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0.1

0
Foundations

In this chapter, we re-establish the algebraic and logical foundations
of counting, beginning with the language of sets and extending to the
structure of product spaces and power sets.

The Language of Sets

We begin by formalising the operations on sets and their algebraic
properties. We adopt an intuitive definition of a set as a collection of
distinct objects, denoted as elements. If x is an element of a set E, we
write x € E. The set containing no elements is the empty set, denoted

by @. I hope you've read my set theory notes

Let ) denote a universal set. For subsets A, B C (), we define the as it gives a better introduction to the
. foundations needed.
fundamental operations.

Definition o.1. Set Operations.
Let A and B be sets.
(i) The union A U B is the set of elements in A or B:

x€AUB <= (x€ A)V (x € B).

(ii) The intersection A N B is the set of elements in both A and B:
x€ANB < (x€ A)A(x € B).

(iii) The difference A\ B consists of elements in A but not in B:
x€A\B < (x€ A)A(x ¢ B).

(iv) The symmetric difference AAB contains elements in exactly one
of the sets:

x€ AAB <= (x € AUB)A(x ¢ ANB).

(v) The complement A° (or A) is the set of elements in () not in A:

xe A = xe O\ A
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| 3
To manipulate these structures algebraically, we introduce the charac-
teristic function (or indicator function).

Definition o.2. Characteristic Function.
The characteristic function of a subset A C () is the function 14 :
Q — {0,1} defined by:

The correspondence between subsets and their characteristic func-
tions allows us to translate set-theoretic logical operations into arith-
metic operations.

Proposition o.1. Calculus of Characteristic Functions.
Let A, BC Q. Forall x € O):
(i) Intersection: 14np(x) = 14(x) - 1p(x).
(ii) Complement: 14c(x) =1—14(x).
(iii) Union: 1AUB(X) = 1A(X) + 1B(X) — 1A(x)13(x).
(iv) Difference: 14 p(x) = 14(x)(1—15(x)).
(v) Symmetric Difference: 1455(x) = 14(x) +15(x) —2-14(

=

)

1
]

¥

Note
AAB = (AUB)\ (AN B), and pointwise 1475 = |14 — 15].
Proof

These identities are verified pointwise. We demonstrate the union

and symmetric difference cases; the others follow similarly.

e For the union: If x ¢ AUB, then 14(x) = 0 and 15(x) = 0, so the
RHSis0.Ifx €« A\B,RHSis1+0—-0=1.Ifx € B\ A, RHS is
0+1-0=1.Ifx € ANB,RHSis 14+ 1—1 = 1. Thus the identity
holds.

* For the symmetric difference: If x € AAB, then exactly one of
14(x),1p(x) equals 1, so the RHSis 1. If x € ANBorx ¢ AUB,
then the RHS is 0. Thus the identity holds.

[ |

Example o.1. Algebraic Proof of Set Identities. We use characteris-
tic functions to prove the identity (A\ B)\C = A\ (BUC).

().
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Lasyc = 1as(l—1c)
=14(1-1p)(1 - 1¢)
=14(1-1p—1c +1pl¢)
=141 - (1 +1c — 1p1c)]
=1a(1—1puc)

= 14\ (Buc)-
Since the characteristic functions are identical, the sets are equal.

.49

Cartesian Products and Power Sets

We now define the construction of sets from components, essential
for defining counting spaces.

Definition 0.3. Cartesian Product.
The Cartesian product of two sets A and B, denoted A x B, is the set
of all ordered pairs (a,b) wherea € Aand b € B:

AxB={(ab):ae Abe B}

More generally, for a sequence of sets A, ..., A,, the product is the set
of n-tuples:

n
HAi:Al Xoee- xAn:{(al,...,an):ai EAiforalli}.
i=1

If A; = A for all i, we denote the product as A”. B AxB
T & 2 ° ° °
Unlike sets, where order and repetition are irrelevant ({a,b} = 1 e o
{b,a}), in ordered pairs the order is strict: (a,b) = (b,a) if and only if 1 1 1
a=b. 1 i 54
Example o0.2. Combinatorial Configuration. Consider a simpli-
fied model of a "menu" where one chooses a main dish from Figure 1: Visualisation of the
M = {my,mp}andasidefromS = {s1,52,53}. The setof all product {1,2,3} x {1,2}. The
possible meals is the Cartesian product M x S. set consists of 3 x 2 = 6 distinct
points.

M x S = {(my,s1), (m1,s), (m1,s3), (m2,51), (m2,52), (m2,53) }.

The size of the setis |[M x S| = |M| - |S| = 2 -3 = 6. This multiplica-
tive principle underlies much of combinatorics.

El
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Definition 0.4. Power Set.
The power set of a set E, denoted P(E), is the set of all subsets of E:

P(E)={A: ACE}.

Example 0.3. Power Set of a Pair. Let E = {1,2}. The subsets of E
are the empty set, the singleton sets, and E itself.

P(E) = {2, {1}, {2}, {1,2}}.

Observe that |P(E)| = 4.

Fet
Proposition 0.2. Monotonicity of the Power Set.
Let A and B be sets. If A C B, then P(A) C P(B).

Proof
Let X € P(A). By definition, this means X is a subset of A (X C A).
Since subset inclusion is transitive, if X € Aand A C B, then X C
B. Thus, X is a subset of B, which implies X € P(B).

]

Example o.4. Intersection of Power Sets. Consider the relationship
between power sets and intersection. We claim that for any sets A
and B:
P(A)NP(B) =P(ANB).

Fufl
Proof
Let X € P(A)NP(B). Then X € P(A)and X € P(B), meaning
X C Aand X C B. By definition of intersection, X C A N B, so

X € P(ANB). Conversely, if X € P(ANB), then X C AN B. This
implies X C Aand X C B,so X € P(A)NP(B).

0.2 Mappings and Functions

We move from static sets to dynamic relationships between them. A
mapping assigns elements of one set to another in a deterministic
fashion.

Definition o0.5. Mapping.
Let E and F be sets. A mapping (or function) f : E — F is a subset
f € E x F such that for every x € E, there exists a uniquey € F
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with (x,y) € f. We write y = f(x) or x — y.
E is the source (or domain).

- F is the target (or codomain).

-y is the image of x.

- x is an antecedent (or pre-image) of y.

The behaviour of a function regarding the uniqueness and existence
of antecedents classifies it into three fundamental types.

Definition 0.6. Injectivity, Surjectivity, Bijectivity.
Let f : E — F be a mapping.
1. Injective (One-to-one): Distinct elements map to distinct images.

Vx,yeE f(x)=fly) = x=v.

2. Surjective (Onto): Every element in the target has at least one an-

tecedent.
Vy € F, 3x € E such thaty = f(x).

Equivalently, the image set f(E) = {f(x) : x € E} equals F.

3. Bijective: The mapping is both injective and surjective. E F
Vy € F, 3lx € E such that y = f(x). -
e
Bijection

Example o.5. Cardinality via Mappings. Let E = P({1,2}) be the
power set of {1,2},and let F = {0,1,2}. Define f : E — Fby Figure 2: A bijective map re-

f(A) = |A| (the cardinality of the subset). quires |[E| = |F|. Every y has
- The elements of E are @ {1},{2},{1,2}. exactly one incoming arrow.
- The mappings are: f(@) =0, f({1}) =1, f({2}) =1, f{1,2}) =

2.

This function is surjective because o, 1, and 2 all appear as images.

It is not injective because f({1}) = f({2}) but {1} # {2}.

$o19]

When mappings are composable, properties of the individual func-
tions transfer to the composite.

Lemma o.1. Composition Properties.

Let f : E— Fand g: F — G be mappings. Let go f : E — G be the
composite defined by (go f)(x) = g(f(x)).

1. If f and g are injective, g o f is injective.

2. If f and g are surjective, g o f is surjective.

3. If f and g are bijective, g o f is bijective.

5|32
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Proof
We verify the first statement. Suppose (go f)(x) = (go f)(y). Then
g(f(x)) = g(f(y)). Since g is injective, f(x) = f(y). Since f is injec-

tive, x = y. The other proofs are analogous.
|

Note

If f is bijective, there exists a unique inverse mapping f~! : F — E
such that f~1 o f =idg and fo f~! = idf.

Binary Relations

A binary relation R on a set E is a subset of E x E. If (x,y) € R, we
write xRy. The structure of E is often understood by the properties
of relations defined upon it.

Definition o.7. Properties of Relations.

A relation R on E is:

- Reflexive: Vx € E, xRx.

- Symmetric: Vx,y € E, xRy = yRx.

- Antisymmetric: Vx,y € E, xRy AyRx) = x =y.
- Transitive: Vx,y,z € E, (xRy AyRz) = xRz.

These properties combine to form two crucial structures: equiva-
lences and orders.
Equivalence Relations and Partitions

An equivalence relation is a relation that is reflexive, symmetric, and
transitive. It generalises the notion of equality by treating different
objects as "the same" under a specific criterion.

Definition 0.8. Equivalence Class.
Let R be an equivalence relation on E. The equivalence class of x, de-
noted R|[x] (or [x]), is the set of all elements related to x:

Rlx] = {y € E: xRy}.

The quotient set E/R is the set of all equivalence classes.

™ o
o

Example 0.6. Rational Number Construction. Consider the set
Z x (Z\ {0}). We define a relation ~ by:

(a,b) ~ (c,d) <= ad = bc.

This is an equivalence relation. The class of (1,2) is the set
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{(1,2),(2,4),(3,6),...}, which represents the rational number
1/2. The set of rationals Q is formally the quotient set E/ ~.
Fob

There is a bijection between equivalence relations and partitions.
Recall that a partition is a collection of disjoint non-empty subsets
covering E.

Proposition 0.3. The Fundamental Theorem of Equivalence Relations.
Let R be an equivalence relation on E. Then the quotient set E/R forms

a partition of E. Conversely, any partition of E induces a unique equiv-

alence relation.

3

T

Proof

Since R is reflexive, x € R][x], so the union of classes covers E, and
no class is empty. We must show the classes are pairwise disjoint.
Suppose R[x] N R[y] # . Let z be an element in the intersection.
Then xRz and yRz. By symmetry zRy, and by transitivity xRy.
Ifw € Ry, then yRw, so xRw (transitivity via xRy), implying
w € R[x]. Thus R]y] C R[x]. By symmetry, R[x] = R[y]. Thus, two
classes are either disjoint or identical.

Conversely, let {E; };c; be a partition of E and define xRy if x and

y lie in the same block E;. Each x lies in some E;, so xRx. If xRy,
then yRx. If xRy and yRz, then x,y, z lie in the same block, so xRz.
Hence R is an equivalence relation and its classes are exactly the
blocks. Uniqueness follows because any relation with the same
partition relates precisely the pairs lying in the same block.

Order Relations

An order relation (or partial order), denoted <, is a relation that is
reflexive, antisymmetric, and transitive. The pair (E, <) is called a
partially ordered set (or poset).

- If for all x,y € E, either x < y or y < x, the order is total.
- We define x < yif x <yand x #y.

Example o.7. Divisibility Lattice. Let E = {1,2,3,4,6,12}. Define
a < bif a divides b (written a | b). Reflexivity (a | a), antisymmetry
(@ | bandb | a = a = b for positive integers), and transitivity
hold. This is not a total order: 2 { 3 and 3 { 2, so 2 and 3 are incom-
parable.

9
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Ve 12
Fo.19 / \
In a poset, we distinguish between "greatest" and "maximal". A .
- An element M < E is the greatest element if x < M for all x € E. /

- An element m € E is maximal if there is no y € E such that m < y.

In the example above, 12 is the greatest element. Consider E \ {12} = .
{1,2,3,4,6}. Here, 4 and 6 are both maximal, but neither is the great- \ /
est. 1

2

Figure 3: Hasse diagram of

The Natural Numbers the divisors of 12 ordered by

We denote the set of natural numbers by N = {0,1,2,...} and divisibility. Lines indicate the
IN* = N\ {0} = {1,2,3,...}. Fora,b € N, the discrete interval is covering relation.
defined as:

[a,b] ={ne€N:a<nandn < b}.

Ifa>b,[ab =
We accept the following axiom as the foundation of arithmetic proofs.

Axiom 1. Well-Ordering Principle Every non-empty subset of IN pos-

sesses a smallest element.
UNELA

This principle underpins the method of mathematical induction.

Theorem o.1. Principle of Mathematical Induction.
Let P(n) be a proposition depending on n € IN. If:
1. P(0) is true (Base Case), and

2. Vn € N,P(n) = P(n+1) (Inductive Step),
then P(n) is true for all n € N.

Proof

LetF = {n € IN : P(n)isfalse}. We wish toshow F = .
Suppose for contradiction that F # @. By the Well-Ordering Princi-
ple, F has a smallest element 7. Since P(0) is true, ng # 0, so ng —
1 € N. Since ny is the simallest counterexample, P(ng — 1) must be
true. By the inductive step, P(ngp —1) == P(ng). Thus P(np) is
true, contradicting ng € F. Therefore, F = @.

|

0.3 Permutations and Cardinality of Finite Sets

A permutation is, fundamentally, a rearrangement of a set’s elements.

Definition 0.9. Permutation.
Let S be a finite set. A permutation of S is a bijection o : S — 5. When
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S =1{1,2,...,n}, the set of all permutations of S is denoted by S, the
symmetric group of degree n.
Geometrically, one may visualise a permutation ¢ € S, as placing
n distinct items into n fixed positions. If o(j) denotes the item at
position j, the permutation is uniquely identified by the sequence of
values 0(1),0(2),...,0(n). This is the one-line notation:

oc=[c(1),0(2),...,0(n).

