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0.1

0
Graph Theory

Graph theory formalises the study of pairwise connections, serving
as a fundamental language for discrete mathematics.

Definitions and Representations

We define a graph as a structure consisting of points and links con-
necting them. Unlike the continuous functions of analysis, graphs are

inherently discrete.

Definition o.1. Graph.
A graph is a pair G = (V, E), where:
-V is a finite set of elements called vertices (or nodes).

ements of E are called edges.

tices x,y € V are said to be adjacent (or neighbours) if {x,y} € E.
Note

Unless explicitly stated otherwise, all graphs in this text are sinple
(no loops connecting a vertex to itself, no multiple edges between
the same pair) and undirected (edges are sets {x,y}, not ordered

pairs (x,y)).

Graphs are frequently represented geometrically by drawing vertices
as points and edges as curves connecting them. It is crucial to dis-
tinguish the combinatorial object G from its visual representation; a
single graph may admit multiple distinct drawings.

Example o.1. Labelled Graphs. Consider the set of vertices

V = {a,b,c}. The number of possible edges is |P»(V)| = (g) =3.
The possible edges are {a,b},{b,c},{a,c}. A graph on V is deter-

distinct graphs on these three labelled vertices.

- E is a subset of P,(V), the set of all 2-element subsets of V. The el-

The order of the graph is the cardinality of the vertex set, |V|. Two ver-

mined by choosing a subset of these edges. Thus, there are 2° = 8

.41

d C

Figure 1: A representa-
tion of the graph G

({a,b,c,d}, {{a, b}, {b,c} {c, d} {d,a}}).
This is the cycle Cj.
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This example generalises immediately via the properties of the power
set established in the previous notes

Proposition o.1. Counting Labelled Graphs.
The number of distinct graphs with a fixed vertex set V of cardinality
nis

202,

»

i
Proof
A graph is completely determined by its edge set E € P,(V). The

size of the set of all possible pairs is [P»(V)| = (3). The number of
subsets of P, (V) is the cardinality of its power set, which is 2(2).

The definition of a graph G = (V, E) depends on the specific labels of
the vertices. However, the structural properties of a graph (connectiv-
ity, cycles, etc.) are independent of labelling. We formalise the notion
of "structural equality" via isomorphism.

Definition o.2. Isomorphism.
Two graphs G = (V,E) and G’ = (V/,E’) are isomorphic, denoted
G = G/, if there exists a bijection ¢ : V — V' such that for all x,y €
V:

{xy} €E <= {o(x),0(y)} € E.

The map ¢ is called an isomorphism.

An isomorphism renames vertices while preserving adjacency. The
relation £ is an equivalence relation on the set of all graphs. When
we speak of "a graph" in an abstract sense (e.g., "the triangle"), we
refer to an isomorphism class.

Example o.2. Isomorphism Classes of Order 3. While there are

20 = 8labelled graphs on three vertices, there are only 4 up to

isomorphism. . .

1. No edges (empty).

2. One edge. . . —

3. Two edges (a path of length 2). Empty 1 Edge

4. Three edges (a triangle).

oo VANVAN

Counting graphs up to isomorphism is significantly more difficult 2 Edges Triangle
than counting labelled graphs, as the size of isomorphism classes
varies. However, we can establish useful bounds using the Pigeon- Figure 2: The four non-
hole Principle and properties of group actions. isomorphic graphs of order

3.
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Proposition o0.2. Bounds on Isomorphism Classes.
Let Uy, be the set of isomorphism classes of graphs of order n. Then:

2(3)
U] > -
n!
Proof
Let G, be the set of labelled graphs on the set V. = [1,n]. We have

1Gu| = 2(2). Consider the mapping 77 : G, — U, that assigns each
graph to its isomorphism class. For any graph G, the size of its iso-

morphism class is at most 1!, since any isomorphism is determined

by a permutation of the n vertices. Since the classes form a partition
of G,, we have:

Gl = ) ICI< Y nl=th] nt

Cely Cely,

Rearranging yields the result.

Asymptotically, the number of unlabelled graphs behaves similarly
to the number of labelled graphs, as the exponential term 27*/2 dom-
inates the factorial n!. Using the approximation log, (n!) ~ nlog, ,
we observe:

2(2) n n?
log, (n') = (2) —log, (n!) =~ 7~ nlog, n.

For large n, this growth is driven by the n? term.

0.2 A Bestiary of Graphs

We define several standard families of graphs that appear frequently

in examples and counterexamples.

Definition o.3. Standard Graphs. .

Let n € IN*.

1. Empty Graph (S,): V = [1,n] and E = @. Also called the stable Qs
graph.

2. Complete Graph (K,): V = [1,n] and E = P»(V). Every pair of Figure 3: The 53-dimensional

distinct vertices is connected.
3. Path Graph (P;): A chain of length n.

hypercube Q3. Each vertex is a
binary string in {0,1}3; edges
connect strings differing in one
V=I[0n, E={{ii+1}:0<i<n}. bit.

Note that P, has order n 41 and size (number of edges) n. Some

authors instead index P, by the number of vertices (order n); we fol-
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low the length convention here to match |E| = n.
4. Cycle Graph (C;): For n > 3, a closed loop of length n.

V=[Ln], E={{ii+1}:1<i<n}u{{n1}}.

5. Hypercube (Q,): The d-dimensional cube.

Another crucial class of graphs arises when the vertex set can be par-

titioned into two disjoint sets such that edges only connect vertices Figure 4: The complete graph
from different sets. K5 and the cycle Cs.

Definition o.4. Bipartite Graphs.
The complete bipartite graph K, ;; is defined by partitions of sizes n
and m. 0

V={ay...,an}U{by, ..., b}, E={{a;bj}:1<i<nl1<j<m}

The order is n + m and the number of edges is nm.
T & Ka3

Example o.3. The Petersen Graph. The Petersen graph is a spe-
cific graph of order 10 and size 15, famous for being a counterex-
ample to many optimistic conjectures in graph theory. It can be
constructed as the Kneser graph KG(5,2):

- Vertices: The 2-element subsets of {1,2,3,4,5}.

edges.
- Edges: Two vertices (subsets) are adjacent if they are disjoint. 8

X

0.3 Degrees and Regularity
The local structure of a graph is characterised by the connectivity of
individual vertices.

Definition o.5. Degree.
Let G = (V,E) be a graph and x € V. The neighbourhood of x, de-

N(x)={yeV:{xy} € E}.

The degree of x, denoted d(x) (or deg(x)), is the cardinality of its neigh-
bourhood:
d(x) = [N(x)].

A vertex of degree o is isolated; a vertex of degree 1 is a leaf.

K C
V ={0,1}%, E={{x,y}:xand y differ in exactly one coordinate}. 5 2

graph Kj3: every vertex on the
left is adjacent to every vertex
on the right. Ithas 2 - 3

The Petersen Graph

noted N(x), is the set of vertices adjacent to x: Figure 6: The Petersen graph
drawn with 5-fold symmetry.

Figure 5: The complete bipartite

6
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We characterise the global "boundedness” of the graph by its extremal
degrees:

Minimum degree:
J(G) = mind(v).

veV

Maximum degree:

A(G) = maxd(v). \\N(y)

veV |
p |
If 6(G) = A(G) = k, every vertex has degree k, and the graph is said / ¢
to be k-regular.
d(x) =3
Theorem o.1. The Handshaking Lemma.
For any graph G = (V, E): Figure 7: The neighbourhood
N(x) (blue vertices) consists of
2 d(v) = 2|E|. all vertices adjacent to x. Here

vev d(x) = |N(x)| = 3.

T
Proof
We employ a double counting argument on the set of vertex-edge
incidences. Let S C V x E be the set of pairs (v,e) such that v € e:

S={(v,e) e VXE:v€e}

We calculate |S| in two ways:

1. Summing over vertices: For a fixed v, the number of edges con-
taining v is d(v). Thus |S| = Y_,cy d(v).

2. Summing over edges: For a fixed edgee € E, since G is a sim-
ple graph, e consists of exactly two distinct vertices. Thus |S| =
Yocr2 = 2]E].

Equating the two expressions yields the result.

|

This arithmetic constraint imposes a parity restriction on the degrees.

Corollary o.1. Parity of Odd Degrees. In any graph, the number of ver-
tices with odd degree is even.

Hem
Proof

Partition the vertex set V into Veyey = {v : d(v) is even} and V,5; =
{v:d(v) is odd}. By the Handshaking Lemma:

21El= Y d(v)+ Y. d(v).

VE Veven vEVoiq

The left-hand side is even, and the first sum on the right is a sum of

even integers, hence even. Therefore, the sum Y .y, d(v) must be
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even. Since this is a sum of odd integers, the number of terms |V, 4]

must be even.
[ ]

0.4 Matrix Representations

While graphs are combinatorial objects, they can be encoded using
linear algebra. Let G = (V,E) withV = {vy,...,v,} and E =

{e1,...,em}

Definition 0.6. Adjacency Matrix.
The adjacency matrix A is the n x n matrix defined by:

1 if {ZJZ‘,U]'} €E,

Ag)ii =
( )l] 0 otherwise.

For simple undirected graphs, A is symmetric with zeros on the di-
agonal. The sum of the i-th row (or column) is d(v;).

Definition o.7. Incidence Matrix.
The incidence matrix M is the n x m matrix capturing the relationship
between vertices and edges:

1 ifv; € ej,

M;; =
0 if (% é Ej.

]

The incidence matrix provides an algebraic verification of the Hand-
shaking Lemma. Summing all entries of M:

n m m n
Y)Y M=), (ZMif> =2m = 2|E|,
i=1j=1 =1 \i=1

N, e’

2

n m
NS (ZMU-) - Y ),
i=1 j:l i=1 j:l veV

—_———

d(v;)

0.5 Graphic Sequences

The degree sequence of a graph of order 7 is the tuple of vertex
degrees (dq,...,dy), typically sorted in non-decreasing order d; <
dy < .-+ < d,. While isomorphic graphs share the same degree
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sequence, the converse is false. For example, the cycle Cg and the
disjoint union of two triangles 2K3 both have the degree sequence
(2,2,2,2,2,2), yet Cg is connected while 2Kj is not.

A sequence of integers is termed graphic if there exists a graph real-
ising it as a degree sequence. The Havel-Hakimi theorem provides a
recursive algorithm to test this property.

Theorem o.2. Havel-Hakimi.

Let D = (dy,...,d,) be a sequence of integers satisfying 0 < d; <

-+ <dy < n—1 (the upper bound guarantees the reduction step is
defined). The sequence D is graphic if and only if the reduced sequence
D’ of length n —1 is graphic, where D’ is obtained by removing d,, and
subtracting 1 from the d,; largest remaining terms. Formally, let k =

1) (reordered if necessary).

g
(=)
Suppose D' is graphic. Let G’ be a graph with vertex set
{v1,...,v,_1} realising D’. Construct G by adding a vertex v,

and connecting it to the vertices corresponding to the d,, indices

that were decremented in D’. The degrees in G are exactly D.
SEBA #

(=)

Suppose D is graphic. Let G be a realisation such that the ver-

tex v, (with degree d) is adjacent to the set of vertices H =
{Vu_d,s---,Un-1}, ie., the vertices with the highest degrees among
the rest. If such a G exists, removing v, yields a graph realising D’.
We show such a graph must exist. Among all graphs realising D,
choose one where v, shares the maximum number of edges with
the target set H. Suppose for contradiction that N(v,) # H. Then
there exists a "missing" neighbour v, € H \ N(v,) and a "wrong"
neighbour v, € N(v,) \ H. Since vy € H and vy ¢ H, we have k > /,
implying d(vy) > d(vy).

Case 1: d(vy) = d(v;). We may simply swap the labels of vy and v,.
The graph structure is unchanged, but v, is now connected to
vy € H, increasing the intersection |N(v,) N H].

Case 2: d(vy) > d(vy). Since vy has strictly higher degree than
vy, there must exist a vertex vy, such that {vy, v, } € E but
{vy,vm} ¢ E. (Note m # n). Consider the vertices {vy, Uy, v, U }-
We have edges {v,, vy} and {vg, v}, but {v,, vr} and {vy, vy}
are absent. Perform an edge swap: remove {v,,v,} and {vg, v };
add {v,, v¢} and {vy, vy, }. This operation preserves the degree of

44

T~ e

dy. The reduced sequence is formed from (dy,...,d, x 1,d, r—1,...,dy_1 — Uk

Swap

Figure 8: The edge switching
argument. If v, is connected

to a low-degree vertex v, but
misses a high-degree vertex

vk, and vy has a neighbour

vy not adjacent to vy, we can
swap edges {vy, v/}, {vk, Um }
for {vy, vr}, {vs, vm} to pre-
serve degrees while "fixing" v,,’s
neighbourhood.
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every vertex but connects v, to vy instead of vy.

