Principle of Mathematical Induction.
Let P(n) be a proposition concerning an integer n. If:

Base Case: P(a) is true for some integer a;

Inductive Step: For any k > a, the assumption that P(k) is true im-
plies P(k + 1) is true;

then P(n) is true for all integers n > a.

Example o.1. The Frobenius Coin Problem (Specific Case). We
prove that any integer 1 > 8 can be expressed as a non-negative
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linear combination of 3 and 5. That is, n = 3a + 5b for a,b € INy.

ERl
Base Case (n = 8).
8 = 3(1) + 5(1). The proposition holds.
FER &

Inductive Step.
Assume k = 3a + 5b holds for some k > 8. We examine k + 1.

1. If b > 1, we can replace one 5 with two 3s (since 6 —5 = 1).

k+1=3a+50b—-1)+5+1=3a+50b—-1)+6=3(a+2)+5(0b—1).

2. If b =0, then k = 3a. Since k > 8,3a > 8 = a > 3. We replace
three 3s with two 5s (since 10 —9 = 1).

k+1=3(a—3)+9+1=23(a—3)+10=23(a—3)+5(2).

EXLES
In both cases, k + 1 has the required form. By definition 0.1, the state-
ment holds for all n > 8.

Often, knowing P(k) is insufficient to prove P(k + 1); we may need
the history of the sequence.

Definition o.2. Second Principle (Strong) of Mathematical Induction.

Let P(n) be a proposition. If P(a) is true, and the assumption that P(m)
is true for all a < m < k implies P(k + 1) is true, then P(n) is true for
all n > a.

Example 0.2. A Symmetric Game. Consider two piles of counters,
each containing # items. Two players move alternately. A move
consists of removing any positive number of counters from a single
pile. The player who removes the last counter wins. We prove the
second player has a winning strategy for all n > 1.

Eal

Let P(n) be the proposition that the second player wins starting with

configurations (n,n).
Base Case.

If n = 1, Player 1 must take the only counter from one pile. Player 2

takes the counter from the remaining pile and wins.
SERR #

5
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Inductive Step.

Assume the second player wins for all initial sizes1 < m < k.
Consider a game starting with (k + 1,k + 1). Player 1 must remove /
counters (1 < [ < k4 1) from one pile, leaving the state (k +
1,k+1—1). Player 2 can now mimic this move on the other pile, re-
moving [ counters to reach the state (k+1 —1,k+1—1). Letm =
k+1—1.Sincel > 1, we have 0 < m < k.

e If m = 0, Player 2 has removed the last counter and won immedi-
ately.

e If m > 0, the game is now in state (m, m) with Player 1 to move.
By the inductive hypothesis, the second player wins from this
state.

Thus, the second player wins for n =k + 1.
BELES

Non-Standard Inductive Patterns

Structure in number theory does not always propagate linearly from
nton+1.

Theorem o.1. Backward Induction.

Let P(n) be a proposition. If:

1. There exists an infinite sequence of integers n; < np, < ... such
that P(n;) is true for all i;

2. The truth of P(k + 1) implies the truth of P(k);
then P(n) is true for all n > n;.

gl
Example o.3. Fermat’s Little Theorem (Prime Modulus). Let p
be a prime. We prove that n” — n is divisible by p for all positive
integers n.

i

Infinite Step.
Let m = Ip. Then (Ip)P —Ip = p(IPpP~! — 1), which is clearly a mul-
tiple of p. Thus P(Ip) is true forall / =1,2,....

FE B
Backward Step.
Assume P(k+1) is true. That is, (k+1)” — (k+1) is a multiple of p.
Expanding using the Binomial Theorem:

(k+1)F — (k+1) = <k”+pzl (f)ka) k-1= (kr’—k)+pf (’:)k
i=1 i=1
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For1 < i < p — 1, the binomial coefficient (’l’ ) contains the
factor p in the numerator which is not cancelled by the denom-
inator. Thus (%) is a multiple of p. The expression becomes
(kP — k) + p x (Integer). Since the entire sum is a multiple of p
(by assumption P(k + 1)), it follows that k¥ — k must be a multiple
of p. Thus P(k) is true.

S 4

Theorem o.2. Seesaw Induction.
Let A, and B, be two indexed propositions. If:
1. Aj is true;
2. A, = By;
3. By = Apiu
then both A, and B,, are true for all n > 1.
ekl
This technique is particularly effective for coupled recurrence rela-
tions.
Example o0.4. Counting Solutions. Let r(m) be the number of non-
negative integer solutions to x + 2y = m. We prove:

Aj:r(2l-=1)=1 and Bj:r(2)=1+1.

el
Base Case (Aq).
Consider x + 2y = 1. Since x,y > 0, the only solution is (1,0). Thus
r(1) =1, so Ay holds.
EXIES
Step A = B;.
We assume r(2k — 1) = k. Consider x + 2y = 2k.

Case 1: x =0. Then2y = 2k = y = k. Solution (0, k). (1 solu-
tion).

Case 2: x > 1. Letx’ = x —1 > 0. The equation becomes (x’ + 1) +
2y =2k = x’+2y = 2k — 1. The number of solutions is exactly
r(2k —1).

Thus, (2k) =1+ r(2k —1) = 1 + k. By holds.
ZERA #%
Sfﬁp B, — AkJr‘l-
We assume r(2k) = k + 1. Consider x +2y = 2k + 1.
Case 1: x = 0. Then 2y = 2k + 1, which has no integer solution.

Case 2: x > 1. Letx’ = x — 1. The equation becomes x’ 4+ 2y = 2k.
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The number of solutions is r(2k).

Thus, r(2k +1) = 04 r(2k) = k + 1. This is precisely proposition
Agiq (since 2(k+1) —1 =2k +1).
SEP 4
By theorem 0.2, the formulae hold for all /.

Divisibility

We now apply these structural tools to the integers themselves. Un-
less otherwise specified, all lowercase letters a,b,c, ... denote inte-
gers.

Definition o.3. Divisibility.

Let b be a non-zero integer. We say that b divides a4, denoted b | g, if
there exists an integer g such that a = bg. If b | a, we call b a divisor
or factor of 4, and a4 a multiple of b. If no such integer exists, we write
b{a.

Remark.

Ifb|aand 1 < |b| < |a|, b is a proper divisor of a.

Proposition o.1. Linearity and Transitivity.

Let a, b, ¢ be integers with ¢ # 0.

1. Transitivity: If c [ band b | 4, then ¢ | a.

2. Linearity: If c | aand ¢ | b, thenc¢ | (ma + nb) for any integers
m, n.

3. Cancellation: ¢ | a <= mc | ma for any m # 0.

Proof

We prove (2). Let a = caj and b = cb; for integers a1, b;. Then ma +
nb = m(cay) + n(cby) = c(may + nby). Since Z is closed under mul-
tiplication and addition, the term (may + nby) is an integer. Thus ¢ |
(ma + nb).

]

Remark.

To be "closed under addition and multiplication" means that if
you take any two numbers from a set (like the integers) and add
or multiply them, the result is always another number that is still

inside that same set.
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Consecutive Integers

A subtle but powerful property of integers is that in any sequence of
consecutive integers, divisibility is guaranteed by the length of the
sequence. For a positive integer k, the factorial k! denotes the product
k(k—1)...2-1.

Theorem o.3. Product of Consecutive Integers.
The product of any k consecutive integers is divisible by k!.

Kinn-1)...n—k+1).

Let P(n, k) =n(n—1)...(n —k+1).
Positive Integers (n > k).
We recall the binomial coefficient (}), which counts the number of

subsets of size k from a set of size n. By definition, this count must
be an integer. Algebraically,

<n> nn—1)...(n—k+1) P(n,k).

k! K

k

Since (}) € Z, it follows that k! | P(n, k).
BELES
Integers containing o.

If the sequence includes o, the product is o. Since k! | 0 for all k, the
statement holds.
LB 4

Negative Integers.

If the terms are negative, factor out (—1). The divisibility depends

only on the magnitude of the product, reducing this to Case 1.
B

The Division Algorithm

Though labelled an "algorithm", this is an existence theorem fun-
damental to Euclidean domains. It connects the abstract concept of
divisibility to the concrete geometry of the number line.

Theorem o.4. The Division Algorithm.
Given integers a and b with b > 0, there exist unique integers g (quo-
tient) and r (remainder) such that:

a=bg+r, 0<r<hbh.

9
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Existence.

Consider theset S = {a —bx | x € Zand a — bx > 0}. We must
show S is non-empty. If a > 0, take x = 0;thena € S.Ifa < 0,
takex = a;thena —ba = a(l —b).Sinceb > 1,1—b < 0,s0
a(1 —b) > 0. By the Well-Ordering Principle, S contains a least ele-
ment; call it r. By definition, r = a — bg for some q,s0a = bg+r
with r > 0. We assert r < b. Suppose for contradiction that r > b.
Then
r—b=(a—bg)—b=a—-b(g+1)>0.

Thusr —b € Sandr —b < r, contradicting the minimality of 7.
Hence 0 <r < b.
FER #

Uniqueness.

Suppose a = bg+r = b’ + 1 with0 < r,7 < b. Assume without
loss of generality r > /.

b(g—q) =71 —r

Thus b | (¥ — r). However, since 0 < 7,7’ < b, the difference satisfies

—b < ' —r < b. The only multiple of b in the interval (—b,b) is o. $---y
Thus ' —r =0 = r =7/, whichimpliesb(qg—¢q') =0 = g = by Bt bgr2)
g

EXIES Figure 1: Geometric interpreta-

Example o.5. Divisibility by 24. Let a be an odd integer. Prove that tion of the Division Algorithm.
2 The integer a falls in a unique

24 | a(a”—1).

interval [bg,b(q + 1)), determin-

Let a = 2k 4 1 for some integer k. Substituting this into the expres- ]
ing r.

a(a®> —1) = (2k+1)((2k+1)2 —1) = (2k + 1) (4k> + 4k) = 4(2k + 1)k(k+1).
We rewrite the term (2k +1) as [(k—1) + (k+2)]:

a(a®> —1) =4[(k—1) + (k+2)]k(k +1)
=4(k—1)k(k+1) +4k(k+1)(k+2).

By theorem 0.3, the product of 3 consecutive integers is divisible by
3! = 6. Thus, (k — 1)k(k + 1) is divisible by 6, and k(k + 1) (k + 2)
is divisible by 6. Consequently, the entire expression is divisible by
4 x6=24.

Eal

Example 0.6. Linear Combination Divisibility. Suppose m | (10a —
b) and m | (10c — d). Prove m | (ad — bc).
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We construct a specific linear combination to eliminate the coeffi-
cient 10:

(10a — b)c — (10c — d)a = 10ac — bc — 10ac 4 ad = ad — be.

Since m divides (10a — b) and m divides (10c — d), by the linear-
ity property, m must divide their linear combination. Therefore,
m | (ad — be).

Eid)
Example o0.7. Smallest Linear Combination. Let S be the set of val-
ues ax + by. Letd = axg + byg be the smallest positive integer in
this set. Prove that d | (ax + by).
By theorem 0.4, we can write any element n = ax +byasn = dg+r
with 0 < r < d. Rearranging for r:

r=mn—dq = (ax+by) — q(axo + byg) = a(x — qxo) + b(y — qyo)-

Thus r is also a number of the form ax + by. Since d is the smallest
positive integer of this form, and 0 < r < d, the only possibility is
r = 0. Therefore n = dq, which implies d | (ax + by).

.41

Example 0.8. Harmonic Series. Prove S = 1+ % 4+ % is not an
integer for n > 1.

Let k be the largest integer such that 28 < . Let P be the product
of all odd positive integers not exceeding n. Consider the number

2k=1pS. Expanding the sum:

1 1 1
k_1 = k_1 —_ o oe e —_— DY —
287PS =2 P<1+2+ +2k+ +n>.

The term corresponding to %k becomes:

-1p. L _ D
2k 2

Since P is a product of odd integers, P is odd, so g is not an inte-
ger. For any other term % in the sum (where m # 2F), the denom-
inator m contains at most 251 as a factor. Since P contains all odd
factors up to n, the term 2k=1p cancels the denominator m com-
pletely, resulting in an integer. Thus, 2¥"1PS = Integer + 5. This
sum is not an integer, which implies S cannot be an integer.

$o19]

11
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Example 0.9. Mersenne Primes and Divisibility. We use algebraic
divisibility to restrict primality candidates. Prove that if 2" — 1is
prime, then n must be prime.

We use the polynomial factorisation identity:

1= (x—1) (™ "2 ).

Leta = 2" — 1. Suppose n is composite, say n = abwith1l <
a,b < n.Then2" —1 = 2% —1 = (2°)Y — 1. Let x = 2% Then by
the identity above, (x — 1) | (x? — 1). Substituting back, (2% — 1) |
(2% —1).Since1l < a < n,wehavel < 2 —1 < 2" — 1. Thus
2" — 1 has a non-trivial factor (2* — 1), so it is composite. By contra-
positive, if 2" — 1 is prime, n cannot have factors a, b, so n is prime.

a4

Prime and Composite Numbers

Following our exploration of divisibility and the integers, we observe
that the number 1 possesses a unique structural property: it has
exactly one positive divisor. For any integer n > 1, the set of divisors
includes at least {1,n}. The classification of integers based on the
cardinality of this set is central to number theory.

Definition o0.4. Prime and Composite Numbers.

Let n > 1 be a positive integer. If the only positive divisors of n are
1 and #, then n is called a prime number. If # has a positive divisor
other than 1 and #, then # is called a composite number.

Note

The integer 1 is neither prime nor composite.

We denote the set of prime numbers by a sequence py, p2, . .., where
p1 =2,p2 = 3,p3 = 5, and so on. A divisor p of an integer # is called
a prime factor if p is itself a prime.

Remark.

It should be easy to see why 2 is the only even prime.

The Infinitude of Primes

The fundamental question regarding the distribution of primes was
resolved by Euclid.

Theorem o.5. Infinitude of Primes.

The set of prime numbers is infinite.
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Proof

Suppose, for the sake of contradiction, that there are only finitely
many prime numbers. Let this complete list be {p1, p2, ..., pr}-
Consider the integer N constructed by the product of all primes
plus one:

N=pips...px+ 1

Since N > 1, N must have at least one prime divisor, say 4. If g
were in our finite list, then g = p; for some 1 < i < k. Consequently,
pi divides the product p1p; ... px. By the linearity of divisibility, if

pi | Nand p; | (p1...pk), then p; must divide their difference:

pil (N=p1...px) = pi| 1.

This is impossible, as p; > 2. Therefore, the prime divisor 4 is not
in the list {p1, ..., pr}. This contradicts the assumption that the list
contained all prime numbers.

The construction used in theoremn 0.5 provides a weak but certain
bound on the gaps between primes.

Theorem o0.6. Existence of Primes in Intervals.
For any integer n > 2, there exists a prime number p such that n <
p <nl

i
Proof
Let p1, p2, ..., px be the list of all primes not exceeding n. Con-
sider the integer N = pip2...pr + 1. As shown in the proof of

theorem 0.5, N has a prime divisor g that is distinct from p1, ..., px.
Since g is not in the list of primes less than or equal to #, it follows
thatg > n. Furthermore, since pj, ..., py are distinct integers less
than or equal to 7, their product is a divisor of n!. Specifically:

N=pi...pp+1<nl+1.

The prime divisor 4 must be less than or equal to N. Thus, we have
found a prime g such thatn < g < n!+ 1. Forn > 2, n!isnot

prime, so we can strengthen the inequality to g < n!.
[

While primes never stop appearing, they can become arbitrarily
sparse.

Theorem o.7. Arbitrary Gaps Between Primes.
For any integer K > 1, there exist K consecutive integers that are all

13
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composite.

Proof
Consider the sequence of K integers starting from (K + 1)! + 2:

(K+1D)1+2, (K+1)143, ..., (K+1)I+(K+1).

Letx; = (K+1)!+ifor2 <i < K+ 1. By construction, i < K+1,
so i is one of the factors in (K + 1)!. Thus i | (K + 1)!. We also know
i | i. By linearity, i divides the sum (K+1)!+1i. Since 2 <i < K+1,
the number x; has a divisor i such that 1 < i < x;. To confirm i is a
proper divisor, we note x; = (K +1)! 4+ i > i. Thus, each term in the

sequence is composite.
n

Primes in Arithmetic Progressions

Euclid’s method can be adapted to prove the infinitude of primes in
certain arithmetic progressions.

Proposition o.2. Primes of the Form 4n + 3.
There are infinitely many prime numbers of the form 4n + 3.

Proof

Assume there are finitely many such primes, denoted

{p1,p2 .., px}. Construct the integer N = 4p1py...pr — 1. This
can be writtenas N = 4(p1p2...px — 1) + 3, s0 N is of the form

4k + 3. Consider the prime factorisation of N. The number N is
odd, so 2 is not a factor. Any odd prime is either of the form 4m + 1
or 4m + 3. The product of two numbers of the form 4m + 1 is also
of that form:

(4a+1)(4b+1) =16ab+4a+4b+1 =4(4ab+a+b) + 1.

If all prime factors of N were of the form 4m 4+ 1, their product
N would also be of the form 4m 4 1. But N is of the form 4k + 3.
Therefore, N must have at least one prime factor g of the form

4m + 3. If g were in our list {p1,...,px}, theng | (4p;1...pk). Since
g | N, it would divide their difference 4p; ...pry — N = 1, which is
impossible. Hence, g is a new prime of the form 4n + 3, a contradic-
tion.

We now examine specific constraints on prime constellations.

Divby2  Divbyi Divby K41
(K+1)!  (K+1)1  (K+1)!
+2 +i +(K+1)

Figure 2: Construction of K
consecutive composite integers
using factorials.
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Example o.10. Primes in a Short Sequence. Find all primes p such

that p, p+ 10, and p + 14 are all prime.

We analyse the forms of primes with respect to division by 3. By

the theorem 0.4, any integer p can be written as 3k, 3k + 1, or 3k + 2.

1. If p = 3,then p+10 = 13 and p + 14 = 17. All three are prime,
so p = 3 is a solution.

2. If pis of the form 3k + 1 for k > 1 (since p > 3),thenp + 14 =
(Bk+1)+14 = 3k+15 = 3(k+5). Sincek > 1,k+5 > 6, s0
p + 14 is a multiple of 3 greater than 3, and thus composite.

3. If pis of the form 3k +2 for k > 1, then p+10 = (3k+2) + 10 =
3k+12 =3(k+4). Sincek > 1,k+4 > 5,s0 p + 10 is a compos-
ite multiple of 3.

The only prime not of the form 3k +1or 3k +2 (fork > 1)isp = 3

itself. Thus, p = 3 is the unique solution.

.41

Proposition 0.3. Square of a Prime and Division by 12.
Let p be a prime greater than 3. The remainder when p? is divided by
12is 1.

%

Proof

Any prime p > 3 is not divisible by 2 or 3. By t/eorem 0.4, any inte-
ger can be written in the form 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4,6k + 5.
Since p is prime and p > 3:

* p cannot be 6k, 6k + 2, 6k 4 4 (divisible by 2).
* p cannot be 6k + 3 (divisible by 3).

Thus p must be of the form 6k + 1 or 6k + 5. Note that 6k + 5 can be
written as 6(k 4+ 1) — 1. So any prime p > 3 is of the form 6k £ 1 for
some integer k > 1. We square this expression:

p? = (6k+1)> =36k*> £ 12k +1 = 12(3k> £ k) + 1.

Let g = 3k? &+ k. This is an integer, so p> = 12g + 1. By the unique-
ness part of the Division Algorithm, the remainder when p? is
divided by 12 is 1.

|

Example o.11. Divisibility of the Difference of Prime Squares. Let

p > q > 5 be prime numbers. Prove that 24 | (p? — ¢°).

Let X = p? — g¢°. First, we show that3 | X. Since p,g > 5, nei-
ther is divisible by 3. As shown in the preceding proposition, the
square of such a prime leaves a remainder of 1 when divided by 3.

15
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So pz = 3k; + 1 and q2 = 3k, + 1 for some integers kq, ko. Then
X =(3k;+1)— (Bkp+1) =3(k; —kp),s03 | X.

Next, we show that 8 | X. Any prime p > 5isodd. Let p = 2m +
L.Thenp? -1 = 2m+1)? -1 = @m?> +4m+1) -1 =
4m(m + 1). The product of two consecutive integers m(m + 1) is al-
ways even, so m(m + 1) = 2n for some integer n. Thus, p> — 1 =
4(2n) = 8n, which means 8 | (p* — 1). Similarly, since q is an odd
prime, 8 | (g2 — 1). By linearity, 8 | ((p> — 1) — (¢?> — 1)), which sim-
plifies to 8 | (p* — ¢°).

So we have established 3 | X and 8 | X. Since 8 | X, we can write
X = 8k for some integer k. Now, since 3 | X, we have 3 | 8k. As 3 is
a prime number and does not divide 8, it must divide k. Sok = 3j
for some integer j. Substituting this back, we get X = 8(3j) = 24j.
Therefore, 24 | (p? — ¢%).

Eal

0.4 Special Types of Primes

Historically, mathematicians sought a "magic formula" — a function
f(n) that produces a prime number for every integer input n. Euler

identified several quadratic polynomials with remarkable properties.
For instance, the polynomial

f(n)=n*>+n+41

yields prime numbers for every integer 0 < n < 39. Similarly,

n? 4+ n + 17 produces primes for 0 < n < 15. Despite these successes
over finite intervals, the search for a polynomial that generates only
primes over the integers is futile.

Theorem 0.8. Non-existence of Prime-Generating Polynomials.
Let f(n) = cgn* + - - - 4 c1n + ¢y be a polynomial with integer coeffi-
cients and degree k > 1. There is no such function where f(n) is prime
for all positive integers 7.

gl
Proof
Assume the contrary: that f(n) takes only prime values for all
n > 1. Fix a specific input ny and let p = f(ng). By assumption, p is
a prime number. Consider the evaluation of the function at ng + tp,

where t is any integer. The polynomial term ¢j(ng + tp)/ can be
expanded using the binomial theorem:

cj(no + tp) = cj (n{) + terms containing a factor of p) .
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Summing over all terms j = 0 to k:

k .
flno+tp) =) cjn{) + p - (Integer) = f(ng) + p - (Integer).
j=0

Since f(ng) = p, we can factor out p:
f(ng+tp) = p(1+ Integer).

Thus, for any integer ¢, f(np +  tp) is divisible by p. Since f is a
non-constant polynomial, |f(n)| tends to infinity as # increases. We
can choose t large enough such that |f(ny +tp)| > p. Consequently,
f(ng + tp)is a number divisible by p but strictly greater than p,
which implies it is composite. This contradicts the assumption that

f(n) generates only primes.

Having established that no simple polynomial captures the primes,
we turn to specific forms of integers that have historically been candi-
dates for primality.

Fermat Primes

Fermat studied numbers of the form 2" + 1. He observed that for
such a number to be prime, the exponent m must possess a specific
structure.

Proposition o0.4. Condition for 2" + 1 to be Prime.
Let m > 1. If 2" + 1 is a prime number, then m must be a power of
2. That is, m = 2" for some integer n > 0.

b

¥

Proof

Suppose m has an odd divisor k > 1. Let m = k - I. We use the alge-
braic identity for the sum of odd powers:

Krl= x4+ =2 x4 1).
Substituting x = 2':
oM 41 =Y 1= +1)(@) = +1).

Since k > 1, the factor 2! + 1 satisfies 1 < 2! +1 < 2" + 1. Thus 2" +
1 is composite. By contrapositive, if 2" 4+ 1 is prime, m cannot have

any odd divisor greater than 1. Therefore, m must be a power of 2.
|

17
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Definition o.5. Fermat Numbers.
Integers of the form F, = 22" 41 for n > 0 are called Fermat num-
bers. If F, is prime, it is called a Fermat prime.

The first five Fermat numbers are prime:
F=3, F =5 F=17, F =257, F,=65537.

Fermat conjectured that all F, are prime. This stood until 1732, when
Euler disproved it by factoring Fs.

Example o.12. Euler’s Factorisation of Fs. We prove that F5 = 232 +
1 is composite by showing it is divisible by 641.
Let a = 27 = 128 and b = 5. We observe two algebraic relationships:
(i) a—b®>=128—-125=3.
(i) 1+ab—b*=1+640—-625=1+15=16 = 2%
We wish to check divisibility by 641 = 1 4+ ab. Express Fs in terms
of a and b:

F5=224+1=28.211=02")* 2" +1=0"2%+1.
Substitute 2* = 1+ ab — b*:

Fs=a*(1+ab—b*) +1
=a*+a°b — bt +1
=at +a°b — (ab)* +1
=1+ a* +ab(a* — a®p%)
=1+a*+ab(a* — (ab)?).
This direct expansion is cumbersome. Instead, use the relation

1+ab | (1— (ab)?) and simpler grouping. From 2* = 1+ ab — b*,
we write:

Fs=a*(14ab—b*) +1= (1+ab)a* — (ab)* + 1.

Note that 1 — (ab)* is a difference of squares: (1 — (ab)?)(1+ (ab)?).
Since (1 +ab) divides (1 — (ab)?), it divides 1 — (ab)*. Thus (1 + ab)
divides both terms on the right hand side. Therefore, 641 | Fs.

#b
Despite the failure of primality, Fermat numbers possess a property
that provides an alternative proof for the infinitude of primes.

Theorem o0.9. Coprimality of Fermat Numbers.
For distinct non-negative integers n and m, the Fermat numbers F,; and
F,; are coprime. That is, if 4 divides both F, and F;,;, then d = 1.
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Proof

We establish the recurrence relation:
F,—2=FKFF...F,_1.

We proceed by induction. Forn =1, F; —2=5-2=3 =K,
Assume the product holds for k. Consider F, 1 —2:

Foop—2=(22" +1)—2=2""—1=02% —1)2¥ +1).

Since 22° 4+ 1 = F, and by hypothesis L F—-2= Hi:ol F;, we
have:

k—1 k

Foyq—2= (H Fl-) F=]]F-
i=0 =0

Now, let m > n and let d be a common divisor of F;, and F,,. From

the recurrence, F, —2 = F, - (product of other Fermat numbers).

Since d | Fy, it follows that d | (F, — 2). We are given d | F,. By lin-

earity, d must divide the difference:
d|Fy—(Fn—2) = d|2

The divisors of 2 are 1 and 2. However, all Fermat numbers are
odd. Thus d # 2. Therefore, d = 1.

Remark.

Since each F; is coprime to all others, each F,, must introduce at
least one new prime factor into the set of all primes. This implies
there are infinitely many primes.

Mersenne Primes
Another form of interest involves powers of 2 minus one.

Definition 0.6. Mersenne Numbers.
Integers of the form M, = 2" —1 for n > 1 are called Mersenne num-
bers. If M, is prime, it is called a Mersenne prime.

Just as with Fermat numbers, the exponent of a Mersenne prime is

restricted.

Proposition o0.5. Necessary Condition for Mersenne Primes.
Let n > 1. If a" — 1 is prime, then a = 2 and n is prime.
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Suppose a > 2.

We have the factorisation a” —1 = (a —1)(a"~! +---41). Since a >
2,a—1 > 1. Alson > 1implies the second factor is greater than 1.
Thus a" — 1 is composite. So we must have a = 2.

SEBA #
Suppose n is composite.

Letn = klwithl < k < n. Then2" —1 = (2F)! — 1. Using the
identity x' —1 = (x —1)(x"1 + .- + 1) with x = 25: 2K — 1 divides
2" —1.Since1 < k < n,wehavel < 28 -1 < 2" —1. Thus 2" — 1

has a non-trivial factor. Therefore, if M, is prime, n must be prime.
EXLES

Remark.

The condition is necessary but not sufficient. For example, Mj; =
211 —1 =2047 = 23 x 89.

Example 0.13. A Composite Sequence. Let the sequence {g(n)}
satisfy ¢(1) = 1and g(n + 1) = g(n)? + 4g(n) + 2. Prove that if n is
even, g(n) is composite (except for g(2) = 7).

Let h(n) = g(n) + 2. Substituting into the recurrence:

hn+1)=gn+1)+2=gn)>+4g9(n) +4 = (g(n) +2)% = h(n)%

With (1) = g(1) +2 = 3, we have the closed form h(n) = 32" .
Thus g(n) = 32" —2.

Whenn = 2,¢(2) = 3> -2 = 7 whichisprime. When
n > 2and nis even, we show that g(n) is divisible by 7. We can
rewrite ¢(n) by introducing a —9 and +7 to factor the expression:

gn)=3""—947=323"2_1)4+7.

Consider the exponent E = 2"~! — 2. Factoring out 2, we get E =
2(2"~2 —1). Since n is even, let n — 2 = 2k. Then 2”2 — 1 = 2% —
1 = 4K — 1. Using the identity x — 1 | x* — 1, we know that 4 — 1 |
4k — 1,503 | (2"=2 —1). This implies that 6 | 2(2"~2 — 1), so the ex-
ponent E is a multiple of 6. We can therefore write 3F — 1 as 30" — 1
for some integer m. Using the factorisation x™ —1 = (x —1)(x™ ! +
-+ 1) with x = 3°:

(3 —1) | (3°" —1).

We calculate 3¢ — 1 = 729 —1 = 728.Since 728 = 7 x 104,7 |
(3% — 1). By transitivity, 7 | (3F — 1). Substituting this back into the
expression for g(n):




DISCRETE II: ELEMENTARY NUMBER THEORY

Since 7 divides both terms on the right hand side, 7 | g(n). Forn >
2, g(n) >7,so g(n) is composite.

$o19]

0.5 Exercises

1.

10.

Induction on Exponents. For any positive integer n > 3, prove
that there always exist odd integers x and y such that

2" = 7x% + 2

The Binet Formula. The Fibonacci sequence {f, } is defined by
fi=1fo=1and f; = fy_1 + fu—2 for n > 3. Prove via induction
f n= =

s((2%) - (59

Summation of Structured Sequences. Let {a,} be a sequence

1

where ay; = 3k? and ay,_; = 3k(k — 1) + 1 for positive integers k.
Let S,, denote the sum of the first n terms. Prove that:

1 1
Spq = E1(412 —314+1) and Sy = E1(412 +31+1).

Cantor’s Pairing Function. Prove that the function f(m,n) =
m+ 3(m+n —2)(m+n — 1) is a bijection from Z* x Z* to
Z*. That is, as m and n range over all positive integers, the value
f(m,n) takes every positive integer value exactly once.

Linear Combination Divisibility. Given integers m, n, p, g such
that (m — p) | (mn+ pq), prove that (m — p) | (mg + np).

Polynomial Integer Values. Prove that for any integer n, the poly-
nomial f(n) = in®+ 1n? 4+ ln always evaluates to an integer.

Divisibility by Square Factors. Let n # 1 be an integer. Prove that
(n—1)2 | (n* —1) if and only if (n — 1) | k.

Divisibility by 16. Let n be an odd integer. Prove that 16 | (n* +
4n? +11).

Inductive Divisibility. Let n be a positive integer. Use mathemati-
cal induction to prove that

11 | (3n+1 +3n71 +68(n71))'

System of Divisors. Find three positive integers greater than 1
such that the product of any two, plus 1, is divisible by the third.

21
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Modular Arithmetic with Powers. Let n be an odd number. Prove
that the last two digits of 22" (22"+1 — 1) are 28.

Propagating Divisibility. Let | be a fixed positive integer. Suppose
d is an integer such thatd | (a+b+c), d | (a' —b'),and d | (b' —1).
Prove that for any positive integer #,

d| (@ + "t o).
Sum and Difference Divisibility. Let a, b be integers not divisible
by 3. Prove that exactly one of a + b or a — b is divisible by 3.

Harmonic Sums. Prove that the sum S = % + % + -+ anﬁ for
n > 1 is never an integer.

Triangular Decomposition. Let n be a positive integer. Prove that
there exists a unique pair of integers k, [ such that n = @ +1,

where 0 <[ < k.

Base-k Representation. Let k > 2 be an integer. Prove that any
positive integer a can be uniquely expressed in the form

a=Dbpyk" + by k" U+ bk + by,
where 0 < b, <kand0<b; <kfori=0,...,n—1.

Sophie Germain Primes. Let p > 5 be a prime. If 2p + 1 is also
prime, prove that 4p 4 1 must be composite.

Simultaneous Primes. Determine all primes p such that p? — 2,
2p? — 1, and 3p? + 4 are all prime numbers.

Primes in Arithmetic Progression. Prove that there are infinitely
many primes of the form 6n + 5.

Decomposition into Consecutive Sums. Let n > 3 be an odd
number. Prove that # is prime if and only if 7 cannot be expressed
as the sum of three or more consecutive positive integers.

Wilson’s Theorem Converse Variant. Let m > 1 be a positive
integer. Prove that m | (m — 1)!if and only if m is a composite
number greater than 4. (Note: Text exercise specified > 5, but
4 13! = 6. Check boundary cases carefully).

Composite Polynomials. Prove that for any integer n > 1, the
number n* + 4" is composite. (Hint: Consider the cases 1 even
and 7 odd separately; use the Sophie Germain Identity for odd ).

Composite Neighbours.

(a) De Bouelles asserted that for all n > 1, at least one of 61 — 1
and 6n + 1 is prime. Find a counterexample.

(b) Prove that there are infinitely many n such that 6n — 1 and
6n + 1 are both composite.



24.

25.

26.

27.

28.

29.

30.
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Distinct Prime Divisors. Let n > 2. Prove that for the sequence of
n — 1 consecutive integers

n!'+2,n+3,...,n+n,
each term has a prime divisor that does not divide any of the

other n — 2 terms.

Square Divisibility of Factorials. Find all odd numbers n such
that n? | (n —1)!.

Growth of Primes. Let p; = 2,pp = 3,... be the sequence of
. . . . 2”71
primes in increasing order. Prove that p, <2° .

Arithmetic Progressions of Primes. Find 6 primes less than 160
that form an arithmetic progression. Then, prove that there cannot
be 7 primes all less than 200 forming an arithmetic progression.

Infinite Product Inequality. Let N be a positive integer, and
P1, ..., Pn be all primes not exceeding N. Prove:

n 1 -1
(-5 -
i=1 pi

Use the divergence of the harmonic series to deduce that there are
infinitely many primes.

Fermat Primes Structure. Let m be a positive integer such that
2" + 1 is prime. Prove that m must be a power of 2.

Euclid-Mullin Sequence Properties. Let A} = 2and A1 =
A2 — A, +1forn>1.

(a) Prove that A, 1 = A1Ap--- Ay + 1
(b) Prove that if m # n and d > 1 divides A,, then d 1 A,.

(c) Use this mutual coprimality to provide an alternative proof
that there are infinitely many primes.



1
Greatest Common Divisor

While divisibility defines a relationship between two integers, the
study of number theory often requires comparing the multiplicative
structures of multiple integers simultaneously. The central concept in
this comparison is the greatest common divisor.

We generalise the concept of a common divisor to sets of integers.

Definition 1.1. Greatest Common Divisor.

Let aj,ay,...,a, be integers, not all zero. An integer d is a common di-
visor of the setif d | a; for alli = 1,...,n. The greatest common di-
visor (GCD), denoted (a3, 42, ...,4ay), is the largest such integer.

Definition 1.2. Coprimality.

The integers ay, 4y, ...,a, are coprime (or relatively prime) if their great-
est common divisor is 1. They are pairwise coprime if (a;,4;) = 1 for
alll1 <i<j<mn.

Note

The set {6,10,15} is coprime because no integer greater than 1
divides all three, but it is not pairwise coprime since (6,10) = 2.

Since divisibility is defined by integer multiples, the sign of an inte-
ger does not influence its divisors.

Proposition 1.1. Absolute Value Invariance.
Let ay,...,a, be integers, not all zero. Then:

(a1,az,...,an) = (la1], |az|, ..., |an|)-

Proof

Let d be a common divisor of a1, ...,4y,. Since d | g, it follows that
d | |aj|. Thus d is a common divisor of the absolute values. Con-
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versely, if d | |a;|, then d | a;. Since the sets of common divisors are
identical, their maximum elements must be identical.

|
Proposition 1.2. Zero Element.
For any non-zero integer b, (0,b) = |b|.

Proof
Sinceb | 0(as0 = b-0)and b | b, |b| is a common divisor. No divi-

sor of b can exceed |b|, so || is the greatest common divisor.
|

These properties allow us to restrict our attention to positive integers
without loss of generality.

The Euclidean Algorithm

The calculation of the GCD does not require factorisation. Instead,
it relies on the repeated application of the Division Algorithm (t/ie-
orem 0.4). We first establish a reduction lemma, known historically
from Euclid’s Elements (Book VII, Proposition 2).

Theorem 1.1. Euclidean Reduction.
If a = bk + ¢ for integers a,b, ¢, k, then (a,b) = (b, c).

Proof

Letd = (a,b). Sinced | aand d | b, by linearity, d | (a — bk), which
implies d | c. Thus d is a common divisor of b and ¢, sod < (b,c).
Conversely, lete = (b,c). Sincee | bande | ¢, linearity implies

e | (bk+c),soe | a. Thus eis a common divisor of 2 and b, so e <
(a,b). Therefore, (a,b) = (b, c).

This theorem transforms the problem of finding (4, b) into finding the
GCD of smaller numbers (b, r), where r is the remainder when a is
divided by b. Iterating this process yields the Euclidean Algorithm.

Theorem 1.2. The Euclidean Algorithm.
Let a and b be positive integers. By repeated application of the Divi-
sion Algorithm:



26 GUDFIT

a=bq +r1, 0<r<b
b=riga+ 1o, 0<rmn<n
r1 = 1243+ 13, O0<rz<m
T2 = Ty_1qn + Tn, 0<r <ry

Tn—1 = Tnqdns1 +0.

The last non-zero remainder r;, is the greatest common divisor of a and

b.

ii—‘g a
Proof
Applying theorem 1.1 sequentially: bh

X
(a,b) = (b,r1) = (r1,r2) = -+ = (ru—1,70) = (ra, 0). b
By the Zero Element property, (r,,,0) = 7y. nwxn | n | n
[ |

Corollary 1.1. Divisibility of Common Divisors. Every common divisor Figure 1.1: Geometric visu-
of a and b divides (a,b). ) alisation of the Euclidean

Ham Algorithm. We decompose
Proof a rectangle of sizea x b into
Let d be a common divisor. In the algorithm above, d | aandd | squares of size b, then squares

b = d| r.Sinced | bandd | r1,d | rp. Inductively, d divides of size r1, and so on.

every remainder, including r, = (a,b).

[ |
Example 1.1. Calculation of GCD. We find (6731,2809).
6731 = 2809 x 2 + 1113
2809 = 1113 x 2 + 583
1113 =583 x 1+ 530
583 =530 x 1+ 53
530 =53 x10+0
The last non-zero remainder is 53. Thus (6731,2809) = 53.
.45

Structural Properties

The GCD behaves linearly with respect to multiplication and is in-
variant under linear shifts.
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Proposition 1.3. Homogeneity and Division.
Let a,b be integers and k be a positive integer. Let (a,b) = d.
1. (ka, kb) = k(a,b) = kd.

2. (%,g) =1

Proof

For (2), letd’ = (a/d,b/d). Thend' | (a/d)and d’ | (b/d),sodd |a
and dd’ | b. Thus dd’ is a common divisor of 4 and b. By definition,
dd" < (a,b) = d, which implies d’ = 1. For (1), let ¢ = (ka, kb). Since
k| ka and k | kb, corollary 1.1 gives k | g, so write ¢ = kgq. Because
Q| kaand g | kb, we have g1 | aand g7 | b, so g1 < (a,b) = d. Hence
g < kd. Conversely, kd divides both ka and kb, so kd < g. Therefore

3

Rl

g =kd.
|
Theorem 1.3. Invariance under Linear Combination.
For any integer k, (a,b) = (a,b + ka).
il

Proof

Ifd | aand d | b, thend | (b + ka). Thus every common divisor of
a,b is a common divisor of 4, b + ka. Conversely, ifd | aand d | (b +
ka), thend | (b+ ka —ka) = b. Hence the sets of common divisors

coincide, so the GCDs are equal.
|

We can apply these structural theorems to prove properties of number-
theoretic sequences.
Example 1.2. Factorials and Shifted Indices. Find (n!+1, (n+1)! +

1).
Using theorem 1.3 witha =n!+1land b= (n+1)! + 1
Note that

(m+1)+1=m+n'+1=m+1)(n!+1-1)+1=(n+1)(n'+1)—(n+1)+1=(n+1)(n!'+1) —n.
Thus,
(m+1)!+1L,n+1)=(—nn'+1) = (n,n!+1).

Since n divides n!, any common divisor of n and n! 4+ 1 must divide
1. Therefore, the GCD is 1.

Fobl
Example 1.3. GCD of Linear Forms. Calculate (30n +2,12n+1) for
any integer n.
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We use the Euclidean reduction repeatedly:

(B0n+2,12n+1) = (30n +2 —2(12n+1),12n + 1)
= (6n,12n +1)
= (6n,12n+1—2(6n))
= (6n,1).

Thus, the GCD is 1 for all n.
$45)

GCD of Multiple Integers

The definition of the GCD extends recursively to multiple integers.