For instance, if n = 3 and ¢ maps 1 — 3,2 — 2, and 3 — 1, we write
c=[321].

The composition of two permutations o, p € S, is the function com-
position ¢ o p, defined by (¢ 0 p)(j) = o(p(j)). This corresponds to
successively applying two rearrangements.

Cycle Decomposition

While one-line notation captures the static arrangement, cycle no-
tation reveals the dynamical structure of the permutation under
iteration.

Definition o.10. Cycle Decomposition.

A cycle of length k is a list of distinct elements (x1, ..., x;) such that
o(x;) = xj41 for1 < i < kand o(x;) = x;. This cycle denotes the
permutation that cyclically permutes these x; and fixes all other ele-
ments. Every permutation can be decomposed uniquely into disjoint
cycles, up to reordering the cycles and cyclic rotation within each cy-

cle.
. O,
©O)

Example 0.8. Decomposition Example. Consider ¢ € Sy given in

one-line notation by [7,3,5,6,2,4,1]. Figure 4: Cycle decomposition
We compute the images: 0(1) = 7,0(2) = 3,0(3) = 5,0(4) = 6, foro = (2,3,5)(1,7)(4,6) € S7.
o0(5) =2,0(6) =4, 0(7) = 1. Tracing the orbits: The element 4 maps to 6, which
- 1+ 7+ 1: This forms the cycle (1,7). maps back to 4.

- 2+ 3+ 5+ 2: This forms the cycle (2,3,5).

- 4+ 6 +— 4: This forms the cycle (4,6).
Thus, the cycle decompositionisc = (2,3,5)(1,7)(4,6). (See fig-
ure 4).

ERid)
This decomposition allows us to classify permutations by their struc-
ture:

- An involution is a permutation ¢ such that ¢> = id. In cycle
notation, this means every cycle has length 1 or 2.
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- A permutation is fixed point free (or a derangement) if o(x) # x
for all x. In cycle notation, no cycles of length 1 appear.

Cardinality of Finite Sets

A set E is finite if it is empty or if there exists a bijection between E
and a discrete interval [1,n] = {1,2,...,n} for some n € IN*. To use n
as a measure of size, we must ensure it is unique.

Remark.

Here [1,n] is the discrete interval in IN from The Natural Numbers, a
finite set of consecutive integers. Thus [1,n] = {1,2,...,n}, not the
real interval [1,1] C R.

Theorem o.2. Uniqueness of Cardinality.

Let n,m € IN*. There exists an injection from [1, #] into [1,m] if and
only if n < m. Consequently, if there is a bijection between [1, n] and
[1,m], then n = m.

L
The direct implication is trivial: if n < m, the inclusion map i + i is
injective. For the converse, we proceed by induction on n.

Base Case (n = 1).

Since m > 1, the inequality 1 < m holds immediately.
S #

Inductive Step.

Assume the statement holds forsomen > 1.Letf : [l,n+
1] — [1,m] be an injection. Since the domain has at least two ele-
ments, m > 2,so m —1 € IN*. We construct an injection g : [1,n] —
[1,m—1].

e If f(n+1) = m,letg be the restriction f|[; ,). Its image lies in
[1,m]\ {m} =[1,m—1].

e If f(n+1) = k # m, define the transposition T = (k,m) € Sy
which swaps k and m. Then (to f)(n+ 1) = m. The function g =
(T o f)|j1,0) maps [1,n] injectively into [1,m —1].

By the inductive hypothesis, n < m — 1, which implies n +1 < m.
For the second part, if a bijection exists, we have injections in both
directions. Thus n < m and m < n, implying n = m.

EXLES

Definition o.11. Cardinality.
If E is a finite set in bijection with [1, 1], we define the cardinality of

Eas |E| =n.If E= &, we set |[E| = 0.
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The uniqueness theorem leads to a powerful combinatorial tool: to
count a set, we need only match it perfectly with a set we already
know how to count.

Proposition o0.4. Bijection Principle.

If two finite sets E and F are in bijection, then |E| = |F]|.
Proof
Let f : E — F beabijection. Letn = |F|, so there exists a bijec-

tiong : F — [1,n]. The composite go f : E — [1,n] is a bijection
(lemma o.1). By definition, |E| = n = |F|.

Bijective proof are among the most satisfying in combinatorics, but in
many cases are hard to come by, and subtle when they are found.

The Pigeonhole Principle

The contrapositive of the injection theorem yields the famous Pigeon-
hole Principle.

Corollary o.1. Pigeonhole Principle. Let E and F be finite sets.
1. An injection E — F exists if and only if |E| < |F|.

2. If |E| > |F|, then for any map f : E — F, there exists some y € F
such that [f~1({y})| > 2.
e
Proof
Letn = |E| and m = |F|. If an injection f : E — F exists, then the
composite with the bijections to intervals gives an injection [1,1n] —
[1,m], which implies n < m. If n > m, no injection exists. Thus, any

function must map two distinct inputs to the same output.
n

This principle provides non-constructive existence proofs for ele-
ments with specific properties.

Example 0.9. Coprime Pairs. Let A C [1,2n] be a subset of size n +
1. We claim A contains two integers that are relatively prime.

ER
Proof

Partition the set [1,2n] into n "pigeonholes" defined by pairs of con-
secutive integers: H; = {2i —1,2i} fori =1,...,n. Since |[A| =n+1
and there are only n such sets, by corollary 0.1, one set Hy must con-
tain two elements from A. The only way to contain two elements

13
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from Hy is to contain both 2k — 1 and 2k. Consecutive integers are
always coprime (gcd(x, x + 1) = 1). Thus, the pair exists.
|

Example o.10. Divisibility in Subsets. Let A C [1,2n] with |A] =
n + 1. We show that A contains distinct integers a, b such that a | b.

Fh)
Proof
Every positive integer x can be uniquely writtenas x = 25 . m,
where m is the "odd part" of x. For elements in [1,2n], the odd part
m must be in the set of odd numbers {1,3,5,...,2n — 1}. There are
exactly n such odd numbers. Define the pigeonholes as these n odd
values. Since we select # 4 1 numbers, two distinct integers x,y € A
must share the same odd part m. Letx = 2'mandy = 2%m.If

u<wv,thenx|y Ifv <u, theny|x.
]

Example o.11. The Friends Problem. In any gatheringofn > 2
people, there are at least two people who have the same number of

friends present at the gathering (assuming friendship is symmetric).
Let P = {p1,...,pn} be the set of people. Let f(p;) be the number
of friends of person p;. The possible values for f(p;) are integers in

the set {0,1,...,n — 1}. However, it is impossible for one person to
have n — 1 friends (everyone else) and another to have 0 friends (no
one).

- If someone has n — 1 friends, no one can have o friends. The pos-

sible values are {1,...,n —1}.

- If someone has o friends, no one can have n — 1 friends. The pos-
sible values are {0,...,n —2}.

In either case, the values of f range over a set of sizen — 1. Since

there are n people, by corollary 0.1, at least two people map to the

same value.

R
Example o.12. Periodicity of Permutations. We can use the Pi-
geonhole Principle to prove a structural property of the symmetric
group.
Letc € S,. Consider the sequence of powers: ¢,02,03,.... Since
Sy is finite, this infinite sequence must contain repetitions. We will
later see that |S,| = n!. Thus, there exist integers j > i > 1 such that
o' = oJ. Multiplying by the inverse permutation (¢~')’, we obtain:

id =0/

Letk = j—i Thenc* = id. This integer k is called a period of ¢.
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The smallest such positive k is the order of the permutation.
Fb

Corollary o.2. Inclusion Principle. Let F C E be finite sets. Then |F| <
|E|, with equality holding if and only if F = E.

e am
Proof
The inclusion map i : F — E defined by i(x) = x is an injection. By
corollary 0.1, |F| < |E|. If |F| = |E| but F # E, there exists e € E \ F.

Then F C E\ {e}, so |F| < |E| — 1, a contradiction.
u

0.5 Infinite Sets and Cardinalities

We now extend our scope to sets that cannot be enumerated by any
finite interval [1, n].

Definition o.12. Infinite Sets.
A set E is infinite if it is not finite. That is, for every n € IN*, there
is no bijection between E and [1, n].

To compare the sizes of infinite sets, we cannot rely on counting.
Instead, we appeal to the Bijection Principle (proposition 0.4) as the
definition of size itself.

Definition o0.13. Equipotence.
Two sets E and F are equipotent (denoted E ~ F) if there exists a bi-
jection f : E — F.

It is often easier to construct injections in both directions than a sin-
gle bijection. The following fundamental result assures us that these
conditions are equivalent.

Theorem o0.3. Cantor-Bernstein Theorem.
Let E and F be sets. If there exist injections f : E —+ Fand g : F —
E, then E and F are equipotent.

g

Note

The proof of this theorem requires a careful iterative construction of
fixed points and is beyond the scope of this chapter, but the result

is a standard tool in set theory.
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Countable Sets
The smallest order of infinity is that of the natural numbers.

Definition o0.14. Countability.
A set E is countably infinite if it is equipotent to IN. A set is countable
if it is either finite or countably infinite.

Intuitively, a set is countably infinite if its elements can be arranged

in a sequence xg, X1, X2, ... indexed by IN.

Proposition o.5. Basic Countable Sets.
The following sets are countably infinite:
1. The positive integers IN*.

2. The even natural numbers 2N = {0,2,4,... }.

3. The integers Z.

>
s

Proof

We exhibit explicit bijections for each case.

1. The map f : N — IN* defined by x — x + 1 is a bijection (its in-
verse is iy — y — 1).

2. The map f : N — 2IN defined by x — 2x is a bijection.

3. We can enumerate Z by alternating between non-negative and
negative integers: 0,—1,1,—2,2,.... Formally, define g : Z — IN
by:

2x if x >0,

X) =
$) —2x—1 ifx<O.

If x > 0, g(x) maps to the even numbers {0,2,4,...}. If x < 0,
let x = —k where k > 1; then g(x) = 2k — 1, mapping to the odd
numbers {1,3,5,... }. Since even and odd numbers partition IN,
g is a bijection.

n
Perhaps surprisingly, increasing the dimension of the set does not
increase its cardinality.
Proposition 0.6. Countability of the Plane.
The Cartesian product N x IN is countably infinite.

Proof

We require a bijection N x N — IN (or to a set known to be count-
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able, like IN*). Consider the function i : N X IN — IN* defined by:
h(x,y) =22y +1).

By the Fundamental Theorem of Arithmetic, every positive integer
n can be uniquely written as a power of 2 multiplied by an odd
number.

e Injectivity: If i(x,y) = h(a,b), then2*(2y +1) = 2%(2b + 1).
Equating the powers of 2 gives x = a4, and equating the odd parts
gives2y+1=2b+1 = y=1>.

* Surjectivity: For any n € IN¥, factor out 2s until the remainder is
odd to find the unique pre-image (x,y).

Since N x N ~ IN* and IN* ~ N, the product is countably infinite.
[ |

This result implies that taking subsets does not "break" countability.

Proposition o.7. Subsets of Countable Sets.
Every subset E C IN is either finite or countably infinite.

P

¥

Proof
Suppose E € NN is not finite. We rely on the Well-Ordering Prin-
ciple (every non-empty subset of IN has a least element) to recur-

sively construct a bijection f : IN — E. Define f(0) = min E. Define
f(1) = min(E \ {f(0)}). Recursively, for n > 1:

f(n) = min (E\{f(0),f(1),..., f(n=1)}).

This mapping is well-defined because E is infinite, so the set

E\{f(0),...,f(n—1)} is never empty.

* Injectivity: By construction, f is strictly increasing. If n =~ < m,
f(m) is selected from a set excluding f(n), so f(n) < f(m).

* Surjectivity: Suppose y € E is not in the image of f. Let S =
{k € E : k < y}.SinceE C NN, S is finite. However, the se-
quence f(0) < f(1) < ... must eventually exceed y, which im-
plies ¥ would have been selected as a minimum at some step k <
|S]. This is a contradiction.

ably infinite.

i

Corollary o.3. Rational Numbers. The set of rational numbers Q is count-

Y
5

3 6
(0,1) . . . .

1 2 4

(00 (1,0 (20)

Figure 5: The lattice N x IN.
The function h(x,y) =
2%(2y + 1) enumerates these
points by mapping them to
unique integers 1,2,3,....
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Proof

The inclusion map # +— nis an injection N — Q, so Q is at least
infinite. Conversely, we define an injection Q — Z x N*. Any
rational r can be uniquely written as an irreducible fraction p/g

withg > 0.Mapr — (p,q). We already established bijections
Z ~ INand N x N ~ IN. Composing these maps gives an in-
jection Q — IN. By proposition 0.7, the image is countable, so Q is

countable.
[ ]

Uncountable Sets

Not all infinite sets are created equal. Georg Cantor proved that the
"infinity" of the real numbers is strictly larger than that of the natural
numbers. The core of this discovery is the analysis of power sets.

Theorem o.4. Cantor’s Theorem.
For any set E, the sets E and P(E) are not equipotent. In particular, there
is no surjection from E to P(E).

&
Proof
Suppose for contradiction that there exists a surjection f : E —
P(E). Consider the "diagonal” set A defined by elements that are
not members of their own image:

A={x€e€E:x¢ f(x)}.

Since A C E, we have A € P(E). Because f is surjective, there must
exist some a € E such that f(a) = A. We ask: does a belong to A?

a€A <= a¢f(a) < ad A

This is a contradiction. Thus, no such surjection exists.
u

Since P(IN) is not countable, there exist infinities beyond the count-
able. This hierarchy continues indefinitely: [N| < |P(N)| <
|P(P(N))]....

