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0
Foundations

In this chapter, we re-establish the algebraic and logical foundations
of counting, beginning with the language of sets and extending to the
structure of product spaces and power sets.

0.1 The Language of Sets

We begin by formalising the operations on sets and their algebraic
properties. We adopt an intuitive definition of a set as a collection of
distinct objects, denoted as elements. If x is an element of a set E, we
write x ∈ E. The set containing no elements is the empty set, denoted
by ∅. I hope you’ve read my set theory notes

as it gives a better introduction to the
foundations needed.

Let Ω denote a universal set. For subsets A, B ⊆ Ω, we define the
fundamental operations.

Definition 0.1. Set Operations.
Let A and B be sets.

(i) The union A ∪ B is the set of elements in A or B:

x ∈ A ∪ B ⇐⇒ (x ∈ A) ∨ (x ∈ B).

(ii) The intersection A ∩ B is the set of elements in both A and B:

x ∈ A ∩ B ⇐⇒ (x ∈ A) ∧ (x ∈ B).

(iii) The difference A \ B consists of elements in A but not in B:

x ∈ A \ B ⇐⇒ (x ∈ A) ∧ (x /∈ B).

(iv) The symmetric difference A∆B contains elements in exactly one
of the sets:

x ∈ A∆B ⇐⇒ (x ∈ A ∪ B) ∧ (x /∈ A ∩ B).

(v) The complement Ac (or Ā) is the set of elements in Ω not in A:

x ∈ Ac ⇐⇒ x ∈ Ω \ A.
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定義

To manipulate these structures algebraically, we introduce the charac-
teristic function (or indicator function).

Definition 0.2. Characteristic Function.
The characteristic function of a subset A ⊆ Ω is the function 1A :
Ω → {0, 1} defined by:

1A(x) =

1 if x ∈ A,

0 if x /∈ A.

定義

The correspondence between subsets and their characteristic func-
tions allows us to translate set-theoretic logical operations into arith-
metic operations.

Proposition 0.1. Calculus of Characteristic Functions.
Let A, B ⊆ Ω. For all x ∈ Ω:

(i) Intersection: 1A∩B(x) = 1A(x) · 1B(x).
(ii) Complement: 1Ac(x) = 1 − 1A(x).

(iii) Union: 1A∪B(x) = 1A(x) + 1B(x)− 1A(x)1B(x).
(iv) Difference: 1A\B(x) = 1A(x)(1 − 1B(x)).
(v) Symmetric Difference: 1A∆B(x) = 1A(x)+ 1B(x)− 2 · 1A(x)1B(x).

命題

Note

A∆B = (A ∪ B) \ (A ∩ B), and pointwise 1A∆B = |1A − 1B|.

Proof

These identities are verified pointwise. We demonstrate the union
and symmetric difference cases; the others follow similarly.
• For the union: If x /∈ A ∪ B, then 1A(x) = 0 and 1B(x) = 0, so the

RHS is 0. If x ∈ A \ B, RHS is 1 + 0 − 0 = 1. If x ∈ B \ A, RHS is
0+ 1− 0 = 1. If x ∈ A∩ B, RHS is 1+ 1− 1 = 1. Thus the identity
holds.

• For the symmetric difference: If x ∈ A∆B, then exactly one of
1A(x), 1B(x) equals 1, so the RHS is 1. If x ∈ A ∩ B or x /∈ A ∪ B,
then the RHS is 0. Thus the identity holds.

■

Example 0.1. Algebraic Proof of Set Identities. We use characteris-
tic functions to prove the identity (A \ B) \ C = A \ (B ∪ C).
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1(A\B)\C = 1A\B(1 − 1C)

= 1A(1 − 1B)(1 − 1C)

= 1A(1 − 1B − 1C + 1B1C)

= 1A[1 − (1B + 1C − 1B1C)]

= 1A(1 − 1B∪C)

= 1A\(B∪C).

Since the characteristic functions are identical, the sets are equal.

範例

Cartesian Products and Power Sets

We now define the construction of sets from components, essential
for defining counting spaces.

Definition 0.3. Cartesian Product.
The Cartesian product of two sets A and B, denoted A×B, is the set
of all ordered pairs (a, b) where a ∈ A and b ∈ B:

A × B = {(a, b) : a ∈ A, b ∈ B}.

More generally, for a sequence of sets A1, . . . , An, the product is the set
of n-tuples:

n

∏
i=1

Ai = A1 × · · · × An = {(a1, . . . , an) : ai ∈ Ai for all i}.

If Ai = A for all i, we denote the product as An.
定義

Unlike sets, where order and repetition are irrelevant ({a, b} =

{b, a}), in ordered pairs the order is strict: (a, b) = (b, a) if and only if
a = b.

A

B

1 2 3

1

2

A × B

Figure 1: Visualisation of the
product {1, 2, 3} × {1, 2}. The
set consists of 3 × 2 = 6 distinct
points.

Example 0.2. Combinatorial Configuration. Consider a simpli-
fied model of a "menu" where one chooses a main dish from
M = {m1, m2} and a side from S = {s1, s2, s3}. The set of all
possible meals is the Cartesian product M × S.

M × S = {(m1, s1), (m1, s2), (m1, s3), (m2, s1), (m2, s2), (m2, s3)}.

The size of the set is |M × S| = |M| · |S| = 2 · 3 = 6. This multiplica-
tive principle underlies much of combinatorics.

範例
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Definition 0.4. Power Set.
The power set of a set E, denoted P(E), is the set of all subsets of E:

P(E) = {A : A ⊆ E}.

定義

Example 0.3. Power Set of a Pair. Let E = {1, 2}. The subsets of E
are the empty set, the singleton sets, and E itself.

P(E) = {∅, {1}, {2}, {1, 2}}.

Observe that |P(E)| = 4.

範例

Proposition 0.2. Monotonicity of the Power Set.
Let A and B be sets. If A ⊆ B, then P(A) ⊆ P(B).

命題

Proof

Let X ∈ P(A). By definition, this means X is a subset of A (X ⊆ A).
Since subset inclusion is transitive, if X ⊆ A and A ⊆ B, then X ⊆
B. Thus, X is a subset of B, which implies X ∈ P(B).

■

Example 0.4. Intersection of Power Sets. Consider the relationship
between power sets and intersection. We claim that for any sets A
and B:

P(A) ∩P(B) = P(A ∩ B).

範例

Proof

Let X ∈ P(A) ∩ P(B). Then X ∈ P(A) and X ∈ P(B), meaning
X ⊆ A and X ⊆ B. By definition of intersection, X ⊆ A ∩ B, so
X ∈ P(A ∩ B). Conversely, if X ∈ P(A ∩ B), then X ⊆ A ∩ B. This
implies X ⊆ A and X ⊆ B, so X ∈ P(A) ∩P(B).

■

0.2 Mappings and Functions

We move from static sets to dynamic relationships between them. A
mapping assigns elements of one set to another in a deterministic
fashion.

Definition 0.5. Mapping.
Let E and F be sets. A mapping (or function) f : E → F is a subset
f ⊆ E × F such that for every x ∈ E, there exists a unique y ∈ F
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with (x, y) ∈ f . We write y = f (x) or x 7→ y.
· E is the source (or domain).
· F is the target (or codomain).
· y is the image of x.
· x is an antecedent (or pre-image) of y.

定義

The behaviour of a function regarding the uniqueness and existence
of antecedents classifies it into three fundamental types.

Definition 0.6. Injectivity, Surjectivity, Bijectivity.
Let f : E → F be a mapping.
1. Injective (One-to-one): Distinct elements map to distinct images.

∀x, y ∈ E, f (x) = f (y) =⇒ x = y.

2. Surjective (Onto): Every element in the target has at least one an-
tecedent.

∀y ∈ F, ∃x ∈ E such that y = f (x).

Equivalently, the image set f (E) = { f (x) : x ∈ E} equals F.
3. Bijective: The mapping is both injective and surjective.

∀y ∈ F, ∃!x ∈ E such that y = f (x).

定義

E F

x1

x2

x3

y1

y2

y3

Bijection

Figure 2: A bijective map re-
quires |E| = |F|. Every y has
exactly one incoming arrow.

Example 0.5. Cardinality via Mappings. Let E = P({1, 2}) be the
power set of {1, 2}, and let F = {0, 1, 2}. Define f : E → F by
f (A) = |A| (the cardinality of the subset).
· The elements of E are ∅, {1}, {2}, {1, 2}.
· The mappings are: f (∅) = 0, f ({1}) = 1, f ({2}) = 1, f ({1, 2}) =

2.
This function is surjective because 0, 1, and 2 all appear as images.
It is not injective because f ({1}) = f ({2}) but {1} ̸= {2}.

範例

When mappings are composable, properties of the individual func-
tions transfer to the composite.

Lemma 0.1. Composition Properties.
Let f : E → F and g : F → G be mappings. Let g ◦ f : E → G be the
composite defined by (g ◦ f )(x) = g( f (x)).
1. If f and g are injective, g ◦ f is injective.
2. If f and g are surjective, g ◦ f is surjective.
3. If f and g are bijective, g ◦ f is bijective.

引理
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Proof

We verify the first statement. Suppose (g ◦ f )(x) = (g ◦ f )(y). Then
g( f (x)) = g( f (y)). Since g is injective, f (x) = f (y). Since f is injec-
tive, x = y. The other proofs are analogous.

■

Note

If f is bijective, there exists a unique inverse mapping f−1 : F → E
such that f−1 ◦ f = idE and f ◦ f−1 = idF.

Binary Relations

A binary relation R on a set E is a subset of E × E. If (x, y) ∈ R, we
write xRy. The structure of E is often understood by the properties
of relations defined upon it.

Definition 0.7. Properties of Relations.
A relation R on E is:
· Reflexive: ∀x ∈ E, xRx.
· Symmetric: ∀x, y ∈ E, xRy =⇒ yRx.
· Antisymmetric: ∀x, y ∈ E, (xRy ∧ yRx) =⇒ x = y.
· Transitive: ∀x, y, z ∈ E, (xRy ∧ yRz) =⇒ xRz.

定義

These properties combine to form two crucial structures: equiva-
lences and orders.

Equivalence Relations and Partitions

An equivalence relation is a relation that is reflexive, symmetric, and
transitive. It generalises the notion of equality by treating different
objects as "the same" under a specific criterion.

Definition 0.8. Equivalence Class.
Let R be an equivalence relation on E. The equivalence class of x, de-
noted R[x] (or [x]), is the set of all elements related to x:

R[x] = {y ∈ E : xRy}.

The quotient set E/R is the set of all equivalence classes.
定義

Example 0.6. Rational Number Construction. Consider the set E =

Z × (Z \ {0}). We define a relation ∼ by:

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

This is an equivalence relation. The class of (1, 2) is the set
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{(1, 2), (2, 4), (3, 6), . . . }, which represents the rational number
1/2. The set of rationals Q is formally the quotient set E/ ∼.

範例

There is a bijection between equivalence relations and partitions.
Recall that a partition is a collection of disjoint non-empty subsets
covering E.

Proposition 0.3. The Fundamental Theorem of Equivalence Relations.

Let R be an equivalence relation on E. Then the quotient set E/R forms
a partition of E. Conversely, any partition of E induces a unique equiv-
alence relation.

命題

Proof

Since R is reflexive, x ∈ R[x], so the union of classes covers E, and
no class is empty. We must show the classes are pairwise disjoint.
Suppose R[x] ∩ R[y] ̸= ∅. Let z be an element in the intersection.
Then xRz and yRz. By symmetry zRy, and by transitivity xRy.
If w ∈ R[y], then yRw, so xRw (transitivity via xRy), implying
w ∈ R[x]. Thus R[y] ⊆ R[x]. By symmetry, R[x] = R[y]. Thus, two
classes are either disjoint or identical.
Conversely, let {Ei}i∈I be a partition of E and define xRy if x and
y lie in the same block Ei. Each x lies in some Ei, so xRx. If xRy,
then yRx. If xRy and yRz, then x, y, z lie in the same block, so xRz.
Hence R is an equivalence relation and its classes are exactly the
blocks. Uniqueness follows because any relation with the same
partition relates precisely the pairs lying in the same block.

■

Order Relations

An order relation (or partial order), denoted ≤, is a relation that is
reflexive, antisymmetric, and transitive. The pair (E,≤) is called a
partially ordered set (or poset).

· If for all x, y ∈ E, either x ≤ y or y ≤ x, the order is total.

· We define x < y if x ≤ y and x ̸= y.

Example 0.7. Divisibility Lattice. Let E = {1, 2, 3, 4, 6, 12}. Define
a ≤ b if a divides b (written a | b). Reflexivity (a | a), antisymmetry
(a | b and b | a =⇒ a = b for positive integers), and transitivity
hold. This is not a total order: 2 ∤ 3 and 3 ∤ 2, so 2 and 3 are incom-
parable.
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範例
12

4 6

2 3

1

Figure 3: Hasse diagram of
the divisors of 12 ordered by
divisibility. Lines indicate the
covering relation.

In a poset, we distinguish between "greatest" and "maximal".
· An element M ∈ E is the greatest element if x ≤ M for all x ∈ E.

· An element m ∈ E is maximal if there is no y ∈ E such that m < y.
In the example above, 12 is the greatest element. Consider E \ {12} =

{1, 2, 3, 4, 6}. Here, 4 and 6 are both maximal, but neither is the great-
est.

The Natural Numbers

We denote the set of natural numbers by N = {0, 1, 2, . . . } and
N∗ = N \ {0} = {1, 2, 3, . . . }. For a, b ∈ N, the discrete interval is
defined as:

[a, b] = {n ∈ N : a ≤ n and n ≤ b}.

If a > b, [a, b] = ∅.
We accept the following axiom as the foundation of arithmetic proofs.

Axiom 1. Well-Ordering Principle Every non-empty subset of N pos-
sesses a smallest element.

公理

This principle underpins the method of mathematical induction.

Theorem 0.1. Principle of Mathematical Induction.
Let P(n) be a proposition depending on n ∈ N. If:
1. P(0) is true (Base Case), and
2. ∀n ∈ N,P(n) =⇒ P(n + 1) (Inductive Step),
then P(n) is true for all n ∈ N.

定理

Proof

Let F = {n ∈ N : P(n) is false}. We wish to show F = ∅.
Suppose for contradiction that F ̸= ∅. By the Well-Ordering Princi-
ple, F has a smallest element n0. Since P(0) is true, n0 ̸= 0, so n0 −
1 ∈ N. Since n0 is the smallest counterexample, P(n0 − 1) must be
true. By the inductive step, P(n0 − 1) =⇒ P(n0). Thus P(n0) is
true, contradicting n0 ∈ F. Therefore, F = ∅.

■

0.3 Permutations and Cardinality of Finite Sets

A permutation is, fundamentally, a rearrangement of a set’s elements.

Definition 0.9. Permutation.
Let S be a finite set. A permutation of S is a bijection σ : S → S. When
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S = {1, 2, . . . , n}, the set of all permutations of S is denoted by Sn, the
symmetric group of degree n.