Theorem 1.4. Associativity of GCD.
For integers ay, ..., au:

(ar,a,...,ay) = ((a1,a2),4a3,...,4,).
i

Proof

Letd = (ay,...,an)and ¢ = ((ay1,a2),a3,...,a,). If k divides all
a;, thenk | (ay,a2). Thus k divides (ay,a;) and a3, ...,a,,s0k | g.
Hence d | g. Conversely, if k | g, then k | (a1,a;) and k | a; fori > 3.
Since k | (ay,a2), k | a;and k | ap. Thus k divides all a;, so ¢ | d.
Therefore d = g.

]
Corollary 1.2. Distributive Property of GCD.
(a,...,a0)(b1,...,bym) = (albl,...,al-b]-,. e Anby).
In particular, (a,b)(c,d) = (ac,ad, bc,bd).
e

Proof

Consider the case n = 2,m = 2. Letd = (a1,a) and e = (by, bp). By
proposition 1.3, (are,aze) = e(ay, ap) = de. Since e = (by,by), homo-
geneity also gives

(are,aze) = ((a1by,a1by), (azby, a2by)).

By theoren 1.4, this equals (a1bq, a1by, azbq,ab;). The general case
follows by induction.
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Example 1.4. Algebraic Verification. We verify that (a,b)? =
(a?,ab,b?).
Using corollary 1.2:

a, ab)=(a-a,a-b,b-a,b-b) = (a°,ab,ab, .
b)(a,b bb-ab-b 2 ab,ab, b?

Since the set of numbers is {a?,ab, b*}, the GCD is (a?,ab, b?).

Eal

Application to Special Numbers

The Euclidean Algorithm allows us to compute the GCD of numbers
defined by exponents without expanding the terms.

Example 1.5. Fermat-style GCD. Letm > n > 0. We calculate
(@ +1,a%" +1).

Let m = n+r withr > 1. Let x = a?". Then a®" — 1 = x¥ — 1. Since
2 ol=(x—Dx+1)E24+1) - (x2 +1), wehave x + 1 | 22 —
1. Thus a®" — 1 = (a®' + 1) M for some integer M.

We can explicitly write:

1= —1)+2
Since (a?" + 1) divides (a*" — 1), we can apply theoremn 1.1:
@+ 1,0 +1) = (@@ —1+2,a2 +1) = 2,a® +1).

Thus, the GCD is 1 if a is even, and 2 if a is odd.

b
Theorem 1.5. GCD of Mersenne Numbers.
For positive integers m, n:
(2m —1,2" —1) =20mm _q,
i

Proof

Assume without loss of generality m > n. By theorem 0.4, we write
m = ng +r where 0 < r < n. We decompose the term 2™ — 1 as fol-
lows:

2M 1 =217 —1=2"(2" - 1)+ (2" —1).

We recall that x — 1 divides x7 — 1. Letting x = 2", we see that 2" —
1 divides (2")7 —1 = 2™ — 1. Thus, there exists an integer k such
that 2" — 1 = k(2" — 1). Substituting this back into our expression:

M1 =2 k(2" = 1)+ (2" —1).




30 GUDFIT

This is a linear combination of the form A = BQ 4 R, where A =
2" —1,B = 2" —1,and R = 2" — 1. By theorem 1.1, the GCD satis-
fies:

(2" —-1,2"-1)=(2"-1,2" - 1).

This step exactly mirrors the first step of the Euclidean Algorithm
applied to the exponents m and n, where m = nq + r. Repeating
this process follows the Euclidean Algorithm on the exponents:

(2" —-1,2"-1) - (2" -1,2" =1) = --- — (29— 1,20 - 1),

where d = (m,n). Since 2° — 1 = 0, the final result is 2¢ — 1.

Example 1.6. Complex Fraction GCD. Prove that

a b c _1
(a,¢)" (ba)" (c,b))
Let X = (a,b)(b,c)(c,a). By the distributive property:

X = (ab, ac, b?, be)(c,a) = (abe, a?b,ac?, a’c, b*c, ab?, bcz,abc).

Rearranging the terms and removing duplicates in the GCD set:
X = (azb, a?c,ab?, b%c,ac?, bcz,abc).
Now consider the expression we wish to simplify. Let
Y = (a(a,b)(b,c),b(b,c)(c,a),c(c,a)a,b)).

Expanding the terms inside Y using distributivity:
1. a(a,b)(b,c) = a(ab,ac,b?,bc) = (ab,a’c,ab?,abc).
2. b(b,c)(c,a) = b(bc,ab,c?,ac) = (bc,ab?, bc?, abc).

3. ¢(c,a)(a,b) = c(ac, be, az,zzb) = (acZ, be?, ac, abc).

Combining these sets, Y is the GCD of all terms listed above. Ob-
serve that the union of these sets is exactly the set of terms defining
X. Thus Y = X. Let G = (4,b)(b,c)(c,a) = X. Then

Y = (a(a, b) (b, c),b(b,c)(c,a),c(c,a)(a,b)) = (G~ (;C),G. (bf’a),c- (C,Cb)).

By proposition 1.3,Y = G (L b L) Since Y = G, it follows

(ac)’ (ba)’ (c,b)
that (2, oy 157 ) = 1

ERl
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1.2 The Linear Structure of Divisibility

The Euclidean Algorithm provides more than just the numerical
value of the greatest common divisor; its recursive structure reveals
that (a,b) can be expressed as a linear combination of 4 and b. This
property, known as Bézout’s Identity, bridges the gap between the
multiplicative structure of integers (divisibility) and their additive
structure.

We begin by formalizing the coefficients generated during the Eu-
clidean Algorithm. These coefficients allow us to "unwind" the algo-
rithm to express the remainder in terms of the initial inputs.

Lemma 1.1. Extended Euclidean Recurrence Let a,b be positive inte-
gers. Consider the sequences of quotients g; and remainders r; gen-

erated by the Euclidean Algorithm, where rg = b,r_; = a. Define

the sequences Py and Qy recursively by:

Py=1, Pi=q, Pr=qP1+P_ (k=>2);
Q=0 0Q1=1 Qr=qQk-1+Q—2 (k=>2).

Then for k > 1, the remainders satisfy the identity:
lel - Pkb = (—1)k717’k.
1k

We proceed by induction on k.
Base Case (k = 1).
From the definition, Q; = 1and P; = g;. The first step of the Eu-
clidean algorithm is a = bq; + r1, which rearrangesto1-a —g; - b =
r1. Thus, Qia — Pb = (—1)%ry, and the statement holds.

FiE B 45
Base Case (k = 2).

The next Euclidean step is b = r1g42 + 2, so ¥ = b — r1g,. Substitut-
ing r1 = a — bq; gives

rp=b—qx(a—bq) = (1+q192)b — qa.

Thus —r, = goa — (g192 + 1)b. Since Qy = g and P> = goq1 + 1, we
have Qya — Pob = —15 = (—1)r,.

SR #
Inductive Step.

Assume the identity holds for k — 1 and k. We prove it for k + 1. Re-
call the recurrence ry_1 = 71¢qgs1 + tkr1, Wwhich implies 1 =
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Tk—1 — "qk+1- Multiplying by (—1)*:

(=Dfrer = (=DFrq = (=1)Frge

(=1 2r1 + g [(=1)

= (Qk—1a — Pc_1b) + qi11(Qra — Pcb)  (by hypothesis)
(Qk—1+ qk+1Qx)a — (Pe—1 + Grs1 Pi).

By the recursive definitions of P and Q, this simplifies to
Qk+14  —  Pryqb. Thus the identity holds for all steps of the algo-
rithm.

FE #
This constructive lemma leads directly to one of the most fundamen-
tal theorems in elementary number theory.

Theorem 1.6. Bézout’s Identity.
Let a and b be integers, not both zero. There exist integers s and ¢ such
that:

as + bt = (a,b).

T3
Proof
If a or b is zero, the result is trivial (e.g., ifa = 0, (0,b) = |b], so
chooses = 0,t = =£1). Assumea,b > 0. Let the Euclidean algo-
rithm terminate at step n with remainder r, = (a,b). By lemma 1.1,
we have:

Qna — Pnb = (*1)71_11’".
Multiplying by (—1)"~! (which is 1):

(—=1)"'Qua + (=1)"Pyb = 1, = (a,b).

Lets = (—1)""'Q,andt = (—1)"P,. These are the required inte-

gers.
|

Remark.

The integers s and t are often called Bézout coefficients. They are
not unique; if (s, t) is a solution, then (s + kb/(a,b),t — ka/(a,b)) is
also a solution for any integer k.

Corollary 1.3. General Linear Combinations. Let aq, ..., a, be integers.
There exist integers ki, . .., k; such that:

n
Y kia; = (a1,...,an).
i=1

R
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Proof

This follows by induction using the associative property of the
GCD established in the previous section.

Coprimality and Euclid’s Lemma

Bézout’s Identity provides a powerful algebraic characterisation of
coprimality. While the definition of (a,b) = 1 is about the absence of
common divisors, Bézout’s Identity transforms this into the existence
of a solution to a linear equation.

Corollary 1.4. Characterisation of Coprimality. Integers a and b are co-
prime if and only if there exist integers s and t such that:

as+ bt = 1.

Ej)
Necessity.
If (a,b) =1, theorem 1.6 guarantees s, t exist.
LB 4
Sufficiency.
Suppose as + bt = 1. Letd = (a,b). Thend | aand d | b, so by lin-
earity, d | (as + bt), which implies d | 1. Thus d = 1.

BLES
This characterisation allows us to manipulate divisibility relations
algebraically without prime factorisation.

Theorem 1.7. Preservation of GCD.
Let a,b, c be integers. If (a,c) =1, then (ab,c) = (b, ¢).

Proof
Since (a,c) = 1, there exist s, t such that as + ct = 1. Multiply this
equation by b:

(as+ct)b=b = (ab)s+c(bt) =b.

Letd = (ab,c). Thend | aband d | c. By linearity on the equation
above, d | ((ab)s + c¢(bt)),sod | b. Thusd is a common divisor of
b and ¢, implying d < (b,c). Conversely, any divisor of b and ¢ also
divides ab and ¢, so (b,¢) < (ab, c). Therefore, (ab,c) = (b,c).

This theorem immediately yields the standard form of Euclid’s
Lemma.
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Corollary 1.5. Euclid’s Lemma. If ¢ | ab and (c,a) =1, then ¢ | b.
ek

Proof

By theorem 1.7, (ab,c) = (b,c). Since ¢ | ab, we have (ab,c) = |c|.

Therefore, |c| = (b, c), which implies c | b.
|

Corollary 1.6. Product Coprimality. If (a;,b;) = 1foralll <i < n
and 1 <j <m, then:

n m
<H aj;, H b]> =1
i=1 j=1

In particular, if (a,b) = 1, then (a",0™) =1 for any n,m > 1.

o
Proof
By repeated application of t/icorem 1.7. First, fix b;. Then (a1, b;) =
1 = (may,b;) = (a2,b;) = 1. Inductively, ([Ta; b;) = 1. Now
let A =J]a;. We have (A, b;) = 1 for all j. Applying the logic again,

(A, b1by) = (A, by) = 1. Inductively, (A, [1b;) = 1.
|

We conclude this section with the property that defines the role of
prime numbers in the multiplicative structure of integers.

Theorem 1.8. Prime Divisibility Property.

Let p be a prime and 4 be an integer. Then either p | a or (p,a) = 1.

Consequently, if p | a1a; .. .4y, then p divides at least one factor a.
g1l

Proof

Letd = (p,a). Sinced | p,d must be either 1 or p. If d = p, then

p | a.If d = 1, they are coprime. For the consequence: Suppose p |

aj ...ay. If p divides no ay, then (p,a;) = 1 for all k. By the Product

Coprimality corollary, (p,[Tax) = 1, contradicting p | IT ax.
u

1.3 Applications and Diophantine Examples

Example 1.7. The Measuring Problem. Two containers have capac-
ities of 27 litres and 15 litres. How can one measure exactly 9 litres
of oil from a barrel using only these containers?

We seek integer solutions to the linear combination 27x + 15y = 9.
First, check solvability: (27,15) = 3. Since 3 | 9, a solution exists.
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Apply the Euclidean algorithm to 27 and 15:
27=1x15+12

15=1x12+3

Back-substitute to find the combination for 3:
3=15-12=15—-(27-15) =2x15—-1x 27.
Multiply by 3 to get 9:
9=6x15-3x27.

Operational interpretation: The term 6 X 15 implies filling the
15-litre container 6 times. The term —3 x 27 implies emptying the
27-litre container 3 times.

- Hill B (15L), pour into A (27L). A has 15L.

- Fill B, pour into A. A is full (needs 12L). B has 3L left. Empty A.

- Pour B (3L) into A. A has 3L.

- ... Repeat this process until the net result is achieved.

E
Example 1.8. Extraction of k-th Powers. Let a,b,c, k be positive
integers such that ab = c* and (a,b) = 1. Prove that a and b are
perfect k-th powers.
Letd = (a,c). Since d | a and d | ¢, we can write a = da’ and ¢ = dc’
where (a’,¢') = 1. Consider the term (a,c)* = dX. Since (a,b) = 1,
a shares no factors with b. Since ab = ¢, all prime factors of 2 must
appear in c* with multiplicity divisible by k. More formally, we use
the property (x,y) = 1 = (x",y") = 1. Weclaima = (a,c)~.
Consider the GCD:

(a*,cF) = (a,0).
Also consider (a*,ab). Since (a,b) =1 = (a*"1,b) =1
(a*,ab) = a(ad" b)) =a-1=a.
Substituting ab = ck:
a= (a5 c*) = (a,0)F.

Thus a is a perfect k-th power. Similarly b = (b, c)*.

$o19]

35
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Example 1.9. Divisibility by 11. Prove that 11 | (a® + 5b?) if and
only if 11 | a and 11 | b.

Eid)

Sufficiency.
If11 | aand 11 | b, then a = 11k, b = 11m. a* + 5b* = 121k? + 605m?,
which is clearly divisible by 11.

LB 4
Necessity.
Suppose 11 | (a? + 5b%). We prove 11 | b by contradiction. Assume
11 t b. By theorem 1.8, (11,b) = 1. By Bézout’s Identity, there exists

an inverse-like integer t such that bt + 11s = 1. Consider the expres-
sion a? + 5b%. Multiply by #2:

t2(a® + 5b%) = (at)? 4 5(bt)>.
Since bt = 1 — 11s, we have (bt)? = (1 —11s)? = 1 — 22s + 121s%.
Thus (bt)?> = 1 + 11K for some integer K. Substituting back:
t2(a* +5b%) = (at)® +5(1 + 11K) = (at)* + 5 + 55K.

Since 11 | (a® + 5b%), 11 divides the LHS. Thus 11 | ((at)? +5). Let
x = at. We apply the Division Algorithm: x = 11g + r where 0 <
r < 10. Then x> +5 = (11g+r)> +5 = 11(11¢%> + 2gr) + 1> + 5.
For 11 to divide the whole expression, we must have 11 | (1% + 5).
We test all possible remainders r € {0,1,...,10}:

e r=0 = r>+5=5(No)
e r=1 = 6 (No)

e ryr=2 = 9 (No)

e r=3 = 14 (No)

e r=4 — 21 (No)

e yr=5 — 30 (No)

e r=6 — 41 (No)

e yr=7 = 54 (No)

e r=8 = 69 (No)

e r=9 — 86 (No)

e yr=10 = 105 (No)
This is a contradiction. Thus the assumption 11 { b is false. So 11 |
b. Since 11 | b, 11 | 5b2. Since 11 | (a? + 5b2), by linearity 11 | a.
Since 11 is prime, 11 | a.

ELES

Example 1.10. Factorial Divisibility. Let m, n be coprime positive

integers. Prove that m!n! divides (m +n — 1)!.
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Consider the integers:

n nl(m—1)! m

Since these are binomial coefficients, A and B are integers. We can
write:
(m+n—-1D'=A-n(m—-1)!'=B-m!(n—1)L

Let X = (m +n — 1)!. The equations imply:

|
X:A.n!% — mX = A-nlm.

|
X:B.m!% — nX =B mhl

We see that m!n! divides mX and nX. Let Y = m!n!. Then Y | mX
and Y | nX. Since (m,n) = 1, by Bézout's Identity, there exist s, t
such that ms 4+ nt = 1. By linearity of divisibility, since Y divides mX
and nX, it divides any linear combination of them:

Y| (mX)s+ (nX)t = Y| X(ms+nt) = Y|X-1.

Therefore, m!n! | (m+n —1)!.

E X

1.4 Least Common Multiple

Parallel to the greatest common divisor is the concept of the least
common multiple. While the GCD captures the intersection of divisor
sets, the least common multiple captures the union of multiple sets.

Definition 1.3. Least Common Multiple.
Let a1, ...,a, be non-zero integers. An integer m is a common multi-

is the smallest positive common multiple.

Proposition 1.4. Basic Properties of LCM.
Let a4, ...,a, be non-zero integers.
1. Absolute Value: [ay,...,a,] = [|a1],..., |a4|].

2. Divisibility: If M is any common multiple, then [ay,...,a,] | M.

3. Homogeneity: For any k > 0, [kay, ..., ka,| = k[ay, ..., au].

P

<

ple if a; | m for all i. The least common multiple (LCM), denoted [ay, ...

A:<m+n—1>:(m+n—1)! and B — <m+n—1>:(1:111!—(1-nn_—1;!)!.

ran]r

37
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Proof

Property (1) follows immediately from the definition of divisibility.
For (2),letm = [ay,...,a,) and let M be a common multiple. By
the Division Algorithm, M = mg + r with0 < r < m. Since a; | M
and a; | m, linearity implies a; | r for all i. Thus r is a non-negative
common multiple strictly smaller than the least positive common
multiple m. This forces r = 0.

For (3), let L = [kay,..., kay,|. Since ka; | k[ay,...,a,], we have L |
km. Thus L/k is an integer. Since ka; | L == a; | (L/k), L/kis
a common multiple of the a;’s,som < L/k = km < L. Thus
L =km.

[ |
Theorem 1.9. The GCD-LCM Relation.
For positive integers a and b:
[a,b](a,b) = ab.
il
Proof
Letd = (a,b). We first show thatm = % is a common multiple.

Since b = db’ for some integer ', m = ab’. Thus a | m. Similarly b |
m. Let M be any common multiple of s and b. Then M = ax = by
for integers x, y. Dividing by d:

a b

T
Since (a/d,b/d) = 1, Euclid’s Lemma implies g | x.Sox = k% for
some integer k. Substituting back: M = a (kg) = k% = km. Thus

any common multiple is a multiple of ab/d. Therefore [a,b] = %.
|

[a,b]".
e sh

Proof

Wy A" (ab)" ab ”_ "
R e o R P ((mb)) = la bl

Theorem 1.10. Associativity of LCM.

Corollary 1.7. Power Property of LCM. For any positive integer n, [a",b"]
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For integers ay, ..., an:

[a1,...,a4) = [[m,82],a3,...,a,].

i
The proof mirrors that of the GCD associativity and relies on the fact
that the set of common multiples of {ay,...,a,} is identical to the set
of common multiples of {[a1,az],a3,...,a,}.

Applications of LCM

Example 1.11. Planetary Alignment. Venus orbits the Sun in 225
days, and Earth in 365 days. If they are aligned today, when will
they align again at the same position?

We seek the least common multiple of 225 and 365. Using the Eu-
clidean Algorithm to find (225,365):

365 =225 x 14 140
225 =140 x 1+ 85
140 =85 x 1+ 55
85 =55x1+30
55 =30x1+25
30=25x1+5
25=5x5+0.

Thus (225,365) = 5. By theoremn 1.9:

225 x 365 82125
5 5

This corresponds to 16425/365 = 45 Earth years and 16425/225 =

73 Venusian years.

[225,365] = = 16425 days.

et
Example 1.12. Counting Solutions to GCD-LCM Constraints. Find
the number of triples (a,b, ¢) of positive integers satisfying:

(a,b,c) =10 and [a,b,c] =100.
Let a = 10x,b = 10y, c = 10z. The conditions simplify to:
(x,y,z) =1 and [x,y,z] =10.

The variables x, y, z must be divisors of 10. Thus x,y,z S
{1,2,5,10}. We analyse the possible multisets {x,y,z} based on
cardinality of distinct elements.

Case 1: All three are equal. If x = y = z = k, then (k,k, k) = k and
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[k, k, k] = k. We require k = 1 and k = 10 simultaneously, which
is impossible. (o solutions).

Case 2: Two are equal. Let the set be {k,k,m} withk # m. The
conditions require (k,m) = 1 and [k, m] = 10. We check possible
pairs from {1,2,5,10}:

- If k = 10, we need [10,m] = 10 (always true for divisors) and
(10,m) = 1. The only coprime divisor is m = 1. Set: {10,10,1}.

- Ifk = 5, weneed [5,m] = 10 = m € {2,10}. We need

(5,m) = 1. m = 2, (5,2) = 1 (Valid). Set: {5,5,2}. If m = 10,
(5,10) = 5 # 1 (Invalid).

- Ifk = 2,weneed 2,m] = 10 = m € {5,10}. We need
(2,m) = 1.1 m = 5, (2,5) = 1 (Valid). Set: {2,2,5}. If m = 10,
(2,10) =2 # 1 (Invalid).

- Ifk=1,weneed [1,m] =10 = m = 10. We need (1,10) = 1
(Valid). Set: {1,1,10}.

There are 4 valid multisets. For each multiset with two identical

elements (e.g., {10,10,1}), there are % = 3 permutations. Total
solutions in this case: 4 x 3 = 12.

Case 3: All three are distinct. We choose 3 distinct elements from

{1,2,5,10}. There are (3) = 4 possible sets. We verify if they
satisfy (x,y,z) =1 and [x,y,z] = 10:
- {10,5,2}: GCD is 1, LCM is 10. (Valid).
- {10,5,1}: GCD is 1, LCM is 10. (Valid).
- {10,2,1}: GCD is 1, LCM is 10. (Valid).
- {5,2,1}: GCD is 1, LCM is 10. (Valid).

All 4 sets are valid. For each set of 3 distinct elements, there are
3! = 6 permutations. Total solutions in this case: 4 x 6 = 24.

Summing the cases, the total number of solutions is 12 + 24 = 36.
ERil)
Example 1.13. Coprimes in Arithmetic Progressions. Let a,b, m be

positive integers with (a4,b) = 1. Prove there are infinitely many
terms in the sequence a,a + b,a +2b,. .. that are coprime to m.

E
Proof

Let ¢ be the largest divisor of m such that (c,a) = 1. We consider
the term X = a + bc. We calculate (X, m). Let d = (a + bc, m). Since
d | mand ¢ | m, any common factor of d and ¢ must divide m. Also
d| (a+bc). Ifk | dand k | ¢, thenk | bc, so k | a. But (c,a) = 1, so
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k=1. Thus (d,c) = 1.

Now consider prime factors of m. Let p | m. If p | ¢, then p { a (since
(c,a) =1)and p | be. Thus p { (a+bc), so p 1d. If p 1 c, then by the
maximality of ¢, we must have p | a (otherwise cp would be a larger
divisor coprime to a). If p | a and p 1 ¢, then p 1 be (since (a,b) = 1).
Thus p 1 (a + bc), so p 1 d. In all cases, no prime factor of m divides
d. Thusd = 1. So (a + bc,m) = 1. The term a + (¢ + km)b = (a +
bc) + k(mb) satisfies:

((a + bc) + kmb,m) = (a+ bc,m) = 1.

This generates infinitely many such terms as k varies.

1.5 Exercises

1. Euclidean Computations. Use the Euclidean algorithm to calcu-
late the greatest common divisor for the following pairs:

(a) (4935,13912)
(b) (51425,13310)

2. Coprimality of Power Forms. Let m and n be positive integers.
Prove that if m is odd, then:

(2" -1,2"+1) =1.

3. Minimal Linear Combinations. Let g, b be integers, not both zero.
Let d = axg + byg be the smallest positive integer expressible in the
form ax + by with x,y € Z. Prove thatd = (a,b).

4. Mersenne Coprimality. Prove that (2¥ — 1,27 — 1) = 1 if and only
if (p,q) =1.
5. Coprime Arithmetic Progressions. Let n > 2. Prove that there

exist n composite numbers in arithmetic progression such that any
two of them are coprime.

6. Symbolic GCDs. Evaluate the following greatest common divi-
sors in terms of n:

(@ (211,271 41) for n > 0.
b) (n—1,n%+n+1).
7. Setwise vs Pairwise Coprimality. Construct a set of four positive
integers such that their collective greatest common divisor is 1, yet

no subset of three integers is coprime (i.e., every triplet shares a
common factor greater than 1).

8. Multiple GCD Computation. Calculate the greatest common
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10.

11.

12.

13.

14.

15.

16.

17.

divisor of the set (353430, 530145, 165186 ).

GCD Identity. Prove the following identity for any positive inte-
gers a,b,c:

(a,b,c)(ab,bc,ca) = (a,b)(b,c)(c,a).

Gear Synchronization. Two meshing gears A and B have 437 and
323 teeth respectively. If a specific tooth on A touches a specific
tooth on B, find the minimum number of revolutions each gear
must make before these two specific teeth touch again.

Constrained Solutions. Find all pairs of positive integers (a,b)
such that (a,b) = 10 and [a, b] = 100.

Consecutive LCM. Determine the least common multiple of three
consecutive positive integers n,n + 1,n + 2. Express your answer
in terms of n (cases may be required based on the parity of n).

Divisibility by 13. Let a, b be integers. Prove that 13 | (a® — 7b?) if
and only if 13 | 2 and 13 | b.

Bounded Bézout Coefficients. Let 2,b > 1 be coprime integers.
Prove that there exist integers ¢, 7 such that:

a¢ —by =1

satisfying the bounds 0 < ¢ <band 0 <% < a.

Cyclic Divisibility. Find all sets of three distinct positive integers
{x,y,z} such that:

(i) They are pairwise coprime;
(if) The sum of any two is divisible by the third.

Reciprocal Equation and Squares. Let 4, b, c be positive integers
satisfying (a,b,¢) = 1 and the equation:
1 1 1

st T e

Prove that a + b, a — ¢, and b — c are all perfect squares.

Sum of Reciprocals of Coprimes. Letm > n > 1. Leta; < ap <
-+ < ay be all positive integers not exceeding m that are coprime

to n. Define the sum § = Y5 | Hl Prove that S is not an integer.
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Applications

We have seen that the set of integers Z is equipped with a division
algorithm and a structure of primality. However, the true power of
prime numbers lies not in their definition, but in their role as the
unique building blocks of all integers.

2.1 Fundamental Theorem of Arithmetic

Theorem 2.1. Fundamental Theorem of Arithmetic.

Every integer n > 1 can be represented as a product of prime num-

bers. This representation is unique, up to the order of the factors.
gl

Existence.

We proceed by the Second Principle of Mathematical Induction. For

n = 2, the number is prime, so the statement holds. Assume the

statement holds for all integers k such that 2 < k < n. If n is prime,

the representation exists (it is simply n). If n is composite, there ex-

ist integers a, b such that n = ab with 1 < a,b < n. By the inductive

hypothesis, a and b can be written as products of primes:

a=p1...pr, b=q1...4gs.

Thusn = pj...prq1...4s is a product of primes. By the Strong In-
duction Principle, existence holds for all n > 1.

EXLES
Uniqueness.
Suppose n has two factorisations. By arranging the prime factors in
non-decreasing order, let:

n=pip2..--Pxk =49192 - - -9m,

where py < pp < -+ < prandg; < g2 < .- < gy are primes.
We consider p;. Since p; | n, it follows that p1 | §142-..qm- By
theorem 1.8 (Prime Divisibility Property), p; must divide at least one
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factor g;. Since g; is prime, the only positive divisors are 1 and g;.
As p1 > 1, we must have p; = g;. Since the g’s are sorted, q; < g,
so g1 < pi1. By symmetry, applying the same argument to g; yields
q1 | T1pi, implying g1 = p; for some i. Thus p; < p;,sop1 < 4.
Therefore, py = g1. We can cancel this common factor from the
equation:

p2...Pxk=492---9Qm-

Repeating this argument yields p = g, andsoon. If k < m, we
would eventually reach 1 = gg41...qmu, which is impossible since
g; > 2. Similarly k > m is impossible. Thus k = m and p; = g; for
all 1.

FER #

Definition 2.1. Standard Factorisation.
By collecting identical primes, any integer n > 1 can be written uniquely

in the form:
a a a
n=pi'py’...p,

where p; < pp < --- < py are primes and 4; > 1 are integers. This
is called the standard factorisation of n.
Remark.

For theoretical convenience, we may write n = [], pz’f’(”), where the
product extends over all primes and the exponent v, (n) is zero for
all but finitely many primes. The exponent v, (1) is often called the
p-adic valuation of n.

Example 2.1. Factorisation of a Large Integer. Find the standard
factorisation of n = 82,798, 848.
We extract factors sequentially:

82,798,848 = 2 x 41,399,424
=28 % 323,433 (after removing all factors of 2)
=28 x 3 x 107,811

=28 %x3°%x1,331 (after removing factors of 3).
Recognising 1,331 = 112, we achieve the form:
n=2%.3.113

#b
Example 2.2. Irrationality of Logarithms. Prove that log;,2 is irra-
tional.

Assume for contradiction that log;,2 € Q. Let log;,2 = 3 for posi-
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tive integers a,b. Then 10/? = 2, which implies 10? = 2. Substitut-
ing the standard factorisation of 10 = 2 - 5:

(2:5)"=2" = 27.5"=2".

By the uniqueness of the standard factorisation (f/:coren 2.1), the
exponent of the prime 5 on the left hand side must equal the expo-
nent of 5 on the right hand side. On the LHS, the exponent is a. On
the RHS, it is 0. Thus a = 0. However, a must be a positive integer
since log;;2 > 0(as2 > 1). Thisis a contradiction. Therefore,
log,, 2 is irrational.

Exia

Divisors and Factorisation

The standard factorisation allows us to characterise all divisors of an
integer.

Corollary 2.1. Structure of Divisors. Letn = pi'... pZ". An integer d
divides n if and only if

b b
d:pll...pkk,

where 0 < b; <g; foralli=1,...,k.
Eii

Proof

If d has this form, thenn = d-J] p?iib" , where the cofactor is an in-
teger since a; — b; > 0. Thusd | n. Conversely, if d | n, all prime
factors of d must be prime factors of n. Letd = T[] p?i. If any b; >
a;, then p?" would divide #, implying p?" | pi" x (other primes). By
unique factorisation, this is impossible. Thus b; < a;.

This characterisation provides an arithmetic formula for the GCD and
LCM.

Theorem 2.2. GCD and LCM via Prime Powers.
Letm = pi'... pZ" and n = pﬁl o pZ", where we allow exponents to
be zero to include all prime factors of both numbers. Then:

(m,n) = p?i“(“lrbl)p;nin(ﬂzrbz) . pkmin(ak,bk)/
[m,n] = Prlnax(al'bl)p;nax(“zzbz) o p;(nax(“k,bk)_
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Proof

min(a,-,b,-)
[1p;
divides both m and n. Suppose d is any common divisor. By corol-
lary 2.1,d = []p; withe; < a;and ¢; < b;. Thus ¢; < min(a;, b;).
This implies d \ g. Hence g is the greatest common divisor.

Letg = . Since min(a;, b;) < a; and min(a;,b;) < b;,

The proof for the least common multiple is analogous, using the
property that any common multiple must have exponents at least
max(a;, b;).

|

Remark.

The identity (m,n)[m,n] = mn follows immediately from this the-
orem, since for any numbers x, i, we have min(x,y) + max(x,y) =
x+y.

Example 2.3. Calculating GCD and LCM. Find
(1008, 1260, 882,1134) and [1008, 1260, 882,1134].
We determine the prime factorisations:

1008 = 2*.32.71,
1260 = 22.3%.5' .71,
882 =21.32.72,
1134 =21 .3%. 71,

The relevant primes are {2,3,5,7}. We align the exponents:

n  vy(n) wvi(n) vs(n) wvy(n)
1008 4 2 o} 1
1260 2 2 1 1
882 1 2 o} 2
1134 1 4 o} 1

For the GCD, we take the column minima: 21 -32.5%.71 =2.9.1.
7 = 126. For the LCM, we take the column maxima: 2% -3%.5!.72 =
16-81-5-49 = 317,520.

£
Example 2.4. Bound on Prime Factors. Prove that for any integer
n > 1,log;yn > klog,,2, where k is the number of distinct prime
factors of n.
Letn = pi'... pzk be the standard factorisation. Since the primes

are distinct and the smallest prime is 2, we have p; > 2 forall i.
Also a; > 1. Thus:

n=pf. . .pl>2t.20. 2l =2k

Exponent

GCD (min)

Prime Index i

Figure 2.1: Visualisation of
GCD exponents. For each
prime p;, the exponent of the
GCD is the minimum of the
exponents in m (blue) and n
(red).
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Taking logarithms (base 10) is an increasing function:
logygn > log;(2) = klog;, 2.

This inequality provides a quick upper bound on the number of

log,,n
log;g2°

distinct prime factors: k <

.41

Square-Free Integers

Integers can be classified by the multiplicity of their factors. An inte-
ger is square-free if it is not divisible by any perfect square greater
than 1.

Proposition 2.1. Square-Free Decomposition.
Every positive integer 1 can be written uniquely as n = k%I, where |
is a square-free integer.

ot
Proof
Letn = []p}". For each exponent a;, by the Division Algorithm, we

can write a; = 2g; + r;, where r; € {0,1}. We construct:

k=ITrl 1=IIni"

Then:

= (TTr") ATri) =TTr" " =T1pt = n.

Sincer; € {0,1}, every prime factor in / has exponent 1 (or 0), so
I is square-free. Uniqueness follows from the uniqueness of the
quotient and remainder in integer division. If n = k3l; = k3l with
I1, I square-free, then comparing prime exponents shows ly = I
and k| = ky.

|
Example 2.5. Perfect Powers and GCDs. Prove that if n is a perfect
square and a perfect cube, it is a perfect sixth power.
Let n = []p;'. If n is a perfect square, n = k?, so ¢; must be even for
all i. Thus 2 | e;. If n is a perfect cube, n = m3, so ¢; must be a mul-
tiple of 3 for all i. Thus 3 | e;. Since 2 and 3 are coprime, 2 | ¢; and
3 | e; implies 6 | ¢;. Let e; = 6j;. Then:

n=T1p" = (IT7})"

Thus # is a perfect sixth power.

47
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Primality Testing and Sieves

The Fundamental Theorem of Arithmetic guarantees the existence of a
unique prime factorisation, but it provides no algorithm for finding
it. To determine whether a given integer n is prime, or to generate
the sequence of primes, we rely on the properties of divisors.

Theorem 2.3. Smallest Divisor.
Let n > 1 be a composite integer. The smallest divisor d of n such that
d > 1is a prime number.

g
Proof
Suppose d is the smallest divisor of n greater than 1. If d were
composite, there would exist integers a,b such thatd = ab with

1 < a < d.By transitivity,a | dandd | nimpliesa | n. Thus
a is a divisor of n strictly between 1 and d. This contradicts the
minimality of d. Therefore, d must be prime.

|
This observation leads to the standard trial division test.
Theorem 2.4. The Square Root Test.
If n > 1 is not divisible by any prime p < y/n, then n is prime.
gl

Proof

Assume 7 is composite. By the preceding theorem, let p be the
smallest divisor of n greater than 1. Then p is prime. Since 7 is
composite, we can write n = p - m where 1 < p < m. Multiplying
by p gives p?> < pm = n. Taking the square root, we obtain p < /7.
By contrapositive, if no prime p < +/n divides n, then n cannot be

composite.

n
Example 2.6. Primality of 2003. Determine if 2003 is prime.
We estimate /2003 ~ 44.7. Tt suffices to test di-
visibility by primes p < 43. The list of primes is

{235711 13,17,19,23,29,31,37,41,43}.
2003 is odd (not divisible by 2).
- Sum of digits is 5 (not divisible by 3).
- Does not end in o or 5 (not divisible by 5).
- 2003 =7 x 286 + 1 (7 { 2003).
- Alternating sum 2 — 0 + 0 — 3 = —1 (not divisible by 11).
Continuing trial division for the remaining primes yields non-zero
remainders in all cases. Therefore, 2003 is prime.

.41
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The Sieve of Eratosthenes

The Square Root Test allows us to generate a table of primes up to

a bound N by systematically eliminating composite numbers. This

method, known as the Sieve of Eratosthenes, relies on the fact that

every composite number 1 < N has a prime factor p < v/N.

Algorithm:

1. List all integers from 2 to N.

2. Let p = 2. Mark all multiples of p greater than p (i.e., 2p,3p,...)
as composite.

3. Find the smallest unmarked number greater than p; let this be the
new p.

4. Repeat step 2 until p > v/N.

5. All remaining unmarked numbers are prime.

Example 2.7. Sieve up to 50. We list integers 2,...,50. The sieving

primes are those < V50 ~ 7.07, ie., {2,3,5,7}.

1. Eliminate multiples of 2: 4,6,8, ...,50.

2. Eliminate multiples of 3: 9,15,21, ... (some like 6, 12 were al-
ready removed).

3. Eliminate multiples of 5: 25,35, ... (others like 10, 15, 20 re-
moved).

4. Eliminate multiples of 7: 49 (others like 14, 21, 28, 35, 42 re-
moved).
The remaining numbers are the primes:

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}.

.41

The Sieve of Sundaram

While Eratosthenes sieves by additive multiples, the Sieve of Sun-
daram uses a specific arithmetic progression structure to isolate odd
primes.

Consider the infinite table of integers defined by a;; = i+ j + 2ij,
where 1 <i <j.

4 7 10
7 12 17
10 17 24

The first row has common difference 3 (4,7,10,...). The second row
has common difference 5 (7,12,17,...). The i-th row is an arithmetic

progression with first term 4 + 3(i — 1) and common difference 2i + 1.

49

Figure 2.2: A visual represen-

tation of sieving for N =
Multiples of 2, 3, 5 are elimi-
nated; primes are circled.

25.



50 GUDFIT

Theorem 2.5. Sundaram’s Primality Condition.
A positive integer N appears in the Sundaram table if and only if 2N +
1 is composite. Consequently, 2N + 1 is prime if and only if N does

not appear in the table.
g

Proof
Let N be an entry in the table. Then N = i+ j + 2ij for some 1 <
i < j. We examine 2N + 1:

2N +1=2(i+j+2ij) +1 =4ij +2i +2j + 1.
Factoring by grouping:
4ij +20 +2j+1=2i(2j+1) +1(2j +1) = (2i +1)(2j + 1).

Since i,j > 1, the factors 2i + 1 and 2j + 1 are both at least 3. Thus
2N +1 is composite.
Conversely, suppose M = 2N + 1 is a composite odd integer. Then
M = AB where A, B are odd integers greater than 1. Let A = 2i +1
and B = 2j + 1 for some integers i,j > 1. Then2N +1 = (2i +
1)(2j+ 1) = 4ij + 2i + 2j + 1. Subtracting 1 and dividing by 2 yields
N = 2ij + i+ j. Assuming without loss of generality i < j, N ap-
pears in the table at row i, column j.

|

Example 2.8. Application of Sundaram’s Sieve. We determine if

M =17 and M = 9 are prime using the parameter N = (M —1)/2.
For M =17, N = 8. We check if 8 can be written as i + j + 2ij. Since
i > 1, we must have 2ij < 8, so ij < 4. Possible pairs (i,j) with 1 <
i<j:

S (1L,1) = 14142(1) =4 #8.

- (1,2) = 14242(2)=7#8.

- (1,3) = 1+3+2(3)=10>8.

Since 8 is not in the table, 2(8) + 1 = 17 is prime.

For M =9, N = 4. Checking (1,1) = 1+1+2 = 4. Since 4 is in
the table, 2(4) + 1 = 9 is composite.

E X

Properties of Prime Divisors

The distribution of primes often imposes constraints on the structure
of remainders and factorisations.
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Example 2.9. Remainder Modulo 30. Let p be a prime such that
when divided by 30, the remainder is 7. Prove that if r # 1, then r is
prime.

Letp = 30k +rwithl < r < 30(sincer # 1). We analyse
the divisibility of r by the prime factors of 30, which are 2, 3, and
5.1f p € {2,3,5},thenr € {2,3,5}, which are primes. Assume
p > 5.Then (p,30) = 1.Sincer = p — 30k, any common divi-
sor of r and 30 must divide p. Thus (r,30) = (p,30) = 1. This
implies r is not divisible by 2, 3, or 5. Suppose for contradiction
that r is composite. Then » must have a prime factor ¢ < /7. Since
r < 30,9 < \/2>9 ~ 5.38. So g must be 2, 3, or 5. But we established
(r,30) =1, so r has no such factors. Contradiction. Thus r is prime.

#b
Example 2.10. Factors of Cube Root Magnitude. Prove that if a
composite integer 1 has no prime factor less than or equal to /n,
then #n is the product of exactly two primes.

Since n is composite, letn = p1pa... px be its prime factorisation
with k > 2. By hypothesis, p; > n'/3 for all i. Suppose k > 3. Then:

1/3 . ,1/3

n=pipaps...px > nt’3-nl3.nl/3 = p

This implies n > n, a contradiction. Since k > 2 and k < 3, we must
have k = 2. Thus n = p1p».

