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0.1

0
Further Convergence Criteria

While the Comparison and Ratio Tests suffice for many series, their
efficacy is limited by the need for explicit inequalities or the exis-
tence of a limit distinct from unity. To address simpler asymptotic
behaviours and the delicate boundary between convergence and di-
vergence, we introduce the Limit Comparison Test and the Root Test,
followed by the refined Raabe and Gauss tests.

The Limit Comparison Test

The Direct Comparison Test requires a global inequality a, < b,. Of-
ten, two series exhibit identical asymptotic behaviour, yet satisfy no
simple inequality. The Limit Comparison Test formalises the intuition
that if a, ~ cb, for large n, the series must behave identically.

Theorem o.1. Limit Comparison Test.
Let )" a, and )b, be series with strictly positive terms. Suppose that
the limit exists:

(i) If 0 < ¢ < oo, then }_a, and }_ b, either both converge or both
diverge.
(ii) If c =0and ) b, converges, then ) a, converges.
(iif) If c = co and )b, diverges, then )_a, diverges.
32
Proof

We prove (i). Since a, /by, — ¢ > 0, for € = ¢/2, there exists N such

that for all n > N:

2 b, 2
The result follows immediately from the Direct Comparison Test. If
Y. b, converges, }_a, is bounded by a convergent multiple of }_b,,.
If Y- b, diverges, }_a, is bounded below by a divergent multiple.

Cases (ii) and (iii) follow similarly from the definitions of limits 0

c 3c
— Ebn < an < Ebn
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and oo.
[ |
Example o.1. Rational Functions. Consider the series ) ;" ; %
For large n, the term behaves like 1/ omd = 1/ (2712). We compare
with b, = 1/n2.
2
. an .. n (71 + 1) . 1
1115%07_1112;{}0 M3 -1 2

Since0 < 1/2<ooand } 1/ n? converges (p = 2), the original series
converges.

.41

The Root Test

The Ratio Test estimates convergence by comparing a series to a ge-
ometric series locally (term-by-term). The Root Test achieves this
globally. It is strictly stronger than the Ratio Test, as it does not re-
quire the limit of ratios to exist.

Theorem o.2. Cauchy’s Root Test.
Let }_a, be a series and let

(i) If L <1, the series converges absolutely.
(if) If L > 1, the series diverges.
(iii) If L = 1, the test is inconclusive.

Case L <1

Choose 7 such that L < r < 1. By the definition of limits, there ex-

ists N such that for all n > N, {/|a,| < r, which implies |a,| < r".

The series is dominated by the convergent geometric series ) r".
BLES

Case L >1

There exists a subsequence where ”ﬁ/ |an,| > 1, implying |a, | > 1.
The terms do not tend to zero, so the series diverges.
EXLES

Note

The Root Test can determine convergence where the Ratio Test

fails or is inapplicable, such as for the rearranged geometric series
1/2+1+41/8+1/4+ ... where consecutive ratios oscillate but the
root limit is constant.
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Refined Ratio Tests

When the Ratio Test yields L = 1, the series falls into a "grey zone"
of polynomial decay, typically behaving like 1/n”. To resolve these
cases, we examine the rate at which the ratio approaches 1.

Theorem 0.3. Raabe’s Test.
Let ) a, be a positive series. Suppose that:

hmn( fn —1) =p
n—oo Ap4+1

(i) If p > 1, the series converges.

(ii) If p < 1, the series diverges.

i

Proof
Ifo > 1,choose psuchthatl < p < p.Forlarge n, we have
n(ay/ay+1 — 1) > p, which rearranges to:

A n
Using the Taylor expansion (1 — 1/n)? = 1 — p/n + O(1/n?),
we can compare 4, with the sequence b, = 1/n”.Sincep > 1,
Y. 1/nP converges, implying )" a, converges. The divergence case is

analogous.

For series involving products of arithmetic progressions (hypergeo-
metric series), Gauss provided the definitive criterion.

Theorem 0.4. Gauss’s Test.
Let ) a, be a positive series. Suppose the ratio admits the asymptotic

expansion:
ay U 1
=1+-4+0 | —=— >0

Apt1 Tt (”HE) (e>0)

Then ) a, converges if > 1 and diverges if u < 1.
g1l

Note
Gauss'’s Test resolves the case p = 1 in Raabe’s Test, confirming di-

vergence (like the harmonic series).