定義

Geometrically, one may visualise a permutation σ ∈ Sn as placing
n distinct items into n fixed positions. If σ(j) denotes the item at
position j, the permutation is uniquely identified by the sequence of
values σ(1), σ(2), . . . , σ(n). This is the one-line notation:

σ = [σ(1), σ(2), . . . , σ(n)].

For instance, if n = 3 and σ maps 1 7→ 3, 2 7→ 2, and 3 7→ 1, we write
σ = [3, 2, 1].
The composition of two permutations σ, ρ ∈ Sn is the function com-
position σ ◦ ρ, defined by (σ ◦ ρ)(j) = σ(ρ(j)). This corresponds to
successively applying two rearrangements.

Cycle Decomposition

While one-line notation captures the static arrangement, cycle no-
tation reveals the dynamical structure of the permutation under
iteration.

Definition 0.10. Cycle Decomposition.
A cycle of length k is a list of distinct elements (x1, . . . , xk) such that
σ(xi) = xi+1 for 1 ≤ i < k and σ(xk) = x1. This cycle denotes the
permutation that cyclically permutes these xi and fixes all other ele-
ments. Every permutation can be decomposed uniquely into disjoint
cycles, up to reordering the cycles and cyclic rotation within each cy-
cle.

定義

2

3 5

1

7

4

6

Figure 4: Cycle decomposition
for σ = (2, 3, 5)(1, 7)(4, 6) ∈ S7.
The element 4 maps to 6, which
maps back to 4.

Example 0.8. Decomposition Example. Consider σ ∈ S7 given in
one-line notation by [7, 3, 5, 6, 2, 4, 1].
We compute the images: σ(1) = 7, σ(2) = 3, σ(3) = 5, σ(4) = 6,
σ(5) = 2, σ(6) = 4, σ(7) = 1. Tracing the orbits:
· 1 7→ 7 7→ 1: This forms the cycle (1, 7).

· 2 7→ 3 7→ 5 7→ 2: This forms the cycle (2, 3, 5).

· 4 7→ 6 7→ 4: This forms the cycle (4, 6).
Thus, the cycle decomposition is σ = (2, 3, 5)(1, 7)(4, 6). (See fig-
ure 4).

範例

This decomposition allows us to classify permutations by their struc-
ture:
· An involution is a permutation σ such that σ2 = id. In cycle

notation, this means every cycle has length 1 or 2.
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· A permutation is fixed point free (or a derangement) if σ(x) ̸= x
for all x. In cycle notation, no cycles of length 1 appear.

0.4 Cardinality of Finite Sets

A set E is finite if it is empty or if there exists a bijection between E
and a discrete interval [1, n] = {1, 2, . . . , n} for some n ∈ N∗. To use n
as a measure of size, we must ensure it is unique.

Remark.

Here [1, n] is the discrete interval in N from The Natural Numbers, a
finite set of consecutive integers. Thus [1, n] = {1, 2, . . . , n}, not the
real interval [1, n] ⊂ R.

Theorem 0.2. Uniqueness of Cardinality.
Let n, m ∈ N∗. There exists an injection from [1, n] into [1, m] if and
only if n ≤ m. Consequently, if there is a bijection between [1, n] and
[1, m], then n = m.

定理

The direct implication is trivial: if n ≤ m, the inclusion map i 7→ i is
injective. For the converse, we proceed by induction on n.

Base Case (n = 1).

Since m ≥ 1, the inequality 1 ≤ m holds immediately.
証明終

Inductive Step.

Assume the statement holds for some n ≥ 1. Let f : [1, n +

1] → [1, m] be an injection. Since the domain has at least two ele-
ments, m ≥ 2, so m − 1 ∈ N∗. We construct an injection g : [1, n] →
[1, m − 1].

• If f (n + 1) = m, let g be the restriction f |[1,n]. Its image lies in
[1, m] \ {m} = [1, m − 1].

• If f (n + 1) = k ̸= m, define the transposition τ = (k, m) ∈ Sm

which swaps k and m. Then (τ ◦ f )(n + 1) = m. The function g =

(τ ◦ f )|[1,n] maps [1, n] injectively into [1, m − 1].

By the inductive hypothesis, n ≤ m − 1, which implies n + 1 ≤ m.
For the second part, if a bijection exists, we have injections in both
directions. Thus n ≤ m and m ≤ n, implying n = m.

証明終

Definition 0.11. Cardinality.
If E is a finite set in bijection with [1, n], we define the cardinality of
E as |E| = n. If E = ∅, we set |E| = 0.
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定義

The uniqueness theorem leads to a powerful combinatorial tool: to
count a set, we need only match it perfectly with a set we already
know how to count.

Proposition 0.4. Bijection Principle.
If two finite sets E and F are in bijection, then |E| = |F|.

命題

Proof

Let f : E → F be a bijection. Let n = |F|, so there exists a bijec-
tion g : F → [1, n]. The composite g ◦ f : E → [1, n] is a bijection
(lemma 0.1). By definition, |E| = n = |F|.

■

Bijective proof are among the most satisfying in combinatorics, but in
many cases are hard to come by, and subtle when they are found.

The Pigeonhole Principle

The contrapositive of the injection theorem yields the famous Pigeon-
hole Principle.

Corollary 0.1. Pigeonhole Principle. Let E and F be finite sets.
1. An injection E → F exists if and only if |E| ≤ |F|.

2. If |E| > |F|, then for any map f : E → F, there exists some y ∈ F
such that | f−1({y})| ≥ 2.

推論

Proof

Let n = |E| and m = |F|. If an injection f : E → F exists, then the
composite with the bijections to intervals gives an injection [1, n] →
[1, m], which implies n ≤ m. If n > m, no injection exists. Thus, any
function must map two distinct inputs to the same output.

■

This principle provides non-constructive existence proofs for ele-
ments with specific properties.

Example 0.9. Coprime Pairs. Let A ⊆ [1, 2n] be a subset of size n +

1. We claim A contains two integers that are relatively prime.

範例

Proof

Partition the set [1, 2n] into n "pigeonholes" defined by pairs of con-
secutive integers: Hi = {2i − 1, 2i} for i = 1, . . . , n. Since |A| = n + 1
and there are only n such sets, by corollary 0.1, one set Hk must con-
tain two elements from A. The only way to contain two elements
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from Hk is to contain both 2k − 1 and 2k. Consecutive integers are
always coprime (gcd(x, x + 1) = 1). Thus, the pair exists.

■

Example 0.10. Divisibility in Subsets. Let A ⊆ [1, 2n] with |A| =

n + 1. We show that A contains distinct integers a, b such that a | b.

範例

Proof

Every positive integer x can be uniquely written as x = 2k · m,
where m is the "odd part" of x. For elements in [1, 2n], the odd part
m must be in the set of odd numbers {1, 3, 5, . . . , 2n − 1}. There are
exactly n such odd numbers. Define the pigeonholes as these n odd
values. Since we select n + 1 numbers, two distinct integers x, y ∈ A
must share the same odd part m. Let x = 2um and y = 2vm. If
u < v, then x | y. If v < u, then y | x.

■

Example 0.11. The Friends Problem. In any gathering of n ≥ 2
people, there are at least two people who have the same number of
friends present at the gathering (assuming friendship is symmetric).
Let P = {p1, . . . , pn} be the set of people. Let f (pi) be the number
of friends of person pi. The possible values for f (pi) are integers in
the set {0, 1, . . . , n − 1}. However, it is impossible for one person to
have n − 1 friends (everyone else) and another to have 0 friends (no
one).
· If someone has n − 1 friends, no one can have 0 friends. The pos-

sible values are {1, . . . , n − 1}.

· If someone has 0 friends, no one can have n − 1 friends. The pos-
sible values are {0, . . . , n − 2}.

In either case, the values of f range over a set of size n − 1. Since
there are n people, by corollary 0.1, at least two people map to the
same value.

範例

Example 0.12. Periodicity of Permutations. We can use the Pi-
geonhole Principle to prove a structural property of the symmetric
group.
Let σ ∈ Sn. Consider the sequence of powers: σ1, σ2, σ3, . . . . Since
Sn is finite, this infinite sequence must contain repetitions. We will
later see that |Sn| = n!. Thus, there exist integers j > i ≥ 1 such that
σi = σj. Multiplying by the inverse permutation (σ−1)i, we obtain:

id = σj−i.

Let k = j − i. Then σk = id. This integer k is called a period of σ.
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The smallest such positive k is the order of the permutation.

範例

Corollary 0.2. Inclusion Principle. Let F ⊆ E be finite sets. Then |F| ≤
|E|, with equality holding if and only if F = E.

推論

Proof

The inclusion map i : F → E defined by i(x) = x is an injection. By
corollary 0.1, |F| ≤ |E|. If |F| = |E| but F ̸= E, there exists e ∈ E \ F.
Then F ⊆ E \ {e}, so |F| ≤ |E| − 1, a contradiction.

■

0.5 Infinite Sets and Cardinalities

We now extend our scope to sets that cannot be enumerated by any
finite interval [1, n].

Definition 0.12. Infinite Sets.
A set E is infinite if it is not finite. That is, for every n ∈ N∗, there
is no bijection between E and [1, n].

定義

To compare the sizes of infinite sets, we cannot rely on counting.
Instead, we appeal to the Bijection Principle (proposition 0.4) as the
definition of size itself.

Definition 0.13. Equipotence.
Two sets E and F are equipotent (denoted E ∼ F) if there exists a bi-
jection f : E → F.

定義

It is often easier to construct injections in both directions than a sin-
gle bijection. The following fundamental result assures us that these
conditions are equivalent.

Theorem 0.3. Cantor-Bernstein Theorem.
Let E and F be sets. If there exist injections f : E → F and g : F →
E, then E and F are equipotent.

定理

Note

The proof of this theorem requires a careful iterative construction of
fixed points and is beyond the scope of this chapter, but the result
is a standard tool in set theory.
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Countable Sets

The smallest order of infinity is that of the natural numbers.

Definition 0.14. Countability.
A set E is countably infinite if it is equipotent to N. A set is countable
if it is either finite or countably infinite.

定義

Intuitively, a set is countably infinite if its elements can be arranged
in a sequence x0, x1, x2, . . . indexed by N.

Proposition 0.5. Basic Countable Sets.
The following sets are countably infinite:
1. The positive integers N∗.

2. The even natural numbers 2N = {0, 2, 4, . . . }.

3. The integers Z.
命題

Proof

We exhibit explicit bijections for each case.

1. The map f : N → N∗ defined by x 7→ x + 1 is a bijection (its in-
verse is y 7→ y − 1).

2. The map f : N → 2N defined by x 7→ 2x is a bijection.

3. We can enumerate Z by alternating between non-negative and
negative integers: 0,−1, 1,−2, 2, . . . . Formally, define g : Z → N

by:

g(x) =

2x if x ≥ 0,

−2x − 1 if x < 0.

If x ≥ 0, g(x) maps to the even numbers {0, 2, 4, . . . }. If x < 0,
let x = −k where k ≥ 1; then g(x) = 2k − 1, mapping to the odd
numbers {1, 3, 5, . . . }. Since even and odd numbers partition N,
g is a bijection.

■

Perhaps surprisingly, increasing the dimension of the set does not
increase its cardinality.

Proposition 0.6. Countability of the Plane.
The Cartesian product N × N is countably infinite.

命題

Proof

We require a bijection N × N → N (or to a set known to be count-
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able, like N∗). Consider the function h : N × N → N∗ defined by:

h(x, y) = 2x(2y + 1).

By the Fundamental Theorem of Arithmetic, every positive integer
n can be uniquely written as a power of 2 multiplied by an odd
number.

• Injectivity: If h(x, y) = h(a, b), then 2x(2y + 1) = 2a(2b + 1).
Equating the powers of 2 gives x = a, and equating the odd parts
gives 2y + 1 = 2b + 1 =⇒ y = b.

• Surjectivity: For any n ∈ N∗, factor out 2s until the remainder is
odd to find the unique pre-image (x, y).

Since N × N ∼ N∗ and N∗ ∼ N, the product is countably infinite.
■ x

y

(0,0) (1,0) (2,0)

(0,1)

1 2

3

4

5

6

Figure 5: The lattice N × N.
The function h(x, y) =

2x(2y + 1) enumerates these
points by mapping them to
unique integers 1, 2, 3, . . . .

This result implies that taking subsets does not "break" countability.

Proposition 0.7. Subsets of Countable Sets.
Every subset E ⊆ N is either finite or countably infinite.

命題

Proof

Suppose E ⊆ N is not finite. We rely on the Well-Ordering Prin-
ciple (every non-empty subset of N has a least element) to recur-
sively construct a bijection f : N → E. Define f (0) = min E. Define
f (1) = min(E \ { f (0)}). Recursively, for n ≥ 1:

f (n) = min (E \ { f (0), f (1), . . . , f (n − 1)}) .

This mapping is well-defined because E is infinite, so the set
E \ { f (0), . . . , f (n − 1)} is never empty.

• Injectivity: By construction, f is strictly increasing. If n < m,
f (m) is selected from a set excluding f (n), so f (n) < f (m).

• Surjectivity: Suppose y ∈ E is not in the image of f . Let S =

{k ∈ E : k ≤ y}. Since E ⊆ N, S is finite. However, the se-
quence f (0) < f (1) < . . . must eventually exceed y, which im-
plies y would have been selected as a minimum at some step k <

|S|. This is a contradiction.

■

Corollary 0.3. Rational Numbers. The set of rational numbers Q is count-
ably infinite.

推論
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Proof

The inclusion map n 7→ n is an injection N → Q, so Q is at least
infinite. Conversely, we define an injection Q → Z × N∗. Any
rational r can be uniquely written as an irreducible fraction p/q
with q > 0. Map r 7→ (p, q). We already established bijections
Z ∼ N and N × N ∼ N. Composing these maps gives an in-
jection Q → N. By proposition 0.7, the image is countable, so Q is
countable.

■

Uncountable Sets

Not all infinite sets are created equal. Georg Cantor proved that the
"infinity" of the real numbers is strictly larger than that of the natural
numbers. The core of this discovery is the analysis of power sets.

Theorem 0.4. Cantor’s Theorem.
For any set E, the sets E and P(E) are not equipotent. In particular, there
is no surjection from E to P(E).

定理

Proof

Suppose for contradiction that there exists a surjection f : E →
P(E). Consider the "diagonal" set A defined by elements that are
not members of their own image:

A = {x ∈ E : x /∈ f (x)}.

Since A ⊆ E, we have A ∈ P(E). Because f is surjective, there must
exist some a ∈ E such that f (a) = A. We ask: does a belong to A?

a ∈ A ⇐⇒ a /∈ f (a) ⇐⇒ a /∈ A.

This is a contradiction. Thus, no such surjection exists.
■

Since P(N) is not countable, there exist infinities beyond the count-
able. This hierarchy continues indefinitely: |N| < |P(N)| <

|P(P(N))| . . . .
Example 0.13. Binary Sequences. Let Σ∞ be the set of all infinite
binary sequences (an)n∈N where an ∈ {0, 1}. This set is in bijection
with P(N) via the characteristic function map: a subset S ⊆ N

corresponds to the sequence where an = 1 if n ∈ S and 0 otherwise.
Consequently, the set of infinite binary sequences is uncountable.

