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0
Graph Theory

Graph theory formalises the study of pairwise connections, serving
as a fundamental language for discrete mathematics.

0.1 Definitions and Representations

We define a graph as a structure consisting of points and links con-
necting them. Unlike the continuous functions of analysis, graphs are
inherently discrete.

Definition 0.1. Graph.
A graph is a pair G = (V, E), where:
· V is a finite set of elements called vertices (or nodes).
· E is a subset of P2(V), the set of all 2-element subsets of V. The el-

ements of E are called edges.
The order of the graph is the cardinality of the vertex set, |V|. Two ver-
tices x, y ∈ V are said to be adjacent (or neighbours) if {x, y} ∈ E.

定義

Note

Unless explicitly stated otherwise, all graphs in this text are simple
(no loops connecting a vertex to itself, no multiple edges between
the same pair) and undirected (edges are sets {x, y}, not ordered
pairs (x, y)).

Graphs are frequently represented geometrically by drawing vertices
as points and edges as curves connecting them. It is crucial to dis-
tinguish the combinatorial object G from its visual representation; a
single graph may admit multiple distinct drawings.

a b

cd

G

Figure 1: A representa-
tion of the graph G =

({a, b, c, d}, {{a, b}, {b, c}, {c, d}, {d, a}}).
This is the cycle C4.

Example 0.1. Labelled Graphs. Consider the set of vertices
V = {a, b, c}. The number of possible edges is |P2(V)| = (3

2) = 3.
The possible edges are {a, b}, {b, c}, {a, c}. A graph on V is deter-
mined by choosing a subset of these edges. Thus, there are 23 = 8
distinct graphs on these three labelled vertices.

範例
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This example generalises immediately via the properties of the power
set established in the previous notes

Proposition 0.1. Counting Labelled Graphs.
The number of distinct graphs with a fixed vertex set V of cardinality
n is

2(
n
2).

命題

Proof

A graph is completely determined by its edge set E ⊆ P2(V). The
size of the set of all possible pairs is |P2(V)| = (n

2). The number of
subsets of P2(V) is the cardinality of its power set, which is 2(

n
2).

■

The definition of a graph G = (V, E) depends on the specific labels of
the vertices. However, the structural properties of a graph (connectiv-
ity, cycles, etc.) are independent of labelling. We formalise the notion
of "structural equality" via isomorphism.

Definition 0.2. Isomorphism.
Two graphs G = (V, E) and G′ = (V′, E′) are isomorphic, denoted
G ∼= G′, if there exists a bijection φ : V → V′ such that for all x, y ∈
V:

{x, y} ∈ E ⇐⇒ {φ(x), φ(y)} ∈ E′.

The map φ is called an isomorphism.
定義

An isomorphism renames vertices while preserving adjacency. The
relation ∼= is an equivalence relation on the set of all graphs. When
we speak of "a graph" in an abstract sense (e.g., "the triangle"), we
refer to an isomorphism class.

Example 0.2. Isomorphism Classes of Order 3. While there are
2(

3
2) = 8 labelled graphs on three vertices, there are only 4 up to

isomorphism.
1. No edges (empty).
2. One edge.
3. Two edges (a path of length 2).
4. Three edges (a triangle).

範例

Empty 1 Edge

2 Edges Triangle

Figure 2: The four non-
isomorphic graphs of order
3.

Counting graphs up to isomorphism is significantly more difficult
than counting labelled graphs, as the size of isomorphism classes
varies. However, we can establish useful bounds using the Pigeon-
hole Principle and properties of group actions.
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Proposition 0.2. Bounds on Isomorphism Classes.
Let Un be the set of isomorphism classes of graphs of order n. Then:

|Un| ≥
2(

n
2)

n!
.

命題

Proof

Let Gn be the set of labelled graphs on the set V = [1, n]. We have
|Gn| = 2(

n
2). Consider the mapping π : Gn → Un that assigns each

graph to its isomorphism class. For any graph G, the size of its iso-
morphism class is at most n!, since any isomorphism is determined
by a permutation of the n vertices. Since the classes form a partition
of Gn, we have:

|Gn| = ∑
C∈Un

|C| ≤ ∑
C∈Un

n! = |Un| · n!.

Rearranging yields the result.
■

Asymptotically, the number of unlabelled graphs behaves similarly
to the number of labelled graphs, as the exponential term 2n2/2 dom-
inates the factorial n!. Using the approximation log2(n!) ≈ n log2 n,
we observe:

log2

(
2(

n
2)

n!

)
=

(
n
2

)
− log2(n!) ≈ n2

2
− n log2 n.

For large n, this growth is driven by the n2 term.

0.2 A Bestiary of Graphs

We define several standard families of graphs that appear frequently
in examples and counterexamples.

Q3

Figure 3: The 3-dimensional
hypercube Q3. Each vertex is a
binary string in {0, 1}3; edges
connect strings differing in one
bit.

Definition 0.3. Standard Graphs.
Let n ∈N∗.
1. Empty Graph (Sn): V = [1, n] and E = ∅. Also called the stable

graph.
2. Complete Graph (Kn): V = [1, n] and E = P2(V). Every pair of

distinct vertices is connected.
3. Path Graph (Pn): A chain of length n.

V = [0, n], E = {{i, i + 1} : 0 ≤ i < n}.

Note that Pn has order n+ 1 and size (number of edges) n. Some
authors instead index Pn by the number of vertices (order n); we fol-
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low the length convention here to match |E| = n.
4. Cycle Graph (Cn): For n ≥ 3, a closed loop of length n.

V = [1, n], E = {{i, i + 1} : 1 ≤ i < n} ∪ {{n, 1}}.

5. Hypercube (Qd): The d-dimensional cube.

V = {0, 1}d, E = {{x, y} : x and y differ in exactly one coordinate}.

定義

K5 C5

Figure 4: The complete graph
K5 and the cycle C5.

Another crucial class of graphs arises when the vertex set can be par-
titioned into two disjoint sets such that edges only connect vertices
from different sets.

Definition 0.4. Bipartite Graphs.
The complete bipartite graph Kn,m is defined by partitions of sizes n
and m.

V = {a1, . . . , an}∪{b1, . . . , bm}, E = {{ai, bj} : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The order is n + m and the number of edges is nm.
定義

a1

a2

b1

b2

b3

K2,3

Figure 5: The complete bipartite
graph K2,3: every vertex on the
left is adjacent to every vertex
on the right. It has 2 · 3 = 6
edges.

Example 0.3. The Petersen Graph. The Petersen graph is a spe-
cific graph of order 10 and size 15, famous for being a counterex-
ample to many optimistic conjectures in graph theory. It can be
constructed as the Kneser graph KG(5, 2):
· Vertices: The 2-element subsets of {1, 2, 3, 4, 5}.
· Edges: Two vertices (subsets) are adjacent if they are disjoint.

範例

The Petersen Graph

Figure 6: The Petersen graph
drawn with 5-fold symmetry.

0.3 Degrees and Regularity

The local structure of a graph is characterised by the connectivity of
individual vertices.

Definition 0.5. Degree.
Let G = (V, E) be a graph and x ∈ V. The neighbourhood of x, de-
noted N(x), is the set of vertices adjacent to x:

N(x) = {y ∈ V : {x, y} ∈ E}.

The degree of x, denoted d(x) (or deg(x)), is the cardinality of its neigh-
bourhood:

d(x) = |N(x)|.

A vertex of degree 0 is isolated; a vertex of degree 1 is a leaf.
定義
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We characterise the global "boundedness" of the graph by its extremal
degrees:

Minimum degree:
δ(G) = min

v∈V
d(v).

Maximum degree:
∆(G) = max

v∈V
d(v).

If δ(G) = ∆(G) = k, every vertex has degree k, and the graph is said
to be k-regular.

x

N(x)

d(x) = 3

Figure 7: The neighbourhood
N(x) (blue vertices) consists of
all vertices adjacent to x. Here
d(x) = |N(x)| = 3.

Theorem 0.1. The Handshaking Lemma.
For any graph G = (V, E):

∑
v∈V

d(v) = 2|E|.

定理

Proof

We employ a double counting argument on the set of vertex-edge
incidences. Let S ⊆ V × E be the set of pairs (v, e) such that v ∈ e:

S = {(v, e) ∈ V × E : v ∈ e}.

We calculate |S| in two ways:
1. Summing over vertices: For a fixed v, the number of edges con-

taining v is d(v). Thus |S| = ∑v∈V d(v).
2. Summing over edges: For a fixed edge e ∈ E, since G is a sim-

ple graph, e consists of exactly two distinct vertices. Thus |S| =

∑e∈E 2 = 2|E|.
Equating the two expressions yields the result.

■

This arithmetic constraint imposes a parity restriction on the degrees.

Corollary 0.1. Parity of Odd Degrees. In any graph, the number of ver-
tices with odd degree is even.

推論

Proof

Partition the vertex set V into Veven = {v : d(v) is even} and Vodd =

{v : d(v) is odd}. By the Handshaking Lemma:

2|E| = ∑
v∈Veven

d(v) + ∑
v∈Vodd

d(v).

The left-hand side is even, and the first sum on the right is a sum of
even integers, hence even. Therefore, the sum ∑v∈Vodd

d(v) must be



8 gudfit

even. Since this is a sum of odd integers, the number of terms |Vodd|
must be even.

■

0.4 Matrix Representations

While graphs are combinatorial objects, they can be encoded using
linear algebra. Let G = (V, E) with V = {v1, . . . , vn} and E =

{e1, . . . , em}.

Definition 0.6. Adjacency Matrix.
The adjacency matrix AG is the n× n matrix defined by:

(AG)ij =

1 if {vi, vj} ∈ E,

0 otherwise.

For simple undirected graphs, AG is symmetric with zeros on the di-
agonal. The sum of the i-th row (or column) is d(vi).

定義

Definition 0.7. Incidence Matrix.
The incidence matrix M is the n×m matrix capturing the relationship
between vertices and edges:

Mij =

1 if vi ∈ ej,

0 if vi /∈ ej.

定義

The incidence matrix provides an algebraic verification of the Hand-
shaking Lemma. Summing all entries of M:

n

∑
i=1

m

∑
j=1

Mij =
m

∑
j=1

(
n

∑
i=1

Mij

)
︸ ︷︷ ︸

2

= 2m = 2|E|,

n

∑
i=1

m

∑
j=1

Mij =
n

∑
i=1

(
m

∑
j=1

Mij

)
︸ ︷︷ ︸

d(vi)

= ∑
v∈V

d(v).

0.5 Graphic Sequences

The degree sequence of a graph of order n is the tuple of vertex
degrees (d1, . . . , dn), typically sorted in non-decreasing order d1 ≤
d2 ≤ · · · ≤ dn. While isomorphic graphs share the same degree
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sequence, the converse is false. For example, the cycle C6 and the
disjoint union of two triangles 2K3 both have the degree sequence
(2, 2, 2, 2, 2, 2), yet C6 is connected while 2K3 is not.
A sequence of integers is termed graphic if there exists a graph real-
ising it as a degree sequence. The Havel-Hakimi theorem provides a
recursive algorithm to test this property.

Theorem 0.2. Havel-Hakimi.
Let D = (d1, . . . , dn) be a sequence of integers satisfying 0 ≤ d1 ≤
· · · ≤ dn ≤ n− 1 (the upper bound guarantees the reduction step is
defined). The sequence D is graphic if and only if the reduced sequence
D′ of length n− 1 is graphic, where D′ is obtained by removing dn and
subtracting 1 from the dn largest remaining terms. Formally, let k =

dn. The reduced sequence is formed from (d1, . . . , dn−k−1, dn−k− 1, . . . , dn−1−
1) (reordered if necessary).

定理

vn

vℓ

vk

vm

Swap

Figure 8: The edge switching
argument. If vn is connected
to a low-degree vertex vℓ but
misses a high-degree vertex
vk, and vk has a neighbour
vm not adjacent to vℓ, we can
swap edges {vn, vℓ}, {vk, vm}
for {vn, vk}, {vℓ, vm} to pre-
serve degrees while "fixing" vn’s
neighbourhood.

(⇐= )

Suppose D′ is graphic. Let G′ be a graph with vertex set
{v1, . . . , vn−1} realising D′. Construct G by adding a vertex vn

and connecting it to the vertices corresponding to the dn indices
that were decremented in D′. The degrees in G are exactly D.

証明終

( =⇒ )

Suppose D is graphic. Let G be a realisation such that the ver-
tex vn (with degree dn) is adjacent to the set of vertices H =

{vn−dn , . . . , vn−1}, i.e., the vertices with the highest degrees among
the rest. If such a G exists, removing vn yields a graph realising D′.
We show such a graph must exist. Among all graphs realising D,
choose one where vn shares the maximum number of edges with
the target set H. Suppose for contradiction that N(vn) ̸= H. Then
there exists a "missing" neighbour vk ∈ H \ N(vn) and a "wrong"
neighbour vℓ ∈ N(vn) \ H. Since vk ∈ H and vℓ /∈ H, we have k > ℓ,
implying d(vk) ≥ d(vℓ).

Case 1: d(vk) = d(vℓ). We may simply swap the labels of vk and vℓ.
The graph structure is unchanged, but vn is now connected to
vk ∈ H, increasing the intersection |N(vn) ∩ H|.

Case 2: d(vk) > d(vℓ). Since vk has strictly higher degree than
vℓ, there must exist a vertex vm such that {vk, vm} ∈ E but
{vℓ, vm} /∈ E. (Note m ̸= n). Consider the vertices {vn, vk, vℓ, vm}.
We have edges {vn, vℓ} and {vk, vm}, but {vn, vk} and {vℓ, vm}
are absent. Perform an edge swap: remove {vn, vℓ} and {vk, vm};
add {vn, vk} and {vℓ, vm}. This operation preserves the degree of
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every vertex but connects vn to vk instead of vℓ.