In both cases, we construct a realisation with strictly greater overlap
with H, contradicting the maximality assumption. Thus, a realisa-
tion connecting v, to H exists.

BLES

Example 0.4. Determining Graphic Sequences. We determine if the
following sequences are graphic.

S1=(1,1,1,2,2). Thesum of degreesis1 +1+1+2+2 = 7,
which is odd. By the Handshaking Lemma, this is impossi-
ble. Alternatively, applying Havel-Hakimi implies reducing
(1,1,1,2) by connecting the degree 2 vertex to the two largest:
D= (1,L1-11-1) = (1,0,0). A graph with one vertex of
degree 1 and two of degree o is impossible (the degree 1 vertex
needs a neighbour).

S> =1(1,1,1,3,4). Sorted: (1,1,1,3,4). Remove 4, subtract 1 from
four largest remaining:

D'=(1-1,1-1,1-1,3-1) = (0,0,0,2).
Remove 2, subtract 1 from two largest remaining;:
D" =(0,0-1,0-1)=(0,—-1,-1).
Negative degrees are impossible. Thus S is not graphic.

S3=1(1,1,1,2,2,3,4,5,5). Remove 5: reduce {5,4,3,2,2}
— {4,3,2,1,1}.
D' =(1,1,1,1,1,2,3,4,4).

(Note: we retain the three 1s that were not modified). Remove 4:
reduce {4,3,2,1} — {3,2,1,0}.

D" =(0,1,1,1,1,1,2,3).
Remove 3: reduce {2,1,1} — {1,0,0}.
D" =(0,0,0,1,1,1,1).

This is graphic (e.g., two disjoint edges and 3 isolated vertices).
Thus S5 is graphic.

o451
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0.6 Exercises

1. Degrees and Neighbours.

(a) Let Gy = (V,E) where V = {a,b,c,d, e} and E = {{a,c},{b,d},{c,d}, {c e}, {d e} {ece}}.
Compute the degree of each vertex. Is G; simple? List the
neighbours of a and the edges incident to a.

(b) Let G = (V,E) where V = {a,b,c} and E = {{a,b},{a,c}, {a,c}}.
Compute degrees, check simplicity, and list neighbours/incident
edges for a.

(c) Let G3 = (V,E) where V = {a,b,c,d} and E = {{a,b},{a,c},{b,c}}.
Compute degrees, check simplicity, check for isolated ver-
tices, and draw the graph.

2. Basic Families.

(a) Draw the complete graphs Kj, Ky, K3, K4 and Ks.

(b) Let G be a simple graph on vertex set V. Show that for any
subset S C V, the induced subgraph G[S] is uniquely deter-
mined by S.

(c) Let G be a simple graph on n vertices. Prove that the edge
set of the complement G satisfies E(K,) = E(G) UE(G) and

E(G)NE(G) =®.
3. Handshaking and Induction.

(a) Prove the Handshaking Lemma (}_d(v) = 2|E|) by induction
on the number of edges.

(b) Prove that the number of odd-degree vertices is even by in-
duction on the number of edges.

Remark.

Base case: empty graph. Inductive step: adding/removing
an edge affects degrees of two vertices.

(c) Start with K7. Show there is a sequence of deleting one edge
then one vertex such that the result is complete. Show a
different sequence where the result is not complete.

4. Counting Labelled Graphs.
(a) How many labelled graphs on 5 vertices have exactly 1 edge?

(b) How many labelled graphs on 5 vertices have exactly 3
edges? Exactly 4 edges?

(c) Prove that the total number of simple labelled graphs on n
vertices is 2(2).

11
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5. Isomorphism.
(a) Prove that graph isomorphism is an equivalence relation.

(b) Let Gi = G,. Prove they have the same order, size, and
degree sequence.

(c) Let Gy be the graph with V = {a,b,c,d} and E = {{a,b},{a,c},{a,d}}.
Let G, be the graph with V = {A,B,C,D} and E = {{B,C},{C,D},{B,D}}.
Are they isomorphic? Provide an isomorphism or prove none
exists.

(d) Draw five pairwise non-isomorphic graphs on 5 vertices.
Justify your answer.

6. The Petersen Graph. Let G be the graph whose vertices are the
2-element subsets of {1,2,3,4,5}, with adjacency defined by dis-
jointness.

(a) List all vertices and determine their degrees.

(b) Draw the graph.

(c) Is this graph bipartite?
7. » Hypercube Edges. Let e(Q,) be the number of edges in the

n-dimensional hypercube.

(a) Establish the recurrence e(Q,) = 2e(Q,_1) + 2" ! with

e(Qo) = 0.
(b) Solve this recurrence to find a closed form for e(Qy).

(c) Verify your formula by a direct combinatorial counting argu-
ment (using the Handshaking Lemma).



1.1

1
Extremal Graph Theory

In the previous chapter, we established the vocabulary of graph the-
ory, defining structures such as connectivity, degrees, and specific
families like K, and C,;. We now turn to extremal graph theory, a
field concerned with the relationship between local constraints (such
as the absence of a specific substructure) and global properties (such
as the number of edges).

The central question we address is: How dense can a graph be without

containing a forbidden substructure?

Substructures

We begin by formalising the notion of one graph being "contained"
within another.

Definition 1.1. Subgraph.
Let G = (V,E) be a graph. A graph H = (V’,E’) is a subgraph of
G, denoted H C G, if:

V'CV and E CE. G
If H C G and H contains «// edges of G capable of connecting vertices IZI
inV/, ie.,
E = EnN P2(V/), Subgraph.
then H is the induced subgraph of G on V', denoted G[V']. If V' = ° i
V, then H is a spanning subgraph.
S Induced
To clarify the distinction between these types, consider the complete ——+o
graph K. Its structure is maximal; every pair of vertices is an edge. Figure 1.1: Top: Graph G. Mid-

Consequently, its subgraphs enumerates all possible simple graphs dle: A subgraph on 3 vertices

(missing edge {a,c}). Bot-
Example 1.1. Counting Substructures of K,,. Let K;; be the com- tom: The induced subgraph

up to order n.

plete graph on n vertices. We determine the cardinality of the sets G[{a,b,c}] includes all edges
of its subgraphs. from G.
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Induced Subgraphs: An induced subgraph is uniquely determined
by its vertex set V' C V. There are 2" such subsets.

Spanning Subgraphs: The vertex set is fixed to V. A spanning sub-
graph is determined by choosing a subset of the edges of K.
There are (5) possible edges, so there are 20) spanning sub-
graphs.

General Subgraphs: To form an arbitrary subgraph, we first choose
k vertices (in (}}) ways), and then choose any subset of the edges
available between them. Thus, the total number is:

kio <Z> o)

$o19]

1.2 Turdn’s Theorem

A foundational result in extremal graph theory is Turdn’s Theorem.

It bounds the number of edges in a graph that does not contain a
complete subgraph of size r (denoted K;).

If we wish to avoid K3 (a triangle), the best strategy is to partition the
vertices into two sets A and B and place all possible edges between A
and B, but none within A or B. This yields a complete bipartite graph

Kina),inr21s
which contains no triangles. Turdn’s Theorem generalises this intu-
ition.
Theorem 1.1. Turdn’s Theorem (1941).

Let G = (V,E) be a graph of order n and size m. Let r > 2. If G does
not contain K; as a subgraph, then:

m<|1-— 1 n—z
- r—1/) 2°

Proof

We proceed by induction on #n and r, ordered lexicographically:

first smaller 7, and for equal r smaller n. The base cases n = 1 (triv-
ial) or r = 2 (no edges allowed, m = 0) hold immediately. Let n > 1
and r > 2. Assume the theorem holds for all graphs of order strictly
less than n.

If G does not contain a clique of size r — 1 (K,_1), we may apply the
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induction hypothesis for r — 1:

1 n2 1 n2
<(1- T (1= L
m—(l rz)z—(l r1>2’

and the bound holds.

Now, assume G does contain a subgraph K,_1. Let A C  V be the
vertex set of this (r — 1)-clique, and let B = V' \ A. We partition the
edge set E into three disjoint sets:

E,4: Edges with both endpoints in A. Since A induces K;_1, |[Ea| =
-1
("27):
Ep: Edges with both endpoints in B. Since G contains no K, the

induced subgraph G[B] contains no K,. By the inductive hypoth-
esis on B (which has order n — (r — 1)):

r—2\ (n—r+1)>?
< .
|EB|(r—1) 2

E4p: Edges connecting A and B. For any vertexv € B, v canbe
adjacent to at most r — 2 vertices in A. If v were adjacent to all
r — 1 vertices of A, then A U {v} would form a K, contradicting
the hypothesis. Thus:

|Eagl < |B|(r—2) = (n—r+1)(r—2).
Summing these components:
m = |Ea| + |Ep| + [Eas|

<EN=2) | T2 R -2 -+ 1)

B 2 2(r—1)
- 2(1;,__21) [(7—1)2—1- (n—r+l)2+2(r—1)(n_r+1)} )

Recognising the term in brackets as the expansion of ((r —1) + (n —
r+1))? = n?, we obtain:

r—2 5 1 n?
< " n?=(1- —.
m_Z(r—l)n <1 r—l) 2

The bound is sharp. The configuration achieving equality is the
Turdn Graph, denoted T(n,r — 1). It is the complete multipartite
graph formed by partitioning V' into r — 1 independent sets of size
roughly n/(r —1).

T(6,3) (No Ky)

Figure 1.2: The Turdn graph
T(n,r — 1) is a complete multi-
partite graph formed by parti-
tioning vertices into r — 1 sets
of equal (or nearly equal) size.
It maximises edges while avoid-
ing K.
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Remark.

If n is a multiple of r — 1, say n = k(r — 1), we partition V into r — 1
sets V1, ..., V,_1 each of size k. We connect u, v if and only if they
belong to distinct sets. By the Pigeonhole Principle, any set of r
vertices must contain at least two from the same partition V;, which
are non-adjacent. Thus, K; is forbidden. The number of edges is the
number of pairs of partitions times the edges between them:

8- (e D (L Ly

1.3 Geometric Applications

Graph theoretic bounds often yield surprising results in geometry.
We apply Turdn’s theorem to a problem involving distances in the
plane.

P

Theorem 1.2. Erdds
Let S be a set of n points in the plane with diameter at most 1 (i.e., the
maximum distance between any pair is 1). The number of pairs of points
separated by a distance strictly greater than 1/ V/2 is at most an / 3j.

Distance Theorem.

i

Proof
Construct a graph G = (S, E) where an edge {x,y} exists if and
only if d(x,y) > 1/+/2. We claim that this graph cannot contain a
complete subgraph of order 4 (Ky).
Suppose for contradiction that {x,y,z,t} ~C S forms a Ky. This
implies the distance between any two of these points is greater
than 1/+/2. Consider the geometric configuration of these four
points. In any set of four planar points, either one lies in the convex
hull of the others (so some angle at that point is at least 120°) or
they form a convex quadrilateral (so some interior angle is at least
90°). In either case, there exists a triplet, say x, y, z, forming an an-
gle Zxyz > 90°. By the Law of Cosines (or simply Pythagoras if
Zxyz = 90°):

d(x,z)? > d(x,y)* +d(y,2)*

Since d(x,y) > 1/v/2 and d(y,z) > 1/+/2, we have:

d(x,z)% > %—i— % =1 = d(x,z) > 1

This contradicts the assumption that the diameter of S is at most 1.
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Thus, G is Ky-free. Applying Turdn’s Theorem with r = 4:

1\ n? n?
El<(l—=)—=—=—.
||_( 3>2 3

1.4 Independent Sets

We defined an independent set (or stable set) implicitly when dis-
cussing Turdn graphs. We now treat them formally.

Definition 1.2. Independent Set.

Let G = (V,E). A subset S C V is an independent set if no two ver-
tices in S are adjacent. The independence number «(G) is the cardi-
nality of the largest independent set in G.

This concept is dual to that of a clique via the complement graph.

Definition 1.3. Complement Graph.
The complement of G = (V, E) is the graph G = (V, E), where {u,v} € G

E if and only if {u,v} ¢ E (for u # v). .
Note

A set of vertices forms a clique in G if and only if it forms an inde- G

pendent set in G. v’

Using this duality, we can translate Turdn’s theorem into a lower

bound for the size of independent sets. Figure 1.3: A graph G and its
complement G. The clique
{a,c,d} in G is an independent

Corollary 1.1. Lower Bound for a(G). Let G be a graph of order n and
size m. Then:

n? set in G.
#(G) 2 2m+n’
El]
Proof
Leta = a(G). Since an independent set in G is a clique in G, the

graph G contains a clique of size a, but no clique of sizea  + 1.
Applying Turan’s Theorem to G, which has size (3) — m:

= 1 n? a—1\ n?