0.2 Case Study: Liu Hui’s Circle Division

We conclude this section with a historical application that serves as
an early precursor to modern series acceleration methods. In the 3rd
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century AD, the Chinese mathematician Liu Hui sought to calculate
7t by inscribing regular polygons in a circle.
Let the circle have radius R = 1. Let S,, denote the area of a regular
polygon with N = 6 - 2"~ sides. Using basic geometry, the area is
given by:

Sw=3-2""sin (3

Asn — o0, S, — m. This generates a series of increments a, =
Sn — Sy_1. Using the Taylor expansion sinx ~ x — x%/6, we can

analyze the error term A, = m — S;. Letx,;, = 32% Then S, =
2
Xy

3
7T : ~ T — 3 i
7 sinx, ~ E(x” - ?) = 71 — =¢*. Since x, 11 = x,/2, the error

scales predictably:
1
T— 8,1~ Z(n —Sy)

This asymptotic relationship implies that the error reduces by a factor
of 4 at each step (linear convergence with rate 1/4). Liu Hui empir-
ically observed this regular loss and proposed an extrapolation to
recover the limit.
1
T— Sy~ 1(71— Sx)
47w —4S,1 =~ 1 — Sy
3n~ 4Sn+1 —Sn

1
T~ Sn+1 + g(sn+1 - Sn)

This formula, known as Richardson Extrapolation, allowed Liu Hui
to obtain a high-precision value of 7 from a relatively coarse poly-
gon.

_———__h

Figure 1: Liu Hui’s method of
circle division. The area of the
inscribed polygon approaches
the area of the circle as the

P, number of sides doubles.

Hexagon
Dodecagon
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Liu Hui’s insight was that the tail of this series could be approxi-
mated by the tail of a geometric series with ratio 1/4, significantly
accelerating the convergence.

Kummer’s Criterion and Universal Scales

While the Ratio, Raabe, and Gauss tests provide a hierarchy of crite-
ria for convergence, they are but specific instances of a more general
principle established by Kummer. This criterion unifies the compari-
son methods into a single powerful theorem.

Theorem o.5. Kummer’s Test.
Let (a,) be a sequence of positive terms.
(i) The series ) a, converges if and only if there exists a sequence
of positive numbers (b,) and a constant § > 0 such that for all
sufficiently large n:

an

Ky = by *bn—&-lZ‘S

Ap4+1
(ii) The series ) a, diverges if and only if there exists a sequence of
positive numbers (b,) such that }_1/b, diverges and for all suf-
ficiently large n:

an
by

- anrl <0
An+1

L
Sufficiency (Convergence)

Suppose the condition holds for n > N. We rearrange the inequal-
ity as:
day 1 < bpay — byy1a,41

Summing from n = N to M:

M M
Y ba,1 < ) (bpan — byi1a,41) = byan — byprapi < byan
n=N n=N

Since the partial sums are bounded above, }_a, converges.

ER &
Necessity (Convergence)
If }_a, converges, let R, = Y2 ., a; be the remainder. Set b, =
R, /a;,. Then:
b, an _ Ry B Ryi1 _ M1 -1

n+1
an+1 An+1 An+1 An+1

Choosing 6 = 1 satisfies the condition.

EXLES

7
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Sufficiency (Divergence)

The condition implies by, 14,.1 > bpa,. Thus, the sequence (b,ay,)

is non-decreasing. For n > N, bya, > byay = C > 0,s0 a, > C/by.
By the Comparison Test, since }1/b, diverges, ) a, diverges.

SEBA #
Necessity (Divergence)
If Y a, diverges, let S, = Y j_;a be the partial sums. Set b, =
S./a;,. Then:
Aan Sn Sn+1
by—— — b1 = —-——==-1<0
nan+1 il An1 An+1
We must show } 1/b, = Y a,/S, diverges. This follows from a

standard divergence property: if }_a, diverges, so does }_a; /S;.
(Consider the integral analogue [ dx/x =Inx — o).
FEER #

Note

Kummer’s Test generates the standard tests by specific choices of

the auxiliary sequence (b, ):

¢ Ratio Test: Take b, = 1. The condition becomes a,,/a,11 —1 >,
orayi1/an <1/(146) < 1.

e Raabe’s Test: Take b, = n. The condition becomes n(ay, /a,1) —
(n+1) > J, which rearranges to n(a,/a,41 —1) >1+6 > 1.

The Non-Existence of a Universal Scale

Given the hierarchy of tests, one might hope to find a "universal"
comparison series that decides convergence for all series. Specifically,
is there a series that converges "so slowly" that any series decaying
slower must diverge, or a series that diverges "so slowly" that any
series decaying faster must converge? The theorems of Du Bois-
Reymond and Abel resolve this in the negative.

Theorem o0.6. Universal Comparison Theorems.
(i) Du Bois-Reymond: For any convergent positive series }_a,, there
exists a convergent positive series }_ b, such that lim 7 =
n—sco bn
(if) Abel: For any divergent positive series }_a,, there exists a diver-
- . by
gent positive series ) by, such that nlgrolo = ‘
il

Proof

(i) LetR, = Z,‘f:n 41k be the remainder of the convergent series.
Define b, = +/R,_1 — v/ Ry (with R the total sum). The series
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Y by is a telescoping sum converging to v/Rg. Checking the ratio:

an  Ry_
— =4/R + VR
bn ,7 /—Rn n—1 n
Since R, — 0, the ratio tends to o. Thus, }_b, converges "much
slower" than )_a,,.
(ii) Let S, be the partial sums of the divergent series. Define

b, = ay/ Sy. By Theorem 0.5 proof (necessity of divergence),
Y b, diverges. Checking the ratio:

bn _ 1

a,  Spu

Since S, — oo, the ratio tends to o. Thus, }_ b, diverges "much
slower" than )_a,,.