E
Example 2.11. Odd Primes and Arithmetic Progressions. Prove
that the odd primes less than n? are exactly the odd numbers
greater than 1 that do not belong to the sequences {r(r + 2k)}¢>o
for any odd r > 3.
Let S be the set of odd numbers greater than 1. Consider the subset
C = {r%,r* 4+ 2r,* + 4r,...} where r ranges over all odd integers
> 3. The general term of a sequence in C is a = % + 2rk = r(r + 2k).
Since r > 31is odd, and r 4+ 2k > 3 is odd, a represents a composite
odd integer. Conversely, let m < n? be a composite odd integer. Let
r be the smallest prime factor of m. Since m is odd, r > 3. Since m is
composite, m = r - b where b > r is odd. We can write b = r + 2k for
some integer k > 0. Thus m = r(r + 2k), som &€ C. Therefore, the
odd numbersin S \ C are exactly those which are not composite,
i.e., the odd primes.

.41
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Exercises

1. Factorisation of Large Integers. Determine the standard prime
factorisation of the integer N = 81,057,226, 635, 000.

2. GCD and LCM Calculation. Calculate the greatest common divi-
sor and least common multiple of the set {198,240,360}.

3. Inverse GCD-LCM Problem. Find all pairs of positive integers
(a,b) such that (a,b) = 24 and [a,b] = 144.
4. Counting LCM Solutions. Let w(n) denote the number of distinct Consider the prime factorisation of

d = pj ... px and the possible exponents

prime factors of n. Let d be a square-free integer. Prove that the :
of p; in dq and d.

number of ordered pairs of positive integers (d,d) such that
[d1,dy] = d is exactly 3¢(@).

5. Remainder of Prime Squares. If a prime p > 7, prove that the
remainder when p? is divided by 30 must be 1 or 19.

6. Primality Test Condition. Let n > 5 be an odd integer. Suppose
there exist positive even integers a and b such that:

S

a—b=mn and a—l—b:Hpi,
i=1
where py, ..., ps are all the odd primes not exceeding /n. Prove
that n is prime.

7. Coprimality in Arithmetic Sequences. Let py, p2, ... be the se-
quence of primes in increasing order. Let P, = pip2...pa.
Consider the sequence of integers defined by a; = 1+ kP,
fork = 0,1,...,n — 1. Prove that for any distinct indices i,j €
{0,...,n =1}, (a;,aj) = 1.

8. Factorial Constraints. Let n be a positive integer. Prove that if n!
is divisible by n2, then n cannot be prime. Determine for which
composite 7 this divisibility holds.
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The Gauss Function

While divisibility and primality explore the multiplicative struc-
ture of integers, many number-theoretic problems require analysing
the position of real numbers relative to consecutive integers. We in-
troduce the Gauss function, widely known as the floor function, to
bridge the continuous domain of real numbers R and the discrete
domain of integers Z.

Definition 3.1. The Floor Function.

| x], is the unique integer satisfying:
x| <x<[x]+1.

We refer to | x| as the integer part of x. The fractional part of x is de-
fined as {x} = x — |x].

Note

By definition, 0 < {x} < 1 for all real numbers x.

The floor function behaves predictably under integer translation and
order.

Proposition 3.1. Monotonicity.
For real numbers x and y, if x <y, then [x| < |y].

3

T

This follows immediately from the definition, indicating that | x| is a
non-decreasing function.

Proposition 3.2. Integer Translation.
Let x € R and n € Z. Then:

In+x| =n+|x].

Conversely, if |n + x| = n+ |x] for all x, then n is an integer.

Let x be a real number. The floor function or Gauss function, denoted

Figure 3.1: The graph of the
floor function [x]. It is a step
function that lies on or below
the line y = x.
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I Rl

»

Proof
Let k = |x]|. By definition, k < x < k+ 1. Adding the integer n to
the inequality yields:

n+k<n+x<n+k+1.

Sincen 4+ kis an integer, it must be the floor of 1 4+ x. Thus
In+x] =n+k=n+|x].

|
Theorem 3.1. Subadditivity.
For any real numbers x and y:
Lx] + ly) < [x+yl.
gl

Proof

From the definition, [x| < x and |y| <y. Adding these gives |x]| +
ly] < x4+ y. Since the left-hand side is an integer, applying proposi-
tion 3.1 yields:

L]+l < lx+y] = [x]+y] < [x+yl.

|
Example 3.1. Simple Bounds involving Floor. Find all real solu-
tions to x + {x} = 1.6.
We substitute x = | x| + {x} into the equation:
|x| +2{x} =1.6.
Since | x| is an integer and 0 < {x} < 1, we have bounds on 2{x}:
0<2{x} <2
Rearranging for the integer part: [x] = 1.6 — 2{x}. Using the

bounds for 2{x}, we have:

16-2<|x] <16-0 = —04< |x| <16.
Thus, the possible integer values for | x| are o and 1.
1. If [x| =0, then 2{x} =1.6 = {x} =0.8. Thus x = 0.8.

2. If [x] =1, then 2{x} = 0.6 = {x} =0.3. Thus x = 1.3.
The solutions are x € {0.8,1.3}.
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Arithmetic Relationships

The interaction between the floor function and arithmetic operations
produces several identities useful for simplifying sums and solving
equations.

Theorem 3.2. Reflection Formula.
For any real number x:

o {LxJ 1 ifx¢ 7,

—|x] if x € Z.

Proof

We write x = | x| + {x}. Negating this yields —x = —[x| — {x}. We
can express this as —x = — x| — 1+ (1 — {x}).

e IfxeZ, then {x} =0,s0 |—x| = —x=—|x].

e Ifx ¢ Z, then0 < {x} <1, which implies 0 < 1 — {x} < 1. Thus,
the integer part of —x is —|x| — 1.

Alternatively, using fractional parts: {—x} = 1 — {x} for non-
integers, leading to the same result.
[ |
Theorem 3.3. Sum of Fractional Parts.
If {x} +{y} =1, then [x] + |y] = [x+y] — 1.
T

Proof
We expand x +y:
x4y = ([x) +{x}) + (L) +{yh) = (lx] + y]) + {xd +{yh).

Given {x} 4+ {y} = 1, this becomes x +y = |x| + [y| + 1. Taking
the floor of both sides (noting the RHS is an integer):

lx+y|=[x]+[y] +1

Rearranging gives the result.

Theorem 3.4. The Halving Identity.
For any real number x:

lx| + {x—k;J = [2x].
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I il
Proof

Let x = n+ 6 where n = |x] and 0 < 6 < 1. We consider two cases
for the fractional part 0:

Case 0 <6 <1/2. Then |x+1/2| = [n+6+1/2] = n,since 0 +
1/2 < 1. Also 2x = 2n + 26, where 0 < 26 < 1. Thus |2x| = 2n.
The identity holds: n +n = 2n.

Case1/2 <6 <1. Then |x+1/2| = |[n+6+1/2] = n+1, since
1 <6+41/2 < 1.5. Also 2x = 2n + 26, where 1 < 20 < 2. Thus
|2x| = 2n + 1. The identity holds: n+ (n +1) = 2n + 1.

This theorem implies that the sequence of "binary digits" of x affects
the floor of multiples of x. We can generalise the separation of floors
based on the difference of their arguments.

Theorem 3.5. Difference of Floors.
For any real numbers « and f:

o) = [B] = la—p] or [a—p]+1

Proof
We expand |« — B]:

Lo = BJ = [(Lla) +{a}) — (18] + {B})]
= [(la) = [B]) + ({a} — {B})]
= la) = [B] + [{a} = {B}]:
Since0 < {-} < 1,thedifference satisfies -1 < {a} —
{B} < 1. Consequently, the term |{a} — {B}| can only take the
value 0 (if {a} > {B}) or —1 (if {a} < {B}). Rearranging yields the

two possible cases.
|

Example 3.2. Nested Floors. Let 1 be a positive integer and a be a

-

Let [na] = ng+r where 0 < r < n. By the definition of the floor, g
is an integer. Then na = ng + r + {na}. Dividing by n:

real number. Prove that

r+ {na}

a=q+ .
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We evaluate the RHS of the identity:

|nal | |ng4+r| r r
{ n | | n _Lq—i_EJ_EH—{EJ'
Since 0 < r < n,we have 0 < r/n < 1,s0 [r/n] = 0. Thus the LHS
is . Now evaluate |a]:

la] = quLHim}J —g+ VWL{"”}J

n

Since0 < r < n—1land0 < {nma} < 1, the numerator satisfies
0 < r+ {na} < n. Thus the fraction is strictly between o and 1, so
its floor is o. Therefore, |a] = g. The identity holds.

.49

Hermite’s Identity

The The Halving Identity is a specific instance (n = 2) of a more pow-
erful summation property discovered by Charles Hermite. This iden-
tity connects the sum of floors of arithmetic progressions to the floor
of a scaled multiple.

Theorem 3.6. Hermite’s Identity.
For any real number a and positive integer n:

{a]—l—{a—l—iJ—l—---—l—La—i—n;lJ = |na|.

i
Proof
Let |na] = ng+rwith0 < r < n. Using the decomposition from
the previous example, we writea = g + % Consider the gen-

eral term in the sum, denoted T = |a + %J for0 < k < n—1. Sub-
stituting a:

Ty = {q+r+{na}+kJ _q+{r+k+{na}J‘

n n

The value of the floor LMJ depends on the numerator N, =
r+k+ {na}. Since 0 < {na} < 1, the integer part of the fraction is
determined by r + k.

o If r+k < n, then 0 < Ni < n+ 1. Since Nj is not an integer (un-
less {na} =0), |[Ny/n] =0.

e Ifr+k>mn,sincer <nandk < n, wehaven <r+k < 2n. Thus
1§Nk/n<2,so |_Nk/1/lj =1.
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We split the summation based on the conditionr +k > n <= k >

n-—r:
—r—1 n—1

n—1 n

Y Te= Y, (g+0)+ ) (g+1).

k=0 k=0 k=n—r
The first sum has (n — ) terms. The second sum has (n — 1) — (n —
r)+1=rterms. Totalsum = (n —r)q+r(g+1) = ng—rqg+rqg+
r = nq + r. By definition, nqg +r = |na].

|

Example 3.3. Calculating a Large Sum. Evaluate S = 220120 L% .
Note that 503 is prime, sofor1 < n < 502, the term 3057 is not
divisible by 503. Thus 350053” is never an integer. We pair the term for

n with the term for 503 — n:

_ 305n ~305(503 —n)
Xn = 503’ Yn = 503 305 — xy.
Observe that x, + y, = 305, which is an integer. Thus {x,} +

{yn} = 0 (if integer) or 1 (if not). Since x, is not an integer, {x, } +
{yn} = 1. By the The Halving Identity, we have:

|| + [yu] = [xn +yn) —1=]305] —1 = 304.

The sum runs from n = 0 to 502. The term for n = 0is 0. The re-
maining 502 terms can be grouped into 251 pairs.

502 502
1 1
S = o+n;1anJ =5 ’;(anj + Lyn]) = 5(502 x 304) = 251 x 304 = 76,304.

o451

Applications and Diophantine Equations

Example 3.4. Parity of Powers. Prove that the sequence u, = |(1+
V/2)"] alternates between even and odd integers.
Leta = 1+\/§andﬁ = 1— /2. These are roots of x2 — 2x — 1 =
0. Define U, = a" 4 B". The characteristic equation implies U2 =
2Uy 41 + Uy. Since Uy = 2 and Uy = 6, all U, are even by induction.
Since —1 < B < 0:
(i) Ifnisodd, -1 < p" < 0. Thus [a"| = (U, — "] = U,.
(Even)
(i) Ifniseven, 0 < " < 1. Thus |a"| = (U, — "] = U, — 1.
(Odd)

$o.451
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Example 3.5. Inequality of Floors. Prove that for all real numbers
o, B
[2a] + (28] > || + [a + B] + [B).

Assume without loss of generality that {a} > {B}. This implies
2{a} > {a} + {B}. We expand the LHS:

[2a] + 28] = (2[a] + [2{a}]) + (2[B) + [2{B}])-

We expand the RHS:

RHS = [af + [B] + [([a] + {a}) + ([B) + {B})]
= 2] +2[p] + [{a} + {B}].

Subtracting common integer parts, it suffices to prove:

[2{a}] + [2{B}] = [{a} + {B}].

Since 0 < {B} < {a} < 1, the sum {a} + {B} is strictly less than 2.
Thus [{a} + {B}] is either o or 1.
- If [{a} + {B}] = O, the inequality holds trivially as the LHS is
non-negative.

- If |[{a} + {B}] = 1,then {a} + {B} > 1. From our assumption
2{a} > {a} + {B}, we have 2{a} > 1,s0 [2{a}| > 1. Thus the
LHS is at least 1 + 0 = 1. The inequality holds.

E

Example 3.6. Square Root Identity. Prove that for any positive

integer n, |\/n+vn+1| = [Van +2|.

We bound the expression X = (vn + Vn+1)?2 = 2n+1+
2y/n(n+1). Using the arithmetic geometric mean inequality on the
term under the square root:

n<y/nn+l)<n+1.
Substituting this into the expression for X:
2n+l1+2n<X<2n+1+42n+1) = 4n+1< X <4n+3.
Taking the square root of the inequality:
Van+1<Vn+vVn+1< Van+3.

Letk = |v/4n +1|. Then k* < 4n + 1. Consider the possible values
of perfect squares. Any integer m is either even (2j) or odd (2j + 1).
- If m = 2j, then m? = 4]'2, which is a multiple of 4.

< Ifm = 2j+1,thenm? = 42 +4j+1 = 4(j* +j) + 1, whichis a
multiple of 4 plus 1.
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Thus, no perfect square is of the form 4N + 2 or 4N + 3. This im-
plies that strictly between the integers 4n + 1 and 4n + 4, there are
no perfect squares. Therefore, the floor of the square root remains
constant:

|Van +1] = |Va4n +2] = |V4n +3] = k.
Since our target value lies strictly in this interval, its floor is also k.

#o )
Example 3.7. Equation with No Solution. Prove that the equation
|x] + [2x] + [4x]| + |8x]| + [16x]| + |32x] = 12,345 has no real
solution.
Let f(x) be the LHS. Using the bound |kx| < kx, we have:

flx) <x(1+2+4+8+16+32) = 63x.

If a solution exists, 63x > 12,345, which implies x > 195%. We
evaluate f(x) at x = 196:

£(196) = 196 x 63 = 12,348.

Since f(x) is non-decreasing, the solution must satisfy 195 < x <
196. Let x = 195 + y where0 < y < 1. By integer translation,
|k(195 +y)] = 195k + |ky|.

f(195+y) =195(63) + f(y) = 12,285+ f(y).

We maximize f(y) for y < 1:
5
Fy) = Y 12%y] <0+143+7+15431=57.
k=0

Thus f(x) < 12,285+ 57 = 12,342. Since 12,342 < 12,345, there is
no solution.

et
Example 3.8. Diophantine with Squares. Solve for x € R: [x?| =
|x]%+3.
Let [x] = n.Thenn < x < n+ 1, which implies n> < x? <
(n+1)? = n?> +2n+ 1. The equation becomes |x?| = n? + 3. By def-

inition of the floor:
n?+3<x*<n®+4.

For a solution to exist, the interval [n> + 3,1n? + 4) must overlap
with [n2,n% 4+ 2n + 1). Specifically, the lower bound of the required
interval must be strictly less than the upper bound of the possible
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values for x2:
M +3<n®+2n+1 = 2<2n = n>1.

We test integer values for n:

Ifn=2. Overlap is [7,8) N [4,9) = [7,8). We need x? € [7,8). This
corresponds to x € [\ﬁ, \/g) One choiceis x = 7.5 ~ 2.73.
Then [x| =2, [x]2+3=7,and |7.5] =7.

Ifn =3. Overlapis [12,13) N [9,16) = [12,13). Solutions x €
[V12,V13).

General solution: For any integer n > 2, x € [Vn? +3,Vn? +4).

.49

3.1 Factorisation of Factorials

The floor function provides the analytic machinery required to de-
termine the prime factorisation of factorials without computing the
products explicitly. This result, attributed to Legendre, relates the
p-adic valuation of n! to the base-p expansion of n.

We begin by establishing a counting lemma for multiples in a bounded
interval.

Lemma 3.1. Counting Multiples Let x be a positive real number and
b be a positive integer. The number of positive integers not exceeding
x that are divisible by b is |x/b].

g

Proof
The positive multiples of b are b,2b,3b, . ..,kb,.... We seek the
largest integer k such that kb < «x. This inequality is equivalent to

k < 3. Since k must be an integer, the maximal such k is |x/b].
u

Computations involving higher powers of primes often require
nested applications of the floor function.

Lemma 3.2. Iterated Division Let 1,4, b be positive integers. Then:

51 e

12
Proof
Let k = [ J;|. By definition, k < 7, < k + 1. Multiplying by b yields
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bk < % < b(k+1). Since bk is an integer, it satisfies bk < |2 |. How-
ever, the strict inequality 2 < bk 4 b implies | %] < bk + b. Dividing
by b:

Thus, the floor of the middle term is k.
[ |

Remark.

This lemma is particularly useful for calculation. To find |n/p<+1],
one simply divides |n/p*| by p and takes the integer part.

Legendre’s Formula

We now derive the formula for the exponent of a prime p in the
standard factorisation of n!. We denote this exponent by v, (n!).

Theorem 3.7. Legendre’s Formula.
Let n be a positive integer and p be a prime. The exponent of p in the
prime factorisation of n! is:

Lt
il
Note
The sum is finite since [n/p*| = 0 once p* > n.
Proof

Let the standard factorisation of n! be [],<, p'v. The exponent hy is
the sum of the valuations of the factors 1,2,...,n:

hy = ivp(f)-
j=1

Instead of summing term-by-term, we count the contribution of
each power of p across the entire set {1,...,n}. Let ¢, be the num-
ber of integers in {1,...,n} divisible by p*. By the Counting Mul-
tiples lemma, ¢, =  |n/pX]. Let di be the number of integers in
{1,...,n} exactly divisible by pk (e, vp(j) = k). By inclusion-
exclusion, an integer is divisible by p* exactly if it is divisible by p*
but not pk+1. Thus, dy = c; — cx1. The total exponent is:

hp:kzlk'dk:1(C1—C2)+2(C2—C3)+3(C3—C4)—|—...
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This is a telescoping sum. Regrouping terms by cy:

hy=c1+(2—1)c+ (3—2)cs + - - i ihﬂ

k=1
u

Example 3.9. Exponent of a Prime. Find the exponent of 7 in the
factorisation of 2000!.
We apply Legendre’s formula with n = 2000, p = 7.

07 (20001) = {ZOOOJ n {ZOOOJ n {ZOOOJ n {ZOOOJ .

7 49 343 2401

The last term is o since 2401 > 2000. Using lemma 3.2 for sequential
calculation:

12000/7] = 285
|285/7] = 40
|40/7] =5
Summing these values: 285 + 40 + 5 = 330.
B
Example 3.10. Trailing Zeros. Determine the number of zeros at
the end of the decimal representation of 1000!.
A trailing zero is produced by a factor of 10 = 2 x 5. The number of
zeros is determined by the number of pairs of prime factors (2,5).
Since 2 < 5, factors of 2 are much more abundant than factors of

5. Thus, v5(1000!) < ©v,(1000!), and the number of zeros is simply
05(10001).

05(10001) — 3 {1OOOJ.

k
k=1 5

Calculation:

11000/5 |
1200/5]
140/5]
18/5]

200
40
8
1

Total: 200 4-40 + 8 + 1 = 249. There are 249 trailing zeros.

it
Example 3.11. Legendre’s Formula and Base Expansion. Let s,(n)
denote the sum of the digits of n when written in base p. Prove
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Summing rows: }_| % s o
Summing columns: va(])
o

—p ‘
¢

1
o ° [ ]

|

|

8

P .

|
=
N

1 2 3 5 6 7 9 10

Figure 3.2: Visualising Legen-
dre’s Formula for n = 10,p = 2.
Each dot represents a factor of
p. The number 8 contributes 3
dots (vertical), while the row
for p? counts multiples of 4
(horizontal).
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that: (n)
n—sp(n
Up (Tl') - 7
Let the base-p expansion of n be n = Y a;p', where 0 < a; < p.

Consider the term [/ p*|. Dividing the expansion by p* shifts the
digits:
n " ik
— | =Y apt.
Lﬂ"J Ek ’
Summing over k > 1:
mm -
vp(n!) =YY aipt".
k=1i=k

We swap the order of summation. For a fixed coefficient 4;, it ap-

pears in the sum for k =1,2,...,1.
i

vp(n!) = iai <k

Using the geometric series formula:

vp(n!):iai<pi_l>— ! (iiaipi—iai).

= \p-1 p—1 i=0

pl—"> =Y a(p ).
1 i=1

Note that thei = 0 term vanishes in the sum on the left but is in-
cluded here for completeness (as p° — 1 = 0). Recognising the sums:

Ya;p' =nand La; = sp(n). Thus, vp(n!) = n_rfsjgw'

B
Example 3.12. Inverse Legendre Problem. Does there exist a posi-
tive integer n such that n! ends in exactly 153 trailing zeros?
We seek n such that v5(n!) = 153. Approximating using the for-
mula from the previous example: v5(n!) =~ %. Estimaten ~ 4 x
153 = 612. We test n = 615 (a multiple of 5):

v5(615!) =123 4+24+4+0 = 151.

We need 2 more factors of 5. Moving to the next multiple of 5, n =
620: v5(620!) = v5(615!) + v5(616 x 617 x 618 x 619 x 620). The only
multiple of 5 is 620. Since 620 = 5 x 124, it contributes one factor of
5. Thus v5(620!) = 151 +1 = 152. Next multiple n = 625: Since
625 = 5%, this number contributes 4 factors of 5. v5(625!) = 152 +
4 = 156. The function v5(n!) jumps from 152 to 156. It never takes
the value 153. Thus, no such integer n exists.

X
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Divisibility Applications

Legendre’s formula provides a robust method for proving divisibility
relations involving factorials, often reducing the problem to checking
an inequality of floor functions.

Example 3.13. Divisibility of Product Sequences. Prove that 2"
divides the product (n +1)(n+2)...(2n).

We can rewrite the product as:

2n)!

P=(n+1)(n+2)...2n) = (n!

We determine the exponent of 2 in the prime factorisation of P:
02 (P) = vp((2n)!) — vy (n!).
Using Legendre’s formula:
2 | 2n = on | n
sl = ¥ | 2| = 1[5 =0+ X2 |3
k=1 k=1
The infinite sum on the right is exactly v, (n!). Therefore:
02(P) = (n+v(nt)) —v2(n!) = n.
Since the exponent of 2 in P is exactly n, 2" divides P.
fut)
Example 3.14. Factorial Divisibility Condition. Let m, n be positive
integers. Prove that (2m)!(2n)! is divisible by m!n!(m + n)!.

We must show that for every prime p, the valuation of the numera-
tor is at least that of the denominator:

vp((2m)!(2n)!) > vp(m!n!(m + n)!).

Applying Legendre’s formula, this inequality is equivalent to:

L] FD = B (5 55

It suffices to prove the inequality term-wise for each k. Let
a = m/p* and B = n/p*. We require:

[2a) + (28] > [a] + [B] + [a + B

This is precisely the inequality established in the previous section

(Example: Inequality of Floors). Since the inequality holds for every
term in the summation, the divisibility holds.

.41
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3.2 Arithmetic Functions

Many properties of integers depend on their divisors. We now in-
troduce two fundamental arithmetic functions: the divisor counting
function d(n) and the divisor sum function ¢ (n). These functions are
multiplicative, meaning their value for a product of coprime integers
is the product of their values.

Definition 3.2. Divisor Functions.
Let n be a positive integer. The divisor counting function, denoted d(n),
is the number of positive divisors of n:
dn) =) 1.
dln
The divisor sum function, denoted (), is the sum of the positive di-
visors of n:

o(n) =) _d.

dln

Note

The trivial divisors 1 and 7 are included in these sums.

The Divisor Counting Function d(n)

To compute d(n), we rely on the standard prime factorisation. Every
divisor is built from the prime factors of n.

Theorem 3.8. Formula for d(n).
Let the standard factorisation of n be n = p]'p52. .. pj*. Then:

k
d(n) = (a1 +1) (a2 +1) ... (g +1) = [(a; + 1).
i=1

Proof

Any divisor d of n must be of the formd = p'p3*... p*, where
0 < x; < a;for each i. For each prime p;, there are a; 4+ 1 choices
for the exponent x; (specifically, {0,1,...,4;}). By the multiplication
principle, the total number of distinct divisors is the product of the

number of choices for each exponent.
[

Corollary 3.1. Multiplicativity of d(n). If m and n are coprime, then d(mn) =
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d(m)d(n).

i
Proof
Since (m,n) = 1, they share no prime factors. The prime factorisa-

tion of mn is simply the concatenation of the factorisations of m and

n. The formula in the theorem splits over the distinct sets of primes.
[ |

Example 3.15. Smallest Integer with Fixed Divisor Count. Find the

smallest positive integer n such that d(n) = 12.

Let n = p{'p52.... Then [(a; + 1) = 12. We factor 12 in all possible

ways and assign the largest exponents to the smallest primes to

minimise n. Possible factorisations of 12:

1. 12 = a; = 11. n = 211 = 2048.

2. 6X2 = a1 =5a=1n=2%.31=32.3=9.

3.4%x3 = a1 =31, =2.1=23.32=8.9="72.

4. 3%x2%x2 = a1 =2, =1a3=1.n=2%.31.51 =4.3.5=
60.

The smallest such integer is 60.

#b)
Example 3.16. Product of Proper Divisors. Prove that if a posi-
tive integer 7 is equal to the product of all its proper divisors, then
n = p3 or n = p1py (where p, p1, p» are primes).

Let P be the product of all positive divisors of n. We can pair divi-
sors d and n/d:

P (10 (IT7) =TT 5) =TTr =

d|n dln d|n

Thus P = n4(")/2, The product of proper divisors excludes 7. So the
productis P/n = n"/2-1 We are given that this product equals
n. Thus:

pd(m)/2-1 _ 1 — @ —1=1 = d(]’l) = 4.

We solve d(n) = 4. The possible factorisations of 4 are:
1. 4 = a; =3. Thenn = p°.

2. 2x2 = a1 =1,ap = 1. Then n = p1p».
F]
Example 3.17. Existence of Solutions. Prove that forany k > 1,

there exists an integer n such that d(n) = k.
Simply choose n = 21, Then d(n) = (k—1) +1 =k.
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Exia

The Divisor Sum Function o(n)

The sum of divisors also admits a closed form derived from the geo-
metric series.

Theorem 3.9. Formula for o(n).
Let n = pi'...p;*. Then:

Eli-i—l _

k k
1= 1=

Proof

Consider the expansion of the product:

(£)(£)-(£4)

A typical term in the expanded sum is of the form p;'p5*... p,f"
with 0 < x; < g;. By the fundamental theorem of arithmetic, these
terms correspond exactly to the divisors of 1, with each divisor ap-
pearing exactly once. Summing the geometric series for each prime
factor yields the formula.

|

Corollary 3.2. Multiplicativity of o(n). If (m,n) = 1, then o(mn) =
o(m)o(n).

e
Example 3.18. Solving for o(n). Find a number of the form
n = 2™ . 3K such that o(n) = 403.
Using the formula:

om+l _ 1 gk+l _ 1 _— 3k+1 _q

o) =537 - * —1)=—— =40.
Thus (2"+1 — 1)(3*1 — 1) = 806. Factorising 806 = 2 x 13 x 31.
The term 2"+ — 1 must be a divisor of 806 of the form 2¥ — 1. The
divisors of 806 are 1,2,13,26,31,62,403,806. Numbers of the form
2* —1:
- x =1 = 1 (Trivial, m = 0, but 3*t1 — 1 = 806 has no solution).
- x =4 = 15 (Not a divisor).
- x =5 = 31. This is a divisor.
If 21 —1 =231, thenm+1=5 = m = 4. The remaining factor
is (31 —1) =806/31 =26. 31 =27 — k+1=3 — k=2
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Thus n = 2*-3% = 16-9 = 144.

E
Example 3.19. Perfect Squares in Divisor Sums. Find all primes p
such that o(p*) is a perfect square.

We have o(p*) = 1+ p+ p? + p> + p* = m? for some integer m.
Multiply by 4 to complete the square:

Am?* = 4p* +4p° +4p* +4p + 4.

We bound this expression between consecutive squares. Consider
(2% + p)> = 4p* + 4p® + p*. Comparing coefficients: 4m> >
(2p? + p)? because 3p? +4p +4 > 0. Now consider (2p% + p+2)? =
(2p% +p)? +4(2p% + p) + 4 = 4p* + 4p® + 9p* + 4p + 4. Comparing
with 4m?, we see 4m?> < (2p? + p + 2)? because 4p> < 9p?. Thus,
the only possible integer square between them is (2p* + p +1)2.

am? = 207 +p+1)2 = 2p* +p)2 +22p% +p) +1 = 4p* +4p> +5p7 +2p + 1.
Equating the two expressions for 4m?:
Ap* +-4p® 4 4Ap? +ap 4 =4p* +4p® +5p7 +2p 1.
Simplifying:
4p> +4p+4=5p*+2p+1 = p*—2p -3 =0.

Factorising: (p —3)(p + 1) = 0. Since p is prime, p = 3. Indeed,
c(3*) =1+3+9+27+81=121=11%

ERl

We conclude with a structural property of numbers whose divisor

sum is prime.

Proposition 3.3. Structure of Pre-images of Primes.
If o(m) is a prime number greater than 3, then m must be of the form
p** (a perfect square of a prime), where 2k + 1 does not divide p — 1.

We proceed by eliminating forms of m that force o(m) to be compos-
ite.

m must be a prime power.

Suppose m has at least two distinct prime factors. We can write

m = ab with ged(a,b) = 1and a,b > 1. By the multiplicative prop-
erty of o, we have o(m) = o(a)co(b). Since a,b > 1, the sums of their
divisors satisfy o(a) > 1 and o(b) > 1. Thus o(m) is the product of
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two integers greater than 1, making it composite. Therefore, m must
be a prime power, say m = p*.

EXLES
The exponent e must be even.

Suppose ¢ is odd. Let e = 2k 4- 1 for k > 0. We can factor the sum of
divisors:

c(p* Y =14p+- + P =+ p) A+ P2+ + -+ ).

Ifk =0,m = p,soo(m) = p+ 1. For this to be a prime > 3, p+ 1
must be odd, implying p is even. But p =2 = ¢(2) = 3, which is
not greater than 3. If k > 1, both factors (1 + p) and the remaining
sum are greater than 1. Thus o(p°) is composite. Therefore, e must
be even. Let m = pzk with k > 1.

S B 4

The condition on p — 1.

We prove the contrapositive: if (2k+1) | (p — 1), then (m) is com-
posite. Assume p = 1 (mod 2k + 1). Evaluating the sum modulo
2k +1:

2% 2%
o(p¥) = sz = 211 =1+1+---+1=0 (mod 2k+1).
i=0 i=0 2k+1 times

Thus (2k + 1) divides o(p?). Sincep > 2andk > 1, clearly
o(p*) > 2k + 1. Therefore, o(m) has a non-trivial factor 2k + 1, so
it is composite. Consequently, for o(m) to be prime, we must have

2k+1)t(p—1).
FE B

3.3 Exercises

1. Floor Identities. Let n > 2 be an integer. Prove that:
nn+1)|  |n+1
n—-2 | | 4 |

2. Summation with Floors. For any positive integer #, calculate the

sum:

3. Solving for Real Variables. Find a positive real number x satisfy-
ing the equation:

|x]? = x{x}.



10.

11.

12.

13.
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Floor Inequality. Let n be a positive integer and x be a real num-
ber. Verify that:

2x nx
> il IR sl
Lnxj_[xj—&—{zJ—F +{nJ
Primality of a Floor Sum. Let f(n) = Y_}_,|k?/3]. Prove that

in the sequence f(n), the only values that are prime numbers are
f(5) =17 and f(6) = 29.

Infinite Floor Series. Let t > 1 be an integer and x be a real

x+(t—1)th>
e

Condition for Inequality. Let m, n be positive integers and «, B be

number. Prove that:

£

equals either |x| or [x]| + 1.

x +
th+1

real numbers. Prove that the inequality
Lom +m)a] + | (m+n)B] > [ma] + [mp] + |na+np]
holds for all «, 8 if and only if m = n.

Decimal Expansion Bounds. Determine the digit immediately
before and the digit immediately after the decimal point of (/2 +
V/3)19%,

Recursive Sequence. Define G(0) = 0 and G(n) = n — G(G(n —
1)) for n > 1. Prove that G(n) = | (n+ 1)a|, where a = % (the
inverse of the Golden Ratio).

Factorials and Valuations.
(a) Find the exponent of 7 in the standard factorisation of 300!.
(b) Determine the standard prime factorisation of 30!.

(c) Determine the number of trailing zeros in the decimal repre-
sentation of 2000!.

Combinatorial Divisibility.

(a) Prove that (2””)2 is divisible by 4 for all n > 1.
(b) Prove that 2" | (¥ 1) but 271 (¥ 1),

(c) Prove that (Zn”) divides lem(1,2,...,2n).

Powers of 2 dividing Factorials. Prove that 2" ! | n! if and only if
n is a power of 2.

GCD of Binomial Coefficients. Find the greatest common divisor
of the set of binomial coefficients:

)G}
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14.

15.

16.

17.

18.

Divisor Function Calculations.
(a) Compute d(1125).
(b) Find the smallest positive integer n such that d(n) = 8. Do
the same for d(n) = 10.

(c) Find a number less than 10,000 that has exactly 60 divisors.
Product of Divisors. Let P(n) = [y, d. Prove that if P(x) = P(y)
for positive integers x, y, then x = y.

Sum of Divisors.

(a) Compute 0(232848).

(b) Find all # such that o(n) is odd.

(c) Find all n such that o(n) is a power of 2.

Generalised Divisor Sums. Let 0x(1n) = Y, d*. Prove the for-

mula:
r pgﬂi'i'l)k -1

ox(n) = H :

i=1 Pi’c -1

where n =[] p'.

Average Order of Sigma. Let f(n) = Y}, o(k). Prove that for
n>4:

Fin) > n(n+1).



4
Perfect and Amicable Numbers

Having established the properties of the divisor functions d(n) and
o(n), we turn our attention to integers that possess specific structural
relationships with their divisors. The study of these numbers dates
back to Pythagorean mysticism, yet their complete characterisation
remains an open problem in modern number theory.

Perfect Numbers

The most elementary relationship between a number and its divisors
occurs when the sum of the proper divisors equals the number itself.

Definition 4.1. Perfect Number.

A positive integer 1 is called a perfect number if it is equal to the sum

of its positive divisors excluding itself. Equivalently, n is perfect if and

only if o(n) = 2n.

Example 4.1. Small Perfect Numbers.

- For n = 6, the divisors are {1,2,3,6}. The sumisc(6) = 1+2+
3+6 =12 =2(6). Thus, 6 is perfect.

- For n = 28, the divisors are {1,2,4,7,14,28}. The sum is c(28) =
14+2+4+7+14+ 28 =56 = 2(28). Thus, 28 is perfect.

Xl

Even Perfect Numbers

The history of perfect numbers is inextricably linked to Mersenne
primes. Euclid proved that Mersenne primes generate even perfect
numbers, and two millennia later, Euler proved that all even perfect
numbers arise this way.

Theorem 4.1. Euclid’s Condition for Perfect Numbers.
If 27 — 1 is a prime number, then n = 2P~1(27 — 1) is a perfect num-
ber.
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| il
Proof

Letq = 27 — 1. Since g is prime, 0(q) = q+1 = 2F. Because ¢ is
odd, (21, g) = 1. Using the multiplicative property of o:

o(n) = o(2V1g)
=o(2")o(q)
Using the formula for ¢(p¥), we have ¢(2/~1) = 2(%21)% =27 —

1 = g. Substituting these values:

o(n)=q-2F = (28 —1)2" =2-2P"1(2P —1)] = 2n.
Therefore, n is a perfect number.
Theorem 4.2. Euler’s Converse.

If n is an even perfect number, then n must be of the form 27~1(27 —
1), where 27 — 1 is a prime number.

T3
Proof
Let n be an even perfect number. We factor out the powers of 2
from the standard factorisation:
n= Zku,
where k > 1 (since n is even) and u is odd. Since c(n) = 2n, we

have:
o(2u) = 2(2Fu) = 2¢ 1y,

By the multiplicativity of ¢ and the fact that (2k,u) = 1:
c(2o(u) = 2 = 1)o(u) = 21w
We rearrange this to express ¢ (u) in terms of u:

2k+11/£ u

U(u):2k+l_1 :u+2k+1_1'

Since o(u) is an integer, the fraction D = 51— must be an integer.
Thus, 251 — 1 is a divisor of u. Write

u= (21 1)t
for some integer ¢ > 1. Then

u
U_(u):u‘Fm:u"'t.
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So the sum of the proper divisors of u is t. Since t divides u, both
1 and t are proper divisors of # whent > 1, giving a sum at least

1 + t, which is impossible. Hencet = 1. Thenu = 21 1
and c(u) = u+1,s0uisprime. Thusn = 25(2k1 — 1) where
pLa e prime. By the properties of Mersenne primes, if 2k+1 _q
is prime, the exponent k + 1 must be prime. Let p = k + 1. Then
n = 2P~1(2F — 1), as required.
n
Properties of Perfect Numbers
The structure imposed by o(n) = 2n leads to several elegant arith-
metic properties.
Example 4.2. Reciprocal Sum of Divisors. Prove that a positive
integer n is perfect if and only if the sum of the reciprocals of its
positive divisors is 2.
1
dln
We expand the sum. As d iterates through all divisors of #, the
term n/d also iterates through all divisors of n.
1 1 1 o(n)
Z Z = Z — == Zd = )
d|n d d|n n/d n dln n
The condition {1 = 2 is equivalent to @ = 2,oro(n) = 2n,
which is the definition of a perfect number.
E

Example 4.3. Squarefree Perfect Numbers. Prove that if a perfect

number 7 is squarefree, then n = 6.

Letn = pip2...px be a product of distinct primes with p; < py <
- < px- Then o(n) = [T, (p; + 1). The perfect condition o (1) =

2n becomes:

(p1+D)(p2+1)... (px+1) =2p1p2.-. prc
We analyse the cases for k:
Casek =1. p1+1=2p; = p;1 =1, which is impossible.

Case k =2. Wehave (p1 + 1)(p2 +1) = 2pip2. If nis odd, both
p1,p2 are odd, so p1 + 1 and p, + 1 are even. Thus 4 | o(n) =
4 | 2n = 2 | n. This contradicts n being odd. Thus n must
be even, so p; = 2. The equation becomes 3(py + 1) = 4py =
3pp+3=4py = pp =3. Thisyieldsn =2 x3 =6.
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Case k > 3. As shown above, n must be even, so p; = 2. The
equation implies 3]T5_,(p; + 1) = 4%, p;. This simplifies to
%Hi?:z (1 + %) = 2. However, for k = 3, the minimum possible
primes are 2, 3, 5. LHS = %(1—!—%) (1—!—%) = %'%-g = % =
24 > 2. Adding more primes only increases the product, so
there are no solutions for k > 3.

Thus, n = 6 is the unique squarefree perfect number.
Ed
Example 4.4. Triangular Structure. Prove that every even perfect
number is a triangular number.
k(k

Recall that the k-th triangular number is T, = TH) Letn =
2P=1(2F — 1) be an even perfect number. Let k = 27 — 1. Then:

(2P —1)((2P —1)+1) _ (27 —1)2°

Ty = - =2 -1)2" 1 =n.
k 5 5 ( ) n
Thus n is the (27 — 1)-th triangular number. For example, 6 = T3
and 28 = T5.

Ed
Example 4.5. Last Digits of Even Perfect Numbers. Prove that
every even perfect number ends in 6 or 8.
Let 1 be an even perfect number. Then n = 2P~1(27 — 1), where p

is a prime and 27 — 1 is also prime. We observe that for any integer
k > 1, powers of 16 always end in 6. Thus, we can write 16 =
10m + 6 for some positive integer m. We consider the possible forms
of the prime p:

1. If p =2, then n = 21(22 — 1) = 2(3) = 6. This ends in 6.

2. If p > 2, p must be odd. Thus p is of the form 4k + 1 or 4k + 3.

Case 1: p = 4k + 1 for some integer k > 1. Then n = 2% (2%+1 _ 1) =
16%(2 - 16X — 1). Substituting 16" = 10m + 6:

n = (10m +6)(2(10m +6) — 1)
= (10m 4 6)(20m 4+ 12 — 1)
= (10m + 6)(20m + 11)
= 200m? + 110m + 120m + 66
= 10(20m? 4 23m + 6) + 6.

Since 10(20m? + 23m + 6) is a multiple of 10, adding 6 results in
a number ending in 6.
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Case 2: p = 4k + 3 for some integer k > 0. Thenn = 2¥+2(2%+3 _
1) =22.2%(23. 2% 1) = 4.165(8 - 16" — 1). Substituting 16" =
10m + 6:

n = 4(10m +6)(8(10m +6) — 1)
= (40m + 24)(80m + 48 — 1)
= (40m + 24)(80m + 47)
= 3200m? 4 1880m + 1920m + 1128
= 10(320m2 + 380m + 112) + 8.

Since the first term is a multiple of 10, adding 8 results in a num-
ber ending in 8.

In all cases, n ends in either 6 or 8.

)
Note
Ifk = 0,then p = 3,and n = 2%(7) = 28, which ends in 8 and fits
this form.

Example 4.6. Product of Divisors of Perfect Numbers. Let n be

an even perfect number generated by the prime p. Prove that the
product of the positive divisors of n is n”.