<f(1-o - Y™ _ n

E(G)|_<1 oc—i—l—l) 2 ( o )2
Substituting |E(G)| = ”(”2*1) —m:

nz—n v—1 ,

< .

- 2« "
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Multiplying by 2a:
w(n® —n—2m) < (a — 1)n?® = an® — n.
Cancelling an? from both sides:

—a(n42m) < —n? <= a(2m+n) > n?

Rearranging yields the result.

1.5 Ramsey Theory

While Turan’s theorem determines the maximum density of edges
before a specific substructure 15t appear, Ramsey theory poses a
more fundamental question: is total disorder possible? The central
result, Ramsey’s Theorem, asserts that in any sufficiently large graph,
one can find either a highly connected substructure (a clique) or a
completely disconnected one (an independent set).

Definition 1.4. Ramsey Numbers.

Let s, t € IN*. The Ramsey number R(s, t) is the minimum integer n
such that for any graph G of order #, either:

- G contains K as a subgraph, or

- G contains S (an independent set of size t) as an induced subgraph.
Equivalently, referencing the complement graph, any graph of order
R(s, t) satisfies Ks C G or K; C G.

The existence of such numbers is not immediately obvious; a priori,
one might construct arbitrarily large graphs avoiding both structures.
Ramsey’s theorem guarantees their finiteness. We begin with the
elementary boundary values.

Proposition 1.1. Basic Properties.
For all s, t > 2:

1. Symmetry: R(s,t) = R(¢,s).

2. Triviality: R(1,¢) = 1.

3. Pairs: R(2,t) =t.

»

PRl

Proof

1. Letn = R(s,t). For any graph G of order n, either K, C G or
St C G. Taking complements, for any graph H = G, either S; C
Hor K; C H. Thus R(t,s) < R(s,t). The reverse inequality holds
similarly.
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2. A graph of order 1 contains K; (a single vertex).
3. We show R(2,t) = t.

e Upper bound: Let G be a graph of order t. If G contains at
least one edge, then K, C  G. If G contains no edges, then
G = G;. In either case, the condition is satisfied.

* Lower bound: Consider the graph S;_1. It has ordert — 1,
contains no edges (no K3), and has size strictly less than ¢ (no
S¢). Thus R(2,t) >t — 1.

The finiteness of Ramsey numbers for general s, ¢ is established via
a recurrence relation, essentially a graph-theoretic application of the
Pigeonhole Principle.

Theorem 1.3. Ramsey Recurrence.
For integers s,t > 2, the Ramsey numbers satisfy:

R(s,t) <R(s—1,t) + R(s,t —1).

T3
Proof
Letn = R(s —1,t) + R(s,t — 1). Consider an arbitrary graph G =
(V,E) of order n. Pick any vertex v € V. We partition the remain-
ing n — 1 vertices into two sets:

A=N(v)={ueV:{uv}c€E},

B=V\(AU{v})={ueV:{uv} ¢E}

Since |A|+|B| =n—1=R(s—1,t) + R(s,t — 1) — 1, the Pigeonhole
Principle implies that either |A| > R(s — 1,¢) or |B| > R(s,t —1).

Case 1: |A| > R(s —1,t). Consider the subgraph induced by A,
G[A]. By definition of the Ramsey number, G|A] must contain
either K;_1 or S;.

e If S; C G[A], then S; C G, and we are done.

e If K;_1 C G[A], let K be the set of vertices forming this clique.
Since v is adjacent to every vertex in A (and thus every vertex
in K), the set KU {v} forms a clique of size s (K;) in G.

Case 2: |B| > R(s,t —1). Consider the induced subgraph G[B]. It
must contain either K or S;_1.
e If K; C G[B], then Ks C G, and we are done.
e IfS; 1 C GIB], let S be this independent set. Since v is ad-

jacent to no vertex in B, S U {v} forms an independent set of
size t (S¢) in G.

19
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In all scenarios, G satisfies the Ramsey condition. Thus R(s, t) < n.
]

Example 1.2. The Party Problem (R(3,3)). We determine the
value of R(3,3). From the recurrence relation and the base case
R(2,3) =3

R(3,3) <R(2,3) +R(3,2) =3+3 = 6.

To show R(3,3) > 5, we must exhibit a graph of order 5 contain-
ing neither a triangle (K3) nor an independent set of size 3 (S3).
Consider the cycle Cs (see Figure 6 or the Bestiary section).

Cliques: The maximum clique size in Cs is 2 (an edge), so it is
K3-free.

Independent Sets: The maximum independent set size is 2 (any
pair of non-adjacent vertices forces the remaining three to be
connected enough to prevent a third independent choice). Thus
it is S3-free.

Since Cs serves as a counterexample for n = 5, we conclude
R(3,3) =6.

Interpretation: In any group of 6 people, there are either 3 mutual
friends or 3 mutual strangers.

.41

1.6 Exercises

1. Substructures of K;,.

(a) Prove that the number of induced subgraphs of K, is 2".

(b) Prove that the number of spanning subgraphs of Kj, is 202),

(c) Show that the total number of subgraphs of K;; is Y/ (2‘)2(5).
2. Defining Subgraphs. Let G = (V, E) be a simple graph.

(a) Show that for any subset S C V, the induced subgraph G|[S]
is uniquely determined by S.

(b) Let H be an arbitrary subgraph of G. Prove that there exists
a unique vertex subset S C V and a unique edge subset
F C E(G[S]) such that H = (S, F).

3. Triangle-Free Graphs. Let G be a graph of order n containing no
triangles (Ks-free).

(a) Use Turén’s Theorem (r = 3) to show that |E(G)| < [n?/4].

C5: no K3, no 53

Figure 1.4: The cycle C5 wit-
nesses R(3,3) > 5. Blue circles
mark a maximum independent
set of size 2; adding any third
vertex creates an edge.
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(b) Describe the graphs that achieve equality in this bound.

Turdn Bound Practice. Let 14, ..., 1, be positive integers summing
to n. Consider K, partitioned into disjoint sets V; of size n;.

(a) Explain why Y¥_; (¥)) counts the edges inside the parts.
(b) Show that Y¥_; (4) < (3). When does equality hold?
* Sharpness of Turdn’s Theorem. Let T(n,7 — 1) be the Turan
graph (complete (r — 1)-partite graph with roughly equal parts).
(a) Show that the number of edges is |[E(T(n,r — 1))| = 3(n® —
Lot n)-
(b) Deduce that |E(T(n,r — 1))| > (1 - %) g, with equality
when all parts are as equal as possible.

(c) Conclude that the bound in Turan’s theorem cannot be im-
proved.

* Uniqueness of Turdn Graphs. Let G be a K;-free graph on n
vertices. Prove that if G has the maximum possible number of
edges among all such graphs, then G must be isomorphic to the
Turén graph T(n,r —1).

Independence and Cliques. Let G = (V,E) and G be its comple-
ment.

(a) Prove that S C V is a clique in G if and only if S is an inde-
pendent set in G.

(b) Show that a(G) = w(G), where w(G) is the clique number
(size of the largest clique).

Independence Bounds. Verify the inequality a(G) > % for the
following families:

(a) The complete graph K.

(b) The cycle graph C,.

(c) The path graph P, (length n, order n + 1).
Comment on the tightness of the bound in each case.

Independence and Average Degree. Let d be the average degree
of a graph G on n vertices. Show that:
x(G) > ==

d+1

Remark.
Hint: Relate d to the number of edges m and use the bound from
the previous exercise.

Geometry Lemma. Show that for any 4 points in the plane, there

21
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11.

12.

13.

14.

15.

16.

exist three of them forming an angle of at least 90°.

Remark.
Consider the convex hull.
Erd6s Distance Proof Step. Complete the missing step in the

proof of Erdés’ theorem: Prove that if Zxyz > 90° and d(x,y) >
1/+/2 and d(y,z) > 1/4/2, then d(x,z) > 1.

* Long Distances Construction. Construct a set of n points in the
plane with diameter 1 such that the number of pairs with distance
> 1/+/2 is of the order n2/3.

Remark.

Place points in tight clusters near the vertices of an equilateral
triangle.

Ramsey Basics.
(a) Prove R(1,t) =1and R(2,t) = t.
(b) Prove the symmetry R(s,t) = R(t,s).

Ramsey’s Theorem. Use the recurrence R(s,t) < R(s —1,t) +
R(s,t — 1) and the base cases to prove by induction on s + f that
R(s, t) is finite for all positive integers s, t.

The Party Problem. Re-prove R(3,3) = 6 by showing:
(@) R(3,3) < 6 using the recurrence.

(b) Cs contains no K3 and no S3.

(c) Deduce R(3,3) > 5.

* Bounding R(3,4). Use the recurrence relation and known values
to derive an explicit upper bound for R(3,4).
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2
Connectivity

Having established the structural definitions of graphs and their
subgraphs, we now turn to the fundamental topological notion of
connectivity. Intuitively, a graph is connected if it is possible to travel
between any two vertices along the edges of the graph. To formalise
this, we must define the precise nature of "travel" within a discrete
structure.

Walks, Trails, and Paths

We distinguish between sequences of adjacent vertices based on
whether they repeat vertices or edges.

Definition 2.1. Walks and Paths.
Let G = (V,E) be a graph.

{v;,vi11} € E for all 0 < i < k. The vertex vy is the start and vy, is
the end (or terminus).
- A trail is a walk in which all edges {v;, v;;1} are distinct.
- A path is a walk in which all vertices v; are distinct.
If vg = vy, the walk is closed. A closed path (where only vy = v are
repeated) is a cycle.
Note

In the previous chapter’s, we defined the Path Graph P, and Cy-
cle Graph C;. A path of length k in G is a subgraph isomorphic to
Pyy1, and a cycle of length k is isomorphic to Cy.

It is immediate that every path is a walk. Conversely, while a walk
may wander and loop back on itself, the existence of a walk implies
the existence of a path.

Lemma 2.1. Walk Reduction.
If there exists a walk connecting u to v in G, then there exists a path
connecting u to v.

A walk of length k is a sequence of vertices (v, vy, ..., ;) such that

Walk: (a,b,e,b,c,d)
Trail: (a,e,b,c,e,d)
Path: (a,b,c,d)

Figure 2.1: Walk, trail, and path
from a to d. The walk repeats
edge {b,e}; the trail repeats
vertex e but no edge; the path
has no repetitions.
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I JE:

Proof

Let W = (u = vg,vq,...,0r = v) be a walk from u to v of minimal
length. Suppose W is not a path. Then the vertices are not distinct,
so there exist indices i < jsuchthatv; = v;. We can form a new
sequence W’ by excising the segment between i and j:

W' = (vo,...,vi,vj+1,...,vk).

Since v; = vj, the pair {v;,v;,1} is the edge {v},vj;1}, which ex-
ists in G. Thus W’ is a valid walk from u to v with length strictly
less than W. This contradicts the minimality of W. Therefore, the
minimal walk is a path.

Connected Components

We define a binary relation on the vertex set V' to capture global
cohesion.

Definition 2.2. Connectivity Relation.
We say two vertices x,y € V are connected, denoted x ~ y, if there
exists a walk (and hence, by lemmma 2.1, a path) starting at x and end-

ing at y.
Theorem 2.1. Connectivity is an Equivalence Relation.
The relation ~ is an equivalence relation on V.
i

Proof

1. Reflexivity: For any x € V, the trivial sequence (x) is a walk of
length o. Thus x ~ x.

2. Symmetry: If x ~ y, there is a walk (x,v1,...,v¢_1,¥). Reversing
this sequence yields (y,v_1,...,v1,x), which is a valid walk
since edges are undirected sets {u,v}. Thus y ~ x.

3. Transitivity: If x ~ y and y ~ z, there exist walks W; = (x,...,y)
and W, = (y,...,z). The concatenation Wy - W, = (x,...,v,...,2)
is a walk from x to z. Thus x ~ z.

]

The equivalence classes under ~ are called the connected compo-
nents of G. A graph is connected if it has exactly one connected
component; otherwise, it is disconnected.

Figure 2.2: Reducing a walk to
a path. If a walk intersects itself
at v; = v}, the loop (dashed) can
be removed to form a shorter
walk.
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Example 2.1. Components of 2K3. Recall the graph 2K3 consist-
ing of two disjoint triangles with vertices {1,2,3} and {4,5,6}. No
edge connects the first set to the second. The relation ~ partitions . A

Vinto C; = {1,2,3}and C; = {4,5,6}. These are the connected
components. f E i E

2 35 6
§E 1] G G

Figure 2.3: The graph 2K3: two

Cuts and Partitions disjoint triangles forming two

. . . connected components.
Connectivity can be equivalently characterised by the absence of a

"cut" — a partition of the vertices into two sets with no edges cross-
ing between them. This dual perspective is often more useful for
proofs involving contradiction.