範例
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0.6 Exercises

1. The Algebra of Sets. Let A, B, C be subsets of a universal set Ω.
(a) Using the properties of the characteristic function 1X , prove

that the symmetric difference is associative (A∆B)∆C =

A∆(B∆C).
(b) Prove that the intersection distributes over the symmetric

difference: A ∩ (B∆C) = (A ∩ B)∆(A ∩ C).
(c) Conclude that (P(Ω), ∆,∩) forms a commutative ring with

identity. What is the additive identity and the multiplicative
identity of this ring?

2. Images and Pre-images. Let f : E → F be a mapping, and let
A, B ⊆ E.
(a) Prove that f (A ∪ B) = f (A) ∪ f (B).
(b) Prove that f (A ∩ B) ⊆ f (A) ∩ f (B), also construct a counter-

example to show that equality does not hold in general for
part (b).

(c) Prove that f (A ∩ B) = f (A) ∩ f (B) for all subsets A, B if and
only if f is injective.

3. Canonical Decomposition of a Map. Let f : E → F be an arbitrary
mapping. We define a relation ∼ f on E by x ∼ f y ⇐⇒ f (x) =

f (y).
(a) Verify that ∼ f is an equivalence relation on E.
(b) Let E/ ∼ f be the quotient set and π : E → E/ ∼ f be the

canonical projection x 7→ [x]. Construct a bijective map
f̄ : E/∼ f→ Im( f ) such that f = ι ◦ f̄ ◦π, where ι : Im( f ) ↪→ F
is the inclusion map.

(c) Application. If E is finite, use this decomposition to prove
that |Im( f )| = |E|/k if and only if every fiber f−1({y}) has
the same size k.

4. Conjugation and Cycle Structure. Let σ, τ ∈ Sn be permutations.
(a) Prove that if σ has the cycle decomposition (c1, c2, . . . , ck),

then the conjugate permutation τ ◦ σ ◦ τ−1 has the cycle
decomposition (τ(c1), τ(c2), . . . , τ(ck)).

(b) Use this to show that two permutations are conjugate (i.e.,
ρ = τστ−1 for some τ) if and only if they have the same
number of cycles of each length.

(c) Find a τ ∈ S4 such that τ ◦ (1, 2)(3, 4) ◦ τ−1 = (1, 3)(2, 4).
5. The Subset Sum Problem. Let S be a subset of [1, 14] with |S| = 6.

(a) Show that the number of distinct non-empty subsets of S is
63.

(b) Calculate the maximum possible sum of elements of a subset
of S.

(c) Use the Pigeonhole Principle to prove that there exist two dis-
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tinct disjoint subsets A, B ⊆ S such that the sum of elements
in A equals the sum of elements in B.

(d) Generalise this result: finding a condition on n and k such
that any subset of size k from [1, n] contains two disjoint
subsets with equal sums.

6. Derangements and Inclusion-Exclusion. Recall that for sets A, B,
the characteristic function satisfies 1A∪B = 1 − (1 − 1A)(1 − 1B).
(a) Generalise this identity to a finite collection of sets A1, . . . , An ⊆

Ω. Show that the size of their union is given by:∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣ = ∑
∅ ̸=I⊆[1,n]

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

(b) Let Sn be the symmetric group. For each k ∈ [1, n], let Fk =

{σ ∈ Sn | σ(k) = k} be the set of permutations fixing k.
Calculate the cardinality of the intersection of any m such
sets.

(c) A permutation is a derangement if it has no fixed points.
Let Dn denote the number of derangements in Sn. Use the
Inclusion-Exclusion Principle to prove:

Dn = n!
n

∑
k=0

(−1)k

k!
.

7. Algebraic and Transcendental Numbers. A real number α is
called algebraic if it is a root of a non-zero polynomial P(x) =

anxn + · · · + a0 with integer coefficients (ai ∈ Z). The height of
such a polynomial is defined as h(P) = n + ∑n

i=0 |ai|.
(a) Prove that for any integer H ≥ 1, the set of polynomials

P ∈ Z[x] satisfying h(P) ≤ H is finite.
(b) Using the fact that a countable union of finite sets is count-

able, prove that the set Z[x] of all polynomials with integer
coefficients is countably infinite.

(c) Since a polynomial of degree n has at most n real roots, prove
that the set of all algebraic numbers A is countable.

(d) A real number is transcendental if it is not algebraic. Assum-
ing the result that R is uncountable, prove that the set of
transcendental numbers is uncountable.

(e) Reflection. Reconcile the following: "Most" numbers are
transcendental (in the sense of cardinality), yet it is generally
much harder to prove a specific number is transcendental
than to prove it is algebraic.



1
Principles of Counting

The objective of enumerative combinatorics is to determine the car-
dinality of specific sets, often described by parameters. Rather than
listing elements exhaustively, we seek to express these cardinalities as
functions of those parameters. In this chapter, we formalise the alge-
braic principles that allow us to reduce complex counting problems
to elementary set operations.

1.1 The Addition Principle

We begin with the most intuitive property of counting: if two sets
have no elements in common, the count of their union is the sum of
their individual counts.

Proposition 1.1. Addition Principle.
Let E and F be disjoint finite sets (i.e., E ∩ F = ∅). Then:

|E ∪ F| = |E|+ |F|.

命題

Proof

If either set is empty, the conclusion follows from the definition of
cardinality. Otherwise, let |E| = n and |F| = m. By definition, there
exist bijections f : E → [1, n] and g : F → [1, m]. We construct a
function h : E ∪ F → [1, n + m] defined by:

h(x) =

 f (x) if x ∈ E,

g(x) + n if x ∈ F.

Since the image of E under h is [1, n] and the image of F is
{n + 1, . . . , n + m}, the ranges are disjoint and cover [1, n + m].
Since f and g are bijections, h is a bijection. Thus, |E ∪ F| = n + m.

■

This inductive pattern yields the following corollary. We provide a prove in the later chap-
ters.
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Corollary 1.1. Generalised Addition Principle. Let E1, . . . , En be pairwise
disjoint finite sets. Then: ∣∣∣∣∣ n⋃

i=1

Ei

∣∣∣∣∣ = n

∑
i=1

|Ei|.

推論

When sets are not disjoint, simply adding their cardinalities over-
counts the elements in their intersection. To correct this, we subtract
the intersection.

Corollary 1.2. Inclusion-Exclusion Principle (Two Sets). Let E and F be
finite sets. Then:

|E ∪ F| = |E|+ |F| − |E ∩ F|.

推論

Proof

Let G = E ∩ F. We may decompose the sets into disjoint compo-
nents:

E = (E \ G) ⊔ G and F = (F \ G) ⊔ G,

where ⊔ denotes a disjoint union. Similarly, the union decomposes
as:

E ∪ F = (E \ G) ⊔ (F \ G) ⊔ G.

Applying proposition 1.1 to these disjoint unions:

|E| = |E \ G|+ |G| =⇒ |E \ G| = |E| − |G|.

|F| = |F \ G|+ |G| =⇒ |F \ G| = |F| − |G|.

|E ∪ F| = |E \ G|+ |F \ G|+ |G|.

Substituting the expressions for the differences:

|E ∪ F| = (|E| − |G|) + (|F| − |G|) + |G| = |E|+ |F| − |G|.

Since G = E ∩ F, the result follows.
■

E FG

Figure 1.1: Decomposition of
E ∪ F into three disjoint sets:
E \ G, F \ G, and the intersec-
tion G = E ∩ F.

The decomposition underlies the next example.
Example 1.1. Lattice Points in Overlapping Rectangles. Consider
two discrete rectangular regions in N2:

A = [1, 3]× [1, 2] and B = [2, 4]× [2, 3].

We wish to calculate |A ∪ B|.
First, we determine the size of each set using the definition of the
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Cartesian product:
· |A| = |[1, 3]| · |[1, 2]| = 3 · 2 = 6.

· |B| = |[2, 4]| · |[2, 3]| = 3 · 2 = 6.
Next, we identify the intersection A ∩ B. A point (x, y) is in the
intersection if x ∈ [1, 3] ∩ [2, 4] and y ∈ [1, 2] ∩ [2, 3].

[1, 3] ∩ [2, 4] = {2, 3}, [1, 2] ∩ [2, 3] = {2}.

Thus, A ∩ B = {2, 3} × {2}, and |A ∩ B| = 2 · 1 = 2. By corollary 1.2:

|A ∪ B| = 6 + 6 − 2 = 10.

範例

The Shepherd’s Principle

We formalise a technique often summarised as "to count the sheep,
count the legs and divide by four". This principle relates the cardinal-
ity of a domain to the cardinality of a codomain via the structure of
the mapping between them.

Proposition 1.2. Sum of Fibres.
Let E and F be finite sets and let f : E → F be a mapping. Then:

|E| = ∑
y∈F

| f−1(y)|.

命題

Proof

The set E is partitioned by the fibres of f . Specifically,

E =
⋃

y∈F
f−1(y).

If y ̸= z, then f−1(y) ∩ f−1(z) = ∅, as no element can map to both
y and z. By the Generalised Addition Principle, the cardinality of E is
the sum of the cardinalities of these disjoint fibres.

■

This immediately provides a bound for surjective mappings.

Corollary 1.3. Surjection Bound. If f : E → F is a surjective map be-
tween finite sets, then |F| ≤ |E|.

推論

Proof

Since f is surjective, every fibre is non-empty, so | f−1(y)| ≥ 1 for all
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y ∈ F. Using proposition 1.2:

|E| = ∑
y∈F

| f−1(y)| ≥ ∑
y∈F

1 = |F|.

■

The most powerful application arises when the map is regular, i.e.,
every fibre has the same size.

Corollary 1.4. Shepherd’s Principle. Let f : E → F be a map between
finite sets. If there exists a constant p ∈ N∗ such that | f−1(y)| = p
for all y ∈ F, then:

|E| = p · |F|.

推論

Proof

Applying proposition 1.2:

|E| = ∑
y∈F

p = p · ∑
y∈F

1 = p · |F|.

■

E

F

p = 3

Figure 1.2: Visualisation of
the Shepherd’s Principle with
p = 3. Each element in F "pulls
back" to exactly 3 elements in E.

Example 1.2. Counting via Projections. Let S be the set of ordered
pairs (i, j) ∈ [1, 4]× [1, 4] such that i < j. We wish to find |S|.
Consider the mapping f : S → [1, 3] defined by f (i, j) = i. The im-
age is indeed [1, 3] because if i = 4, no j ∈ [1, 4] satisfies 4 < j. Let
us examine the fibres:
· For y = 1: f−1(1) = {(1, 2), (1, 3), (1, 4)}, so | f−1(1)| = 3.

· For y = 2: f−1(2) = {(2, 3), (2, 4)}, so | f−1(2)| = 2.

· For y = 3: f−1(3) = {(3, 4)}, so | f−1(3)| = 1.
Here the fibres are not of uniform size, so we apply proposition 1.2:

|S| = 3 + 2 + 1 = 6.

範例

The Multiplication Principle

The Shepherd’s Principle allows us to derive the cardinality of Carte-
sian products.

Proposition 1.3. Multiplication Principle.
Let E and F be finite sets. Then:

|E × F| = |E| · |F|.

命題
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Proof

Consider the projection mapping π : E × F → F defined by
π(x, y) = y. For any fixed y ∈ F, the fibre is:

π−1(y) = {(x, y) : x ∈ E}.

The map x 7→ (x, y) is a bijection from E to π−1(y). Thus,
|π−1(y)| = |E| for every y ∈ F. By the Shepherd’s Principle with
p = |E|:

|E × F| = |E| · |F|.

■

By induction, this extends to finite sequences of sets.

Corollary 1.5. Generalised Multiplication. Let E1, . . . , En be finite sets.
Then:

|E1 × E2 × · · · × En| =
n

∏
i=1

|Ei|.

推論

Proof

We proceed by induction on n. The base case n = 1 is trivial. As-
sume the result holds for n − 1. Let A = E1 × · · · × En−1. Then E1 ×
· · · × En is naturally identified with A × En. By proposition 1.3:

|A × En| = |A| · |En|.

By the inductive hypothesis, |A| = |E1| . . . |En−1|, completing the
proof.

■

This leads to the counting of strings or tuples of fixed length.

Corollary 1.6. Cardinality of Powers. If E is a finite set, then

|En| = |E|n.

推論

Proof

Apply corollary 1.5 with E1 = E2 = · · · = En = E. Then

|En| = |E1 × · · · × En| =
n

∏
i=1

|Ei| = |E| · |E| · · · |E|︸ ︷︷ ︸
n factors

= |E|n.

■

Example 1.3. Alphabetical Combinations. How many distinct
words of length 5 can be formed using the standard 26-letter alpha-
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bet A = {a, b, . . . , z}?
A word of length 5 is an element of A5. By corollary 1.6:

|A5| = |A|5 = 265 = 11, 881, 376.

範例

Example 1.4. Decimal Representations. How many non-negative
integers have at most 3 digits?
These integers correspond to the set {0, 1, . . . , 999}. Each can be
uniquely represented as a triplet (d2, d1, d0) ∈ {0, . . . , 9}3 by
padding with leading zeros (e.g., 42 7→ 042). The set of dig-
its D = {0, . . . , 9} has cardinality 10. Thus, the total count is
|D3| = 103 = 1000.

範例

Example 1.5. Restricted Digits. How many integers with at most 3

digits consist entirely of even digits?
The set of allowed digits is E = {0, 2, 4, 6, 8}, with |E| = 5. As
before, we pad with leading zeros to identify each integer with a
triple in E3. We are counting elements of E3.

|E3| = 53 = 125.

範例

Example 1.6. Counting Functions. Let A = {a, b, c} and B = {0, 1}.
How many distinct functions f : A → B exist?
A function is uniquely determined by the triplet of values
( f (a), f (b), f (c)). Since each value must belong to B, the set
of all such functions is in bijection with the Cartesian product
B × B × B = B3. By corollary 1.6:

|B3| = |B|3 = 23 = 8.

In general, the number of mappings from a set of size n to a set of
size m is mn.

範例

1.2 Arrangements and Permutations

We now apply these principles to solve classical enumeration prob-
lems. These configurations serve as the building blocks for more
complex combinatorial structures. We begin by counting sequences
where order matters.
Consider the construction of a sequence of length k using symbols
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from a finite set (an alphabet).

Proposition 1.4. Words of Length k.
Let Σ be a finite alphabet with |Σ| = n. The number of words of length
k (sequences of k elements from Σ) is nk.

命題

Proof

A word of length k is an element of the Cartesian product Σk. By
corollary 1.6, |Σk| = |Σ|k = nk.

■

Remark.

Order is part of the data: for instance, 042 and 240 are different
words of length 3 over {0, . . . , 9}.

If we require the elements in the sequence to be distinct, we are
counting arrangements (or permutations of subsets).