In both cases, we construct a realisation with strictly greater overlap
with H, contradicting the maximality assumption. Thus, a realisa-
tion connecting vn to H exists.

証明終

Example 0.4. Determining Graphic Sequences. We determine if the
following sequences are graphic.

S1 = (1, 1, 1, 2, 2). The sum of degrees is 1 + 1 + 1 + 2 + 2 = 7,
which is odd. By the Handshaking Lemma, this is impossi-
ble. Alternatively, applying Havel-Hakimi implies reducing
(1, 1, 1, 2) by connecting the degree 2 vertex to the two largest:
D′ = (1, 1 − 1, 1 − 1) = (1, 0, 0). A graph with one vertex of
degree 1 and two of degree 0 is impossible (the degree 1 vertex
needs a neighbour).

S2 = (1, 1, 1, 3, 4). Sorted: (1, 1, 1, 3, 4). Remove 4, subtract 1 from
four largest remaining:

D′ = (1− 1, 1− 1, 1− 1, 3− 1) = (0, 0, 0, 2).

Remove 2, subtract 1 from two largest remaining:

D′′ = (0, 0− 1, 0− 1) = (0,−1,−1).

Negative degrees are impossible. Thus S2 is not graphic.

S3 = (1, 1, 1, 2, 2, 3, 4, 5, 5). Remove 5: reduce {5, 4, 3, 2, 2}
→ {4, 3, 2, 1, 1}.

D′ = (1, 1, 1, 1, 1, 2, 3, 4, 4).

(Note: we retain the three 1s that were not modified). Remove 4:
reduce {4, 3, 2, 1} → {3, 2, 1, 0}.

D′′ = (0, 1, 1, 1, 1, 1, 2, 3).

Remove 3: reduce {2, 1, 1} → {1, 0, 0}.

D′′′ = (0, 0, 0, 1, 1, 1, 1).

This is graphic (e.g., two disjoint edges and 3 isolated vertices).
Thus S3 is graphic.

範例
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0.6 Exercises

1. Degrees and Neighbours.

(a) Let G1 = (V, E) where V = {a, b, c, d, e} and E = {{a, c}, {b, d}, {c, d}, {c, e}, {d, e}, {e, e}}.
Compute the degree of each vertex. Is G1 simple? List the
neighbours of a and the edges incident to a.

(b) Let G2 = (V, E) where V = {a, b, c} and E = {{a, b}, {a, c}, {a, c}}.
Compute degrees, check simplicity, and list neighbours/incident
edges for a.

(c) Let G3 = (V, E) where V = {a, b, c, d} and E = {{a, b}, {a, c}, {b, c}}.
Compute degrees, check simplicity, check for isolated ver-
tices, and draw the graph.

2. Basic Families.

(a) Draw the complete graphs K1, K2, K3, K4 and K5.

(b) Let G be a simple graph on vertex set V. Show that for any
subset S ⊆ V, the induced subgraph G[S] is uniquely deter-
mined by S.

(c) Let G be a simple graph on n vertices. Prove that the edge
set of the complement G satisfies E(Kn) = E(G) ∪ E(G) and
E(G) ∩ E(G) = ∅.

3. Handshaking and Induction.

(a) Prove the Handshaking Lemma (∑ d(v) = 2|E|) by induction
on the number of edges.

(b) Prove that the number of odd-degree vertices is even by in-
duction on the number of edges.

Remark.

Base case: empty graph. Inductive step: adding/removing
an edge affects degrees of two vertices.

(c) Start with K7. Show there is a sequence of deleting one edge
then one vertex such that the result is complete. Show a
different sequence where the result is not complete.

4. Counting Labelled Graphs.

(a) How many labelled graphs on 5 vertices have exactly 1 edge?

(b) How many labelled graphs on 5 vertices have exactly 3

edges? Exactly 4 edges?

(c) Prove that the total number of simple labelled graphs on n
vertices is 2(

n
2).
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5. Isomorphism.

(a) Prove that graph isomorphism is an equivalence relation.

(b) Let G1
∼= G2. Prove they have the same order, size, and

degree sequence.

(c) Let G1 be the graph with V = {a, b, c, d} and E = {{a, b}, {a, c}, {a, d}}.
Let G2 be the graph with V = {A, B, C, D} and E = {{B, C}, {C, D}, {B, D}}.
Are they isomorphic? Provide an isomorphism or prove none
exists.

(d) Draw five pairwise non-isomorphic graphs on 5 vertices.
Justify your answer.

6. The Petersen Graph. Let G be the graph whose vertices are the
2-element subsets of {1, 2, 3, 4, 5}, with adjacency defined by dis-
jointness.

(a) List all vertices and determine their degrees.

(b) Draw the graph.

(c) Is this graph bipartite?

7. ⋆ Hypercube Edges. Let e(Qn) be the number of edges in the
n-dimensional hypercube.

(a) Establish the recurrence e(Qn) = 2e(Qn−1) + 2n−1 with
e(Q0) = 0.

(b) Solve this recurrence to find a closed form for e(Qn).

(c) Verify your formula by a direct combinatorial counting argu-
ment (using the Handshaking Lemma).



1
Extremal Graph Theory

In the previous chapter, we established the vocabulary of graph the-
ory, defining structures such as connectivity, degrees, and specific
families like Kn and Cn. We now turn to extremal graph theory, a
field concerned with the relationship between local constraints (such
as the absence of a specific substructure) and global properties (such
as the number of edges).
The central question we address is: How dense can a graph be without
containing a forbidden substructure?

1.1 Substructures

We begin by formalising the notion of one graph being "contained"
within another.

Definition 1.1. Subgraph.
Let G = (V, E) be a graph. A graph H = (V′, E′) is a subgraph of
G, denoted H ⊆ G, if:

V′ ⊆ V and E′ ⊆ E.

If H ⊆ G and H contains all edges of G capable of connecting vertices
in V′, i.e.,

E′ = E ∩P2(V′),

then H is the induced subgraph of G on V′, denoted G[V′]. If V′ =
V, then H is a spanning subgraph.

定義

G

Subgraph

Induced

Figure 1.1: Top: Graph G. Mid-
dle: A subgraph on 3 vertices
(missing edge {a, c}). Bot-
tom: The induced subgraph
G[{a, b, c}] includes all edges
from G.

To clarify the distinction between these types, consider the complete
graph Kn. Its structure is maximal; every pair of vertices is an edge.
Consequently, its subgraphs enumerates all possible simple graphs
up to order n.

Example 1.1. Counting Substructures of Kn. Let Kn be the com-
plete graph on n vertices. We determine the cardinality of the sets
of its subgraphs.
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Induced Subgraphs: An induced subgraph is uniquely determined
by its vertex set V′ ⊆ V. There are 2n such subsets.

Spanning Subgraphs: The vertex set is fixed to V. A spanning sub-
graph is determined by choosing a subset of the edges of Kn.
There are (n

2) possible edges, so there are 2(
n
2) spanning sub-

graphs.

General Subgraphs: To form an arbitrary subgraph, we first choose
k vertices (in (n

k) ways), and then choose any subset of the edges
available between them. Thus, the total number is:

n

∑
k=0

(
n
k

)
2(

k
2).

範例

1.2 Turán’s Theorem

A foundational result in extremal graph theory is Turán’s Theorem.
It bounds the number of edges in a graph that does not contain a
complete subgraph of size r (denoted Kr).
If we wish to avoid K3 (a triangle), the best strategy is to partition the
vertices into two sets A and B and place all possible edges between A
and B, but none within A or B. This yields a complete bipartite graph

K⌊n/2⌋,⌈n/2⌉,

which contains no triangles. Turán’s Theorem generalises this intu-
ition.

Theorem 1.1. Turán’s Theorem (1941).
Let G = (V, E) be a graph of order n and size m. Let r ≥ 2. If G does
not contain Kr as a subgraph, then:

m ≤
(

1− 1
r− 1

)
n2

2
.

定理

Proof

We proceed by induction on n and r, ordered lexicographically:
first smaller r, and for equal r smaller n. The base cases n = 1 (triv-
ial) or r = 2 (no edges allowed, m = 0) hold immediately. Let n > 1
and r > 2. Assume the theorem holds for all graphs of order strictly
less than n.
If G does not contain a clique of size r − 1 (Kr−1), we may apply the
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induction hypothesis for r− 1:

m ≤
(

1− 1
r− 2

)
n2

2
≤
(

1− 1
r− 1

)
n2

2
,

and the bound holds.
Now, assume G does contain a subgraph Kr−1. Let A ⊂ V be the
vertex set of this (r − 1)-clique, and let B = V \ A. We partition the
edge set E into three disjoint sets:

EA: Edges with both endpoints in A. Since A induces Kr−1, |EA| =
(r−1

2 ).

EB: Edges with both endpoints in B. Since G contains no Kr, the
induced subgraph G[B] contains no Kr. By the inductive hypoth-
esis on B (which has order n− (r− 1)):

|EB| ≤
(

r− 2
r− 1

)
(n− r + 1)2

2
.

EAB: Edges connecting A and B. For any vertex v ∈ B, v can be
adjacent to at most r − 2 vertices in A. If v were adjacent to all
r − 1 vertices of A, then A ∪ {v} would form a Kr, contradicting
the hypothesis. Thus:

|EAB| ≤ |B|(r− 2) = (n− r + 1)(r− 2).

Summing these components:

m = |EA|+ |EB|+ |EAB|

≤ (r− 1)(r− 2)
2

+
r− 2

2(r− 1)
(n− r + 1)2 + (r− 2)(n− r + 1)

=
r− 2

2(r− 1)

[
(r− 1)2 + (n− r + 1)2 + 2(r− 1)(n− r + 1)

]
.

Recognising the term in brackets as the expansion of ((r− 1) + (n−
r + 1))2 = n2, we obtain:

m ≤ r− 2
2(r− 1)

n2 =

(
1− 1

r− 1

)
n2

2
.

■

T(6, 3) (No K4)

Figure 1.2: The Turán graph
T(n, r − 1) is a complete multi-
partite graph formed by parti-
tioning vertices into r − 1 sets
of equal (or nearly equal) size.
It maximises edges while avoid-
ing Kr.

The bound is sharp. The configuration achieving equality is the
Turán Graph, denoted T(n, r − 1). It is the complete multipartite
graph formed by partitioning V into r − 1 independent sets of size
roughly n/(r− 1).
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Remark.

If n is a multiple of r− 1, say n = k(r− 1), we partition V into r− 1
sets V1, . . . , Vr−1 each of size k. We connect u, v if and only if they
belong to distinct sets. By the Pigeonhole Principle, any set of r
vertices must contain at least two from the same partition Vi, which
are non-adjacent. Thus, Kr is forbidden. The number of edges is the
number of pairs of partitions times the edges between them:

|E| =
(

r− 1
2

)
k2 =

(r− 1)(r− 2)
2

(
n

r− 1

)2
=

(
1− 1

r− 1

)
n2

2
.

1.3 Geometric Applications

Graph theoretic bounds often yield surprising results in geometry.
We apply Turán’s theorem to a problem involving distances in the
plane.

Theorem 1.2. Erdős’ Distance Theorem.
Let S be a set of n points in the plane with diameter at most 1 (i.e., the
maximum distance between any pair is 1). The number of pairs of points
separated by a distance strictly greater than 1/

√
2 is at most ⌊n2/3⌋.

定理

Proof

Construct a graph G = (S, E) where an edge {x, y} exists if and
only if d(x, y) > 1/

√
2. We claim that this graph cannot contain a

complete subgraph of order 4 (K4).
Suppose for contradiction that {x, y, z, t} ⊆ S forms a K4. This
implies the distance between any two of these points is greater
than 1/

√
2. Consider the geometric configuration of these four

points. In any set of four planar points, either one lies in the convex
hull of the others (so some angle at that point is at least 120◦) or
they form a convex quadrilateral (so some interior angle is at least
90◦). In either case, there exists a triplet, say x, y, z, forming an an-
gle ∠xyz ≥ 90◦. By the Law of Cosines (or simply Pythagoras if
∠xyz = 90◦):

d(x, z)2 ≥ d(x, y)2 + d(y, z)2.

Since d(x, y) > 1/
√

2 and d(y, z) > 1/
√

2, we have:

d(x, z)2 >
1
2
+

1
2
= 1 =⇒ d(x, z) > 1.

This contradicts the assumption that the diameter of S is at most 1.
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Thus, G is K4-free. Applying Turán’s Theorem with r = 4:

|E| ≤
(

1− 1
3

)
n2

2
=

n2

3
.

■

1.4 Independent Sets

We defined an independent set (or stable set) implicitly when dis-
cussing Turán graphs. We now treat them formally.

Definition 1.2. Independent Set.
Let G = (V, E). A subset S ⊆ V is an independent set if no two ver-
tices in S are adjacent. The independence number α(G) is the cardi-
nality of the largest independent set in G.

定義

This concept is dual to that of a clique via the complement graph.

Definition 1.3. Complement Graph.
The complement of G = (V, E) is the graph G = (V, E), where {u, v} ∈
E if and only if {u, v} /∈ E (for u ̸= v).

定義

Note

A set of vertices forms a clique in G if and only if it forms an inde-
pendent set in G.

G

G

Figure 1.3: A graph G and its
complement G. The clique
{a, c, d} in G is an independent
set in G.

Using this duality, we can translate Turán’s theorem into a lower
bound for the size of independent sets.