Let P(n) = [lg,d. From the properties of the divisor function,
P(n) = n?"/2 Forn = 27~1(2P — 1), the prime factors are 2
(with exponent p — 1) and g = 27 — 1 (with exponent 1). Using the
formula for d(n):

dn)=((p—1)+1)(1+1)=p-2=2p.
Substituting this into the product formula:

P(n) = n2P/2 — P,

4.2 Amicable Numbers

While perfect numbers relate to themselves, amicable numbers re-
late to each other. They occur in pairs where the sum of the proper
divisors of one number equals the other.

Definition 4.2. Amicable Numbers.
Two positive integers m and n form an amicable pair if:

cm)—m=n and o(n)—n=m.
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Equivalently, o(m) = o(n) = m + n.

Example 4.7. The Classical Pair. The smallest amicable pair is

(220,284).

- 220=2%2.5-11.0(220) = (1 +2+4)(1+5)(1+11) =7-6-12 =
504. Sum of proper divisors: 504 — 220 = 284.

- 284 =122.71. ¢(284) = (1+2+4)(1+71) = 7-72 = 504. Sum of
proper divisors: 504 — 284 = 220.

ERl

In the gth century, Thabit ibn Qurra discovered a rule to generate
amicable pairs, similar to Euclid’s rule for perfect numbers.

Theorem 4.3. Thabit ibn Qurra’s Theorem.
Let e > 2 be an integer. Define:

p=3-2"1-1, g=3.2-1, r=9.2%1_1.

If p,q, and r are all prime numbers, then M = 2°pg and N = 2°r form
an amicable pair.

gkl
Proof
We compute 0(M) and o(N). Note that p, g, r are distinct odd
primes (since e > 2).

o(M) = 0o(2%)o(p)e(q)
( e“ -Dp+1)(@+1)
= (2°t —1)(3-2¢71)(3-29)
= (2°T1 —1)(9. 2271,

Similarly for N:

o(N) =0(2%0(r)
=2 —1)(r+1)
— (26+1 _ 1)(9 . 22671)'

Thus ¢(M) = o(N). We must now show this common sum equals
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M+ N.

M+ N =2pg +2°r
=2(pq+7)
=2°((3-271 = 1)(3-2°— 1)+ (9- 2% - 1)]
=2°[(9-2%71 —3.2¢71 —3.2¢ 4 1) 4+9.2%71 1]
=2°[18-2%71 —3.2¢71(1 +2)]
=2°09-2% —9.2°7]
=9.02-1(et1 ),

This matches the value of o (M) derived above. Thus M and N are
amicable.
]

Note

For e = 2, we obtain primes p = 5,4 = 11, = 71, yielding the pair
(220,284).

Properties and Non-Existence Results

Example 4.8. Reciprocal Sums for an Amicable Pair. Prove that if m
and n are amicable, then

£ ) -
dlm k|n

Recall that Zd‘x% = g(xx). Let K = o(m) = o(n) = m+ n. Then the
sum of inverses is:

()" () - £

$o19]

Example 4.9. Primes cannot be Amicable. Prove that a prime num-

ber p cannot belong to an amicable pair.

Suppose (p,n) is an amicable pair. Then o(p) = p + n. Since p is
prime, o(p) = p + 1. The equation becomes p +1 = p + n, which
implies n = 1. If n = 1, the pair is (p,1). This requires (1) = 1+ p.
Buto(1) =1. Thus1 =1+p = p = 0, which is not prime. Con-
tradiction.

.49
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Example 4.10. Squares of Primes cannot be Amicable. Prove that
p? (where p is a prime) cannot belong to an amicable pair.

Suppose (p?,1) is an amicable pair. Then ¢(p?) = p? + n. We calcu-
late o(p?) =1+p+p> Sol+p+p>=p*+n = n=p+1. The
condition for amicable numbers requires o(n) = o (p?) = 1+ p + p>.
Substituting n = p + 1:

clp+1)=p*+p+1

We estimate the growth of o (k). Generally, o(k) < k? for k > 1. For
k = p + 1, we consider the maximum possible sum of divisors.

o(p+1 <§ =\ } -y j =-p°+-p+1L
( )_ill 2 2 2 2

We compare this upper bound with the required value p> + p + 1.
Forp > 2,p2+p+1 > p?+3p+1 = ip2-1p >
0 <= p(p—1) > 0.Since p > 2, this inequality strictly holds.
Thus o(p+1) < p? + p + 1. This contradicts the requirement for be-

ing an amicable pair.

X

4.3 Exercises

1. Perfect Squares and Perfect Numbers. Prove: A square number
cannot be a perfect number.

2. Perfect Numbers and Division by 9. Let n be an even perfect
number greater than 6. Prove that when # is divided by 9, the
remainder is 1.

Remark.
Use the form 2P~1(27  — 1) and list the possible remainders of
cubes upon division by 9.

3. Verifying Amicable Pairs. Prove that 9,363,584 and 9,437,056 are

an amicable pair.

Remark.

This pair was discovered by Descartes.

4. Power Condition for Amicable Pairs. Suppose a prime power p?
is one of an amicable pair. Prove that:

o35
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5. Structure of Odd Perfect Numbers. Prove: Any odd perfect num-
ber must be of the form p**1Q?, where p is an odd prime, a is a
nonnegative integer, and Q is a positive integer.

Analyse the parity of o(n) factors. Since
nis odd, o(n) = 2n is even but not
divisible by 4. How does o(p°) behave
when p is odd?



5
The Principle of Stepwise Elimination

A recurring theme in the previous chapters has been the need to
count integers satisfying specific divisibility properties. For instance,
the Sieve of Eratosthenes systematically removes multiples of primes
to isolate the remaining prime numbers.

We now formalise this counting technique. Known in combinatorics
as the Inclusion-Exclusion Principle, and in number theory as the
Principle of Stepwise Elimination, this tool allows us to enumerate
objects that do not satisfy a set of properties by systematically adding
and subtracting counts of objects that do.

The Inclusion-Exclusion Principle

We consider a finite set of objects and a collection of properties that
these objects may possess. We wish to count the number of objects
that possess none of these properties.

Theorem 5.1. Principle of Stepwise Elimination.

Let S be a finite set of N objects. Let a1, ay,. .., a5 be a set of s distinct
properties. For any subset of indices {7y, ..., i} C {1,...,s}, let N"‘il'"“ik
denote the number of objects in S that possess all the properties «;,, . ..
simultaneously. The number of objects in S that possess none of the

properties a7, ..., a5 is given by:

E=N- ) Ny+ Y, Naja; —
1<i<s 1<i<j<s

Y Nuat ot (21 Nep
1<i<j<k<s

S
=N+ Y (-1)f ( Y Nail,,,aik> .
k=1 l§i1<-**<ik§5

i

We determine the contribution of an arbitrary object x € S to the total
sum on the right-hand side.

s &

k

51

a3

one

Figure 5.1: Visualisation for
s = 3. To count the region
outside the circles ("None"), we
start with the total N, subtract
single circles, add back pair-
wise intersections, and subtract

the triple intersection.
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x possesses none of the properties.

The object x is counted once in the term N. It does not appear in
any N,, or subsequent terms because it has no properties. Total

contribution: 1. This is correct.
SEBA #

x possesses exactly k properties (1 < k < s).

Assume x possesses properties &, ..., &;,.

* In the term N, x is counted 1 time (coefficient (é)).

¢ In the sum } N, x is counted (11‘) times (once for each of its k
properties).

* In the sum }’ Nyq;, X is counted (’2‘) times (once for each pair of
its properties).

* Generally, in the m-th summation, x is counted (,’1‘1) times.

The total contribution of x to the alternating sum is:

k k k k Wk
= - — ceed (=1 i
= (o)~ () () () (i)
By the Binomial Theorem, this sum corresponds to the expansion of
(1-1)k
C=01-1F=o0.

Thus, any object possessing at least one property contributes o to
the total.

EXCES
Since only objects with no properties are counted (exactly once), the
formula yields the number of such objects.

Applications to Divisibility

In number theory, the "properties" are typically divisibility condi-
tions. Recall from the previous chapter that the number of multiples
of an integer b not exceeding x is |x/b]. This allows us to calculate
Ny, and intersections explicitly.

Example 5.1. Counting Integers with Missing Factors. Find the
number of positive integers not exceeding 100 that are not divisible
by 2, 3, 5, or 7.

LetS = {1,2,...,100},s0o N = 100. We define four properties:
aq: divisible by 2; ap: divisible by 3; a3: divisible by 5; a4: divisible
by 7. We seek the number of elements with none of these proper-

ties. The count of numbers divisible by a set of coprime integers is

33
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determined by the floor of N divided by their product.
100 100 100 100
Count = 100 — (\‘ZJ + {BJ + \‘SJ + {7J)
L (]200] |00 [100|  |100|  |100|  |100
6 10 14 15 21 35
_([100] , | 100]  [100|  [100
30 42 70 105
4| 100
210 | °
Evaluating these terms:

Count = 100 — (50 + 33 + 20 + 14)
+(164+10+7+6+4+2)
—(34+2+140)
+0
=100 - 117 +45 -6 = 22.

There are 22 such integers.

E X

The principle extends beyond simple counting; it is a linear operator
that can be applied to summations.

Example 5.2. Summation of Non-Multiples. Calculate the sum of
all positive integers not exceeding 100 that are not divisible by 2, 3,
5, OI 7.

Let A be the set of integers {1,...,100} satisfying the condition.
We compute ), 4 n. Using the Stepwise Elimination Principle, we
replace the count of elements [100/k]| with the sum of multiples of
k. The sum of multiples of k up to N is:

S(N,k) = U\[X/;kjjk:kLN/kJ(Uz\f/kj +1).
j=1

Applying the formula:

Sum = 5(100,1)
— (5(100,2) + 5(100,3) 4 5(100, 5) + 5(100,7))
+ (5(100,6) 4 5(100,10) + S(100,14) 4 S(100, 15) + S(100,21) 4 5(100, 35))
— (5(100,30) + S(100,42) + S(100,70)).

Calculating individual terms:
- Total sum: M = 5050.

- Singles: 290351 4 333534 4 520521 4 714515 — 9550 + 1683 4 1050 +
735 = 6018.
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- Pairs: 6(136) + 10(55) + 14(28) + 15(21) + 21(10) + 35(3) = 816 +
550 + 392 + 315 + 210 + 105 = 2388.

. Triples: 30(6) + 42(3) + 70(1) = 180 + 126 + 70 = 376.

Total Sum = 5050 — 6018 + 2388 — 376 = 1044.

Counting Permutations (Derangements)

To demonstrate the versatility of t/icoremn 5.1 beyond strictly arith-
metic progressions, we consider a classical combinatorial problem
involving permutations. This structure mirrors the divisibility prob-
lems: we subtract cases that violate a condition, then add back the

overlaps.
Example 5.3. The Derangement Problem. A derangement of n el-
ements is a permutation ¢ of the set {1,2,...,n} such that (i) # i

for all i (i.e., no element remains in its original position). Find the
number of derangements D,,.
Let S be the set of all n! permutations. Let property «; be the condi-

tion that o(i) = i. We seek the number of permutations possessing
none of the properties a1, ..., a;,.
- N=nl

- Ng,: The number of permutations where i is fixed. The remaining
n — 1 elements can be permuted in (n — 1)! ways. There are ()
such choices for i. Sum = (})(n —1)!.

* Ngq;: The number of permutations where i and j are fixed (i # j).
The remaining n — 2 elements can be permuted in (n — 2)! ways.
There are (5) such pairs. Sum = (3)(n —2)!.

- Generally, for k fixed points, the sum is (})(n —k)!.
Applying theorem 5.1:

n! n! n!

:n'_ll(n—l)!(n_l),+2'( _2)!(11—2)!—“'%—(—1)”?0!0!
1 1 1 —1)"
:n'(l Tta-at +(n,))

o451

85
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Counting Primes

The Sieve of Eratosthenes is an algorithm. By applying the Princi-
ple of Stepwise Elimination, we can convert this algorithm into an
explicit formula for 77(N), the prime-counting function.

Theorem 5.2. Legendre’s Formula for 71(N).
Let N be a positive integer. Let p1, p2, ..., ps be the distinct prime num-
bers not exceeding v'N. Then:

n(N)ZN—i—s—l—Z{NJ-FZ{ & J —iqgl ~ J+---+(—1)ﬂ

i LPil 5 | PiPj PiPjPk

Proof

Consider the set of integers S = {1,2,...,N}. Anintegerx € S
is composite if and only if it is divisible by some prime p < /x <
V/N. Conversely, if x > 1 is not divisible by any prime p < /N,
then x must be a prime number greater than +/N.

We define the property «; as "being divisible by p;", fori = 1,...,s.
We apply the Principle of Stepwise Elimination to count integers in
S not divisible by any p;. Let M be this count.

M:N—ZLZJ%—Z{NJ—...

pip;

The set of numbers counted by M contains:
1. The number 1 (which has no prime factors).
2. All primes g such that VN < g < N.

The primes py, ..., ps are not included in M because they are divisi-
ble by themselves (property «;). Therefore, the total count of primes
up to N is the number of primes in the "sieved" set (which is M — 1)
plus the s small primes we used for sieving.

T(N)=(M—1) +s.

Substituting the formula for M yields the result.
|

Example 5.4. Calculating 77(100). We find the number of primes

up to 100. The primes not exceeding v/100 = 10 are 2, 3, 5, 7. Thus
s = 4. We use the calculation from the first example in this chapter,
where we found that the number of integers up to 100 not divisible
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by 2, 3, 5, or 7is 22. Thus M = 22. Using Legendre’s Formula:
m(100) =M —-1+4+s=22—-1+4+4=25.

This matches the actual count of primes up to 100.

Structure of Coprime Integers

We can generalize Legendre’s formula to count integers coprime

to any general number 7, not just the product of primes up to v/N.
This leads to the formula for Euler’s Totient Function, which will be
central to later chapters.

Example 5.5. Counting Coprimes to a Composite Number. Letn =

pitp3 ... pi*. Find the number of integers x € {1,...,n} such that
(x,n) =1.

An integer x is coprime to n if and only if x is not divisible by any
of the prime factors py, ..., px. We apply Stepwise Elimination

with N = #n and properties «;: divisible by p;. The number of such
integers is:

n n n
n)=n-—y —+ - +
o =nmdy, ; Pipj i<]2»<z PipiP

Notice that we do not need the floor function symbols |... | be-
cause we are dividing 7 by its own divisors; the results are always
integers. We can factor the expression. Consider the expansion of
the product:

nﬁ(l—;) :n<1—2;+2p3pj—...>.

Multiplying n through the brackets yields exactly the inclusion-

exclusion sum derived above. Thus, the number of coprime integers

oo a1 ) (- ) (-2)

For example, if n = 12 = 22 -3, then ¢(12) = 12(1-1/2)(1-1/3) =
12(1/2)(2/3) = 4. The coprime integers are {1,5,7,11}.

1s:

.49
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The Drawer Principle

We now turn our attention to a fundamental logical tool used to
prove the existence of mathematical objects without necessarily con-
structing them. This principle, often attributed to Dirichlet, posits

a simple combinatorial truth: if one distributes a sufficiently large
number of items into a fixed number of containers, at least one con-
tainer must hold multiple items. Despite its apparent simplicity, this
"Drawer Principle" (or Pigeonhole Principle) allows us to demonstrate
the existence of complex number-theoretic structures.

We begin by formalising the simplest case.

Theorem 5.3. The First Drawer Principle.
If n+1 or more objects are placed into n drawers, then at least one drawer
must contain 2 or more objects.

T3

Proof

We proceed by contradiction. Assume thatn + 1 objects are dis-
tributed into n drawers such that no drawer contains more than

1 object. Then every drawer contains either o or 1 object. Conse-
quently, the total number of objects S satisfies:

S<1+1+---+1=n
—_——

n times

This contradicts the hypothesis that there are at least n + 1 objects.
Thus, the assumption is false, and at least one drawer contains 2 or
more objects.

This concept generalises naturally when the number of objects far
exceeds the number of drawers.

Theorem 5.4. The Generalised Drawer Principle.
If m objects are placed into n drawers, then at least one drawer contains

at least | 1| + 1 objects.
3L

Proof

Letk = [™-1]. The largest multiple of n strictly less than m is nk.
We wish to show some drawer has at least k + 1 objects. Assume
for the sake of contradiction that every drawer contains at most

k objects. Since there are n drawers, the total number of objects S

satisfies:
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This implies the total number of objects is strictly less than m, a
contradiction. Therefore, at least one drawer holds k + 1 or more
objects.

|

The Drawer Principle is particularly effective when the "drawers"

represent remainders or structural partitions of the integers.

Example 5.6. Parity Subsets. Prove that among any 3 integers,

there are at least 2 whose sum is a multiple of 2.

We classify integers by their parity. There are 2 possible categories

("drawers"): odd and even. We are given 3 integers. By t/heorem 5.3,

since 3 > 2, atleast 2 integers must belong to the same category.

Let these two integers be a and b.

1. If both are even, a = 2k and b = 2j. Then a + b = 2(k + j), which
is a multiple of 2.

2. If bothare odd, a =2k+1and b =2j+ 1. Thena+b = 2k +2j +
2 =2(k+j+1), which is a multiple of 2.
In either case, the sum is divisible by 2.

i
We can extend the logic of remainders to general divisors.

Example 5.7. Subset Sum Divisibility. Prove that among any set

of n positive integers ay,ay, ..., a,, there exists a non-empty subset

whose sum is a multiple of n.
Consider the n partial sums:

S1=m, So=m+a, ..., Sp=a1+ar+---+ay.

We examine the remainders of these sums when divided by

n. By the Division Algorithm, the possible remainders are

{0,1,...,n—1}.

- Case 1: If any sum Sy has a remainder of o, then Sy is a multiple
of n, and the subset {ay, ..., a;} satisfies the condition.

- Case 2: If no sum S; has a remainder of o, then the n val-
ues Sq,...,S, must map to the n — 1 non-zero remainders
{1,...,n—1}.
By theorem 5.3, placing n sums into n — 1 remainder classes implies
that at least two sums, say Sy and S, (with k > m), leave the same
remainder. It follows that their difference is a multiple of n:

Sk—Sm=(a1+ - +ar) — (a1 +-+am) = g1 + g2 + - - -+ ay.
Thus, the sum of the subset {a,,41,...,4x} is divisible by n.

$o19]
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Example 5.8. Divisibility in Intervals. Prove that for any integer

n > 1, if one selects n + 1 integers from the set {1,2,...,2n}, then at
least one selected integer divides another.

Every positive integer x can be written uniquely in the form

x = 2k. g, wherek > 0and g is an odd integer. For any
x € {1,...,2n}, the odd part g4 must also be in the range
1 < g < 2n. The possible odd parts in this range are the odd
integers {1,3,5,...,2n  — 1}. The number of such odd integers is
exactly n. We define these n odd integers as our "drawers". We are
givenn + 1 numbers. By the Drawer Principle, two distinct num-
bers x and y must share the same odd part 4. Letx = 2% -gand
y = 2. 4. Since x and y are distinct, we must have a # b. Ifa < b,
then x | y (since y = 2°7%x). If b < a, then y | x. Thus, one number
divides the other.

$o19]

Geometric and Additive Applications

The principle applies equally to coordinate geometry and sequence
construction.

Example 5.9. Midpoints of Lattice Points. Prove that among any

5 integer points in the Cartesian plane, there exist 2 points whose
midpoint is also an integer point.

A point (x,y) is an integer pointif x,y €  Z. The midpoint of
A(Xl,yl) and B(XQ,yz) is:

(1t x2 1ty
M_< b )

For M to be an integer point, x; + xpand y; + y must both be
even. This occurs if and only if x; and x; have the same parity, and
y1 and y; have the same parity. We classify integer points by the
parity of their coordinates. There are 4 such classes:

(odd, odd), (odd, even), (even, odd), (even, even).

We are selecting 5 points. By theorem 5.3, since 5 > 4, at least two
points A and B must belong to the same parity class. Consequently,
their midpoint is an integer point.

ERil)
Example 5.10. Additive Relations in Sets. Let n be a positive inte-
ger. Prove that given any set of n + 1 distinct positive integers each

strictly less than 2#, there exist three elements x, y, z in the set such
that x +y = z.
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Let the set of integersbe A = {ag,ay,...,a,}. Sort the elements
such that:
1<agy<a <+ <ay <2n.

We define a new sequence of n numbers based on A:
by=ay1—ay, by=ay—ay, ..., b,=a,—ag.
Note that b; > 0 for all i. Also, since a,, < 2n and ag > 1:
b, =a, —ay<2n-—1.
Consider the combined collection of numbers:

C: {al,...,an}u{b],...,bn}.

There are n numbers in the first set and n in the second, totalling 2n
numbers. However, all elements of C are positive integers strictly
less than 27 (the maximum possible value is 2n — 1). By the Drawer
Principle (placing 2# items into 2n — 1 values), at least two numbers
in C must be equal. Since the sequence 4; is strictly increasing, all

a; are distinct. Similarly, all b; are distinct. Thus, the equality must
be between an element of the first set and an element of the sec-
ond. There exist indices j and k such that a, = b;. Substituting the
definition of b;:

a = aj —ag = ag+ag = 4a;.

Let x = a9,y = ay,z = a;. These are elements of the original set sat-
isfying x +y = z.

E X

The Averaging Principle

A variation of the Drawer Principle deals with sums and averages.
If a total resource is distributed among n consumers, someone must
possess at least the average amount.

Theorem 5.5. The Weighted Drawer Principle.
Let g1, ...,q, be positive integers. If

S=q+q+ +q-n+1

objects are placed into n drawers, then either the first drawer contains
at least g1 objects, or the second contains at least g, ..., or the n-th con-
tains at least g;,.

il
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Proof

Assume the contrary: that for every drawer i, the number of objects
o; satisfies 0; < gq; — 1. Summing over all drawers:

n n n
Total Objects = ) 0, < ) (9, —1) = (Z qi> —n=5-1.
i=1 i=1 i=1

This contradicts the fact that there are S objects.
[ |

Corollary 5.1. The Average Principle. Let my,...,m, be integers. If their
arithmetic mean is greater than r — 1, then at least one integer is greater
than or equal to r.

1 n
—Zmi>r—1 = dk,my > .
i=1

e

Example 5.11. Sums on a Circle. The integers from 1 to 10 are
arranged in a circle in an arbitrary order. Prove that there exist 3
adjacent numbers whose sum is at least 17.

Let the arrangement be a1, 4y, . .., a1g in clockwise order. We form
the 10 sums of 3 adjacent numbers:

S1=ay1+ay+as, So=ar+az+ay, ..., Sig=aiy+a+ar.

We calculate the sum of these sums. In the total }_S;, each number
ay appears exactly 3 times (once as the first element, once as the
second, once as the third).

10
ZS{ :3(a1 +a2+~-+a10).
i=1

Since the numbers are a permutation of 1, ..., 10, their sum is 55.
10
Y S; =3(55) = 165.
i=1

The average value of the sums is:

= 165
5= 10 = 16.5.

Since the average is 16.5, by the Average Principle (with r = 17, not-
ing 16.5 > 17 — 1), at least one sum S must be greater than or equal
to 17.

.49

B m 5
a1 ap
/ N\

ag as

| |

ag a4

AN /

az as
S~ a6 _—

Figure 5.2: Ten integers ar-
ranged on a circle. We consider
sums of triplets like (a7, 4z, a3).
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Example 5.12. Decimal Expansions. Prove that for any integer n >
0, the decimal expansion of % is eventually repeating.

Consider the process of long division of 1 by n. At each step k, we
obtain a remainder r; when dividing by n. By the Division Algo-
rithm, the possible values for the remainder r are {0,1,...,n — 1}.
There are only n possible values for these remainders. Consider the
sequence of 1+ 1 remainders generated by the division process:
r1,%2,...,7y+1. By the Drawer Principle, since there are n  + 1 re-
mainders and only n possible values, at least two remainders must
be identical. Letr; = r;withi < j. Since the algorithm for long
division is deterministic (the next digit and next remainder depend
entirely on the current remainder), the sequence of digits generated
after r; will be identical to the sequence generated after r;. Thus,
the decimal expansion repeats with a period of length at most j —i.

$o19]

5.4 Exercises

1.

Sieve Count. Find the number of positive integers not exceeding
500 that are not divisible by any of 5, 7, or 11.

Sieve Sum. Calculate the sum of all positive integers not exceed-
ing 500 that are not divisible by any of 5, 7, or 11.

Divisibility by Sets. Consider the integers from 1 to 2000.
(a) How many are divisible by at least two of the numbers 2, 3,
5?
(b) How many are divisible by exactly one of the numbers 2, 3,
5?
Counting Primes. Use Legendre’s Formula (t/:corerm 5.2) to calcu-
late 77(150), the number of primes not exceeding 150.

Bertrand’s Postulate. Prove that for any real number x > 1, there
exists at least one prime number in the interval (x, 2x].

Remark.

This is a deep theorem; try to prove a weaker version first, you
may use the properties of binomial coefficients (Zn”).

Parity and Difference. Prove that among any 4 integers, there are
at least 2 whose difference is divisible by 3.

Sum Divisibility. Prove that among any 5 integers, there are at
least 3 integers whose sum is divisible by 3.

Divisor Existence. Prove that if n 4 1 integers are selected from
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10.

the set {1,2,...,2n}, there must exist two integers such that one
divides the other.

Maximising the Minimum. Let m > n > 0. Suppose m books are

placed into n drawers. Let r be the maximum integer such that we
can guarantee at least one drawer contains r books. Determine r in
terms of m and n.

Sum Matching. Let A and B be two sets of distinct positive in-
tegers such that every element in A U B is strictly less than n.
Suppose |A| + |B| > n. Prove that there existsa € Aand b € B
such that a4+ b = n.



6.1

6
Congruence

Having established the properties of divisibility and prime factori-
sation in the preceding chapters, we now turn to one of the most
powerful tools in elementary number theory: the theory of con-
gruences. Developed systematically by Carl Friedrich Gauss in his
Disquisitiones Arithmeticae (1801), this theory formalises the arithmetic
of remainders. It provides a natural framework for treating divisibil-
ity problems as algebraic equations, greatly simplifying arguments
that would otherwise require cumbersome manipulation of linear
combinations.

The Concept of Congruence

The notion of congruence is an extension of the divisibility relation. It
classifies integers based on their remainders when divided by a fixed
positive integer.

Definition 6.1. Congruence.

Let m be a fixed positive integer, termed the modulus. Two integers
a and b are said to be congruent modulo  if they leave the same re-
mainder when divided by m. This relationship is denoted by:

a=b (mod m).

If the remainders are distinct, a4 and b are said to be incongruent mod-
ulo m, denoted by a # b (mod m).

While the definition relies on the Euclidean Division Algorithm, it is
often more operationally convenient to express congruence in terms
of divisibility.

Theorem 6.1. Characterisation of Congruence.

Let m be a positive integer. Then a = b (mod m) if and only if m di-

vides the difference a — b.
g
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Necessity.
Suppose a = b (mod m). By theorem 0.4, we can write a = mgy + r
and b = mgy +r, where 0 < v < m. Subtracting the two equations
yields:
a—b = (mgy+r) = (mg2+r) = m(qi — ga)-

Since g1 — qp is an integer, m | (a — b).

EXLES
Sufficiency.
Suppose m | (a —b). Thena — b = mk for some integer k. Let b =
mg +r with 0 < 7 < m. Substituting this into the expression for a:

a=b+mk= (mqg+r)+mk=m(qg+k)+r.

Thus, a leaves the same remainder r as b when divided by m, so
a="b (mod m).
BLES

This theorem establishes the bridge between the notation of congru-

ence and the theory of linear Diophantine equations. The expression
a=Db (mod m) is equivalent to the existence of an integer k such that
a = b+ mk.

Properties of Congruence

The utility of congruence lies in its structural similarity to equality.
We begin by verifying that congruence behaves as an equivalence
relation.

Theorem 6.2. Equivalence Relation.

That is, for all integers 4, b, c:

1. Reflexivity: a = a (mod m).

2. Symmetry: If a =b (mod m), then b = a (mod m).

3. Transitivity: If a = b (mod m) and b = ¢ (mod m), thena = ¢
(mod m).

Proof

1.a—a=0=m-0,som| (a—a).

2. Ifm| (a—0b), thena—b = mk. Thusb —a = m(—k),som | (b —
a).

3. Ifm | (a—b)andm | (b—c), thena—b = mkand b —c = mj.
Adding these yields (a — b) + (b —c¢) = a —c = m(k + j). Thus
m| (a—c).

]

Congruence modulo m is an equivalence relation on the set of integers.

3

Figure 6.1: Visualising congru-
ence modulo 6. Integers map
to points on the circle; 1 and 7
occupy the same position.
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Crucially, congruences preserve the basic arithmetic operations of
addition and multiplication. This allows us to perform arithmetic on
"remainders" without converting back to the original integers.

Theorem 6.3. Arithmetic Properties.

If a1 = by (mod m) and a; = by (mod m), then:
1. a1 £ap =b; £ by (mod m).

2. 4ax = b1b2 (mod m)

Proof

By hypothesis, there exist integers k and j such thata; — by = mk
and ap — bz = H’I]

1. Consider the sum (or difference):

(ﬂ] :Eaz) — (b1 :Ebz) = (ﬂ] *bl) + (ﬂz*bz) = mk:l:m] = m(kﬂ:])

Since k & j is an integer, m divides the difference.
2. Consider the product. We use the identity ajay — biby = ax(a; —
by) + b1(az — by).

a1ay — biby = ax(mk) + by (mj) = m(azk + byj).

Since ayk + byj is an integer, m | (ayay — biby).
|

The following corollaries are immediate consequences of t/eoren 6.3
and are used frequently in calculation.

Corollary 6.1. Congruence Operations. Let a, b, k be integers and m, n
be positive integers. If 2 = b (mod m), then:
1. atk=b+k (mod m).

2. ak = bk (mod m).

3. a" =b" (mod m).

El]
These properties extend to polynomials with integer coefficients.

Corollary 6.2. Let P(x) = Y ; c;x' be a polynomial with integer co-
efficients. If 2 = b (mod m), then P(a) = P(b) (mod m). Further-
more, if two polynomials f(x) and g(x) have coefficients that are con-
gruent modulo m term-by-term, then f(x) = ¢(x) (mod m).

e
Example 6.1. Divisibility by 9. Using the polynomial property,
we can derive the standard test for divisibility by 9. Let n be a
positive integer with decimal representation didy_1 ...d1dy. Then
n = Zi‘(:o d;10". Consider the polynomial P(x) = ZLO d;x'. Then

97
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n = P(10). Since 10 =1 (mod 9), we have:
P(10) = P(1) (mod 9).
Calculating P(1):

k .
P(l) = Zdl‘(:l)l = do+d1 +"'+dk.
i=0

Thus, n = sum of digits of n (mod 9). An integer is divisible by 9 if
and only if the sum of its digits is divisible by 9.

.49

6.2 Simplification and Cancellation

While addition and multiplication behave intuitively, division re-
quires care. The congruence ac = bc (mod m) does not necessarily
imply a = b (mod m). For example,2-3 =2-1 (mod 4), but 3 # 1
(mod 4).

However, we can cancel a factor if it is coprime to the modulus.

Theorem 6.4. Cancellation Law.
If ac = be (mod m) and (c,m) =1, thena = b (mod m).

i
Proof

The congruence ac = bc (mod m) implies m | (ac — bc), or equiv-
alently m | c(a — b). Since (¢,m) = 1, Euclid’s Lemma (established
in the chapter on Divisibility) implies that m must divide the other
factor,a —b. Thus a = b (mod m).

|
We can now apply these tools to solve specific number-theoretic
problems.
Example 6.2. Roots of Quadratic Congruences. Let p be a prime
not dividing 4, and let k > 1. Determine the solutions to n? = an

(mod p*).
We seek 71 such that p* | (n2 —an), or p* | n(n — a).

Case k = 1: Since p is prime, p | n(n —a) implies p | nor p | (n —a).
Thus n =0 (mod p) or n =a (mod p).

Case k > 2: Suppose p divides both factors. Then p | n and
p | (n—a). By linearity, p | n — (n —a) = p | a. But we as-
sumed p t a. This is a contradiction. Therefore, the prime power
pk cannot be "split" between the two factors; it must divide one
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entirely. Let v,(x) denote the exponent of p in the prime factori-
sation of x. Since p* | n(n — a), we have vy, (n) + vy(n —a) > k.
The argument above shows at most one of v,(n),v,(n  — a)is
positive, so one is 0 and the other is at least k. This leaves two
solutions: 7 =0 (mod p*) or n = a (mod pk).
B
Example 6.3. Non-Existence of Integer Roots. Prove that the equa-
tion x? + y? = 4k + 3 has no integer solutions.
We analyse the equation modulo 4. The right-hand side is congru-
ent to 3 modulo 4. For any integer z, we check the possible values
of z2 (mod 4):
- If zis even (z = 2m), z> = 4m?> = 0 (mod 4).

- Ifzisodd (z=2m+1),z2 =4m? +4m+1=1 (mod 4).
Thus, squares modulo 4 are always o or 1. The sum of two squares
x? +y? (mod 4) can therefore only take the values:

04+0=0, 0+1=1, 140=1, 1+1=2.

The value 3 is impossible. Thus, no integers x, y satisfy the equa-
tion.

$o19]

Composite Numbers and Factorials

Congruences provide elegant tests for primality and properties of
composite numbers. The following result complements Wilson's
Theorem (which we shall prove in a later section).

Example 6.4. Factorials of Composite Numbers. Letn > 4bea
composite integer. Prove that (1 —2)! =0 (mod n).

Since n is composite, we can write n = didp with1 < d; < dy < n.
We consider the term (n —2)! =1-2----- (n—2).

Case 1: dy # dy. Since n is composite, its smallest divisor d; < /n.
Ifn > 4,thend, = n/dy < n — 1. Since d; is an integer and
dr < n—1,wehave d, < n — 2. Thus both d; and d are distinct
integers appearing in the product 1 x - - - x (n — 2). Their product
didy = n divides (n —2)!.

Case 2: dy = dp. Heren = d? is a perfect square. Since n > 4, we
have d; > 2. We need to find two factors in (n — 2)! that multiply
to n. We use dy and 2d;. We check if 2d; < n — 2. Since d; > 3,
di(d; —2) > 3(1) =3 > 0,s0d? > 2d;. Alson = d3. Is2d; <
d2—2? Fordy >3,d7 —2d; —2 = (dy —1)>—-3.1Ifdy =3, n = 9.

99
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(n—2)! =7!.dy =3,2d; = 6. Both are in 7!. 3 x 6 = 18, which is
divisible by 9. Generally for d; > 3,2d; < d3 —2 = n — 2. Thus
both d; and 2d; appear in the product (n — 2)!. Since n = d? di-
vides dy - 2d; = 243, it follows that n | (n —2)!.

Conversely, if (1 —2)! = 0 (mod n) and n > 4, n must be compos-
ite. If n were prime, then from n | (n — 2)! we would have n | k for
some k € {1,...,n—2}, because a prime dividing a product divides
a factor. This is impossible, so n cannot be prime.

.41

6.3 Applications to Periodicity and Sums

The cyclical nature of modular arithmetic makes it ideal for detecting
patterns in powers and calendars.

Example 6.5. Mersenne Numbers and Modulo 7. Find all positive
integers n such that 2" — 1 is divisible by 7.

We observe the powers of 2 modulo 7:

2l=2, 22=4, 22=8=1 (mod?7)

Since 2> = 1, the powers repeat with period 3. We express n in
terms of its remainder modulo 3. Let n = 3k + r, where r € {0,1,2}.

1= =2k —1=1F.2"—1=2"-1 (mod 7).

We test the possible values of r:
cIfr=02"-1=0=0.

CIfr=1,21-1=1#0.

S Ifr=222-1=3#0.
Thus, 2" — 1 is divisible by 7 if and only if n is a multiple of 3.

ERil)
Example 6.6. Calendar Cycles. February 1996 had 5 Thursdays.
Determine the next years before 2100 in which this occurs.
February usually has 28 days (4 weeks exactly). In a non-leap
year, days of the week do not shift within the month, and there
are exactly 4 of each weekday. For a February to have 5 Thurs-
days, it must have 29 days. Thus, the year must be a leap year,
and February 1st must be a Thursday (so that the 1st, 8th, 15th,
22nd, and 29th are Thursdays). We track the shift in weekdays
for February 1st between consecutive leap years. A normal year
has 365 days, whichis 52 x 7 + 1 days. (Shift of 4+1). A leap
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year has 366 days. (Shift of 4+2). The interval between one leap
year’s February 1st and the next (4 years later) consists of three
normal years and one leap year (the current one). Total days =

3(365) +366 = 3(52 x 7+ 1) + (52 x 7+ 2) = 1461.

1461 =3(1)+2=5 (mod 7).

The day of the week for Feb 1st shifts forward by 5 days (or back-
wards by 2) every 4 years. Let 1996 correspond to day o (Thursday).
The sequence of shifts modulo 7 for subsequent leap years is:

- 1996: 0 (Thursday)

- 2000: 0+5=5

- 2004:5+5=10=3

- 2008:3+5=8=1

- 2012:1+5=6

- 2016: 6 +5=11=4

- 2020:4+5=9=2

- 2024: 2+ 5 =7 = 0 (Thursday again)

The cycle repeats every 7 leap years (28 years). The years are 1996 +
28 = 2024, 2024 + 28 = 2052, and 2052 + 28 = 2080.

B
Example 6.7. Sum of Fourth Powers. Prove that the sum of the 4th
powers of four consecutive integers cannot be the 4th power of an
integer.
We examine 4th powers modulo 4. For any integer x:
- If x is even (x = 2k), x* = 16k* =0 (mod 4).

- Ifxisodd (x = 2k + 1), x* = 4k* + 4k +1 =1 (mod 4). Squaring
again: x* =12 =1 (mod 4).
Any set of four consecutive integers {n,n 4+ 1,n + 2,n + 3} contains
two even numbers and two odd numbers. Let S be the sum of their
4th powers.
S§=0+14+0+1=2 (mod 4).

However, we have just shown that any perfect 4th power must be
congruent to o or 1 modulo 4. Since S = 2 (mod 4), S cannot be a
4th power.

El
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6.4 Modulus Transformations

Many number-theoretic problems require us to manipulate the mod-
ulus itself — scaling it, dividing it, or combining multiple moduli.
This flexibility is essential for solving systems of linear congruences
and for analysing the structure of composite numbers.

We begin by establishing how the congruence relation behaves when
the modulus is multiplied by an integer.

Theorem 6.5. Modulus Scaling.
Let a,b, m be integers withm > 0.Ifa = b (mod m), then for any

positive integer k,
ak = bk (mod mk).

i
Proof

Since @ = b (mod m), there exists an integer g such that a — b = my.
Multiplying both sides by k, we obtain:

k(a—0b) =k(mg) = ak — bk = (mk)q.

Since g is an integer, mk divides ak — bk, which implies ak = bk
(mod mk).

Conversely, we can reduce the modulus by dividing out a common
factor, provided that factor also divides the integers involved in the

congruence.

Theorem 6.6. Modulus Division.
Leta =b (mod m). If d is a positive common divisor of 4, b, and m,

then .
a m
=7 (mod E)
T3
Proof
Leta = b + mgq for some integer q. Since d divides a,b, and m, we

can divide the entire equation by d:

a_b m

d—d a7
Since a/d and b/d are integers, and m/d is an integer, this equation
represents a valid congruence relation modulo m/d.

Often, we encounter a fixed relationship a = b that holds for several
distinct moduli. The following theorem allows us to combine these
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into a single congruence involving the least common multiple.

Theorem 6.7. LCM of Moduli.
Let my,my, ..., my be positive integers. If a = b (mod m;) for all i =
1,...,k, then

a=b (mod [my,my,..., m]),

where [ml, .., mk] denotes the least common multiple of the moduli.

i
Proof
By definition, a = b (mod m;) implies that m; | (a — b) for each
i. From the properties of divisibility, if an integer N is divisible
by several integers, it is divisible by their least common multiple.
Thus, [my,...,mg] | (a — b), which is equivalent to the stated con-

gruence.
]

Corollary 6.3. Coprime Moduli. If a = b (mod m;) for pairwise coprime
integers my, ..., my, then

a=b (mod mymy...my).

This follows immediately because the LCM of pairwise coprime num-
bers is their product.

e

Finally, we observe that congruence is preserved when the modulus
is replaced by any of its divisors.

Theorem 6.8. Modulus Reduction.
If a=b (mod m) and d is a positive divisor of m, then a = b (mod d).

T
Proof

We are given that m | (a —b). Since d | m, the transitivity of divisi-
bility implies d | (a — b).

]
Proposition 6.1. GCD Invariance.
If a =b (mod m), then (a,m) = (b, m).
Proof
Let (a,m) = djand (b,m) = dp.Sincea = b (mod m), we have

a = b+ mk for some integer k. Because d, | b and dy | m, it follows
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thatd, | (b+ mk),sody | a. Thus dp is a common divisor of 2 and
m, implying d, < dy. By symmetry, writing b = a — mk, we deduce
that dy | b, so d; < dy. Therefore, d; = ds.

|

Applications of Modulus Properties

We now demonstrate the power of these theorems in establishing
divisibility results for general algebraic expressions.