Definition 1.1. Falling Factorial Power.
For n ∈ N and k ∈ N, the falling factorial power, denoted nk (or
sometimes (n)k), is the product of k terms starting at n and decreas-
ing by 1:

nk =
k−1

∏
i=0

(n − i) = n(n − 1) · · · (n − k + 1).

If k > n, then nk = 0. By convention, n0 = 1.
定義

Proposition 1.5. Ordered Selections.
The number of ways to choose k distinct elements from a set of size n
and arrange them in a sequence is nk.

命題

Proof

We construct the sequence element by element.
• There are n choices for the first element.
• There are n − 1 choices for the second element.
• . . .
• There are n − (k − 1) choices for the k-th element.
By corollary 1.5, the total count is n(n − 1) · · · (n − k + 1) = nk.

■

In the specific case where k = n, we are arranging the entire set.

Definition 1.2. Factorial.
The factorial of a non-negative integer n is defined as n! = nn. Ex-
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plicitly:

n! =
n

∏
i=1

i = 1 · 2 · · · n.

We define 0! = 1.
定義

Corollary 1.7. Permutations. The number of ways to arrange n distinct
objects in a row (i.e., the number of bijections from a set of size n to it-
self) is n!.

推論

Example 1.7. Signal Flags. Suppose a ship has 10 distinct signal
flags.
· If the ship hoists a sequence of 3 flags on a mast, the number of

possible signals is 103 = 10 · 9 · 8 = 720.

· If the ship arranges all 10 flags in a row for inspection, the num-
ber of arrangements is 10! = 3, 628, 800.

範例

Circular Arrangements

Counting arrangements on a circle differs from the linear case be-
cause absolute positions do not exist; only relative order matters. Two
circular configurations are considered identical if one can be obtained
from the other by rotation.

Proposition 1.6. Circular Permutations.
The number of ways to arrange n distinct objects around a circle is (n−
1)!.

命題

Proof

We apply corollary 1.4. Let L be the set of linear arrangements of the
n objects, so |L| = n!. Let C be the set of distinct circular arrange-
ments. Consider the map f : L → C that takes a linear arrangement
(x1, . . . , xn) and wraps it into a circle. For any specific circular ar-
rangement, there are exactly n linear arrangements that produce it
(corresponding to starting the read-out at any of the n positions).
Thus, the map f is n-to-one. By corollary 1.4:

|L| = n · |C| =⇒ |C| = |L|
n

=
n!
n

= (n − 1)!.

■

1

2

3

4

Rotate

Same Cycle

Figure 1.3: For n = 4, the linear
sequences (1, 2, 3, 4), (2, 3, 4, 1),
(3, 4, 1, 2), and (4, 1, 2, 3) all
represent the same circular ar-
rangement.

Alternatively, one may fix a distinguished element ("the head") at the
"top" of the circle to break the rotational symmetry. The remaining
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n − 1 elements can then be arranged linearly in the remaining n − 1
positions in (n − 1)! ways.

1.3 Counting Mappings

We now turn to the enumeration of functions between finite sets
E and F, classifying them by their properties (arbitrary, injective,
surjective, bijective).

Total Mappings and Subsets

Let F(E, F) denote the set of all functions f : E → F.

Proposition 1.7. Number of Mappings.
Let E and F be finite sets. Then:

|F(E, F)| = |F||E|.

命題

Proof

Let E = {x1, . . . , xk} where k = |E|. A function f ∈ F(E, F) is
uniquely determined by the tuple of its values ( f (x1), . . . , f (xk)).
The map ϕ : F(E, F) → Fk defined by f 7→ ( f (x1), . . . , f (xk)) is a
bijection. By corollary 1.6, |Fk| = |F|k = |F||E|.

■

This result provides a combinatorial proof for the cardinality of the
power set.

Theorem 1.1. Cardinality of the Power Set.
For any finite set E, the number of subsets is |P(E)| = 2|E|.

定理

Proof

Recall from proposition 0.1 that subsets of E are in bijection with
their characteristic functions. The map A 7→ 1A is a bijection from
P(E) to F(E, {0, 1}). Applying the previous proposition with
F = {0, 1}:

|P(E)| = |F(E, {0, 1})| = 2|E|.

■

Injections and Bijections

Let Finj(E, F) denote the set of injective mappings from E to F.
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Proposition 1.8. Number of Injections.
Let |E| = k and |F| = n.

|Finj(E, F)| = nk =
n!

(n − k)!
.

If k > n, the value is 0.
命題

Proof

Let E = {x1, . . . , xk}. To define an injection, we must assign distinct
images in F to the elements of E. This is equivalent to choosing
an ordered sequence of k distinct elements from F (where the i-th
element of the sequence is the image of xi). By proposition 1.5, the
number of such ordered selections is nk.

■

Example 1.8. Server Allocation. A data centre needs to assign 3

distinct processing jobs (J1, J2, J3) to a cluster of 50 available servers.
No server may handle more than one job.
This is an injection from the set of jobs to the set of servers. The
number of possible assignments is 503 = 50 × 49 × 48 = 117, 600.

範例

Corollary 1.8. Number of Bijections. Let E and F be finite sets with |E| =
|F| = n. The number of bijections from E to F is n!.

推論

Proof

By lemma 0.1, a map between sets of equal finite cardinality is bijec-
tive if and only if it is injective. Thus, we count the injections:

nn = n(n − 1) · · · (1) = n!.

■

Surjections and Partitions

Counting surjective mappings is more subtle. We rely on the relation-
ship between functions and partitions.

Definition 1.3. Stirling Numbers of the Second Kind.
The Stirling number of the second kind, denoted S(n, k), is the num-
ber of ways to partition a set of n elements into k non-empty subsets.

定義
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Proposition 1.9. Surjections via Partitions.
Let E and F be finite sets with |E| = n and |F| = k. The number of
surjective functions from E to F is:

|Fsurj(E, F)| = k! · S(n, k).

命題

Proof

Every surjection f : E → F induces a partition of E into k non-
empty fibres { f−1(y) : y ∈ F}. Conversely, given a partition of E
into k parts, we can construct a surjection by assigning each part to
a unique element of F. There are k! ways to assign these k parts to
the k elements of F (permutations of F). Thus each partition yields
exactly k! surjections, and the total count is k! · S(n, k).

■

To compute S(n, k), we use a recurrence relation derived by consider-
ing the placement of a specific element.

Theorem 1.2. Recurrence for Stirling Numbers.
For 1 ≤ k ≤ n:

S(n, k) = S(n − 1, k − 1) + k · S(n − 1, k).

The boundary conditions are S(n, 1) = 1 and S(n, n) = 1.
定理

Proof

Let E = {1, . . . , n}. Consider the last element n. In any partition of
E into k parts, there are two mutually exclusive possibilities:

Type 1. The element n forms a singleton set {n}. Removing this
set leaves a partition of {1, . . . , n − 1} into k − 1 parts. There are
S(n − 1, k − 1) such partitions.

Type 2. The element n belongs to a set with other elements. If
we remove n from its block, we are left with a partition of
{1, . . . , n − 1} into k parts. To reconstruct the original partition,
we could have added n to any of the k existing blocks. Thus,
there are k · S(n − 1, k) such partitions.

By proposition 1.1, S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).
■

Example 1.9. Study Groups. We wish to split a group of 4 students
into 2 non-empty study teams. The order of teams does not matter,
only the grouping. This is S(4, 2).
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Using the recurrence:

S(4, 2) = S(3, 1) + 2S(3, 2)

= 1 + 2(S(2, 1) + 2S(2, 2))

= 1 + 2(1 + 2(1))

= 1 + 2(3) = 7.

The 7 partitions correspond to:
· 4 splits of type 3 + 1 (one student works alone).

· 3 splits of type 2 + 2 (pairs).

範例

Analytical Properties of the Factorial

The factorial function grows extremely rapidly. While precise eval-
uation requires computation, we can establish useful bounds using
elementary inequalities.

Theorem 1.3. Bounds on the Factorial.
For all n ≥ 1:

√
nn ≤ n! ≤

(
n + 1

2

)n
.

定理

We require the following lemma.

Lemma 1.1. AM-GM Inequality.
For non-negative real numbers a, b:

√
ab ≤ a + b

2
,

with equality if and only if a = b.
引理

Proof

This follows from the square of a real number being non-negative:

0 ≤ (
√

a −
√

b)2 = a − 2
√

ab + b =⇒ 2
√

ab ≤ a + b.

■

Proof of theorem 1.3

Consider the square of the factorial:

(n!)2 = (1 · 2 · · · n) · (n · (n − 1) · · · 1) =
n

∏
k=1

k(n + 1 − k).
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Taking the square root:

n! =
n

∏
k=1

√
k(n + 1 − k).

Upper Bound. Apply the AM-GM inequality to each term k and
n + 1 − k: √

k(n + 1 − k) ≤ k + (n + 1 − k)
2

=
n + 1

2
.

Multiplying these n inequalities yields n! ≤
(

n+1
2

)n
.

Lower Bound. We observe that the function f (x) = x(n + 1 − x)
is a parabola opening downwards, with minimum values at the
endpoints of the interval [1, n]. For k ∈ [1, n], k(n + 1 − k) ≥
1(n + 1 − 1) = n. Thus,

√
k(n + 1 − k) ≥

√
n. Multiplying these

n terms yields n! ≥ (
√

n)n.

■

For large n, the behaviour of n! is described precisely by Stirling’s
Formula.

Theorem 1.4. Stirling’s Formula.
As n → ∞,

n! ∼
√

2πn
(n

e

)n
,

meaning that

lim
n→∞

n!
nne−n

√
2πn

= 1,

and more precisely, for all n ≥ 1,

nne−n
√

2πn exp
(

1
12n + 1

)
< n! < nne−n

√
2πn exp

(
1

12n

)
.

The inequalities quantify the error in the limit.
定理

Note

The proof of Stirling’s formula requires analytical techniques (such
as the Gamma function or integral approximations) beyond the
scope of this chapter.

1.4 Exercises

1. Cycle Structures and Involutions. The text establishes that the
cycle notation is unique up to the ordering of disjoint cycles and
the cyclic shift of elements within a cycle (e.g., (1, 2, 3) is identical
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to (2, 3, 1)).

(a) Prove that the number of distinct cycles of length k that can
be formed from a fixed subset of k elements is (k − 1)!.

(b) Let σ ∈ S9. Determine the number of permutations consisting
of exactly three disjoint cycles: one of length 4, one of length
3, and one of length 2.

(c) Recall that an involution is a permutation composed solely of
cycles of length 1 (fixed points) and length 2 (transpositions).
Determine the number of involutions in S5.

2. The Divisor Function. Let S1, . . . , St be pairwise disjoint finite sets
with cardinalities |Si| = ai.

(a) Prove that the number of subsets of the union
⋃t

i=1 Si that
contain at most one element from each Si is given by

P =
t

∏
i=1

(ai + 1).

(b) Let n be a positive integer with prime factorisation n =

pa1
1 . . . pat

t . Let τ(n) denote the number of positive divisors
of n. Using the result above, prove that τ(n) = ∏t

i=1(ai + 1).
(c) Deduce that τ(n) is odd if and only if n is a perfect square.

3. Binary Expansion and Sums.

(a) By interpreting the sum as a count of non-empty subsets
of specific types, or by using the geometric series formula,
prove:

n

∑
k=0

2k = 2n+1 − 1.

(b) Evaluate the sum S = ∑n
k=1(n − k)2k−1.

Remark.

Consider the total cardinality of all subsets of {1, . . . , n}
containing at least two elements, or count pairs (A, x)
where A ⊆ {1, . . . , n} and x ∈ A is the second largest
element.

4. Administrative Inconsistency. The chair of a mathematics depart-
ment decrees that every student must enrol in exactly 4 of the 7

available courses. The registrars report the following enrolment
numbers for the courses: 51, 30, 30, 20, 25, 12, and 18. Use the
Shepherd’s Principle (or simple counting of student-course pairs)
to demonstrate that the registrars’ data must be erroneous.

5. Finite Mappings. Let E be a finite set with |E| = n.

(a) A function f : E → E is called a retraction (or idempotent) if
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f ◦ f = f . Prove that f is a retraction if and only if f (x) = x
for all x ∈ Im( f ).

(b) Determine the number of retractions on E. For (b): Classify by the size of the
image set k.

(c) Prove that for finite sets, a map f : E → E is injective if and
only if it is surjective. Give a counter-example for infinite
sets.

6. Counting Relations. Let E be a set with |E| = n. Recall that a
binary relation is a subset of E × E. Determine the number of
relations on E that are:

(a) Reflexive.
(b) Symmetric.
(c) Both reflexive and symmetric.
(d) Neither symmetric nor antisymmetric.

7. Contiguous Permutations. We wish to count the number of per-
mutations σ of {1, . . . , n} such that the set of elements {σ(1), . . . , σ(k)}
forms a set of consecutive integers (an interval) for every k =

1, . . . , n.

(a) List all such permutations for n = 3 and n = 4.
(b) Prove that the total number of such permutations is 2n−1.

Remark.

Consider the possible values for the last element σ(n) rela-
tive to the preceding set.

8. Euler’s Summation Identity. Let φ(n) be the Euler totient func-
tion.

(a) Let S = {1, . . . , n}. Partition S into disjoint sets Ad = {k ∈ S :
(k, n) = d} where d runs through the divisors of n.

(b) Prove that |Ad| = φ(n/d).
(c) Deduce the identity ∑d|n φ(d) = n.

9. Visual Sums.

(a) By arranging unit squares into a staircase shape (a "Young
diagram") for 1, . . . , n and joining two such staircases, give a
geometric proof that ∑n

k=1 k = n(n+1)
2 .

(b) By considering the concentric "L-shaped" gnomons of a
square of side length n(n + 1)/2, or otherwise, prove that

n

∑
k=1

k3 =

(
n

∑
k=1

k

)2

.

10. Translational Pigeonhole. Let A be a subset of {1, 2, . . . , 100} with
cardinality |A| = 55.
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(a) Consider the set B = {x + 9 : x ∈ A}. What is the range of
values in B?

(b) Apply the Pigeonhole Principle (via intersection cardinality)
to A and B to prove that there exist distinct elements x, y ∈ A
such that |x − y| = 9.

(c) Does the property hold if |A| = 54? Construct a counter-
example or prove it does.

11. Partial Functions. A partial function from E to F is a function
defined on a subset D ⊆ E (the domain of definition) mapping to
F.

(a) Let |E| = n and |F| = m. Prove that the number of partial
functions from E to F is (m + 1)n.

(b) Explain this result by adjoining a special "undefined" element
⊥ to F.

12. Stirling Calculations.

(a) Using the recurrence relation S(n, k) = S(n − 1, k − 1) +
kS(n − 1, k), compute the table of Stirling numbers of the
second kind for n = 1 to n = 5.

(b) A "rhyme scheme" for a poem of n lines can be modeled as a
partition of the set of lines {1, . . . , n} into rhyming groups. If
we distinguish the order of appearance of rhyme sounds (e.g.,
AABB is distinct from BBAA), the number of schemes is the
Bell number Bn = ∑k S(n, k). Calculate B5.