Example 0.13. Binary Sequences. Let X% be the set of all infinite
binary sequences (4, ),eNn Where a, € {0,1}. This set is in bijection
with P(IN) via the characteristic function map: asubset S C 1IN
corresponds to the sequence where 4, = 1if n € S and 0 otherwise.
Consequently, the set of infinite binary sequences is uncountable.

ERal
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0.6 Exercises

1. The Algebra of Sets. Let A, B, C be subsets of a universal set ().

(a) Using the properties of the characteristic function 1x, prove
that the symmetric difference is associative (AAB)AC =
AA(BAC).

(b) Prove that the intersection distributes over the symmetric
difference: AN (BAC) = (ANB)A(ANC).

(c) Conclude that (P(Q2),A,N) forms a commutative ring with
identity. What is the additive identity and the multiplicative
identity of this ring?

2. Images and Pre-images. Let f : E — F be a mapping, and let
ABCE.

(a) Prove that f(AUB) = f(A)U f(B).

(b) Prove that f(ANB) C f(A) N f(B), also construct a counter-
example to show that equality does not hold in general for
part (b).

(c) Prove that f(ANB) = f(A) N f(B) for all subsets A, B if and
only if f is injective.

3. Canonical Decomposition of a Map. Let f : E — F be an arbitrary
mapping. We define a relation ~f on Eby x ~r y <= f(x) =
fy).

(a) Verify that ~ is an equivalence relation on E.

(b) Let E/ ~f be the quotient setand w : E — E/ ~f be the
canonical projection x — [x]. Construct a bijective map
f:E/~f—Im(f) such that f = 1o f o7, where ¢ : Im(f) < F
is the inclusion map.

(c) Application. If E is finite, use this decomposition to prove
that [Im(f)| = |E|/k if and only if every fiber f~!({y}) has
the same size k.

4. Conjugation and Cycle Structure. Let 7, T € S;; be permutations.

(a) Prove that if ¢ has the cycle decomposition (cy, ¢y, ..., k),
then the conjugate permutation T o ¢ o T~! has the cycle
decomposition (t(c1), T(c2),...,T(ck)).

(b) Use this to show that two permutations are conjugate (i.e.,

p = Tot ! for some 7) if and only if they have the same
number of cycles of each length.

(c) Find a T € Sy such that 70 (1,2)(3,4) ot ! = (1,3)(2,4).

5. The Subset Sum Problem. Let S be a subset of [1,14] with |S| = 6.

(a) Show that the number of distinct non-empty subsets of S is
63.

(b) Calculate the maximum possible sum of elements of a subset
of S.

(c) Use the Pigeonhole Principle to prove that there exist two dis-

19
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tinct disjoint subsets A, B C S such that the sum of elements
in A equals the sum of elements in B.
(d) Generalise this result: finding a condition on n and k such

that any subset of size k from [1, n] contains two disjoint
subsets with equal sums.

6. Derangements and Inclusion-Exclusion. Recall that for sets A, B,

the characteristic function satisfies 140 =1 — (1 —14)(1 — 1p).
(a) Generalise this identity to a finite collection of sets Ay,..., A, C

Q). Show that the size of their union is given by:

n

U A

i=1

= Y (=11

GAIC[1,n]

A

iel

(b) Let S, be the symmetric group. For each k € [1,n], let F, =
{c € S, | (k) = k} be the set of permutations fixing k.
Calculate the cardinality of the intersection of any m such
sets.

(c) A permutation is a derangement if it has no fixed points.

Let D, denote the number of derangements in S,,. Use the
Inclusion-Exclusion Principle to prove:

n (_1)k
Kkt

7. Algebraic and Transcendental Numbers. A real number « is
called algebraic if it is a root of a non-zero polynomial P(x) =
apx" 4 - - - 4 ag with integer coefficients (7; € Z). The height of
such a polynomial is defined as h(P) = n + Y[, |a;.

(a) Prove that for any integer H > 1, the set of polynomials
P € Z]x] satisfying h(P) < H is finite.

(b) Using the fact that a countable union of finite sets is count-
able, prove that the set Z[x] of all polynomials with integer
coefficients is countably infinite.

(c) Since a polynomial of degree n has at most n real roots, prove
that the set of all algebraic numbers A is countable.

(d) A real number is transcendental if it is not algebraic. Assum-
ing the result that R is uncountable, prove that the set of
transcendental numbers is uncountable.

(e) Reflection. Reconcile the following: "Most" numbers are
transcendental (in the sense of cardinality), yet it is generally
much harder to prove a specific number is transcendental
than to prove it is algebraic.



1.1

1
Principles of Counting

The objective of enumerative combinatorics is to determine the car-
dinality of specific sets, often described by parameters. Rather than
listing elements exhaustively, we seek to express these cardinalities as
functions of those parameters. In this chapter, we formalise the alge-
braic principles that allow us to reduce complex counting problems
to elementary set operations.

The Addition Principle

We begin with the most intuitive property of counting: if two sets
have no elements in common, the count of their union is the sum of
their individual counts.

Proposition 1.1. Addition Principle.
Let E and F be disjoint finite sets (i.e., EN F = @). Then:

|EUF| = |E| + |F|.

3

|
Proof

If either set is empty, the conclusion follows from the definition of
cardinality. Otherwise, let |E| = n and |F| = m. By definition, there
exist bijections f : E — [l,n]and g : F — [1,m]. We construct a
function h : EUF — [1,n + m] defined by:

h(x) f(x) ifxe€E,
g(x)+n ifxeF.

Since the image of E under h is [1, 1] and the image of F is

{n + 1,...,n + m}, the ranges are disjoint and cover [1,n + m].

Since f and g are bijections, & is a bijection. Thus, |E U F| = n + m.

]

This inductive pattern yields the following corollary.

We provide a prove in the later chap-
ters.
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Corollary 1.1. Generalised Addition Principle. Let Eq,. .., E, be pairwise
disjoint finite sets. Then:

n

UE

i=1

n

=Y |Eil.

i=1

Ham

When sets are not disjoint, simply adding their cardinalities over-
counts the elements in their intersection. To correct this, we subtract
the intersection.

Corollary 1.2. Inclusion-Exclusion Principle (Two Sets). Let E and F be
finite sets. Then:

|[EUF| = |E| + |F| — |[ENF].

Hem
Proof
Let G = E N F. We may decompose the sets into disjoint compo-
nents:

E=(E\G)UG and F=(F\G)UG,

where U denotes a disjoint union. Similarly, the union decomposes
as:
EUF=(E\G)U(F\G)UG.

Applying proposition 1.1 to these disjoint unions:
[El = [E\G|+|G| = |E\G| = [E| - [G].
[F[ = [F\ G|+ |G| = [F\G| = |F| - |G|
|EUF| = |E\ G|+ |F\ G| +]G]|.
Substituting the expressions for the differences:
[EUF| = ([E[ = |G]) + (IF| = |G]) + |G| = [E| + [F| = [G].

Since G = E N F, the result follows.

[ |
The decomposition underlies the next example. Figure 1.1: Decomposition of
Example 1.1. Lattice Points in Overlapping Rectangles. Consider E U Finto three disjoint sets:
two discrete rectangular regions in IN?: E \ G, F \ G, and the intersec-

tion G =ENF.
A=[1,3]x[1,2] and B=[2,4] x[2,3].

We wish to calculate |A U B].
First, we determine the size of each set using the definition of the
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Cartesian product:
Al =1[L3]]-|[1,2] =3-2=6.

Next, we identify the intersection A N B. A point (x,y) is in the
intersection if x € [1,3] N [2,4] and y € [1,2] N [2,3].

[1,3]N[2,4] = {2,3}, [1,2]N[2,3] ={2}.
Thus, ANB = {2,3} x {2}, and |[ANB| =2-1= 2. By corollary 1.2:

|AUB| =6+6—2=10.

The Shepherd’s Principle

We formalise a technique often summarised as "to count the sheep,
count the legs and divide by four". This principle relates the cardinal-
ity of a domain to the cardinality of a codomain via the structure of
the mapping between them.

Proposition 1.2. Sum of Fibres.
Let E and F be finite sets and let f : E — F be a mapping. Then:

El=Y 1f )l

yeF

»
&

Proof
The set E is partitioned by the fibres of f. Specifically,
E=U o).

yeF

Ify # z then f~1(y) N f~1(z) = @, as no element can map to both
y and z. By the Generalised Addition Principle, the cardinality of E is
the sum of the cardinalities of these disjoint fibres.

[

This immediately provides a bound for surjective mappings.

Corollary 1.3. Surjection Bound. If f : E — F is a surjective map be-
tween finite sets, then |F| < |E|.

s
Proof

Since f is surjective, every fibre is non-empty, so |f~!(y)| > 1 for all

23
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y € F. Using proposition 1.2:
El=Y lf Wl = 1=K
yeF y€eF

The most powerful application arises when the map is regular, i.e.,
every fibre has the same size.

Corollary 1.4. Shepherd’s Principle. Let f : E — F be a map between
finite sets. If there exists a constant p € IN* such that |f~1(y)| = p
for all y € F, then:

El =p-[F].
b
Proof
Applying proposition 1.2:
El=Y p=p- Y 1=p-IFl
yeF yeF
u

Example 1.2. Counting via Projections. Let S be the set of ordered
pairs (i,7) € [1,4] x [1,4] such that i < j. We wish to find |S].
Consider the mapping f : S — [1,3] defined by f(i,j) = i. The im-
age is indeed [1,3] because if i = 4,noj € [1,4] satisfies 4 < j. Let
us examine the fibres:

CFory =1 f1(1) = {(1,2),(1,3), (14)}, s0 [ 1(1)] = 3.

CFory =2 £1(2) = {(2,3),24)}, 50 1 (2)] =2

- Fory=3: f1(3)={(3,4)},50 |[f'(3)| = 1.

Here the fibres are not of uniform size, so we apply proposition 1.2:
IS|=3+2+1=6.

$o.45

The Multiplication Principle

The Shepherd’s Principle allows us to derive the cardinality of Carte-
sian products.

Proposition 1.3. Multiplication Principle.
Let E and F be finite sets. Then:

|E > F| = |E[ - [F|.

¥
&

Figure 1.2: Visualisation of

the Shepherd’s Principle with

p = 3. Each element in F "pulls
back" to exactly 3 elements in E.
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Proof

Consider the projection mapping w : E X F — F defined by
n(x,y) = y. For any fixed y € F, the fibre is:

mH(y) = {(xy) :x € E}.

The map x — (x,y) is a bijection from E to 7~ !(y). Thus,
|7~ Y(y)| = |E|foreveryy € F.By the Shepherd’s Principle with
p = |E

|E x F| = |E[ - [F|.

By induction, this extends to finite sequences of sets.

Corollary 1.5. Generalised Multiplication. Let Eq, ..., E, be finite sets.

Then: ;
|Ey X Ep x - x Ey| = [T |Eil-
i=1
Heam
Proof
We proceed by induction on n. The base case n = 1 is trivial. As-

sume the result holds for n — 1. Let A = E; X --- X E;_1. Then E; X
-+ X Ey is naturally identified with A x E,. By proposition 1.3:

|AX En| = |A] - [Enl.

By the inductive hypothesis, |[A| = |Eq]...|E,—1|, completing the
proof.
]

This leads to the counting of strings or tuples of fixed length.

Corollary 1.6. Cardinality of Powers. If E is a finite set, then

|E"| = |E[".
3k
Proof
Apply corollary 1.5 with Ey = Ey = --- = E; = E. Then
n
|E"| = |Ex x -~ x Eu| = [ T|Ei| = |E| - |E|---|E| = [E[".
;— "'
i=1 n factors
|

Example 1.3. Alphabetical Combinations. How many distinct
words of length 5 can be formed using the standard 26-letter alpha-
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bet A= {a,b,...,z}?
A word of length 5 is an element of A%. By corollary 1.6:

|45 = |A]® = 26° = 11,881,376.

#o )
Example 1.4. Decimal Representations. How many non-negative
integers have at most 3 digits?
These integers correspond to the set {0,1,...,999}. Each can be
uniquely represented as a triplet (dp, d1,dp) € {0,...,9}3 by
padding with leading zeros (e.g., 42 — 042). The set of dig-
its D = {0,...,9} has cardinality 10. Thus, the total count is
|D3| = 10% = 1000.

ER
Example 1.5. Restricted Digits. How many integers with at most 3
digits consist entirely of even digits?
The set of allowed digitsis E = {0,2,4,6,8}, with |[E]| = 5. As
before, we pad with leading zeros to identify each integer with a
triple in E3. We are counting elements of E°.

|E3| = 5° = 125.

£
Example 1.6. Counting Functions. Let A = {a,b,c} and B = {0,1}.
How many distinct functions f : A — B exist?
A function is uniquely determined by the triplet of values
(f(a), f(b), f(c)). Since each value must belong to B, the set
of all such functions is in bijection with the Cartesian product
B x B x B = B3. By corollary 1.6:

B3 = |B]> =2° =38.

In general, the number of mappings from a set of size n to a set of
size m is m".

$o19]

1.2 Arrangements and Permutations

We now apply these principles to solve classical enumeration prob-
lems. These configurations serve as the building blocks for more
complex combinatorial structures. We begin by counting sequences
where order matters.

Consider the construction of a sequence of length k using symbols
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from a finite set (an alphabet).

Proposition 1.4. Words of Length k.
Let X be a finite alphabet with |X| = n. The number of words of length
k (sequences of k elements from X) is nk.