Example 6.8. A Large Divisibility Problem. Let n be any positive
integer. Prove that the expression

E =2000" 4 855" — 572" — 302"

is divisible by 1981.

First, we calculate the prime factorisation of the modulus: 1981 =
7 x 283. Since 7 and 283 are prime (and thus coprime), it suffices to
show that E =0 (mod 7) and E =0 (mod 283).

Modulo 7: We reduce the bases modulo 7:
2000=5, 85=1, 572=5, 302=1.
Substituting these into E:

E=5"+1"-5"-1"=0 (mod 7).

Modulo 283: We reduce the bases modulo 283:

2000 =7 x 283+ 19 = 2000 =19 (mod 283).
855 =3x283+6 —> 855=6 (mod 283).
572 =2x2834+6 = 572=6 (mod 283).
302=1x283+19 = 302=19 (mod 283).

Substituting these into E:

E=19"+6"—6"-19"=0 (mod 283).

Since E is divisible by both 7 and 283, and (7,283) = 1, theorem 6.7
implies E is divisible by 7 x 283 = 1981.

£
Example 6.9. Fourth Powers and Modulo 240. Prove that if p is a

prime greater than 5, then p* =1 (mod 240).
The prime factorisation of the modulus is 240 = 2*.3-.5 =163 5.
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We verify the congruence for each factor separately.

Modulo 3: Since p > 5, p is not divisible by 3. Thus p +1

(mod 3). Squaring gives p? =1 (mod 3), so p* =1 (mod 3).

Modulo 5: Since p > 5, p # 0 (mod 5). The possible residues for p
are {1,2,3,4}. Calculating fourth powers:

Thus p* =1 (mod 5).
Modulo 16: Since p is an odd prime, let p = 2k + 1.
p? = (2k+1)% = 4k> + 4k +1 = 4k(k+1) + 1.

Notice that k(k + 1) is the product of two consecutive integers, so
it is always even. Let k(k + 1) = 2m.

p2 =4(2m)+1=8m+1.
Now we calculate p*:
pt = (p¥)? = (8m +1)> = 64m? + 16m + 1.
Since 16 | 64m? and 16 | 16m, we have p* =1 (mod 16).

Since p4 = 1 modulo 3, 5, and 16, and these moduli are pairwise co-
prime,

p*=1 (mod3x5x16) = p*=1 (mod 240).

el
Example 6.10. Cyclic System of Congruences. Find all triples of
positive integers (4, b, ¢) satisfying the system:

a=b (modc), b=c (moda), c=a (modD).

Without loss of generality, assume an ordering a < b < c. From the
first congruence, ¢ | (a — b). Since a < b, the difference a — b < 0.
However, the absolute difference | — b| = b — a must be a multiple
ofc. Sinceb < canda > 1,wehaveb —a < c. The only non-
negative multiple of c strictly less than ciso. Thusb —a = 0 =
a=b.

Substituting a = b into the remaining conditions:

a=c (moda) = a|(c—a) = alc.

c=a (moda) = a|(c—a) = a|c
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Letc = ka for some integer k. The solutions are of the form
(a,a,ka) for any positive integers a, k. The coprime solutions (where
(a,b,c) = 1) occur when a = 1, yielding the triple (1,1, k).

.41

6.5 Divisibility Criteria

The decimal representation of an integer is a polynomial in powers of
10. By analysing the properties of 10 modulo m, we can derive effi-
cient criteria for divisibility. Let N be a positive integer with decimal
expansion:

n .

N = anay_1...a1a0 = ) _ a;10’,

i=0
where 0 < a; < 9 are the digits. Let P(x) = Y ,a;x!, so that
N = P(10). If 10 = k (mod m), then by the polynomial property of
congruences, N = P(10) = P(k) (mod m).

Theorem 6.9. Divisibility by powers of 2 and 5.

2™ (respectively 5™).

ki
Proof
Note that 10 = 0 (mod 2) and 10 = 0 (mod 5). Consequently, for
i > m, 10/ = 0 (mod 2™) and 10’ = 0 (mod 5™). We can separate
the summation for N:

n m

. 71 .
N = Z ;10" + Z a,10' =0+ a,_1...a0 (mod 2™ or 5™).

i=m i=0

Thus N is congruent to the number formed by its last m digits.
n

Theorem 6.10. Divisibility by 3 and 9.
An integer N is divisible by 3 (respectively 9) if and only if the sum of
its digits is divisible by 3 (respectively 9).

%2
Proof
We observe that 10 = 1
100 =1 =1foralli> 0.

n ) n n
N=) 410=) a;(1)=) a; (mod3or9).
i=0 =0 i=0

1

(mod 3) and 10 = 1 (mod 9). Therefore,

Let m be a positive integer. An integer N is divisible by 2" (respectively
5™) if and only if the number formed by its last m digits is divisible by
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Theorem 6.11. Divisibility by 11.
An integer N is divisible by 11 if and only if the alternating sum of its
digits is divisible by 11. Specifically, the difference between the sum
of digits in even positions and the sum of digits in odd positions must
be a multiple of 11.

TR

Proof
We observe that 10 = —1 (mod 11). Thus 10’ = (—1)’ (mod 11).

n . n .
N = a;10' = Zﬂi(*l)l =aqp—ay+a;—az+... (mod 11).
i=0 i=0

=... A A1 A

Block Divisibility Tests Ay | A | A

For divisors that do not divide 10 or 10 &= 1 simply, we can often find .
Groups of 3 digits

a power of 10 that provides a clean residue.

Theorem 6.12. Divisibility by 7, 11, and 13. Figure 6.2: Visualisation of

Partition the digits of N into blocks of three, starting from the right:
Ap (last 3 digits), A1 (next 3), etc. N is divisible by 7, 11, or 13 if and

block decomposition for Theo-
rem 2.15.

only if the alternating sum of these blocks S = Ay — A1 + Ay — ...
is divisible by 7, 11, or 13 respectively.

32
Note
7-11-13 = 1001.
Proof

Since 1000 = —1 (mod 1001), it follows that 1000 = —1 modulo 7,
11, and 13. We write N in base 1000:

m
N = Y A(1000)*.
k=0

Taking the modulus d € {7,11,13}:

m
N = ZAk(—l)kEAo—Al—i-Az—... (modd)
k=0

Theorem 6.13. Divisibility by 37.
N is divisible by 37 if and only if the sum of its 3-digit blocks is divis-
ible by 37.

i
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Proof

We observe that 3 x 37 = 111 and 27 x 37 = 999. Thus 1000 = 1
(mod 37).

m m m
N =Y A (1000 = Y A1) = Y A;  (mod 37).
k=0 k=0 k=0

Example 6.11. Application of Block Rules. Is the number

N = 75,312,289 divisible by 13?

We split N into 3-digit blocks: Ag = 289, A1 = 312, A, = 75. Com-
pute the alternating sum:

S=Ayp— A1+ Ay =289 — 312+ 75 =52.

Since 52 = 4 x 13, S is divisible by 13. Therefore, N is divisible by
13.

£
While the block method is powerful for large numbers, a recursive
test exists for divisibility by 7 using only the last digit.

Proposition 6.2. The "Osculation” Test for 7.
An integer N = 10a + b is divisible by 7 if and only if a — 2b is di-

visible by 7.

Note

10 =3 (mod 7).

Proof

We require a condition equivalent to 10a + b = 0 (mod 7). Since
(10,7) = 1, we can multiply the congruence by the modular inverse
of 10. We seek an inverse x such that 3x = 1 (mod 7). Testing val-
ues: 3 X (—=2) = —6 = 1 (mod 7). Thus, the inverse is —2. Multi-
plying by —2:

—2(10a+0b) = -2(0) = —20a—2b=0 (mod 7).
Since —20 =1 (mod 7), this simplifies to:
a—2b=0 (mod 7).

|
Remark (Application).

Test 392. a = 39,b = 2. Check 39 — 2(2) = 35. Since 35 is divisible
by 7, 392 is divisible by 7.
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Example 6.12. Reconstructing Missing Digits. The number
N = 341d52 is known to be divisible by 8 and 9. Determine the
digit d.

Divisibility by 8. N is divisible by 8 if and only if the number
formed by the last three digits, 100d + 52, is divisible by 8. We
check values for d. Note 100 = 4 (mod 8).

100d +52 = 4d +52 =4d +4 (mod 8).

We require 4(d + 1) to be a multiple of 8. This implies d + 1 must
be even, so d must be odd. Possible values for d € {1,3,5,7,9}.

Divisibility by 9. The sum of digits must be divisible by 9.

Sum =3+44+14+d+5+2=15+4d.

We require 15 +d = 0 (mod 9), which implies6 +d = 0
(mod 9). Thusd = —6 = 3 (mod 9). The only digit satisfying
this is d = 3.

Verification: Since d = 3 is odd, it satisfies the condition

derived from the modulo 8 check. The number is 341352.
341352/8 = 42669 and 341352/9 = 37928.

E

Example 6.13. Smallest Multiple with Distinct Digits. Find the
smallest six-digit number with distinct digits that is divisible by 5
and 11.
Let the number be N. For N to be minimal:

(i) The leading digit should be as small as possible (1).

(if) The subsequent digits should be small (o, then 2, 3...).
Let’s try the form N = 10abcd. The digits used so far are {0,1}. For
divisibility by 5, the last digit 4 must be o or 5. Since o is already
used, d = 5.50 N = 10abc5. The remaining digits a, b, c must be
distinct and chosen from {2,3,4,6,7,8,9}. For divisibility by 11:

(14a+4¢)—(0+b+5)=0 (mod1l) = a+c—b—4=0 (mod 11).

Soa+c—b =4ora+c—b = 15 (since digits sum to at most 9 +

8 =17).

To minimise N, we want smallest 4, then smallest b. Try to satisfy

a+c—b =4 with small a.

- Trya =2 Then2+c—-b=4 = ¢c—-b=2 = c=0b+
2. We need small b. If b = 3, then ¢ = 5. But 5 is used for the last
digit. Reject. If b = 4, then ¢ = 6. Digits used: {0,1,2,4,6,5}. All
distinct. This gives the number 102465.
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Let’s check if we could have obtained a smaller number with
a+c—b = 15. This would require large a or ¢, which contradicts
minimality. Is there a solution witha =2and b < 4?If b =3,c =5
(Fail). If b < 3, say b = 2 (Fail, a # b). Thus, 102465 is the smallest
solution.

.41

6.6 Exercises
1. The Freshman’s Dream. Let p be a prime. Prove that for any
integers a and b:
(a+b)f =a? +b7 (mod p).
Remark.

Expand the binomial and consider the divisibility of the coeffi-
cient (7).

2. Divisibility Conditions on Exponents. Find all positive integers n
such that 52" + 32" is divisible by 17.

3. Calendar Calculation. The 30th National Day (October 1st) in Account for the leap years between
1979 was a Monday. Determine the day of the week for the 100th 1979 and 2049.
National Day in 2049.

4. Cubes Modulo 5. Prove that the difference of the cubes of two
consecutive integers cannot be divisible by 5.

5. Sum of Powers. Prove that 1" + 2" 4 3" + 4" is divisible by 5 if
and only if # is not a multiple of 4.

6. Non-Existence of Perfect Powers. An integer is a perfect power if
it can be written as a* for a > 1,k > 1. Prove that for any prime p,
the number 27 4- 37 is not a perfect power.

7. Power Towers Modulo Powers of 2. Let a be an odd positive
integer. Prove that for any n > 1:

> =1 (mod 2"+2).

8. Solitary Numbers. A number 7 is solitary if no m # n satis-
fies o(m)/m = o(n)/n. Prove that any power of 2, n = 2,
is solitary. Note: The text exercise defined solitary differently
(c(n) = o(m) = n + m), but this is the standard definition re-
lated to friendly numbers. Stick to the text’s definition if required:
prove no m exists such that o(n) = o(m) = n+ m.

9. Composite Divisibility. Let n be a positive integer. Prove that
330 | (62" — 52" —11).
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11.

12.

13.

14.

15.

16.
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Square of Primes Modulo 24. Prove that for any prime p > 3,
p?> =1 (mod 24).

Non-Existence of Special Integers. Let py, ..., p, be distinct odd
primes (n > 2)and N = []p;. Let m; = N/p;. Prove that it is
impossible for pjz | (mj —1) tohold forall j=1,...,n.
Divisibility Verification. Verify explicitly using congruence crite-
ria:

(a) 237293 is divisible by 7.

(b) 4553294 is divisible by 37.

Criterion for 101. Derive a divisibility criterion for the number
101 based on blocks of digits.

Palindromes and 11.
(a) Prove that every four-digit palindrome is divisible by 11.

(b) Is every six-digit palindrome divisible by 11? Prove or pro-
vide a counterexample.

Digit Reconstruction. The eight-digit number 141x28y3 is divisi-
ble by 99. Find the digits x and y.

Smallest 3-7 Number. Find the smallest positive integer com-
posed entirely of the digits 3 and 7 such that both the number
itself and the sum of its digits are divisible by both 3 and 7.

111



7.1

7
Residue Classes and Complete Systems

Building upon the theory of congruence, we now formalise the clas-
sification of integers based on their remainders. This leads to the
concept of residue classes, which partition the set of integers into
disjoint sets. By selecting representatives from these sets, we form
complete residue systems—fundamental structures that allow us to
reduce infinite problems over Z to finite computations.

Residue Classes

The congruence relation modulo m is an equivalence relation, and
like any equivalence relation, it partitions the underlying set into
equivalence classes.

Definition 7.1. Residue Class.
Let m be a positive integer. For any integer r where 0 < r < m, the
residue class corresponding to 7 is the set of all integers congruent to
r modulo m:

Sy={mg+r|qeZj}.

For instance, modulo 2 partitions the integers into two classes: the
evens (Sg) and the odds (S1).

To perform arithmetic modulo m, we typically select a single repre-
sentative from each class.

Definition 7.2. Complete Residue System.

A set of m integers is called a complete residue system modulo m if
it contains exactly one element from each residue class Sy, ..., S;_1.
Equivalently, a set A is a complete residue system modulo m if |A| =
m and for every integer n, there exists a unique a € A such that n =
a (mod m).

The set of integers is the disjoint union of the m residue classes Sy, Sy, . ..

’ SWZ71'
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While any set of representatives suffices, two specific systems are
standard due to their symmetry and simplicity.
Definition 7.3. Standard Residue Systems.

1. The least non-negative complete residue system modulo m is the
set:

{0,1,2,...,m—1}.
2. The absolute least complete residue system modulo m balances rep-
resentatives around zero to minimise their absolute values.

- If m is odd, the system is:

- If m is even, one typically chooses:

2 "2 27 2

Example 7.1. Verifying a System. Verify that the set A =
{-10,-6,—1,2,10,12,14} is a complete residue system modulo

7. We compute the least non-negative residue of each element mod-
ulo 7

-10=4 (mod 7)
—6=1 (mod?7)
~1=6 (mod7)

2=2 (mod7)
10=3 (mod 7)
12=5 (mod 7)
14=0 (mod?7)

The set of remainders is {4,1,6,2,3,5,0}. Rearranging these yields
{0,1,2,3,4,5,6}, which is the standard least non-negative system.
Since A contains 7 elements that map to distinct residue classes, A
is a complete residue system.

.41

Arithmetic Applications

The choice of residue system often simplifies divisibility proofs.
The absolute least system is particularly useful when evaluating

{—m+1,...,—1,0,1,...m} or {—ﬂ...,—1,0,1,...,ﬂ—1}.

Least Non-negative (m = 5)

[ ]
| | |
T T T
[ ] [ ] [ ]

Absolute Least (m = 5)

[ o )
[ e )
N

Figure 7.1: Comparison of
residue systems for m = 5. The
least non-negative system cor-
responds to standard division
remainders, while the absolute
least system minimises magni-
tude.
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polynomials, as it keeps the base values small.

Example 7.2. Quadratic Residues and Factorials.

1. Squares modulo 5: Prove that an integer congruent to 2 or 3
modulo 5 cannot be a perfect square.

Let x be an integer. We test x using the absolute least complete
residue system modulo 5: {0, £1, £2}.

. If x =0, then x2 = 0.
. If x = 41, then x2 = 1.
- If x = £2, then x2 = 4.

The possible residues of a square modulo 5 are {0,1,4}. Thus,
no square is congruent to 2 or 3 modulo 5.

2. Sums of Factorials: Prove that for n > 3, the sum S, = Y }_; k! is
not a perfect square.
Forn = 4,54 = 11421 +3!44! = 1+2+4+6+24 = 33. This
is not a square. For n > 5, we observe that k! = 0 (mod 5) for all
k > 5. Thus, for n > 5:

From part (1), we established that a perfect square cannot be
congruent to 3 modulo 5. Therefore, S, is never a perfect square
for n > 3.

B
Example 7.3. Divisibility of Cubic Products. Prove that the product
of three consecutive integers, where the middle term is a perfect
cube, is divisible by 504. Let the integers be n3 — 1,1n%,1n% + 1. The
product is N = (n® — 1)n3(n% 4 1). We observe that 504 = 7 x 8 x 9.

Since these factors are pairwise coprime, it suffices to show divisi-
bility by 7, 8, and 9 individually.

Modulo 7: We consider 7 in the absolute least residue system mod-
ulo 7: {0,+1, £2, £3}.
- Ifn=0,thenn®=0,s07| N.
- If n =41, then n® = £1,s0 n® ¥ 1 =0, implying 7 | N.
- If n =42, then n® = £8 = +1,s0 n® ¥ 1 = 0, implying 7 | N.

- If n = 43, then n® = £27 = +6 = F1,s0 n® £ 1 = 0, implying
7| N.

In all cases, 7 | N.

Modulo 9: Similar to the modulo 7 case, the cubes modulo 9
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are 0> = 0, (£1)® = +£1,(£2)® = £8 = F1,(+3)® = 0,
(+£4)% = +£64 = +1. The residues of n*> modulo 9 are restricted to
{0,1,8}. Thus, one of the factors n® (if o), n® — 1 (if 1), or n® + 1
(if 8) is divisible by 9.

Modulo 8: 1f n is even, n® is divisible by 8. If 1 is odd, then 73 is
odd. The neighbours 13 — 1 and 13 + 1 are consecutive even inte-
gers. One is divisible by 2 and the other by 4, so their product is
divisible by 8.

Since N is divisible by 7, 8, and 9, it is divisible by 504.

Structural Properties

We now establish criteria for determining whether a set of integers
forms a complete residue system without manually calculating every

remainder.

Theorem 7.1. Characterisation of Complete Residue Systems.
Let m be a positive integer. A set of m integers {ay,ay,...,a,} forms
a complete residue system modulo m if and only if the integers are pair-
wise incongruent modulo m.
i
Proof
Since there are m distinct residue classes modulo m, a set of m in-
tegers constitutes a complete system if and only if each integer
belongs to a distinct class. This is equivalent to the condition that

no two integers are congruent modulo .
n

A powerful feature of residue systems is their invariance under affine
transformations, provided the scaling factor is coprime to the modu-
lus.

Theorem 7.2. Affine Transformations.
Let m be a positive integer and let a4 be an integer such that (a,m) =
1. If x runs through a complete residue system modulo m, then for any
integer b, the expression ax + b also runs through a complete residue
system modulo m.

gl
Proof
Let {x1,...,xm} be a complete residue system. By t/corem 7.1, it
suffices to show that the m values {ax; + b,...,ax, + b} are pair-
wise incongruent. Suppose, for the sake of contradiction, that for
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some i # j:

ax; +b=axj+b (mod m).
Subtracting b from both sides gives ax; = ax; (mod m). Since
(a,m) = 1,theorem 6.4 implies x; = x; (mod m). This contra-

dicts the hypothesis that the x; are distinct modulo m. Thus, the
transformed values are pairwise incongruent and form a complete
residue system.

[ |
Example 7.4. Generating a New System. Letm = 12. ThesetS =
{0,1,...,11} is the standard system. Leta = 5andb = 7. Since
(5,12) = 1, the set {5x +7 | x € S} is also a complete residue sys-
tem. For example, if x = 2, the element is 17 = 5. If x = 3, the ele-
ment is 22 = 10. This transformation permutes the residue classes.

$o19]

Another fundamental property concerns the sum of the elements in a
complete residue system.

Theorem 7.3. Sum of Residues.
Let S = {y1,...,Ym} be a complete residue system modulo .
1. fmisodd, Y";y; =0 (mod m).

2. If miseven, Y"1 y; =% (mod m).

gl

Proof
Since S is a complete residue system, its elements are congruent
(in some order) to the least non-negative system {0,1,...,m — 1}.
Thus,

m m—1

m(m—1
Y vi= k:% (mod m).
i=1 k=0

(m is odd). Since m is odd, m — 1 is even, so (m —1)/2 is an integer
k. The sum is mk =0 (mod m).

(m is even). Let m = 2k. Then m — 1 is odd. The sum is

2k(2k — 1)

. = k(2k—1) =2K* —k = mk — .

2

Modulo m, this is congruent to —m /2, which is equivalent to
m/2.

This theorem imposes a strong constraint on the structure of sums of
residue systems.
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Example 7.5. Additive Incompatibility. Let # be an even posi-

tive integer. Let A = {ay,...,aytand B = {by,...,b,} be two
complete residue systems modulo 7. Prove that the set of sums

C = {ay +by,...,an + by} cannot be a complete residue system
modulo 7.

We sum the elements of the sets. By t/ecorem 7.3, since n is even:
Y ai= n (mod n) and ) b= n (mod n).
2 2
If C were a complete residue system, its sum would also satisfy:

Y (a;i+b;) = g (mod n).

However, by linearity:

Z(ﬂi+bi)=2ﬂi+zbizg+g=n50 (mod n).

This leads to the contradiction § = 0 (mod 1), which is impossible
for n > 0. Thus, C cannot be a complete residue system.

#b)
Example 7.6. Sum Constraint Verification. Consider m = 6. Sup-

pose we formaset S = {x,x+2,x +4,x+6,x+ 8,x +10}. Can S
be a complete residue system for any integer x? The elements are

an arithmetic progression with difference 2. Since (2,6) = 2 # 1,
theorem 7.2 does not apply. Let us calculate the sum of elements in
S:

% = 6x+ (244 +6+8+10) = 6x+30.

Modulo 6,2 = 0+ 30 = 0 (mod 6). However, by theorem 7.3, the
sum of a complete residue system modulo 6 (even) must be congru-
ent to 6/2 = 3. Since 0 # 3 (mod 6), S is never a complete residue
system.

.49

Composite Moduli Constructions

When the modulus is composite, we can construct complete residue
systems by combining systems modulo the factors. This is the foun-
dation for the Chinese Remainder Theorem, which we will treat fully
in a later chapter.

Theorem 7.4. Coprime Linear Combination.
Let my, my be coprime positive integers. If x1 runs through a complete
residue system modulo m7 and x, runs through a complete residue sys-
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tem modulo m5, then the linear combination
Mo X1 + miXxo

runs through a complete residue system modulo m1m1;.

Proof

The set of values generated is of size mjm;, which matches the
modulus size. By theoren 7.1, we need only show that these values
are distinct modulo mqm;. Assume:

Myxq + myxpy = mpx) +myxy  (mod mymy).
This implies divisibility by both m; and m;.

1. Modulo my: mpxqy = mpx} (mod my). Since (mp,my) = 1, we
cancel mp to get x; = x} (mod m;). Since x1, x| are from a CRS
mod my, x1 = x].

2. Modulo my: myx; = myx} (mod my). Similarly, (mq,my) = 1 im-
plies x; = ¥, (mod my), so x; = x5.

Since the components are identical, the values are distinct.

n
Note
(3,4) =1.
Example 7.7. Constructing a System Modulo 12. Letm; = 3and

my = 4.LetS; = {0,1,2} and Sy = {0,1,2,3}. We form the set
S = {4X1 + 3x7 | X1 € S3,% € 54}. For instance:
- x1=0x=1 = 3.

-x1=Lx=0 = 4

- x1=2,x=3 = 4(2)+3(3) =17 =5 (mod 12).
This construction generates exactly 12 distinct integers modulo 12,
providing a structured way to decompose the modulus.

Fbl
This principle generalizes to products of arbitrary length.

Theorem 7.5. Polyadic Expansion.
Let my, ..., my be positive integers. If x; runs through a complete residue
system modulo m; for each i, then the sum

X1 + myxo + mymoxs + - - -+ (M .. m_q) X

runs through a complete residue system modulo M = mymy ... my.
i
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Proof

We proceed by induction or direct uniqueness verification. The
expression is analogous to a mixed-radix representation. Consider
two such sums S and S’ being congruent modulo M.

k k
Z;Pj—lxj = Z;Pj_lx; (mod M),
= =

where Py = 1 and P; = my ... m;. Considering the congruence mod-
ulo my:
x1 =x] (mod my).

Thus x; = x’l. We subtract this term and divide by m;:
Xo + Mpxg + -+ = xh+mpxy+ ... (mod my...my).

Repeating the argument modulo m; yields x, = x}, and so forth.
All coefficients must be identical, proving distinctness.
[ |

Corollary 7.1. Base-n Representation. By setting my = mpy = -+ =
my = n, we recover the standard base-n expansion. If x; € {0,...,n—
1}, the sum

X1 +nxy+---+ nk_lxk

generates the complete residue system {0,1,...,7" — 1} modulo n*.

e

Advanced Examples

We conclude with two results illustrating the interaction between
residue systems and real analysis or combinatorics.

Example 7.8. Sum of Fractional Parts. Letm > Oand (a,m) = 1.
Prove that if x runs through a complete residue system modulo m,

then
Z ax+b)| m—1
m o2

X

where {y} =y — |y] denotes the fractional part.

By theorem 7.2, the values z = ax + b form a complete residue sys-
tem modulo m. Modulo m, the set {z} is congruent to {0,1,...,m —
1}. For each z, the term % can be written as I 4 =, where I is an in-
teger and r € {0,...,m — 1}. The fractional part is simply . Sum-
ming over the system:

1(m-1m _ m-1
m 2 2
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ERid)
Example 7.9. Legendre’s Property for Binomial Coefficients. Let p
be a prime. Verify that

()=l won

Consider the set of p consecutive integers S = {n,n —1,...,n —p+
1}. By theorem 7.1, S is a complete residue system modulo p. Thus,
exactly one element in S is divisible by p. Let this element be n — i,
where 0 <7 < p — 1. We can express the floor function as:

F=5

Now consider the binomial coefficient:

<Z> _ n(n—l)..’.g!(n—p—l-l)

Rearranging terms to isolate the multiple of p:

p!<1;> =nn—-1)...(n—p+1).

Let M = Tlj.i(n — j). This product contains p — 1 integers form-
ing a reduced residue system (excluding the multiple of p), so it

is a permutation of {1,...,p — 1} modulo p. Hence M = (p — 1)!
(mod p). Substituting n —i = p|n/p|:

f()-serls)
o) -nls]

Modulo p, since M = (p —1)! (mod p):

Dividing by p:

p-11(}) = (-1t |5]  mod p).

Since (p —1)! is coprime to p, we can cancel it to obtain:

()=l won

E X
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7.2 Euler’s Totient Function

Lets now restrict our attention to integers that are coprime to the
modulus. This restriction isolates the multiplicative structure of the
integers modulo m, leading to the definition of Euler’s Totient Func-
tion and Reduced Residue Systems.

We denote the count of positive integers up to a given integer m that
are relatively prime to m by ¢(m).

Definition 7.4. Euler’s Totient Function.
For a positive integer m, Euler’s function ¢(m) is defined as the car-
dinality of the set of integers {k € Z | 1 < k <m, (k,m) = 1}.
For example, if m = 10, the integers in the range [1, 10] coprime
to 10 are {1,3,7,9}. Thus ¢(10) = 4. By convention, ¢(1) = 1.
If p is a prime, every positive integer less than p is coprime to p.
Consequently, ¢(p) = p — 1.
To calculate ¢(m) for composite m, we rely on the t/eoren 5.1 (Inclusion-
Exclusion) established in the previous chapter.

Theorem 7.6. Euler’s Product Formula.

Let the canonical factorisation of a positive integer m be m = pi'ps? ... p;*.
Then:
k 1 k a; Lli*l
pm) =m[[(1—— ) =T1F" —p)
i=1 pi i=1

T3

Proof

Let S = {1,2,...,m}. We wish to count the elements of S that

share no prime factors with m. The prime factors of m are exactly
p1,...,Px- Let property a; be that an integer is divisible by p;. We
seek the number of elements satisfying none of these properties.
The number of multiples of a divisor 4 in S is exactly m/d. By
theorem 5.1:

m k m
m)=m-—y — -4 (-1
olm) ZP: pip;j ( )Pl Pk
1 1
=ml|1— — _
( Zpi ZP:‘P;‘ >

Multiplying m = []p!" into the product term-wise yields the second
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form:
k

o0m) =TT (1) =TT =47

i=1
u

Corollary 7.2. Multiplicativity of ¢. If m and n are coprime positive in-

tegers, then ¢(mn) = ¢(m)p(n).
e

Example 7.10. Calculating Totients. We compute ¢(2008). The
prime factorisation is 2008 = 8 x 251 = 23 x 251.

1 1 1 250
¢(2008) = 2008 <1 — 2> (1 — 251> = 2008 - 2 951 = 1000.

El

The Sum of Coprime Integers

While ¢(m) counts the integers coprime to m, we can also determine
their sum using the symmetry of the greatest common divisor.

Theorem 7.7. Sum of Coprimes.
Let e(m) denote the sum of positive integers not exceeding m that are
coprime to m. For m > 2:

em) = 7 g(m)

Proof

Let K = {ky,ky, ... ky(n) } be the set of integers in [1, m| coprime to
m. We observe that (k,m) = 1if and only if (m —k,m) = 1. Letd =
(m,m —k). Thend | mand d | (m — k), which implies d | k. Since
(m, k) = 1, we must have d = 1. Thus, the set K is invariant under
the mapping k — m — k. We can express the sum ¢(m) in two ways:

@(m)
e(m) =Y ki
i=1
@(m) @(m)
e(m) =Y (m—k;j) =me(m)— ) ki
i=1 i=1

Adding these equations yields 2e(m) = mg(m), from which the re-

sult follows.
[ |

Figure 7.2: Visualisation of
¢(12). We eliminate multiples
of 2 (red) and 3 (blue). The re-
maining integers {1,5,7,11} are
circled.
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Example 7.11. Sum Calculation. Calculate £(420). First, factorise
420 = 42 x 10 =2%-3-5-7. Compute ¢(420):

1 1 1 1 1246
¢(420)_420<1—2> (1—3) (1—5> (1—7>_4zo.2.3.5.7_96,

Then calculate the sum:

420
€(420) = - x 96 = 210 x 96 = 20160.

Eal

7.3 Reduced Residue Systems

Analogous to the complete residue system, which contains repre-
sentatives for all residue classes, the reduced residue system focuses
solely on the classes coprime to the modulus.

Definition 7.5. Reduced Residue System.
A reduced residue system modulo m is a set of ¢(m) integers such that:
1. Each integer in the set is coprime to m.

2. No two integers in the set are congruent modulo m.
Equivalently, it is a set containing exactly one representative from each
residue class coprime to m.

For m = 8, the complete system is {0,1,2,3,4,5,6,7}. Removing
those sharing factors with 8 (evens) leaves {1,3,5,7}, which is a
reduced residue system.

Theorem 7.8. Preservation under Multiplication.
Let (a,m) = 1. 1If {x1,..., X0y} is a reduced residue system mod-
ulo m, then the set {axy,..., axq,(m)} is also a reduced residue system

modulo m.

i
Proof
Since (x;,m) = 1land (a,m) = 1,itfollows that (ax;,m) = 1.
Thus, the new elements are coprime to m. To check distinctness,
assume ax; = ax; (mod m). Since (a,m) = 1, theorem 6.4 implies
x; = x;j (mod m). As the original set was distinct modulo m, so is

the new set. Being a set of ¢(m) distinct residues coprime to m, it is

a reduced residue system.
[

We can also construct reduced systems for composite moduli using
linear combinations of systems for the factors.
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Theorem 7.9. Composite Construction.

Let m; and m; be coprime positive integers. If x; runs through a re-
duced residue system modulo m; and x; runs through a reduced residue
system modulo my, then

mpXq + nXxy

runs through a reduced residue system modulo rm;m,.

T
Proof
There are ¢(my) choices for x1 and ¢(m;y) choices for x;. The total
number of generated values is ¢(mq)@(my) = ¢@(mymy) (by mul-

tiplicativity). By theorem 7.4, linear combinations of this form are
pairwise incongruent modulo mym;. It remains to show that each
value is coprime to mymy. Let N = mpxq + myx,. Since (x1,my1) =1
and (mp,m1) = 1, we have (mpxq,my) = 1. Thus:

(N, m1) = (mpxq + myxp, my) = (mpxq,myp) = 1.

Similarly, (xp,m;) = 1implies (N,my) = 1. Since N is coprime to
both my and my, and (mq, my) = 1, N is coprime to mymy. Thus, the
values form a reduced residue system.

Applications and Examples

Example 7.12. Power Properties of Totients. Prove that ¢(1*) =

n*~1o(n) for any integer n > 1 and k > 1.

Using t/eorem 7.6, let the prime factorisation of 1 be [ p:". Then

ke;
nk = [Tp;

o) =TT (1- )

pln P
k-1 < 1)
=n ~nH 1——
pln P
=n*"o(n).

This identity is useful for simplifying totient calculations of powers.
£

Proposition 7.1. Primality Conditions.
Let n > 2. Prove that n is prime if and only if ¢(n) | (n—1) and (n+

1) | o(n).
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A

¥

Necessity.
If n is prime, ¢(n) = n — 1 (divides itself) and o(n) = n + 1 (divides
itself). The conditions hold.

EXIES
Sufficiency.
Assume ¢(n) | (n —1)and (n+1) | o(n) for n > 3. Since ¢(n) is
even for n > 2, n — 1 must be even, so n is odd.
Suppose 7 is not square-free, i.e., p> | n. Then p | ¢(n), which im-
pliesp | (n—1).Butp | n,sop | 1,a contradiction. Thus # is
square-free, 1 = p1p2...pk. Then ¢(n) = [[(p;i —1) and o(n) =
[T(pi +1).
Ifk > 1, then ¢(n) is divisible by 2. Since ¢(n) | (n —1),n —11is
divisible by 2¥. Consequently, n + 1 = (n — 1) + 2 is not divisible by
4, only by 2.
We are given (n + 1) | o(n). Since o(n) is divisible by 2¥ (product
of k even terms), and n + 1 is only divisible by 2, consider the ratio
R=o0(n)/(n+1). We have 2¢~1 | R.

However,
_o(n) _o(n) I 1
Rin+1< no (1+pi)'

Since p; > 3,1+ 1/p; < 4/3. Thus R < (4/3)k. We require 2k-1 <
k

(4/3). But (i,ﬁ) =2 (%)k < 8 for k > 2, so the inequality fails for

all k > 2. Thus k = 1, and n is prime.

EXLES

Example 7.13. Sum of Powers. Let p be an odd prime and m bea
positive integer such that 2" # 1 (mod p). Verify that Zp "=
(mod p).
Theset S = {1,2,...,p — 1} is a reduced residue system modulo p.
Since (2,p) = 1,theset2S = {2,4,...,2(p — 1)} is also a reduced
residue system (by preservation under multiplication). The sum of
m-th powers must be congruent modulo p:

Y & =) x" (mod p).

xes x€2S

Substituting the elements:

p—
sz—Zsz—Z’”Zz (mod p).
i=1

LetX = Y i". Then £ = 2"% (mod p), or (2" —1) = 0 (mod p).
Since 2" # 1 (mod p), p does not divide 2™ — 1. By corollary 1.5, p |
%, so the sum is congruent to o.

.41
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Example 7.14. Sum of Fractional Parts. Letm > 1and (a,m) = 1.
Prove that if y runs through a reduced residue system modulo m,

then 1
L {5} = z00m)-

Y
The set {ay} forms a reduced residue system modulo m. Let the
,To(m)- Then {34} = {ji} = I (since
0 < r < m).Thesumis % Y_r;. This is exactly %s(m) Using

residues modulo m be r4, . ..

theorem 7.7:
m

1 1
Sum = — (Zo(m)) = 5 9(m).
Alternatively, observe that residues in a reduced system pair up as

T m-r __
rand m —r. Then - + "-F =

1. There are ¢(m)/2 such pairs.
et
Example 7.15. Totient Lower Bound. Show that if a composite inte-

ger 1 has k distinct prime factors, then ¢(1) > 2. Note that this is a
loose bound for large primes but illustrative for structure.

#b)
Proof
Letn = p'...p~

k

o(n) =TTrF (i —1).

i=1

Since each (p; — 1) > 2,wehavep(n) > [I,(pi—1) >
2k, Tf n is odd, each p; is odd, so p; — 1 is even and the product con-
tains at least k factors of 2. Hence 2¥ | ¢(n). This confirms the struc-

tural result used in the primality test example earlier.

7.4 Euler’s Theorem and Fermat’s Little Theorem

We now arrive at two of the most significant results in elementary

number theory. By exploiting the structure of reduced residue sys-
tems, we can generalise the periodic behaviour of powers modulo

m.

Theorem 7.10. Euler’s Theorem.
Let m be an integer greater than 1. If 4 is an integer coprime to m, then

a?™ =1 (mod m).
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Proof

Let R = {ry,r2,..., 7y} be a reduced residue system modulo m.
Since (a,m) = 1, the set aR = {ary,ary, ..., ar, ) } is also a reduced
residue system modulo m (as proved in the previous section). Con-
sequently, the product of elements in 4R must be congruent to the
product of elements in R modulo m:

¢(m) ¢(m)
(ar;) = H r;  (mod m).
i=1 i=1

Factoring out a from each term on the left:

i=1

¢(m) @(m)
a?™ ( TTr)=T11r (modm).
i=1

Let P = []r;. Since each r; is coprime to m, their product P is also
coprime to m. By the Cancellation Law, we can divide both sides by
P:
a?™ =1 (mod m).
|
In the special case where the modulus is a prime p, we have ¢(p) =
p — 1. This yields Fermat’s result, dating back to 1640.
Theorem 7.11. Fermat’s Little Theorem.
If p is a prime number and p { 4, then
a?1=1 (mod p).
T
Proof
This follows immediately from t/icoren 7.10 with m = p and ¢(p) =
p—1
|

Corollary 7.3. Fermat’s Theorem (Alternative Form). If p is a prime num-
ber, then for any integer a:

a¥ =a (mod p).

e sm
Proof
If p  a, we multiply the congruence a’~! = 1 (mod p) by a to get
aF = a (mod p). Ifp | a,thena = 0 (mod p),soa? = 0 = a

(mod p).
|
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Computational Applications

These theorems are indispensable for reducing large exponents.

Example 7.16. Calculating Remainders of Towers. Find the
last three digits of 24342, This is equivalent to finding 24342
(mod 1000). We first compute ¢(1000). Since 1000 = 23 x 5%

1 1 1 4
¢(1000) = 1000 (1 - 2) (1 - 5) = 1000 5 - £ = 400.

Note that (243,1000) = 1(as243 = 3°). By Euler’s Theorem,
24300 =1 (mod 1000). Thus:

243402 — 243400 . 2432 = 1.243%  (mod 1000).
Calculating the square:
2432 = (200 + 43)% = 40000 +2(200) (43) +43% = 1720041849 = 49 (mod 1000).

The last three digits are 049.

#a )
Example 7.17. Date Calculation. If today is Monday, what day of
the week will it be after 1010 days? We compute 101" (mod 7).

By Fermat'’s Little Theorem, since (10,7) = 1, wehave 10° = 1
(mod 7). The exponent we need to reduce is E = 10'° modulo 6.

10=4 (mod 6) = 10°=4Y (mod 6).

Notice that 4! = 4,42 = 16 = 4 (mod 6). By induction, 4 = 4
(mod 6) for all k > 1. Thus E = 4 (mod 6), so E = 6k + 4 for some
integer k.

10F = 1004 = (10%)F . 10* =1F . 3* =81 =4 (mod 7).
Monday + 4 days is Friday.
#a )
Example 7.18. Large Divisibility. If 4, b are coprime to 2730,

prove that a'? b'? is divisible by 2730. Factorising the modu-

lus: 2730 = 2 x 3 x 5 x 7 x 13. The factors are distinct primes. We

show N = a'2 — b'2 = 0 modulo each prime p € {2,3,5,7,13}.

- p = 13: By Fermat, a'> = 1 and b2 = 1 (mod 13). Thus N = 1 —
1=0.

- p = 7: By Fermat, a® = 1. Thus a'? = (a%)? = 1. Similarly b'? = 1.
N=0.

cp=5at=1 = a?=(@G"’=1N=0.
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cp=3%a=1= a?=1.N=0.

- p=2aisodd,soa?=1. N=0.
Since N is divisible by all pairwise coprime factors, it is divisible by
their product 2730.

E X

Primality Testing and Pseudoprimes

Fermat’s Little Theorem provides a necessary condition for primality.
If aN~=1 £ 1 (mod N) for some (a,N) = 1, then N is composite.
However, the converse is not true; there exist composite numbers that
satisfy the congruence.

Definition 7.6. Pseudoprime.

A composite integer 7 is called a pseudoprime to base a if a" ! = 1
(mod n). If n satisfies a” = a (mod n) for all integers a, it is called
an absolute pseudoprime or Carmichael number.