13. Non-Attacking Rooks.

(a) In how many ways can 8 rooks be placed on a standard 8 × 8
chessboard such that no two rooks share a row or column?

(b) Generalise this to placing k rooks on an n × n board (k ≤ n)
such that no two attack each other.

(c) Suppose the board has a "hole" at position (1, 1) (i.e., no rook
can be placed there). How many ways can n non-attacking
rooks be placed on this defective n × n board? For (c): Use the subtraction principle:

Total arrangements minus those where
a rook is at (1, 1).14. Symmetric Boolean Functions. A Boolean function is a map f :

{0, 1}n → {0, 1}.

(a) Determine the total number of Boolean functions of n vari-
ables.

(b) A Boolean function is symmetric if its value depends only on
the number of 1s in the input (i.e., the weight of the input
vector). Determine the number of symmetric Boolean func-
tions of n variables.



2
Combinatorial Coefficients

We now focus on the specific problem of counting k-element subsets,
which yields the binomial coefficients.

2.1 Binomial Numbers

Recall that Pk(E) denotes the set of all subsets of E with cardinality k.
We formalise the size of this set as a distinct combinatorial quantity.

Definition 2.1. Binomial Coefficient.
Let n, k ∈ N. The binomial coefficient (n

k) (read "n choose k") is the
number of subsets of size k of a set of size n:(

n
k

)
= |Pk([1, n])|.

If k < 0 or k > n, we define (n
k) = 0.

定義

We previously determined the number of k-arrangements (ordered
sequences of distinct elements) to be nk. Since a subset is an un-
ordered selection, we can derive the formula for (n

k) by "forgetting"
the order.

Theorem 2.1. Factorial Formula.
For n ∈ N and 0 ≤ k ≤ n:(

n
k

)
=

nk

k!
=

n!
k!(n − k)!

.

定理

Proof

Let E = [1, n]. Let Ak be the set of k-arrangements of E, and let
Sk = Pk(E). Consider the mapping ϕ : Ak → Sk defined by:

ϕ(x1, . . . , xk) = {x1, . . . , xk}.

For any subset A ∈ Sk, the fibre ϕ−1(A) consists of all possible
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orderings of the elements of A. By the result on permutations,
|ϕ−1(A)| = k!. Since the fibres have constant size, we apply the
Shepherd’s Principle:

|Ak| = k! · |Sk|.

Substituting |Ak| = n!
(n−k)! , we obtain |Sk| = n!

k!(n−k)! .
■

Fundamental Identities

While the factorial formula allows for computation, combinatorial
reasoning often provides more insight into the properties of these
numbers.

Proposition 2.1. Symmetry.
For 0 ≤ k ≤ n, (

n
k

)
=

(
n

n − k

)
.

命題

Proof

Consider the mapping f : Pk([1, n]) → Pn−k([1, n]) defined by tak-
ing the complement:

f (A) = [1, n] \ A.

This map is a bijection (its inverse is the same operation). Thus,
the cardinalities are equal. Combinatorially, choosing k elements to
include is equivalent to choosing n − k elements to exclude.

■

One of the most essential recurrences for binomial coefficients allows
their construction without direct factorial computation.

Theorem 2.2. Pascal’s Identity.
For n ∈ N∗ and k ∈ Z:(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

定理

Proof

If k < 0 or k > n, the identity holds trivially (0 = 0). If k = 0, both
sides equal 1. Assume 1 ≤ k ≤ n. Let E = [1, n]. We partition Pk(E)
based on whether the specific element n is included in the subset.

Subsets containing n. These are of the form A′ ∪ {n}, where A′ ⊆
[1, n − 1] has size k − 1. There are (n−1

k−1) such sets.

Subsets not containing n. These are subsets of [1, n − 1] of size k.
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There are (n−1
k ) such sets.

By the Addition Principle, (n
k) = (n−1

k−1) + (n−1
k ).

■

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Figure 2.1: Pascal’s Triangle.
Lines connect each entry to
the two above it whose sum
it equals, illustrating Pascal’s
Identity. The highlighted exam-
ple shows 3 + 3 = 6.

The Binomial Theorem

The name "binomial coefficient" arises from the expansion of powers
of a binomial (a + b).

Theorem 2.3. Newton’s Binomial Theorem.
Let R be a commutative ring and let a, b ∈ R. For any n ∈ N:

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

定理

Proof

We offer a combinatorial proof. Consider the product:

(a + b)n = (a + b) · (a + b) · · · (a + b)︸ ︷︷ ︸
n factors

.

Expanding this product involves choosing one term (either a or b)
from each of the n factors. A term of the form akbn−k is generated
whenever we choose a from exactly k factors and b from the re-
maining n − k factors. The number of ways to choose the k factors
contributing an a is precisely the number of subsets of indices of
size k, which is (n

k). Summing over all possible values of k yields
the result.

■

Remark.

One may also prove this by induction using theorem 2.2. For the
inductive step:

(a + b)n+1 = (a + b)
n

∑
k=0

(
n
k

)
akbn−k

=
n

∑
k=0

(
n
k

)
ak+1bn−k +

n

∑
k=0

(
n
k

)
akbn−k+1.

Re-indexing the sums to align powers of a and b recovers the coeffi-
cient ( n

k−1) + (n
k) = (n+1

k ).

This theorem immediately yields sums over rows of Pascal’s triangle.
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Corollary 2.1. Sum of Coefficients. For n ∈ N:
1. ∑n

k=0 (
n
k) = 2n.

2. ∑n
k=0(−1)k(n

k) = 0 (for n ≥ 1).
推論

Proof

Set a = 1, b = 1 in theorem 2.3 to obtain (1 + 1)n = 2n. Set a =

−1, b = 1 to obtain (−1 + 1)n = 0.
■

Double Counting and Identities

A powerful method for proving combinatorial identities is double
counting (or Fubini’s Principle): counting the size of a set (often a
subset of a Cartesian product) in two different ways.

Proposition 2.2. The Captain’s Identity.
For n, k ∈ N∗:

k
(

n
k

)
= n

(
n − 1
k − 1

)
.

命題

Proof

Let E be a set of size n. Consider the set of pairs consisting of a
committee of size k and a designated chairperson from within that
committee:

C = {(x, S) : S ⊆ E, |S| = k, x ∈ S}.

We compute |C| in two ways:

Choose the committee, then the chair. There are (n
k) ways to choose

the set S. Once S is chosen, there are k choices for x ∈ S. Thus
|C| = k(n

k).

Choose the chair, then the rest of the committee. There are n ways
to choose the element x ∈ E. The remaining k − 1 members of
S must be chosen from E \ {x}, which has size n − 1. There are
(n−1

k−1) ways to do this. Thus |C| = n(n−1
k−1).

Equating the two expressions yields the identity.
■

Example 2.1. Mean of the Binomial Distribution. We calculate the
sum ∑n

k=0 k(n
k).
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Using the identity k(n
k) = n(n−1

k−1):

n

∑
k=0

k
(

n
k

)
=

n

∑
k=1

n
(

n − 1
k − 1

)

= n
n−1

∑
j=0

(
n − 1

j

)
(letting j = k − 1)

= n · 2n−1.

This confirms that the "average" size of a subset weighted by bino-
mial counts is n/2, which aligns with the symmetry of the binomial
distribution.

範例

Example 2.2. Vandermonde’s Convolution. Consider two disjoint
sets A and B with |A| = r and |B| = m. We wish to choose a
committee of size k from A ∪ B.
Directly, this is (r+m

k ). Alternatively, any such committee contains j
members from A and k − j members from B, for some 0 ≤ j ≤ k.
By the Multiplication Principle, for a fixed j, there are (r

j)(
m

k−j) such
committees. Summing over j gives the identity:

k

∑
j=0

(
r
j

)(
m

k − j

)
=

(
r + m

k

)
.

範例

2.2 Multisets

In many contexts, we wish to select elements where repetition is
allowed. This gives rise to the concept of a multiset.

Definition 2.2. Multiset.
Let E be a finite set. A multiset on E is a mapping f : E → N. The
value f (x) represents the multiplicity of element x. The size of the mul-
tiset is the sum of multiplicities ∑x∈E f (x).

定義

We often denote a multiset of size k as a "k-combination with rep-
etition". If E = {x1, . . . , xn}, a multiset of size k corresponds to a
solution to the Diophantine equation:

a1 + a2 + · · ·+ an = k, ai ∈ N,

where ai = f (xi).
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Theorem 2.4. Multiset Counting.
The number of multisets of size k from a set of n elements is:((

n
k

))
=

(
n + k − 1

k

)
.

定理

Proof

Let E = {1, . . . , n}. A multiset of size k can be represented as a non-
decreasing sequence of integers:

1 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ n.

We map this sequence to a strictly increasing sequence y1 < y2 <

· · · < yk defined by:
yi = xi + (i − 1).

Since 1 ≤ x1 and xk ≤ n, we have:

1 ≤ y1 < y2 < · · · < yk ≤ n + k − 1.

This transformation is a bijection between the set of multisets on E
of size k and the set of subsets of {1, . . . , n + k − 1} of size k. The
cardinality of the latter is (n+k−1

k ).
■

n=3 bins
k=4 items

Figure 2.2: The "Stars and Bars"
method. The configuration
• • || • • corresponds to the
solution x1 = 2, x2 = 0, x3 = 2.
There are k stars and n − 1 bars.

Example 2.3. Integer Solutions. Find the number of non-negative
integer solutions to x1 + x2 + x3 + x4 = 10.
Here n = 4 (the number of variables) and k = 10. By theorem 2.4, the
number of solutions is:(

4 + 10 − 1
10

)
=

(
13
10

)
=

(
13
3

)
=

13 · 12 · 11
3 · 2 · 1

= 286.

範例

Example 2.4. Distributing Indistinguishable Items. Suppose we
wish to distribute k indistinguishable coins into n distinguishable
boxes.
This is identical to choosing a multiset of size k from the set of
boxes (choosing box i means placing a coin in it). Assume k ≥ n.
If k < n, there are no such distributions. If we require that every
box must contain at least one coin, we first place one coin in each
box. We then distribute the remaining k − n coins arbitrarily. The
number of ways is:(

n + (k − n)− 1
k − n

)
=

(
k − 1
k − n

)
=

(
k − 1
n − 1

)
.

範例
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Multinomial Coefficients

The binomial coefficient (n
k) counts the ways to partition a set of n

elements into two disjoint subsets of sizes k and n − k. The multino-
mial coefficient generalizes this to partitions into r subsets.

Definition 2.3. Multinomial Coefficient.
Let n ∈ N and let k1, . . . , kr be non-negative integers such that ∑r

i=1 ki =

n. The multinomial coefficient, denoted(
n

k1, k2, . . . , kr

)
,

is the number of ordered r-tuples (A1, . . . , Ar) of pairwise disjoint sub-
sets of a set E (where |E| = n) such that |Ai| = ki for all 1 ≤ i ≤ r.

定義

Note

If any ki = 0, the corresponding subset Ai is the empty set. If r = 2,
we recover the binomial coefficient:(

n
k, n − k

)
=

(
n
k

)
.

Proposition 2.3. Multinomial Formula.
For n = k1 + · · ·+ kr, the multinomial coefficient is given by:(

n
k1, . . . , kr

)
=

n!
k1!k2! · · · kr!

.

命題

Proof

We proceed by induction on r. For r = 1, (n
n) =

n!
n! = 1, which is cor-

rect.
For r > 1, determining the tuple (A1, . . . , Ar) is equivalent to first
choosing the subset Ar of size kr from E, and then partitioning
the remaining set E \ Ar (of size n − kr) into r − 1 subsets of sizes
k1, . . . , kr−1. The number of ways to choose Ar is ( n

kr
). By the induc-

tive hypothesis, the number of ways to partition the remainder is
( n−kr

k1,...,kr−1
). Using the multiplication principle:(

n
k1, . . . , kr

)
=

(
n
kr

)
×
(

n − kr

k1, . . . , kr−1

)
=

n!
kr!(n − kr)!

× (n − kr)!
k1! · · · kr−1!

=
n!

k1! · · · kr!
.

■
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Remark.

This quantity also counts the number of permutations of a multiset
of size n containing distinct elements x1, . . . , xr with respective mul-
tiplicities k1, . . . , kr. Geometrically, this corresponds to lattice paths
in Zr.

Example 2.5. Lattice Paths in Higher Dimensions. Consider a
particle starting at the origin 0 ∈ Zd. A step consists of adding a
standard basis vector ei to the current position. How many paths of
length n end at the coordinate (a1, . . . , ad), where ∑ ai = n?
A path is a sequence of n steps. To land at (a1, . . . , ad), the path
must contain exactly a1 steps in direction e1, a2 steps in direction e2,
and so forth. The distinct paths correspond to the distinct permuta-
tions of the multiset of steps. Thus, the number of paths is:(

n
a1, . . . , ad

)
=

n!
a1! · · · ad!

.

範例

Theorem 2.5. The Multinomial Theorem.
Let R be a commutative ring and x1, . . . , xr ∈ R. For any n ∈ N:

(x1 + · · ·+ xr)
n = ∑

k1+···+kr=n
ki≥0

(
n

k1, . . . , kr

)
xk1

1 · · · xkr
r .

定理

Proof

Consider the expansion of the product ∏n
j=1(x1 + · · · + xr). Each

term in the expansion is formed by selecting one variable xi from
each of the n factors. If we select the variable x1 exactly k1 times, x2

exactly k2 times, and so on, we generate the monomial xk1
1 · · · xkr

r .
The number of ways to produce this specific monomial is the num-
ber of ways to assign the "indices" of the factors to the variables
x1, . . . , xr such that xi receives ki indices. This is precisely the defi-
nition of the multinomial coefficient ( n

k1,...,kr
).

■

Example 2.6. Coefficient of a Polynomial. Determine the coefficient
of x2y3z4 in the expansion of (x + y + z)9.
Here n = 9, kx = 2, ky = 3, kz = 4. Since 2 + 3 + 4 = 9, the term
exists. The coefficient is:(

9
2, 3, 4

)
=

9!
2!3!4!

=
362880
2 · 6 · 24

=
362880

288
= 1260.

範例
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2.3 Analysis of Binomial Coefficients

We now turn to the magnitude and "shape" of the binomial coef-
ficients (n

k) for fixed n. Understanding these growth properties is
essential for asymptotic analysis in number theory and probability.

Bounds and Estimation

While exact calculation is possible via factorials, bounds are often
more useful for analysis.

Lemma 2.1. Exponential Bound.
For all x ∈ R, 1 + x ≤ ex.

引理

Theorem 2.6. Standard Bounds.
For 1 ≤ k ≤ n: (n

k

)k
≤
(

n
k

)
≤
( en

k

)k
.

定理

Proof

Lower Bound: Recall (n
k) =

n
k · n−1

k−1 · · · n−k+1
1 = ∏k−1

i=0
n−i
k−i . Since n ≥

k, we have n − i ≥ k − i > 0, and the function f (t) = n−t
k−t is non-

decreasing for t ∈ [0, k). Thus n−i
k−i ≥

n
k . The product satisfies:(

n
k

)
≥

k−1

∏
i=0

n
k
=
(n

k

)k
.