Corollary 1.1. Lower Bound for α(G). Let G be a graph of order n and
size m. Then:

α(G) ≥ n2

2m + n
.

推論

Proof

Let α = α(G). Since an independent set in G is a clique in G, the
graph G contains a clique of size α, but no clique of size α + 1.
Applying Turán’s Theorem to G, which has size (n

2)−m:

|E(G)| ≤
(

1− 1
α + 1− 1

)
n2

2
=

(
α− 1

α

)
n2

2
.

Substituting |E(G)| = n(n−1)
2 −m:

n2 − n
2
−m ≤ α− 1

2α
n2.
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Multiplying by 2α:

α(n2 − n− 2m) ≤ (α− 1)n2 = αn2 − n2.

Cancelling αn2 from both sides:

−α(n + 2m) ≤ −n2 ⇐⇒ α(2m + n) ≥ n2.

Rearranging yields the result.
■

1.5 Ramsey Theory

While Turán’s theorem determines the maximum density of edges
before a specific substructure must appear, Ramsey theory poses a
more fundamental question: is total disorder possible? The central
result, Ramsey’s Theorem, asserts that in any sufficiently large graph,
one can find either a highly connected substructure (a clique) or a
completely disconnected one (an independent set).

Definition 1.4. Ramsey Numbers.
Let s, t ∈N∗. The Ramsey number R(s, t) is the minimum integer n
such that for any graph G of order n, either:
· G contains Ks as a subgraph, or
· G contains St (an independent set of size t) as an induced subgraph.
Equivalently, referencing the complement graph, any graph of order
R(s, t) satisfies Ks ⊆ G or Kt ⊆ G.

定義

The existence of such numbers is not immediately obvious; a priori,
one might construct arbitrarily large graphs avoiding both structures.
Ramsey’s theorem guarantees their finiteness. We begin with the
elementary boundary values.

Proposition 1.1. Basic Properties.
For all s, t ≥ 2:
1. Symmetry: R(s, t) = R(t, s).
2. Triviality: R(1, t) = 1.
3. Pairs: R(2, t) = t.

命題

Proof

1. Let n = R(s, t). For any graph G of order n, either Ks ⊆ G or
St ⊆ G. Taking complements, for any graph H = G, either Ss ⊆
H or Kt ⊆ H. Thus R(t, s) ≤ R(s, t). The reverse inequality holds
similarly.
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2. A graph of order 1 contains K1 (a single vertex).
3. We show R(2, t) = t.

• Upper bound: Let G be a graph of order t. If G contains at
least one edge, then K2 ⊆ G. If G contains no edges, then
G ∼= St. In either case, the condition is satisfied.

• Lower bound: Consider the graph St−1. It has order t − 1,
contains no edges (no K2), and has size strictly less than t (no
St). Thus R(2, t) > t− 1.

■

The finiteness of Ramsey numbers for general s, t is established via
a recurrence relation, essentially a graph-theoretic application of the
Pigeonhole Principle.

Theorem 1.3. Ramsey Recurrence.
For integers s, t ≥ 2, the Ramsey numbers satisfy:

R(s, t) ≤ R(s− 1, t) + R(s, t− 1).

定理

Proof

Let n = R(s − 1, t) + R(s, t − 1). Consider an arbitrary graph G =

(V, E) of order n. Pick any vertex v ∈ V. We partition the remain-
ing n− 1 vertices into two sets:

A = N(v) = {u ∈ V : {u, v} ∈ E},

B = V \ (A ∪ {v}) = {u ∈ V : {u, v} /∈ E}.

Since |A|+ |B| = n− 1 = R(s− 1, t) + R(s, t− 1)− 1, the Pigeonhole
Principle implies that either |A| ≥ R(s− 1, t) or |B| ≥ R(s, t− 1).

Case 1: |A| ≥ R(s− 1, t). Consider the subgraph induced by A,
G[A]. By definition of the Ramsey number, G[A] must contain
either Ks−1 or St.

• If St ⊆ G[A], then St ⊆ G, and we are done.
• If Ks−1 ⊆ G[A], let K be the set of vertices forming this clique.

Since v is adjacent to every vertex in A (and thus every vertex
in K), the set K ∪ {v} forms a clique of size s (Ks) in G.

Case 2: |B| ≥ R(s, t− 1). Consider the induced subgraph G[B]. It
must contain either Ks or St−1.

• If Ks ⊆ G[B], then Ks ⊆ G, and we are done.
• If St−1 ⊆ G[B], let S be this independent set. Since v is ad-

jacent to no vertex in B, S ∪ {v} forms an independent set of
size t (St) in G.
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In all scenarios, G satisfies the Ramsey condition. Thus R(s, t) ≤ n.
■

Example 1.2. The Party Problem (R(3, 3)). We determine the
value of R(3, 3). From the recurrence relation and the base case
R(2, 3) = 3:

R(3, 3) ≤ R(2, 3) + R(3, 2) = 3 + 3 = 6.

To show R(3, 3) > 5, we must exhibit a graph of order 5 contain-
ing neither a triangle (K3) nor an independent set of size 3 (S3).
Consider the cycle C5 (see Figure 6 or the Bestiary section).

Cliques: The maximum clique size in C5 is 2 (an edge), so it is
K3-free.

Independent Sets: The maximum independent set size is 2 (any
pair of non-adjacent vertices forces the remaining three to be
connected enough to prevent a third independent choice). Thus
it is S3-free.

Since C5 serves as a counterexample for n = 5, we conclude
R(3, 3) = 6.

Interpretation: In any group of 6 people, there are either 3 mutual
friends or 3 mutual strangers.

範例
C5: no K3, no S3

Figure 1.4: The cycle C5 wit-
nesses R(3, 3) > 5. Blue circles
mark a maximum independent
set of size 2; adding any third
vertex creates an edge.

1.6 Exercises

1. Substructures of Kn.

(a) Prove that the number of induced subgraphs of Kn is 2n.

(b) Prove that the number of spanning subgraphs of Kn is 2(
n
2).

(c) Show that the total number of subgraphs of Kn is ∑n
k=0 (

n
k)2

(k
2).

2. Defining Subgraphs. Let G = (V, E) be a simple graph.

(a) Show that for any subset S ⊆ V, the induced subgraph G[S]
is uniquely determined by S.

(b) Let H be an arbitrary subgraph of G. Prove that there exists
a unique vertex subset S ⊆ V and a unique edge subset
F ⊆ E(G[S]) such that H = (S, F).

3. Triangle-Free Graphs. Let G be a graph of order n containing no
triangles (K3-free).

(a) Use Turán’s Theorem (r = 3) to show that |E(G)| ≤ ⌊n2/4⌋.
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(b) Describe the graphs that achieve equality in this bound.

4. Turán Bound Practice. Let n1, . . . , nk be positive integers summing
to n. Consider Kn partitioned into disjoint sets Vi of size ni.

(a) Explain why ∑k
i=1 (

ni
2 ) counts the edges inside the parts.

(b) Show that ∑k
i=1 (

ni
2 ) ≤ (n

2). When does equality hold?

5. ⋆ Sharpness of Turán’s Theorem. Let T(n, r − 1) be the Turán
graph (complete (r− 1)-partite graph with roughly equal parts).

(a) Show that the number of edges is |E(T(n, r − 1))| = 1
2 (n

2 −
∑r−1

i=1 n2
i ).

(b) Deduce that |E(T(n, r − 1))| ≥
(

1− 1
r−1

)
n2

2 , with equality
when all parts are as equal as possible.

(c) Conclude that the bound in Turán’s theorem cannot be im-
proved.

6. ⋆ Uniqueness of Turán Graphs. Let G be a Kr-free graph on n
vertices. Prove that if G has the maximum possible number of
edges among all such graphs, then G must be isomorphic to the
Turán graph T(n, r− 1).

7. Independence and Cliques. Let G = (V, E) and G be its comple-
ment.

(a) Prove that S ⊆ V is a clique in G if and only if S is an inde-
pendent set in G.

(b) Show that α(G) = ω(G), where ω(G) is the clique number
(size of the largest clique).

8. Independence Bounds. Verify the inequality α(G) ≥ n2

2m+n for the
following families:

(a) The complete graph Kn.

(b) The cycle graph Cn.

(c) The path graph Pn (length n, order n + 1).

Comment on the tightness of the bound in each case.

9. Independence and Average Degree. Let d̄ be the average degree
of a graph G on n vertices. Show that:

α(G) ≥ n
d̄ + 1

.

Remark.

Hint: Relate d̄ to the number of edges m and use the bound from
the previous exercise.

10. Geometry Lemma. Show that for any 4 points in the plane, there
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exist three of them forming an angle of at least 90◦.

Remark.

Consider the convex hull.

11. Erdős Distance Proof Step. Complete the missing step in the
proof of Erdős’ theorem: Prove that if ∠xyz ≥ 90◦ and d(x, y) >

1/
√

2 and d(y, z) > 1/
√

2, then d(x, z) > 1.

12. ⋆ Long Distances Construction. Construct a set of n points in the
plane with diameter 1 such that the number of pairs with distance
> 1/

√
2 is of the order n2/3.

Remark.

Place points in tight clusters near the vertices of an equilateral
triangle.

13. Ramsey Basics.

(a) Prove R(1, t) = 1 and R(2, t) = t.

(b) Prove the symmetry R(s, t) = R(t, s).

14. Ramsey’s Theorem. Use the recurrence R(s, t) ≤ R(s − 1, t) +
R(s, t − 1) and the base cases to prove by induction on s + t that
R(s, t) is finite for all positive integers s, t.

15. The Party Problem. Re-prove R(3, 3) = 6 by showing:

(a) R(3, 3) ≤ 6 using the recurrence.

(b) C5 contains no K3 and no S3.

(c) Deduce R(3, 3) > 5.

16. ⋆ Bounding R(3, 4). Use the recurrence relation and known values
to derive an explicit upper bound for R(3, 4).



2
Connectivity

Having established the structural definitions of graphs and their
subgraphs, we now turn to the fundamental topological notion of
connectivity. Intuitively, a graph is connected if it is possible to travel
between any two vertices along the edges of the graph. To formalise
this, we must define the precise nature of "travel" within a discrete
structure.

2.1 Walks, Trails, and Paths

We distinguish between sequences of adjacent vertices based on
whether they repeat vertices or edges.

Definition 2.1. Walks and Paths.
Let G = (V, E) be a graph.
· A walk of length k is a sequence of vertices (v0, v1, . . . , vk) such that
{vi, vi+1} ∈ E for all 0 ≤ i < k. The vertex v0 is the start and vk is
the end (or terminus).
· A trail is a walk in which all edges {vi, vi+1} are distinct.
· A path is a walk in which all vertices vi are distinct.
If v0 = vk, the walk is closed. A closed path (where only v0 = vk are
repeated) is a cycle.

定義

Note

In the previous chapter’s, we defined the Path Graph Pn and Cy-
cle Graph Cn. A path of length k in G is a subgraph isomorphic to
Pk+1, and a cycle of length k is isomorphic to Ck.

a

b c

d

e

Walk: (a, b, e, b, c, d)
Trail: (a, e, b, c, e, d)

Path: (a, b, c, d)

Figure 2.1: Walk, trail, and path
from a to d. The walk repeats
edge {b, e}; the trail repeats
vertex e but no edge; the path
has no repetitions.

It is immediate that every path is a walk. Conversely, while a walk
may wander and loop back on itself, the existence of a walk implies
the existence of a path.

Lemma 2.1. Walk Reduction.
If there exists a walk connecting u to v in G, then there exists a path
connecting u to v.
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引理

Proof

Let W = (u = v0, v1, . . . , vk = v) be a walk from u to v of minimal
length. Suppose W is not a path. Then the vertices are not distinct,
so there exist indices i < j such that vi = vj. We can form a new
sequence W ′ by excising the segment between i and j:

W ′ = (v0, . . . , vi, vj+1, . . . , vk).

Since vi = vj, the pair {vi, vj+1} is the edge {vj, vj+1}, which ex-
ists in G. Thus W ′ is a valid walk from u to v with length strictly
less than W. This contradicts the minimality of W. Therefore, the
minimal walk is a path.

■

u
vi

vj

v

loop

Figure 2.2: Reducing a walk to
a path. If a walk intersects itself
at vi = vj, the loop (dashed) can
be removed to form a shorter
walk.

Connected Components

We define a binary relation on the vertex set V to capture global
cohesion.

Definition 2.2. Connectivity Relation.
We say two vertices x, y ∈ V are connected, denoted x ∼ y, if there
exists a walk (and hence, by lemma 2.1, a path) starting at x and end-
ing at y.

定義

Theorem 2.1. Connectivity is an Equivalence Relation.
The relation ∼ is an equivalence relation on V.

定理

Proof

1. Reflexivity: For any x ∈ V, the trivial sequence (x) is a walk of
length 0. Thus x ∼ x.

2. Symmetry: If x ∼ y, there is a walk (x, v1, . . . , vk−1, y). Reversing
this sequence yields (y, vk−1, . . . , v1, x), which is a valid walk
since edges are undirected sets {u, v}. Thus y ∼ x.

3. Transitivity: If x ∼ y and y ∼ z, there exist walks W1 = (x, . . . , y)
and W2 = (y, . . . , z). The concatenation W1 ·W2 = (x, . . . , y, . . . , z)
is a walk from x to z. Thus x ∼ z.

■

The equivalence classes under ∼ are called the connected compo-
nents of G. A graph is connected if it has exactly one connected
component; otherwise, it is disconnected.
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Example 2.1. Components of 2K3. Recall the graph 2K3 consist-
ing of two disjoint triangles with vertices {1, 2, 3} and {4, 5, 6}. No
edge connects the first set to the second. The relation ∼ partitions
V into C1 = {1, 2, 3} and C2 = {4, 5, 6}. These are the connected
components.