Proof
A word of length k is an element of the Cartesian product . By
corollary 1.6, |Zk\ = |Z|k = nk.

[ |

Remark.

Order is part of the data: for instance, 042 and 240 are different
words of length 3 over {0,...,9}.

If we require the elements in the sequence to be distinct, we are
counting arrangements (or permutations of subsets).

Definition 1.1. Falling Factorial Power.

Forn € Nandk € N, the falling factorial power, denoted 7 (or
sometimes (1)), is the product of k terms starting at n and decreas-
ing by 1

nk:]% (n—1)=n(n—1)---(n—k+1).

—_

i
o

If k > n, then nk = 0. By convention, nl=1.

e
S

Proposition 1.5. Ordered Selections.
The number of ways to choose k distinct elements from a set of size n

and arrange them in a sequence is n*.
Proof
We construct the sequence element by element.
¢ There are n choices for the first element.
e There are n — 1 choices for the second element.
L4 ...
e There are n — (k — 1) choices for the k-th element.
By corollary 1.5, the total count is n(n —1)--- (n —k +1) = nk.
[ |

In the specific case where k = n, we are arranging the entire set.

Definition 1.2. Factorial.

The factorial of a non-negative integer n is defined as n! = n’. Ex-
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plicitly:
We define 0! = 1.

Corollary 1.7. Permutations. The number of ways to arrange n distinct
objects in a row (i.e., the number of bijections from a set of size n to it-

self) is n!.

Hedh
Example 1.7. Signal Flags. Suppose a ship has 10 distinct signal
flags.

- If the ship hoists a sequence of 3 flags on a mast, the number of
possible signals is 102 = 10-9 - 8 = 720.

- If the ship arranges all 10 flags in a row for inspection, the num-
ber of arrangements is 10! = 3,628, 800.

.4

Circular Arrangements

Counting arrangements on a circle differs from the linear case be-
cause absolute positions do not exist; only relative order matters. Two
circular configurations are considered identical if one can be obtained
from the other by rotation.

Proposition 1.6. Circular Permutations.
The number of ways to arrange n distinct objects around a circle is (1 —

.

Proof
We apply corollary 1.4. Let L be the set of linear arrangements of the
n objects, so |[L| = n!. Let C be the set of distinct circular arrange-

ments. Consider the map f : L — C that takes a linear arrangement

(x1,...,x,) and wraps it into a circle. For any specific circular ar-

rangement, there are exactly n linear arrangements that produce it

(corresponding to starting the read-out at any of the n positions). (2) TRotate

Thus, the map f is n-to-one. By corollary 1.4:
@ Same Cycle @

L !
L=n-lc] = [c]=E =™ 1y
noon
. ®
Alternatively, one may fix a distinguished element ("the head") at the Figure 1.3: For n = 4, the linear
"top" of the circle to break the rotational symmetry. The remaining sequences (1,2,3,4), (2,3,4,1),

(3,4,1,2), and (4,1,2,3) all
represent the same circular ar-
rangement.
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n — 1 elements can then be arranged linearly in the remaining n — 1
positions in (n — 1)! ways.

Counting Mappings

We now turn to the enumeration of functions between finite sets
E and F, classifying them by their properties (arbitrary, injective,
surjective, bijective).

Total Mappings and Subsets
Let F(E, F) denote the set of all functions f : E — F.

Proposition 1.7. Number of Mappings.
Let E and F be finite sets. Then:

[F(EF)| = |F|IFl.
Proof
Let E = {xy,...,x¢} wherek = |E|. A function f € F(E,F)is

uniquely determined by the tuple of its values (f(x1),..., f(xx))-
The map ¢ : F(E,F) — F¥defined by f — (f(x1),...,f(x))isa
bijection. By corollary 1.6, |F¥| = |F|k = |F|IEl.

[
This result provides a combinatorial proof for the cardinality of the
power set.
Theorem 1.1. Cardinality of the Power Set.
For any finite set E, the number of subsets is |P(E)| = 2/E.
il

Proof
Recall from proposition 0.1 that subsets of E are in bijection with
their characteristic functions. The map A +— 14 is a bijection from
P(E) to F(E, {0,1}). Applying the previous proposition with
F=1{01}

[P(E)| = |F(E,{0,1})] = 2.

Injections and Bijections

Let Finj(E, F) denote the set of injective mappings from E to F.

29
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Proposition 1.8. Number of Injections.
Let |E| =k and |F| = n.

- — uk —
Finy (B, B)| = = =

If k > n, the value is o.

>

A

Proof

Let E = {xq,...,x¢}. To define an injection, we must assign distinct
images in F to the elements of E. This is equivalent to choosing

an ordered sequence of k distinct elements from F (where the i-th
element of the sequence is the image of x;). By proposition 1.5, the

number of such ordered selections is 7.

[
Example 1.8. Server Allocation. A data centre needs to assign 3
distinct processing jobs (J1, J2, J3) to a cluster of 50 available servers.
No server may handle more than one job.
This is an injection from the set of jobs to the set of servers. The
number of possible assignments is 502 = 50 x 49 x 48 = 117, 600.

E X

Corollary 1.8. Number of Bijections. Let E and F be finite sets with |E| =
|F| = n. The number of bijections from E to F is n!.

i

Proof

By lemma 0.1, a map between sets of equal finite cardinality is bijec-
tive if and only if it is injective. Thus, we count the injections:

nt=nn-1)---(1) =nl

Surjections and Partitions

Counting surjective mappings is more subtle. We rely on the relation-
ship between functions and partitions.

Definition 1.3. Stirling Numbers of the Second Kind.
The Stirling number of the second kind, denoted S(1, k), is the num-
ber of ways to partition a set of 1 elements into k non-empty subsets.
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Proposition 1.9. Surjections via Partitions.
Let E and F be finite sets with |E| = n and |F| = k. The number of
surjective functions from E to F is:

|]:surj(E/F)| =k!- S(n,k),

Proof
Every surjection f : E — F induces a partition of E into k non-

empty fibres {f~1(y) : y € F}. Conversely, given a partition of E
into k parts, we can construct a surjection by assigning each part to
a unique element of F. There are k! ways to assign these k parts to
the k elements of F (permutations of F). Thus each partition yields
exactly k! surjections, and the total count is k! - S(n, k).

To compute S(,k), we use a recurrence relation derived by consider-
ing the placement of a specific element.

Theorem 1.2. Recurrence for Stirling Numbers.
For1l <k <mn:

S(n,k)y=Smn—1,k—1)+k-S(n—1,k).

The boundary conditions are S(n,1) =1 and S(n,n) = 1.
&

Proof
Let E = {1,...,n}. Consider the last element n. In any partition of
E into k parts, there are two mutually exclusive possibilities:

Type 1. The element n forms a singleton set {n}. Removing this
set leaves a partition of {1,...,n — 1} into k — 1 parts. There are
S(n —1,k — 1) such partitions.

Type 2. The element n belongs to a set with other elements. If
we remove 7 from its block, we are left with a partition of
{1,...,n — 1} into k parts. To reconstruct the original partition,
we could have added 7 to any of the k existing blocks. Thus,
there are k- S(n — 1, k) such partitions.

By proposition 1.1, S(n, k) = S(n — 1,k —1) + kS(n — 1,k).
|

Example 1.9. Study Groups. We wish to split a group of 4 students
into 2 non-empty study teams. The order of teams does not matter,

only the grouping. This is S(4,2).
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Using the recurrence:

5(4,2) = S(3,1) +25(3,2)
= 1+2(5(2,1) +25(2,2))
—1+2(1+2 (1))
=1+2(3) =

The 7 partitions correspond to:
- 4 splits of type 3 4 1 (one student works alone).

- 3 splits of type 2 4 2 (pairs).

X

Analytical Properties of the Factorial

The factorial function grows extremely rapidly. While precise eval-
uation requires computation, we can establish useful bounds using
elementary inequalities.

Theorem 1.3. Bounds on the Factorial.

Foralln > 1:
n
Vi <l < (”;Ll)

gl
We require the following lemma.
Lemma 1.1. AM-GM Inequality.
For non-negative real numbers g, b:
\/% < a+b )
2
with equality if and only if a = b.
g

Proof

This follows from the square of a real number being non-negative:

0< (Va— Vb =a—2Vab+b — 2vVab <a+b.

Proof of theorem 1.3

Consider the square of the factorial:

(m)?=(1-2--n)-(n-(n—=1)---1) = [Jk(n+1—k).
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Taking the square root:

n! :ﬁ\/k(n+1fk).
k=1

Upper Bound. Apply the AM-GM inequality to each term k and
n+1—k
k+(n+1—-k) n+1

— < =
k(n+1—k) < 2 5

Multiplying these n inequalities yields n! < (nT+1>"

Lower Bound. We observe that the function f(x) = x(n + 1 — x)
is a parabola opening downwards, with minimum values at the
endpoints of the interval [1,n]. Fork € [Ln],k(n+1—k) >
1(n+1—-1) = n. Thus, \/k(n+1—k) > /n. Multiplying these

n terms yields n! > (y/n)".

|
For large n, the behaviour of n! is described precisely by Stirling’s
Formula.
Theorem 1.4. Stirling’s Formula.
Asn — oo,
n\”"n
n! ~+\2nn (E) ,
meaning that
!
lim ———— =1,
n—00 nne—n 271'1’[
and more precisely, for all n > 1,
n"e™"2mn exp ! <nl < n"e "V2mnexp 1
12n+1 ' 12n )"
The inequalities quantify the error in the limit.
gl
Note
The proof of Stirling’s formula requires analytical techniques (such
as the Gamma function or integral approximations) beyond the
scope of this chapter.

Exercises

1. Cycle Structures and Involutions. The text establishes that the
cycle notation is unique up to the ordering of disjoint cycles and
the cyclic shift of elements within a cycle (e.g., (1,2,3) is identical
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to (2,3,1)).

(a) Prove that the number of distinct cycles of length k that can
be formed from a fixed subset of k elements is (k —1)!.

(b) Let o € Sg. Determine the number of permutations consisting
of exactly three disjoint cycles: one of length 4, one of length
3, and one of length 2.

(c) Recall that an involution is a permutation composed solely of
cycles of length 1 (fixed points) and length 2 (transpositions).
Determine the number of involutions in Ss.

2. The Divisor Function. Let Sq,...,S; be pairwise disjoint finite sets
with cardinalities |S;| = a;.

(a) Prove that the number of subsets of the union Ule S; that
contain at most one element from each §; is given by

P = ﬁ(ﬂi =+ 1)

i=1

(b) Let n be a positive integer with prime factorisation n =
pit...p{". Let T(n) denote the number of positive divisors
of n. Using the result above, prove that t(n) = [T'_;(a; + 1).

(c) Deduce that 7(n) is odd if and only if # is a perfect square.

3. Binary Expansion and Sums.

(a) By interpreting the sum as a count of non-empty subsets
of specific types, or by using the geometric series formula,
prove:

n
2 2k —_ 2n+1 1.
k=0

(b) Evaluate the sum S = YI_; (n — k)2¢1.

Remark.

Consider the total cardinality of all subsets of {1,...,n}
containing at least two elements, or count pairs (A, x)
where A C {1,...,n}and x € A is the second largest
element.

4. Administrative Inconsistency. The chair of a mathematics depart-
ment decrees that every student must enrol in exactly 4 of the 7
available courses. The registrars report the following enrolment
numbers for the courses: 51, 30, 30, 20, 25, 12, and 18. Use the
Shepherd’s Principle (or simple counting of student-course pairs)
to demonstrate that the registrars’ data must be erroneous.

5. Finite Mappings. Let E be a finite set with |E| = n.

(a) A function f : E — E is called a retraction (or idempotent) if
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fof = f.Prove that f is a retraction if and only if f(x) = x
for all x € Im(f).

(b) Determine the number of retractions on E. For (b): Classify by the size of the

L o image set k.
(c) Prove that for finite sets, a map f : E — E is injective if and

only if it is surjective. Give a counter-example for infinite
sets.

6. Counting Relations. Let E be a set with |E| = n. Recall that a
binary relation is a subset of E x E. Determine the number of
relations on E that are:

(a) Reflexive.

(b) Symmetric.

(c) Both reflexive and symmetric.

(d) Neither symmetric nor antisymmetric.

7. Contiguous Permutations. We wish to count the number of per-
mutations ¢ of {1,...,n} such that the set of elements {c(1),...,0(k)}
forms a set of consecutive integers (an interval) for every k =
1,...,n.

(a) List all such permutations for n = 3 and n = 4.
(b) Prove that the total number of such permutations is 2"~ 1.
Remark.

Consider the possible values for the last element o (1) rela-
tive to the preceding set.

8. Euler’s Summation Identity. Let ¢(n) be the Euler totient func-
tion.

(a) Let S ={1,...,n}. Partition S into disjoint sets A; = {k € S :
(k,n) = d} where d runs through the divisors of n.

(b) Prove that |A4| = ¢@(n/d).

(c) Deduce the identity Y 4, ¢(d) = n.

9. Visual Sums.

(a) By arranging unit squares into a staircase shape (a "Young

diagram") for 1,...,n and joining two such staircases, give a

geometric proof that } ), k = n(n; b,

(b) By considering the concentric "L-shaped" gnomons of a
square of side length n(n 4 1)/2, or otherwise, prove that

n n 2
ZP:( 0.
k=1 k=1

10. Translational Pigeonhole. Let A be a subset of {1,2,...,100} with
cardinality |A| = 55.

35
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(a) Consider the set B = {x +9 : x € A}. What is the range of
values in B?