This result implies that there is no "boundary" between convergence
and divergence; the scale is infinitely refutable.

Tests for Non-Absolute Convergence

In the previous notes, we established the Alternating Series Test for
(well you guessed it) alternating series. We now generalise this to
series of the form Y a,b,, where (a,,) provides the sign oscillation
and (b,) provides the decay. These tests rely on a discrete analogue
of integration by parts.

Lemma o.1. Abel’s Summation Formula.
Let (a,) and (b,) be sequences. Let A, = Y/, a; be the partial sums
of (ay). Then:

n n
Y agbe = Anbyia + Y Ax(bg — bieyq)
k=1 k=1
5132
Proof
Write ap = Ax — Ax_1 (with Ag = 0).

n
Y (Ax — Ag)bg = ZAkbk_zAk 1bx
=1

n n—1
= Z Arby — Z Ajbj+1 (shift indexj=k—1)

n
Z kbk - Z Akbk+1 (since Ao = 0)
k=1 k=1

9
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n—1
= Anbn + Z Ak(bk - bk+1)
k=1

n—1
= Anbpi1+ An(by —bui1) + ) Ax(be — byr)-
=1

Combining terms yields the result.

Theorem o.7. Dirichlet’s Test.

Let ) a, be a series with bounded partial sums (i.e., |2} _;ax] < M
for all n). Let (b,) be a sequence that is monotonic and converges to
o. Then the series )_a,b, converges.

T3
Proof
We apply Lemma o.1. Since b, — 0 and A, is bounded, A;b;,, 1 — 0.
It remains to show that )" Ax(by — by.1) converges. Since (by) is

monotonic, the terms (by — by, 1) have constant sign. Thus:

n

Z | Ak (b — by1)| < M Z bk — b1 | = M[by — by 41
k=1 k=1

Since b, — 0, this sum is bounded. The series converges absolutely,

implying the convergence of the original sum.
[ |

Theorem 0.8. Abel’s Test.
Let )_a, be a convergent series. Let (b,,) be a monotonic and bounded
sequence. Then the series ) a,b, converges.

i
Note

Unlike Dirichlet’s Test, Abel’s Test requires )_a, to converge, but
relaxes the condition on (b,) to mere boundedness rather than
vanishing.

Example o.2. Trigonometric Series. Consider the series 5o ; S%

forx € R.Leta, = sinnxandb, = 1/n.The sequence (bn)
is monotonic and tends to o. To apply Dirichlet’s Test, we re-

quire the partial sums of sinnx to be bounded. Using the identity
2sin(x/2) Y} _; sinkx = cos(x/2) — cos((n +1/2)x), we have:

21
|251n(x/2)| ~ |sin(x/2)]

Z sinkx

Provided x # 2k, the partial sums are bounded. Thus, the series

converges for all x not a multiple of 27t.

This is structurally identical to [ udv =
uv — [ odu.
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Exia

0.5 Inequalities and Further Examples

Carleman’s Inequality

A profound result in the theory of series is Carleman’s Inequality,
which asserts that the geometric mean of the terms of a convergent
series decays sufficiently fast to form a convergent series itself.

Theorem o0.9. Carleman’s Inequality.
Let )" a, be a convergent series of positive terms. Then:

[ee]
(a1az...a0)"" <e Y ay,
1 n=1

[7e

n

The constant e is sharp.

i
Proof
We use the AM-GM inequality with weighted terms. Recall that for
k
the sequence ¢y = (l;{;lll) , we have (c1...c,y)V" = n + 1. Write the

geometric mean as:

(ajcy - axcy...ancy)/" _ (arcy ... ancy)V/"
(c1...cp)l/m n+1

Gn:(al...an)l/”:
By AM-GM:
1 n
G, < —— ac
"= n(n+1)k; Kk

Summing over #:

) Gu
n=1

| A

; n—|—1 Zakck Zﬂkkz n—|—1

The inner sum is telescoping: Yo (1 — %) £. Thus:

0 (o) o) k 1k 00
Zlcnskzlakck Zak + —Zak<1+ )
n= =

Since (1 + 1/k)k increases to ¢, we have }_ G, < eY a,.

Quantitative Rearrangements

We previously established Riemann’s Rearrangement Theorem,
which guarantees that a conditionally convergent series can be re-

11
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arranged to sum to any value. We now provide a specific calculation
for the alternating harmonic series.