Upper Bound: By the Binomial Theorem, for any x > 0:

(1 + x)n =
n

∑
j=0

(
n
j

)
xj ≥

(
n
k

)
xk.

Thus, (n
k) ≤ (1+x)n

xk . If k = n, the bound is immediate. Assume 1 ≤
k < n and choose x = k

n−k .

(
n
k

)
≤

(
1 + k

n−k

)n

(
k

n−k

)k =
(n

k

)k
(

1 +
k

n − k

)n−k
.

Using the lemma 1 + y ≤ ey with y = k
n−k :(

1 +
k

n − k

)n−k
≤ ek.

Substituting this back yields (n
k) ≤ ( n

k )
kek = ( en

k )
k.

■
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Unimodality and Identities

For a fixed n, the sequence of coefficients (n
0), (

n
1), . . . , (n

n) increases to
a maximum and then decreases.

Proposition 2.4. Unimodality.
The sequence k 7→ (n

k) satisfies:
· Increasing for k < n−1

2 .
· Maximal at k = ⌊ n

2 ⌋ and k = ⌈ n
2 ⌉.

· Decreasing for k > n−1
2 .

命題

Proof

Consider the ratio of consecutive terms:

ρk =
( n

k+1)

(n
k)

=
n!

(k + 1)!(n − k − 1)!
· k!(n − k)!

n!
=

n − k
k + 1

.

The sequence increases when ρk > 1, which corresponds to n − k >

k + 1 ⇐⇒ 2k < n − 1. Equality ρk = 1 holds if 2k = n − 1 (only
possible if n is odd).

■

The summation of binomial coefficients along different diagonals of
Pascal’s triangle yields the "Hockey Stick Identity".

Proposition 2.5. Upper Summation Identity.
For n ≥ k ≥ 0:

n

∑
m=k

(
m
k

)
=

(
n + 1
k + 1

)
.

命題

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Figure 2.3: Visualisation of the
Upper Summation Identity
∑4

m=1 (
m
1 ) = (5

2). The blue sum
equals the red entry.

Proof

We count the number of subsets of {1, . . . , n + 1} of size k + 1. Let
this collection be S. We know |S | = (n+1

k+1). Alternatively, partition
S based on the largest element of the subset. Let A ∈ S and let
x = max(A). Since |A| = k + 1, the smallest possible maximum is
x = k + 1 (where A = {1, . . . , k + 1}). The largest is n + 1. For a
fixed maximum m + 1 (where k ≤ m ≤ n), the remaining k elements
must be chosen from {1, . . . , m}. There are (m

k ) ways to do this.
Summing over all possible values of m:

|S | =
n

∑
m=k

(
m
k

)
.

■
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The Principle of Inclusion-Exclusion

The Addition Principle states that |A ∪ B| = |A|+ |B| only if A and
B are disjoint. If they overlap, we must subtract the intersection. The
Sieve Formula, or Principle of Inclusion-Exclusion (PIE), generalizes
this correction to n sets.

Theorem 2.7. The Sieve Formula.
Let A1, . . . , An be finite subsets of a set E. Then:∣∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣∣ = ∑
∅ ̸=I⊆[1,n]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

定理

Proof

We utilize characteristic functions (indicator variables) introduced
in the Foundations chapter.
Let fS denote the characteristic function of a set S. The characteris-
tic function of the union A =

⋃
Ai is 1 − fA, where A =

⋂
Ai.

fA(x) =
n

∏
i=1

fAi
(x) =

n

∏
i=1

(1 − fAi (x)).

Expanding this product:

n

∏
i=1

(1 − fAi (x)) = ∑
I⊆[1,n]

(−1)|I| ∏
i∈I

fAi (x) = ∑
I⊆[1,n]

(−1)|I| f⋂i∈I Ai (x).

Summing over all x ∈ E to convert functions to cardinalities:

|E \ A| = ∑
I⊆[1,n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Isolating |A| (note that the term for I = ∅ is |E|):

|E| − |A| = |E|+ ∑
∅ ̸=I

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Rearranging yields the result.
■

Applications of the Sieve

The Sieve Formula is particularly effective when the intersection of
sets is easier to calculate than their union.

Theorem 2.8. Number of Surjections.
Let E and F be sets with |E| = n and |F| = k. The number of surjec-
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tive maps from E to F is:

|Fsurj(E, F)| =
k

∑
j=0

(−1)k−j
(

k
j

)
jn.

定理

Proof

Let F = {1, . . . , k}. Let S be the set of all functions E → F, so
|S| = kn. A function is not surjective if its image misses at least one
element of F. Let Pi be the set of functions whose image does not
contain i (i.e., range is contained in F \ {i}). We seek |S| − |⋃k

i=1 Pi|.
For any index set I ⊆ {1, . . . , k}, the intersection

⋂
i∈I Pi is the set of

functions mapping E into F \ I. The size of the target is k − |I|, so:∣∣∣∣∣⋂
i∈I

Pi

∣∣∣∣∣ = (k − |I|)n.

By theorem 2.7: ∣∣∣⋃ Pi

∣∣∣ = ∑
∅ ̸=I

(−1)|I|+1(k − |I|)n.

Grouping by the size of I (let j = k − |I| be the size of the allowed
image): ∣∣∣⋃ Pi

∣∣∣ = k

∑
m=1

(
k
m

)
(−1)m+1(k − m)n.

Subtracting this from total functions kn yields the formula.
■

Example 2.7. Derangements. A derangement of [1, n] is a permu-
tation σ ∈ Sn such that σ(i) ̸= i for all i (it has no fixed points). Let
Dn be the number of derangements.
Let Ai = {σ ∈ Sn : σ(i) = i}. We seek n! − |⋃ Ai|. The in-
tersection of any k sets Ai1 ∩ · · · ∩ Aik fixes k specific points. The re-
maining n − k points can be permuted arbitrarily. Thus, |

⋂
i∈I Ai| =

(n − |I|)!. Applying the Sieve:

|
⋃

Ai| =
n

∑
k=1

(
n
k

)
(−1)k+1(n − k)!.

Simplifying (n
k)(n − k)! = n!

k! :

Dn = n! −
n

∑
k=1

(−1)k+1 n!
k!

=
n

∑
k=0

(−1)k n!
k!

= n!
n

∑
k=0

(−1)k

k!
.

For large n, Dn ≈ n!/e.

範例
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2.4 Exercises

1. The Gap Method. We wish to arrange the letters of the word
MISSISSIPPI.

(a) Calculate the total number of distinct permutations using the
Multinomial Coefficient formula.

(b) Calculate the number of distinct permutations such that no
two I’s are adjacent.

2. Multinomial Coefficients and Expansions.

(a) Determine the coefficient of the term x2y3z4 in the expansion
of (x − 2y + 3z)9.

(b) Using the Multinomial Theorem, give a combinatorial proof
that: Consider the expansion of (A + B + C)n

for specific values of A, B, C.∑
n1+n2+n3=n

(
n

n1, n2, n3

)
(−1)n2 = 1.

3. Indistinguishable Groupings. Consider a group of 12 distinct
graduate students.

(a) The students are to be assigned to 3 distinct laboratories (Lab
A, Lab B, Lab C) such that Lab A receives 5 students, Lab B
receives 4, and Lab C receives 3. In how many ways can this
be done?

(b) The students are to be partitioned into 3 study groups of
sizes 5, 4, and 3. The study groups have no names or desig-
nations (they are indistinguishable beyond their size). In how
many ways can this be done?

(c) The students are to be paired off into 6 teams of 2 members
each. The teams are indistinguishable. Calculate the number
of possible partitions.

4. Inclusion-Exclusion Logic. In the "Hands with At Most Two
Suits" example, we calculated the size of a set by subtracting the
overcounted intersection (the single-suit hands). Generalize this
logic to solve the following:

A 6-digit PIN code d1d2d3d4d5d6 is constructed using digits from
the set {1, 2, 3}. How many such PIN codes contain at least one of
each digit?

5. Constrained Integer Partitions (Investment Strategies). We pos-
sess $20,000 to invest across 4 distinct opportunities. Investments
must be in integral units of $1,000. Furthermore, each opportunity
imposes a minimum entry threshold: the minimum investments
are $2,000, $2,000, $3,000, and $4,000 respectively.

Using the stars and bars transformation (yi = xi − mi), determine
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the number of distinct investment strategies available if:

(a) An investment must be made in every opportunity (i.e., all
minimums must be met).

(b) Investments must be made in at least 3 of the 4 opportunities.
For part (b), consider the mutually
exclusive cases based on which oppor-
tunities are active. Be careful to sum the
case of 4 active opportunities and the
cases of exactly 3 active opportunities.

6. The Chairperson Identities. We explore identities of the form
∑ kp(n

k) via double counting.

(a) Second Moment: Verify the identity

n

∑
k=1

k2
(

n
k

)
= 2n−2n(n + 1).

For (a): Consider the selection of
a committee, a chairperson, and a
secretary (who may be the same person
as the chair).

(b) Third Moment: By considering a committee, a chairperson,
a secretary, and a treasurer (where roles may overlap), argue
combinatorially that:

n

∑
k=1

k3
(

n
k

)
= 2n−3n2(n + 3).

7. Inequalities and Decompositions.

(a) Inequality Constraints: Determine the number of integer
vectors (x1, . . . , xn) such that xi ≥ 0 for all i, and

n

∑
i=1

xi ≤ k.

For (a): Introduce a "slack" variable
y ≥ 0 such that ∑ xi + y = k to convert
the inequality into an equality, then
apply the Stars and Bars theorem.

(b) Analytic Decomposition: Give an algebraic verification of the
identity:(

n
2

)
=

(
k
2

)
+ k(n − k) +

(
n − k

2

)
, for 1 ≤ k ≤ n.

Explain the combinatorial significance of this decomposition
in terms of choosing 2 items from a set partitioned into two
groups of size k and n − k.

8. Parliamentary Deadlock. In the parliament of a certain country,
there are 151 seats filled by members of three distinct political
parties.

(a) How many possible distributions of seats (n1, n2, n3) are there
such that n1 + n2 + n3 = 151?

(b) A "hung parliament" occurs if no single party holds an ab-
solute majority (strictly more than half the seats). Determine
the number of distributions that result in a hung parliament. For (b): Use the Principle of Inclusion-

Exclusion or complementary counting.
Note that it is impossible for two par-
ties to simultaneously hold a majority.

9. Triangular Sums and Double Counting.
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(a) Establish the identity ∑n
i=1 i(n − i) = (n+1

3 ) by counting the
same collection of subsets, but this time classifying them by
the middle element (in terms of magnitude).

(b) Generalise part (b) to find a summation formula for ( n+1
2m+1) by

considering the median element of a subset of size 2m + 1.

10. The Fibonacci Subsets. Let n be a positive integer. We wish to
count the number of subsets of {1, 2, . . . , n} that contain no pair
of consecutive integers. Let f (n, k) denote the number of such
subsets of size k.

(a) Construct a bijection between these non-consecutive k-subsets
and the standard k-subsets of {1, . . . , n − k + 1}. For (a): Consider the map xi 7→ xi −

(i − 1) applied to the elements of the
subset arranged in increasing order.

(b) Deduce that f (n, k) = (n−k+1
k ).

(c) Let Fn be the Fibonacci sequence defined by F0 = 0, F1 =

1, Fn = Fn−1 + Fn−2. Prove that the total number of non-
consecutive subsets of {1, . . . , n} is given by Fn+2. For (c): Sum the result from (b) and

prove the sum satisfies the Fibonacci
recurrence relation by classifying
subsets based on whether they contain
the element n.



3
Partitions and Allocations

We have previously explored compositions, where the order of sum-
mands distinguishes one configuration from another. If we relax this
constraint and consider summands up to reordering, we enter the
theory of integer partitions.

3.1 Integer Partitions

A composition of a natural number n is a sequence of positive in-
tegers summing to n. For instance, (1, 3, 1) and (3, 1, 1) are distinct
compositions of 5. If we regard these as identical (distinguishing
them only by the multisets of their parts), we obtain partitions.

Definition 3.1. Integer Partition.
A partition of a positive integer n is a sequence λ = (λ1, λ2, . . . , λk)

of positive integers such that:

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and
k

∑
i=1

λi = n.

The terms λi are called the parts of the partition. We define p(n) as the
total number of distinct partitions of n.

定義

Note

By convention, p(0) = 1 (the empty sum).

Example 3.1. Partitions of Small Integers. For n = 4, the possible
partitions are:
· 4

· 3 + 1

· 2 + 2

· 2 + 1 + 1

· 1 + 1 + 1 + 1
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Thus, p(4) = 5. For n = 5, we list: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 +

1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. Hence p(5) = 7.

範例

Unlike the binomial coefficients or compositions, there is no elemen-
tary closed-form expression for p(n). The growth of p(n) is governed
by the Hardy-Ramanujan asymptotic formula:

p(n) ∼ 1
4n

√
3

exp

(
π

√
2n
3

)
as n → ∞.

While the analytic derivation of this formula is advanced, we can
establish profound algebraic properties of partitions using bijective
combinatorial proofs.

Odd and Distinct Parts

Consider the partitions of n = 5.
· Partitions into odd parts: 5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1. (Count: 3)

· Partitions into distinct parts: 5, 4 + 1, 3 + 2. (Count: 3)
This equality is not coincidental.

Theorem 3.1. Euler’s Partition Theorem.
For any integer n ≥ 1, the number of partitions of n into odd parts
equals the number of partitions of n into distinct parts.

定理

Let On be the set of partitions of n into odd parts, and Dn be the
set of partitions of n into distinct parts. We construct a bijection ϕ :
On → Dn.

Construction of ϕ.

Let λ ∈ On. We may write the sum as ∑k odd bk · k, where bk is the
multiplicity of the odd part k in λ. We express each multiplicity bk

in its binary representation:

bk =
m

∑
j=0

ck,j2
j, where ck,j ∈ {0, 1}.

Substituting this back into the sum:

n = ∑
k odd

(
m

∑
j=0

ck,j2
j

)
k = ∑

k odd
∑

j:ck,j=1
(2j · k).

The terms in this expanded sum are of the form 2j · k. By the Fun-
damental Theorem of Arithmetic, every integer m can be uniquely
written as m = 2j · k where k is odd. Thus, all terms 2j · k generated
are distinct. We define ϕ(λ) to be the partition consisting of these
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parts 2j · k, arranged in decreasing order. Since they sum to n and
are distinct, ϕ(λ) ∈ Dn.

証明終

Construction of ϕ−1.

Let µ ∈ Dn with distinct parts µ1, . . . , µr. For each part µi, factor out
the highest power of 2 to write µi = 2ai · ki, where ki is odd. The
inverse map decomposes the part µi into 2ai copies of the odd num-
ber ki. Collecting all such copies for all i yields a partition into odd
parts. Since the binary representation is unique, ϕ is a bijection.

証明終

Example 3.2. Application of the Bijection. Consider the partition of
n = 44 into odd parts:

λ = (13, 13, 5, 5, 5, 3).