Theorem 2.2. The Cut Condition.

A graph G = (V,E) is connected if and only if for every partition of

V into two non-empty sets A and B, there exists an edge {u,v} € E

such that u € A and v € B.
i

(=) Figure 2.4: If x and y are con-

Assume G is connected. Let V. = A U B be a partition with A, B #

@. Pick arbitrary vertices x € Aandy € B. Since G is connected,

there exists a path P = (vp,...,vx) withvg = xand v, = y. We

traverse the path from x. Since vy € A and v, € B, there must be a

nected, any path between them
must cross the boundary be-
tween A and B at least once.

first index r where the path leaves A. Let
r = min{i : v; € B}.

Since vy € A, we have r > 0. By definition of r, v,_1 & B,sov,_1 €
A. The edge {v,_1,v,} connects a vertex in A to a vertex in B.
SE B %

(=)

Assume that for every non-trivial partition, a crossing edge exists.
Suppose for contradiction that G is disconnected. Let C be a con-
nected component of G. Since G is disconnected, C C  V, so let
A = Cand B = V\ C. Both sets are non-empty. By the hypothesis,
there exists an edge {u,v} withu € Aand v € B. Since u € C and
{u,v} € E, there is a walk from any vertex in C to v. By transitivity,
v must belong to the connected component C. This impliesv € A,
contradicting v € B. Thus, G must be connected.

FiE B 45
This theorem is particularly useful when proving global connectivity
properties from local degree conditions.
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Proposition 2.1. Minimum Degree and Connectivity.
If G is a graph of order n such that 6(G) > [n/2], then G is connected.

3

P RE
Proof

Suppose G is disconnected. Then the vertex set can be partitioned
into sets A and B with no edges between them. Letu €  A. All
neighbours of u must lie within A, so d(u) < |A] — 1. Thus
|Al > d(u)+1 > |[n/2] +1 > n/2. Similarly, forany v € B,
|B| > d(v) +1 > n/2. Summing the sizes:

V| =|A|+ |B| >n/2+n/2=n.

This is a contradiction. Therefore, no such partition exists, and G is
connected by the Cut Condition (theorem 2.2).

2.2 Distance

When a graph is connected, we can measure the separation between

vertices.

Definition 2.3. Geodesic Distance.

Let G = (V,E) be a connected graph. The distance between two ver-
tices s, t € V, denoted dg (s, t), is the length of the shortest path con-
necting s and t. If G is not connected and s, ¢ lie in different components,
we define dg (s, t) = .

While the definition relies on graph structure, the function d satis-

fies the axioms of a metric space on the set of vertices, provided the

graph is connected.

Proposition 2.2. Metric Properties.

The function dg : V x V — R>( U {oo} satisfies:
1. Separation: dg(s,t) =0 < s="+.

2. Symmetry: dg(s,t) = dg(t,s).

3. Triangle Inequality: For all s, x,t € V,

dg(s,t) <dg(s,x) +dg(x,t).

Rl

3

Proof
Separation and symmetry follow immediately from the definition
of a path (length o implies a single vertex; edges are undirected).
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For the triangle inequality, observe that the concatenation of a
shortest path from s to x and a shortest path from x to t forms a
walk from s to t of length dg(s,x) +  dg(x,t). By lemma 2.1, this
walk contains a path from s to t of equal or lesser length. Thus, the
shortest path from s to t cannot exceed this sum.

[ |

Algebraic Counting of Walks

The adjacency matrix Ag encodes the existence of edges (paths of
length 1). Its powers generalise this to paths of arbitrary length.
Note

Although the provided source text refers to "trails", standard al-
gebraic graph theory confirms that matrix powers count walks
(sequences where vertices and edges may repeat). We present the
mathematically correct statement here.

Theorem 2.3. Counting Walks.
Let G be a graph with vertex set V = {vy,...,v,} and adjacency ma-
trix Ag. For any k € IN, the number of walks of length k connecting
v; to vj is given by the entry (AY);;.

L
We proceed by induction on k.
Base Case (k = 0)
A% = I,. A walk of length o from v; to v; exists if and only if v; =

vj, which corresponds to the identity matrix entries.
SERA #

Inductive Step

Assume the property holds for k. A walk of length k + 1 from v; to
v; consists of a walk of length k from v; to some neighbour vy, fol-
lowed by the edge {vy, v;}. Summing over all possible penultimate
vertices vy:

Nit1(0i,0) = ) Ni(vi,00) - (Ag)yj-
‘U(EV

By the inductive hypothesis, Ni(v;,v/) = (A%);,. Thus:
n
Nis1(v3,9)) = Y (AS)u(Ac)y = (AL - Ag)ij = (AE™)j;.
(=1

SERA #

Corollary 2.1. Distance via Matrices. The distance between distinct ver-

27
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tices v;, v; is the smallest power for which the matrix entry is non-zero:
dg(vi,vj) = min{k > 1: (A’é)i]. £0}.
ok

Weighted Graphs

In many applications, edges are not uniform; they carry costs such as
length, time, or resistance.

Definition 2.4. Weighted Graph.

A weighted graph is a triple (V,E, i), where u : E — Ry is a val-
uation function. The valuation (or weight) of a walk ¢ = (v, ..., )
is the sum of its edge weights:

u(y) =) n{vi-1,vi}).

M

I
—

The weighted distance d), (s, t) is the minimum valuation of any walk
connecting s and t.

Note

If u(e) = 1 for all e € E, the weighted distance d, coincides with the
geodesic distance dg.

Dijkstra’s Algorithm

To compute d,(s, t) efficiently, we employ Dijkstra’s Algorithm. This

greedy method maintains the shortest known distance from a source

s to all other vertices, iteratively "settling" the closest vertex.

Algorithm State: Let s be the source. We maintain two arrays:

- C[v]: The current minimal cost found from s to v. Initially C[s] = 0
and C[v] = oo for v # s.

- T[v]: The predecessor of v on the optimal path.

We partition vertices into two sets: V4 (distance known) and

Woctive (distance tentative). Initially Vses0q = @ and Wyepipe = V.

Procedure: While W, contains a vertex with finite C value: 1.

Select u € Wyetipe with minimal Clu]. 2. Move u from W4 to

Visettled- 3- For each neighbour x of u in W If the path through u

is shorter (Clu] + u({u,x}) < Clx]):

- Update C[x] + Clu] 4+ u({u, x}).

- Update T[x] < u.

The complexity of this algorithm is O((n + m)logn), making it Figure 2.5: The Hypercube Q3
highly efficient for sparse graphs. The correctness relies on the non- with distances from a source
negativity of weights: once a vertex u is settled, no shorter path to u vertex. Dijkstra’s algorithm

settles vertices in order of in-
creasing distance.
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can be found through more distant vertices.

Eulerian Tours and Trails

We examine trails and cycles that exhaustively visit the structural
elements of a graph.

Eulerian Graphs

Definition 2.5. Eulerian Definitions.

Let G = (V,E) be a graph.

- An Eulerian tour is a closed trail that traverses every edge of G ex-
actly once (and therefore visits every non-isolated vertex).

- An Eulerian graph is a graph that admits an Eulerian tour.

- An Eulerian trail is a trail that traverses every edge of G exactly once
(not necessarily closed).

- A semi-Eulerian graph is a graph that admits an Eulerian trail.

The existence of such tours is determined by the connectivity and
degree parity of the graph.
a d
Theorem 2.4. Euler’s Theorem.
Let G be a graph of order at least 2. G is Eulerian if and only if it is con- c
nected and all its vertices have even degree. b e
Eﬂl Tour: (a,b,c,d, e, c,a)

d(c)=4; all others =2
(=) . '
Let G = (V,E)be Eulerian and lety = (vg,v1,...,0x = vp) be Figure 2.6: The bowtie graph

an Eulerian tour. G is necessarily connected, as the tour visits ev- is Eulerian: all degrees even,

ery vertex and the sequence of edges connects any pair of vertices admitting the tour shown.

on the tour. For any vertexv €V, let E;, be the set of edges inci-
dent to v. We classify an edgee € E,; as incoming if it appears in
the sequence as {v;_1,v;} withv; = v, and outgoing if it appears
as {v;,v;11} withv; = ov. The map {v;_1,v;} — {v;, 011} (with
the convention that {vy_1,v¢} +— {vo,v1}) constitutes a bijection
between the incoming and outgoing edges incident to v. Conse-
quently, |E,| = d(v) must be even.

EXLES
(=)
Assume G is connected and every vertex has even degree. Let

v = (vg,...,v) be a trail in G with no repeated edges and of
maximal length.

Claim 1: 7y is closed (v = vy). Suppose vy # vy. The number of
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edges in <y incident to vy would be odd (one entry, plus pairs of
entry/exit for any previous visits). However, d(vy) is even in G.
Thus, there exists an edge incident to v not used in 7. Extend-
ing v by this edge yields a longer trail, contradicting maximality.

Claim 2: 7y visits every edge. Suppose there exists an edge
a = {v;, w} not in 7 with v; on 7 (possible since G is connected).
By Claim 1, - is closed, so we may cyclically permute it to start
and end at v;:

Y= (vi,vi+1,. ., 0 =700,01,-. .,vi,l,vi).
Appending the unused edge yields the trail
’)// = (Ui/ Oit1s- -+, Vi-1,0is T/U),

which contains every edge of  plus 4, hence is strictly
longer—contradicting the maximality of 7.

Claim 3: 7y visits every vertex. Since G is connected and «y visits
every edge, any vertex with non-zero degree is visited. If an iso-
lated vertex existed, G would not be connected (unless the order
is 1, which is excluded).

3EH 4

We extend this characterisation to semi-Eulerian graphs.

Corollary 2.2. Semi-Eulerian Characterisation. A graph G is semi-Eulerian
if and only if it is connected and the number of vertices of odd degree
isoor 2.

Ham

(=)

Let v be an Eulerian trail. G is connected. As shown in the pre-
vious proof, any vertex strictly internal to the trail (not the start

or end) must have even degree. The start and end vertices have
odd degree unless the trail is closed. Thus the count of odd-degree

vertices is o (if closed) or 2 (if open).
EXES

(=)

If G has o vertices of odd degree, it is Eulerian and thus semi-
Eulerian. Suppose G has exactly two vertices, u and v, of odd
degree. Construct a new graph G’ by adding a vertex s and edges
{u,s} and {v,s}. In G’, u and v now have even degree (degree in-
creased by 1), and s has degree 2. Thus G’ is Eulerian. Let 7/ be
an Eulerian tour of G’. The edges {u,s} and {v,s} must appear
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consecutively in 7/ (as s has degree 2). Removing s and these two
edges breaks the cycle into a trail connecting # and v that covers all

edges of G.
BLES

Hamiltonian Graphs
We define the corresponding concept for vertices.

Definition 2.6. Hamiltonian Definitions.

- A Hamiltonian cycle is a cycle that visits every vertex of the graph
exactly once. Its length is equal to the order # of the graph.

- A Hamiltonian graph is a graph that admits a Hamiltonian cycle.

- A Hamiltonian chain is a chain that visits every vertex of the graph
exactly once.

- A semi-Hamiltonian graph is a graph that admits a Hamiltonian chain.

Unlike the Eulerian case, there is no known simple characterisation
(like "all degrees even") for Hamiltonian graphs. Determining if a
graph is Hamiltonian is an NP-complete problem.

Example 2.2. Contrasting Eulerian and Hamiltonian. Consider the

graph formed by two triangles sharing a vertex (the "butterfly" or

"bowtie" graph).

- Eulerian? Yes. The central vertex has degree 4, and the four outer
vertices have degree 2. Since all degrees are even and the graph is
connected, it is Eulerian.

- Hamiltonian? No. Any cycle must pass through the central ver-
tex. Once it enters one triangle and returns to the center, it cannot
enter the second triangle without visiting the center a second

time, which is forbidden.
Conversely, the complete graph K;, (n > 3) is always Hamiltonian, c

but is Eulerian only if # is odd (so degrees n — 1 are even).
Figure 2.7: The butterfly

b (bowtie) graph: two trian-
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gles sharing vertex c. Eulerian

(all degrees even: c has degree

4, others have degree 2), but not

1. Tree Properties. Hamiltonian.

(a) Let T be a tree with ny vertices of degree k. Prove that the
number of leaves is:

[e9)

ny = 24 Z(k—2)nk.
k=3

(b) Draw all non-isomorphic trees on 6 vertices.
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(c) Prove that the centre of a tree consists of either a single vertex
or two adjacent vertices. (The centre is the set of vertices
minimising the maximum distance to any other vertex).