範例

1

2 3
C1

4

5 6
C2

Figure 2.3: The graph 2K3: two
disjoint triangles forming two
connected components.

Cuts and Partitions

Connectivity can be equivalently characterised by the absence of a
"cut" — a partition of the vertices into two sets with no edges cross-
ing between them. This dual perspective is often more useful for
proofs involving contradiction.

Theorem 2.2. The Cut Condition.
A graph G = (V, E) is connected if and only if for every partition of
V into two non-empty sets A and B, there exists an edge {u, v} ∈ E
such that u ∈ A and v ∈ B.

定理

A B

x vr−1 vr

y
crossing

Figure 2.4: If x and y are con-
nected, any path between them
must cross the boundary be-
tween A and B at least once.

( =⇒ )

Assume G is connected. Let V = A ∪ B be a partition with A, B ̸=
∅. Pick arbitrary vertices x ∈ A and y ∈ B. Since G is connected,
there exists a path P = (v0, . . . , vk) with v0 = x and vk = y. We
traverse the path from x. Since v0 ∈ A and vk ∈ B, there must be a
first index r where the path leaves A. Let

r = min{i : vi ∈ B}.

Since v0 ∈ A, we have r > 0. By definition of r, vr−1 /∈ B, so vr−1 ∈
A. The edge {vr−1, vr} connects a vertex in A to a vertex in B.

証明終

(⇐= )

Assume that for every non-trivial partition, a crossing edge exists.
Suppose for contradiction that G is disconnected. Let C be a con-
nected component of G. Since G is disconnected, C ⊊ V, so let
A = C and B = V \ C. Both sets are non-empty. By the hypothesis,
there exists an edge {u, v} with u ∈ A and v ∈ B. Since u ∈ C and
{u, v} ∈ E, there is a walk from any vertex in C to v. By transitivity,
v must belong to the connected component C. This implies v ∈ A,
contradicting v ∈ B. Thus, G must be connected.

証明終

This theorem is particularly useful when proving global connectivity
properties from local degree conditions.
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Proposition 2.1. Minimum Degree and Connectivity.
If G is a graph of order n such that δ(G) ≥ ⌊n/2⌋, then G is connected.

命題

Proof

Suppose G is disconnected. Then the vertex set can be partitioned
into sets A and B with no edges between them. Let u ∈ A. All
neighbours of u must lie within A, so d(u) ≤ |A| − 1. Thus
|A| ≥ d(u) + 1 ≥ ⌊n/2⌋ + 1 > n/2. Similarly, for any v ∈ B,
|B| ≥ d(v) + 1 > n/2. Summing the sizes:

|V| = |A|+ |B| > n/2 + n/2 = n.

This is a contradiction. Therefore, no such partition exists, and G is
connected by the Cut Condition (theorem 2.2).

■

2.2 Distance

When a graph is connected, we can measure the separation between
vertices.

Definition 2.3. Geodesic Distance.
Let G = (V, E) be a connected graph. The distance between two ver-
tices s, t ∈ V, denoted dG(s, t), is the length of the shortest path con-
necting s and t. If G is not connected and s, t lie in different components,
we define dG(s, t) = ∞.

定義

While the definition relies on graph structure, the function dG satis-
fies the axioms of a metric space on the set of vertices, provided the
graph is connected.

Proposition 2.2. Metric Properties.
The function dG : V ×V → R≥0 ∪ {∞} satisfies:
1. Separation: dG(s, t) = 0 ⇐⇒ s = t.
2. Symmetry: dG(s, t) = dG(t, s).
3. Triangle Inequality: For all s, x, t ∈ V,

dG(s, t) ≤ dG(s, x) + dG(x, t).

命題

Proof

Separation and symmetry follow immediately from the definition
of a path (length 0 implies a single vertex; edges are undirected).
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For the triangle inequality, observe that the concatenation of a
shortest path from s to x and a shortest path from x to t forms a
walk from s to t of length dG(s, x) + dG(x, t). By lemma 2.1, this
walk contains a path from s to t of equal or lesser length. Thus, the
shortest path from s to t cannot exceed this sum.

■

Algebraic Counting of Walks

The adjacency matrix AG encodes the existence of edges (paths of
length 1). Its powers generalise this to paths of arbitrary length.

Note

Although the provided source text refers to "trails", standard al-
gebraic graph theory confirms that matrix powers count walks
(sequences where vertices and edges may repeat). We present the
mathematically correct statement here.

Theorem 2.3. Counting Walks.
Let G be a graph with vertex set V = {v1, . . . , vn} and adjacency ma-
trix AG. For any k ∈ N, the number of walks of length k connecting
vi to vj is given by the entry (Ak

G)ij.
定理

We proceed by induction on k.

Base Case (k = 0)

A0
G = In. A walk of length 0 from vi to vj exists if and only if vi =

vj, which corresponds to the identity matrix entries.
証明終

Inductive Step

Assume the property holds for k. A walk of length k + 1 from vi to
vj consists of a walk of length k from vi to some neighbour vℓ, fol-
lowed by the edge {vℓ, vj}. Summing over all possible penultimate
vertices vℓ:

Nk+1(vi, vj) = ∑
vℓ∈V

Nk(vi, vℓ) · (AG)ℓj.

By the inductive hypothesis, Nk(vi, vℓ) = (Ak
G)iℓ. Thus:

Nk+1(vi, vj) =
n

∑
ℓ=1

(Ak
G)iℓ(AG)ℓj = (Ak

G · AG)ij = (Ak+1
G )ij.

証明終

Corollary 2.1. Distance via Matrices. The distance between distinct ver-
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tices vi, vj is the smallest power for which the matrix entry is non-zero:

dG(vi, vj) = min{k ≥ 1 : (Ak
G)ij ̸= 0}.

推論

Weighted Graphs

In many applications, edges are not uniform; they carry costs such as
length, time, or resistance.

Definition 2.4. Weighted Graph.
A weighted graph is a triple (V, E, µ), where µ : E → R>0 is a val-
uation function. The valuation (or weight) of a walk γ = (v0, . . . , vk)

is the sum of its edge weights:

µ(γ) =
k

∑
i=1

µ({vi−1, vi}).

The weighted distance dµ(s, t) is the minimum valuation of any walk
connecting s and t.

定義

Note

If µ(e) = 1 for all e ∈ E, the weighted distance dµ coincides with the
geodesic distance dG.

Dijkstra’s Algorithm

To compute dµ(s, t) efficiently, we employ Dijkstra’s Algorithm. This
greedy method maintains the shortest known distance from a source
s to all other vertices, iteratively "settling" the closest vertex.
Algorithm State: Let s be the source. We maintain two arrays:
· C[v]: The current minimal cost found from s to v. Initially C[s] = 0

and C[v] = ∞ for v ̸= s.
· T[v]: The predecessor of v on the optimal path.
We partition vertices into two sets: Vsettled (distance known) and
Wactive (distance tentative). Initially Vsettled = ∅ and Wactive = V.
Procedure: While Wactive contains a vertex with finite C value: 1.
Select u ∈ Wactive with minimal C[u]. 2. Move u from Wactive to
Vsettled. 3. For each neighbour x of u in Wactive: If the path through u
is shorter (C[u] + µ({u, x}) < C[x]):
· Update C[x]← C[u] + µ({u, x}).
· Update T[x]← u.

0 1

1

1

2

2

2 3

Figure 2.5: The Hypercube Q3

with distances from a source
vertex. Dijkstra’s algorithm
settles vertices in order of in-
creasing distance.

The complexity of this algorithm is O((n + m) log n), making it
highly efficient for sparse graphs. The correctness relies on the non-
negativity of weights: once a vertex u is settled, no shorter path to u
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can be found through more distant vertices.

2.3 Eulerian Tours and Trails

We examine trails and cycles that exhaustively visit the structural
elements of a graph.

Eulerian Graphs

Definition 2.5. Eulerian Definitions.
Let G = (V, E) be a graph.
· An Eulerian tour is a closed trail that traverses every edge of G ex-

actly once (and therefore visits every non-isolated vertex).
· An Eulerian graph is a graph that admits an Eulerian tour.
· An Eulerian trail is a trail that traverses every edge of G exactly once

(not necessarily closed).
· A semi-Eulerian graph is a graph that admits an Eulerian trail.

定義

The existence of such tours is determined by the connectivity and
degree parity of the graph.

Theorem 2.4. Euler’s Theorem.
Let G be a graph of order at least 2. G is Eulerian if and only if it is con-
nected and all its vertices have even degree.

定理

a

b

c

d

e

Tour: (a, b, c, d, e, c, a)
d(c)=4; all others = 2

Figure 2.6: The bowtie graph
is Eulerian: all degrees even,
admitting the tour shown.

( =⇒ )

Let G = (V, E) be Eulerian and let γ = (v0, v1, . . . , vk = v0) be
an Eulerian tour. G is necessarily connected, as the tour visits ev-
ery vertex and the sequence of edges connects any pair of vertices
on the tour. For any vertex v ∈ V, let Ev be the set of edges inci-
dent to v. We classify an edge e ∈ Ev as incoming if it appears in
the sequence as {vi−1, vi} with vi = v, and outgoing if it appears
as {vi, vi+1} with vi = v. The map {vi−1, vi} 7→ {vi, vi+1} (with
the convention that {vk−1, vk} 7→ {v0, v1}) constitutes a bijection
between the incoming and outgoing edges incident to v. Conse-
quently, |Ev| = d(v) must be even.

証明終

(⇐= )

Assume G is connected and every vertex has even degree. Let
γ = (v0, . . . , vk) be a trail in G with no repeated edges and of
maximal length.

Claim 1: γ is closed (vk = v0). Suppose vk ̸= v0. The number of
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edges in γ incident to vk would be odd (one entry, plus pairs of
entry/exit for any previous visits). However, d(vk) is even in G.
Thus, there exists an edge incident to vk not used in γ. Extend-
ing γ by this edge yields a longer trail, contradicting maximality.

Claim 2: γ visits every edge. Suppose there exists an edge
a = {vi, w} not in γ with vi on γ (possible since G is connected).
By Claim 1, γ is closed, so we may cyclically permute it to start
and end at vi:

γ = (vi, vi+1, . . . , vk = v0, v1, . . . , vi−1, vi).

Appending the unused edge yields the trail

γ′ = (vi, vi+1, . . . , vi−1, vi, w),

which contains every edge of γ plus a, hence is strictly
longer—contradicting the maximality of γ.

Claim 3: γ visits every vertex. Since G is connected and γ visits
every edge, any vertex with non-zero degree is visited. If an iso-
lated vertex existed, G would not be connected (unless the order
is 1, which is excluded).

証明終

We extend this characterisation to semi-Eulerian graphs.

Corollary 2.2. Semi-Eulerian Characterisation. A graph G is semi-Eulerian
if and only if it is connected and the number of vertices of odd degree
is 0 or 2.

推論

( =⇒ )

Let γ be an Eulerian trail. G is connected. As shown in the pre-
vious proof, any vertex strictly internal to the trail (not the start
or end) must have even degree. The start and end vertices have
odd degree unless the trail is closed. Thus the count of odd-degree
vertices is 0 (if closed) or 2 (if open).

証明終

(⇐= )

If G has 0 vertices of odd degree, it is Eulerian and thus semi-
Eulerian. Suppose G has exactly two vertices, u and v, of odd
degree. Construct a new graph G′ by adding a vertex s and edges
{u, s} and {v, s}. In G′, u and v now have even degree (degree in-
creased by 1), and s has degree 2. Thus G′ is Eulerian. Let γ′ be
an Eulerian tour of G′. The edges {u, s} and {v, s} must appear
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consecutively in γ′ (as s has degree 2). Removing s and these two
edges breaks the cycle into a trail connecting u and v that covers all
edges of G.

証明終

Hamiltonian Graphs

We define the corresponding concept for vertices.

Definition 2.6. Hamiltonian Definitions.
· A Hamiltonian cycle is a cycle that visits every vertex of the graph

exactly once. Its length is equal to the order n of the graph.
· A Hamiltonian graph is a graph that admits a Hamiltonian cycle.
· A Hamiltonian chain is a chain that visits every vertex of the graph

exactly once.
· A semi-Hamiltonian graph is a graph that admits a Hamiltonian chain.

定義

Unlike the Eulerian case, there is no known simple characterisation
(like "all degrees even") for Hamiltonian graphs. Determining if a
graph is Hamiltonian is an NP-complete problem.

Example 2.2. Contrasting Eulerian and Hamiltonian. Consider the
graph formed by two triangles sharing a vertex (the "butterfly" or
"bowtie" graph).
· Eulerian? Yes. The central vertex has degree 4, and the four outer

vertices have degree 2. Since all degrees are even and the graph is
connected, it is Eulerian.
· Hamiltonian? No. Any cycle must pass through the central ver-

tex. Once it enters one triangle and returns to the center, it cannot
enter the second triangle without visiting the center a second
time, which is forbidden.

Conversely, the complete graph Kn (n ≥ 3) is always Hamiltonian,
but is Eulerian only if n is odd (so degrees n− 1 are even).

範例

c

Figure 2.7: The butterfly
(bowtie) graph: two trian-
gles sharing vertex c. Eulerian
(all degrees even: c has degree
4, others have degree 2), but not
Hamiltonian.

2.4 Exercises

1. Tree Properties.

(a) Let T be a tree with nk vertices of degree k. Prove that the
number of leaves is:

n1 = 2 +
∞

∑
k=3

(k− 2)nk.