Here, the multiplicities are:
· Part 13: appears 2 times. 2 = 21. Terms: 21 · 13 = 26.

· Part 5: appears 3 times. 3 = 21 + 20. Terms: 21 · 5 = 10, 20 · 5 = 5.

· Part 3: appears 1 time. 1 = 20. Terms: 20 · 3 = 3.
The corresponding partition into distinct parts is µ = (26, 10, 5, 3).
Sum check: 26 + 10 + 5 + 3 = 44.

範例

Example 3.3. Reverse Mapping. Consider the partition into distinct
parts µ = (12, 10, 2) for n = 24.
We decompose each part into odd components:
· 12 = 4 × 3 = 22 × 3 =⇒ four copies of 3.

· 10 = 2 × 5 = 21 × 5 =⇒ two copies of 5.

· 2 = 2 × 1 = 21 × 1 =⇒ two copies of 1.
The corresponding partition into odd parts is (5, 5, 3, 3, 3, 3, 1, 1).

範例

Ferrers Diagrams

A graphical representation of partitions, known as the Ferrers dia-
gram, facilitates the proof of complex identities via geometric trans-
formations.

Definition 3.2. Ferrers Diagram.
The Ferrers diagram of a partition λ = (λ1, . . . , λk) is a collection of
dots left-justified in k rows, such that the i-th row contains λi dots.

定義
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For example, the diagram for λ = (7, 5, 5, 3, 1) is:

Figure 3.1: Ferrers diagram for
(7, 5, 5, 3, 1).

By reflecting the diagram across the main diagonal (swapping rows
and columns), we obtain a new partition.

Definition 3.3. Conjugate Partition.
The conjugate of a partition λ, denoted λ′, is the partition defined by
the column lengths of the Ferrers diagram of λ. Formally, λ′

j is the num-
ber of parts of λ that are greater than or equal to j.

定義

Figure 3.2: The conjugate parti-
tion λ′ = (5, 4, 4, 3, 3, 1, 1).

The conjugate of (7, 5, 5, 3, 1) shown in figure 3.1 is (5, 4, 4, 3, 3, 1, 1),
shown in figure 3.2. Since the reflection is an involution, the conjugate
map is a bijection on the set of partitions of n. This symmetry yields
several identities immediately.

Proposition 3.1. Conjugate Identities.

1. For n ≥ k ≥ 1, the number of partitions of n into at least k parts
is equal to the number of partitions of n in which the largest part
is at least k.

2. For n ≥ 1, the number of partitions of n in which the first two parts
are equal is equal to the number of partitions of n in which all parts
are at least 2.

命題

Proof

We rely on the geometric properties of the Ferrers diagram under
conjugation.

1. Let λ be a partition. The number of parts is the number of rows
in its diagram, which becomes the number of columns in the
conjugate λ′. The largest part of λ′ is the length of its first row,
which corresponds to the length of the first column of λ (the
number of rows). Thus, λ has ≥ k parts if and only if λ′ has
largest part ≥ k.

2. A partition λ has all parts ≥ 2 if and only if every row in its
diagram has length at least 2. Under conjugation, the number of
rows of length at least 1 is λ′

1 and the number of rows of length
at least 2 is λ′

2. Thus all parts ≥ 2 if and only if λ′
1 = λ′

2. This is
exactly the condition that the first two parts are equal. Thus the
map λ 7→ λ′ is a bijection between the set of partitions with all
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parts ≥ 2 and the set of partitions with the first two parts equal.

■

The Twelvefold Way

We now this section by synthesising our study of counting into the
"Twelvefold Way", a classification attributed to Gian-Carlo Rota. This
framework considers the number of ways to place balls into boxes
under various conditions.
Let N be a set of balls (|N| = n) and K a set of boxes (|K| = k). We
enumerate the functions f : N → K (or equivalent structures) based
on:

Distinguishability : Are the balls distinguishable? Are the boxes
distinguishable?

Restrictions :

· None: Any number of balls per box.
· Injective: At most one ball per box (requires n ≤ k).
· Surjective: At least one ball per box (requires n ≥ k).

Equivalence of functions is defined by the distinguishability. For ex-
ample, if balls are indistinguishable, functions f and g are equivalent
if g = f ◦ σ for some permutation σ of N.
We denote the scenarios by pairs (Balls, Boxes).

Distinguishable Balls, Distinguishable Boxes

Here we count standard functions f : N → K.

No restriction. Each of the n balls can be placed in any of the k
boxes independently.

|KN | = kn.

Injective. This corresponds to permutations of subsets. We place
balls sequentially into distinct boxes.

kn =
k!

(k − n)!
.

Surjective. We partition the n balls into exactly k non-empty subsets
(fibres), then assign these subsets to the k distinct boxes. Using the
Stirling numbers of the second kind:

k!S(n, k).
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Indistinguishable Balls, Distinguishable Boxes

Because the balls are identical, only the count of balls in each box
matters. This is the problem of weak compositions or multisets.

No restriction. We seek integer solutions to x1 + · · ·+ xk = n with
xi ≥ 0. By theorem 2.4:(

n + k − 1
k − 1

)
=

(
n + k − 1

n

)
.

Injective. Each box receives 0 or 1 ball. We simply choose which n
boxes contain a ball. (

k
n

)
.

Surjective. We seek solutions to x1 + · · ·+ xk = n with xi ≥ 1. This is
the number of compositions of n into k parts. By distributing one
ball to each box initially, we distribute the remaining n − k balls
freely: (

(n − k) + k − 1
k − 1

)
=

(
n − 1
k − 1

)
.

Distinguishable Balls, Indistinguishable Boxes

Since boxes are indistinguishable, the specific assignment of values
does not matter, only the partitioning of the domain N.

Surjective. This is the definition of the Stirling numbers of the sec-
ond kind. We partition n items into k non-empty sets.

S(n, k).

No restriction. We partition the balls into j non-empty sets, where
1 ≤ j ≤ k.

k

∑
j=1

S(n, j).

Injective. If n ≤ k, we place each ball in a separate box. Since boxes
are indistinguishable, there is only 1 way to do this. If n > k, it is
impossible (0).

Indistinguishable Balls, Indistinguishable Boxes

Here we partition the integer n (the total number of balls) into parts
defined by the box contents.

Surjective. We partition n into exactly k parts (no empty boxes al-
lowed). We denote this by p(n, k).

p(n, k).
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No restriction. We partition n into at most k parts (some boxes may
be empty).

k

∑
j=1

p(n, j).

Note

By proposition 3.1, this is equal to the number of partitions of n
where the largest part is at most k.

Injective. As with distinguishable balls, if n ≤ k, we place one ball in
each of n boxes; indistinguishability makes this unique.1 if n ≤ k,

0 if n > k.

Example 3.4. Server Load Balancing. Consider a system with n = 4
jobs and k = 3 servers.
1. If jobs and servers are distinguishable (e.g., jobs are unique

tasks, servers have different hardware):

· Total assignments: 34 = 81.

· Surjective (all servers active): 3!S(4, 3) = 6 × (4
2) = 6 × 6 = 36.

2. If jobs are identical (standard computational units) but servers
are distinguishable:

· Total assignments: (4+3−1
2 ) = (6

2) = 15.

3. If jobs are distinct but servers are identical (we only care about
which jobs are grouped):

· Surjective: S(4, 3) = 6. The grouping is of type {2, 1, 1}.

4. If both are indistinguishable (we only care about load distribu-
tion):

· Partitions of 4 into at most 3 parts: 4 (one server), 3 + 1 (two
servers), 2 + 2 (two servers), 2 + 1 + 1 (three servers). Total = 4.

範例

3.2 Generating Functions

The objective of this section is to translate combinatorial problems
regarding sequences into algebraic problems regarding formal power
series. By encoding a sequence (an)n∈N as the coefficients of a series
A(X) = ∑ anXn, we can determine properties of the sequence—such
as closed forms or asymptotic behaviour—by manipulating the func-
tion A(X) within a ring structure.
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3.3 The Ring of Formal Power Series

To define formal power series rigorously, we first recall the structure
of polynomials. Let A be a commutative ring (typically Z, Q, R, or
C).
The ring of polynomials A[X] consists of sequences P = (pn)n∈N

with coefficients in A that have finite support; that is, there exists
some N such that pn = 0 for all n > N. We conventionally write such
a sequence as a sum:

P(X) =
N

∑
n=0

pnXn.

The operations of addition and multiplication in A[X] are defined
to satisfy the laws of commutativity, associativity, and distributivity,
distinguishing A[X] as a sub-ring of the structure we are about to
define.

Formal Power Series

We extend the concept of a polynomial by removing the restriction of
finite support.

Definition 3.4. Formal Power Series.
Let A be a commutative ring. A formal power series with coefficients
in A is a sequence (an)n∈N of elements of A. We denote this series by
the formal sum:

A(X) =
∞

∑
n=0

anXn = a0 + a1X + a2X2 + . . .

The set of all such series is denoted by A[[X]].
定義

Remark.

The variable X is strictly a placeholder; it serves to index the po-
sitions of the coefficients. Unlike in analysis, we do not assign a
numerical value to X, and issues of convergence do not arise. The
series is a purely algebraic object defined by its sequence of coeffi-
cients.

We equip A[[X]] with algebraic operations analogous to those for
polynomials.

Definition 3.5. Operations.
Let A(X) = ∑n≥0 anXn and B(X) = ∑n≥0 bnXn.
1. Sum: The sum A(X)+B(X) is the series whose n-th coefficient is
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the sum of the n-th coefficients of A and B:

A(X) + B(X) = ∑
n≥0

(an + bn)Xn.

2. Cauchy Product: The product A(X) · B(X) is the series defined by
the convolution of the sequences:

A(X) · B(X) = ∑
n≥0

cnXn, where cn =
n

∑
k=0

akbn−k.

定義

The definition of the product is motivated by the distributive expan-
sion of polynomials: the term Xn in the product arises from pairing
akXk with bn−kXn−k for all possible k. k

j
a0b3

a1b2

a2b1

a3b0

k+
j =

n

Figure 3.3: The coefficient cn of
the Cauchy product sums all
terms akbj where the indices
sum to n. Here n = 3.

Example 3.5. Convolution of the Constant Sequence. Let A(X) =

∑n≥0 Xn. This corresponds to the sequence (1, 1, 1, . . . ).
Consider the square C(X) = A(X)2. By the definition of the
Cauchy product, the coefficient cn is:

cn =
n

∑
k=0

akan−k =
n

∑
k=0

1 · 1 =
n

∑
k=0

1 = n + 1.

Thus: (
∑
n≥0

Xn

)2

= ∑
n≥0

(n + 1)Xn = 1 + 2X + 3X2 + . . .

Combinatorially, cn counts the number of ways to write n as a sum
of two non-negative integers (where order matters).

範例

Theorem 3.2. Ring Structure.
The set A[[X]] equipped with the sum and Cauchy product forms a com-
mutative ring.
· The additive identity is the zero series 0 = (0, 0, . . . ).
· The multiplicative identity is the unity series 1 = (1, 0, 0, . . . ).
Furthermore, A[X] is a subring of A[[X]].

定理

Proof

Let A(X), B(X), C(X) ∈ A[[X]] with coefficients (an), (bn), (cn) in
A. By the definitions of coefficientwise addition and the Cauchy
product above, associativity, commutativity, the additive identity,
and additive inverses hold termwise because they hold in A. For
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multiplication, the coefficient of Xn in (AB)C equals

n

∑
i=0

(
i

∑
k=0

akbi−k

)
cn−i,

while the coefficient of Xn in A(BC) equals

n

∑
k=0

ak

(
n−k

∑
j=0

bjcn−k−j

)
.

Reindexing with j = i − k matches the two sums, so the prod-
uct is associative. Commutativity and distributivity follow by the
same coefficient checks. The unity series has constant term 1 and
all other coefficients 0, so it is a multiplicative identity. Finally, a
polynomial is exactly a series with finite support, so A[X] is closed
under these operations and is a subring.

■

Invertibility

In the ring of polynomials A[X], very few elements have multiplica-
tive inverses (typically only the constant polynomials that are units
in A). In contrast, the ring of formal power series A[[X]] allows us to
invert a much broader class of elements.

Theorem 3.3. Invertibility Criterion.
A formal power series A(X) = ∑n≥0 anXn ∈ A[[X]] is invertible if
and only if its constant term a0 is invertible in the coefficient ring A.
If this condition holds, the inverse is unique.

定理

( =⇒ )

Suppose A(X) has an inverse B(X) = ∑ bnXn such that
A(X)B(X) = 1. The constant term of the product is given by
the Cauchy formula for n = 0:

c0 = a0b0.

Since A(X)B(X) = 1, we must have c0 = 1, so a0b0 = 1. Thus a0 is
invertible in A.

証明終

( ⇐= )
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Suppose a0 is invertible. We seek a sequence (bn) satisfying
A(X)B(X) = 1. This yields the system of linear equations:

n

∑
k=0

akbn−k =

1 if n = 0,

0 if n ≥ 1.

For n = 0, we have a0b0 = 1, which determines b0 = a−1
0 . For n ≥ 1,

we isolate the term involving bn (which occurs when k = 0):

a0bn +
n

∑
k=1

akbn−k = 0.

Since a0 is invertible, we can uniquely solve for bn in terms of the
preceding coefficients b0, . . . , bn−1:

bn = −a−1
0

n

∑
k=1

akbn−k.

By induction, the sequence (bn) is uniquely determined.
証明終

Example 3.6. Inverting a Polynomial. Consider the polynomial
P(X) = 1 − X − X2 ∈ Z[[X]]. Here a0 = 1, which is invertible in Z,
so P(X)−1 exists. Let B(X) = ∑ bnXn be the inverse.
Using the recurrence bn = −a−1

0 ∑n
k=1 akbn−k derived in the proof:

· b0 = 1−1 = 1.

· b1 = −1(a1b0) = −1(−1 · 1) = 1.

· b2 = −1(a1b1 + a2b0) = −1(−1 · 1 +−1 · 1) = 2.

· b3 = −1(a1b2 + a2b1 + a3b0) = −1(−1 · 2 +−1 · 1 + 0) = 3.

· b4 = −1(a1b3 + a2b2) = −1(−1 · 3 +−1 · 2) = 5.
The coefficients 1, 1, 2, 3, 5, . . . are the Fibonacci numbers. Thus, the
generating function for the Fibonacci sequence is (1 − X − X2)−1.

範例

The most fundamental inverse is that of the linear polynomial 1− αX.
This yields the geometric series formula, which is valid formally even
without convergence considerations.

Corollary 3.1. Geometric Series. For any α ∈ A, the series 1 − αX is
invertible, and:

1
1 − αX

=
∞

∑
n=0

αnXn = 1 + αX + α2X2 + . . .

推論
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Proof

We verify that the product is unity.

(1 − αX)
∞

∑
n=0

αnXn =
∞

∑
n=0

αnXn −
∞

∑
n=0

α · αnXn+1

=
∞

∑
n=0

αnXn −
∞

∑
m=1

αmXm (letting m = n + 1)

= 1 +
∞

∑
n=1

(αn − αn)Xn

= 1.