Example 0.3. Rearranging the Harmonic Series. Let ) a, be a rear-
rangement of ) % Suppose we construct the rearrangement
by taking p positive terms followed by g negative terms, repeat-

ing this pattern indefinitely. Let Sy be the partial sum. Using the
asymptotic expansion H, = Inn + 7 + o(1), one can derive (see

Riemann’s rearrangement theorem context):

Z a, =1In2 + %ln <P>
n=1 q

For the standard series (p = 1,4 = 1), the sum is In2. If we take two
positive terms for every one negative term (p = 2,4 = 1), the sum
shifts to In2 + 1In2 = 3 In2. This explicitly demonstrates how the
"density" of positive terms shifts the limit.

$o19]

0.6 Infinite Products

Just as the study of the difference between consecutive terms of a
sequence a, — a,_1 leads to the theory of infinite series, the study of
the ratio 4, /a,_1 leads naturally to the theory of infinite products.
While less ubiquitous than series in elementary calculus, infinite
products are indispensable in complex analysis and analytic number
theory, particularly in the study of the Riemann Zeta function and
the Gamma function.

Convergence and Properties

Definition o.1. Infinite Product.
Let (pn)$_; be a sequence of non-zero real numbers. The infinite prod-
uct is denoted by:

[1pn=rpipaps...
n=1

Let P, = [T;_; px be the sequence of partial products.

1. We say the infinite product converges if the limit P = nh_r}r(}o P, ex-
ists and is non-zero. In this case, we write [T, p» = P.

2. If the limit is zero, or does not exist, or is infinite, the product is said
to diverge. Specifically, if P, — 0, we say the product diverges to
zero.
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Note
The exclusion of zero from the definition of convergence is to main-
tain the analogy with sums. For a sum, "convergence to infinity" is
divergence; for a product, "convergence to zero" is similarly clas-
sified as divergence. This ensures that a convergent product has a
well-defined multiplicative inverse.
Proposition o.1. Necessary Condition.
(&% 1 —
If [T, pn converges, then nh_rgo pn=1.
Proof
Let P = lim P, # 0. Then:
P, p
Pr=p"7"p
|
Consequently, terms in a convergent product are typically written
in the form p, = 1+ a,, where a, — 0. The study of [1(1 + a,) is
inextricably linked to the series }_In(1 + ay,).
Theorem o.10. Logarithmic Criterion.
Let a, > —1. The infinite product [T;_; (1 +a,) converges if and only
if the series ) ;- ; In(1 + a,) converges.
&
Proof
Let P, = [T}_;(1+ax). ThenInP, = Y} ;In(1+ ai). The sequence
(Py) converges to a non-zero limit P if and only if (In P,) converges I Y In(1 + a,) diverges to —co, then
toInP. P, — 0, consistent with our definition
] of divergence to zero.

This criterion allows us to translate results from series directly to
products.

Theorem o.11. Convergence Tests for Products.

(i) Positive Terms: If a, > 0, then [](1+a,) converges if and only
if }_a, converges.

(ii) Absolute Convergence: We say [](1+a,) converges absolutely
if TT(1+ |an|) converges. Absolute convergence implies ordinary
convergence.

(iii) Conditional Convergence: If "4, converges but }_ a2 diverges
(and terms alternate), the product may diverge. Specifically, us-
ing In(1+x) ~ x — x2/2, one can show that if Y_a,, converges,
then [1(1 + a,) converges if and only if }_ a2 converges.

T
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Euler’s Product Formula for the Sine Function

The most celebrated infinite product is Euler’s factorisation of the
sine function. Just as a polynomial is determined by its roots P(x) =
CII(x — r;), Euler reasoned that sin x, having roots at n7t, should

behave like an infinite polynomial x [T(1 — n;‘—;)

Theorem o.12. Euler’s Sine Product.

For all x € R: 2
smx-xH( n2712>

Proof

We employ a limit argument involving the factorisation of Cheby-
shev polynomials. Recall that sin(2n 4+  1)¢ can be expressed
as a polynomial of degree 2n + 1 in sin ¢. Roots occur when

(2n+1)¢ = knm, ie., sin? ¢ = sin2(2n+1) This leads to the identity:

n 12
sin(2n+1)g = 2n+1)sing [ | (1 512nk(ft>
k=1 Sin® 5,77

Let x € R be fixed. Set ¢ = 5.%. Substituting into the identity:

2 x
. . X H” SN 5,7
sinx = (2n + 1)sin [ ——— 11— —=
( ) (Zn + 1> k=1 < sin’ 45

We split the product into a "head" (fixed m) and a "tail". Let m < n:

X sin” 5 .
. . n
smx:(2n+1)sm2n+1-|| 1-— % |- [I ¢

k=1 SIN” 571 ) k=m+1
—x
un,m Vn,m
(x/(2n+1))?