(b) Draw all non-isomorphic trees on 6 vertices.
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(c) Prove that the centre of a tree consists of either a single vertex
or two adjacent vertices. (The centre is the set of vertices
minimising the maximum distance to any other vertex).

2. Refined Cayley Practice.

(a) Calculate the number of trees on the vertex set {1, 2, 3, 4, 5, 6}
where degrees are d(1) = 3, d(2) = 3, d(3) = 1, d(4) =

1, d(5) = 1, d(6) = 1.

(b) Verify your answer by listing the possible structures (up to
relabelling vertices with the same degree).

3. Prüfer Encoding.

(a) Find the Prüfer sequence of the path graph Pn−1 on vertices
1, 2, . . . , n in natural order (edges {i, i + 1}).

(b) Find the Prüfer sequence of the star graph K1,n−1 with centre
at vertex n.

(c) Construct the tree corresponding to the sequence (1, 3, 5, 5, 3)
on vertices {1, . . . , 7}.

4. Counting Forests. Let F be a forest on n labelled vertices with
k connected components. Prove that the number of such forests
where vertices 1, 2, . . . , k belong to distinct components is knn−k−1.

Remark.

Generalise the Prüfer argument or use Cayley’s formula on a
slightly modified graph.

5. Spanning Trees.

(a) Calculate the number of spanning trees of the complete bi-
partite graph K2,m.

(b) Let G be the cycle Cn. How many spanning trees does it
have?

(c) ⋆ Let G be the "ladder graph" P2 × Pn. Find a recurrence for
the number of spanning trees.

6. Matrix Tree Theorem Application. The number of spanning trees
of a graph G is any cofactor of its Laplacian matrix L = D− A.

(a) Write down the Laplacian matrix for K4.

(b) Compute a cofactor to verify Cayley’s formula for n = 4
(44−2 = 16).

7. Tree Diameter. Let T be a tree.

(a) Prove that for every k ≥ 1, the intersection of all paths of
length at least k is either empty or a path.
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(b) Prove that if the diameter of T is d, then T has at least d
leaves? (False. Find a counter-example). Correct statement: If
∆(T) ≥ k, T has at least k leaves.

8. ⋆ Double Counting. Let N(n, k) be the number of forests on n
labelled vertices with k edges. Show that:

N(n, k) =
(

n
k + 1

)
(k + 1)nk−1.

Remark.

This generalises Cayley’s formula (case k = n− 1).



3
Trees

In the previous chapter, we explored connectivity as a topological
property: can one navigate between any two vertices? We now refine
this question to ask: what is the minimal structure required to main-
tain connectivity? Conversely, what is the maximal structure one can
build without creating redundant loops?
The answer to both questions lies in the concept of a tree. Trees form
the skeleton of graph theory; they are the simplest connected graphs,
yet they admit a rich set of equivalent characterisations.

3.1 Forests and Trees

We begin by formally excluding the existence of cycles. Recall that
a cycle is a closed walk with no repeated vertices (other than the
start/end).

Definition 3.1. Trees and Forests.
Let G = (V, E) be a graph.
· G is a forest if it is acyclic (contains no cycles).
· G is a tree if it is acyclic and connected.

定義

The connected components of a forest are trees. The absence of cycles
imposes strict constraints on the "ends" of the graph. Forest with 3 trees

Figure 3.1: A forest: an acyclic
graph whose connected compo-
nents are trees.

Definition 3.2. Leaves.
A vertex v is a leaf (or pendant vertex) if d(v) = 1.

定義

Leaf

Leaf

Figure 3.2: A tree of order 5.
The vertices of degree 1 are
leaves.

Every finite tree (with at least one edge) must have an "end". This
topological intuition is formalised via the maximal path argument.

Lemma 3.1. Existence of Leaves.
Let T = (V, E) be a forest with E ̸= ∅. Then T contains at least two
leaves.

引理
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Proof

Consider a path P = (v0, v1, . . . , vk) in T of maximal length. Since
E ̸= ∅, such a path exists with k ≥ 1. We claim v0 and vk are leaves.
Suppose for contradiction that d(v0) > 1. Then v0 has a neighbour
u ̸= v1.
• If u lies on the path (i.e., u = vi for some i > 1), then the edge
{u, v0} completes a cycle (v0, v1, . . . , vi, v0), contradicting the
acyclicity of T.

• If u does not lie on the path, we can extend P to (u, v0, v1, . . . , vk),
creating a path of length k + 1. This contradicts the maximality of
P.

Thus, d(v0) = 1. By symmetry, d(vk) = 1.
■

This lemma provides the engine for inductive proofs on trees: one
can "prune" a leaf to reduce the order of the graph while preserving
the tree structure.

Theorem 3.1. Tree Edges.
Let T = (V, E) be a tree of order n. Then |E| = n− 1.

定理

We proceed by induction on n.

Base Case (n = 1)

A graph with 1 vertex and no cycles must have 0 edges. 0 = 1− 1.
証明終

Inductive Step

Assume the statement holds for all trees of order n − 1. Let T be a
tree of order n ≥ 2. Since T is connected and n ≥ 2, E is non-empty.
By lemma 3.1, T contains a leaf v. Let {u, v} be the unique edge
incident to v. Consider the graph T′ = T − v (removing v and its
incident edge).

Acyclicity: Removing vertices/edges cannot create cycles. T′ is
acyclic.

Connectivity: Since v was a leaf, it was not an internal node of any
path between two other vertices x, y ∈ V \ {v}. Thus T′ remains
connected.

Therefore, T′ is a tree of order n − 1. By the inductive hypothesis,
|E(T′)| = (n− 1)− 1 = n− 2. The edge set of T is E(T′) ∪ {{u, v}},
so |E(T)| = (n− 2) + 1 = n− 1.

証明終
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Corollary 3.1. Degrees in Trees. In any tree of order n ≥ 2, ∑v∈V d(v) =
2n− 2.

推論

Proof

Combine the previous theorem with the theorem 0.1.
■

Characterisations

The definition of a tree (acyclic and connected) is merely one of many
equivalent ways to specify this structure. The following theorem as-
serts that any two of the following properties (connectedness, acyclic-
ity, and size n− 1), imply the third (mostly). Furthermore, trees are
precisely the graphs that are "minimally connected" or "maximally
acyclic".

Theorem 3.2. The Big Theorem on Trees.
Let G = (V, E) be a graph of order n. The following statements are
equivalent:
1. G is a tree (connected and acyclic).
2. For every pair u, v ∈ V, there exists a unique path connecting them.
3. G is connected and |E| = n− 1.
4. G is acyclic and |E| = n− 1.
5. G is connected, but removing any edge renders it disconnected (min-

imally connected).
6. G is acyclic, but adding any edge between non-adjacent vertices cre-

ates a cycle (maximally acyclic).
定理

Proof

We establish the cycle of implications.

(1) =⇒ (2): Connectivity implies existence. For uniqueness, sup-
pose two distinct paths P1, P2 connect u and v. The symmetric
difference of their edge sets must contain a cycle (see lemma 2.1
intuition: diverge at some point x and reconverge at y), contra-
dicting acyclicity.

(2) =⇒ (1): Existence implies connectivity. If G contained a cycle,
any two vertices on that cycle would be connected by at least two
paths (the two arcs of the cycle), contradicting uniqueness. Thus
G is acyclic.

(1) =⇒ (3): Proven in the previous section.

(3) =⇒ (4): Suppose G is connected with n − 1 edges. If G con-
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tained a cycle, we could remove an edge from that cycle with-
out destroying connectivity (the "detour" remains). Repeating
this until G is acyclic yields a tree T with V(T) = V(G) and
E(T) ⊊ E(G). But a tree on n vertices must have n − 1 edges.
Since G already has n − 1 edges, no edges could be removed.
Thus G was already acyclic.

(4) =⇒ (1): Suppose G is acyclic with n − 1 edges. Let k be the
number of connected components G1, . . . , Gk. Each Gi is a tree
of order ni. By the theorem on tree edges, |E(Gi)| = ni − 1.
Summing over components:

|E| =
k

∑
i=1

(ni − 1) =
(
∑ ni

)
− k = n− k.

Given |E| = n− 1, we have n− k = n− 1 =⇒ k = 1. Thus G is
connected.

(1) =⇒ (5): G is connected. Let e = {u, v}. Since G is acyclic, there
is no path between u and v other than the edge e itself (other-
wise e plus that path would form a cycle). Removing e eliminates
the only path between u and v, disconnecting them.

(5) =⇒ (1): G is connected. If G had a cycle, removing an edge
from that cycle would preserve connectivity. Since removing any
edge disconnects G, no cycles can exist.

(1) =⇒ (6): G is acyclic. Let u, v be non-adjacent. Since G is con-
nected, there is a path P between them. Adding e = {u, v} closes
this path into a cycle.

(6) =⇒ (1): G is acyclic. Suppose G is disconnected. Let u, v be
in different components. Adding e = {u, v} connects two com-
ponents but cannot create a cycle (a cycle requires entering and
leaving a component, implying two edges crossed the gap). This
contradicts (6). Thus G is connected.

■

u v

Path P

e

Adding e creates cycle P ∪ {e}

Figure 3.3: The Maximally
Acyclic property (6). If a unique
path exists between u and v,
adding an edge closes the loop.

Isomorphism with Linear Algebra

The behaviour of trees is strikingly similar to the behaviour of bases
in vector spaces. This is not a coincidence; it is the foundation of
algebraic graph theory and matroid theory.
Recall that for a vector space W of dimension n, a set of vectors B is
a basis if and only if it generates W and is linearly independent. The
parallels are exact:
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Vector Space Graph Theory

Vector Space W Complete Graph Kn

Vector v Edge e
Linear Independence Acyclic (Forest)
Generating / Spanning Connected
Basis Spanning Tree
Dimension n Spanning tree has n− 1 edges

Table 3.1: Structural analogy
between Linear Algebra and
Graph Theory.

Remark.

Compare theorem 3.2 with the standard characterisation of a basis B
in a vector space of dimension n:
• B is a basis (Independent + Generating).
• Every vector has a unique representation as a linear combination

of B.
• B is generating and |B| = n.
• B is independent and |B| = n.
• B is minimally generating (removing any vector destroys the

span).
• B is maximally independent (adding any vector creates a depen-

dency).
The graph theoretic "dimension" of a connected graph on n vertices
is n− 1.

Spanning Trees

The correspondence above suggests that every connected graph con-
tains a tree that "spans" the vertices.

Definition 3.3. Spanning Tree.
Let G = (V, E) be a connected graph. A subgraph T = (V, E′) is a
spanning tree of G if T is a tree and E′ ⊆ E.

定義

Proposition 3.1. Existence of Spanning Trees.
Every connected graph G contains a spanning tree.

命題

Proof

If G is acyclic, G itself is a tree. If G contains a cycle, remove an
edge from that cycle. The graph remains connected. Repeat this
process until no cycles remain. The resulting subgraph is con-
nected, acyclic, and contains all vertices of G, hence it is a spanning
tree.

■

a b

cd

Spanning
tree

Extra
edges

Figure 3.4: A graph G with 5

edges. The spanning tree (solid)
has n − 1 = 3 edges; the 2

dashed edges form the funda-
mental cycles.
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This leads to a numerical invariant for graphs, similar to the dimen-
sion of the null space.

Definition 3.4. Cyclomatic Number.
Let G = (V, E) be a connected graph with n vertices and m edges. The
cyclomatic number (or cycle rank) is:

ν(G) = m− n + 1.

This integer counts the number of "fundamental cycles" in G. Relative
to any spanning tree T, adding one of the ν(G) edges in E \E(T) cre-
ates exactly one unique cycle.

定義

3.2 Enumeration of Trees

Having characterised the structure of trees, we turn to the problem
of enumeration. Specifically, we seek to determine the number of
distinct trees that can be formed on a fixed set of n labelled vertices,
say V = [1, n]. We denote this quantity by t(n).
For small values of n, direct enumeration yields:
· n = 1: 1 tree (single vertex).
· n = 2: 1 tree (edge {1, 2}).
· n = 3: 3 trees (path 1− 2− 3, 2− 1− 3, or 1− 3− 2; central vertex

determines the tree).
· n = 4: 16 trees.
The sequence suggests the closed form nn−2, a result famously at-
tributed to Cayley.

Theorem 3.3. Cayley’s Formula.
For any integer n ≥ 1, the number of distinct trees on the vertex set
[1, n] is:

t(n) = nn−2.

定理

A direct inductive proof of this formula is difficult because remov-
ing a vertex from a tree usually results in a forest, complicating the
recurrence. Instead, we prove a stronger result that accounts for the
specific degrees of the vertices. This allows us to control the structure
during the inductive step by "pruning" leaves.

Trees with Fixed Degrees

Let D = (d1, . . . , dn) be a sequence of positive integers. We denote by
t(d1, . . . , dn) the number of trees on the vertex set [1, n] such that the
degree of vertex i is exactly di.
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A necessary condition for such trees to exist is given by the Hand-
shaking Lemma (theorem 0.1) and the edge count of trees (theo-
rem 3.2):

n

∑
i=1

di = 2|E| = 2(n− 1).

Theorem 3.4. Refined Cayley Formula.
Let n ≥ 2 and let d1, . . . , dn be positive integers such that ∑n

i=1 di =

2n− 2. The number of trees on [1, n] with degree sequence (d1, . . . , dn)

is given by the multinomial coefficient:

t(d1, . . . , dn) =
(n− 2)!

(d1 − 1)!(d2 − 1)! . . . (dn − 1)!
.

定理

We proceed by induction on n.