Example 7.19. Verifying Composition. Show that N = 91 is com-
posite using Fermat’s test with base 2. We calculate 2°° (mod 91).
Powers of 2 modulo 91:

20 = 64
27 =128 =37
28 —74=-17

216 = (172 =289 =16 (289 —3(91) = 289 — 273 = 16)
232 =162 =256 =74 = —17
26 = (~17)2 = 16.

Decompose the exponent: 90 = 64 4- 16 + 8 + 2.
290 = 264.216. 28 .22 = 16.16-(—17) -4 (mod 91).

=256-(—68) =74-(—68) (mod 91).

Since 74 = —17, the product is (—17)(—68) = 1156. 1156 = 12 x
91 + 64. Thus 2% =64 Z 1 (mod 91). N is composite.

$o19]

Despite the existence of pseudoprimes, we can formulate a partial
converse to Fermat’s Little Theorem under stronger assumptions.

Theorem 7.12. Lucas’ Primality Test.
If there exists an integer a such that:
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1. @™ 1 =1 (mod m),

2. For every prime factor g of m —1,a™~1/4 £ 1 (mod m),
then m is a prime number.
g

Proof

Let d be the order of 2 modulo m (the smallest exponent such that
a® = 1). Condition (1) forces (a,m) = 1; otherwise a prime p | (a,m)
would give "1 = 0 (mod p), contradicting a” ! = 1 (mod m).
Thus the order is well-defined, and from condition (1) we have
d| (m—1). Supposed < m —1. Write m —1 = dk with k > 1, and
let g be any prime divisor of k. Thend | (m —1)/q,so a=1/1 =1
(mod m). This contradicts condition (2). Therefore, the order of a
is exactly m — 1. Since (a,m) = 1, Euler’s Theorem applies and the
order d divides ¢(m). Thus (m —1) | ¢(m). Since ¢(m) < m —1 for
all m, we must have ¢(m) = m — 1. This equality holds if and only
if m is prime.

[
This theorem underpins proofs for the infinity of primes of certain

forms.
Example 7.20. Primes of the Form 4k + 1. Prove there are infinitely

many primes of the form 4k + 1.
#a )
Proof

Consider the number N = (m!)? + 1 for m > 1. Let p be any prime
divisor of N. Then (m!)?> = —1 (mod p). Squaring gives (m!)* = 1
(mod p). Since Nisodd, p # 2. Leta = m!. Thena®? = —1 # 1
(mod p), so the order of a is not 1 or 2. Because a* = 1 (mod p),
the order of @ modulo p is 4. By Fermat’s Little Theorem (equiv-
alently, by the size of (Z/pZ)*), the order divides p — 1. Thus
4| (p—1),implying p = 1 (mod 4). Since N > 1, it has at least
one prime factor, and all such factors are of the form 4k + 1. To
show there are infinitely many, assume there are finitely many and
set m to be the product of all such primes. Any prime factor p of
(m!)? + 1 cannot divide m!, so p > m. This yields a new prime of
the form 4k + 1, a contradiction.

7.5 Exercises

1. Pythagorean Triples and Moduli. Let 4, b, ¢ be integers satisfying
a? + b? = ¢2. Prove that at least one of 4, b, ¢ is divisible by s.



10.

11.

12.

13.

14.

15.

16.
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Non-Divisibility of Series. Let a, =} }_, 23k(%ﬁ%) Prove that for
any positive integer n, a, is not divisible by 5.

Reciprocity Sum. Let m > 0 and (a,m) = 1. Verify the identity:

m—1 1

YT =3m-1@-1.

x=1 m

Prime Power CRS Construction. Let p be a prime. Verify that the
set of integers of the form x = u + p*~'v, where u € {0,...,p°* ' —
1} and v € {0,...,p" — 1}, forms a complete residue system
modulo p® forany 0 <t <s.

Polyadic CRS. Let my, ..., my be pairwise coprime integers. Let
M; = m/m; where m = []m;. Verify that if x; runs through a
complete residue system modulo m;, then ) M;x; runs through a
complete residue system modulo m.

Squares are not CRS. Prove that for any integer m > 2, the set
of squares {02, 12,..., (m— 1)2} cannot form a complete residue
system modulo m.

Arithmetic Function Calculations. Calculate:

@) ¢(1963).
(b) ¢(2529).
(c) €(1001).

Parity of Totient. Prove that for any integer m > 2, ¢(m) is even.
Gauss’s Sum. Prove that Y g, ¢(d) = n.

Additive Totient Equation. Find all pairs of positive integers
(m,n) such that ¢(mn) = ¢(m) + ¢(n).

Euclid via Euler. Use the properties of Euler’s totient function to
provide an alternative proof that there are infinitely many primes.

Inverse Totient Problems. Find all positive integers n such that:

@ ¢(n) =24

(b) @(n) = 64.
Divisibility by Totient. Find all positive integers n such that
o(n) | n.

Arithmetic Identity for Primes. Prove that a positive integer 7 is
prime if and only if o(n) + ¢(n) = n-d(n).

Shifted Totient Equation. Let n be a positive integer satisfying
¢(n+3) = ¢(n) + 2. Prove that n must be of the form 2p” or
2p" — 3, where p is a prime congruent to 3 modulo 4.

Reduced System Floor Sum. Let m > 1 and (a,m) = 1. Verify
that if ¥ runs through the least positive reduced residue system

131
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17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

modulo m, then:

ay_1 _
3 2] = Se(m)(a—1).
Polyadic Reduced System. Let my, ..., my be pairwise coprime.
Let M; = m/m;. If {; runs through a reduced residue system

modulo m;, verify that ) M;¢; runs through a reduced residue
system modulo m.

Product of Reduced Residues. Letrq,..., ¥ o(m) be a reduced
residue system modulo m. Let A = []r;. Verify that A2 = 1
(mod m).

Calendar Prediction. If today is Sunday, determine the day of the
week after 320% days.

Power Calculation. Calculate the remainder when 177718% is
divided by 41.
Decimal Endings. Find the last two digits of 75%.

Factorial Divisibility. For any positive integer n, prove that n’ +
720n is divisible by 7.

Binomial Difference.

(a) Let p be a prime. Prove that for any integer k:
(k+1)P —kF =1 (mod p).

(b) Use this identity to derive Fermat’s Little Theorem.

Verifying Pseudoprimality. Prove that the composite number
161038 is a pseudoprime to base 2.

Wieferich Primes. An odd prime p satisfies a1 = 1 (mod p?)
for base a if 2 is a Fermat solution for p. Prove that 2 is a Fermat
solution for p = 1093.

Symmetric Exponents. Let p and g be distinct odd primes such
that (p,q—1) =1and (q,p — 1) = 1. Prove that:

(p=1)""=(-1)"" (mod pg).
Euler’s Sum. Let m, n be coprime positive integers. Prove that:

m?™ 4 p?m =1 (mod mn).

Power Stabilisation. Let m = pll<1 ... plgs and k = max(ky,... ks).
Prove that for any integer a:

a+em = gk (mod m).

Check 2" (mod n).

This is a computationally intensive
verification historically significant for
Fermat’s Last Theorem.
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29. Erd6s-Ginzburg-Ziv Theorem. Let n > 2. Prove that from any set
of 2n — 1 integers, one can always select exactly n integers whose
sum is divisible by #.

Remark.

Consider the remainders modulo n.



8.1

8
Finite Decimal Expansions

We investigate the conditions under which a fraction admits a finite
representation in a positional numeral system. While our primary
focus remains on the decimal system (base 10), we will also consider
general bases, applying the divisibility properties established in
earlier chapters.

Finite Decimals

We begin by formalising the fractions under consideration. A fraction
5 with0 < a < bis termed a proper fraction. If the numerator

and denominator are coprime, that is (a,b) = 1, the fraction is said
to be irreducible. Since any proper fraction can be reduced to an
irreducible form by dividing out common factors, we restrict our
analysis to irreducible proper fractions without loss of generality.

We seek a necessary and sufficient condition for such a fraction to be
expressible as a finite decimal.

Theorem 8.1. Condition for Finite Decimal Expansion.
Let 7 be an irreducible proper fraction. The fraction can be converted
into a finite decimal if and only if the prime factorisation of the denom-
inator is of the form b = 2% - 58, where a and $ are non-negative in-
tegers. Furthermore, the number of decimal places in the expansion
is max{a, B}.

i
Sufficiency.
Assume b = 2%.5P. We consider two cases based on the relative
magnitude of the exponents.

e If & > B, we multiply the numerator and denominator by 5*F:

a_ a a-5h _a~5“‘ﬁ_a'5"‘_f5
b 2v.56  pw.5B.5a—p  pw.5x  qon

Since & > B, the term a - 5P is an integer. Thus, % is a finite dec-
imal with « decimal places.
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o If & < B, we multiply by 26~*:

a_ a g-2p-« _a~25’“_a-25’“
b 2r.58 pa.pp—a.5B  2B.5B  10B

Here, a - 2P~* is an integer, yielding a finite decimal with p deci-
mal places.

In both cases, the number of places is max{«, }.
EXIES

Necessity.

Conversely, suppose the irreducible fraction j represents a finite
decimal. Then there exists a positive integer k and an integer ¢ such

that:
a c

b 105
Assume, for the sake of contradiction, that b contains a prime factor
p distinct from 2 and 5. We may write b = by p. Substituting this

into the equation:

# = 1L()k — a-10" = by pe.
Expanding the power of 10, we have a - 2€ - 5¥ = by pc. Tt follows that
p divides the left-hand side: p | (a -2 - 5%). Since p is distinct from
2 and 5, we have (p,2¢ - 55) = 1. By corollary 1.5, p must divide a.
However, p is a factor of b. This implies p is a common divisor of a
and b, contradicting the hypothesis that 7 is irreducible. Therefore,
b cannot contain any prime factors other than 2 and 5.

EXLES
This theorem provides a direct method for determining the length of
a decimal expansion without performing long division.
Example 8.1. Calculating Decimal Lengths. Determine the number

of decimal places for the following irreducible fractions:
1

I.m
2. 1o
3. 378D
4

X
Solution

1. The denominator factorises as 3125 = 5°. Here a = 0, B = 5. The
number of places is max{0,5} = 5.

2. 1024 = 21°. Here & = 10, 8 = 0. The number of places is 10.

Figure 8.1: The denominators
of finite decimals map to lattice
points (&, 8). The number of
decimal places is determined by
the distance from the origin in
the maximum norm.
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3. 31250 = 3125 x 10 = 5° x 2 x 5 = 21 - 5°. The number of places is
max{1,6} = 6.

4. 20480 = 2048 x 10 = 21 x 2 x 5 = 212 51, The number of places
is max{12,1} = 12.

|
Example 8.2. Checking Finite Expansion. Determine whether %
and 2 have finite decimal expansions.
For %, we check the prime factors of 40.
40=8x5=2%.5"
The denominator contains only prime factors 2 and 5. Thus, it
has a finite expansion. The length is max{3,1} = 3. Indeed,

3 _ 75

m —_— m —_— 0.075.

For %, we factorise 14 = 2 - 7. The factor 7 is neither 2 nor 5. Since
(3,14) = 1, the fraction is irreducible. By theorem 8.1, it does not
have a finite decimal expansion.

$o19]

Expansions in General Bases

The divisibility condition for finite representations generalises natu-
rally to any base b. Just as the prime factors 2 and 5 dictate behaviour
in base 10, the prime factors of the base b determine which fractions
terminate in that system.

Proposition 8.1. Finite Expansion in Base b.
Let n and b be positive integers. Let the expansion of % in base b be given
by:
1 dy dy  d3
R ]

If this expansion is finite, then every prime factor of n is a factor of b.

... (0<d<b).

=
Proof
Suppose the expansion terminates after ¢ terms. We can write:
1 d1 dz dt
E_ ?+b72+"'+ﬁ.

Multiplying the entire equation by b’ yields:

t
% =dib" T+ db Pt 4 d
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The right-hand side is an integer composed of integer sums and
products. Therefore, the left-hand side %t must be an integer. By the
definition of divisibility, n | b'. If n divides a power of b, then every
prime factor of n must also divide b.

|

Example 8.3. Base 12 Expansion. Consider the fraction %. In base
10, this is 0.166. .. (infinite) because 3 | 6but3 { 10. In base 12,
however, the denominator n = 6 has prime factors 2 and 3. The
base b = 12 has prime factorisation 22 - 3. Since every prime factor
of 6 is a factor of 12, { has a finite expansion in base 12. Explicitly:

1 2

—=—=02p.

61 0%
Conversely, £ is finite in base 10 but infinite in base 12, as 5 is not a
factor of 12.

Eid)
Example 8.4. Non-Existence of Finite Representation. Prove that %
cannot be represented as a finite decimal in base 2 (binary).
Heren = 3and thebaseb = 2. The prime factor of n is 3. Since
3 is not a factor of 2, the condition of the proposition fails. Thus,

% has an infinite binary expansion. Explicitly, one can verify that
1 =10.010101.. ,.

.41

8.2 Infinite Recurring Decimals

Extending our analysis to those irreducible fractions that do not
satisfy this condition, we are led to the theory of infinite recurring
decimals.

Definition 8.1. Infinite and Recurring Decimals.

Let x be a real number with decimal expansion 0.a1a2a3 ..., where 0 <

a; < 9.

1. If for every integer j, there exists k > j such that a; # 0, the rep-
resentation is termed an infinite decimal.

2. The decimal is recurring (or periodic) if there exist integers s > 0
and t > 0 such that

Asti = Astkt+i

foralli € {1,...,t} and k > 1. We denote this by

0.111 cee asﬂ's+1 e L:l5+t.

137
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3. If s =0, the decimal is purely recurring.
4. If s > 0, the decimal is mixed recurring.

5. The smallest such t is the period length.

#
S

Pure Recurring Decimals

We first determine the algebraic structure of fractions that yield
purely recurring expansions.

Theorem 8.2. Condition for Pure Recurrence.
Let § be an irreducible proper fraction. The fraction can be converted
into a pure recurring decimal if and only if (b,10) = 1. Furthermore,
the period length is the smallest positive integer ¢ such that 10" = 1
(mod b).

i
Necessity.

Suppose 7 is a pure recurring decimal with period ¢. Then:
% = 0.41ay ... ay.
Multiplying by 10%:

a a
]Ot‘g :alaz...at.alaz...dt:N-i-E,

where N is the integer formed by the repeating block. Rearranging

terms:
a

b
Since (a,b) = 1, it follows that b | (10! — 1). This implies 10" — 1 =
bk for some integer k, so 10/ = 1 (mod b). If a prime p divides both
band 10, then p | 10°and p | (10 —1),s0p | 1, a contradiction.
Hence (b,10) = 1.

(10! —=1) = N = a(10' — 1) = bN.

EXLES
Sufficiency.
Assume (b,10) = 1. By theorem 7.10,107%) = 1 (mod b). Thus,
there exists a smallest positive integer t such that 10’ = 1 (mod b).

Consequently, b | (10" — 1), so there exists an integer N such that
10" — 1 = bN. Multiplying by a:
a aN

t— = _ = —
(10'~1) =aN = 7= 15—

a
b
Since a < b, we have aN < bN = 10’ — 1. The term aN is an integer
strictly less than 10° — 1, so it can be represented as a t-digit integer
(padding with leading zeros if necessary). Division of aN by 10" — 1
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yields the geometric series sum corresponding to 0.4; .. .4;, where
q1 - - . q: are the digits of aN. Thus, 7 is purely recurring with period
t.
FE #
The period length is tied intrinsically to the order of 10 modulo b.
This relationship allows us to bound the period length using the
totient function.

Theorem 8.3. Period Length Divisibility.
Let b be a positive integer with (b,10) = 1. If t is the period length
of %, then t | ¢(b).

L
Proof

By theorem 8.2, t is the smallest integer satisfying 10° = 1 (mod b).
By theoren 7.10,109() = 1 (mod b). Applying the Division Algo-
rithm, we write ¢(b) =gt +rwith 0 <r < t.

=107 = (10Y)7-.10" = 17-10" = 10" (mod b).

Since t is the smallest positive integer with this property, r must be
o. Thus t | ¢(b).
n

Example 8.5. Calculating Period Lengths. Determine the period
lengths of the decimals for % and %

1. For b =7, ¢(7) = 6. We test divisors of 6.
10'=3, 10°=2, 10°=6= -1 (mod 7).

Since 10> = —1, it follows 10° = (—1)? = 1. The order is 6. In-
deed, } = 0.142857.

2. For b =13, ¢(13) = 12. We compute powers of 10 modulo 13:
10'=10, 10°=100=9, 10°=90=12=-1.

Since 103 = —1, we have 10° = 1 (mod 13). The period length is
6. Note that 6 | 12. (Fact: & = 0.076923.)

E X

Mixed Recurring Decimals

If the denominator shares factors with 10, the decimal expansion is
not purely recurring. However, we can reduce this case to the pure
case by shifting the decimal point.

139
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Theorem 8.4. Structure of Mixed Recurring Decimals.

Let 7 be an irreducible proper fraction where b = 2% -5 by, with by >
1 and (b1,10) = 1. The decimal expansion of § is mixed recurring.

1. The length of the non-recurring part is s = max{«, B}.

2. The length of the recurring part is the multiplicative order of 10 mod-
ulo by.
il
Proof

Let s = max{a, B}. We can write:

a__a _ 1 aK
b 205Pb; 105 by ]

where K is the integer required to equate the powers of 2 and 5
to10°. Let A = a - K. We perform Euclidean division of A by b;:
A=gby+r, with0 <r < by.

a 1 r q 1 r
b 100 (“m) T 10 by

The term 7fs represents a terminating decimal. The term ﬁ is a

proper fraction with (b1,10) = 1. By theorem 8.2, é is a purely

recurring decimal with period length t equal to the order of 10

modulo b;. Multiplying a pure recurring decimal by 107° simply

shifts the digits s places to the right, creating a non-recurring prefix

of length s.

|

Example 8.6. Analysis of Denominators. Analyze the decimal

structure of fractions with denominators 12 and 808.

1. 12 = 22.3. Herea = 2,8 = 0,s0s = 2. by = 3. Order of 10
modulo 3: 10 = 1 (mod 3), so t = 1. Structure: 2 non-recurring
digits, period 1. Check: {5 = 0.083.

2. 808 = 8-101 = 23.101. Heres = 3.b; = 101. We deter-
mine the order of 10 modulo 101. 10> = 100 = —1 (mod 101).
10* = (-1)2 = 1 (mod 101). Period length is 4. Structure: 3
non-recurring digits, period 4. Check: ﬁ ~ 0.00123762376 - - - =
0.0012376.

E X

Properties of the Period

The digits within a period often exhibit surprising symmetry. A
famous result, often attributed to Midy, describes the sum of the
digits in the two halves of a period of even length.
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Theorem 8.5. Sum of Half-Periods.

Let 7 be an irreducible proper fraction forming a pure recurring dec-

imal with period length t = 2k. Let the period be 149> ... qxt1ts . . . t.
If (b,10F — 1) = 1, then:

gi+t;=9 foralli=1,... k
A

Proof

We have 10%* = 1 (mod b). Factorising the difference of squares:
b| (10% —1) = b (10F —1)(10° +1).

Given the condition (b,10 — 1) = 1, Euclid’s Lemma implies b |
(10F +1). Thus 10 +1 = b - M for some integer M. From the deci-
mal expansion % = 0.41 .. .1, we can write:

a N

b 10% -1’

where N is the integer q; ... t;. Then a(10%* — 1) = bN. Substituting
10% —1 = (10F —1)(10* + 1) = (10" — 1)bM:

a(10F —1)bM = bN = N = aM(10* — 1).

We have 7 - 10% = integer 4+ 0.t ... #4q1 . . . gx. The sum of the fraction
and its shifted version shifted by k places corresponds to:
a

7 (106 +1) =%~bM:aM.

This is an integer. In terms of the decimal parts, let X = 0.47...#
and Y = 0.f;...gx. X + Y must be an integer. Since 0 < X < 1 and
0 < Y < 1, their sum must be exactly 1 (the expansion is purely re-
curring, so it cannot terminate).

O.q'l...fk+0.f1...qk20.99...921.

Write the period as a pair of k-digit blocks: N = Q - 10f + T with
0 < T < 10~ Since N = aM(10F — 1) and 0 < aM < 10* (otherwise
the period would collapse to 0.9), we have

N =aM-10* —aM = (aM — 1)10% + (10" — aM).

ThusQ = aM —1and T = 10K —aM,so Q + T = 10 — 1. This
forces digit-wise summation g; 4 t; = 9 with no carries.
[

Figure 8.2: The period of 1/7

is 142857. Pairing digits sep-
arated by k = 3 positions
(1+8,4+5,2+7) yields 9.
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Example 8.7. Midy’s Theorem on 1/7. Consider 1 = 0.142857. The
period length is t = 6, so k = 3. Check the condition: (7,10° — 1) =
(7,999). Since 999 = 27 x 37, the ged is 1. The theorem applies. The
first half is 142; the second half is 857.

1+8=9, 4+5=9, 2+7=0.

X

Finally, we present an algorithmic method for generating the digits of
the period of % in reverse order, which is particularly computation-
ally efficient for large periods.

Theorem 8.6. Reverse Digit Algorithm.

Let b be a positive integer with (b,10) = 1, and let b; be the units digit
of b. The expansion % = 0.41a; .. .4 can be computed from right to
left (a; down to a1) as follows:

1. The last digit a; is determined by a; - b =9 (mod 10).

2. Let M= “‘*ll’—arl. This integer M serves as a multiplier.

3. Each subsequent digit (moving left) is the units digit of the prod-
uct of the previous digit and M, plus any carry from the previous
step.

T3

Proof

The relationship stems from the identity derived in the expansion:
ab=-1=9 (mod 10).

This uniquely determines a; because b is coprime to 10. The re-
cursive step a;_y incorporates the modular arithmetic of the long
division process run in reverse. Specifically, if Ry is the remainder
at step k, the reverse process reconstructs the dividend using the

multiplier M.
|

Example 8.8. Generating 1/19. We compute the period of 11—9. Here
b=19,s0b; =9.
1. Find a;: 9 xa; =9 (mod 10) = a; = 1.

2. Find Multiplier M: M = 112 = 20 — o

3. Generate sequence (multiply by 2, add carry):
- a1 = 1. (Carry o)
C1x240=2. = ay=2.
c2x240=4 = a5=4
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- 4x240=8 = a15=2_8.
- 8x2+0=16. = ayy = 6. (Carry 1)
- 6x2+1=13. = aj3 = 3. (Carry 1)
- 3x241=7 = ap=7.
- 7x2+0=14. = ay; =4. (Carry 1)
- 4x241=9. = a9=09.

At this point, we have the second half of the period: 947368421.
By theorem 8.5, since 19 is prime, the first half is the 9-
complement of this sequence: 052631578. Thus

% = 0.052631578947368421.

8.3 Wilson’s Theorem

In 1770, Edward Waring published a conjecture of his student John
Wilson, stating that if p is a prime number, then p divides (p — 1)! +
1. This elegant condition was proven later that year by Lagrange. We
now present this fundamental result and its converse.

Theorem 8.7. Wilson’s Theorem.
An integer p > 1 is a prime number if and only if

(p—1)!'=-1 (mod p).

Necessity.

Forp=2,(2-1)!=1= -1 (mod 2).

Forp=3,(3—-1)!=2= -1 (mod 3).

Assume p > 3. Consider the set of integers S = {2,3,...,p — 2}.
Since Z,, is a field, for every x € S, there exists a unique inverse y €
{1,...,p — 1} such thatxy = 1 (mod p).Sincex € S, x # 1
and x # —1. The only elements that are their own inverses are the
solutions to x> = 1 (mod p), namely 1 and p — 1. Thus, for every
x € §,its inverse y is distinct from x and also belongs to S (since
y # 1,p — 1). We can therefore partition S into (p — 3)/2 disjoint
pairs {x,x"'}. The product of each pair is congruent to 1.

[Tx=1""92=1 (mod p).

xeS
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Including the boundary terms 1 and p — 1:

(p—1Dt=1- (1—£x> (p—1)=1-1-(-1)=-1 (mod p).

LB #
Sufficiency.
Assume p is composite. Then p has a proper divisor d with 1 < d <
p. Sinced < p — 1,d appears as a factor in the product (p — 1)!.
Thus d | (p — 1)!. If the congruence (p — 1)! = —1 (mod p) holds,

then (p —1)! = kp—1. Sinced | pand d | (p —1)!, it follows that d
divides their difference:

d|(kp—(p—1)!) = d| 1.

This implies d = 1, contradicting the assumption that d is a proper

divisor. Thus p must be prime.
BELES

Example 8.9. Generalised Factorial Product. Let p be an odd
prime. Verify that

12.32..... (p—2)%=(-1)P*D/2 (mod p).

Consider the factorial (p —  1)!. We can write the even terms 2k
as —(p — 2k) (mod p). Specifically, observe the symmetry in the
product:

(p—1)/2
= (2k —1)(2k)
k=1
Modulo p, we have 2k =  —(p — 2k). Note that as k runs from

1to(p — 1)/2,thevaluesp — 2k run through the odd integers
{p — 2,p — 4,...,1} inreverse order. However, it is simpler to
rearrange the terms of (p —1)! into odds and evens directly.

The second bracket contains (p — 1)/2 even terms. We can write
2j=—(p—2j). Let m = (p —1)/2. The even terms are 2,4, ...,2m.

This does not immediately yield the square form. Let us use the




DISCRETE II: ELEMENTARY NUMBER THEORY 145

reflection property x = —(p — x).

(r=1)/2  (p-1)/2 (r=1)/2  (p-1)/2 p—1 2
p-'= I k J] w-k= I * TI (—k)z(—l)(p_l)/2[<>!] .
k=1 k=1 k=1 k=1 2

This is the standard corollary. To obtain the specific result for

odd squares, let us pair k with —(p — k). The product of odd
numbersisO = 1-3-.--. (p — 2). The product of even num-
bersisE = 2-4-----(p—1).NoticceE = (-1)r-1/2.0
(mod p) becausep —1 = —1,p —3 = —3,etc. Thus (p — 1)! =
O-E=0-(-1)r120 = (-1)r-1)/202, By Wilson’s Theorem,
(p—1)=-1.

-1=(-1)""1202  (mod p).
Multiplying by (—1)(¥—1)/2;
(-1)PH/2 = (—1)P 102 = 0% (mod p).

Thus O? = (—1)P*1)/2 (mod p).

$o19]

Twin Primes
Wilson’s Theorem can be adapted to characterise pairs of primes.

Theorem 8.8. Clement’s Theorem for Twin Primes.
Let p be a positive integer with p # 1. The integers p and p + 2 are
twin primes if and only if
4((p—D!'+1)+p=0 (mod p(p+2)).
gl
Necessity.

Assume p and p + 2 are primes. Since p is part of a pair (and p #
1), p must be odd. By Wilson’s Theorem:

1. (p—1)!= -1 (mod p). Thus4((p—1)!'+1)+p=4(0)+0=0
(mod p).

2. (p+1)!=-1 (mod p +2).
We manipulate the expression modulo p + 2:
dp—-D)'+4+p=4(p-D'+p+4

Note that (p+1)! = (p+1)p(p—1)! = (-1)(-2)(p—1! =2(p—
1)! (mod p+2). Since2(p—1)! = (p+1)! = —1 (mod p+2), we
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have:
4p-1)'=22(p—-1!1]=2(-1) = -2 (mod p+2).
Substituting this back:
4p—1+p+4=-24+p+4=p+2=0 (modp+2).

Since the expression is divisible by p and p + 2, and (p,p +2) = 1
(as p is odd), it is divisible by p(p + 2).

ELIES
Sufficiency.
Assume the congruence holds. This implies 4((p — 1)! + 1) = 0
(mod p),so (p — 1)! = —1 (mod p). By theorem 8.7, p is prime.

Now consider modulo p + 2. The congruence implies:
4p—1)!+p+4=0 (modp+2) = 4(p—1)!'=—(p+4) =-2 (mod p+2).

We multiply by the invertible elements to reconstruct the factorial.

Multiply by p(p +1) = p?> +p.Notep = -2 (mod p + 2), so
plp+1) =(=2)(-1) =2
2 4p—-1)1=2(-2) = 42(p—-1!]=—-4 (mod p+2).

Recall2(p— 1) =p(p+1)(p—D!=(p+1)! (mod p+2).
4p+1)!=—-4 (modp+2).

For p > 2, p +2is odd and coprime to 4. We can cancel 4:
(p+1)!=-1 (mod p+2).

By theorem 8.7, p + 2 is prime.

SEO

Prime-Generating Functions

A remarkable theoretical application of Wilson's Theorem is the con-
struction of functions that generate prime numbers. While computa-
tionally inefficient, these formulae demonstrate that primes are the
solution set of Diophantine equations.

Theorem 8.9. A Prime-Generating Function.
For positive integers n and m, let

Q=mn+1)—(n!'+1).
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Define the function

n—1

flmn) = — (\Q2—1| —(Q? —1)) +2.

Then the set of values taken by f(m, n) is exactly the set of prime num-
bers.

i
Proof
We analyse the term T = |Q% — 1| — (Q* — 1).

e IfQ?> > 1(ie,Q #0),then |Q>— 1] = Q> — 1. Thus T = 0, and
f(m,n) =2.

e IfQ=0,thenQ*~1=—1,50|—1| — (=1) = 2. Thus f(m,n) =
pl@)+2=n+1.

The condition Q = 0 is equivalent to m(n + 1) = n! + 1. This
equality holds for some integer m if and only if n + 1 divides n! +1,

or equivalently:
n!'=-1 (modn+1).

By theorem 8.7, this occurs if and only if n + 1 is prime.
Thus:

e If n+1is composite or Q # 0, f(m,n) = 2 (which is prime).
e If n+1is prime and m is chosen to make Q =0, f(m,n) =n+1.

By varying n, we can generate every odd prime p = n + 1 (by set-
tingn =p—1landm = W). Thus, the range of the function is
exactly the set of prime numbers.

|
Example 8.10. Non-Existence of Factorial Solutions. Find all pairs
of positive integers (1, k) such that (n —1)! = n* — 1.
- Forn=1,00=1#0.
- Forn=21=120-1=1 = 28=2 = k = 1. Solution

(2,1).

- Forn=3,21=2,3*-1=2 = k= 1. Solution (3,1).
- Forn=4,3!=6,4—1is odd (impossible).
- Forn=5,4! =24,5F —1 =24 — k = 2. Solution (5,2).
Assumen > 5.From (n —1)! = n* —1,wehave (n — 1)! =
—1 (mod n). By theorem 8.7, n must be prime. Sincen > 5,n —1

is composite and greater than 4. Thus n — 1 has a divisor d with 1 <
d <n—1,orn—1is asquare of a prime. In any case, n — 1 divides
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(n —2)!. We rewrite the equation:
(7’1—1)(7‘[—2)' :nk—l — (n_l)(nkfl_knkfz_'_..._‘_l)‘
Dividing by n — 1:

nk—1
n—1"

m=2)=n""14.. . 4+1=

Since n > 5, wehaven —1 < (n —2)!. Alson =1 (mod n —1), so:

k

k=1 k=1
m—2)t=Y n=) V=k (modn-—1).
j=0 =0

)

Sincen —1 | (n —2)! (for n > 5), we must have k = 0 (mod n — 1).
Letk = m(n—1) form > 1. Thennk —1 = (n* )" —1 > n""1 - 1.
However, it is easily shown by induction that forn > 5, (n — 1)! <
n"~1 — 1. Contradiction. Thus there are no solutions for n > 5.

.41

8.4 Exercises

1. Finite Decimal Lengths. Determine the number of decimal places
for the following irreducible proper fractions:

@ 15
®) 3%
© 80
2. General Base Expansion. Prove that in base b, the expansion of 1
terminates if and only if every prime factor of n divides b.

3. Period Length Calculation. Determine the period length of the
decimal expansions for:

@ 7
®) 15
© 7

4. Classification of Decimals. For irreducible fractions with the
following denominators, classify them as finite, pure recurring, or
mixed recurring decimals. Calculate the number of non-recurring
digits and the period length.

(a) 11

(b) 14
(c) 16
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. Decimal Construction. Write out the full recurring decimal ex-
pansion for:

(@)
®) 7

. Wilson’s Theorem Variations. Let p be an odd prime. Prove that:

Slon

+1

(@) 2242+ (p—1)2 = (-1)'z (mod p).

p+1

® (1)) = (-1 (mod p).
. Unified Congruence.

(a) Let p be a prime and a be any integer. Prove that a(p —1)! =
—a (mod p).

(b) Deduce thata?(p —1)! = a(p —1)! = —a (mod p), and
use this to derive Fermat’s Little Theorem and the sufficiency
condition of Wilson’s Theorem.

. Factorial Reflection. Let p be an odd prime. Prove that if there
exists an integer r such that (—1)"r! =1 (mod p), then

(p—r—1!4+1=0 (mod p).

Use this to show that 61!+ 1 = 0 (mod 71) and 63! +1 = 0
(mod 71).

. Quadratic Factorials. Let p = 21 + 1 be a prime. Prove that:

(n)?+(-=1)"=0 (mod p).
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Indefinite Equations

Having developed the properties of divisibility and the greatest com-
mon divisor in the preceding chapters, we now apply these tools to
the study of indefinite equations. Historically known as Diophantine
equations these are polynomial equations for which we seek integer
solutions.

The study of such equations is one of the oldest branches of number
theory, with significant early contributions from ancient Chinese
mathematicians. In this chapter, we focus on linear equations in

two variables, establishing criteria for solvability and methods for
constructing general solutions.

Linear Indefinite Equations in Two Variables

We begin by defining the class of equations under consideration.

Definition 9.1. Linear Indefinite Equation.
A linear indefinite equation in two variables is an equation of the form

ax+by =c,

where a,b are non-zero integers and c is an arbitrary integer. A solu-
tion is a pair of integers (x,y) satisfying the equation.

The solvability of such an equation is strictly determined by the
greatest common divisor of the coefficients.

Theorem 9.1. Existence of Solutions.
The linear indefinite equation ax + by = ¢ has integer solutions if and
only if (a,b) divides c.

i
Necessity.

Let (a,b) = d. By the definition of the greatest common divisor,

there exist integers 41,42 such thata = dgyandb = dgp. Sup-

Diophantine Equations are named after
the Greek mathematician Diophantus of
Alexandria (c. 3rd century AD)
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pose the equation has an integer solution (xg, o). Substituting the
expressions for a and b:

¢ = axg + byo = (dq1)x0 + (dq2)yo = d(q1x0 + 92¥0)-

Since q1, X0, 42, Yo are integers, their linear combination is an integer.

Thus d | c.

SE A #
Sufficiency.
Suppose (a,b) = dandd | c. Thenc = dm for some integer m.

From the properties of the greatest common divisor (specifically the
linear combination property established in the previous chapter),
there exist integers u, v such that:

au+bv =d.
Multiplying this identity by m:
a(um) + b(om) = dm = c.

Let xo = um and yy = vm. Then (xo, o) is an integer solution to the
equation.
BLES

This theorem yields two immediate consequences regarding the

existence of solutions.

Corollary 9.1. If (a,b) 1 ¢, the equation ax + by = c has no integer
solutions.

e

Corollary 9.2. If (a,b) = 1, the equation ax + by = ¢ always possesses
integer solutions.

ik

Consequently, when seeking solutions, we may divide the entire
equation by (4, b) to obtain an equivalent equation with coprime
coefficients. We henceforth assume (a,b) = 1 unless stated otherwise.

Method of Solution

To find a particular solution, one may employ the Euclidean Algo-
rithm to express the GCD as a linear combination of a and b. Alterna-
tively, for coefficients of manageable size, an algebraic "trial method"
is often efficient. This involves isolating one variable and interpreting
the resulting fraction as an integer condition.
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Example 9.1. Basic Solution via Algebraic Manipulation. Find a set
of integer solutions for the equation 3x + 4y = 23.
We express x in terms of y:

234
3x =234y — x:%.

We separate the integer part of the quotient:

_214+2-3y—-y 2—y
X=— =7 y—l—is .

For x to be an integer, 3 must divide 2 — y. Let 2 — y = 3k for some
integer k. Then y = 2 — 3k. Setting k = 0, we obtain y = 2. Substi-
tuting back into the expression for x:

x=7-2+0=5.

Thus, (5,2) is a solution. Verification: 3(5) + 4(2) = 15+ 8 = 23.

$o19]

Once a single solution is found, the complete set of solutions follows
a predictable structure.

Theorem 9.2. General Solution Structure.

Let a, b be coprime non-zero integers. If (xo, 1) is a particular integer
solution to the equation ax 4 by = c, then the general integer solu-
tion is given by:

x = xp + bt

forany t € Z.
y=yo—at

i
Proof
Let (x,y) be any integer solution. Since ax + by = ¢ and axg + by =
¢, we have:

ax +by = axo +byo = a(x —x0) = —b(y — o).

Thus b divides a(x — xp). Since (a,b) = 1, Euclid’s Lemma implies
b | (x — xg). Therefore, x — xy = bt for some integer t, yielding x =
xp + bt. Substituting this back into the relation:

a(bt) = —b(y —yo)-

Since b # 0, we divide by b to getat = —(y —yp), ory = yo — at.
Conversely, substituting these expressions into the original equation

verifies they are solutions for any t.
[
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Example 9.2. General Solution Construction. Find the general
solution of 11x + 15y = 7.

Since (11,15) = 1, solutions exist. Isolate x (the variable with the
smaller coefficient):

11 11 T

7—15y 7—-4y—11y +7—4y

We require 11 | (7 — 4y). We test small values for y:

cy=1= 7—-4=3(No).

cy=-1 = 7—4(-1) =11 (Yes).

Using yp = —1, we find xp = —(—1) + 1 = 2. The particular solu-
tion is (2, —1). Applying theorem 9.2, the general solution is:

x=2+15¢
N teZ.
y=—1—11t

Eid)
Example 9.3. Constrained Solutions. Find the smallest positive
integer solution to 5x — 14y = —11.
We isolate x:

5x:1Qp—H:=$x::Mygllz]jy_y;IO_l:3y—2—z%l.

For x to be an integer, 5 | (y+1). Let y + 1 = 5k, so y = 5k — 1. Sub-
stituting back:

x=3(5k—1)—2—k=15k—3—2 —k = 14k — 5.

The general solutionis x = 14k —5and y = 5k — 1. We seek the
smallest positive solution, so x > 0 and y > 0.

14k —-5>0 = k>5/14, and 5%k—-1>0 = k>1/5.
The smallest integer k satisfying these is k = 1.
x=14(1)-5=9, y=5(1)—1=4.
The smallest positive solution is (9,4).

X

We now consider a problem requiring the formulation of such an
equation from a text description.
Example 9.4. Partitioning an Integer. Divide the integer 239 into
two positive parts, such that one part is divisible by 17 and the
other by 24.
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Let the two parts be 17x and 24y, where x, y are positive integers.
The condition is:
17x + 24y = 239.

We solve for x:

23924y 2384+ 1-17y—7y 1-7y

17 17 17
We require 17 | (1 — 7y). Testing values:
1-7(5) =1—35=—34 = 17(-2).

Thus yg = 5 is a solution. Substituting 1o = 5 into the expression
for x:
x0=14-5+(-2)=7.

The general solution is:
x=7+24t, y=5-17t
Since the parts must be positive, we require x > 0 and y > 0:
74+24t>0 = t>-7/24, 5-17t>0 = t <5/17.

The only integer ¢t in the interval (—0.29,0.29) is t = 0. Thus the so-
lution is unique: x = 7,y = 5. The two parts are 17(7) = 119 and
24(5) = 120. Note that 119 + 120 = 239.

#b)
Often, Diophantine equations appear in geometric contexts involving
integer coordinates or lattice points.

Example 9.5. Lattice Points on a Line. Determine the number of
integer coordinate points (x,y) lying on the line 12x 4+ 25y = 331 in
the first quadrant (i.e,, x > 0,y > 0).

First, we find a particular solution. Isolate x:

_331—-25y 324+7-24y—y 7—y
T T 12 B ARSI
Weset7 —y = 12k, soy = 7 —12k. Fork = 0,90 = 7. Then xg =
27 —2(7) 4+ 0 = 13. The particular solution is (13,7). The general so-
lution is:

x=13+25, y=7—12t.

For the points to lie in the first quadrant:

13425t >0 = t > —13/25 = —-0.52
7-12t >0 = t <7/12~0.58

17x =239 -24y — x = =l4-y+-—.
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The only integer satisfying —0.52 < t < 0.58 is t = 0. Thus, there is 331y
tly one such point: (13,7) =
exactly point: (13,7). (13,7)
#b)
X
%
9.2 The Frobenius Number for n = 2
Figure 9.1: The line 12x + 25y =

A classic problem in the theory of indefinite equations asks for the 331. The unique integer solu-
largest integer that cannot be expressed as a linear combination of tion in the positive quadrant is
two coprime positive integers a and b with non-negative coefficients. marked.

This value is known as the Frobenius number of the set {a,b}.

Theorem 9.3. The Coin Problem Bound.

Let a,b be coprime positive integers greater than 1.

1. The equation ax 4+ by = N has non-negative integer solutions for
all integers N > ab —a — b.

2. The equation ax + by = ab — a — b has no non-negative integer
solutions.
il
Proof

1. Let N > ab — a — b. The general integer solution to ax + by = N

is:
x=x0+0bt, y=yo—at

We can choose an integer t such that the y-value falls in the
interval [0,a — 1]. Specifically, since the values of y form an arith-
metic progression with step —a, there exists a unique y such that
0 < y < a— 1. With this specific y, we examine the correspond-
ing x. From the equation ax = N — by:

ax > (ab—a—b)—bla—1)=ab—a—b—ab+b=—a.
Thus ax > —a. Sincea > 0, this implies x > —1. Since x is an

integer, x > 0. Therefore, a solution exists with both x > 0 and
y=>0.