As n — oo, for fixed k, s;z 2’,1;1 — Thus, the first

T (kr/(2n+1))2 k2n2
product converges to the desired infinite product partial sum:

m x2
Jim U —El (1—kznz>

We must show the tail V},, tendsto1asm —  oo. Using the in-
equality siny < y and Jordan’s inequality siny > 2y on [0,71/2],
we can bound the terms. For sufficiently large 7, the terms in the
tail satisfy:

£2

42

The product of these lower bounds converges to 1 as m — oo (since

1> Term;, >1—

Y. 1/k? converges). By the Squeeze Theorem, the formula holds.

Setting x = 71/2 recovers Wallis’s

Product:

7_(00
1=311

n=1

(1-52) =

T

2

-1l

n=1

(2%

2n
2n—1 2n+1

5+1)
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The Gamma Function

The Gamma function, I'(x), extends the factorial to real (and com-
plex) arguments. While often defined by an integral fooo 1=t dt, its
definition via infinite products is more fundamental for establishing
its functional properties.

Definition 0.2. Gamma Function (Euler Form).
For x #0,—1,-2,..., we define:

1= 1—|—1/n)
;H 1+x/n

n=1

The general term behaves like 1 4 (2 3 U so the product converges

absolutely. Expanding the partial product:

(k)
T L

k=1

RM—‘

1(n+1)* n! B nl(n+1)*
Tx 1 [T (x+k)  x(x+1)...(x+n)

This yields the celebrated Euler-Gauss Limit:

I'(x) = lim nin”
S x(x+1)... (x4 n)

(Replacing (n + 1)* with n* does not change the limit).
P & &

Proposition o.2. Properties of T'(x).
1. Functional Equation: T'(x + 1) = xI'(x).
Proof

Using the limit form:

F(x+1) . nawnlox(x+1)...(x+n) . nx
——— =lim =lim —— =
I'(x) (x+1)...(x+n+1) nln* x+n+1
|
2. Factorial Generalisation: Since I'(1) = lim #’Zﬂ) = 1, induc-

tion gives I'(n 4+ 1) = n!.
3. Weierstrass Form: Using the Euler-Mascheroni constant ¢ = lim(}_}'_, % —
Inn), one can rewrite the product as:

1 o © X —x/
g == IO ) e

n=1

4. Reflection Formula:

7T

T —x) = sin 7tx

15
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Proof

From the definition, I'(1 — x) = —xI'(—x). We compute the
product I'(x)T'(—x):

(1+1/n)° B
()T (=) _—x2H (1+x/n)(1—x/n) xZH xz/n2

Comparing this with Euler’s Sine Product Theoren o.12 (with
argument 77x):

sin 7Tx had (

x2
o 11 1112)

n=1
Thus I'(x)I'(—x) = g Multiplying by —x gives the result.
|

Example 0.4. Value at 1/2. Using the reflection formula at x = 1/2:

r(1/2)? =1 = T(1/2) =n

B s
~ sin(7t/2)

This is equivalent to the Gaussian integral [ e dx = VT

Asymptotic Analysis of Products

Infinite products provide a powerful tool for analyzing the asymp-
totic behaviour of sequences.

Example o.5. Stirling’s Approximation (Weak Form). We revisit the
sequence a, = |(§)|. Using the Gamma function limit:

()1-

For « = —1/2, this yields (_}1/ ) ~ \/%, consistent with our earlier

afa—1)...(a=n+1)| 1
n! |T(—a)|nl+e

Wallis product derivations.

El

This concludes our development of infinite processes.

Exercises

1. Convergence of Infinite Products. Determine the convergence or
divergence of the following infinite products.

n +
o I3




) 1°‘°[2 (1+ 03

o 1 0+3))

. Series and Products. Suppose each term of the sequence (a,)

satisfies 0 < a, < 71/2. Prove that the series 0" ; a2

and only if the infinite product [} cos a, converges.

converges if

. Raabe’s Limit and Absolute Convergence. Suppose a positive
series Y a, satisfies the limit condition of Raabe’s Test:

limn< n —1) =r>0.
n—yo0 Ayt

(a) Prove that the alternating series Y0 ; (—1)""'a, converges.

b) Prove that the squared series Y°°_; a2 converges.
q n=1%n g

. Hypergeometric Products. Let «, B,y be real parameters such that
none of the factors below are zero. Discuss the convergence of the
infinite product:

2 (a+n)(B+n)

1:[ 1+n)(y+n)

. Euler’s Partition Identity. For |x| < 1, prove the following identity
connecting infinite products:

1

A+0)A+A)1+2) = e

. The Boundary of Gauss’s Test. Suppose a positive sequence (a,)
satisfies the ratio condition:

il _1+1+ow)

Ap4+1

where the series )b, converges absolutely. Prove that the series
Y ay diverges.

. Stirling’s Formula via Products. By analysing the infinite product
expansion of the Gamma function or otherwise, prove that the

sequence
nle

Uy = ——

"t

converges to a non-zero limit.
. Product Growth. Prove using two different methods that for any
positive sequence (ay) :

an

li -0
oo (1+ay)(1+az) - (1+an)
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Recall the asymptotic expansion of
(1+1/n)" involving e.

Utilise the Logarithmic Criterion and
the Taylor expansion of In(cos x).