(b) Apply the Pigeonhole Principle (via intersection cardinality)
to A and B to prove that there exist distinct elements x,y € A
such that [x —y| = 9.

(c) Does the property hold if |A| = 54? Construct a counter-
example or prove it does.

11. Partial Functions. A partial function from E to F is a function
defined on a subset D C E (the domain of definition) mapping to
F.

(a) Let |E| = nand |F| = m. Prove that the number of partial
functions from E to F is (m + 1)".

(b) Explain this result by adjoining a special "undefined" element
1l toF.

12. Stirling Calculations.

(a) Using the recurrence relation S(n,k) = S(n — 1,k —1) +
kS(n — 1,k), compute the table of Stirling numbers of the
second kind forn =1ton =5.

(b) A "rhyme scheme" for a poem of 7 lines can be modeled as a
partition of the set of lines {1,...,n} into rhyming groups. If
we distinguish the order of appearance of rhyme sounds (e.g.,
AABB is distinct from BBAA), the number of schemes is the
Bell number B, = Y} S(n, k). Calculate Bs.

13. Non-Attacking Rooks.

(a) In how many ways can 8 rooks be placed on a standard 8 x 8
chessboard such that no two rooks share a row or column?

(b) Generalise this to placing k rooks on an n x n board (k < n)
such that no two attack each other.

(c) Suppose the board has a "hole" at position (1,1) (i.e., no rook
can be placed there). How many ways can # non-attacking
rooks be placed on this defective n x n board?

14. Symmetric Boolean Functions. A Boolean function is a map f :
{0,1}" — {0,1}.

(a) Determine the total number of Boolean functions of n vari-
ables.

(b) A Boolean function is symimetric if its value depends only on
the number of 1s in the input (i.e., the weight of the input
vector). Determine the number of symmetric Boolean func-
tions of n variables.

For (c): Use the subtraction principle:
Total arrangements minus those where
arookis at (1,1).
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2
Combinatorial Coefficients

We now focus on the specific problem of counting k-element subsets,
which yields the binomial coefficients.

Binomial Numbers

Recall that Py (E) denotes the set of all subsets of E with cardinality k.
We formalise the size of this set as a distinct combinatorial quantity.

Definition 2.1. Binomial Coefficient.
Let n,k € IN. The binomial coefficient (}) (read "n choose k") is the
number of subsets of size k of a set of size n:

(}) = Pl

If k <0 or k > n, we define () = 0.

We previously determined the number of k-arrangements (ordered
sequences of distinct elements) to be 1. Since a subset is an un-
ordered selection, we can derive the formula for (}) by "forgetting"
the order.

Theorem 2.1. Factorial Formula.
Forme Nand 0 <k <n:

T
Proof

Let E = [1,n]. Let Ay be the set of k-arrangements of E, and let
Sk = Pk(E). Consider the mapping ¢ : Ay — Sk defined by:

G(x1, .., xp) = {x1,...,x¢}

For any subset A € &, the fibre ¢~ (A) consists of all possible
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orderings of the elements of A. By the result on permutations,

|p~1(A)] = k! Since the fibres have constant size, we apply the
Shepherd’s Principle:
| A| = k! |Sk|.
Substituting | Ax| = (nﬁilk)!' we obtain | S| = ﬁlk),
|
Fundamental Identities
While the factorial formula allows for computation, combinatorial
reasoning often provides more insight into the properties of these
numbers.
Proposition 2.1. Symmetry.
For0<k<mn,
n\ [ n
k) \n—-k)

Proof
Consider the mapping f : Px([1,n]) — P, _x([1,n]) defined by tak-
ing the complement:

f(A) = [1,n]\ A.
This map is a bijection (its inverse is the same operation). Thus,
the cardinalities are equal. Combinatorially, choosing k elements to
include is equivalent to choosing n — k elements to exclude.

[ |
One of the most essential recurrences for binomial coefficients allows

their construction without direct factorial computation.

Theorem 2.2. Pascal’s Identity.
Forn € IN* and k € Z:

0=+ |

Proof

If k < 0ork > n, the identity holds trivially (o = 0). If k = 0, both
sides equal 1. Assume 1 < k < n. Let E = [1,n]. We partition Py (E)
based on whether the specific element # is included in the subset.

Subsets containing n. These are of the form A’ U {n}, where A’ C
[1,n — 1] has size k — 1. There are (}|) such sets.

Subsets not containing n. These are subsets of [1,n — 1] of size k.
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1

There are (", ') such sets. RS
/N /N
By the Addition Principle, (}) = (}~1) + ("} 1). PN
. 1 3 3 1

/N /N 72 N/ N\
1 4 6 4 1
/N 7 N/ N/ N/ N\
1 5 0 10 5 1

The Binomial Theorem

. . - . . Figure 2.1: Pascal’s Triangle.
The name "binomial coefficient" arises from the expansion of powers & &

of a binomial (4 + b). Lines connect each entry to

the two above it whose sum

Theorem 2.3. Newton’s Binomial Theorem. it equals, illustrating Pascal’s
Let R be a commutative ring and let a,b € R. For any n € IN: Identity. The highlighted exam-
; ple shows 3 +3 = 6.
n
a+b)t = ( )akb"k.
wor-£

Proof
We offer a combinatorial proof. Consider the product:

(a+b)"=(a+b)-(a+b)---(a+D).

n factors

Expanding this product involves choosing one term (either a or b)
from each of the 7 factors. A term of the form a*b" ¥ is generated
whenever we choose a from exactly k factors and b from the re-
maining n — k factors. The number of ways to choose the k factors
contributing an a is precisely the number of subsets of indices of
size k, which is (}). Summing over all possible values of k yields
the result.

Remark.

One may also prove this by induction using t/eoren 2.2. For the
inductive step:

(@40 = (a+b) Y (Z) ik

k=0
_ i (”) Apn—k i (”) akpn—1,
i=o \k o \k

Re-indexing the sums to align powers of a and b recovers the coeffi-
cient ;") + (7) = ("}")-

This theorem immediately yields sums over rows of Pascal’s triangle.



40 GUDFIT

Corollary 2.1. Sum of Coefficients. For n € IN:
1 Yioo(y) =2"
2. Yo (=D () =0 (for n > 1).

Proof
Seta = 1,b = 1in theorem 2.3 to obtain (1 + 1)" = 2". Seta =
—1,b =1 to obtain (-1+1)" = 0.

Double Counting and Identities

A powerful method for proving combinatorial identities is double
counting (or Fubini’s Principle): counting the size of a set (often a
subset of a Cartesian product) in two different ways.

Proposition 2.2. The Captain’s Identity.

For n,k € IN*:
k n ., n—1
k) “\k—-1)

>
&

Proof
Let E be a set of size n. Consider the set of pairs consisting of a
committee of size k and a designated chairperson from within that

comimittee:
C={(x,8):SCE,|S|=kxeS}.

We compute |C| in two ways:

Choose the committee, then the chair. There are (}) ways to choose
the set S. Once S is chosen, there are k choices for x € S. Thus
ICl = k(p)-

Choose the chair, then the rest of the committee. There are n ways
to choose the element x &€ E. The remaining k — 1 members of
S must be chosen from E \ {x}, which has size n — 1. There are
(7~1) ways to do this. Thus |C| = n(}]).

Equating the two expressions yields the identity.
[ |

Example 2.1. Mean of the Binomial Distribution. We calculate the
sum Y7o k(%)
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Using the identity k(}) = n(}_}):

Sr(i) = i)

k=1

This confirms that the "average" size of a subset weighted by bino-
mial counts is n/2, which aligns with the symmetry of the binomial

distribution.

#o )
Example 2.2. Vandermonde’s Convolution. Consider two disjoint
sets A and Bwith |[A|] = rand|B|] = m. We wish to choose a
committee of size k from A U B.

Directly, this is ("}"). Alternatively, any such committee contains j
members from A and k — j members from B, for some 0 < j < k.
By the Multiplication Principle, for a fixed j, there are (;) (k’fj) such

committees. Summing over j gives the identity:

2003

E X

2.2 Multisets

In many contexts, we wish to select elements where repetition is
allowed. This gives rise to the concept of a multiset.

Definition 2.2. Multiset.

Let E be a finite set. A multiset on E is a mapping f : E — IN. The
value f(x) represents the multiplicity of element x. The size of the mul-
tiset is the sum of multiplicities )< f(x).

We often denote a multiset of size k as a "k-combination with rep-
etition". If E = {x1,...,x,}, a multiset of size k corresponds to a
solution to the Diophantine equation:

ay+ay+---+ay,=k a €N,

where a; = f(x;).



42 GUDFIT

Theorem 2.4. Multiset Counting.
The number of multisets of size k from a set of 7 elements is:

()¢

i
Proof

Let E = {1,...,n}. A multiset of size k can be represented as a non-
decreasing sequence of integers:

1<x << <x <n

We map this sequence to a strictly increasing sequence y; < vy <
-+ < Yy defined by:
yi=xi+(i-1).

Since 1 < x7 and x; < n, we have:

1<y <y <<y <n+k-1

This transformation is a bijection between the set of multisets on E | | °
of size k and the set of subsets of {1,...,n + k — 1} of size k. The Pl

cardinality of the latter is (”H,fl).

[ ] [ ]
1

- Figure 2.2: The "Stars and Bars"

Example 2.3. Integer Solutions. Find the number of non-negative
integer solutions to x1 + xp + x3 + x4 = 10.
Here n = 4 (the number of variables) and k = 10. By theorem 2.4, the

method. The configuration
e o || e e corresponds to the
solution x; = 2,xp = 0,x3 = 2.

: ) There are k stars and n — 1 bars.
number of solutions is:

4+10-1 13 13 13-12-11
( 10 >_<10)_(3>_ 321 28

Example 2.4. Distributing Indistinguishable Items. Suppose we
wish to distribute k indistinguishable coins into n distinguishable

Eal

boxes.

This is identical to choosing a multiset of size k from the set of
boxes (choosing box i means placing a coin in it). Assume k > n.
Ifk < n,there are no such distributions. If we require that every
box must contain at least one coin, we first place one coin in each
box. We then distribute the remaining k — # coins arbitrarily. The
number of ways is:

(7))
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Multinomial Coefficients

The binomial coefficient (}) counts the ways to partition a set of n
elements into two disjoint subsets of sizes k and n — k. The multino-
mial coefficient generalizes this to partitions into r subsets.

Definition 2.3. Multinomial Coefficient.
Let n € N and let kq, . .., k; be non-negative integers such that Y}, k; =
n. The multinomial coefficient, denoted

n
ki ko, ... ke )’

is the number of ordered r-tuples (A1, ..., A;) of pairwise disjoint sub-
sets of a set E (where |E| = n) such that |A;| = k; forall1 <i <r.
Note

If any k; = 0, the corresponding subset A; is the empty set. If r = 2,
we recover the binomial coefficient:

(k, n k) - @

Proposition 2.3. Multinomial Formula.
For n = ki + - - - + k;, the multinomial coefficient is given by:

n _ n!
ki,.... k) kylkp!-- k!

¥

e
Proof

We proceed by induction on 7. For r =1, () = m

o1 = 1, which is cor-
rect.

Forr > 1, determining the tuple (Ay,..., A;) is equivalent to first
choosing the subset A, of size k; from E, and then partitioning

the remaining set E \ A, (of size n — k;) into r — 1 subsets of sizes
ki,...,k,—1. The number of ways to choose A, is ( ,:’r ). By the induc-
tive hypothesis, the number of ways to partition the remainder is

( kﬁ:};’q ). Using the multiplication principle:

(e ") = () ()
ki, ...k k, ki, ... k1

B n! " (n—ke)!
N k,!(n—k,)! kl!"'k‘r—l!
n!
kil k!

43
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Remark.

This quantity also counts the number of permutations of a multiset
of size n containing distinct elements x1, ..., x, with respective mul-
tiplicities ky, . . ., kr. Geometrically, this corresponds to lattice paths
inZ'".

Example 2.5. Lattice Paths in Higher Dimensions. Consider a
particle starting at the origin 0 € Z%. A step consists of adding a
standard basis vector ¢; to the current position. How many paths of
length n end at the coordinate (ay,...,4;), where }_a; = n?

A path is a sequence of 1 steps. To land at (a4, ...,4,), the path
must contain exactly a; steps in direction ey, a, steps in direction e,
and so forth. The distinct paths correspond to the distinct permuta-
tions of the multiset of steps. Thus, the number of paths is:

( n ) n!
ay,...,aq4 a1!---ad!'

Theorem 2.5. The Multinomial Theorem.

E X

Let R be a commutative ring and xy,...,%, € R. For any n € IN:

n k k
R T A )
k1+,,,+kr:n 17/ ”r
k>0

i
Proof

Consider the expansion of the product H;-’zl (xy + -+ + x;). Each
term in the expansion is formed by selecting one variable x; from
each of the n factors. If we select the variable x; exactly k; times, x
exactly k; times, and so on, we generate the monomial xllf1 . xlr".
The number of ways to produce this specific monomial is the num-
ber of ways to assign the "indices" of the factors to the variables
x1,...,%r such that x; receives k; indices. This is precisely the defi-

nition of the multinomial coefficient (; )
|

Example 2.6. Coefficient of a Polynomial. Determine the coefficient
of x?y3z* in the expansion of (x +y + z)°.

Heren = 9,ky = 2,ky = 3,k; = 4. Since2 +3 +4 = 9, the term
exists. The coefficient is:

!
( 9 ) 9! 362880 362880 1260,

2,34) 23141 2.6-24 288
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2.3 Analysis of Binomial Coefficients

We now turn to the magnitude and "shape" of the binomial coef-
ficients () for fixed n. Understanding these growth properties is
essential for asymptotic analysis in number theory and probability.