Base Case (n = 2)

The condition ∑ di = 2(2) − 2 = 2 with di ≥ 1 implies d1 = 1 and
d2 = 1. There is exactly one tree on two vertices (the single edge).
The formula yields 0!

0!0! = 1. The base case holds.
証明終

Inductive Step

Assume the formula holds for all sequences of length n − 1 sum-
ming to 2(n − 1) − 2. Consider a sequence (d1, . . . , dn) summing
to 2n − 2. By corollary 3.1, any tree with this degree sequence must
have at least two leaves. Thus, at least one di must be equal to 1.
Without loss of generality (by reordering if necessary), assume
dn = 1.
In any tree realising this sequence, vertex n is a leaf. Let j be the
unique neighbour of n. Since n is connected to j, removing n yields
a tree on the vertex set [1, n − 1]. In this smaller tree T′, the degrees
are:

d′k =

dk if k ̸= j,

dj − 1 if k = j.

Note that dj ≥ 1, and if dj = 1, vertex j would be a leaf in the orig-
inal tree connected only to n, implying n = 2 (which is covered by
the base case). For n > 2, if dj = 1, j becomes an isolated vertex in
T′, which is impossible for a tree. Thus dj ≥ 2 implies d′j ≥ 1. The
sum of degrees in T′ is:

n−1

∑
k=1

d′k =

(
n

∑
k=1

dk

)
− dn − 1 = (2n− 2)− 1− 1 = 2(n− 1)− 2.

Thus, the inductive hypothesis applies to T′.
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The set of trees with degrees (d1, . . . , dn) can be partitioned based
on the neighbour j of the leaf n. The possible values for j are in-
dices k ∈ [1, n − 1] such that dk ≥ 2 (since dk − 1 must be valid).
However, if dk = 1, the term (dk − 2)! in the denominator would
be undefined (or effectively zero contribution), so we may formally
sum over all j ∈ [1, n− 1]. Using the addition principle:

t(d1, . . . , dn) =
n−1

∑
j=1

t(d1, . . . , dj − 1, . . . , dn−1).

Substituting the inductive formula:

t(d1, . . . , dn) =
n−1

∑
j=1

(n− 3)!
(d1 − 1)! . . . (dj − 2)! . . . (dn−1 − 1)!

=
(n− 3)!

∏n−1
k=1 (dk − 1)!

n−1

∑
j=1

(dj − 1).

We compute the sum in the final term:

n−1

∑
j=1

(dj − 1) =

(
n−1

∑
j=1

dj

)
− (n− 1).

Since ∑n
i=1 di = 2n− 2 and dn = 1, we have ∑n−1

j=1 dj = 2n− 3.

n−1

∑
j=1

(dj − 1) = (2n− 3)− (n− 1) = n− 2.

Substituting back:

t(d1, . . . , dn) =
(n− 3)!

∏n−1
k=1 (dk − 1)!

· (n− 2) =
(n− 2)!

∏n−1
k=1 (dk − 1)!

.

Since dn = 1, (dn − 1)! = 0! = 1. We may include it in the denomi-
nator to recover the symmetric form:

t(d1, . . . , dn) =
(n− 2)!

(d1 − 1)! . . . (dn − 1)!
.

証明終

Recovering Cayley’s Formula

To find the total number of trees t(n), we sum t(d1, . . . , dn) over all
valid degree sequences. This summation is handled elegantly by the
Multinomial Theorem.
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Lemma 3.2. Multinomial Theorem.
For any integer m ≥ 0 and variables x1, . . . , xk:

(x1 + · · ·+ xk)
m = ∑

a1+···+ak=m
ai≥0

m!
a1! . . . ak!

xa1
1 . . . xak

k .

引理

Proof

Consider the expansion of the product:

(x1 + · · ·+ xk) · (x1 + · · ·+ xk) . . . (x1 + · · ·+ xk)︸ ︷︷ ︸
m factors

.

To form a term in the product, we must select exactly one variable
xj from each of the m factors. Suppose we select x1 exactly a1 times,
x2 exactly a2 times, . . . , and xk exactly ak times. Since we make ex-
actly m selections in total, we must have ∑k

i=1 ai = m, where each
ai ≥ 0. The resulting term is the product xa1

1 xa2
2 . . . xak

k .
The coefficient of this term corresponds to the number of ways to
assign these specific counts to the m distinct positions (factors).
This is equivalent to partitioning the set of m positions into k dis-
joint subsets of sizes a1, a2, . . . , ak. The number of such partitions is
given by the multinomial coefficient:(

m
a1, a2, . . . , ak

)
=

m!
a1!a2! . . . ak!

.

Summing over all possible non-negative integer solutions to
a1 + · · ·+ ak = m yields the full expansion.

■

Proof of Cayley’s Formula

The total number of trees is the sum of t(d1, . . . , dn) over all tuples
(d1, . . . , dn) satisfying di ≥ 1 and ∑ di = 2n− 2. Let ki = di − 1. The
conditions transform to ki ≥ 0 and:

n

∑
i=1

ki =
n

∑
i=1

di −
n

∑
i=1

1 = (2n− 2)− n = n− 2.

Using theorem 3.4:

t(n) = ∑
k1+···+kn=n−2

ki≥0

(n− 2)!
k1! . . . kn!

.

This is precisely the coefficient expansion of the Multinomial Theo-
rem (lemma 3.2) with m = n− 2 and x1 = x2 = · · · = xn = 1:

t(n) = (1 + 1 + · · ·+ 1)n−2 = nn−2.
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■

3.3 Prüfer Sequences

There exists a more direct method to encode any tree on [1, n] as
a sequence of length n − 2 with elements in [1, n]. This encoding,
known as the Prüfer sequence, provides a constructive proof of
Cayley’s Formula.

Definition 3.5. Prüfer Sequence Construction.
Let T be a tree on vertices [1, n] with n ≥ 2. We generate a sequence
P = (p1, . . . , pn−2) iteratively:
1. Find the leaf with the smallest label. Let this be u.
2. Let v be the unique neighbour of u.
3. Record v as the next element in the sequence.
4. Remove u from the tree.
5. Repeat this process n− 2 times.
The resulting sequence of length n− 2 is the Prüfer sequence of T. If
n = 2, the sequence is empty.

定義

Example 3.1. Calculating a Prüfer Sequence. Consider a tree on
{1, 2, 3, 4, 5, 6} with edges:

E = {{1, 4}, {2, 4}, {3, 4}, {4, 5}, {5, 6}}.

1. Leaves are {1, 2, 3, 6}. Smallest is 1. Neighbour is 4. Sequence:
(4). Remove 1.

2. Leaves are {2, 3, 6}. Smallest is 2. Neighbour is 4. Sequence:
(4, 4). Remove 2.

3. Leaves are {3, 6}. Smallest is 3. Neighbour is 4. Sequence:
(4, 4, 4). Remove 3.

4. Leaves are {4, 6}. Smallest is 4. Neighbour is 5. Sequence:
(4, 4, 4, 5). Remove 4.

5. Remaining edge is {5, 6}. Stop.
The sequence is (4, 4, 4, 5).

範例

1

2

3

4 5 6

Figure 3.5: The tree from
the Prüfer example. Vertex
4 appears thrice in the se-
quence (4, 4, 4, 5), indicating
d(4) = 1 + 3 = 4.

The fundamental utility of this encoding lies in its relationship with
vertex degrees.

Claim 3.1. Degree Property. Let T be a tree on [1, n] with Prüfer se-
quence P.
For any vertex v, the degree d(v) in T is equal to 1+(number of occurrences of v in P).
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主張

Proof

We proceed by induction on n. For n = 2, the sequence is empty.
Both vertices have degree 1, and 1 + 0 = 1. For n ≥ 3, let u be the
smallest leaf removed in the first step, and let v be its neighbour.
The sequence P begins with v, followed by the Prüfer sequence P′

of the tree T′ = T − u.

For u: Since u is a leaf, d(u) = 1. Since u was removed, it never ap-
pears as a neighbour of a subsequently removed leaf. Thus u
appears 0 times in P. 1 + 0 = 1.

For x ̸= u, v: The degree of x is unchanged in T′. By the induc-
tive hypothesis, dT′(x) = 1 + (count in P′). Thus dT(x) =

1 + (count in P).

For v: dT(v) = dT′(v) + 1. By induction, dT′(v) = 1 + (count in P′).
Thus dT(v) = 1 + ((count in P′) + 1) = 1 + (count in P).

■

This property allows us to establish the bijection.

Theorem 3.5. Prüfer Bijection.
For n ≥ 2, the mapping T 7→ P(T) is a bijection between the set of
trees on [1, n] and the set of sequences of length n− 2 with elements
in [1, n].

定理

Proof

Injectivity: Let T1, T2 be distinct trees. If their degree sequences
differ, their Prüfer sequences differ (by claim 3.1). If their degree
sequences are identical, they share the same set of leaves. Let u
be the smallest leaf. If u has different neighbours in T1 and T2,
the first term of the sequences differs. If u has the same neigh-
bour v, we remove u to get T′1, T′2. Since T1 ̸= T2, we must have
T′1 ̸= T′2 (otherwise adding edge {u, v} would yield identical
trees). By induction, P(T′1) ̸= P(T′2), so P(T1) ̸= P(T2).

Surjectivity: Let S = (s1, . . . , sn−2) be a sequence. We reconstruct
T. Let L be the set of labels [1, n]. At step i (from 1 to n − 2), let u
be the smallest element in the current set of available labels that
does not appear in the remaining sequence suffix (si, . . . , sn−2).
Add edge {u, si} and remove u from the available labels. After
n − 2 steps, exactly two labels remain. Join them with an edge.
This process constructs a tree whose Prüfer sequence is S.
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■

Since there are nn−2 such sequences, this confirms Cayley’s Formula.
Moreover, counting sequences where specific numbers appear spe-
cific times recovers Refined Cayley Formula.

Otter’s Formula

Throughout this chapter, we have counted labelled trees, where the
identity of the vertices matters. If we consider trees up to isomor-
phism (ignoring labels), the problem becomes significantly harder.
For n = 4, there are 16 labelled trees but only 2 isomorphism classes:
the path P3 and the star K1,3. Let t̃(n) denote the number of unla-
belled trees on n vertices. The sequence begins 1, 1, 1, 2, 3, 6, 11, 23, . . .
and has no simple closed form. However, its asymptotic behaviour is
known.

Theorem 3.6. Otter’s Formula (1948).
The number of unlabelled trees on n vertices satisfies:

t̃(n) ∼ β · αn · n−5/2,

where α ≈ 2.95576 and β ≈ 0.53494.
定理

3.4 Exercises

1. Small Trees.

(a) Draw two non-isomorphic trees on 4 vertices. For each, verify
that |E| = 4− 1 = 3.

(b) Draw a tree on 6 vertices and identify all its leaves.

2. Forests. Let F be a forest with k connected components and n
vertices. Prove that |E(F)| = n− k.

Remark.

Sum the edge counts of each tree component.

3. Leaves.

(a) Prove directly (using a longest path argument) that every tree
with at least one edge has at least two leaves.

(b) Construct a tree on n ≥ 3 vertices with exactly 2 leaves.
Construct one with n− 1 leaves.

4. Pruning. Let T be a tree and v a leaf. Prove that T− v is a tree.

5. Inductive Proofs.

(a) Prove by induction on n that |E(T)| = n − 1 for any tree of
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order n.

(b) Prove that ∑v∈V d(v) = 2n− 2 for any tree of order n ≥ 2.

6. Characterisations. Let G be a connected graph with no cycles.

(a) Prove that between any two vertices, there is a unique path.

(b) Show that adding any edge between non-adjacent vertices
creates exactly one cycle.

7. Spanning Trees.

(a) Prove that every connected graph contains a spanning tree by
repeatedly deleting cyclic edges.

(b) Let G be connected with n vertices and m edges. Let T be a
spanning tree. Show that |E(G) \ E(T)| = m − n + 1 (the
cyclomatic number).

8. Refined Cayley Formula.

(a) Use the formula to find the number of trees on {1, . . . , 5}
with degrees (3, 2, 1, 1, 1).

(b) How many trees on {1, . . . , n} are stars (one vertex of degree
n− 1, others degree 1)? Verify using the formula.

9. Prüfer Sequences.

(a) Compute the Prüfer sequence for the path 1− 2− 3− 4− 5−
6.

(b) Compute the Prüfer sequence for the star K1,5 with centre 1.

(c) Decode the sequence (1, 1, 1, 1) on vertices {1, . . . , 6}.

(d) Decode the sequence (2, 3, 2, 3) on vertices {1, . . . , 6}.

10. Leaves via Prüfer. Prove that the leaves of a tree T are exactly the
labels from {1, . . . , n} that do not appear in its Prüfer sequence.
Deduce that every tree (n ≥ 2) has at least two leaves.

11. ⋆ Direct Counting. Use the property of Prüfer sequences (label
i appears di − 1 times) to derive the Refined Cayley Formula
directly from the number of permutations of a multiset.

12. Unlabelled Trees. List all non-isomorphic trees on n = 5 vertices.
Compare the count (3) with the number of labelled trees (53 =

125).
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Colouring

In the chapter on Extremal Graph Theory, we introduced the concept
of an ??. We now generalise this notion by asking whether the vertex
set of a graph can be partitioned entirely into independent sets. This
process, known as colouring, assigns labels to vertices such that
adjacent vertices receive distinct labels.
This framework models problems of resource allocation and conflict
resolution, but mathematically, it provides a rigorous way to classify
graphs based on their local structural constraints.