Consider the asymptotic behaviour

of the general term p,,. Under what
condition does p, = 1+ O(1/n) versus
1+pu/n+ O(l/nz)? This generalises
the convergence criteria for the Gamma
function.

Multiply the left-hand side by (1 — x)
and observe the telescoping structure of
the terms (1 — x)(1+x) = (1 — x?), etc.

This resolves the p = 1 case in Gauss'’s
Test, confirming the divergence of
series behaving like the harmonic series

Y1/n.

Consider the ratio u, /1,1 and use
asymptotic expansions for logarithms.

Method 1: Consider the convergence
of the product. Method 2: Treat the
expression as terms of a telescoping
series.
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10.

11.

12.

13.

14.

15.

Monotonicity and Square Convergence. Let }_a, be a positive
series with monotonically decreasing terms. Prove that if the
weighted series } % converges, then the series Y_ a2 converges.

Discrete Abel Summation. Let (a,) be a positive, monotonically
decreasing sequence converging to o.

(a) Prove that the series ) ,’ ; a, and the series Y, ; n(a, — a,41)
converge or diverge together, and if they converge, they sum
to the same value.

(b) Provide a counter-example to show that if monotonicity is
dropped, the conclusion no longer holds.

Sum of Zeta Functions. For integer m > 2,let {(m) = Y. ;> n~ ™.
Prove that:

e}

Y (@m) -1) =1.

m=2

Decay of Tail Sums. Let ) a,b, be a convergent series, where
(bn) is a monotonically decreasing sequence converging to o. Let
Su = Y}_; ax. Prove that lim S,b, = 0.

n—oo

Advanced Convergence Testing. Determine the absolute or condi-
tional convergence of the following series.

2 sin nrc/12)

@) E Inn
(b) 2(—1>”< n'/"—1)
(c) i sin ¢ ( i)” (for x € R)

(d) Zl ( ?n> (for p > 0)

Generahsed Rearrangements. Consider the alternating harmonic

(71)71—1
n

of p positive terms is followed by a block of g negative terms,

series ) . Construct a rearrangement such that every block

preserving their internal order. Prove that this rearranged series

N2+ Sin (’”).
2 q

Deduce that the rearrangement converges to the original sum In2

converges to:

if and only if p = g.

Averaged Alternating Series. Let (a,) be a strictly decreasing
sequence converging to o. Prove the convergence of the series
formed by the alternating averages:

i(_l)n <a1+a2+-~+an>‘

n=1 n

This requires exchanging the order
of summation for a double series of
positive terms.

This result is a partial converse to
Abel’s Summation Lemma conditions.

Let A, be the average. Is A, necessarily
monotonic? Does Dirichlet’s Test apply?
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1
Complex Numbers and Series

This chapter is basically a review of my previous notes but with a
new section on complex series and convergence.

The Field of Complex Numbers

We postulate the existence of an imaginary unit i satisfying the prop-
erty i> = —1. The set of complex numbers C is constructed as a
formal extension of IR.

Definition 1.1. Complex Numbers.
The set of complex numbers is defined as:

C:={x+iy:xycR}

For a complex number z = x + iy, we define:

- The real part: R(z) := x.

- The imaginary part: 3(z) := y.

Equality is defined component-wise: z; = z; if and only if R(z;) =
R(zz) and (z1) = I(z2).

Algebraic Structure

We define addition and multiplication on C to be consistent with the
arithmetic of real polynomials evaluated at i, subject to the reduction

2= —1.Letz; = x; + iy and zp = xp + iy».

z1 + 22 := (X1 +x2) +i(y1 +v2)
7123 := (x1%2 — y1y2) +i(x1y2 + y1x2)
Under these operations, C forms a field. The additive identity is
0 = 0+ 0i, and the multiplicative identity is 1 = 1 + 0.

Definition 1.2. Conjugate and Modulus.
Letz = x +1iy.
1. The complex conjugate of z is Z := x — iy.
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2. The modulus (or norm) of z is |z| := /x2 + y2.
The conjugate provides an immediate mechanism for division. Ob-
serve that zz = (x + iy)(x — iy) = x> +y*> = |z|? Thus, for any
non-zero z € C, the multiplicative inverse is given by:
-1 z X .Y
TR T a2ty

z

Proposition 1.1. Properties of Conjugation and Modulus.
Forall z,w € C:
1. z+w = Z+ @ and zw = ZW.

2. |zw| = |z||w|.

3. |z2] =0 < z=0.

4. R(z) = ZZ and S(z) = -
Proof

These follow directly from the definitions. For (ii), observe |zw|* =

(zw) (zw) = zwzd = (22)(ww) = |z|?|w|?.

1.2 Geometric Interpretation

We identify the complex number z = x + iy with the vector (x,y)
in the Euclidean plane IR?, often termed the Argand plane. Addition
of complex numbers corresponds to vector addition, obeying the
parallelogram law. Conjugation corresponds to reflection across the
real axis (x-axis).

The modulus |z| represents the Euclidean distance from the origin
to z. This allows us to define the distance between two complex
numbers z, w as |z — w|.