2. Refined Cayley Practice.

(a) Calculate the number of trees on the vertex set {1,2,3,4,5,6}
where degrees are d(1) = 3,d(2) = 3,d(3) = 1,d(4) =
1,d(5) = 1,d(6) = 1.

(b) Verify your answer by listing the possible structures (up to
relabelling vertices with the same degree).

3. Priifer Encoding.

(a) Find the Priifer sequence of the path graph P,_; on vertices
1,2,...,n in natural order (edges {i,i +1}).
(b) Find the Priifer sequence of the star graph Kj ,_; with centre

at vertex n.

(c) Construct the tree corresponding to the sequence (1,3,5,5,3)
on vertices {1,...,7}.

4. Counting Forests. Let F be a forest on 7 labelled vertices with

k connected components. Prove that the number of such forests

where vertices 1,2, ..., k belong to distinct components is knn—k-1,

Remark.
Generalise the Priifer argument or use Cayley’s formula on a
slightly modified graph.

5. Spanning Trees.

(a) Calculate the number of spanning trees of the complete bi-
partite graph K ,;,.

(b) Let G be the cycle C,. How many spanning trees does it
have?

(c) = Let G be the "ladder graph" P, x P,. Find a recurrence for
the number of spanning trees.

6. Matrix Tree Theorem Application. The number of spanning trees
of a graph G is any cofactor of its Laplacian matrix L = D — A.

(a) Write down the Laplacian matrix for Kj.

(b) Compute a cofactor to verify Cayley’s formula for n = 4
(4472 = 16).

7. Tree Diameter. Let T be a tree.

(a) Prove that for every k > 1, the intersection of all paths of
length at least k is either empty or a path.
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(b) Prove that if the diameter of T is d, then T has at least d
leaves? (False. Find a counter-example). Correct statement: If
A(T) > k, T has at least k leaves.

8. x Double Counting. Let N(#,k) be the number of forests on n
labelled vertices with k edges. Show that:

N(n,k) = (kil) (k+ 1)k,

Remark.

This generalises Cayley’s formula (case k = n — 1).
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Trees

In the previous chapter, we explored connectivity as a topological
property: can one navigate between any two vertices? We now refine
this question to ask: what is the minimal structure required to main-
tain connectivity? Conversely, what is the maximal structure one can
build without creating redundant loops?

The answer to both questions lies in the concept of a tree. Trees form
the skeleton of graph theory; they are the simplest connected graphs,
yet they admit a rich set of equivalent characterisations.

Forests and Trees

We begin by formally excluding the existence of cycles. Recall that
a cycle is a closed walk with no repeated vertices (other than the
start/end).

Definition 3.1. Trees and Forests.

Let G = (V,E) be a graph.

- G is a forest if it is acyclic (contains no cycles).
- G is a tree if it is acyclic and connected.

The connected components of a forest are trees. The absence of cycles
imposes strict constraints on the "ends" of the graph.

Definition 3.2. Leaves.
A vertex v is a leaf (or pendant vertex) if d(v) = 1.

Every finite tree (with at least one edge) must have an "end". This
topological intuition is formalised via the maximal path argument.

Lemma 3.1. Existence of Leaves.
Let T = (V,E) be a forest with E # @. Then T contains at least two
leaves.

]z

Forest with 3 trees

Figure 3.1: A forest: an acyclic
graph whose connected compo-
nents are trees.

Leaf

Leaf

Figure 3.2: A tree of order 5.
The vertices of degree 1 are
leaves.
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Proof

Consider a path P = (vg,v1,...,70) in T of maximal length. Since

E # @, such a path exists with k > 1. We claim vy and vy, are leaves.

Suppose for contradiction that d(vg) > 1. Then vy has a neighbour

u # vy.

* If u lies on the path (i.e, u = v; forsomei > 1), then the edge
{u, vy} completes a cycle (v, vy,...,v;,vp), contradicting the
acyclicity of T.

e If u does not lie on the path, we can extend P to (u,vp,v1,...,0x),
creating a path of length k + 1. This contradicts the maximality of
p.

Thus, d(vy) = 1. By symmetry, d(vg) = 1.

|

This lemma provides the engine for inductive proofs on trees: one
can "prune” a leaf to reduce the order of the graph while preserving
the tree structure.

Theorem 3.1. Tree Edges.
Let T = (V,E) be a tree of order n. Then |E| =n — 1.

We proceed by induction on #.
Base Case (n = 1)

A graph with 1 vertex and no cycles must have o edges. 0 =1 — 1.
BELES
Inductive Step
Assume the statement holds for all trees of order n — 1. Let T be a
tree of order n > 2. Since T is connected and n > 2, E is non-empty.
By lemma 3.1, T contains a leaf v. Let {1, v} be the unique edge
incident to v. Consider the graph T/ = T — v (removing v and its
incident edge).

Acyclicity: Removing vertices/edges cannot create cycles. T’ is
acyclic.

Connectivity: Since v was a leaf, it was not an internal node of any
path between two other vertices x,y € V \ {v}. Thus T’ remains
connected.

Therefore, T is a tree of order n — 1. By the inductive hypothesis,
|[E(T")| = (n—1) —1=mn—2. The edge set of T is E(T") U {{u,v}},
so |[E(T)|=n—-2)+1=n-1

EXLES
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Corollary 3.1. Degrees in Trees. In any tree of order n > 2,y ,cyd(v) =
2n —2.

e
Proof

Combine the previous theorem with the t/ecoren o.1.

Characterisations

The definition of a tree (acyclic and connected) is merely one of many
equivalent ways to specify this structure. The following theorem as-
serts that any two of the following properties (connectedness, acyclic-
ity, and size n — 1), imply the third (mostly). Furthermore, trees are
precisely the graphs that are "minimally connected" or "maximally
acyclic".

Theorem 3.2. The Big Theorem on Trees.
Let G = (V,E) be a graph of order n. The following statements are
equivalent:
1. G is a tree (connected and acyclic).
2. For every pair u,v € V, there exists a unique path connecting them.
3. Gis connected and |E| =n — 1.
4. Gisacyclicand |[E| =n—1.
5. G is connected, but removing any edge renders it disconnected (min-
imally connected).
6. G is acyclic, but adding any edge between non-adjacent vertices cre-
ates a cycle (maximally acyclic).
gl
Proof

We establish the cycle of implications.

(1) = (2): Connectivity implies existence. For uniqueness, sup-
pose two distinct paths Pj, P> connect # and v. The symmetric
difference of their edge sets must contain a cycle (see lemima 2.1
intuition: diverge at some point x and reconverge at y), contra-
dicting acyclicity.

(2) = (1): Existence implies connectivity. If G contained a cycle,
any two vertices on that cycle would be connected by at least two
paths (the two arcs of the cycle), contradicting uniqueness. Thus
G is acyclic.

(1) = (3): Proven in the previous section.

(3) = (4): Suppose G is connected withn — 1 edges. If G con-
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tained a cycle, we could remove an edge from that cycle with-
out destroying connectivity (the "detour” remains). Repeating
this until G is acyclic yields a tree T with V(T) = V(G) and
E(T) < E(G). Buta tree on n vertices must have n — 1 edges.
Since G already hasn — 1 edges, no edges could be removed.
Thus G was already acyclic.

(4) = (1): Suppose G is acyclicwithn — 1 edges. Let k be the
number of connected components Gy, ..., Gg. Each G; is a tree
of order n;. By the theorem on tree edges, |[E(G;)| = n; — 1.

Summing over components:

k

|El =) (ni—1)=()_n)—k=n—k

i=1

Given |[E| =n—1,wehaven —k=n—-1 = k =1 Thus Gis
connected.

(1) = (5): Gis connected. Let e = {u,v}. Since G is acyclic, there
is no path between u and v other than the edge e itself (other-
wise e plus that path would form a cycle). Removing e eliminates
the only path between u and v, disconnecting them.

(5) = (1): G is connected. If G had a cycle, removing an edge
from that cycle would preserve connectivity. Since removing a1y
edge disconnects G, no cycles can exist.

(1) = (6): G is acyclic. Let u, v be non-adjacent. Since G is con-
nected, there is a path P between them. Adding e = {u,v} closes
this path into a cycle.

(6) = (1): G is acyclic. Suppose G is disconnected. Let 1, v be
in different components. Addinge = {u,v} connects two com-
ponents but cannot create a cycle (a cycle requires entering and
leaving a component, implying two edges crossed the gap). This
contradicts (6). Thus G is connected.

Isomorphism with Linear Algebra

The behaviour of trees is strikingly similar to the behaviour of bases
in vector spaces. This is not a coincidence; it is the foundation of
algebraic graph theory and matroid theory.

Recall that for a vector space W of dimension 1, a set of vectors B is
a basis if and only if it generates W and is linearly independent. The
parallels are exact:

Adding e creates cycle P U {e}

Figure 3.3: The Maximally
Acyclic property (6). If a unique
path exists between u and v,
adding an edge closes the loop.
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Vector Space Graph Theory Table 3.1: Structural analogy
Vector Space W Complete Graph K between Linear Algebra and
Vector v Edge e Graph Theory.
Linear Independence Acyclic (Forest)
Generating / Spanning Connected
Basis Spanning Tree
Dimension n Spanning tree has n — 1 edges
Remark.

Compare theorem 3.2 with the standard characterisation of a basis B

in a vector space of dimension n:

* Bis a basis (Independent + Generating).

¢ Every vector has a unique representation as a linear combination
of B.

* Bis generating and |B| = n.

e Bisindependent and |B| = n.

* Bis minimally generating (removing any vector destroys the
span).

* B is maximally independent (adding any vector creates a depen-
dency).

The graph theoretic "dimension" of a connected graph on n vertices

isn—1.

Spanning Trees

The correspondence above suggests that every connected graph con-
tains a tree that "spans" the vertices.

Definition 3.3. Spanning Tree.
Let G = (V,E) be a connected graph. A subgraph T = (V,E')isa
spanning tree of G if T is a tree and E’ C E.

&
Proposition 3.1. Existence of Spanning Trees.
Every connected graph G contains a spanning tree.

Proof

If G is acyclic, G itself is a tree. If G contains a cycle, remove an

edge from that cycle. The graph remains connected. Repeat this . 4
. . . . AN _ Spanning
process until no cycles remain. The resulting subgraph is con- SN tree
nected, acyclic, and contains all vertices of G, hence it is a spanning ; B | - By
dges
d C

tree.

[
Figure 3.4: A graph G with 5

edges. The spanning tree (solid)
hasn —1 = 3 edges; the2
dashed edges form the funda-
mental cycles.



(ALMOST ALL) THE GRAPH THEORY YOU NEED 39

This leads to a numerical invariant for graphs, similar to the dimen-
sion of the null space.

Definition 3.4. Cyclomatic Number.
Let G = (V,E) be a connected graph with n vertices and m edges. The
cyclomatic number (or cycle rank) is:

v(G)=m—n+1.

This integer counts the number of "fundamental cycles" in G. Relative
to any spanning tree T, adding one of the v(G) edges in E\ E(T) cre-
ates exactly one unique cycle.

3.2 Enumeration of Trees

Having characterised the structure of trees, we turn to the problem

of enumeration. Specifically, we seek to determine the number of

distinct trees that can be formed on a fixed set of n labelled vertices,

say V = [1,n]. We denote this quantity by #(n).

For small values of 1, direct enumeration yields:

- n = 1: 1 tree (single vertex).

- n=2: 1 tree (edge {1,2}).

- n=3:3trees (path1—-2—-3,2—-1—3, or 1 — 3 — 2; central vertex
determines the tree).

- n = 4: 16 trees.

n—2

The sequence suggests the closed form n"~<, a result famously at-

tributed to Cayley.

Theorem 3.3. Cayley’s Formula.
For any integer n > 1, the number of distinct trees on the vertex set
[1,n] is:

t(n) =n""2

il

A direct inductive proof of this formula is difficult because remov-
ing a vertex from a tree usually results in a forest, complicating the
recurrence. Instead, we prove a stronger result that accounts for the
specific degrees of the vertices. This allows us to control the structure
during the inductive step by "pruning" leaves.

Trees with Fixed Degrees

Let D = (dy, .. .,dn) be a sequence of positive integers. We denote by
t(dy,...,d,) the number of trees on the vertex set [1, 1] such that the
degree of vertex i is exactly d;.
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A necessary condition for such trees to exist is given by the Hand-
shaking Lemma (f/ieorem 0.1) and the edge count of trees (f/co-
rem 3.2):

M-

d; = 2|E| = 2(n — 1).

i=1

Theorem 3.4. Refined Cayley Formula.