Bounds and Estimation

While exact calculation is possible via factorials, bounds are often
more useful for analysis.

Lemma 2.1. Exponential Bound.
Forallx e R, 1+ x < é€*.

712
Theorem 2.6. Standard Bounds.
Forl <k <mn:
n\k n en\k
(k) - (k)(k) ’
i
Proof

Lower Bound: Recall (}) = % - #=f ... =kl — [Tl noi Gince nn >
k, wehaven —i > k—1i > 0, and the funct1onf( ) = %=k is non-
decreasing for t € [0,k). Thus = i : > t- The product satisfies:

(1) n<>

Upper Bound: By the Binomial Theorem, for any x > 0:

(1+x)" = ]i(:) (?) x> (Z) xk.

Thus, (Z) < (H:) If k = n, the bound is immediate. Assume 1 <

k < n and choose x = ﬁ

(0 <()><><>

Using the lemma 1 +y < e/ withy = . =:

n—k
( nﬁk) <

Substituting this back yields (}) < (%)kek = (4)k.

45
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Unimodality and Identities

For a fixed n, the sequence of coefficients ({), (1), ..., (},) increases to

a maximum and then decreases.

Proposition 2.4. Unimodality.

The sequence k — (}) satisfies:

- Increasing for k < ”T_l

- Maximal atk = |5 ] and k = [ ].
- Decreasing for k > ”T_l

Proof
Consider the ratio of consecutive terms:
() n! ki(n—k)! n—k
Pe= oy Tkt Din—k—D1! al K+l

The sequence increases when p; > 1, which corresponds to n — k >
k+1 <= 2k < n—1. Equality p = 1holds if 2k = n — 1 (only
possible if n is odd).

The summation of binomial coefficients along different diagonals of
Pascal’s triangle yields the "Hockey Stick Identity".

Proposition 2.5. Upper Summation Identity.

Forn >k >0:
i(m) (n—f—l)
oo} k k+1

Proof

We count the number of subsets of {1,...,n + 1} of size k + 1. Let
this collection be S. We know |S| = (’,:ﬂ) Alternatively, partition
S based on the largest element of the subset. Let A € S and let
x = max(A). Since |A| = k + 1, the smallest possible maximum is
x = k+1(where A = {1,...,k+ 1}). The largest is n + 1. For a
fixed maximum m + 1 (where k < m < n), the remaining k elements
must be chosen from {1,...,m}. There are (’,’:) ways to do this.

Summing over all possible values of m:

S (’Z)

m=k

Figure 2.3: Visualisation of the
Upper Summation Identity
Y2 (™ = (3)- The blue sum
equals the red entry.
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The Principle of Inclusion-Exclusion

The Addition Principle states that |A U B| = |A| + |B| only if A and
B are disjoint. If they overlap, we must subtract the intersection. The
Sieve Formula, or Principle of Inclusion-Exclusion (PIE), generalizes
this correction to 7 sets.

Theorem 2.7. The Sieve Formula.
Let Aq,..., A, be finite subsets of a set E. Then:

| = Z (_1)\1\+1 ﬂAi

iel

L
Proof

We utilize characteristic functions (indicator variables) introduced
in the Foundations chapter.

Let fs denote the characteristic function of a set S. The characteris-
tic function of the union A = (JA; is 1 — f4, where A = N A;.

HfA El_fA( )

Expanding this product:

n
[T0-fat) = Y DT = 8 (DM fa a0,
i=1 I1C[1,n] i€l IC[1,1]
Summing over all x € E to convert functions to cardinalities:

[E\A[= ), (-plf

IC[1,1]

A

iel

Isolating | A| (note that the term for [ = @ is |E|):

|E| —|A] = |E[+ }_ (-
oA

A

iel

Rearranging yields the result.

Applications of the Sieve

The Sieve Formula is particularly effective when the intersection of
sets is easier to calculate than their union.

Theorem 2.8. Number of Surjections.
Let E and F be sets with |E| = n and |F| = k. The number of surjec-
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tive maps from E to F is:

k k
| Fourj (E, F)| Z ( )

j
i
Proof
LetF = {1,...,k}. Let S be the set of all functions E — F, so
|S| = k". A function is 0! surjective if its image misses at least one

element of F. Let P; be the set of functions whose image does not
contain i (i.e., range is contained in F \ {i}). We seek |S| — | U5, P|.
For any index set I C {1,...,k}, the intersection (;c; P; is the set of
functions mapping E into F \ I. The size of the target is k — |I|, so:

NPl = k-

i€l

)"

By theorem 2.7:

(=DM e — 1)

@;Az

Grouping by the size of I (letj = k — |I| be the size of the allowed

(,’;) (—1)™+ (k= m)".

Subtracting this from total functions k" yields the formula.

image):

m= 1

Example 2.7. Derangements. A derangement of [1,7] is a permu-
tation ¢ € S, such that o (i) # i for all i (it has no fixed points). Let
D,, be the number of derangements.

LetA; = {0 € S, : o(i) = i}. Weseek n! — |UA,|. The in-
tersection of any k sets A;; N --- N A;_ fixes k specific points. The re-
maining n — k points can be permuted arbitrarily. Thus, |N;c; Ai| =
(n—|1])!. Applying the Sieve:

|UA Z (k)(—l)kﬂ(n — k).

Simplifying () (n —k)! = %
- nt & n! n(_1)k

Dy == I = e = m B

For large n, D,, = n!/e.
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2.4 Exercises

1. The Gap Method. We wish to arrange the letters of the word
MISSISSIPPI.

(a) Calculate the total number of distinct permutations using the
Multinomial Coefficient formula.

(b) Calculate the number of distinct permutations such that no
two I’s are adjacent.

2. Multinomial Coefficients and Expansions.

(a) Determine the coefficient of the term x%y>z* in the expansion
of (x — 2y +3z)°.
(b) Using the Multinomial Theorem, give a combinatorial proof
that: Consider the expansion of (A + B + C)"

n -
Z ( ) (_1)712 —1 for specific values of A, B, C.
m+mytng=n \"1,12,13
3. Indistinguishable Groupings. Consider a group of 12 distinct
graduate students.

(a) The students are to be assigned to 3 distinct laboratories (Lab
A, Lab B, Lab C) such that Lab A receives 5 students, Lab B
receives 4, and Lab C receives 3. In how many ways can this
be done?

(b) The students are to be partitioned into 3 study groups of
sizes 5, 4, and 3. The study groups have no names or desig-
nations (they are indistinguishable beyond their size). In how
many ways can this be done?

(c) The students are to be paired off into 6 teams of 2 members
each. The teams are indistinguishable. Calculate the number
of possible partitions.

4. Inclusion-Exclusion Logic. In the "Hands with At Most Two
Suits" example, we calculated the size of a set by subtracting the
overcounted intersection (the single-suit hands). Generalize this
logic to solve the following;:

A 6-digit PIN code dydyd3dsdsdg is constructed using digits from
the set { 1,2,3}. How many such PIN codes contain at least one of
each digit?

5. Constrained Integer Partitions (Investment Strategies). We pos-
sess $20,000 to invest across 4 distinct opportunities. Investments
must be in integral units of $1,000. Furthermore, each opportunity
imposes a minimum entry threshold: the minimum investments
are $2,000, $2,000, $3,000, and $4,000 respectively.

Using the stars and bars transformation (y; = x; — m;), determine
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the number of distinct investment strategies available if:

(@) An investment must be made in every opportunity (i.e., all
minimums must be met).
(b) Investments must be made in at least 3 of the 4 opportunities.

6. The Chairperson Identities. We explore identities of the form
Y kP (%) via double counting.

(a) Second Moment: Verify the identity
n
Y K2 (n) =2""Zn(n+1).
k=1 k

(b) Third Moment: By considering a committee, a chairperson,
a secretary, and a treasurer (where roles may overlap), argue
combinatorially that:

= oa(n n—3. 2
Yk ) =2 n (n+3).
k=1

7. Inequalities and Decompositions.

(a) Inequality Constraints: Determine the number of integer
vectors (x1,...,x,) such that x; > 0 for all , and

n
Z x; < k.
i=1

(b) Analytic Decomposition: Give an algebraic verification of the
identity:

<Z> = <12c>+k(n—k)+ (n;k)/ for1 <k <n.

Explain the combinatorial significance of this decomposition
in terms of choosing 2 items from a set partitioned into two
groups of size k and n — k.

8. Parliamentary Deadlock. In the parliament of a certain country,
there are 151 seats filled by members of three distinct political
parties.

(a) How many possible distributions of seats (11, 1, n3) are there

such that nq + ny + n3z = 151?

(b) A "hung parliament" occurs if no single party holds an ab-
solute majority (strictly more than half the seats). Determine
the number of distributions that result in a hung parliament.

9. Triangular Sums and Double Counting.

For part (b), consider the mutually
exclusive cases based on which oppor-
tunities are active. Be careful to sum the
case of 4 active opportunities and the
cases of exactly 3 active opportunities.

For (a): Consider the selection of

a committee, a chairperson, and a
secretary (who may be the same person
as the chair).

For (a): Introduce a "slack" variable

y > 0 such that }"x; +y = k to convert
the inequality into an equality, then
apply the Stars and Bars theorem.

For (b): Use the Principle of Inclusion-
Exclusion or complementary counting.
Note that it is impossible for two par-

ties to simultaneously hold a majority.
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(a) Establish the identity Y1 i(n — i) = ("}') by counting the
same collection of subsets, but this time classifying them by
the middle element (in terms of magnitude).

(b) Generalise part (b) to find a summation formula for (271’;;11) by

considering the median element of a subset of size 2m + 1.
10. The Fibonacci Subsets. Let 11 be a positive integer. We wish to
count the number of subsets of {1,2,...,n} that contain no pair
of consecutive integers. Let f(n,k) denote the number of such
subsets of size k.

(a) Construct a bijection between these non-consecutive k-subsets
and the standard k-subsets of {1,...,n —k+1}. For (a): Consider the map x; ~ x; —

b) Deduce that f(n,k) = n—k+1y (i — 1) applied to the elements of the
®) f ( ) ( k ) subset arranged in increasing order.

(c) Let F, be the Fibonacci sequence defined by Ffy = 0,F; =
1,F, = F,_1 + F,_». Prove that the total number of non-

consecutive subsets of {1,...,n} is given by F, ;. For (c): Sum the result from (b) and
prove the sum satisfies the Fibonacci
recurrence relation by classifying
subsets based on whether they contain
the element n.



3
Partitions and Allocations

We have previously explored compositions, where the order of sum-
mands distinguishes one configuration from another. If we relax this
constraint and consider summands up to reordering, we enter the
theory of integer partitions.

Integer Partitions

A composition of a natural number 7 is a sequence of positive in-
tegers summing to n. For instance, (1,3,1) and (3,1,1) are distinct
compositions of 5. If we regard these as identical (distinguishing
them only by the multisets of their parts), we obtain partitions.

Definition 3.1. Integer Partition.
A partition of a positive integer n is a sequence A = (A1, Ay, ..., Ag)
of positive integers such that:

k
AM>Ap > 2> A >0 and 2)\1':1’1.
i=1

The terms A; are called the parts of the partition. We define p(n) as the
total number of distinct partitions of n.

Note

By convention, p(0) = 1 (the empty sum).

Example 3.1. Partitions of Small Integers. Forn = 4, the possible
partitions are:
- 4

- 3+1

- 242
c2+1+1

- 14+1+14+1
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Thus, p(4) = 5. Forn = 5, welist: 5,4+ 1,34+2,3+1+1,2+2+
1,24+1+1+4+1,14+1+1+1+1. Hence p(5) =7.
#49)

Unlike the binomial coefficients or compositions, there is no elemen-
tary closed-form expression for p(n). The growth of p(n) is governed
by the Hardy-Ramanujan asymptotic formula:

(n) ! ex 7'(\/2—” asn —

While the analytic derivation of this formula is advanced, we can

establish profound algebraic properties of partitions using bijective
combinatorial proofs.

Odd and Distinct Parts

Consider the partitions of n = 5.
- Partitions into odd parts: 5,34+1+1,1+14+1+141. (Count: 3)

- Partitions into distinct parts: 5,4 + 1, 3 + 2. (Count: 3)
This equality is not coincidental.

Theorem 3.1. Euler’s Partition Theorem.

For any integer n > 1, the number of partitions of n into odd parts

equals the number of partitions of n into distinct parts.

g

Let O, be the set of partitions of n into odd parts, and D, be the
set of partitions of n into distinct parts. We construct a bijection ¢ :
On — Dy.
Construction of ¢.

Let A € Oj. We may write the sum as ) ,qq bx - k, where by, is the
multiplicity of the odd part k in A. We express each multiplicity by
in its binary representation:

m .
by=)_ c,2/, where ¢ ; € {0,1}.
=0

Substituting this back into the sum:

e ¥ (fck,jzf>k= Y ¥ @

kodd \j=0 k odd jiey, ;=1

The terms in this expanded sum are of the form 2/ - k. By the Fun-
damental Theorem of Arithmetic, every integer m can be uniquely
written as m = 2/ - k where k is odd. Thus, all terms 2/ - k generated
are distinct. We define ¢(A) to be the partition consisting of these

53
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parts 2/ - k, arranged in decreasing order. Since they sum to n and
are distinct, ¢(A) € Dy.
A

Construction of ¢~ 1.