Proposition 1.2. Triangle Inequality.
For any z1,zp € C:
|21 + 22| < [z1] + |22

with equality if and only if one is a non-negative real multiple of the

other.

A

Proof

Geometrically, this states that the length of one side of a triangle is
less than the sum of the other two. Algebraically, let zy = x1 + iy;
and zp = x + iy. Squaring both sides, the inequality is equivalent

&

Y z=x+1iy

Figure 1.1: The geometric repre-
sentation of a complex number
z and its conjugate Z.
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to |z1 + 22|* < (|z1] + |z2])?

|Zl -|—Zz|2 = (Zl + Zz)(zl + 22) = |Zl‘2 + 2122 + 2122 + |Zz|2

= [a]* +2R(z122) + | 22|

The right hand side is |z1|? + 2|z1||z2| + |22/%. Thus, we must show
R(z1Z2) < |z1Zp|. This is true since for any complex number w,

R(w) < |w| (as x < /22 +2).

Polar Representation

Using polar coordinates (r,0) in the plane, we can write x = rcos 6
and y = rsinf, where r = |z|. Thus:

z = r(cos b +isinb)

The angle 6 is called the argument of z, denoted argz. It is defined
modulo 27t. Polar form is particularly powerful for multiplication.
Let zp = ri(cos 6 +isinfy) fork =1,2.

2129 = 1r172[(cos 01 cos B, — sin By sin ;) + i(sin 01 cos B, + cos 07 sin 6, )]
= 7”11’2[(.‘08(91 +6,) +isin(6; + 92)]
This yields the fundamental geometric insight: multiplication by a

complex number scales the modulus by r and rotates the argument
by 0.

Theorem 1.1. De Moivre’s Theorem.
Forany # € Rand n € N:

(cos@ +isin®)" = cos(nf) + isin(no)
T
Proof
This follows immediately from the iterative application of the mul-

tiplication rule derived above.
|

This theorem provides an elegant method for finding roots of unity.
Example 1.1. Roots of Unity. We solve z"! = 1. Let z = cos 6 + isin 6
(since |z| must be 1). By De Moivre, cos(n6) +isin(n6) = 1. This re-
quires cos(nf) = 1 and sin(nf) = 0, implying n6 = 27tk for k € Z.
The distinct solutions are given by 6 = 27”1‘ fork=0,1,...,n—1.

g— 277-[k —|—iin 277-[](
k = COS " S ”

21
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These points form the vertices of a regular n-gon inscribed in the
unit circle.

E el
&1 .
Figure 1.2: The 6-th roots
of unity forming a regular
to=1 hexagon.

1.3 Analysis of Complex Sequences

The modulus induces a metric on C, defined by d(z,w) = |z — w|.
This allows us to import the machinery of limits and convergence
from real analysis directly into the complex domain.

Definition 1.3. Convergence.
A sequence of complex numbers (z,,)5°_; is said to converge to z* €
C if the sequence of real distances |z, —z*| converges to 0. Formally:

Ve > 0,IN € Nsuchthatn > N = |z, —z"| <e

Convergence in C is equivalent to component-wise convergence in RR.

Proposition 1.3. Component-wise Convergence.
Let z, = x,, + iy, and z* = x* 4 iy*. The sequence (z,) converges to
z* if and only if (x,) converges to x* and (y,) converges to y*.

#

3

Proof

We rely on the inequalities relating the modulus to the components:
max(|x], [y[) < /%% +y? < [x[+[y]
Lete > 0.

(=) If |zy—z*| =0, then |x, —x*| < |z, —z*| — 0 and similarly
for y,.
(<) If |xy —x*| - O0and |y, —y*| — O, then |z, — z*| < |x, —
X+ |yn —y*[ = 0.
u
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Corollary 1.1. Boundedness. Every convergent sequence of complex num-
bers is bounded. This follows directly from the real case applied to the
sequence of norms.

b

Cauchy Sequences

Definition 1.4. Cauchy Sequence.
A sequence (z,) is called a Cauchy sequence if for every € > 0, there
exists N such that n,m > N implies |z, — zp| < €.

Since R is complete (every Cauchy sequence converges), the component-
wise equivalence (Proposition 1.2) implies that C is also complete.

This is a fundamental result: we can verify convergence without
knowing the limit.

1.4 Complex Series

Definition 1.5. Infinite Series.
Given a sequence (z,), we define the infinite series } ;. z, as the limit
of the sequence of partial sums Sy = ZnN:O Zy. If the limit S = Z\}im SN
— 00
exists, we say the series converges to S.
Proposition 1.4. Vanishing Condition.
If }"z, converges, then lim z, = 0.
n—oo
Proof
Let Sy be the partial sums converging to S. Thenzy = Sy —
Sny_.1—>S5—-§=0.
|

Absolute Convergence

Analogous to the real case, we distinguish between absolute and
conditional convergence.