Letn > 2 and letdj,...,d, be positive integers such that } \" ; d; =
2n — 2. The number of trees on [1, 1| with degree sequence (dy,...,dy)
is given by the multinomial coefficient:

(n—2)!
(dp =D (da—1)!...(dy — 1)V

f(dl,...,dn) =

We proceed by induction on #.

Base Case (n = 2)

The condition Y d; = 2(2) —2 = 2 withd; > 1impliesd; = 1 and
dy = 1. There is exactly one tree on two vertices (the single edge).

The formula yields g3; = 1. The base case holds.
B

Inductive Step

Assume the formula holds for all sequences of lengthn — 1 sum-
ming to 2(n — 1) — 2. Consider a sequence (dy, ..., d,) summing
to2n — 2. By corollary 3.1, any tree with this degree sequence must
have at least two leaves. Thus, at least one d; must be equal to 1.
Without loss of generality (by reordering if necessary), assume

dyp =1.

In any tree realising this sequence, vertex 7 is a leaf. Let j be the
unique neighbour of n. Since 7 is connected to j, removing n yields
a tree on the vertex set [1,n — 1]. In this smaller tree T’, the degrees

d;{:{dk ik £ j,

are:

di—1 ifk=j.
Note that d]- > 1, and if d]- = 1, vertex j would be a leaf in the orig-
inal tree connected only to n, implying n = 2 (which is covered by
the base case). For n > 2, if d]- = 1, j becomes an isolated vertex in
T', which is impossible for a tree. Thus d]- > 2 implies d;- > 1. The
sum of degrees in T’ is:

nfd,@: (fczk> —dy—1=02n-2)-1-1=2(n—1)-2.

k=1 k=1

Thus, the inductive hypothesis applies to T".
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The set of trees with degrees (dy, ..., d,) can be partitioned based
on the neighbour j of the leaf . The possible values for j are in-
dicesk € [1,n — 1] such thatd, > 2 (since d; — 1 must be valid).
However, if d, = 1, the term (d; — 2)! in the denominator would
be undefined (or effectively zero contribution), so we may formally
sum over all j € [1,n — 1]. Using the addition principle:

n—1
t(dy,...,dn) = Y t(dy,...,dj—1,...,du_q).
j=1

Substituting the inductive formula:

= (n—23)!
tdy, ..., dn) = ; (=) (d; =2 (dy g — 1)

(n—3) 1

S UL PR
Tt - Y

We compute the sum in the final term:
n—1
Y (di—1) Z dj | —(n—1).
=1

Since )1 ;d; =2n —2 and d, = 1, we have E]V-‘:_f dj =2n—3.

n—1
Y (d—-1)=@2n-3)—(n—1)=n—-2.
j=1
Substituting back:
(n—23)! (n—2)!
tdy,... dy) = ——" —  (n—-2)= —— 2
o) =i 2 T -

Since d, = 1, (d, —1)! = 0! = 1. We may include it in the denomi-
nator to recover the symmetric form:

(n—2)!
=D (dy =D

t(dl,...,dn) -

L

Recovering Cayley’s Formula

To find the total number of trees (1), we sum f(dy, ...,d,) over all
valid degree sequences. This summation is handled elegantly by the
Multinomial Theorem.
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Lemma 3.2. Multinomial Theorem.
For any integer m > 0 and variables xq, ..., x4:

m!
(xl+...+xk)m: Z 7” 'qu...xzk.

51 %
Proof
Consider the expansion of the product:

(14 Hx) (a4 ) ().

m factors

To form a term in the product, we must select exactly one variable
x; from each of the m factors. Suppose we select x; exactly a; times,
xp exactly ap times, ..., and xj exactly gy times. Since we make ex-
actly m selections in total, we must have Zi-‘:l a; = m, where each
a; > 0. The resulting term is the product x7'x52 ... x}*.

The coefficient of this term corresponds to the number of ways to
assign these specific counts to the m distinct positions (factors).

This is equivalent to partitioning the set of m positions into k dis-
joint subsets of sizes a1, ay, . .., ax. The number of such partitions is
given by the multinomial coefficient:

( m ) B m!
ay,ay, ..., 0 ailay!. .. ag!

Summing over all possible non-negative integer solutions to
ai + - - - + ax = m yields the full expansion.
|

Proof of Cayley’s Formula

The total number of trees is the sum of t(dy, ..., d,) over all tuples
(dy,...,dy) satisfying d; > 1and Y d; = 2n — 2. Let k; = d; — 1. The
conditions transform to k; > 0 and:

n
> ki=
i=1

Using theorem 3.4:

1=02n—-2)—n=n-2.

™=

d; —

M-

i=1

(n—2)!

Hn) = Tk

1
K+ tkp=n—2 ka!
k>0

This is precisely the coefficient expansion of the Multinomial Theo-
rem (lemma 3.2) withm=n—2and xy =x =---=x, = 1:

tn)=1+1+---+1)"2=n""2
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3.3 Priifer Sequences

There exists a more direct method to encode any tree on [1,#] as
a sequence of length n — 2 with elements in [1, n]. This encoding,
known as the Priifer sequence, provides a constructive proof of
Cayley’s Formula.

Definition 3.5. Priifer Sequence Construction.

Let T be a tree on vertices [1,n] with n > 2. We generate a sequence
P = (py,...,pn—2) iteratively:

1. Find the leaf with the smallest label. Let this be u.

Let v be the unique neighbour of u.

N

Record v as the next element in the sequence.

A

Remove u from the tree.

+

. Repeat this process n — 2 times.

U1

The resulting sequence of length n — 2 is the Priifer sequence of T. If
n = 2, the sequence is empty.

Example 3.1. Calculating a Priifer Sequence. Consider a tree on
{1,2,3,4,5,6} with edges:

E={{1,4},{2,4},{3,4},{4,5}, {5 6}}.

1. Leaves are {1,2,3,6}. Smallest is 1. Neighbour is 4. Sequence:
(4). Remove 1.
2. Leaves are {2,3,6}. Smallest is 2. Neighbour is 4. Sequence:
(4,4). Remove 2.
3. Leaves are {3,6}. Smallest is 3. Neighbour is 4. Sequence:
(4,4,4). Remove 3.
4. Leaves are {4,6}. Smallest is 4. Neighbour is 5. Sequence: a
(4,4,4,5). Remove 4.

5. Remaining edge is {5,6}. Stop. e e e e

The sequence is (4,4,4,5). a
Xl

The fundamental utility of this encoding lies in its relationship with

Figure 3.5: The tree from
the Priifer example. Vertex

tex d : o
vertex degrees 4 appears thrice in the se-

Claim 3.1. Degree Property. Let T be a tree on [1, n] with Priifer se- quence (4,4,4,5), indicating
quence P. d4) =1+3=4.
For any vertex v, the degree d(v) in T is equal to 1+ (number of occurrences of v in P).
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ik
Proof
We proceed by induction on n. Forn = 2, the sequence is empty.
Both vertices have degree 1,and 1 +0 = 1. Forn > 3, let u be the
smallest leaf removed in the first step, and let v be its neighbour.

The sequence P begins with v, followed by the Priifer sequence P’
of the tree T' = T — u.

For u: Since u is a leaf, d(u) = 1. Since u was removed, it never ap-
pears as a neighbour of a subsequently removed leaf. Thus u
appears o timesin P. 1+0=1.

For x # u,v: The degree of x is unchanged in T'. By the induc-
tive hypothesis, dp(x) = 1 + (countin P’). Thus dr(x) =
1+ (count in P).

For v: dr(v) = dp(v) + 1. By induction, dy(v) = 1+ (count in P').
Thus dr(v) =14 ((count in P’) +1) = 1+ (count in P).

|
This property allows us to establish the bijection.

Theorem 3.5. Priifer Bijection.
For n > 2, the mapping T — P(T) is a bijection between the set of
trees on [1, n] and the set of sequences of length n — 2 with elements
in [1,n].

i

Proof

Injectivity: Let T1, T, be distinct trees. If their degree sequences
differ, their Priifer sequences differ (by clain 3.1). If their degree
sequences are identical, they share the same set of leaves. Let u
be the smallest leaf. If u has different neighbours in T; and T,
the first term of the sequences differs. If u has the same neigh-
bour v, we remove u to get Tl’, Té. Since Ty # T,, we must have
T; # T} (otherwise adding edge {u, v} would yield identical
trees). By induction, P(T}) # P(T3), so P(T;) # P(Ty).

Surjectivity: LetS = (s1,...,5,—2) be a sequence. We reconstruct
T. Let L be the set of labels [1,n]. At step i (from 1 to n — 2), let u
be the smallest element in the current set of available labels that
does not appear in the remaining sequence suffix (s;, ...,s,-2).
Add edge {u,s;} and remove u from the available labels. After
n — 2 steps, exactly two labels remain. Join them with an edge.
This process constructs a tree whose Priifer sequence is S.
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Since there are n" 2 such sequences, this confirms Cayley’s Formula.
Moreover, counting sequences where specific numbers appear spe-
cific times recovers Refined Cayley Formula.

Otter’s Formula

Throughout this chapter, we have counted /abelled trees, where the
identity of the vertices matters. If we consider trees up to isomor-
phism (ignoring labels), the problem becomes significantly harder.
For n = 4, there are 16 labelled trees but only 2 isomorphism classes:
the path P; and the star Kj 3. Let f(1) denote the number of unla-
belled trees on n vertices. The sequence begins 1,1,1,2,3,6,11,23, ...
and has no simple closed form. However, its asymptotic behaviour is
known.

Theorem 3.6. Otter’s Formula (1948).
The number of unlabelled trees on n vertices satisfies:

f(n) ~B-a"-n52,

where a /= 2.95576 and  ~ 0.53494.

Exercises

1. Small Trees.

(a) Draw two non-isomorphic trees on 4 vertices. For each, verify
that |[E| =4—-1=3.

(b) Draw a tree on 6 vertices and identify all its leaves.

2. Forests. Let F be a forest with k connected components and n
vertices. Prove that |E(F)| = n — k.

Remark.

Sum the edge counts of each tree component.

3. Leaves.

(a) Prove directly (using a longest path argument) that every tree
with at least one edge has at least two leaves.

(b) Construct a tree onn > 3 vertices with exactly 2 leaves.
Construct one with n — 1 leaves.

4. Pruning. Let T be a tree and v a leaf. Prove that T — v is a tree.
5. Inductive Proofs.

(a) Prove by induction on n that |[E(T)| = n — 1 for any tree of

45
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10.

11.

12.

order 7.
(b) Prove that Y ,cy d(v) = 2n — 2 for any tree of order n > 2.
Characterisations. Let G be a connected graph with no cycles.
(a) Prove that between any two vertices, there is a unique path.

(b) Show that adding any edge between non-adjacent vertices
creates exactly one cycle.

Spanning Trees.

(a) Prove that every connected graph contains a spanning tree by
repeatedly deleting cyclic edges.

(b) Let G be connected with n vertices and m edges. Let T be a
spanning tree. Show that |[E(G) \ E(T)| = m —n + 1 (the
cyclomatic number).

Refined Cayley Formula.

(a) Use the formula to find the number of trees on {1,...,5}
with degrees (3,2,1,1,1).

(b) How many trees on {1,...,n} are stars (one vertex of degree
n — 1, others degree 1)? Verify using the formula.

Priifer Sequences.

(a) Compute the Priifer sequence for the path1 -2 -3 -4 -5 —
6.

(b) Compute the Priifer sequence for the star K; 5 with centre 1.
(c) Decode the sequence (1,1,1,1) on vertices {1,...,6}.
(d) Decode the sequence (2,3,2,3) on vertices {1,...,6}.

Leaves via Priifer. Prove that the leaves of a tree T are exactly the
labels from {1,...,n} that do 1ot appear in its Priifer sequence.
Deduce that every tree (n > 2) has at least two leaves.

* Direct Counting. Use the property of Priifer sequences (label
i appears d; — 1 times) to derive the Refined Cayley Formula
directly from the number of permutations of a multiset.

Unlabelled Trees. List all non-isomorphic trees on n = 5 vertices.
Compare the count (3) with the number of labelled trees (5° =
125).
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Colouring

In the chapter on Extremal Graph Theory, we introduced the concept
of an ??. We now generalise this notion by asking whether the vertex
set of a graph can be partitioned entirely into independent sets. This
process, known as colouring, assigns labels to vertices such that
adjacent vertices receive distinct labels.

This framework models problems of resource allocation and conflict
resolution, but mathematically, it provides a rigorous way to classify
graphs based on their local structural constraints.

4.1 Vertex Colouring

Definition 4.1. Colouring and Chromatic Number.