Let 4 € D, with distinct parts py, ..., yr. For each part y;, factor out
the highest power of 2 to write y; = 2% - k;, where k; is odd. The
inverse map decomposes the part y; into 2% copies of the odd num-
ber k;. Collecting all such copies for all i yields a partition into odd

parts. Since the binary representation is unique, ¢ is a bijection.
FEER #

Example 3.2. Application of the Bijection. Consider the partition of
n = 44 into odd parts:

A = (13,13,5,5,5,3).
Here, the multiplicities are:
- Part 13: appears 2 times. 2 = 21, Terms: 2! - 13 = 26.
- Part 5: appears 3 times. 3 = 2! +20. Terms: 2! -5 =10,2°-5 =5.

- Part 3: appears 1 time. 1 =29, Terms: 2°-3 = 3.
The corresponding partition into distinct partsis p = (26,10,5,3).
Sum check: 26 + 10+ 5+ 3 = 44.

E
Example 3.3. Reverse Mapping. Consider the partition into distinct
parts u = (12,10,2) for n = 24.

We decompose each part into odd components:
- 12=4x3=22x3 = four copies of 3.

- 10=2x5=2 x5 = two copies of 5.

- 2=2x1=21x1 = two copies of 1.
The corresponding partition into odd parts is (5,5,3,3,3,3,1,1).

E X

Ferrers Diagrams

A graphical representation of partitions, known as the Ferrers dia-
gram, facilitates the proof of complex identities via geometric trans-
formations.

Definition 3.2. Ferrers Diagram.
The Ferrers diagram of a partition A = (Aq,...,Ay) is a collection of
dots left-justified in k rows, such that the i-th row contains A; dots.
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For example, the diagram for A = (7,5,5,3,1) is:

ceen. Figure 3.1: Ferrers diagram for
ot (7,5,5,3,1).

By reflecting the diagram across the main diagonal (swapping rows
and columns), we obtain a new partition.

Definition 3.3. Conjugate Partition.
The conjugate of a partition A, denoted A/, is the partition defined by

the column lengths of the Ferrers diagram of A. Formally, /\;. is the num-

ber of parts of A that are greater than or equal to j.

The conjugate of (7,5,5,3,1) shown in figure 3.1 is (5,4,4,3,3,1,1),
shown in figure 3.2. Since the reflection is an involution, the conjugate

Figure 3.2: The conjugate parti-

: [
map is a bijection on the set of partitions of n. This symmetry yields tion A" = (5,4,4,3,3,1,1).

several identities immediately.

Proposition 3.1. Conjugate Identities.

1. Forn > k > 1, the number of partitions of # into at least k parts
is equal to the number of partitions of n in which the largest part
is at least k.

2. For n > 1, the number of partitions of #n in which the first two parts
are equal is equal to the number of partitions of n in which all parts
are at least 2.

3

o A
Proof

We rely on the geometric properties of the Ferrers diagram under
conjugation.

1. Let A be a partition. The number of parts is the number of rows
in its diagram, which becomes the number of columns in the
conjugate A’. The largest part of A’ is the length of its first row,
which corresponds to the length of the first column of A (the
number of rows). Thus, A has > k parts if and only if A’ has
largest part > k.

2. A partition A has all parts > 2 if and only if every row in its
diagram has length at least 2. Under conjugation, the number of
rows of length at least 1 is A} and the number of rows of length
at least 2 is A/,. Thus all parts > 2 if and only if A{ = A). This is
exactly the condition that the first two parts are equal. Thus the

map A — A’ is a bijection between the set of partitions with all
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parts > 2 and the set of partitions with the first two parts equal.

The Twelvefold Way

We now this section by synthesising our study of counting into the
"Twelvefold Way", a classification attributed to Gian-Carlo Rota. This
framework considers the number of ways to place balls into boxes
under various conditions.

Let N be a set of balls (|[N| = 1) and K a set of boxes (|[K| = k). We
enumerate the functions f : N — K (or equivalent structures) based
on:

Distinguishability : Are the balls distinguishable? Are the boxes
distinguishable?

Restrictions :

- None: Any number of balls per box.
- Injective: At most one ball per box (requires n < k).
- Surjective: At least one ball per box (requires n > k).

Equivalence of functions is defined by the distinguishability. For ex-
ample, if balls are indistinguishable, functions f and g are equivalent
if ¢ = f oo for some permutation ¢ of N.

We denote the scenarios by pairs (Balls, Boxes).

Distinguishable Balls, Distinguishable Boxes

Here we count standard functions f : N — K.

No restriction. Each of the n balls can be placed in any of the k
boxes independently.
|KN| = k.

Injective. This corresponds to permutations of subsets. We place

balls sequentially into distinct boxes.

k!
(k—n)!"

Surjective. We partition the # balls into exactly k non-empty subsets
(fibres), then assign these subsets to the k distinct boxes. Using the
Stirling numbers of the second kind:

KIS(n, k).
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Indistinguishable Balls, Distinguishable Boxes

Because the balls are identical, only the count of balls in each box
matters. This is the problem of weak compositions or multisets.

No restriction. We seek integer solutions to x1 + - - - + x; = n with
x; > 0. By theorem 2.4:

(=07

Injective. Each box receives o or 1 ball. We simply choose which n

(o)

Surjective. We seek solutions to x1 + - - - + x; = n with x; > 1. This is

boxes contain a ball.

the number of compositions of # into k parts. By distributing one
ball to each box initially, we distribute the remaining n — k balls

(") - (5)

Distinguishable Balls, Indistinguishable Boxes

freely:

Since boxes are indistinguishable, the specific assignment of values
does not matter, only the partitioning of the domain N.

Surjective. This is the definition of the Stirling numbers of the sec-
ond kind. We partition # items into k non-empty sets.

S(n, k).

No restriction. We partition the balls into j non-empty sets, where
1<j<k
k

Y. S(n,j).

j=1

Injective. If n < k, we place each ball in a separate box. Since boxes
are indistinguishable, there is only 1 way to do this. If n > k, it is
impossible (o).

Indistinguishable Balls, Indistinguishable Boxes

Here we partition the integer n (the total number of balls) into parts

defined by the box contents.

Surjective. We partition # into exactly k parts (no empty boxes al-
lowed). We denote this by p(n, k).

p(n, k).

57
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No restriction. We partition n into at most k parts (some boxes may

be empty).
k

Y p(n,j).

j=1

Note
By proposition 3.1, this is equal to the number of partitions of #n
where the largest part is at most k.

Injective. As with distinguishable balls, if n < k, we place one ball in
each of n boxes; indistinguishability makes this unique.
1 ifn<k,
0 ifn >k

Example 3.4. Server Load Balancing. Consider a system with n = 4

jobs and k = 3 servers.

1. If jobs and servers are distinguishable (e.g., jobs are unique
tasks, servers have different hardware):

- Total assignments: 3* = 81.
- Surjective (all servers active): 3!5(4,3) = 6 x (3) =6x6=36.

2. If jobs are identical (standard computational units) but servers

are distinguishable:
- Total assignments: (4+371) = (g) =15.

3. If jobs are distinct but servers are identical (we only care about
which jobs are grouped):
- Surjective: S(4,3) = 6. The grouping is of type {2,1,1}.

4. If both are indistinguishable (we only care about load distribu-
tion):

- Partitions of 4 into at most 3 parts: 4 (one server), 3 + 1 (two
servers), 2 4 2 (two servers), 2 + 1 4 1 (three servers). Total = 4.

El

3.2 Generating Functions

The objective of this section is to translate combinatorial problems
regarding sequences into algebraic problems regarding formal power
series. By encoding a sequence (a,),cN as the coefficients of a series
A(X) = Y a,X", we can determine properties of the sequence—such
as closed forms or asymptotic behaviour—by manipulating the func-
tion A(X) within a ring structure.
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3.3 The Ring of Formal Power Series

To define formal power series rigorously, we first recall the structure
of polynomials. Let A be a commutative ring (typically Z, Q, R, or
C).

The ring of polynomials A[X] consists of sequences P = (pn)neN
with coefficients in A that have finite support; that is, there exists
some N such that p, = 0 for all n > N. We conventionally write such
a sequence as a sum:

N
P(X) =) puX".
n=0

The operations of addition and multiplication in A4[X] are defined
to satisfy the laws of commutativity, associativity, and distributivity,
distinguishing A[X] as a sub-ring of the structure we are about to
define.

Formal Power Series

We extend the concept of a polynomial by removing the restriction of
finite support.

Definition 3.4. Formal Power Series.

Let A be a commutative ring. A formal power series with coefficients
in A is a sequence (a,),enN of elements of A. We denote this series by
the formal sum:

[ee]
AX) =Y anX" =ap+ ;1 X+ X+ ...
n=0

The set of all such series is denoted by A[[X]].

z«w
S

Remark.

The variable X is strictly a placeholder; it serves to index the po-
sitions of the coefficients. Unlike in analysis, we do not assign a
numerical value to X, and issues of convergence do not arise. The
series is a purely algebraic object defined by its sequence of coeffi-
cients.

We equip A[[X]] with algebraic operations analogous to those for
polynomials.

Definition 3.5. Operations.
Let A(X) = Y50 an X" and B(X) = Y50 b X".
1. Sum: The sum A(X) + B(X) is the series whose n-th coefficient is
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the sum of the n-th coefficients of A and B:

A(X) + B(X) = ) (an +by)X".
n>0

2. Cauchy Product: The product A(X) - B(X) is the series defined by
the convolution of the sequences:

n
A(X)-B(X) =) cuX", wherecy, =) agb, 4.
n>0 k=0

The definition of the product is motivated by the distributive expan-
sion of polynomials: the term X" in the product arises from pairing

1 Xk with b, X" for all possible k.

Example 3.5. Convolution of the Constant Sequence. Let A(X) =
Yu>0 X". This corresponds to the sequence (1,1,1,...).

Consider the square C(X) = A(X)?. By the definition of the
Cauchy product, the coefficient ¢, is:

n

n n
=) may_ =3 1-1=) 1=n+1
k=0 k=0 k=0

Thus:

2
(Z X") =Y (n+1)X"=1+42X+3X>+...

n>0 n>0

Combinatorially, ¢, counts the number of ways to write n as a sum
of two non-negative integers (where order matters).

E X

Theorem 3.2. Ring Structure.
The set A[[X]] equipped with the sum and Cauchy product forms a com-
mutative ring.
- The additive identity is the zero series 0 = (0,0, ...).
- The multiplicative identity is the unity series 1 = (1,0,0,...).
Furthermore, A[X] is a subring of A[[X]].

T
Proof
Let A(X),B(X),C(X) € A[[X]] with coefficients (a,), (by), (c,) in
A. By the definitions of coefficientwise addition and the Cauchy

product above, associativity, commutativity, the additive identity,
and additive inverses hold termwise because they hold in A. For

Figure 3.3: The coefficient ¢, of
the Cauchy product sums all
terms aib; where the indices
sum to n. Here n = 3.
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multiplication, the coefficient of X" in (AB)C equals

n i
) <Z ﬂkbik> Cn—is
i=0 \k=0

while the coefficient of X" in A(BC) equals
n n—k
Z aj Z b]'Cn,k,j .
k=0 \j=0

Reindexing withj = i — k matches the two sums, so the prod-
uct is associative. Commutativity and distributivity follow by the
same coefficient checks. The unity series has constant term 1 and
all other coefficients 0, so it is a multiplicative identity. Finally, a
polynomial is exactly a series with finite support, so A[X] is closed

under these operations and is a subring.
[

Invertibility

In the ring of polynomials A[X], very few elements have multiplica-
tive inverses (typically only the constant polynomials that are units
in A). In contrast, the ring of formal power series A[[X]] allows us to
invert a much broader class of elements.

Theorem 3.3. Invertibility Criterion.

A formal power series A(X) = Y,>0a,X" € A[[X]] is invertible if
and only if its constant term ag is invertible in the coefficient ring A.
If this condition holds, the inverse is unique.

i
(=)
Suppose A(X) has an inverse B(X) = Y b, X" such that
A(X)B(X) = 1. The constant term of the product is given by

the Cauchy formula for n = 0:
cy) = Llob().
Since A(X)B(X) = 1, we must have ¢p = 1, so agbp = 1. Thus ay is

invertible in A.
ERA %

(=)
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Suppose ay is invertible. We seek a sequence (b,) satisfying
A(X)B(X) = 1. This yields the system of linear equations:

1 ifn=0,
0 ifn>1.

n
Y g,y =
k=0
For n = 0, we have agby = 1, which determines by = a, 1 Forn >1,
we isolate the term involving by, (which occurs when k = 0):

n
apby, + Z agb,_ = 0.
k=1
Since ay is invertible, we can uniquely solve for b, in terms of the
preceding coefficients by, ..., b,_1:

n
1
by = —ag " Y agby_g.
k=1

By induction, the sequence (b,) is uniquely determined.
BELES

Example 3.6. Inverting a Polynomial. Consider the polynomial
P(X) =1— X — X? € Z[[X]]. Here ay = 1, which is invertible in Z,
so P(X)~! exists. Let B(X) = Y b, X" be the inverse.

Using the recurrence b, = —a, 1 Y i_1 axb,_y derived in the proof:
S hp=1"1=1.
- b= —1(mby) = —-1(-1-1) =
- by = —1(a1by + apbpy) = -1(-1-1+-1-1) =2.
- by = —1(ayby + apby +asby) = —1(-1-24+-1-140) = 3.
- by = —1(ayb3 +azby) = —1(-1-3+ —1-2) =5.

The coefficients 1,1,2,3,5,... are the Fibonacci numbers. Thus, the
generating function for the Flbonacci sequence is (1 — X — X2)~!