2. Assume, for the sake of contradiction, that ax + by = ab—a —b
has a solution with x > 0 and y > 0. Rearranging the equation:

ax+by=ab—a—b = ax+a+by+b=ab = a(x+1)+b(y+1) = ab.

Since (a,b) = 1, we musthavea | b(y + 1), which implies a |
(y+1). Soy+1 > a. Similarly, b | a(x + 1) implies b | (x +1). So
x +1 > b. Substituting these inequalities back into the derived
equation:

a(x+1)+b(y+1) > a(b)+b(a) = 2ab.
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Thus ab > 2ab. Since a,b > 1, ab > 0, so this inequality is impos-
sible. Hence, no non-negative solution exists.

Example 9.6. Non-Representable Amounts. Consider stamps of
value 5 and 7. What is the largest postage value that cannot be
formed using only these stamps?

Herea = 5andb = 7. They are coprime. The largest non-
representable integer is:

N=5(7)—5-7=35—-12=23

Any integer greater than 23 can be written as 5x 4 7y with x,yy > 0.
For instance, 24 = 5(2) + 7(2). However, 23 cannot be so expressed.
If 23 = 5x 4 7y, possible values for 7y are 0,7, 14, 21.

- 7y =0 = 5x = 23 (No solution).

- 7y =7 = 5x = 16 (No solution).
- 7y =14 = 5x =9 (No solution).
- 7y =21 = 5x =2 (No solution).

Fb)
Example 9.7. Rectangle Dissection. Consider a rectangle parti-
tioned into squares of unequal sizes. Let the smallest two squares
have side lengths x and y. By analyzing the geometry of the spe-
cific spiral dissection described in Example 5 of the source text, one

derives the condition:
9x — 16y = 0.

Determine the smallest integer dimensions for such a dissection.
The general solution is x = 16t,y = 9¢t. For the smallest positive di-
mensions, let t = 1. Then x = 16,y = 9. These values correspond to
the side lengths of the initiating squares in the dissection.

Exia

1
2 IT Figure 9.2: A Fibonacci squared
3 rectangle (21 x  13). The side
lengths satisfy the recurrence

1 =
3=8+5 13 F, = F,1 + F, 5, illustrating

8 how geometric tiling constraints
impose Diophantine conditions

on square dimensions.

21 =13+8
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9.3 Solvability and General Theory

We extend our study of Diophantine equations to linear equations
involving three or more variables. These equations typically take the
form

ayx1+axxo+ - +agxy =c,
where n > 3, the coefficients 4; are non-zero integers, and c is an
integer. While the increase in variables introduces more degrees of
freedom, the fundamental solvability criteria remain rooted in the
theory of the greatest common divisor.
The existence of integer solutions is governed by the collective divisi-
bility of the coefficients.

Theorem 9.4. Existence of Solutions for n Variables.
The linear indefinite equation

a1x1 +axxp + -+ - +ayxy =¢
has integer solutions if and only if (a1,ay,...,a,) | c.
Necessity.

Letd = (ay,ay,...,a,). By definition, d | a; foralli = 1,...,n. If in-
tegers ky, ...,k satisfy the equation, then:

n
c = Z Clikl’.
i=1

Since d divides every term in the sum, d | c.

SEBR #
Sufficiency.
We proceed by induction on n. Forn = 2, the result holds by #/ie-
orerm 9.1. Assume the condition is sufficient for equationsinn — 1

variables. Consider the equation:
a1x1+ -+ apxy =c.
Let dy = (a1,a2). The equation can be viewed as
(a1x1 + axx2) + azxz + - - + anxy = c.

Since any integer linear combination of a; and 4, is a multiple of dy,

we introduce an auxiliary variable y such that a1x; + axxp = day.
This auxiliary equation is solvable for any integer y because
(a1,ap) = dp. Substituting this into the original equation yields

a new equation in n — 1 variables:

doy + azxs + - - + apx, = c.

157
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The greatest common divisor of the coefficients is (dp, a3,...,a,) =
((a1,a2),a3,...,a,) = (a1,...,a,). By hypothesis, since (ay,...,a,) |
¢, this reduced equation has integer solutions for y, x3, ..., x;. Once
y is determined, we solve ajx; + axxp = dpy for x; and x,. Thus, the
original equation has integer solutions.

FIERH #%

Corollary 9.3. If (a1,...,a,) = 1, the equation always possesses in-
teger solutions.

i

Methods of Solution

We present three distinct approaches for constructing the general
solution.

Method 1: Iterative Reduction

Following the logic of the induction proof, we can reduce an n-
variable equation to a system of 2-variable equations.

Example 9.8. Iterative Reduction. Find the general solution of 9x +
24y — 5z = 1000.

First, observe that (9,24) = 3. We introduce a parameter ¢ such that:

9x + 24y = 3t.
This allows us to rewrite the original equation as:
3t — 5z = 1000.

We now solve these two equations sequentially.

1. Solve 9x + 24y = 3t: Dividing by 3 gives3x + 8y = t.
Since (3,8) = 1, we can express t as a linear combination. A
particular solution fort = 1lisx = =5,y = 2 (since
3(—5) + 8(2) = 1). For a general ¢, a particular solution is x =
—5t,y = 2t. Using theorem 9.2, the general solution for x,y in
terms of ¢ and an arbitrary integer u is:

x=—-5t+8u, y=2t-23u.

(Note: The choice of particular solution is flexible. The source
uses 3x +8y =t = x = 3t+8u,y = —t — 3u, which is also
valid).

2. Solve 3t — 5z = 1000: Since (3,5) = 1, solutions exist. Particu-
lar solution: 3(1000) — 5(400) = 3000 — 2000 = 1000. So ty =
1000, zp = 400. General solution in terms of parameter v:

t =1000+5v, 2z =400+ 3o.
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Substituting the expression for t into the solutions for x and y:

x = —5(1000 + 5v) + 8u = —5000 — 25v + 8u
y = 2(1000 + 5v) — 3u = 2000 + 100 — 3u
z = 400 + 3v

Here u,v are arbitrary integers.

Method 2: Coefficient Reduction

Similar to the single-variable trial method, we can isolate variables
with small coefficients to reduce the complexity of the constraints.
Example 9.9. Coefficient Reduction. Find the general solution of
25x — 13y +7z = 4.

We isolate z, the variable with the coefficient of smallest magnitude
(excluding the sign), and split the right-hand side into a multiple of
7 plus a remainder:

7z =13y —25x +4 =7(—4x+2y) + Bx —y +4),
7 )

Let3x —y+4 = 7t;. Then y = 3x + 4 — 7. Substitute y back into
the expression for z:

z=—4x+2y+

z=—4x+2(3x+4—7t;)+t; = —4x+6x+8—14t; +1; = 2x — 13t; +8.
Now x can be chosen arbitrarily. Let x = t,. The general solution is:

x =1
y=4-7t + 3t
Z:8—13t1+2t2

where t1, t; are arbitrary integers.

.49

Method 3: Parametric Construction

If a particular solution is known, one can construct a general solution
using homogeneous generators. Specifically, if xg is a solution to

Y. a;x; = c, and we can find n — 1 linearly independent vectors #; such
that Zai(ﬂj)i =0, then x¢ + }_#;#; generates solutions.

A simple set of generators can be formed by coupling the last vari-
able x, with each x; (i < n). The vectors #; where the i-th component
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is ay,, the n-th component is —a;, and others are o, satisfy the homo-
geneous equation.

Example 9.10. Parametric Formula. Find the general solution of
2x1 + 3xp + 5x3 + 7x4 = 19.

By inspection, a particular solutionis x; = 5x, = —1,x3 =
L,xg = 1.205)+3(-1) +51)+71) = 10-3+5+
7 = 19). We construct the general solution by varying x1, xo, x3 in-

dependently with step a4 = 7, and adjusting x4 to compensate.

X1 =5+7H
Xp=-1+7t
x3=1+7t3

x4 =1 — (2 + 3ty + 5i3)
Checking the sum:
2(7t1) + 3(7ty) + 5(7t3) + 7(—2t; — 3t; — 5t3) = 0.

This form captures integer solutions generated by this specific basis
of the null space.

$o19]

9.4 Systems of Indefinite Equations

Many problems, particularly those of historical significance, involve
systems of linear Diophantine equations. These can be solved by
eliminating variables to reduce the system to a single indefinite equa-

tion.
Example 9.11. The Hundred Fowls Problem. A classic problem

from sth-century China states:

"A rooster is worth 5 coins, a hen 3 coins, and 3 chicks 1 coin. 100
coins buy 100 fowls. How many of each are there?"

Let x,y, z be the number of roosters, hens, and chicks respectively.
The constraints are:

x+y+z=100 (Quantity)
S5x + 3y + %z =100 (Value)

Multiply the second equation by 3 to clear the fraction:
15x + 9y + z = 300.

We subtract the first equation (x 4 y + z = 100) from this new equa-
tion to eliminate z:

(15x+9y+z) — (x+y+2z) =300 —100 = 14x + 8y = 200.
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Dividing by 2:
7x + 4y = 100.

This is a standard 2-variable indefinite equation. Isolating y:

4y =100 - 7x = y:25—7—x :25—x—3—x.
4 4
For y to be an integer, x must be a multiple of 4. Let x = 4t. Then

y = 25 — 7t. Substituting x and y back into z = 100 — x — y:
z =100 — 4t — (25 —7t) =75+ 3t.

The general integer solution is:
x=4t, y=25-7t, z=75+3t

Since the quantities must be non-negative:

44>0 = t>0
25-7t>0 = t <357
7543t>0 = t>-25

The possible integer values for t are {0,1,2,3}. The solutions

(x,y,z) are:
- t=0:(0,25,75)
. t=1:(4,18,78)
S t=2:(8,11,81)
St =3:(12,4,84)
e
77

Example 9.12. Egyptian Fraction Decomposition. Express g as a
sum of three proper irreducible fractions with denominators 4, 3,

and 5.
We set:
7 _x.,y. %
60 4 3 5
Multiplying by 60:

15x + 20y + 12z = 77.
We use Method 2 (Coefficient Reduction). Isolate z:

B 77-15x-20y  _ 5-3x—8y
12z =77 —-15x - 20y = e =6—x y+712 .
We need 12 | (5 —3x — 8y). Let us test small integers. Try x = 3: 5 —
9—-8y=—-4—-8y. Weneed 12| (—4—8y),or3 | (—-1—2y). Ify =1,
—1—2 = —3 (divisible by 3). So x = 3,y = 1 works. Substitute back
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to find z:
122 =77-15(3) —20(1) =77 —45-20 =12 = z =1.

The solution is (3,1,1).

el
Example 9.13. Making Change. Find the general non-negative
integer solution to the equation 6x + 10y + 15z = 31.
Note (6,10,15) = 1, so solutions exist. We simplify modulo 5 (since
two coefficients are multiples of 5).

6x+0+0=31 (mod5) = x=1 (mod5).

Letx = 1+ 5t Sincex > 0and 6x < 31 = «x < 5, possible
values for x are restricted. If x = 1: 6(1) + 10y + 15z = 31 —
10y + 15z = 25 == 2y + 3z = 5. This simple 2-variable equa-
tion has non-negative solutions (y,z) € {(1,1)}. (2(1) +3(1) = 5).
If x = 6:36 > 31, impossible. Thus the unique non-negative solu-
tionis (1,1,1).

$o19]

Geometric Dissection

We conclude with an application to geometric tiling, where a rectan-
gle is partitioned into squares of unequal integer sides.

Example 9.14. Rectangle Dissection. Consider a rectangle parti-
tioned into 9 squares with side lengths determined by three initial
parameters x, y,z as shown in figure 9.3. The side lengths of the
squares are derived from the geometric adjacency as:

xY,z2,Xx+Yy2x+y,y—zy—2zy—3z,2y — 5z.

By equating the lengths of opposite sides of the composite rectan-
gle, one derives the homogeneous system:

3x -2y +8z=0
x—4z=0
Substituting x = 4z into the first equation:
3(4z) 2y +82=0 = 20z=2y = y=10z.

The general integer solution is (4t,10t, t). For the smallest positive

solution, we take t = 1, yielding x = 4,y = 10,z = 1. This gener-
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ates a rectangle of size 33 x 32. The side lengths of the component
squares are {4,10,1,14,18,9,8,7,15}.

Eal

9.5 Exercises

1. General Solutions of Linear Diophantine Equations. Find the
general integer solution for each of the following equations. If no
solution exists, state why.

(@) 11x—13y =8
(b) 6x+17y = -5
(c) 34x +109y = 20
(d) 31x —127y =53
(e) 54x +37y =20
(f) 306x — 360y = 630
2. Constrained Solutions. Find all positive integer solutions (x,y)

such that x < 100 for the equation:

8x — 5y = —200.

3. Logistics Optimisation. A logistics company needs to transport
exactly 46 tons of goods. They have two types of vehicles: trucks
with a 4-ton capacity and vans with a 2.5-ton capacity. Every ve-
hicle used must be fully loaded. Determine the number of trucks
and vans required if the company wants to use the fewest vehicles.

4. Counting Non-Negative Solutions. Let a,b be coprime positive
integers. Prove that the number of non-negative integer solutions
to ax + by = N is either [ X ] or [N ] +1.

5. Frobenius Bound for Three Variables. Let 4, b, c be pairwise
coprime positive integers. Consider the equation:
bex + cay +abz = N.
(a) Prove thatif N = 2abc — ab — bc — ca, there are no non-
negative integer solutions.

(b) Prove that if N > 2abc — ab — bc — ca, there exists at least one
non-negative integer solution.

6. Solvability of Systems. Determine whether the following equa-
tions possess integer solutions:

(a) 12x 4+ 6y +9z =83

18

14

15

10
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Figure 9.3: Decomposition of a

32 x 33 rectangle into squares.

The squares labelled 4, 10, and

1 correspond to x,y, z.
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10.

(b) —7x + 28y + 91z — 35t = 161

General Solutions for Systems. Find the general integer solution
for:

(a) 25x - 13y +7z =4
(b) 39x —24y +9z =78

The Generalised Coin Problem. Let a4, ...,a, be pairwise co-
prime positive integers. Let A = []a; and A; = A/a;. Consider the
linear form L = ) A;x; with x; > 0. Prove that the largest integer
not representable in this form is:

n

(n—1)A-) A.

i=1
Egyptian Fraction Decomposition. Express the fraction % as a
sum of three proper irreducible fractions with pairwise coprime
denominators.

The Monkey and the Coconuts. Five sailors and a monkey are
stranded on an island with a pile of coconuts. During the night,
the first sailor wakes up, divides the pile into 5 equal shares, finds
1 coconut left over, gives it to the monkey, hides his share, and re-
combines the rest. The second sailor wakes up and does the same
(divides remaining into 5, 1 left for monkey, hides share). This
continues for the third, fourth, and fifth sailors. In the morning,
the remaining pile is divided into 5 equal shares with no coconuts
left over. Find the smallest possible number of original coconuts
and the total number each sailor received.



10
Pythagorean Triples

Following our investigation of linear indefinite equations, we now
turn our attention to the quadratic case. The most fundamental of
these is the homogeneous equation

which governs the side lengths of right-angled triangles. Historically,
integer solutions to this equation have been studied since antiquity.
In this chapter, we derive a complete parameterisation of the integer
solutions to this equation and extend our methods to related non-
linear Diophantine problems.

10.1 The Structure of Solutions

We seek all integer triples (x,y,z) satisfying the Pythagorean equa-
tion. We may assume without loss of generality that x, y, z are posi-
tive.

Definition 10.1. Pythagorean Triples.
A set of positive integers x, y, z satisfying

24yt =22

is called a Pythagorean triple. If (x,y,z) = 1, the triple is termed prim-
itive.

We first observe that it suffices to determine the primitive triples. If
(x,y) = d, thend? | (x? +y?), implying d> | z* and thus d | z.
Writing x = dx1,y = dyi1,z = dz1, we obtain the reduced equation
x2 +y2 = z2 with (x1,y1) = 1. Consequently, any Pythagorean triple
is a scalar multiple of a primitive one.

For a primitive triple (x,y,z), the integers x, y, z are pairwise co-
prime. It is impossible for both x and y to be even, as (x,y) = 1.
Suppose both x and y are odd. Then x> = 1 (mod 4) and y?> = 1
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(mod 4), yielding:
Z=x*+y*=1+1=2 (mod 4).

However, a perfect square must be congruent to o or 1 modulo 4.
This contradiction implies that x and y must have opposite parity.
Without loss of generality, we assume x is even and y is odd. Conse-
quently, z must be odd.

To classify these solutions, we require a preliminary lemma regarding
the factorization of squares.

Lemma 10.1. Square Product of Coprime Integers.
Let u, v, w be positive integers such that uv = w? and (u,v) = 1. Then
u and v are both perfect squares. That is, there exist integers a, b such
that

u=a%* ov="0, and w =ab.

12
Proof
Consider the prime factorisation of u and v:
o _ 11/
w=[Tp U*Hq]’-
Since (u,v) = 1, the sets of primes {p;} and {g;} are disjoint. The

2

equation uv = w* implies

[T# e = w*

By the Fundamental Theorem of Arithmetic, the exponent of every

prime factor in w? must be even. Since the prime sets are disjoint,

each ¢; and f; must be even. Let ¢; = 2k; and f; = 2m;. Then

U= (prl)z and v = (Hq;ﬂj)z.

Thus u and v are perfect squares.

We now present the classical parameterisation of primitive Pythagorean
triples.

Theorem 10.1. Classification of Primitive Triples.
All primitive Pythagorean triples x,y, z with x even are given by the
formulae:

x = 2ab, y:az—bz, z=a’+1b?

where a, b are integers satisfying:
1. a>b>0,

2. (a,b) =1,
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3. a and b have opposite parity (one is even, the other odd).
i

Proof

Let (x,y,z) be a primitive triple with x even. Then y and z are
odd, so z + y and z — y are both even integers. We can rewrite the
Pythagorean equation as:

=2y =(z+y)(z-y)

Dividing by 4, we obtain:

- (5 (5)

Letu = ¥ and v = =%. Note that u and v are integers. Letd =

(u,v). Then d divides their sum u + v = z and their difference u —
v = y. Since (y,z) = 1, we must have d = 1. Thus uv = (x/2)? with
(u,v) = 1. By lemma 10.1, u and v are perfect squares. We write

Z4+Yy 2 Z=Y o
y — =

for some coprime positive integers a, b. Solving for z and y:
z=a>+b, y=a -1

Sincey > 0, werequirea > b. Also,x/2 = ab,sox = 2ab. It
remains to satisfy the parity condition. Since z = a2 + b? is odd, a?
and b? must have opposite parity, which implies a and b have oppo-
site parity. Conversely, substituting these expressions into x> + 12
verifies the equation. One can also check that these conditions
ensure (x,y,z) = 1.

This result extends naturally to the rational numbers, providing a
correspondence between Pythagorean triples and rational points on
the unit circle.

(X,Y) on the unit circle X?> + Y2 = 1 (excluding (—1,0)) can be ex-

pressed as
a’> —b>  2ab or 2ab  a®—b?
a? + b2’ a2 + b2 a2+ b2 a2+ b2 )’

for some coprime integers a, b.

b

Corollary 10.1. Rational Points on the Unit Circle. Every rational point

a2-b2  2ab
212" a2 412

Figure 10.1: The line from
(—1,0) with slope b/a in-
tersects the unit circle at the
rational point corresponding to
the primitive triple.

)
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Proof

Let X,Y € Qsatisfy X?> + Y? = 1. We restrict our attention to the
first quadrant (X,Y > 0). Write X = g/pand Y = r/p with a com-
mon denominator p. The condition becomes g2 + r? = p?. This is an
integer Pythagorean triple. Applying t/icorem 10.1, we substitute the
parametric forms of g, 7, p to obtain the result. Symmetry handles
the other quadrants.

Properties and Applications

We illustrate the utility of the classification theorem with several
examples relating to divisibility and geometric constraints.

Example 10.1. Divisibility by 60. Let x,y,z be a primitive
Pythagorean triple. Prove that 60 | xyz.

We use the parameterisation x = 2ab,y = a? — b?,z = a*> + b. The
product is xyz = 2ab(a* — b*). We analyse the prime factors of 60: 3,
4, and 5.

Divisibility by 4 Since one of a,b is even, 2ab is divisible by 4.
Thus 4 | xyz.

Divisibility by 3 1f 3 | aor 3 | b, then 3 | xyz. If neither is divisible

by 3, then 22 = 1 (mod 3) and b> = 1 (mod 3). Thus a®> — b*> =0
(mod 3). In all cases, 3 | xyz.

Divisibility by 5 If5 | aor5 | b, then5 | xyz. If not, by Fermat’s
Little Theorem, a* = 1 (mod 5) and b* = 1 (mod 5). Thus a* —
b* =0 (mod 5).

Since 3, 4, and 5 are pairwise coprime, their product 60 divides xyz.
#b
Example 10.2. Inradius of Pythagorean Triangles. Determine the

primitive Pythagorean triples with an inradius of r = 3.
The inradius r of a right-angled triangle with legs x, y and hy-

potenuse z is given by r = % Substituting the parametric
forms:
2 2 12\ 2 2 2 -2 2
. ab+ (a* —b*) — (a +b): ab —2b —bla—b).
2 2
We are given b(a — b) = 3. Since b is an integer, b must be a factor

of 3.

1. b =1: Thena—1 =3 = a = 4. Check conditions: (4,1) =1
and opposite parity. Valid. Triple: x =2(4)(1) =8,y =16 -1 =
15,z=16+1=17.
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2. b=3:Thena -3 =1 = a = 4. Check conditions: (4,3) = 1
and opposite parity. Valid. Triple: x = 2(4)(3) = 24,y = 16 —
9=7,z=16+9 = 25.

The solutions are (8,15,17) and (24,7,25).

Fa )

Example 10.3. Fixed Hypotenuse. Find all Pythagorean triples

(primitive and non-primitive) with hypotenuse z = 65.

We solve k(a? —|— b?) = 65. The divisors of 65 are 1, 5, 13, 65.

- k=1 = a?+b* = 65. Solutions: 82 + 12 and 7% + 42. For (8,1):
x = 16,y = 63,z = 65. (Primitive) For (7,4): x = 56,y = 33,z =
65. (Primitive)

- k=5 = a®+b> = 13. Solution: 3% + 22. For (3,2) scaled by 5:
x =5(12) = 60,y = 5(5) = 25,z = 65.

- k=13 = 42 +b? = 5. Solution: 22 + 12. For (2,1) scaled by 13:
x =13(4) = 52,y = 13(3) = 39,z = 5.
The set of solutions is {(16,63,65), (33,56,65), (25,60, 65), (39,52,65) }.

#o )
Example 10.4. Fixed Perimeter. Find the primitive Pythagorean
triple with perimeter P = 40.
The perimeter is P = x +y +z = 2ab + a*> — b* + a> + b> = 24> +
2ab = 2a(a + b). We require 2a(a +b) = 40 = a(a+b) = 20.
Sincea <a+b, a2 <20,s04a € {1,2,3,4}. We test values for a:
- Ifa=1,14b=20 = b =19. Both odd (invalid).

- Ifa=2,24+b=10 = b = 8. Not coprime (invalid).
- If a =3, 3(3+ b) = 20 has no integer solution.
- Ifa=4,44b=5 = b=1. Even/odd, coprime. Valid.
This yields the triple x =2(4)(1) =8,y =15,z = 17.

E
Example 10.5. Leg and Hypotenuse Difference. Prove that if
the difference between the hypotenuse and a leg of a primitive
Pythagorean triangle is 1, the sides are of the form 2b + 1,20 +
2b,2b +2b + 1.
Note thatz — y = 2b? cannot equal 1, so the leg must be the even

one. Letz — x = 1. Since z is odd (in a primitive triple), x must be
even. Using the parameterisation:

z—x=(a®+b*) —2ab = (a—b)* =

Thusa —b =1, ora = b + 1. Substituting a = b + 1 into the formu-
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lae:
=2(b+1)b =2b* +2b
12 —b*=2b+1

b+
b+1)2+b% =202 +2b+1

—~

$o19]

Generalised Quadratic Equations

The method of descent and parameterisation can be applied to
higher-degree variations of the Pythagorean equation.

Proposition 10.1. Solutions to x> + y> = z*.

All primitive positive integer solutions to x> + y?> = z* with x even
are given by:

x =dab(a® — %), y=|a* +b*—6a%V?|, z=0a>+17

where a,b are coprime integers of opposite parity.

Proof
If (x,y) = 1, then (x,y,2?) is a primitive Pythagorean triple. Thus:
x = 2rs, y:rz—sz, z? :r2—|-52,
for coprime 7, s of opposite parity. The equation ? + s> = z? indi-

cates that (r, s, z) is itself a Pythagorean triple (ignoring parity of
r,s for a moment). However, since 7, s are coprime and one is even,
(r,s,z) is primitive. We consider two cases based on parity:

s is even. We can write s = 2ab,r = a®> — b? (since r is odd). Then
x = 2(a® — b*)(2ab) = 4dab(a® —b?). Andy = (a® — b?)? —
(2ab)? = a* — 2a%b* + b* — 4a°b? = a* + b* — 6a°D°.

r is even. We write r = 2ab,s = a> — b*>. Theny = (2ab)? — (a* —
b?)? = —(a* + b* — 6a%b?).

Combining these yields the magnitude form for y.
Example 10.6. Sum of Sides is a Square. Determine the form of

primitive triples where x 4y + z is a perfect square.
Using the parameterisation x = 2ab,y = a®> — b,z = a® + b*:

X +y+z=2ab+2a*=2a(a+b).

Since (a,b) = 1, we have (a,a + b) = 1. For 2a(a + b) to be a square,
the factors must complement each other to form squares. Because
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a and b have opposite parity, a + b is odd, so (2a,a + b) = 1. Thus
both factors must be squares. Hence

2a = (2m)*> and a+b=n?

with 1 odd. This gives a = 2m? and b = n? — 2m? (with n?> > 2m?).
There are no solutions with a odd because then 24 cannot be a
square.

.49

Finally, we consider a weighted quadratic form involving an odd
prime p.

Theorem 10.2. The Equation x> + py* = z°.

Let p be an odd prime. The positive integer solutions to x2 + py? =

z2 with (x,y) = 1 fall into two classes:

1. x = 3|a® —pb?|, y =ab, z = L(a®+ pb?), where a,b are co-
prime odd integers.

2. x = \az — pbz\, y=2ab, z= a? + pbz, where 4, b are coprime
integers of opposite parity.

T
Proof
The equation implies z> — x> = py?, so (z — x)(z + x) = py?. Since
pisprime, p | (z—x)orp | (z+ x). Replacing x by —x if neces-
sary (absorbed by the absolute values), we may assume p | (z — x)
and write z = x + pk. Then y? = k(2x + pk). Because (x,y) = 1, we
cannot have p | x (otherwise p | z and hence p | y). Thus (x, k) = 1

2

and
(k,2x + pk) = (k,2x) € {1,2}.

If (k,2x) =1, then k is odd and the two factors are coprime squares.
Write k = b? and 2x + pk = a? with (a,b) = 1. Then a,b are odd and

x=1|a2—Pb2|r y:ab/ Zzl(az—i_pbz)'
2 2
If (k,2x) = 2, write k = 2b% and 2x + pk = 24a® with (a,b) = 1. Then
x = |a® —pb?|, y=2ab, z=a*+ pb.

Since x is odd, 4 and b must have opposite parity.

171
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Fermat’s Last Theorem and Infinite Descent

In 1637, Pierre de Fermat famously noted in the margin of his copy
of Diophantus’ Arithmetica that the equation x" + y" = z" possesses
no non-zero integer solutions for n > 3. While his "truly marvelous
proof" for the general case remains a historical mystery, Fermat did
leave a rigorous proof for the case n = 4.

The method he developed, known as the Method of Infinite De-
scent, is a powerful tool in number theory. The logical foundation is
the well-ordering principle introduced in Chapter o of the positive
integers. To show that a Diophantine equation has no solutions, we
assume the existence of a solution and construct a strictly smaller
positive integer solution. Repeating this process generates an infinite
sequence of decreasing positive integers, which is impossible.

The Casen = 4

We begin by establishing Fermat’s Last Theorem for the exponent
4. In fact, we prove a stronger result: the sum of two fourth powers
cannot be a perfect square.

Theorem 10.3. Fermat’s Last Theorem for n = 4.
The Diophantine equation

has no solutions in positive integers.

&
Proof
Suppose, for the sake of contradiction, that there exists a positive
integer solution. Let u be the smallest positive integer such that
x* + y* = u?for some positive integers x,y. We may assume
(x,y) = 1; otherwise, we could divide by the common factor to
obtain a smaller solution.
The equation can be written as (x?)? + (y2)?> = u?. Thus, (x2,y2,u)
is a primitive Pythagorean triple. Since x? and y? cannot both be
odd (as their sum u?> = 2 (mod 4) is impossible for a square), one
is even and one is odd. Without loss of generality, let x> be even. By
theorem 10.1, there exist coprime integers a, b of opposite parity such
that:

x% = 2ab, y2 =a® -1V, u=a>+"b>

Consider the equation y? = a®> — b?, or y? + b?> = 4. Since (a,b) = 1,
this forms a primitive Pythagorean triple (y,b,a). Since y is odd
(from the first triple), b must be even and a must be odd. We apply

The theorem was not fully proven until
1994 by Andrew Wiles
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the parameterisation of Pythagorean triples again to y> + b> = a?.

There exist coprime integers p, g of opposite parity such that:
b=2ps, y=p'—q’, a=p +q"
Substituting these back into the expression for x%:
x* = 2ab = 2(p* + ¢°)(2pq) = 4pa(p* + 4°)-

Since (p,q) = 1, the terms p,q, and p? + ¢* are pairwise coprime.
For their product to be a perfect square (x?/4), each term must be a
perfect square. Let

p=r% q=s52, pPig ="~
Substituting the first two into the third yields:

(P2 +(2)? =12 = st =12

. .- . . .. . Assume minimal
Thus, (7,s,t) is a positive integer solution to the original equation. Wyt — 2
We observe the size of t: N
P=p+q@=a<a+b=u (@2 |,
Pythagorean Y
Since u is a sum of squares of positive integers, u > a4, so 2 < u, Y
which implies t < +/u < u. This contradicts the minimality of u. \
p \F . ty (y,b,a) l\ Contradiction
Hence, no such solution exists. Pythagorean !
[ | !
1

22 = 4pq(p* + q%)
Factorisation

Corollary 10.2. The equation x* +y* = z* has no positive integer so-
lutions.

sk

Found solution
st =1

Proof with t < u

If x* + y* = 24, then x* 4+ y* = (z2)2. This would provide a solution ]
to x* + y* = w? with w = z2, which is impossible by t/coren 10.3. Figure 10.2: The descent pro-

- cess for x* +y* = 12

The Equation x* — y* = 22

The method of infinite descent can be applied to variations of the
quartic equation.

Theorem 10.4. Non-existence for Difference of Fourth Powers.
The indefinite equation

w oyt =22

has no solutions in positive integers with (x,y) = 1.
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Proof

We proceed by infinite descent. Let x be the smallest positive inte-
ger in any such solution. Since (x,y) = 1, x and y cannot both be
even. If they are both odd, x* —y* = 1 -1 = 0 (mod 2), while z2
is divisible by a high power of 2, leading to parity constraints. More
directly, we rewrite the equation as:

Thus (y2,z,x?) is a primitive Pythagorean triple. Since (x,y) = 1, x?
is odd, so y? and z have opposite parity.

y is odd. Then z is even. By theorem 10.1, there exist coprime a, b
(a > b > 0) such that:

y2:a2—b2, z=2ab, x*=a*+%
Multiplying the expressions for x? and y:
2y? = (a® +b?)(a® — b?) = a* — b,

This yields a* — b* = (xy)2. This is an instance of the original
equation with solution (a,b, xy). However, x> = a? + b*> > 42, so
x > a. This contradicts the minimality of x.

y is even. Then z is odd. By the structure of Pythagorean triples:
z=a*—b%, y*=2ab, x*=a>+01"

Since yz = 2ab and (a,b) = 1, one of 4,b is even. If 4 is odd and
biseven, x> = a>+b?> = 1 (mod 4). This is consistent. If a is
even and b is odd, x> = 4% + b> = 1 (mod 4). However, looking
aty?> = 2ab,leta = 2u?and b = ©v? (or vice versa). Then x*> =
4u* + v*. Thus (v?,2u?, x) is a primitive Pythagorean triple:

v? =72 —s2, 2u?=2rs, x=r>+s%
From u? = rs with (r,s) = 1, wehaver = m2,s = n?. Then
02 = m* — n*. This is m* — n* = v?, another instance of the origi-

nal equation. We check the size: m = /r < Vu?2 = u < vV2u? <
va < x. Thus m < x, contradicting the minimality of x.

This theorem allows us to resolve the area problem for right-angled
triangles.
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Example 10.7. Fermat’s Right Triangle Theorem. Prove that the
area of a right-angled triangle with integer sides cannot be a perfect
square.

Let the sides be u, v, w with u? + v> = w?. Theareais A = Juo.
Assume A = k? for some integer k. Then uv = 2k?. We may assume
(u,v) = 1 (otherwise divide out the common factor), so (#,v,w) is
primitive and w is odd. Any prime divisor of w cannot divide k, so

(w,2k) = 1. We have a system:
w+0v? = wz, 2uv = 4k2.
Adding and subtracting these equations:
(u+0)? =w?+4K2, (u—0)* = w® — 4k%.
Multiplying them:
(u? — v*)? = (u+0)*(u —v)* = w* — 16k%

Let X = w,Y = 2k, Z = |u? — v?|. Then X* — Y* = Z2. By theo-
ren 10.4, this equation has no integer solutions, so the area cannot
be a square.

E Xl

Descent by Divisibility

Infinite descent does not always require the Pythagorean structure.

It often arises from divisibility properties, particularly when a prime
factor must divide variables to infinite order.

Example 10.8. A Cubic Equation. Prove that x> = 2y3 + 423 has no
positive integer solutions.

Assume a solution (xg, yo, z) exists. The equation implies x3 is
even, so Xy is even. Let xg = 2x;. Substituting: 8xi” = 2}/8 + 428.
Dividing by 2:

4x3 =y + 223
This implies 3 is even, so yg = 2y;. Substituting: 4x3 = 8y3 + 2z3.
Dividing by 2:
3 _ 1.3 3
2x] = 4yy + zg.
This implies z3 is even, so zg = 2zj. Substituting: 2x3 = 4y3 + 8z3.
Dividing by 2:
3 _ 5,3 3
x| = 2y +4z7.
Thus (x1,y1,21) is a solution with x; < xp. This process can be re-

peated indefinitely (x, = xo/2"), which is impossible for integers.

.41
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We present a geometric application of this divisibility argument.
Example 10.9. Diophantine Constraints on Coordinates. Prove that
the equation x? + y? = 3z2 has no non-zero integer solutions.
Assume a minimal positive solution (x,y,z). Consider the equation
modulo 3.

X +1y*=322=0 (mod 3).

The quadratic residues modulo 3 are o and 1. If x> = 1, then x> +
y> = 1+ 0or 1+ 1, neither of which is 0 (mod 3). Thus, we must
have x> = 0 and y*> = 0. This implies 3 | x and 3 | y. Let x = 3x;
and y = 3y;. Substituting back:

(3x1)% 4 (3y1)? =322 = 9?4+ 9y} =322 = 3(xF +y3) = 2%
This implies 3 | z2, s0 3 | z. Let z = 3z;.
3(x3+y3) =927 = 1 +y =3z

We have constructed a solution (x1,y1,z1) where z; = z/3 < z. This
contradicts the minimality of the original solution.

E X

Constructing Solutions via Reverse Descent

While infinite descent is typically used to prove non-existence, the
logic can be reversed to find solutions. If we can reduce a complex
equation to a simpler form (descent), we can sometimes solve the
simple form and retrace our steps (ascent) to generate large solutions.
We examine the equation:

22 +2(2xy)? = (22 — y? + 2xy)2.

Let X = x* +y* — 6x%y? and Y = 4x%y — 4xy>. The equation is
equivalent to X + Y = z2, and one checks that X% + Y? = (x2 + y?)%.
Let s = x? + . Let t = X — Y. The system becomes:

X+Y =27
X2 4+y?=s*
Substituting X = J(z2+#) and Y = }(z2 —t) into the second equation

yields:

1 1
1((z2+t)2+(z2—t)2) =t —= 5(224+2t2) =5t —= 25t 2t =12

This is a reduced equation of the form 2s* —z# = 2.
From the original equation, (z,2xy, x> — y? + 2xy) satisfies

U? +2V2 = W2



DISCRETE II: ELEMENTARY NUMBER THEORY

For primitive solutions, we may write
U=|a®—-20%, V=2ab, W=a>+20?
where 4, b are coprime positive integers and a is odd. Hence

z=|a*—2b%, 2xy=2ab, x*—y®+2xy=a>+ 20

From 2xy = 2ab we obtain % = %. Let the reduced fraction be %, and

set
x=Kd, a=Kc, b=1Ld, y=Lc

with integers K, L # 0. Substituting into x*> — y? + 2xy = a® + 2b?

gives
2 2\ (L 2 L 2 2
L

Since ¢ is rational, the discriminant must be a square:

A = 4c2d* — 4(c* +2d%)(® — d?) = 4(2d* — ¢*) = (2¢)?,

SO
2d% — ct = ¢,
Then
E_ cd+e
K 24242

4 2

The smallest solution to 2d* — ¢* = ¢2is¢ = d = ¢ = 1, which yields

£ = 3. Taking L = 2,K = 3 gives
x=3 y=2, z=1,
and indeed 1% + 2(12)> = 172. For the next solution, note that
2(13)* —1=1239%,s0c =1,d = 13, e = 239. Then
L 2 84

K~ "3 % 13
Taking L = 84 and K = 113 yields
x =1469, y =84, z=2372159,

which also satisfies the equation.
Example 10.10. Solving x* — 2y* = 1. Prove that x* — 2y* = 1 has
no positive integer solutions.

#b)
Proof

Assume a positive integer solution exists. Then x is odd, so x> + 1

177
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are even. Write
x> —1=2u, x>+1=2y,

souv = y*and (u,v) = 1because (x> —1,x> +1) = 2. Since
uv is a fourth power and u and v are coprime, each of # and v is

a fourth power. Indeed, in the prime factorization of u and v, the
exponents add to multiples of 4 and the prime sets are disjoint, so
each exponent is a multiple of 4. Thus

u=a* o=10
for some positive integers a, b. Then
¥ —1=2a" x*+1=20",

so subtracting gives
bt —at=1.
Factor:
(b* —a®) (P> +0a%) = 1.

The only positive integer factorization of 1 is 1 - 1, which forces b* —
a*> = land b* +a> = 1, hencea = 0, a contradiction to positivity.
Therefore no positive integer solutions exist.

10.3 Exponential Diophantine Equations

Following our investigation of the quadratic Pythagorean equation
X2 4P =22
general exponential equation

, we naturally extend our inquiry to higher powers. The

x"+yt=2", n>3

stands as one of the most famous problems in the history of math-
ematics. Known as Fermat’s Last Theorem, its study has driven the
development of algebraic number theory for over three centuries. In
this chapter, we explore the solvability of this and related exponen-
tial Diophantine equations, establishing criteria for the existence of
solutions and methods for their construction.

Fermat’s Last Theorem

The study of the equation x" + y" = z" traditionally begins with a
reduction of the exponent.

Claim 10.1. Reduction to Prime Exponents. If the equation x" 4 y" =
z" has no positive integer solutions for n = 4 and for all odd primes
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p, then it has no positive integer solutions for any integer n > 3.
EX 3
Proof

Any integer n > 3 is either divisible by 4 or by an odd prime p. If
n = kr, the equation can be rewritten as:

If n is a multiple of 4, we set r = 4. As established in the previous
chapter (Fermat's Last Theorem for n = 4),thecaser = 4hasno
solutions, implying the general case has no solutions. If 7 is not
divisible by g4, it possesses an odd prime factor p. Setting r = p, if
the equation X? + YP = Z’ has no solutions, then neither does the
original equation.

Historically, proofs were attempted prime by prime. Euler (17770) pro-
vided a proof for p = 3, though it required later refinement. The case
p = 5 was settled independently by Legendre and Dirichlet (1825),
with Lamé (1839) resolving p = 7. A significant advance occurred

in 1847 when Kummer proved the theorem for all "regular” primes,
covering all primes less than 100 except 37, 59, and 67. Kummer later
resolved the cases for 59 and 67 in 1857.

The bounds on 1 were pushed progressively higher—Mirimanoff

(p = 37, 1892), Wagstaff (p < 125,000, 1976), and Rosser (n <
41,000,000, 1985). The topological nature of the solution space was
clarified by Faltings (1983), who proved that for n > 3, the equation
has at most finitely many primitive solutions.

The complete resolution was finally announced by Andrew Wiles

in 1993 at the Newton Institute in Cambridge. After correcting a
subtle flaw with his student Richard Taylor, the proof was published
in 1995, establishing that x” 4+ " = z" has no solution in positive
integers for n > 3.