Let G = (V,E) be a graph and C be a set of labels, called colours. A
function f : V — C is a proper colouring if for every edge {u,v} €

E, we have f(u) # f(v). The chromatic number of G, denoted x(G),
is the minimum cardinality of C such that a proper colouring exists.

If x(G) <k, we say G is k-colourable.

Note

If f is a proper colouring with k colours, the preimages f~'(c) for
eachc € C form a partition of V into k independent sets, often

called colour classes.

We immediately observe the values for standard families defined in
previous chapters.

Proposition 4.1. Elementary Chromatic Numbers.

1. x(G) =1ifand only if E = @ (i.e., G is an independent set).

2. x(K,) = n. Since every vertex is adjacent to every other, no two
can share a colour.

3. For the path graph P, (n > 2), x(P,) = 2.
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4. For the cycle graph Cy;:

X(Cn) =

2 if nis even,
3 if nis odd.

5. For the hypercube Q,, x(Q;) = 2. Vertices can be coloured by the
parity of their Hamming weight.

The Greedy Algorithm

Determining x(G) is generally NP-hard. However, we can obtain

upper bounds via a constructive approach known as the Greedy

Algorithm. This method orders the vertices and assigns the smallest

available colour index to each.

Algorithm: Let V = {vy,...,0v,} be an ordering of the vertices. We

map f:V — Z*. Fori=1ton:

1. Identify the set of colours used by the neighbours of v; that pre-
cede it in the ordering:

C = {f(U]) : {’()i,v]'} e€E andj < l}

2. Assign f(v;) = min{c € Z" : ¢ ¢ C;}.

The efficiency of this algorithm depends heavily on the chosen vertex
ordering. While there exists an ordering that produces exactly x(G)
colours, finding it is difficult. However, the worst-case performance
provides a fundamental bound based on the maximum degree A(G).

Theorem 4.1. The Greedy Bound.
For any graph G,
x(G) < A(G) + 1.

Proof

Let vertices be ordered arbitrarily as vy, ..., v,. When the algo-
rithm considers vertex v;, it examines its neighbours. The number
of neighbours preceding v; is at most the total degree d(v;), which
is bounded by A(G). Thus, the set of forbidden colours C; has size
|Ci| < A(G). The set {1,...,A(G) + 1} contains more elements than
C;, guaranteeing that at least one colour in this range is available
for v;.

HG

C51X:3

Figure 4.1: Cycle colouring.

C4 alternates two colours. Cs
requires a third colour (gray) to
close the cycle without conflict.
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4.2 Bipartite Graphs

The class of graphs with x(G) < 2 merits special attention. These are
the bipartite graphs.

Definition 4.2. Bipartite Graph.

A graph G = (V,E) is bipartite if it is 2-colourable. Equivalently, V
admits a partition V = A LI B such that every edge has one endpoint
in A and one in B. The sets A and B are the parts of the bipartition.

Examples include the complete bipartite graph Kj, ;; (defined in Ex-
tremal Graph Theory), the hypercubes Q,, and all trees.

Characterisation by Cycles

A triangle (K3 or C3) requires 3 colours. Intuitively, any odd cycle
creates a parity conflict that prevents 2-colouring. It turns out this is
the only obstruction.

Theorem 4.2. Bipartite Characterisation.
A graph G is bipartite if and only if it contains no cycle of odd length.

%2
(=)
Let G be bipartite with partition V = A U B. Consider a cycle C =
(vo,v1,...,v¢ = vg). Without loss of generality, let vy € A. Since

edges only connect distinct parts, v1 € B, v, € A, and by induction,
v; € Aifiiseven, andv; € Bifiisodd. For the cycle to close at
v = o € A, the index k must be even. Thus, the length of the cycle
is even.

EXLES
(=)
Assume G contains no odd cycles. It suffices to consider a single
connected component (as G is bipartite if and only if all compo-

nents are). Fix a base vertexs € V. We partition V based on the
parity of path lengths from s. Define:

X = {v € V : 3 a path between s and v of even length},
Y = {v € V : 3 a path between s and v of odd length}.

Since G is connected, V = X UY. Wemustshow that XNY = @&
and that no edges exist within X or within Y.

Suppose v € X N Y. Then there exists an even path Py, from s
to v and an odd path P,;; from s to v. The concatenation of Peyey

49
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and the reversal of P,;; forms a closed walk starting and ending

at s with length equal to the sum of an even and an odd integer,
which is odd. From the chapter on Connectivity, we know a closed
walk reduces to a set of cycles. If a closed walk has odd length, it
must contain at least one cycle of odd length (since a sum of even
integers is even). This contradicts the hypothesis. Thus XNY = &,
and V = X UY is a valid partition.

Finally, consider an edge {u,v} € E. If u € X, there is an even path
from s to u. Extending this path to v yields a walk of odd length,

so v € Y (and specifically v ¢ X by the disjointness proved above).
Similarly, if u € Y, thenv € X. Thus, edges only connect X and Y,
making G bipartite.

FE R #
This theorem provides an efficient algorithm for checking bipartite-
ness: perform a Breadth-First Search (BFS). If we encounter an edge
between two vertices at the same layer (distance from root), an odd
cycle exists, and the graph is not bipartite. Otherwise, the layers form
the sets X and Y.

Matchings

We now consider the dual problem: selecting a subset of edges such
that no two share a vertex. This concept, known as a matching, mod-
els pairings in a population, such as job assignments or chemical
bonding.

Definition 4.3. Matching.
Let G = (V,E) be a graph. A subset M C E is a matching if no two
edges in M share a common vertex. A vertex v € V is saturated by

A matching is perfect if it saturates every vertex in V.

Example 4.1. Matchings in Complete Structures.

1. Complete Bipartite Graph K;; ;;: Let the partition be X L Y with
|X| = |Y| = n. A perfect matching corresponds to a bijection
o0 : X =Y. Thus, K, , admits n! distinct perfect matchings.

2. Complete Graph Kj,,;1: Since the order is odd, no matching can
saturate all vertices. A perfect matching is impossible.

3. Complete Graph Kj,: We construct a perfect matching by choos-
ing a partner for the first vertex 2n — 1 choices), then a partner
for the next available vertex 2n — 3 choices), and so on. The

M if it is an endpoint of some edge in M; otherwise, it is unsaturated.

Figure 4.2: A bipartite graph
with 2-colouring. Filled vertices
form one colour class X, hollow
vertices form Y. All edges con-
nect distinct classes.
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number of perfect matchings is the double factorial:
o o—o 0—0 o |M-=2

!
Cn—1=2n—-1)2n—-3)---3-1= (22,173 e—o 0—0 0—o M =3
$o.45 Figure 4.3: Two matchings on
Ps. Top: maximal (no edge can
. . ] be added) but not maximum.
Maximality and Augmentation Bottom: maximum (perfect)
We distinguish between two notions of "largest” matchings. matching.

Definition 4.4. Maximal vs Maximum.

- A matching M is maximal if no edge can be added to it without vi-
olating the matching property (i.e., it is not a proper subset of another
matching).

- A matching M is maximum if it has the largest possible cardinality
among all matchings in G.

Clearly, every maximum matching is maximal, but the converse is
false. To systematically improve a matching, we look for paths that
alternate between being "in" and "out" of the matching.

Definition 4.5. Alternating and Augmenting Paths.

Let M be a matching in G. An alternating path is a path in G whose
edges alternate between E \ M and M. An augmenting path is an al-
ternating path that starts and ends at distinct unsaturated vertices.

If an augmenting path P exists, we can swap the edges along P: those
in M leave the matching, and those not in M enter it. Since P starts
and ends with edges not in M, the new set M’ = M @ E(P) is a
valid matching with |[M’| = |M| + 1. This observation is the "easy"
direction of Berge’s Theorem.

Theorem 4.3. Berge’s Theorem (1957).
A matching M in G is maximum if and only if G contains no augment-
ing path with respect to M.

i
(=)
Suppose G contains an augmenting path P. As described above, the
symmetric difference M’ = M @ E(P) is a matching with cardinality

M| + 1. Thus M was not maximum.
AL #

(=)

We prove the contrapositive. Suppose M is not maximum. Let M*
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be a maximum matching, so [M*| >  |M|. Consider the graph
H = (V,M & M*) induced by the symmetric difference of the edge
sets. The maximum degree in H is 2, since every vertex is incident
to at most one edge from M and one edge from M*. Consequently,
the connected components of H are either isolated vertices, paths,
or cycles.

Cycles: Must be of even length, alternating between M and M*.
They contain an equal number of edges from both sets.

Paths: Must alternate between M and M*.

Since [M*| > |M]|, there must be at least one component in H
with strictly more edges from M* than from M. Cycles have equal
counts, so this component must be a path P. For P to have more

M* edges than M edges, it must start and end with an edge from O -e—e--0—e-O
M?*. This implies the endpoints of P are saturated by M* but not by uneat st
M (in the context of H, and thus in G relative to M). Therefore, P is P\ M| = PN M|+1

an augmenting path for M.
SERR 4 Figure 4.4: An augmenting

path. Solid edges are in M,

. dashed edges are not. Hollow
Hall’s Marriage Theorem

vertices are unsaturated. Swap-
For bipartite graphs, the existence of specific matchings is governed ping edge membership yields
by neighbour sets. Let G = (A U B, E) be bipartite. For a subset |M[ +1.

U C A, let N(U) denote the set of neighbours of vertices in U. If a

matching saturates A, then every vertex in A is mapped to a distinct

vertex in B. A necessary condition is therefore |[N(U)| > |U] for all

subsets U C A. Hall proved this is also sufficient.

Theorem 4.4. Hall’s Marriage Theorem (1935).
Let G = (AUB, E) be a bipartite graph. There exists a matching that
saturates A if and only if:

YU C A, INU)| > |Ul.

Proof

The condition is clearly necessary. We prove sufficiency by con-
tradiction. Assume the condition holds (|N(U)| > |U| for all L),
but G admits no matching saturating A. Let M be a maximum
matching. By assumption, M does not saturate A, so there exists an
unsaturated vertex s € A.

We construct the set of vertices reachable from s via alternating
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paths. Let:
Z = {v € V : 3 an alternating path from s to v}.
LetU=ZNAand V =ZNB. Note that s € U.

Claim 1: N(U) C V. Letu € Uand v € N(u). If {u,v} € M, then v
lies on the alternating path tou, sov € ZNB = V. If {u,v} ¢ M,
then extending the alternating path ending at u (which must
end with an edge in M or be s) by the edge {u, v} creates a valid
alternating path to v. Thus v € V.

Claim 2: V is matched into U \ {s}. Letv € V. Since v is reachable
from s by an alternating path starting with a non-matching edge,
the path enters v via a non-matching edge. If v were unsatu-
rated, the path from s to v would be augmenting, contradicting
the maximality of M (by Berge’s Theorem). Thus, v must be sat-
urated by some edgee € M. Lete = {v,u’}. The path can be
extended through e to v/, sou’ € ZN A = U. Moreover u’ # s
since s is unsaturated. This defines a bijection between V and a
subset of U \ {s} formed by the edges of M.

From Claim 2, we have |V| = |U \ {s}| = |U| — 1. From Claim 1, we
have N(U) C V, so [N(U)| < |V|. Combining these:

IN(U)| < [U] =1 < |Ul.

This contradicts the Hall condition for the set U. Thus, a matching
saturating A must exist.
n

Corollary 4.1. Regular Bipartite Graphs. For k > 0, every k-regular bi-

partite graph admits a perfect matching.

e
Proof
Let G = (AU B, E) be k-regular. First, we show |A| = |B|. Counting
edges via A: |E| = Y,cad(v) = k|A|. Counting edges via B: |E| =
Yoepd(v) = k|B|. Thus k|A| = k|B|] = |A| = |B|. A matching
saturating A will therefore be perfect.
We check Hall’s condition. Let U C A. Let Eyj be the set of edges
incident to U. Since degrees are k, |Eyj| = k|U|. These edges must
be incident to N(U). The sum of degrees in N(U) is k|N(U)|. Since
all edges in Eyy land in N(U), we must have:

[Eul < ) d(v) =kINU)I.
veN(U)
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Substituting |Ey| = k|U|:
KU <kIN(U)| = U] < [N(U)].

By Hall’s Theorem, a perfect matching exists.

|
Ul =2<3=|NU)|
4.4 Exercises Figure 4.5: Hall’s condition:
forU = {a;,ap} C A, the
1. Subgraph Monotonicity. Let G be a graph and H be a subgraph neighbourhood N(U) has
of G. Prove that x(H) < x(G). IN(U)| = |U].

Remark.

Any valid colouring of G induces a valid colouring of H.