ERid)
The most fundamental inverse is that of the linear polynomial 1 — aX.

This yields the geometric series formula, which is valid formally even
without convergence considerations.

Corollary 3.1. Geometric Series. For any « € A, the series 1 — aX is
invertible, and:

1
1—aX

e}
=Y a"X" =1+aX +a?X?+
n=0

Ham
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Proof
We verify that the product is unity.

(1—aX) i at X" = i at X" — i w- "X
n=0

n=0 n=0

o o
=) a"X"— ) a"X" (lettingm =n+1)
n=0 m=1

=1+ ) («"—a™")X"
n=1

=1

3.4 Generalised Binomial Theorem

The algebraic nature of formal power series allows us to extend this
to negative integer exponents.

Definition 3.6. Generalised Binomial Coefficient.
Forany r € R and k € IN, we define the generalised binomial co-
efficient (}) by:

() _ =1 ke

If k = 0, we define () = 1 (following the convention for empty prod-
ucts).

This definition recovers the standard coefficient when r € IN. For

negative integers, it exhibits a regular sign-alternating pattern related
to multiset counting.

Example 3.7. Negative Integers.
- Forr = —1:
-1\ _ (ED(=2) (=) (DR (—1)*
k) k! kK ’
- For r = —m where m € IN:
-m\ _ (—m)(—m—1)---(—m—k+1)
k) k!
mm+1)---(m+k—1
— (71)k ( ) k!( )
m+k—1
o (")
£
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Note

This identity connects negative binomial coefficients to multiset
coefficients, often denoted (")) = (" h).

Theorem 3.4. Generalised Binomial Theorem.
For any integer r € Z, the formal power series (1 + X)" is the gen-
erating function for the sequence of coefficients (}):

(1+X) = i (I:) xk,

k=0

Proof

If » > 0, this is theorem 2.3. Let ¥ = —m with m € IN. By corollary 3.1

witha = —1,
[ee]

1+Xx)"t= 20(—1)")(".

Hence m
(14+X) ™" = (Z(—l)“X”) :
n=0

The coefficient of X* in this product equals (—1)* times the num-
ber of m-tuples of non-negative integers summing to k, which is
(’”*,ffl) by theorem 2.4. By the identity for negative integers given
above, this coefficient is (7").

|
Example 3.8. Vandermonde’s Identity. This is the same identity as

the Vandermonde’s Convolution example in the previous chapter.

E
Proof
By theorem 3.4,
1+X)"(14+X)* = (1+X)"*.
The coefficient of X" on the left is
20
= \k) \n—k)’
and the coefficient of X" on the right is ("").
|

A particularly useful case for theorem 3.4 arises for negative integer
exponents, relating to multiset counting.
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Corollary 3.2. Negative Binomial Expansion. For m € N and g € C:

=y (M e
i

Proof
We expand (1 + (—BX)) ™. The coefficient of X" is:

(_m>(_ﬁ)n (—m)(—m—l)---(—m_”""l)(_l)nﬁn.

n!

Factoring (—1)" from the numerator:

(_1)nm(m+1) : -é!(m+n—1)(_1)n13n _ (m —i—:—l)ﬁn.

m+n71) _ (ernfl).

Using the symmetry (I,\(’ )= ( Nl\l i), we have ("7 A

Example 3.9. Convolution via Binomials. Consider the product of

two geometric series derivatives.
We wish to find the coefficient of X" in (1—X)~2-(1-X)2 = (1—
X)~*. Directly using the corollary with m = 4, = 1:

xa-x=("77).

Alternatively, this is the convolution of (1 + 1) with itself: } 7', (k +
1)(n —k+1). The identity Yy} (k+1)(n —k+1) = (";r?’) is thus es-
tablished algebraically.

E X

3.5 Linear Recurrence Relations

We now apply formal power series to solve linear recurrence rela-
tions of the form:

Apik = C18y1k—1+ +Crln —l—f(i’l),

where ¢; are constants and f(n) is a known term.

Rational Generating Functions

We first treat the homogeneous case (f (1) = 0).
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Theorem 3.5. Rational Generating Functions.

Let (a,) be a sequence satisfying the recurrence a, = Z;-;l cjay—;j for
n > k. The generating function A(X) = Y} a,X" is a rational func-
tion of the form:

where Q(X) =1 — Z;-‘:l c]-Xf and P(X) is a polynomial of degree at

most k — 1 determined by the initial conditions.

—~

i
Proof
We multiply the recurrence a, — Z;‘Zl cjap—j = 0by X" and sum
over n > k:
k . .
Yo apX' =Y XY a, X" =0.
n>k j=1 n>k
Let A(X) = Y502, X". We can rewrite the sums as:
k .
(A(X) = Ax1(X) = ) X/ (A(X) = Ap-j1 (X)) =0,
j=1
where A, (X) = " ,a;X" is the truncated series. Rearranging

terms to isolate A(X):

k . k 4
A(X) (1 - 2 CjX]> = Ak*l(X) - Z C]'X]Ak,jfl(X).
= =
The right-hand side is a finite sum of polynomials of degree less
than k, hence a polynomial P(X) of degree at most k — 1. The term
in the bracket is Q(X). Thus A(X) = P(X)/Q(X).
|

To extract the coefficients a, from P(X)/Q(X), we employ partial
fraction decomposition. We require the following lemma for the ring
C[X].

Lemma 3.1. Bezout’s Identity for Polynomials.
Let f(X),g(X) € C[X] be non-zero polynomials with no common fac-
tors. There exist polynomials u(X),v(X) € C[X] such that:

u(X)F(X) +0(X)g(X) = 1.
5]3%

Proof

This follows from the Euclidean algorithm for polynomials. Since
C[X] is a Euclidean domain, the greatest common divisor can be
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expressed as a linear combination of the elements. Since f and g
are coprime, ged(f,g) = 1.

Proposition 3.2. Partial Fraction Decomposition.
Let P(X)/Q(X) be a rational function with deg(P) < deg(Q). Fac-
tor Q(X) over C as:

r

Q(X) =T —a;X)™,

i=1

where «; are distinct non-zero complex numbers. Then there exist unique
constants A;; such that:

>
@&

Proof

We proceed by induction on the number of distinct factors. Sup-
pose Q(X) = Q1(X)Q2(X) where Q1, Q, are coprime. By Bezout’s
Identity, there exist u, v such that uQ; +vQ, = 1. Multiply by P/Q:

P P(uQi+vQ;) Pu Po

00 o & o

By polynomial division, we can reduce the numerators so that

the degree condition is satisfied. Repeating this separates all

distinct factors (1 - a; X)™i. It remains to decompose a term
like R(X)/(1 — aX)™. Since the polynomials (1 — aX)/ for
j = 0,...,m — 1form a basis for polynomials of degree < m,

we can expand R(X) in this basis, yielding the inner sum.

Combining these results yields the explicit solution for any linear
recurrence.

Theorem 3.6. Explicit Solution.
For a sequence defined by a linear recurrence with characteristic de-
nominator Q(X) = [T_;(1 — a;X)™, the n-th term is given by:

i
Proof

Apply the linear operator [X"] (coefficient extraction) to the partial

67
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fraction decomposition of A(X). From corollary 3.1 and theorem 3.4:

ey = (720

Summing these contributions gives the result.
|

Corollary 3.3. Asymptotic Behaviour. Let ay be the factor with largest
modulus among the a; in Q(X) = [Tj_; (1 —a;X)™ (equivalently, 1/a;
is the root of Q with smallest modulus). If 1 is unique and has mul-

tiplicity mq, then as n — oc:

o
Proof

The term with the largest base a; dominates the sum. Among terms

with the same base, the term with the highest power of n (from the
. . . . +m—1\  n™1 .

binomial coefficient (") ~ {n—ty1) dominates.

|
Example 3.10. Repeated Roots. Consider the recurrence a, =
4a, 1 —4a, o forn > 2, withay =1,a; = 4.
The generating function denominator is Q(X) = 1 —4X +4X? =
(1 —2X)?2. Using the formula derived in t/eorern 3.5:
ap+ (111 - 4{10)X 1

AX - = .
(X) = ixraxe (1—2X)2

Here, a7 = 2 with multiplicity m; = 2. Using the expansion for neg-

1
ay = (”Jl“ )2“ = (n+1)2".

Check: a; = 3 -4 = 12. Recurrence: 4(4) — 4(1) = 12. Correct.

ative powers:

$o19]

Non-Homogeneous Recurrences

If the recurrence contains a polynomial term f(#), we can solve it by
incorporating the generating function for f(n).

Lemma 3.2. Stirling Number Identity.
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For any integer ¢ > 0:

) ' )4 Xk
X" = kIS4 k) ———
n;n kgo (/ )(1_X)k+l/

where S(/,k) are the Stirling numbers of the second kind.

7132
Proof
We differentiate the geometric series. Let D = X &. Then D(X") =
nX", so n’X" = D¥(X"). We apply D’ to (1 — X)~!. Using the iden-
tity n’ = Yf_, S(£,k)(n)i, we can express the operator D’ in terms
of derivatives. Explicitly,

Yo nfx" = ZZSEk kX" = ZSEkZ kX"

n>0 n>0k= n>0

Note that ¥_(n); X" = X* £ ¥ X" = X*k1(1 — X)~**1). Substituting
this back yields the result

This lemma ensures that if f(n) is a polynomial, its generating func-
tion is rational. The method of partial fractions then applies to the
sum P/Q + F(X).

Example 3.11. A Non-Homogeneous Example. Solve a, = 2a,_1 +
n for n > 1 with ag = 0.

Multiply by X" and sum:

A(X) =2XA(X) + ) nX".
n>1

Using the lemma for ¢ = 1 (or simply differentiating ) X"):

Y nX" = (1_XX)2
Thus:
AX)(1=2X) = —2 — A(X) = X .
(1—X)2 (1—2X)(1-X)?
Partial fraction decomposition form:
X A B C

I-2X)1-X2 1-2X 1-X ' (1=x2

Solving for constants yields A =2,B = -1,C = —1.

=2(2") -1(1") - <"J1r1)(1”) =2"—1—(n+1)=2""—n-2.

.41
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3.6 Exercises

1.

Recurrences for Polynomials. The Chebyshev polynomials T}, (x)
are defined by the recurrence T,,(x) = 2xT,,_1(x) — T,,_2(x) for
n > 2, with Ty(x) =1 and T1(x) = x.

(a) Determine the generating function F(z) = Y5 T, (x)z".

(b) Using the generating function, prove the explicit formula:
L 2k (42 k
— n—
Tu(x) = ) <2k>x (x*—=1)~

Fibonacci Sum Identities. Let F, denote the Fibonacci numbers
_z

1—z—22 to

(Fp = 0,F; = 1). Use the generating function F(z) =
prove the following identities:

(@ Yi_oF=Fuy2— 1.
(b) Yi—oFx = Fony1— 1.
() Yi oFFEi—«= wﬂ (Hint: Differentiate).

Domino Tilings. Let A, be the number of ways to tilea 2 x n
rectangle with 1 x 2 dominoes.

(a) Establish the recurrence A, = A, 1+ A, —».
(b) Find the generating function A(z) = }_ A,z".

(c) Deduce the closed form for A,.

Ternary Words. Let f(n) be the number of words of length n over

the alphabet {0,1,2} that contain no adjacent zeros (i.e., "00" is
forbidden).

(a) Show that f(n) satisfies the recurrence f(n) = 2f(n — 1) +
2f(n—2) forn > 2.

(b) Compute the generating function for f(n) and use it to find
an explicit formula involving V3.

Reciprocal Convolution. Compute the sum

1
Si=). k(n—k)

0<k<n

Systems of Recurrences. Let A, be the number of ways to tile
a 3 x n rectangle with 1 x 2 dominoes. Let B, be the number of
tilings of a 3 X n rectangle with one corner missing (a shape of
area 3n — 1).

For (b): Alternatively, relate the generat-
ing function roots to cos(n6).

Consider the coefficient of z" in the
square of the generating function for
harmonic numbers, or use partial

fraction decomposition on the term
1
k(n—k)*
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(a) Prove the coupled recurrences:

Ap = Ay2+2B, 4
By, = An—l + Bn72

(b) Solve this system using generating functions to find A;.
7. End-to-End Evaluation. Evaluate the sum
1 n—+ k) _k
Sy = Z < 21K,
=\ 2k
(a) Find the generating function S(z) = }_,,>05x2".

(b) Show that S(z) represents a rational function corresponding
to a second-order linear recurrence.

(c) Determine the explicit formula for s,,.

8. Harmonic Convolution. Let H, = Y/ , % be the n-th harmonic

number. Express the convolution sum Use the identity Y H,z" = —20-2),

n—1
Y HyH,_k
k=1
in terms of H, and n.
9. Partition Generating Functions.

(a) Write down the generating function for p;(n), the number of
partitions of n into distinct parts.

(b) Write down the generating function for p,(n), the number of
partitions of n into odd parts.

(c) Prove Euler’s Partition Theorem (p;(n) = po(n)) by showing
their generating functions are identical.

10. Making Change. Let ¢, be the number of ways to change n pence
using only 1p, 2p, and 5p coins.
(a) Write the generating function C(z) = Y c,z" as a rational

function.

(b) Using partial fractions or series expansion, determine the
asymptotic behaviour of ¢, for large n. (i.e., find a quadratic
polynomial P(n) such that ¢, ~ P(n)).

11. Snake Oil Method. Re-prove the identity
n
Z F. =F n+2 — 1
k=0

by evaluating " o (1f_, Fx) z" as a product of generating func-
tions.
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