4.1 Vertex Colouring

Definition 4.1. Colouring and Chromatic Number.
Let G = (V, E) be a graph and C be a set of labels, called colours. A
function f : V → C is a proper colouring if for every edge {u, v} ∈
E, we have f (u) ̸= f (v). The chromatic number of G, denoted χ(G),
is the minimum cardinality of C such that a proper colouring exists.
If χ(G) ≤ k, we say G is k-colourable.

定義

Note

If f is a proper colouring with k colours, the preimages f−1(c) for
each c ∈ C form a partition of V into k independent sets, often
called colour classes.

We immediately observe the values for standard families defined in
previous chapters.

Proposition 4.1. Elementary Chromatic Numbers.
1. χ(G) = 1 if and only if E = ∅ (i.e., G is an independent set).
2. χ(Kn) = n. Since every vertex is adjacent to every other, no two

can share a colour.
3. For the path graph Pn (n ≥ 2), χ(Pn) = 2.



48 gudfit

4. For the cycle graph Cn:

χ(Cn) =

2 if n is even,

3 if n is odd.

5. For the hypercube Qd, χ(Qd) = 2. Vertices can be coloured by the
parity of their Hamming weight.

命題

C4: χ = 2

C5: χ = 3

Figure 4.1: Cycle colouring.
C4 alternates two colours. C5

requires a third colour (gray) to
close the cycle without conflict.

The Greedy Algorithm

Determining χ(G) is generally NP-hard. However, we can obtain
upper bounds via a constructive approach known as the Greedy
Algorithm. This method orders the vertices and assigns the smallest
available colour index to each.
Algorithm: Let V = {v1, . . . , vn} be an ordering of the vertices. We
map f : V → Z+. For i = 1 to n:
1. Identify the set of colours used by the neighbours of vi that pre-

cede it in the ordering:

Ci = { f (vj) : {vi, vj} ∈ E and j < i}.

2. Assign f (vi) = min{c ∈ Z+ : c /∈ Ci}.
The efficiency of this algorithm depends heavily on the chosen vertex
ordering. While there exists an ordering that produces exactly χ(G)

colours, finding it is difficult. However, the worst-case performance
provides a fundamental bound based on the maximum degree ∆(G).

Theorem 4.1. The Greedy Bound.
For any graph G,

χ(G) ≤ ∆(G) + 1.

定理

Proof

Let vertices be ordered arbitrarily as v1, . . . , vn. When the algo-
rithm considers vertex vi, it examines its neighbours. The number
of neighbours preceding vi is at most the total degree d(vi), which
is bounded by ∆(G). Thus, the set of forbidden colours Ci has size
|Ci| ≤ ∆(G). The set {1, . . . , ∆(G) + 1} contains more elements than
Ci, guaranteeing that at least one colour in this range is available
for vi.

■
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4.2 Bipartite Graphs

The class of graphs with χ(G) ≤ 2 merits special attention. These are
the bipartite graphs.

Definition 4.2. Bipartite Graph.
A graph G = (V, E) is bipartite if it is 2-colourable. Equivalently, V
admits a partition V = A⊔B such that every edge has one endpoint
in A and one in B. The sets A and B are the parts of the bipartition.

定義

Examples include the complete bipartite graph Kn,m (defined in Ex-
tremal Graph Theory), the hypercubes Qd, and all trees.

Characterisation by Cycles

A triangle (K3 or C3) requires 3 colours. Intuitively, any odd cycle
creates a parity conflict that prevents 2-colouring. It turns out this is
the only obstruction.

Theorem 4.2. Bipartite Characterisation.
A graph G is bipartite if and only if it contains no cycle of odd length.

定理

( =⇒ )

Let G be bipartite with partition V = A ⊔ B. Consider a cycle C =

(v0, v1, . . . , vk = v0). Without loss of generality, let v0 ∈ A. Since
edges only connect distinct parts, v1 ∈ B, v2 ∈ A, and by induction,
vi ∈ A if i is even, and vi ∈ B if i is odd. For the cycle to close at
vk = v0 ∈ A, the index k must be even. Thus, the length of the cycle
is even.

証明終

(⇐= )

Assume G contains no odd cycles. It suffices to consider a single
connected component (as G is bipartite if and only if all compo-
nents are). Fix a base vertex s ∈ V. We partition V based on the
parity of path lengths from s. Define:

X = {v ∈ V : ∃ a path between s and v of even length},
Y = {v ∈ V : ∃ a path between s and v of odd length}.

Since G is connected, V = X ∪ Y. We must show that X ∩ Y = ∅
and that no edges exist within X or within Y.
Suppose v ∈ X ∩ Y. Then there exists an even path Peven from s
to v and an odd path Podd from s to v. The concatenation of Peven
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and the reversal of Podd forms a closed walk starting and ending
at s with length equal to the sum of an even and an odd integer,
which is odd. From the chapter on Connectivity, we know a closed
walk reduces to a set of cycles. If a closed walk has odd length, it
must contain at least one cycle of odd length (since a sum of even
integers is even). This contradicts the hypothesis. Thus X ∩ Y = ∅,
and V = X ⊔Y is a valid partition.
Finally, consider an edge {u, v} ∈ E. If u ∈ X, there is an even path
from s to u. Extending this path to v yields a walk of odd length,
so v ∈ Y (and specifically v /∈ X by the disjointness proved above).
Similarly, if u ∈ Y, then v ∈ X. Thus, edges only connect X and Y,
making G bipartite.

証明終

X

Y

Figure 4.2: A bipartite graph
with 2-colouring. Filled vertices
form one colour class X, hollow
vertices form Y. All edges con-
nect distinct classes.

This theorem provides an efficient algorithm for checking bipartite-
ness: perform a Breadth-First Search (BFS). If we encounter an edge
between two vertices at the same layer (distance from root), an odd
cycle exists, and the graph is not bipartite. Otherwise, the layers form
the sets X and Y.

4.3 Matchings

We now consider the dual problem: selecting a subset of edges such
that no two share a vertex. This concept, known as a matching, mod-
els pairings in a population, such as job assignments or chemical
bonding.

Definition 4.3. Matching.
Let G = (V, E) be a graph. A subset M ⊆ E is a matching if no two
edges in M share a common vertex. A vertex v ∈ V is saturated by
M if it is an endpoint of some edge in M; otherwise, it is unsaturated.
A matching is perfect if it saturates every vertex in V.

定義

Example 4.1. Matchings in Complete Structures.
1. Complete Bipartite Graph Kn,n: Let the partition be X ⊔ Y with
|X| = |Y| = n. A perfect matching corresponds to a bijection
σ : X → Y. Thus, Kn,n admits n! distinct perfect matchings.

2. Complete Graph K2n+1: Since the order is odd, no matching can
saturate all vertices. A perfect matching is impossible.

3. Complete Graph K2n: We construct a perfect matching by choos-
ing a partner for the first vertex (2n − 1 choices), then a partner
for the next available vertex (2n − 3 choices), and so on. The
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number of perfect matchings is the double factorial:

(2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1 =
(2n)!
2nn!

.

範例

|M| = 2

|M| = 3

Figure 4.3: Two matchings on
P6. Top: maximal (no edge can
be added) but not maximum.
Bottom: maximum (perfect)
matching.

Maximality and Augmentation

We distinguish between two notions of "largest" matchings.

Definition 4.4. Maximal vs Maximum.
· A matching M is maximal if no edge can be added to it without vi-

olating the matching property (i.e., it is not a proper subset of another
matching).
· A matching M is maximum if it has the largest possible cardinality

among all matchings in G.
定義

Clearly, every maximum matching is maximal, but the converse is
false. To systematically improve a matching, we look for paths that
alternate between being "in" and "out" of the matching.

Definition 4.5. Alternating and Augmenting Paths.
Let M be a matching in G. An alternating path is a path in G whose
edges alternate between E \M and M. An augmenting path is an al-
ternating path that starts and ends at distinct unsaturated vertices.

定義

If an augmenting path P exists, we can swap the edges along P: those
in M leave the matching, and those not in M enter it. Since P starts
and ends with edges not in M, the new set M′ = M ⊕ E(P) is a
valid matching with |M′| = |M| + 1. This observation is the "easy"
direction of Berge’s Theorem.

Theorem 4.3. Berge’s Theorem (1957).
A matching M in G is maximum if and only if G contains no augment-
ing path with respect to M.

定理

( =⇒ )

Suppose G contains an augmenting path P. As described above, the
symmetric difference M′ = M⊕ E(P) is a matching with cardinality
|M|+ 1. Thus M was not maximum.

証明終

(⇐= )

We prove the contrapositive. Suppose M is not maximum. Let M∗
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be a maximum matching, so |M∗| > |M|. Consider the graph
H = (V, M ⊕ M∗) induced by the symmetric difference of the edge
sets. The maximum degree in H is 2, since every vertex is incident
to at most one edge from M and one edge from M∗. Consequently,
the connected components of H are either isolated vertices, paths,
or cycles.

Cycles: Must be of even length, alternating between M and M∗.
They contain an equal number of edges from both sets.

Paths: Must alternate between M and M∗.

Since |M∗| > |M|, there must be at least one component in H
with strictly more edges from M∗ than from M. Cycles have equal
counts, so this component must be a path P. For P to have more
M∗ edges than M edges, it must start and end with an edge from
M∗. This implies the endpoints of P are saturated by M∗ but not by
M (in the context of H, and thus in G relative to M). Therefore, P is
an augmenting path for M.

証明終

unsat unsat

|P \M| = |P ∩M|+ 1

Figure 4.4: An augmenting
path. Solid edges are in M,
dashed edges are not. Hollow
vertices are unsaturated. Swap-
ping edge membership yields
|M|+ 1.

Hall’s Marriage Theorem

For bipartite graphs, the existence of specific matchings is governed
by neighbour sets. Let G = (A ⊔ B, E) be bipartite. For a subset
U ⊆ A, let N(U) denote the set of neighbours of vertices in U. If a
matching saturates A, then every vertex in A is mapped to a distinct
vertex in B. A necessary condition is therefore |N(U)| ≥ |U| for all
subsets U ⊆ A. Hall proved this is also sufficient.

Theorem 4.4. Hall’s Marriage Theorem (1935).
Let G = (A⊔B, E) be a bipartite graph. There exists a matching that
saturates A if and only if:

∀U ⊆ A, |N(U)| ≥ |U|.

定理

Proof

The condition is clearly necessary. We prove sufficiency by con-
tradiction. Assume the condition holds (|N(U)| ≥ |U| for all U),
but G admits no matching saturating A. Let M be a maximum
matching. By assumption, M does not saturate A, so there exists an
unsaturated vertex s ∈ A.
We construct the set of vertices reachable from s via alternating
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paths. Let:

Z = {v ∈ V : ∃ an alternating path from s to v}.

Let U = Z ∩ A and V = Z ∩ B. Note that s ∈ U.

Claim 1: N(U) ⊆ V. Let u ∈ U and v ∈ N(u). If {u, v} ∈ M, then v
lies on the alternating path to u, so v ∈ Z ∩ B = V. If {u, v} /∈ M,
then extending the alternating path ending at u (which must
end with an edge in M or be s) by the edge {u, v} creates a valid
alternating path to v. Thus v ∈ V.

Claim 2: V is matched into U \ {s}. Let v ∈ V. Since v is reachable
from s by an alternating path starting with a non-matching edge,
the path enters v via a non-matching edge. If v were unsatu-
rated, the path from s to v would be augmenting, contradicting
the maximality of M (by Berge’s Theorem). Thus, v must be sat-
urated by some edge e ∈ M. Let e = {v, u′}. The path can be
extended through e to u′, so u′ ∈ Z ∩ A = U. Moreover u′ ̸= s
since s is unsaturated. This defines a bijection between V and a
subset of U \ {s} formed by the edges of M.

From Claim 2, we have |V| = |U \ {s}| = |U| − 1. From Claim 1, we
have N(U) ⊆ V, so |N(U)| ≤ |V|. Combining these:

|N(U)| ≤ |U| − 1 < |U|.

This contradicts the Hall condition for the set U. Thus, a matching
saturating A must exist.

■

Corollary 4.1. Regular Bipartite Graphs. For k > 0, every k-regular bi-
partite graph admits a perfect matching.

推論

Proof

Let G = (A ⊔ B, E) be k-regular. First, we show |A| = |B|. Counting
edges via A: |E| = ∑v∈A d(v) = k|A|. Counting edges via B: |E| =
∑v∈B d(v) = k|B|. Thus k|A| = k|B| =⇒ |A| = |B|. A matching
saturating A will therefore be perfect.
We check Hall’s condition. Let U ⊆ A. Let EU be the set of edges
incident to U. Since degrees are k, |EU | = k|U|. These edges must
be incident to N(U). The sum of degrees in N(U) is k|N(U)|. Since
all edges in EU land in N(U), we must have:

|EU | ≤ ∑
v∈N(U)

d(v) = k|N(U)|.
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Substituting |EU | = k|U|:

k|U| ≤ k|N(U)| =⇒ |U| ≤ |N(U)|.

By Hall’s Theorem, a perfect matching exists.
■

A B
U N(U)

|U| = 2 ≤ 3 = |N(U)|

Figure 4.5: Hall’s condition:
for U = {a1, a2} ⊆ A, the
neighbourhood N(U) has
|N(U)| ≥ |U|.

4.4 Exercises

1. Subgraph Monotonicity. Let G be a graph and H be a subgraph
of G. Prove that χ(H) ≤ χ(G).

Remark.

Any valid colouring of G induces a valid colouring of H.