2. Clique Lower Bound. Prove that if a graph G contains a clique of
size r (a subgraph isomorphic to K;), then x(G) > r.

3. Critical Graphs. A graph G is called k-critical if x(G) = k, but
for every proper subgraph H C G, x(H) < k. Using the logic of
the Greedy Bound, prove that if G is k-critical, then the minimum
degree of G satisfies §(G) > k — 1.

Remark.

Suppose there is a vertex v with degree < k — 1. Consider the
graph G —v.

4. Greedy Algorithm Trace. Draw a graph with 6 vertices (e.g.,
a cycle with a chord). Apply the Greedy Algorithm using two
different vertex orderings. Do they result in the same number of
colours?

5. Ordering Sensitivity. Construct a specific example of a graph and
two different vertex orderings such that the Greedy Algorithm
uses a different number of colours for each ordering.

Remark.

Consider a path of length 3 (P3) or a bipartite graph like Py with
orderings 1,2,3,4 vs 1,3,2,4.

6. Parity Constraint. Prove that if a graph G has a perfect matching,
then the number of vertices |V (G)| must be even.

7. Failing Hall’s Condition. Construct a bipartite graph G = (A U
B,E) with |A| = |B| = 4 that has no perfect matching. Explicitly
identify a subset U C A that violates Hall’s condition (i.e., show a
set U where |N(U)| < |U|).
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8. Necessity of Hall’s Condition. Write a formal argument explain-
ing why a matching that saturates A cannot exist if there is a
subset U C A with |[N(U)| < |U|.

Remark.
This is the pigeonhole principle applied to the edges of the
matching incident to U.
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5
Planarity

Until now, we have treated graphs as abstract structures defined
solely by vertex adjacency. However, many practical applications
(such as printed circuit board design or cartography), require real-
ising these structures in physical space. We now investigate graphs
that can be drawn on a 2-dimensional surface without edges crossing.
This chapter bridges combinatorics and topology. While a rigorous
treatment requires the Jordan Curve Theorem (a deep result in topol-
ogy), we will proceed with a level of formality appropriate for alge-
braic graph theory, accepting the topological foundations as intuitive
axioms.

Plane Drawings

Definition 5.1. Planar Graphs.
A plane drawing (or embedding) of a graph G is a representation in
R? where:
- Vertices are distinct points.
- Edges are simple continuous curves (arcs) connecting their endpoints.
- The intersection of any two distinct edges is empty, except possibly
at their endpoints.
A graph is planar if it admits a plane drawing.

To formalise the notion of a "curve", one technically relies on continu-
ous injective functions v : [0,1] — IR?. A Jordan curve is such a curve
that is closed (7(0) = y(1)). The fundamental property governing
plane graphs is:

Theorem 5.1. Jordan Curve Theorem.
Every Jordan curve C in the plane partitions IR? \ C into two disjoint
connected open sets: the interior (which is bounded) and the exterior
(which is unbounded). The curve C is the boundary of both.

i
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Consequently, any edge connecting a vertex in the interior to a vertex
in the exterior must intersect the boundary curve.

Faces

A plane drawing partitions the plane into disjoint connected regions
called faces.

Definition 5.2. Faces.

Let G be a plane graph. The connected components of R?\ G are called
faces. We denote the set of faces by F. There is exactly one unbounded
face, called the external face.

The boundary of a face consists of a sequence of edges and vertices.
If the graph is connected, this boundary corresponds to a closed walk
in G.

Lemma 5.1. Edge-Face Incidence.

Let e be an edge in a plane graph.

- If e belongs to a cycle, it separates two distinct faces.

- If e does not belong to a cycle (i.e., it is a bridge), it lies within a sin-

gle face (the "slit" in the region). Jeu

5122 Figure 5.1: A plane embed-

ding of Ky. It has 4 faces (3
Euler’s ] internal bounded, 1 external
uler's Formula unbounded). This structure
The fundamental invariant of planar graphs connects the number of corresponds to the projection of
vertices (1), edges (m), and faces (f). This relation was first observed a tetrahedron.

for polyhedra.

Lemma 5.2. Trees in the Plane.
Every tree is a planar graph. Any plane drawing of a tree has exactly

one face (the external face).
5l 32

Theorem 5.2. Euler’s Formula.
Let G be a connected planar graph with n vertices, m edges, and f faces.
Then:

n—m+f=2.

We proceed by induction on the number of edges m.
Base Case (m = 0):

The graph consists of a single vertex (n = 1). There is one face (the
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entire plane).
1-0+1=2

The formula holds.
SERA #
Inductive Step:

Assume the formula holds for all connected planar graphs with
fewer than m edges. Let G have m edges.

Case 1: G is a tree. Then m = n — 1. Since there are no cycles, there
is only 1 face (f = 1).

n—n—-1)+1=1+1=2.

Case 2: G contains a cycle. Let e be an edge belonging to a cycle.
By the incidence lemma, e separates two distinct faces, say F;
and F,. Consider the graph G’ = G —e.

¢ G’ remains connected (since e was on a cycle).

¢ The number of vertices n’ = n.

¢ The number of edges m’ = m — 1.

e Removing e merges F; and F; into a single face, so f' = f — 1.

By the induction hypothesis:
n—m+f =2= n-(m-1)+(f-1)=2 = n—m+f=2.

SEH

Bounds on Edge Density

Euler’s formula imposes a strict limit on the number of edges a pla-
nar graph can support. To derive this, we count the boundary walks
of the faces.

Corollary 5.1. Planar Edge Density. Let G be a planar graph with n >
3 vertices. Then:
m < 3n —6.

e

Proof

It suffices to consider G connected, since for fixed n adding com-
ponents cannot increase m. Let F be the set of faces. For each face

¢ € F,let £(¢) be the number of edges bounding ¢. Since G has no
multiple edges and n > 3, every face (including the external one)
must be bounded by at least 3 edges. Thus ¢(¢) > 3. Summing over
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all faces:

Y. ) = 3f.

¢EF

Each edge bounds at most two faces. Thus, the sum counts every
edge at most twice:

Y () < 2m.

¢€EF
Combining these inequalities yields 3f < 2m, or f < %m Substitut-

ing this into Euler’s formula (n —m + f = 2):

1
n—m+§m22 — n—§m22 — 3n—6 > m.

This necessary condition allows us to prove non-planarity for dense
graphs.

Example 5.1. Non-planarity of Ks. The complete graph K5 hasn =
5and m = (g) = 10. Testing the bound:

3(5)—6=15-6=09.
Since 10 £ 9, K5 is not planar.
et

For bipartite graphs, the absence of odd cycles strengthens the
bound, as the smallest face must be a quadrilateral (¢(¢) > 4).

Corollary 5.2. Bipartite Planar Bound. Let G be a planar bipartite graph
with n > 3. Then:
m<2n-—4.

Heam

Proof
Again, we may assume G is connected; extra components only
reduce m for fixed n. Similar to the previous proof, we have
4f < 2m = f < %m Euler’s formula gives n — m + %m >
2 — 2n—4>m.

[ |

Example 5.2. Non-planarity of K33. The complete bipartite graph
K33 has n =6 and m = 3 x 3 = 9. Testing the bipartite bound:

2(6) —4 =8.

Since 9 £ 8, K33 is not planar.
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Kuratowski’s Theorem

We have identified two fundamental non-planar graphs: Ks and Ks 3.
It turns out that a7y non-planar graph contains the structure of one of
these two.

Definition 5.3. Subdivision.

A subdivision of a graph G is a graph obtained by replacing edges of

G with paths. Formally, we repeatedly apply the operation of replac-

ing an edge {u, v} with {1, x} and {x,v}, where x is a new vertex.
Clearly, if G is non-planar, any subdivision of G is non-planar (adding
vertices of degree 2 does not help resolve crossings).

Theorem 5.3. Kuratowski’s Theorem (1930).

A graph is planar if and only if it does not contain a subgraph that is

a subdivision of K5 or K3 3.

T3

The rigorous proof of this theorem is lengthy, but the intuition is
that K5 and K33 represent the minimal "obstructions" to planarity.
Informally, consider a Hamiltonian cycle in K33 or K5. Any chords
connecting vertices on the cycle must be drawn inside or outside.
In these specific graphs, the chords form an "incompatible" system
where no valid assignment of inside/outside prevents all crossings.

Colouring Planar Graphs

A famous problem in cartography asks: how many colours are re-
quired to colour a map such that no two adjacent regions share a
colour? Graph theoretically, this is the chromatic number of the
planar graph dual to the map. Euler’s formula provides a crucial
structural lemma.

Corollary 5.3. Structural Lemma. Every planar graph contains a ver-
tex of degree at most 5.

e
Proof
Let G be planar with n vertices and m edges. Assume for contradic-
tion that 6(G) > 6. Then every vertex has degree at least 6. By the
Handshaking Lemma:

2m =) d(v) > 6n.
veV

Thus m > 3n. However, we know m < 3n — 6.

In<3n—6 — 0< —6,

Original

———O
u v

1

Subdivision

—o—e

u X v
Figure 5.2: Subdivision: an
edge {u, v} is replaced by a
path through a new degree-2

vertex x.
a
b3 by
az as

Ks3: cheds cross

Figure 5.3: K33 with Hamilto-
nian cycle (black). The 3 chord
edges must cross: no planar
embedding exists.
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a contradiction.

|
This allows us to bound the chromatic number by induction.
Theorem 5.4. The 6-Colour Theorem.
Every planar graph is 6-colourable.
gl

Proof

We proceed by induction on n. The base casesn < 6 are trivial.
Assume all planar graphs of order n — 1 are 6-colourable. Let G be
a planar graph of order n. By the Structural Lemma, G contains a
vertex v with d(v) < 5. Consider the graph H = G — v. H is a sub-
graph of a planar graph, hence planar. By the inductive hypothesis,
H admits a proper colouring using 6 colours. We now reinsert v.
The vertex v has at most 5 neighbours in G. These neighbours use
at most 5 distinct colours. Since 6 colours are available, there is at
least one colour not used by the neighbours of v. Assign this colour

to v. This yields a valid 6-colouring of G.
|

Remark.

Refining this argument to prove 5-colourability is possible but re-
quires considering chains of alternating colours to rearrange the
colouring of the neighbours. The 4-Colour Theorem, proven by
Appel and Haken in 1976 using computer assistance, asserts that
X(G) < 4 for all planar graphs.

5.5 Exercises

1. Subgraph Monotonicity.

(a) Prove that if a graph G has a subgraph H that is not planar,
then G is not planar.

(b) Deduce that for every n > 6, the complete graph K}, is not
planar.

2. Almost Non-Planar. The graphs K5 and K3 3 are the fundamental
obstructions to planarity. Show that removing just one edge makes
them planar by drawing a plane embedding of:

(a) Ks minus one edge (K5 — e).
(b) K33 minus one edge (K33 — e).

3. The Petersen Graph. Prove that the Petersen graph is not planar.

61
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Remark.

Hint: Use Kuratowski’s Theorem by finding a subdivision of
K33 or Ks, or use the corollary m < 3n — 6 adapted for graphs
with girth ¢ = 5, which states m < %(71 —2).

Disconnected Graphs. Euler’s formula n — m + f = 2 requires the
graph to be connected.

(a) Use induction to prove a formula for planar graphs that have
exactly two connected components.

(b) Generalise this to a graph with k connected components.
Prove thatn —m+ f =1+k.

Topological Surfaces. For graphs embedded on a torus (a dough-
nut shape) such that all faces resemble discs, the Euler characteris-
tic differs from the plane. Given that K5 and K33 can be embedded
on a torus, and assuming the standard Euler logic applies, deter-
mine the value of the constant C in the formula n —m + f = C for
a torus.

Remark.

Hint: K5 has n = 5,m = 10. How many faces would it need? K5
triangulation on torus implies 3f = 2m.

Feasibility Check. For each of the following sets of conditions,
either draw a connected, simple planar graph that satisfies them,
or explain why one cannot exist:

(@) n=15m =12.

(b) n=10,m = 33.

(c) n=5m=28.

(d) n = 6,m =9, and the embedding has f = 6. (Note: Check
Euler’s formula consistency).

Planarity of Complements.

(a) Show that if G is a simple planar graph with n > 11 vertices,
then the complement graph G is not planar.

Remark.

Hint: Consider the total number of edges in K;, (m(G) +
m(G)) versus the maximum allowed in two planar graphs
(31 — 6)).

(b) Find a planar graph with n = 8 vertices whose complement is
also planar.
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8. Self-Dual Graphs. We define the dual graph G* of a plane graph
G by placing a vertex in every face of G and connecting two such
vertices if their corresponding faces share an edge. A planar em-
bedding is self-dual if G is isomorphic to G*.

(a) Prove that if a connected planar graph G is self-dual, then
2n —2=m.

(b) Find a self-dual planar embedding for the complete graph Kj.
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