Solvable Exponential Equations

While the equation x" + y" = z"* permits no solutions, relaxing the
constraints on the exponents yields rich families of solutions. We
consider equations of the form x" +y" = z'".

Theorem 10.5. Existence of Solutions for Coprime Exponents.
Let 1, m be coprime positive integers. The Diophantine equation

x?l +yn :Zm

possesses at least one family of positive integer solutions.

179
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Proof

We construct a solution using the method of common bases. Let

x = (ac)* andy = (bc)", where a,b, c, u are positive integers to be
determined. Substituting these into the equation:

(ac)™ + (be)™ = ™ (a™ + ™) = 2.
We set z = c” for some integer v. The equation becomes:
Cm{ (anu + bnu) — Cmv‘
We impose the condition a"* + b"* = c. Then the left-hand side be-
comes ¢ - ¢ = ¢+, We require ¢! = ¢, which implies:
mv —nu = 1.

Since (m,n) = 1, the linear Diophantine equation mv — nu = 1
has positive integer solutions for u and v (refer to the theory of the
GCD from previous chapters). Once u is determined, we choose
arbitrary positive integers a,b, set ¢ = a" 4 b, and derive x,y,z
accordingly.

[

This theorem allows us to generate solutions for exponents that are
close in value.

Corollary 10.3. The indeterminate equations x" +y" = z"*! and x" +
y" = 2" (for n > 1) always possess positive integer solutions.

i
Example 10.11. Parametrising x" + y" = z"t1. We apply the con-
struction from fheorem 10.5 withm = n 4 1. The condition on the

exponents is
(n+1)v—nu=1.

2

Taking u = n? and v = n? — n + 1 satisfies this, since

m+1)(n?—n+1)—nn*) =n*+1-n*=1.
Let a, b be any positive integers and set
c=a® 40", x=a"c", Y= P g = il
Then
Ay = aC e e = (an3 + bn3)cn3 — 1
Also,

41

zZ =cC

nt+l _ (an—n—&-l)"Jrl _ C(nz—n+l)(n+1)
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Hence this provides a family of positive integer solutions.
#h)

Inductive Constructions

Mathematical induction can be utilized to extend solutions from
small exponents to arbitrary ones.

Example 10.12. Sums of Squares as Powers. Prove that the equa-
tion x? + y? = z" has positive integer solutions for all n € Z*.

#1)
Base Cases.
Forn=1,3%+42 =25=25'. Forn =2, 32 + 42 = 5.
SIE B #%
Inductive Step.
Assume there exist integers xy, o, zo such that x% + y% = z’é. We
construct a solution forn = k + 2. Let x; = xpz0, Y1 = Yoz0, and

z1 = zp. Substituting these into the sum of squares:
2, .2 2 2 20,2 .2
X7 +y1 = (x020)” + (v0z0)” = z5(x5 + ¥p)-

Using the inductive hypothesis:

20 ky _ k+2 _ _k+2
z5(zg) =z~ =27 .
Thus, the existence of a solution for k implies existence for k + 2.
Since solutions exist for n = 1,2, they exist for all positive integers

n.
3EH 4

Solutions with Prime Constraints

When exponents are variables or results are constrained to be prime,
we rely on congruences and parity arguments.

Example 10.13. Variable Exponents with Prime Sum. Find all solu-
tions in primes x, y, z to the equation x¥ + y* = z.

$15)
Solution

Since z is prime, x and y cannot both be odd; otherwise ¥ + y*is
even and greater than 2. Thus one of x, y is even. Because x and y
are primes, this forces x = 2 or y = 2. Without loss of generality, let

x =2 and y be an odd prime.

Solvability Space

Figure 10.3: The line m = n rep-
resents Fermat’s Last Theorem
(no solutions). The adjacent
diagonals m = n £ 1 permit
infinite families of solutions.
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Ify =2, thenz = 22 422 = 8 is not prime. If y = 3, thenz = 23+
32 = 17 is prime. Now assume y > 5 is an odd prime. Then

WP = (V1) + (P —1) =32V =22 )+ (y—1)(y+1).

Since y # 3, the product (y — 1)(y + 1) is divisible by 3, and so is

the alternating sum. Hence 3 | (2¥ + y?), and z cannot be prime.

Therefore y = 3 is the only possibility.

Thus the only prime solutions are (x,y,z) = (2,3,17) and (3,2,17).
[ |

Modular Constraints and Diophantine Systems

For equations involving fixed constants and powers, modulo arith-
metic often restricts the possible exponents, reducing the problem to
a finite set of cases.

Example 10.14. The Equation x?> + 615 = 2Y. Find all positive inte-
ger solutions to x% + 615 = 2V.

45
Solution

We analyze the equation modulo 5. Powers of 2 modulo 5 follow
the cycle: 21 = 2,22 = 4,23 = 3,2* = 1. The term 615 is a mul-
tiple of 5,50 x> = 2¥ (mod 5). Quadratic residues modulo 5 are
02 =0,12 = 1,22 = 4,32 = 4,4%> = 1. Thus 2 € {0,1,4} (mod 5).
Comparing this with the cycle of 2V:

e Ify=1 (mod 4), 2 = 2 (Not a residue).
e If y =3 (mod 4), 2Y = 3 (Not a residue).

Therefore, y must be even. Let y = 2z. The equation becomes x> +
615 = (27)?, or:

2% 42 =615 = (2 —x)(2* +x) = 615.
We factor 615 = 3 x 5 x 41. We must find factors u, v such that uv =

615 and v > u. Then 2* + x = v and 2°* — x = u. Adding the equa-
tions yields 21 = u + v. Possible pairs (u,):

1. (1,615) : u+ov = 616. 21 = 616. No integer solution (512 <
616 < 1024).

2. (3,205) : u+vo
208 < 256).

208. 21 = 208. No integer solution (128 <

3. (5,123) tu+0v=128=2".Thusz+1=7 = z=6.1fz =6,
2 _x=5 = 64—x =5 = x = 59. Check: 592 + 615 =
3481 + 615 = 4096 = 2!2, This is a valid solution.
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4. (15,41) : u 4+ v = 56. No integer solution (32 < 56 < 64).

The unique solution is x = 59,y = 12.
[

We conclude with two additional examples illustrating the applica-
tion of these techniques to similar Diophantine problems.

Example 10.15. Constraint by Modulo 3. Prove that the equation
x? +5 = 3¥ has only one positive integer solution.

Fh)
Proof

We consider the equation modulo 3 and modulo 4. Modulo 3:
x242=0 (mod3) = x*=1 (mod 3).
This is consistent for any x not divisible by 3. Modulo 4:
X +1=3"=(-1)Y (mod 4).

Ifyisodd, x> +1 = -1 = 3 (mod 4), which implies x* = 2
(mod 4). This is impossible for any integer square. Thus y must be
even. Let y = 2k. Rearranging the equation:

5=23%—x2= (3" —x)(3" +x).

Since 5 is prime, the only factors are 1 and 5.

F—x=1
3 +x=5
Adding the equations: 2-3* = 6 = 3* =3 = k = 1. Substi-
tuting back, 3l _x =1 = x =2. Then y = 2k = 2. Verification:
22 + 5 =445 =9 = 32. The unique solution is (x,y) = (2,2).
[ |
4

Example 10.16. Construction for x> + > = z*. Find a non-trivial in-

4

teger solution to x* + > = z* using the common factor method.

$.19]
Solution

We use the strategy from t/eorem 10.5 with exponents n = 3,m = 4.

Letx = c*aandy = c"b (where we simplify the form (ac)" to just
scaling by c*). Substitute into x3 + 13 = z*:
S(a® + %) =24

We choose a4, b arbitrarily, say a = 1,b = 1. Then a3+ 1> = 2. The

183
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equation becomes 2c3 = z* We need to choose ¢ and u such that
the left side is a perfect fourth power.
Let ¢ = 2. The expression becomes 2 - 23 = 234*1 We require 3u +
1 to be a multiple of 4.
Let3u+1 =4k Fork =1,3u =3 = u=1Thenz! =2 —
z=2 And x =21(1) =2,y = 21(1) = 2. Check: 23 +23 =8+ 8 =
16 = 2%
For distinct x,y, choosea = 1,b = 2. Then B 4+¥ =1+8 = 0.
Equation: 9¢3* = z%.
Let ¢ = 3. Then 3% - 3% = 334+2 = z4 We need 3u + 2 divisible by 4.
Letu = 2. Then3(2) +2 = 8.z =38 = z =32 =9.x =
32(1) = 9,y = 3%(2) = 18. Check: 9° + 183 = 729 + 5832 = 6561.
z* = 9* = 6561. Solution: (9,18,9).

|

10.4 Exercises

1.

Small Primitive Triples. Find all primitive Pythagorean triples
(x,y,z) satisfying z < 30.

0Odd-Odd Parameterisation. Prove that all positive integer solu-
tions to x? + y? = z2 with (x,y) = 1 and x odd can be expressed
as:

—v? u?+0?

2 T T2
where u, v are coprime odd positive integers with u > v.

X=uv, y=

Weighted Quadratic Form 1. Prove that all positive integer solu-
tions to x? + 2y? = z2 with (x,y) = 1 are given by:

x = |a*—20%, y=2ab, z=a>+2b%
where 4,b > 0, (a,b) =1, and a is odd.

Weighted Quadratic Form 2. Prove that all positive integer so-
lutions to x2 + y?> = 222 with (x,y) = land x > y are given
by:

x=m*—n®+2mn, y=|m*—n*-2mn|, z=m*+n?

where m > n >0, (m,n) =1, and m, n have opposite parity.

Quartic-Quadratic Equation. Find all positive integer solutions to
x* +y? = 22 where x, 1, z are pairwise coprime.
Generalised Pell-Type Forms. Let m be square-free.

(@) If m = 1or3 (mod 4) (m = 2k — 1), prove that solutions to

x? + my? = z?* take two forms involving parameters mm, =
m.



10.

11.

12.

13.

14.

15.

16.
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(b) If m =2 (mod 4) (m = 4k — 2), prove that solutions take the
form x = |mya® — 2myb?|,y = 2ab,z = mya> + 2myb> where
m = 2mimy.
Counting Special Triples. Let p; < pp < --- < ps be odd primes.
Prove that the number of primitive Pythagorean triples (x,y, z)
satisfying
2p1p2. . ps(x +y+2z) =xy
is exactly 4 - 3°.
Sum of Inverse Squares. Prove that all positive integer solutions
to xl—z + y% = le with (x,y,z) =1 and y even are given by:

x=r1t—s* y=2rs(r?+52), z=2rs5(r*—s?),

where r > s > 0, (r,s) =1, and r,s have opposite parity.

Congruent Numbers. A positive integer 7 is a congruent number
if it is the area of a right triangle with rational sides. Prove:

(a) n is congruent if and only if there exists a rational x such that
x,x + n,x — n are all squares of rationals.

(b) 7 is congruent if and only if the system a? + nb?> = c? and
a®> — nb? = d? has an integer solution (a,b,c,d) with b # 0.

Infinite Descent Proofs. Use infinite descent to prove that the
following equations have no positive integer solutions:

(@) x*+y? +2z% =2xyz.
(b) x*+27y* = 22 with (x,y) = 1.

Sum of Squares Product. Find all integer solutions to x> + y +

72

= x22,
Negative Pell Equation. Find all positive integer solutions to
x* — 2y2 =—1.

Higher Power Non-Existence. Prove that x* + 4y* = 22 has
no positive integer solutions. Deduce that x* + y?> = z* has no
positive integer solutions.

185

Fermat’s Triangle Problem. Find a right-angled triangle with This is a problem posed by Fermat in a

letter to Mersenne in 1643.

integer legs x,y and hypotenuse z such that x 4+ y and z are both
perfect squares.

General Solutions for Shifted Powers. Let n > 1 be an integer.
Construct a parametric family of positive integer solutions to the
equation:

x4 yn _ Zn—l.
Parity Conditions on Exponents. Consider the equation x? +
3y* = 2". Prove that:
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17.

18.

19.

20.

21.

22.

(a) If n is even, there exist positive integer solutions.

(b) If n is odd, there are no positive integer solutions.
Consecutive Product and Squares. Prove that the product of five
consecutive integers is never a perfect square. That is, the equation

(x —2)(x — Dx(x +1)(x +2) =

has no integer solutions.

Polynomial Diophantine Equation. Find all integer solutions to:
A+l :yz.

Prime Variables. Find all solutions to x¥ + 1 = z where x,y, z are
all prime numbers.

Infinite Families for Mixed Powers. Prove that the equation x? +
y® = 2 possesses infinitely many solutions in positive integers.

Fermat-Type Non-Existence. Letn > 2. Prove that the equation
x?" + y? = 22 has no positive integer solutions.

Unique Solution for Specific Primes. Let p be a prime such that
p = 3 (mod 4). Prove that the only positive integer solution
(x,y,z) to the equation

2 y 2 z
X p-—1 _(p+1
() = (5

isx=y=z=2.

Bound the polynomial between squares
of quadratic expressions.

Reduce this to the case X* + Y* = Z2.



11.1

11
Methods for Indefinite Equations

We now broaden our scope to general indeterminate equations. Un-
like linear or Pythagorean equations, which possess systematic al-
gorithms for their complete solution, general Diophantine equations
often require a diverse toolbox of heuristic methods.

In this chapter, we systematise these approaches into four primary
categories: algebraic factorisation, modular constraints, analytic esti-
mation, and constructive techniques.

The Factorisation Method

A fundamental strategy in solving non-linear Diophantine equations
is to convert a sum of terms into a product. If an equation can be
manipulated into the form

f(xl,...,xn) = K,

where K is a constant or a simple term, the Fundamental Theorem of
Arithmetic allows us to equate factors of f with divisors of K.

We begin with a classical application to reciprocal equations, often
arising in geometric contexts.

Example 11.1. The Symmetric Reciprocal Equation. Find all posi-
tive integer solutions to the equation

where 1 is a fixed positive integer.
Multiplying through by nxy, we obtain the algebraic form
ny 4+ nx = xy. Rearranging terms to group variables:

xy —nx —ny = 0.
To factorise the left-hand side, we add 12 to both sides, completing
the rectangle:

2 2

= (x—n)(y—n) =n".

xy —nx —ny+n’=n
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Since x,y > 0, we must have % < % and % < %, which implies x > n
and y > n. Thus x —n and y — n are positive integers. The solutions
correspond to the divisor pairs of n2. For each divisor d | n%, we ob-
tain a solution:

x—n=d x=n+d
—
y—n=n*/d y=n+n?/d

The number of solutions is exactly T(n?), the number of divisors of

n.

.49

This technique extends to higher-degree equations where factoriza-

tion over the integers restricts the possible values of variables.
Example 11.2. Quartic-Quadratic constraints. Prove that the equa-
tion x* — 2y = 1 has only the integer solutions (x,y) = (£1,0).
Rearranging the equation implies x* — 1 = 2y2. We factor the differ-
ence of squares:

(2 =1)(¥* +1) =242

Since x must be odd (if x were even, x* — 1 would be odd, but 2y2 is
even), let x = 2k + 1. The greatest common divisor of the two fac-
tors is:

(21,2 +1)=(x*-1,2) =2.

We can rewrite the equation as:

2 2
xz 1'x2+1:2(%>2'

Note that y must be even. Let y = 2Y. The equation becomes:

2 2
The two factors on the left are coprime integers. Their product is
twice a square. Thus, one factor is a square and the other is twice a
. 2 2 . :
square. Since *5! = (2k+;) 1 — 2k2 4 2k + 1 is odd, it must be the
square term.

24+l _ 2
2
2
From the second equation, x> — 1 = 42?, or x> — (20)> = 1. The

only consecutive perfect squares are o and 1, so we must have 2v =
0 = v = 0. Consequently, x> = 1 = x = =1. Substituting
back, y = 0. The solutions are (1,0) and (—1,0).

.41
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Pythagorean Quadruples

We can generalize the parameterisation of Pythagorean triples (Classi-
fication of Primitive Triples) to sums of three squares using factorisation
in the Gaussian integers or simple algebraic manipulation.

Theorem 11.1. Parametrisation of Pythagorean Quadruples.

2

The primitive integer solutions to x? + y? + z2 = w? are generated

by the formulae:
x = 2ac/d,

y = 2bc/d,
z=(®—a*—b?)/d,
w=(*+a*+b%)/d,

where a4, b, c are integers and d is a scaling factor chosen to ensure co-
primality.
gl

Proof
Let x =tA and y = tB. Then

(A% + B?) = w? — 22 = (w —z)(w + 2).
Choose a rational parameter A = £ with (c,u) = 1 and set
wHz=At, w—z= %(Az—!—Bz).

Then
u(w+z) =ct, c(w—z)=ut(A?+ B?).

Since (¢, u) =1, we have u | t; write t = uty. Substituting gives
w+z=ct;, c(w-z)=*t(uA)?+ (uB)?).
Let a = uA and b = uB. Solving for w and z yields

2cw =t (2 +a® +b%), 2cz=t(c>—a*—b?),

y
and x = t1a, y = t1b. Clearing the common factor 2ct; gives
xiyiziw=2ac:2bc: (*—a®—b*): (F+a®+0?. |
Choosing d to clear common factors yields the stated parametrisa- ST w 3
tion. | | |
| | e
4 X v
| l

Sometimes, factorisation requires assumption of coprimality to isolate =~ #----------
powers. z

Figure 11.1: The Pythagorean
Quadruple represents the in-
teger diagonal of an integer
cuboid.
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Example 11.3. Coprimality and Powers. Prove that the equation
x(x +1)" = y"*! has only the integer solutions (0,0) and (—1,0)
for any integer n > 1.
When x = 0orx = —1, we have y = 0, so (0,0) and (—1,0) are so-
lutions. Now assume x # 0,—1,soy # 0. Since (x,x +1) = 1, we
can write

x = Lln+1, (x + 1)n _ bn-‘,—l[ y= ab,

with integers a,b and (4,b) = 1. Because (n,n + 1) = 1, the second
equation implies b = c" for some integer c, hence

x+1=c"

Substituting gives
an+1 +1= C?’H’l'

If a > 0, then ¢ > a and
T=c"" g =(c—a)("+c"lat - +a") >n+1,

which is impossible. If 2 < 0 and n + 1 is even, the left-hand side is
positive while the right-hand side is nonpositive. If 2 < 0 and n + 1
is odd, then 2 < —1 and ¢ < 0, and taking absolute values gives

|C|n+1 +1= |a|n+1/

which contradicts the previous argument. Therefore no solutions
occur when x # 0, —1, and the only solutions are (0,0) and (—1,0).

.49

11.2 Modular Constraints and Valuation

When algebraic manipulation fails, examining the equation modulo
n or analyzing the powers of prime factors (valuation) can reveal
contradictions.

Congruence Obstructions

Example 11.4. Factorial Sums. Find all positive integer solutions to
s=1(s)™ = Ll (8)".
It is clear that n = m is a solution. Suppose m < n. Then
n m
M2 =M —1) =) (s = Y ()"

s=3 t=3

The right-hand side is divisible by 3,s03 | (2"~ — 1), and hence




DISCRETE II: ELEMENTARY NUMBER THEORY

n —mis even. Thus n > m + 2. Now

m

m
S(H)T =26 Y (1) = 27(14+37) + Y (1)
=2 t—4 t—4
Since n > m + 2, each term (#!)" with t > 4 is divisible by 2”3, and
2""(1 4 3") is also divisible by 2"*3. Hence
m

Y. (1)"=0 (mod 23y,

t=

N

If the original equation holds, then

(sH™ =0 (mod 2""3).

1=

s=1

But modulo 8 we have
n
Y ()" =142"+6"=1 (mod 8),
s=1

contradiction. Thus there are no solutions with m < n. Similarly,
there are no solutions with m > n, and therefore the only solutions
are m = n.

Eid)
Example 11.5. Sum of Factorials as a Power. Find all positive inte-
ger solutions to 1! + 2! 4 - - - + x! = y* for z > 2.
Forx =1,5, =1,s0y = 1and any z > 2 works. Forx =2, 5, =3
is not a perfect power. Forx = 3,5, = 9 = 32 gives (x,y,2z) =
(3,3,2).
Now assume x > 4. Since 4! is divisible by 8, we have

Sx=142+6=1 (mod 8),

so y is odd. If x > 5, then Sy = 33 = 3 (mod 5), so z must be odd.
For x > 8, note that 8! = 9 (mod 27) and k! = 0 (mod 27) for k >
9, while Sy = 5913 = 0 (mod 27). Hence

Sx=9 (mod 27),

sov3(Sy) = 2.1fz > 3, then y* is divisible by 27, contradiction.
Thus z = 2, but this contradicts Sy = 3 (mod 5). Hence there are
no solutions for x > 8.

For x =4,5,6,7, direct checks give

S54=233, S55=153, S5¢=2873, Sy =>5913.

Forx = 4,52 < 33 < 62and 3° < 33 < 43,50 S,isnota perfect
power. For x = 5,122 < 153 < 132,53 < 153 < 6°,and 3* < 153 <

191
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4% For x = 6,297 < 873 < 30%, 9° < 873 < 10%, and 5* < 873 < 6*.
For x = 7,76 < 5913 < 77%,18% < 5913 < 19%, and 8* < 5913 < 9*
Thus none of these is a perfect power with exponent > 2. Therefore
the only solutions are

(x,y,z) = (1,1,z) forz > 2, and (3,3,2).

Comparing Powers of Primes

A powerful variation of the modular method is to compare the ex-
ponent of the highest power of a prime p dividing both sides of an
equation. We denote the exponent of p in the prime factorisation of n

as vp(n).

Theorem 11.2. The Quotient of Fermat Differences.
Let p be an odd prime and k > 1 be an integer. The equation

xP — yp k .
=yp"z, with (x,y) =1
=y P (x,y)
has no integer solutions.
3L
Proof
Assume a solution exists. From x” — y? = pFz(x — y), we see that

xP = yP (mod p). By Fermat’s Little Theorem, x = y (mod p). Let
x =y + mp. Since (x,y) =1, p { y. We expand the numerator using
the Binomial Theorem:

p o
W=y = (y+mp)’ —y" =} <f)y”l(mp)l-
i=1

The first term of the sum (for i = 1) is (§)y?~ (mp) =
p - yp—l -mp = mpzyp_l. The second term (fori = 2)is
Oy 2(mp)? = @y’”_zmzpz, which is divisible by p® (since

p is odd). Higher order terms are divisible by p> or higher. Thus,
the sum is dominated by the first term modulo p:
xP —yP = mp?y?~1  (mod p°).
Dividing by x —y = mp:
xp — yp - mpzypfl
x—y — mp
The valuation of the LHS is therefore exactly v,(LHS) = 1. How-
ever, the RHS is pkz with k> 1, so its valuation is at least 2. This

= py"”l (mod pz).

contradiction implies no solution exists.
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11.3 Analytic Methods: Estimation and Cases

When discrete methods yield ambiguous results, analytic con-
straints—such as inequalities and magnitude estimates—can narrow
the search space to a finite set of cases.

Classification Discussion

Example 11.6. Cyclic Exponential Equation. Find all integer solu-
tions to ¥ +y* +z* = 0.

Let (x,y,z) be a solution. Clearly xyz # 0 and at least one of x,y,z
is negative. Since the equation is cyclic in x, y, z, we discuss the
following cases.

1. Case x >0, y > 0, z < 0. The equation becomes

xy + Zx = — F

This holds if and only if y = 1. Then x + z* = —1, which yields
x = land z = —2. Hence (x,y,z) = (1,1, —2). Permuting x,y,z
gives the three solutions

(-2,1,1), (1,-2,1), (1,1, -2).

2. Casex >0,y <0, z<0. Then

11

H+F = —Z".
This holds only if |z*| < 2. Hencez = —2,x = lorz = —1.
Whenz = —2andx = 1,wehavey = -1,s0(x,y,z) =

(l, —2,-1), and permuting x,y, z gives

(1,-1,-2), (-1,-2,1), (2,1, -1).

When z = —1, the equation becomes
i — (_1>x+l . 1
x7Y Y
If y = —2k with k > 0, then
2
o2 k

T (—1)F 2k
which is impossible. If y = —(2k — 1) with k > 0, then

%1 _ 2k —1
1+ (=) (2k—1)’

which is also impossible.

X
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3. Casex <0,y <0, z<0. Then
1 1

1
Y yz | z¥

If x,y, z are all odd, the left side is negative; if all even, the left
side is positive, both contradictions. If exactly one of x,y, z is
even, say x even and y,z odd, then

y iz 4z x Yy =0,

whose left-hand side is odd while the right-hand side is even, a
contradiction. Hence exactly two of x,y, z are even. Without loss
of generality, let 2 | x, 2 | y, and 2 { z. Write

x=2%, y= 2th, M=z7%,

where s,t > 1, a,b are negative integers, and 2 t abM. Substitut-
ing gives

(2'0) "2 (M + (2°a)~2Y) = —M(2°%a) 2"

Comparing the powers of 2 on both sides yields tz = 2'sb, which
is impossible since 2 { z.
Therefore the equation has exactly six solutions:

(-2,1,1), (1,-2,1), (1,1,-2), (1,—1,-2), (=1,-2,1), (=2,1,—1).

.41

Estimation

Inequalities are particularly effective for sums of reciprocals, as the
value of the function drops rapidly.

Example 11.7. Factorial Reciprocals. Find positive integers satisfy-
ing % = % + % + %

Since the equation is unchanged by permuting x, y,z, assume x = <

y < z. Then
4 1

mEttnSm
w! ox! oyt ozl T ol
sow > x. If w> x+2, then

414111
(x+2)! x! T w  x! oyl ozt T

which implies

(x+2)!
x!

= (x+2)(x+1) > 6,




DISCRETE II: ELEMENTARY NUMBER THEORY 195

a contradiction. Hence w = x + 1.
Since x < y < z, we have

4 3
> Y
(x+1)! — z!
soz<x+1. Thusz=xorz=x+1.
If z = x, then ﬁ = %, giving x = %, impossible. If z = x 41, the
equation becomes
4 2 1 4 1 2
=—+ or ——=—+-—-.
(x+1)!  xt (x+1)! (x+1!  xt (x4+1)!
The first gives x = %, impossible, while the second gives x = 1.
Hence

(xyz,w) =(1,22,2),
and by permuting x,y, z the solutions are
(1,2,2,2), (2,1,2,2), (2,2,1,2).

$o19]

11.4 Constructive Methods

When an equation has infinitely many solutions, we can often con-
struct them by identifying a pattern or an identity.

Construction via Identities

Example 11.8. Sums of Fourth Powers. Prove that x* + y* 4 z* = w?

has infinitely many integer solutions.
Let w = z> 4+ m. Then

w? — 2% = m? + 27%m.

Since
(u40)* + (u—0)* =2(u® — v*)? + 16u0?,
we obtain

16u20% ((u 4+ 0)* + (u —v)*) = 2(u® — 0*)?(16u*0?) + (16u?0?)%.

Comparing with m? + 2z%m, take

m = 16u202, z=u?— v

Then
w? — (u? — v*)* = 16u%0* ((u+0)* + (u —0v)*).
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Let u = s? and v = t2. This gives
((s* — t4)2 + 165 4)2 — (s* — 1) = (25t(s? 4 12))* + (2st(s? — 12))*.
Hence the equation has infinitely many solutions:

x=2st(s*+12), y=2st(s2—1?), z=s*—t, w=(st—)2 4165

E X

Rational Parametrisation

Just as the unit circle x> + y?> = 1 can be parametrised by rational
points to solve a? + b? = ¢?, higher degree surfaces can sometimes be
projected to finding rational points.

Example 11.9. Weighted Fourth Powers. Find infinitely many

integer solutions to x* + y* + 4z* = w*.

Divide by w* to work with rational numbers X, Y, Z:
X4+ Yt 4474 =1,

We set X +2YZ = 1. This reduces the degree of freedom. Substi-
tuting X2 = 1 — 2YZ into the equation:

(1-2YZ)2 4 Y*+47% =1.
1—4YZ +4Y?72 + Y4 4474 = 1.
Y44 4Y27%2 —4YZ +47% = 0.

Note that Y4 +47% 4 4Y272 = (Y% 4+ 272)2. So (Y? 4 27%)? = 4YZ.
This relates the square of a quadratic to a linear term. Let Y = t2Z.
Then (t*72 4 272)% = 4t>72.

ZA(t* +2)? = 4272,
Assuming Z # 0, we divide by Z? to get

Z(t* 4+2) = 2t,

SO 3
Zo 22
th+2 th+2
Moreover,
(Y2 —27%)2 =4YZ(1-2YZ) = 427%X?,
SO

Y2272 H#_2

X = = )
2t7 42
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Lett = a/bwithintegersa,bandb # 0. Clearing denominators
gives

x = a* —2b%, y= 243, z=2ab®>, w=a*+2b*

Exponential Constructions

We now consider equations where the exponents themselves are part
of the variable structure.
Example 11.10. Self-Exponent Product. Prove that

k
[[x=2 (k=2 x>1)
i=1

has infinitely many sets of positive integer solutions:

x| = kk”(k”+172n7k)+2n (kn _ 1)2(1{’“71)

7

Xy = K" (R —2n—k) (k" — 1)2(k"71)+2

7

X3=---=x; = kk'l(k”+172n7k)+n(kn _ 1)2(k”71)+1

7

7= kk”(k”+172n7k)+n+l (kn _ 1)2(k”71)+1

7

wherek=2,n>1ork>3,n>0.
Letd = (x1,...,xk, z) and write

Substituting gives

k
k .
driziti—u | | tf’ = yt.
i=1

Y5t —u=1and [T, # | u*, then

u

u
d=——+
Ty ¢
produces a solution. Take
bh=Kk" =K -1?% t3=--=t=K-D1K', u=Kk"EK-1).
Then
k
i—u =k (K =12+ (k= 2)(K" — 1)k" — K" (k" —1) = 1.
i=1
Moreover,

u" h( n )l
=K -1

ko b ’
[Tizi

197
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where
h=k"(k"T' —k—2n), 1=2(K'-1).

Fork=2,n>1ork>3,n>0, wehaveh >0and! > 0, so

d= kk"(k"+1—k—2n) (kn _ 1)2(k”—1)'

Substituting gives the stated family of solutions.

11.5 Generating Functions and Counting Solutions

While the methods discussed earlier focus on the existence or con-
struction of specific solutions, a frequent question in number theory
concerns the quantity of solutions. For linear indeterminate equations,
this counting problem connects number theory with combinatorics.
The most powerful tool for this analysis is the method of generating
functions.

Formal Power Series

To count solutions systematically, we map sequences of numbers to
analytic objects.

Definition 11.1. Generating Function.
The generating function of a finite sequence ag, a1, . .., a4, is the poly-
nomial

A(x) = ag + a1x + apx® 4+ - 4 apx".

For an infinite sequence ag, a1, . . ., the generating function is the for-
mal power series

Alx) =) anx".
n=0

We use the term "formal" because we are not initially concerned with
the convergence of the series for specific values of x. Instead, we treat
the series as an algebraic object where the position of a coefficient
(the exponent of x) serves as a label.

Definition 11.2. Operations on Formal Power Series.
Let A(x) = Y a,x™ and B(x) = }_ b,x". We define:
1. Equality: A(x) = B(x) if and only if a, = b, for all n > 0.

2. Sum: A(x) + B(x) = Y o(an +by)x".
3. Product: A(x)B(x) = Y5 cnx", where ¢, is the Cauchy product
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Cn = Y Akbn_k-
The fundamental identity for our purposes is the expansion of the
geometric series and its powers.

Theorem 11.3. Geometric Series Expansion.
In the ring of formal power series:

Proof

Let ﬁ =Y. cux". By definition of the quotient, we have:
1=(1-x) Z cpx = Z cpx — Z cpx 1
n=0 n=0 n=0
Shift the index of the second sum (k = n + 1):
T=co+ Y (cn—cp1)x"

Comparing coefficients, cg = land ¢, —c,—1 = 0forn > 1. Thus
¢, = 1 for all n.

u
Using mathematical induction, we can generalize this to negative
integer powers.
Theorem 11.4. Negative Binomial Expansion.
For any positive integer n,
i n+r—1 o
(1 ) =\ n-1 ’
i
Proof
Forn = 1, the coefficient is (;) = 1, which matches the geometric

series. Assume the formula holds for n = k. Then for n = k + 1:

11 1 (& k+i-1\ ) (&
(1—x)k+1—(1_x)k'1—x_<];)< k-1 )x]> (on )

The coefficient of x” in the product is the sum of coefficients a;b, ;:

" (k+j—1
Cr—Z(kil )'1.

j=0

199
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We apply the combinatorial identity Y/, (;) = (':Ill) (often called
the Hockey-stick identity).

B -Gl () - (1)

(k4+1)+r—1

(k+1)-1 ), satisfying the inductive step.

Thus, the coefficient is (
]

Linear Equations with Unit Coefficients
We now apply this machinery to the counting of integer solutions.

Theorem 11.5. Solutions to x1 +--- +x, = 1.
The number of non-negative integer solutions to the linear indetermi-
nate equation

X{+x+ - -Fxp =71

is given by (""71).

Proof

Let a, be the number of solutions. Consider the product of n geo-
metric series:

P(x) = (ixk> =(1+x+22+..) . I+x+224+...).

A term x" in this expansion is formed by choosing x™ from the
first factor, x™ from the second, ..., and x™ from the n-th, such that

Y.m; = r. Thus, the coefficient of x" in P(x) is exactly the number
of solutions to m; + --- + m,; = rin non-negative integers. Since
P(x) = ﬁ, by theorem 11.4, the coefficient is (":1;1)

]

Corollary 11.1. The number of positive integer solutions to x1 4 - - -+
xy =ris (/7)) (provided r > n).

e
Proof
Let x; = y; + 1 where y; > 0. The equation becomes:

n+)+-+yutl)=r = n+-+y=r—n
By theorem 11.5, the number of non-negative solutions for y; is: °*° | ¢ | *°
(n +(r—mn)— 1> (1’ — 1) Stars and Partitions

-1 o -1
" " Figure 11.2: Combinatorial

representation of a solution to
x1 + x2 + x3 = 5. The arrange-
ment corresponds to (2,1,2).

The number of arrangements is
(51371
3-1 /¢
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This result can also be visualised combinatorially. To partition r iden-
tical items into n distinct bins, we arrange r items and n — 1 dividers
(partitions) in a line. The total number of positions is ¥ +n — 1, and
we choose 1 — 1 positions for the dividers.

Example 11.11. Constraints and Transformations. Find the number
of integer solutions to x + y + z = 24 subject to:

1. x,y,z> 1

2. x>1,y>2,2z>3.

1. Letx =X4+2,y=Y+2,z=Z72+2where X,Y,Z > 0. The equa-
tion becomes X +Y + Z = 24 — 6 = 18. The number of solutions
is (551 = (3) =190,

2. Letx=X+2,y=Y+3,z=7Z+4where X,Y,Z > 0. The equa-
tion becomes X + Y + Z = 24 — (2 + 3 +4) = 15. The number of
solutions is (3+125_1) = (127) = 136.

.49

General Linear Equations

Consider the equation with coefficients s; € Z*:
S1X1 +SpXp + -+ -+ Spxy =1

Following the logic of theorem 11.5, a term x° contributes to the sum
m; times, resulting in a term (x%)™i. The generating function for the
number of solutions b, is:

1
(T—xs1)(1—x%2)...(1—xn)’

B(x) =

This formulation allows us to solve problems with complex upper
bound constraints by manipulating polynomials.
Example 11.12. Solutions with Upper Bounds. Find the number of
positive integer solutions to x; 4+ x2 + x3 + x4 = 23 subject to the
constraints:

<9, x<8 x3<7 x<6.

Since we require positive integers (x; > 1), the generating function
for each variable x; with upper bound U; is the polynomial:

1— xUi

Pi(x) =x+x24-- x4 = —

The generating function for the system is the product JT¢_; P;(x):

s(1=2) (1 =) (1 - o) (1 - x%)

G(x)=x L

201
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We seek the coefficient of x3. Let f(x) = x*(1 —x%)(1 — x®)(1 —
)1 - ), (k§3)xk. Factoring out x*, we look for the coeffi-
cient of x!? in the expansion of

Hx)=1-2)1-x1-x)1 -2 (1—-x)"4
Expanding the numerator (keeping terms with degree < 19):
Num(x) =1— (x® + 7 + 28+ 2%) + (a8 + a1 4221 4 16 4 x17) —

The coefficient of x1 in H(x) is formed by pairing terms x/ from
the numerator with x1°~/ from the series (1 ~—  x)~% (which has
coefficient (197)79)).

v=(3)
G () () ()]
G+ 6)=20)6)+6)]

Calculation: 1540 — (560 + 455 + 364 + 286) + (84 + 56 +2(35) +20+
10) = 115. Thus, there are 115 such solutions.

Exia!

Approximation via Partial Fractions

For equations with unequal coefficients, exact formulas can be de-
rived using partial fraction decomposition over the complex roots of
unity.

Example 11.13. The Frobenius-Type Problem. Find the number of
non-negative integer solutions b, to x1 + 2xp + 3x3 = 1.

The generating function is G(x) = W We factor the

denominators using roots of unity. Let w = ¢?27/3,
(1-x%)=(1-x)(1—wx)(1-w).

(1—x%) = (1-x)(1+x).
The decomposition is:

1 1 17 1 1 1
G(x) =

6(1—x) T4 —22 721 —x) 81+ x) 191 —wx) 91— wx)’

The coefficient b, is the sum of the coefficients of each term:

Ll r+2\  1/r+1\ [ 17 (-1 & +@¥
b,6<2)+4<1>+72+ g T 9
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Using w" + w?" = 2cos(27r/3), and expanding the binomials:

32 7 -1y 2 2
(r+3) (=1) +fcosﬂ

=" "% 8 9 3

While this formula is exact, the oscillatory terms are small.

7

L2 2 1
2.1

7 (=" 2 2nr 1
R _|_ —
-72 8 9 72

_ﬁ"" 3 +§COS3

Therefore, b, is simply the nearest integer to the dominant

by — Vﬁz?))z %J _

quadratic term:

11.6 Exercises

1. Cubic Identity. Find all integer solutions to the equation x> + Factorise the expression x> + y° + 2% —
y3 +2% = 3xyz. 3xyz.

2. Factorials and Mersenne Numbers. Find all positive integer solu-
tions (n,m) to Y ;! k! =2" — 1.

3. Exponential Commutativity. Find all integer solutions to the
equation x¥ = y*.

4. Unique Positive Solutions.

(a) Prove that the equation 4x* — 3y?> = 1 has the unique positive
integer solution (x,y) = (1,1).

(b) Deduce that x> + 1 = 2y? has only the positive integer solu-
tions (1,1) and (23,78).

5. Quartic-Quadratic Non-Existence. Prove that x* — 3}/2 = 1has
only the integer solutions (x,y) = (£1,0).

6. Sum of Squares as a Square. Find all integer solutions to Y/ ; x? =

y2 for n > 2, satisfying the condition ged(x1,...,x,) = 1.

7. Exponential Inequality. Prove that (x +2)% = x* + 2 has no
positive integer solutions.

8. Sums of Fourth Powers. Prove that x* + y* = z* + w* possesses
infinitely many integer solutions.

+lyly

9. Reciprocal Sum with Product Term. Prove that % = ; -

1
xXyzw

has infinitely many positive integer solutions.

10. Cubic Sum equal to Cube. Construct a parametric family of posi-
tive integer solutions to x% + 13 + 2% = 3.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

Arbitrary Powers. Provide a method to find infinitely many posi-
tive integer solutions to x? + y* = z" for any n > 2.

Generalised Coprime Powers. Let [, m,n be positive integers with
ged(nl,m) = 1. Prove that x' + ™ = z" has infinitely many
positive integer solutions.

Catalan-type Equation. Find all positive integer solutions to 3* —
2y =1.

Self-Power Product. Find a family of positive integer solutions to
xYy* = z* with variables greater than 1.

Polynomial Product Constraints. Let p be an odd prime and
k > 1. Prove that the equation

y(y+1)(y+2)(y+3) = p™x(x + 1) (x +2)(x + 3)

has no positive integer solutions.

Quartic Difference with Prime. Let p be an odd prime such that
p = 3 (mod 8). Prove that x* — y* = pz? has no positive integer
solutions.

Sums of Four Cubes. Prove that x> + 33 + 2% + w® = n has integer
solutions for 7 in the forms 18k, 18k +1,...,18k £9.

Cubic Form Solvability. Let n = 2 [] p.’ with odd primes p; <

- < px. Prove that x> + y® 4 23 — 3xyz = n has non-negative
integer solutions if and only if p; # 3 or (p1 = 3 and r; > 2). Find
a solution for n = 123480.

Shifted Linear Solutions. Find the number of integer solutions to
x+y+z =1such that x,y,z > —5.

Combinatorial Equivalence. Prove that the number of non-
negative integer solutions to Y.7_, x; = 13 equals the number of

such solutions to Z}i LY = 6.

Lower Bounded Solutions. Determine the number of integer
solutions to )" ; x; = r subject to x; > a;.

Box Constraints. Find the number of integer solutions to x + y +
z=24subjectto]l <x <5,12<y <18 and -1 <z <12,
Weighted Linear Count. Find the number of non-negative integer

solutions to x + 2y =r.

System Count. Find the number of non-negative integer solutions
to 5x + 2y + z = 10n for a positive integer n.
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