2. Clique Lower Bound. Prove that if a graph G contains a clique of
size r (a subgraph isomorphic to Kr), then χ(G) ≥ r.

3. Critical Graphs. A graph G is called k-critical if χ(G) = k, but
for every proper subgraph H ⊂ G, χ(H) < k. Using the logic of
the Greedy Bound, prove that if G is k-critical, then the minimum
degree of G satisfies δ(G) ≥ k− 1.

Remark.

Suppose there is a vertex v with degree < k − 1. Consider the
graph G− v.

4. Greedy Algorithm Trace. Draw a graph with 6 vertices (e.g.,
a cycle with a chord). Apply the Greedy Algorithm using two
different vertex orderings. Do they result in the same number of
colours?

5. Ordering Sensitivity. Construct a specific example of a graph and
two different vertex orderings such that the Greedy Algorithm
uses a different number of colours for each ordering.

Remark.

Consider a path of length 3 (P3) or a bipartite graph like P4 with
orderings 1, 2, 3, 4 vs 1, 3, 2, 4.

6. Parity Constraint. Prove that if a graph G has a perfect matching,
then the number of vertices |V(G)| must be even.

7. Failing Hall’s Condition. Construct a bipartite graph G = (A ⊔
B, E) with |A| = |B| = 4 that has no perfect matching. Explicitly
identify a subset U ⊆ A that violates Hall’s condition (i.e., show a
set U where |N(U)| < |U|).



(almost all) the graph theory you need 55

8. Necessity of Hall’s Condition. Write a formal argument explain-
ing why a matching that saturates A cannot exist if there is a
subset U ⊆ A with |N(U)| < |U|.

Remark.

This is the pigeonhole principle applied to the edges of the
matching incident to U.



5
Planarity

Until now, we have treated graphs as abstract structures defined
solely by vertex adjacency. However, many practical applications
(such as printed circuit board design or cartography), require real-
ising these structures in physical space. We now investigate graphs
that can be drawn on a 2-dimensional surface without edges crossing.
This chapter bridges combinatorics and topology. While a rigorous
treatment requires the Jordan Curve Theorem (a deep result in topol-
ogy), we will proceed with a level of formality appropriate for alge-
braic graph theory, accepting the topological foundations as intuitive
axioms.

5.1 Plane Drawings

Definition 5.1. Planar Graphs.
A plane drawing (or embedding) of a graph G is a representation in
R2 where:
· Vertices are distinct points.
· Edges are simple continuous curves (arcs) connecting their endpoints.
· The intersection of any two distinct edges is empty, except possibly

at their endpoints.
A graph is planar if it admits a plane drawing.

定義

To formalise the notion of a "curve", one technically relies on continu-
ous injective functions γ : [0, 1] → R2. A Jordan curve is such a curve
that is closed (γ(0) = γ(1)). The fundamental property governing
plane graphs is:

Theorem 5.1. Jordan Curve Theorem.
Every Jordan curve C in the plane partitions R2 \ C into two disjoint
connected open sets: the interior (which is bounded) and the exterior
(which is unbounded). The curve C is the boundary of both.

定理



(almost all) the graph theory you need 57

Consequently, any edge connecting a vertex in the interior to a vertex
in the exterior must intersect the boundary curve.

Faces

A plane drawing partitions the plane into disjoint connected regions
called faces.

Definition 5.2. Faces.
Let G be a plane graph. The connected components of R2 \G are called
faces. We denote the set of faces by F. There is exactly one unbounded
face, called the external face.

定義

The boundary of a face consists of a sequence of edges and vertices.
If the graph is connected, this boundary corresponds to a closed walk
in G.

Lemma 5.1. Edge-Face Incidence.
Let e be an edge in a plane graph.
· If e belongs to a cycle, it separates two distinct faces.
· If e does not belong to a cycle (i.e., it is a bridge), it lies within a sin-

gle face (the "slit" in the region).
引理

fext

f1

f2 f3

Figure 5.1: A plane embed-
ding of K4. It has 4 faces (3
internal bounded, 1 external
unbounded). This structure
corresponds to the projection of
a tetrahedron.

5.2 Euler’s Formula

The fundamental invariant of planar graphs connects the number of
vertices (n), edges (m), and faces ( f ). This relation was first observed
for polyhedra.

Lemma 5.2. Trees in the Plane.
Every tree is a planar graph. Any plane drawing of a tree has exactly
one face (the external face).

引理

Theorem 5.2. Euler’s Formula.
Let G be a connected planar graph with n vertices, m edges, and f faces.
Then:

n−m + f = 2.

定理

We proceed by induction on the number of edges m.

Base Case (m = 0):

The graph consists of a single vertex (n = 1). There is one face (the
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entire plane).
1− 0 + 1 = 2.

The formula holds.
証明終

Inductive Step:

Assume the formula holds for all connected planar graphs with
fewer than m edges. Let G have m edges.

Case 1: G is a tree. Then m = n− 1. Since there are no cycles, there
is only 1 face ( f = 1).

n− (n− 1) + 1 = 1 + 1 = 2.

Case 2: G contains a cycle. Let e be an edge belonging to a cycle.
By the incidence lemma, e separates two distinct faces, say F1

and F2. Consider the graph G′ = G− e.

• G′ remains connected (since e was on a cycle).
• The number of vertices n′ = n.
• The number of edges m′ = m− 1.
• Removing e merges F1 and F2 into a single face, so f ′ = f − 1.

By the induction hypothesis:

n′−m′+ f ′ = 2 =⇒ n− (m− 1)+ ( f − 1) = 2 =⇒ n−m+ f = 2.

証明終

Bounds on Edge Density

Euler’s formula imposes a strict limit on the number of edges a pla-
nar graph can support. To derive this, we count the boundary walks
of the faces.

Corollary 5.1. Planar Edge Density. Let G be a planar graph with n ≥
3 vertices. Then:

m ≤ 3n− 6.

推論

Proof

It suffices to consider G connected, since for fixed n adding com-
ponents cannot increase m. Let F be the set of faces. For each face
ϕ ∈ F, let ℓ(ϕ) be the number of edges bounding ϕ. Since G has no
multiple edges and n ≥ 3, every face (including the external one)
must be bounded by at least 3 edges. Thus ℓ(ϕ) ≥ 3. Summing over
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all faces:

∑
ϕ∈F

ℓ(ϕ) ≥ 3 f .

Each edge bounds at most two faces. Thus, the sum counts every
edge at most twice:

∑
ϕ∈F

ℓ(ϕ) ≤ 2m.

Combining these inequalities yields 3 f ≤ 2m, or f ≤ 2
3 m. Substitut-

ing this into Euler’s formula (n−m + f = 2):

n−m +
2
3

m ≥ 2 =⇒ n− 1
3

m ≥ 2 =⇒ 3n− 6 ≥ m.

■

This necessary condition allows us to prove non-planarity for dense
graphs.

Example 5.1. Non-planarity of K5. The complete graph K5 has n =

5 and m = (5
2) = 10. Testing the bound:

3(5)− 6 = 15− 6 = 9.

Since 10 ̸≤ 9, K5 is not planar.

範例

For bipartite graphs, the absence of odd cycles strengthens the
bound, as the smallest face must be a quadrilateral (ℓ(ϕ) ≥ 4).

Corollary 5.2. Bipartite Planar Bound. Let G be a planar bipartite graph
with n ≥ 3. Then:

m ≤ 2n− 4.

推論

Proof

Again, we may assume G is connected; extra components only
reduce m for fixed n. Similar to the previous proof, we have
4 f ≤ 2m =⇒ f ≤ 1

2 m. Euler’s formula gives n − m + 1
2 m ≥

2 =⇒ 2n− 4 ≥ m.
■

Example 5.2. Non-planarity of K3,3. The complete bipartite graph
K3,3 has n = 6 and m = 3× 3 = 9. Testing the bipartite bound:

2(6)− 4 = 8.

Since 9 ̸≤ 8, K3,3 is not planar.

範例
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5.3 Kuratowski’s Theorem

We have identified two fundamental non-planar graphs: K5 and K3,3.
It turns out that any non-planar graph contains the structure of one of
these two.

Definition 5.3. Subdivision.
A subdivision of a graph G is a graph obtained by replacing edges of
G with paths. Formally, we repeatedly apply the operation of replac-
ing an edge {u, v} with {u, x} and {x, v}, where x is a new vertex.

定義

Original

u v

Subdivision

u x v

Figure 5.2: Subdivision: an
edge {u, v} is replaced by a
path through a new degree-2
vertex x.

Clearly, if G is non-planar, any subdivision of G is non-planar (adding
vertices of degree 2 does not help resolve crossings).

Theorem 5.3. Kuratowski’s Theorem (1930).
A graph is planar if and only if it does not contain a subgraph that is
a subdivision of K5 or K3,3.

定理

The rigorous proof of this theorem is lengthy, but the intuition is
that K5 and K3,3 represent the minimal "obstructions" to planarity.
Informally, consider a Hamiltonian cycle in K3,3 or K5. Any chords
connecting vertices on the cycle must be drawn inside or outside.
In these specific graphs, the chords form an "incompatible" system
where no valid assignment of inside/outside prevents all crossings.

a1

a2 a3

b1

b2

b3

K3,3: chords cross

Figure 5.3: K3,3 with Hamilto-
nian cycle (black). The 3 chord
edges must cross: no planar
embedding exists.

5.4 Colouring Planar Graphs

A famous problem in cartography asks: how many colours are re-
quired to colour a map such that no two adjacent regions share a
colour? Graph theoretically, this is the chromatic number of the
planar graph dual to the map. Euler’s formula provides a crucial
structural lemma.

Corollary 5.3. Structural Lemma. Every planar graph contains a ver-
tex of degree at most 5.

推論

Proof

Let G be planar with n vertices and m edges. Assume for contradic-
tion that δ(G) ≥ 6. Then every vertex has degree at least 6. By the
Handshaking Lemma:

2m = ∑
v∈V

d(v) ≥ 6n.

Thus m ≥ 3n. However, we know m ≤ 3n− 6.

3n ≤ 3n− 6 =⇒ 0 ≤ −6,
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a contradiction.
■

This allows us to bound the chromatic number by induction.

Theorem 5.4. The 6-Colour Theorem.
Every planar graph is 6-colourable.

定理

Proof

We proceed by induction on n. The base cases n ≤ 6 are trivial.
Assume all planar graphs of order n − 1 are 6-colourable. Let G be
a planar graph of order n. By the Structural Lemma, G contains a
vertex v with d(v) ≤ 5. Consider the graph H = G − v. H is a sub-
graph of a planar graph, hence planar. By the inductive hypothesis,
H admits a proper colouring using 6 colours. We now reinsert v.
The vertex v has at most 5 neighbours in G. These neighbours use
at most 5 distinct colours. Since 6 colours are available, there is at
least one colour not used by the neighbours of v. Assign this colour
to v. This yields a valid 6-colouring of G.

■

Remark.

Refining this argument to prove 5-colourability is possible but re-
quires considering chains of alternating colours to rearrange the
colouring of the neighbours. The 4-Colour Theorem, proven by
Appel and Haken in 1976 using computer assistance, asserts that
χ(G) ≤ 4 for all planar graphs.

5.5 Exercises

1. Subgraph Monotonicity.

(a) Prove that if a graph G has a subgraph H that is not planar,
then G is not planar.

(b) Deduce that for every n ≥ 6, the complete graph Kn is not
planar.

2. Almost Non-Planar. The graphs K5 and K3,3 are the fundamental
obstructions to planarity. Show that removing just one edge makes
them planar by drawing a plane embedding of:

(a) K5 minus one edge (K5 − e).

(b) K3,3 minus one edge (K3,3 − e).

3. The Petersen Graph. Prove that the Petersen graph is not planar.
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Remark.

Hint: Use Kuratowski’s Theorem by finding a subdivision of
K3,3 or K5, or use the corollary m ≤ 3n − 6 adapted for graphs
with girth g = 5, which states m ≤ g

g−2 (n− 2).

4. Disconnected Graphs. Euler’s formula n−m + f = 2 requires the
graph to be connected.

(a) Use induction to prove a formula for planar graphs that have
exactly two connected components.

(b) Generalise this to a graph with k connected components.
Prove that n−m + f = 1 + k.

5. Topological Surfaces. For graphs embedded on a torus (a dough-
nut shape) such that all faces resemble discs, the Euler characteris-
tic differs from the plane. Given that K5 and K3,3 can be embedded
on a torus, and assuming the standard Euler logic applies, deter-
mine the value of the constant C in the formula n−m + f = C for
a torus.

Remark.

Hint: K5 has n = 5, m = 10. How many faces would it need? K5

triangulation on torus implies 3 f = 2m.

6. Feasibility Check. For each of the following sets of conditions,
either draw a connected, simple planar graph that satisfies them,
or explain why one cannot exist:

(a) n = 15, m = 12.

(b) n = 10, m = 33.

(c) n = 5, m = 8.

(d) n = 6, m = 9, and the embedding has f = 6. (Note: Check
Euler’s formula consistency).

7. Planarity of Complements.

(a) Show that if G is a simple planar graph with n ≥ 11 vertices,
then the complement graph G is not planar.

Remark.

Hint: Consider the total number of edges in Kn (m(G) +

m(G)) versus the maximum allowed in two planar graphs
(2(3n− 6)).

(b) Find a planar graph with n = 8 vertices whose complement is
also planar.
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8. Self-Dual Graphs. We define the dual graph G∗ of a plane graph
G by placing a vertex in every face of G and connecting two such
vertices if their corresponding faces share an edge. A planar em-
bedding is self-dual if G is isomorphic to G∗.

(a) Prove that if a connected planar graph G is self-dual, then
2n− 2 = m.

(b) Find a self-dual planar embedding for the complete graph K4.
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