■

3.4 Generalised Binomial Theorem

The algebraic nature of formal power series allows us to extend this
to negative integer exponents.

Definition 3.6. Generalised Binomial Coefficient.
For any r ∈ R and k ∈ N, we define the generalised binomial co-
efficient (r

k) by: (
r
k

)
=

r(r − 1) · · · (r − k + 1)
k!

.

If k = 0, we define (r
0) = 1 (following the convention for empty prod-

ucts).
定義

This definition recovers the standard coefficient when r ∈ N. For
negative integers, it exhibits a regular sign-alternating pattern related
to multiset counting.

Example 3.7. Negative Integers.
· For r = −1:(

−1
k

)
=

(−1)(−2) · · · (−k)
k!

=
(−1)kk!

k!
= (−1)k.

· For r = −m where m ∈ N:(
−m

k

)
=

(−m)(−m − 1) · · · (−m − k + 1)
k!

= (−1)k m(m + 1) · · · (m + k − 1)
k!

= (−1)k
(

m + k − 1
k

)
.

範例
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Note

This identity connects negative binomial coefficients to multiset
coefficients, often denoted

(
(m

k )
)
= (m+k−1

k ).

Theorem 3.4. Generalised Binomial Theorem.
For any integer r ∈ Z, the formal power series (1 + X)r is the gen-
erating function for the sequence of coefficients (r

k):

(1 + X)r =
∞

∑
k=0

(
r
k

)
Xk.

定理

Proof

If r ≥ 0, this is theorem 2.3. Let r = −m with m ∈ N. By corollary 3.1
with α = −1,

(1 + X)−1 =
∞

∑
n=0

(−1)nXn.

Hence

(1 + X)−m =

(
∞

∑
n=0

(−1)nXn

)m

.

The coefficient of Xk in this product equals (−1)k times the num-
ber of m-tuples of non-negative integers summing to k, which is
(m+k−1

k ) by theorem 2.4. By the identity for negative integers given
above, this coefficient is (−m

k ).
■

Example 3.8. Vandermonde’s Identity. This is the same identity as
the Vandermonde’s Convolution example in the previous chapter.

範例

Proof

By theorem 3.4,

(1 + X)r(1 + X)s = (1 + X)r+s.

The coefficient of Xn on the left is

n

∑
k=0

(
r
k

)(
s

n − k

)
,

and the coefficient of Xn on the right is (r+s
n ).

■

A particularly useful case for theorem 3.4 arises for negative integer
exponents, relating to multiset counting.
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Corollary 3.2. Negative Binomial Expansion. For m ∈ N and β ∈ C:

(1 − βX)−m =
∞

∑
n=0

(
n + m − 1

m − 1

)
βnXn.

推論

Proof

We expand (1 + (−βX))−m. The coefficient of Xn is:(
−m

n

)
(−β)n =

(−m)(−m − 1) · · · (−m − n + 1)
n!

(−1)nβn.

Factoring (−1)n from the numerator:

(−1)n m(m + 1) · · · (m + n − 1)
n!

(−1)nβn =

(
m + n − 1

n

)
βn.

Using the symmetry (N
k ) = ( N

N−k), we have (m+n−1
n ) = (m+n−1

m−1 ).
■

Example 3.9. Convolution via Binomials. Consider the product of
two geometric series derivatives.
We wish to find the coefficient of Xn in (1− X)−2 · (1− X)−2 = (1−
X)−4. Directly using the corollary with m = 4, β = 1:

[Xn](1 − X)−4 =

(
n + 3

3

)
.

Alternatively, this is the convolution of (n + 1) with itself: ∑n
k=0(k +

1)(n− k + 1). The identity ∑n
k=0(k + 1)(n− k + 1) = (n+3

3 ) is thus es-
tablished algebraically.

範例

3.5 Linear Recurrence Relations

We now apply formal power series to solve linear recurrence rela-
tions of the form:

an+k = c1an+k−1 + · · ·+ ckan + f (n),

where ci are constants and f (n) is a known term.

Rational Generating Functions

We first treat the homogeneous case ( f (n) = 0).
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Theorem 3.5. Rational Generating Functions.
Let (an) be a sequence satisfying the recurrence an = ∑k

j=1 cjan−j for
n ≥ k. The generating function A(X) = ∑ anXn is a rational func-
tion of the form:

A(X) =
P(X)

Q(X)
,

where Q(X) = 1 − ∑k
j=1 cjX j and P(X) is a polynomial of degree at

most k − 1 determined by the initial conditions.
定理

Proof

We multiply the recurrence an − ∑k
j=1 cjan−j = 0 by Xn and sum

over n ≥ k:

∑
n≥k

anXn −
k

∑
j=1

cjX j ∑
n≥k

an−jXn−j = 0.

Let A(X) = ∑n≥0 anXn. We can rewrite the sums as:

(A(X)− Ak−1(X))−
k

∑
j=1

cjX j(A(X)− Ak−j−1(X)) = 0,

where Am(X) = ∑m
i=0 aiXi is the truncated series. Rearranging

terms to isolate A(X):

A(X)

(
1 −

k

∑
j=1

cjX j

)
= Ak−1(X)−

k

∑
j=1

cjX j Ak−j−1(X).

The right-hand side is a finite sum of polynomials of degree less
than k, hence a polynomial P(X) of degree at most k − 1. The term
in the bracket is Q(X). Thus A(X) = P(X)/Q(X).

■

To extract the coefficients an from P(X)/Q(X), we employ partial
fraction decomposition. We require the following lemma for the ring
C[X].

Lemma 3.1. Bezout’s Identity for Polynomials.
Let f (X), g(X) ∈ C[X] be non-zero polynomials with no common fac-
tors. There exist polynomials u(X), v(X) ∈ C[X] such that:

u(X) f (X) + v(X)g(X) = 1.

引理

Proof

This follows from the Euclidean algorithm for polynomials. Since
C[X] is a Euclidean domain, the greatest common divisor can be
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expressed as a linear combination of the elements. Since f and g
are coprime, gcd( f , g) = 1.

■

Proposition 3.2. Partial Fraction Decomposition.
Let P(X)/Q(X) be a rational function with deg(P) < deg(Q). Fac-
tor Q(X) over C as:

Q(X) =
r

∏
i=1

(1 − αiX)mi ,

where αi are distinct non-zero complex numbers. Then there exist unique
constants Aij such that:

P(X)

Q(X)
=

r

∑
i=1

mi

∑
j=1

Aij

(1 − αiX)j .

命題

Proof

We proceed by induction on the number of distinct factors. Sup-
pose Q(X) = Q1(X)Q2(X) where Q1, Q2 are coprime. By Bezout’s
Identity, there exist u, v such that uQ1 + vQ2 = 1. Multiply by P/Q:

P
Q1Q2

=
P(uQ1 + vQ2)

Q1Q2
=

Pu
Q2

+
Pv
Q1

.

By polynomial division, we can reduce the numerators so that
the degree condition is satisfied. Repeating this separates all
distinct factors (1 − αiX)mi . It remains to decompose a term
like R(X)/(1 − αX)m. Since the polynomials (1 − αX)j for
j = 0, . . . , m − 1 form a basis for polynomials of degree < m,
we can expand R(X) in this basis, yielding the inner sum.

■

Combining these results yields the explicit solution for any linear
recurrence.

Theorem 3.6. Explicit Solution.
For a sequence defined by a linear recurrence with characteristic de-
nominator Q(X) = ∏r

i=1(1 − αiX)mi , the n-th term is given by:

an =
r

∑
i=1

mi

∑
j=1

Aij

(
n + j − 1

j − 1

)
αn

i .

定理

Proof

Apply the linear operator [Xn] (coefficient extraction) to the partial
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fraction decomposition of A(X). From corollary 3.1 and theorem 3.4:

[Xn]
1

(1 − αiX)j =

(
n + j − 1

j − 1

)
αn

i .

Summing these contributions gives the result.
■

Corollary 3.3. Asymptotic Behaviour. Let α1 be the factor with largest
modulus among the αi in Q(X) = ∏r

i=1(1− αiX)mi (equivalently, 1/α1

is the root of Q with smallest modulus). If α1 is unique and has mul-
tiplicity m1, then as n → ∞:

an ∼
A1m1

(m1 − 1)!
nm1−1αn

1 .

推論

Proof

The term with the largest base αi dominates the sum. Among terms
with the same base, the term with the highest power of n (from the
binomial coefficient (n+m−1

m−1 ) ≈ nm−1

(m−1)! ) dominates.
■

Example 3.10. Repeated Roots. Consider the recurrence an =

4an−1 − 4an−2 for n ≥ 2, with a0 = 1, a1 = 4.
The generating function denominator is Q(X) = 1 − 4X + 4X2 =

(1 − 2X)2. Using the formula derived in theorem 3.5:

A(X) =
a0 + (a1 − 4a0)X

1 − 4X + 4X2 =
1

(1 − 2X)2 .

Here, α1 = 2 with multiplicity m1 = 2. Using the expansion for neg-
ative powers:

an =

(
n + 1

1

)
2n = (n + 1)2n.

Check: a2 = 3 · 4 = 12. Recurrence: 4(4)− 4(1) = 12. Correct.

範例

Non-Homogeneous Recurrences

If the recurrence contains a polynomial term f (n), we can solve it by
incorporating the generating function for f (n).

Lemma 3.2. Stirling Number Identity.
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For any integer ℓ ≥ 0:

∞

∑
n=0

nℓXn =
ℓ

∑
k=0

k!S(ℓ, k)
Xk

(1 − X)k+1 ,

where S(ℓ, k) are the Stirling numbers of the second kind.
引理

Proof

We differentiate the geometric series. Let D = X d
dX . Then D(Xn) =

nXn, so nℓXn = Dℓ(Xn). We apply Dℓ to (1 − X)−1. Using the iden-
tity nℓ = ∑ℓ

k=0 S(ℓ, k)(n)k, we can express the operator Dℓ in terms
of derivatives. Explicitly,

∑
n≥0

nℓXn = ∑
n≥0

ℓ

∑
k=0

S(ℓ, k)(n)kXn =
ℓ

∑
k=0

S(ℓ, k) ∑
n≥0

(n)kXn.

Note that ∑(n)kXn = Xk dk

dXk ∑ Xn = Xkk!(1 − X)−(k+1). Substituting
this back yields the result.

■

This lemma ensures that if f (n) is a polynomial, its generating func-
tion is rational. The method of partial fractions then applies to the
sum P/Q + F(X).

Example 3.11. A Non-Homogeneous Example. Solve an = 2an−1 +

n for n ≥ 1 with a0 = 0.
Multiply by Xn and sum:

A(X) = 2XA(X) + ∑
n≥1

nXn.

Using the lemma for ℓ = 1 (or simply differentiating ∑ Xn):

∑ nXn =
X

(1 − X)2 .

Thus:

A(X)(1 − 2X) =
X

(1 − X)2 =⇒ A(X) =
X

(1 − 2X)(1 − X)2 .

Partial fraction decomposition form:

X
(1 − 2X)(1 − X)2 =

A
1 − 2X

+
B

1 − X
+

C
(1 − X)2 .

Solving for constants yields A = 2, B = −1, C = −1.

an = 2(2n)− 1(1n)−
(

n + 1
1

)
(1n) = 2n+1 − 1− (n+ 1) = 2n+1 −n− 2.

範例
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3.6 Exercises

1. Recurrences for Polynomials. The Chebyshev polynomials Tn(x)
are defined by the recurrence Tn(x) = 2xTn−1(x) − Tn−2(x) for
n ≥ 2, with T0(x) = 1 and T1(x) = x.

(a) Determine the generating function F(z) = ∑∞
n=0 Tn(x)zn.

(b) Using the generating function, prove the explicit formula: For (b): Alternatively, relate the generat-
ing function roots to cos(nθ).

Tn(x) =
⌊n/2⌋

∑
k=0

(
n
2k

)
xn−2k(x2 − 1)k.

2. Fibonacci Sum Identities. Let Fn denote the Fibonacci numbers
(F0 = 0, F1 = 1). Use the generating function F(z) = z

1−z−z2 to
prove the following identities:

(a) ∑n
k=0 Fk = Fn+2 − 1.

(b) ∑n
k=0 F2k = F2n+1 − 1.

(c) ∑n
k=0 FkFn−k =

nFn+1+2(n+1)Fn
5 (Hint: Differentiate).

3. Domino Tilings. Let An be the number of ways to tile a 2 × n
rectangle with 1 × 2 dominoes.

(a) Establish the recurrence An = An−1 + An−2.

(b) Find the generating function A(z) = ∑ Anzn.

(c) Deduce the closed form for An.

4. Ternary Words. Let f (n) be the number of words of length n over
the alphabet {0, 1, 2} that contain no adjacent zeros (i.e., "00" is
forbidden).

(a) Show that f (n) satisfies the recurrence f (n) = 2 f (n − 1) +
2 f (n − 2) for n ≥ 2.

(b) Compute the generating function for f (n) and use it to find
an explicit formula involving

√
3.

5. Reciprocal Convolution. Compute the sum Consider the coefficient of zn in the
square of the generating function for
harmonic numbers, or use partial
fraction decomposition on the term

1
k(n−k) .

Sn = ∑
0<k<n

1
k(n − k)

.

6. Systems of Recurrences. Let An be the number of ways to tile
a 3 × n rectangle with 1 × 2 dominoes. Let Bn be the number of
tilings of a 3 × n rectangle with one corner missing (a shape of
area 3n − 1).



combinatorics (foundations) 71

(a) Prove the coupled recurrences:

An = An−2 + 2Bn−1

Bn = An−1 + Bn−2

(b) Solve this system using generating functions to find An.

7. End-to-End Evaluation. Evaluate the sum

sn =
n

∑
k=0

(
n + k

2k

)
2n−k.

(a) Find the generating function S(z) = ∑n≥0 snzn.

(b) Show that S(z) represents a rational function corresponding
to a second-order linear recurrence.

(c) Determine the explicit formula for sn.

8. Harmonic Convolution. Let Hn = ∑n
k=1

1
k be the n-th harmonic

number. Express the convolution sum Use the identity ∑ Hnzn = − ln(1−z)
1−z .

n−1

∑
k=1

Hk Hn−k

in terms of Hn and n.

9. Partition Generating Functions.

(a) Write down the generating function for pd(n), the number of
partitions of n into distinct parts.

(b) Write down the generating function for po(n), the number of
partitions of n into odd parts.

(c) Prove Euler’s Partition Theorem (pd(n) = po(n)) by showing
their generating functions are identical.

10. Making Change. Let cn be the number of ways to change n pence
using only 1p, 2p, and 5p coins.

(a) Write the generating function C(z) = ∑ cnzn as a rational
function.

(b) Using partial fractions or series expansion, determine the
asymptotic behaviour of cn for large n. (i.e., find a quadratic
polynomial P(n) such that cn ∼ P(n)).

11. Snake Oil Method. Re-prove the identity

n

∑
k=0

Fk = Fn+2 − 1

by evaluating ∑∞
n=0 (∑

n
k=0 Fk) zn as a product of generating func-

tions.
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