Definition 1.6. Absolute Convergence.
The series )z, is absolutely convergent if the series of real numbers
Y |zx| is convergent.

23
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Theorem 1.2. Completeness of C.
Every absolutely convergent series is convergent.

T
Proof

Let Sy be the partial sums of )z, and Ty be the partial sums of
Y |zn|. For M > N:

M M
ISM—=Snl=| Y, z|< Y |zl =Tm—Tw|
k=N1 k=N 1

If Y |z | converges, (Ty) is a Cauchy sequence in R. The inequality
implies (Sy) is a Cauchy sequence in C. By the completeness of C,

the series converges.
u

The Geometric Series

The geometric series serves as our primary benchmark for conver-

gence.
Example 1.2. Complex Geometric Series. Consider } ;> ;z". The
. . 1—zN+1
partial sum is Sy = ~5=— for z # 1.

- If |z| < 1, then |z|N*1 — 0,50 zN*1 — 0. The series converges to
1

T-=z-
- If |z| > 1,then |z"] > 1, so terms do not vanish. The series di-

verges.

#2145

This leads naturally to the Ratio Test for complex series, derived from
the real series of moduli.

Theorem 1.3. Ratio Test.
exists.

Suppose L = 71lgn ’ZZ—;]
(i) If L <1, the series )z, converges absolutely.
(if) If L > 1, the series diverges.

b
Proof

IfL < 1,then Y |z, converges by the real Ratio Test, implying ab-
solute convergence. If L > 1, |z,| grows indefinitely, so z, # 0.
[ |

This framework of complex analysis allows us to define functions like
the complex exponential, sine, and cosine via power series, unifying
the disparate trigonometric identities seen in real analysis into a
cohesive algebraic structure.
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1.5 Complex Power Series

We now generalise the concept of power series to the complex do-
main. A complex power series is a series of the form

S(z) = i anz"
n=0

where the coefficients (a,,)$ , and the variable z are complex num-
bers.

Radius of Convergence

The convergence properties of complex power series mirrors that of
the real case, with intervals replaced by disks.

Theorem 1.4. Radius of Convergence.

For any power series ) a,z", there exists a unique R € [0, 0], called

the radius of convergence, such that:

1. The series converges absolutely for all z in the open disk Dg(0) =
{z€C:|z| <R}.

2. The series diverges for all |z| > R.

The radius R is given by the Cauchy-Hadamard formula (derived from

the Root Test):

i
Proof

Let L = limsup {/|ay|. If |z] < 1/L,thenlimsup {/|a,z"| =
|z]L < 1. By the Root Test for real series applied to ) |a,z"|, the se-
ries converges absolutely. If |z| > 1/L, then limsup {/|a,z"| > 1, so

the terms a,z" do not converge to o. The series diverges.
[ |

Example 1.3. A Geometric Series. Consider the series ) ;> ((—2z)".
The coefficients are 2, = (—2)". We compute the radius of conver-

1
{flanl =1-2/=2 = R=>

Thus, the series converges absolutely on the open disk |z| < 1/2
and represents the function 1/(1 + 2z).

gence:

E X

25
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The Complex Exponential
We define the exponential function for complex arguments via its
Maclaurin series.

Definition 1.7. Complex Exponential.
For any z € C, we define:

o 1 2 -3
Z . —
e '_};)E_1+Z+E+§+"'
n+1
Applying the Ratio Test, we find lim|2+2n/7%'1)!| = lim% = 0 for

all z. Thus, the series has an infinite radius of convergence (R = o)
and defines an entire function on C.

The defining algebraic property of the exponential function is pre-
served in the complex domain.

Theorem 1.5. Exponential Addition Theorem.
For any z,w € C:

z+w Z W

4 =ee

Proof

Since the series for e* and e are absolutely convergent, Mertens’
Theorem (from our analysis of infinite sums) implies that their
Cauchy product converges to the product of their sums. The n-th
term of the Cauchy product is:

n

7k ok
Cn = —
" ,Eok; (n—k)!

Multiplying and dividing by n!, we recognise the binomial expan-
sion: :
_1 m\ kon—k _ 1
cn = mk;o (k>z W = m(z+w)”

Summing these terms yields Y5> ¢, = e*1%.

Euler’s Formula

This series definition illuminates the profound connection between
the exponential function and trigonometry. Restricting the exponen-
tial to the imaginary axis z = it (where ¢ € IR), we obtain:
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°°(it)”_1 ” S
P +l_i_l§+ﬂ+“'

n=0
Separating the real and imaginary parts (which is permissible due to
absolute convergence):

Z-,f_1t2 t4 .tt3 2
e = *E‘i’g* +1 *§+§*

We recognise the series in the parentheses as the Maclaurin expan-
sions for cosine and sine respectively.

Theorem 1.6. Euler’s Formula.
For any real number t:

et = cost+isint

F i

This identity allows us to define the trigonometric functions for com-
plex arguments:
eiz + efiz eiz _ efiz

c0sz=———, sinz= -
2 ! 2i

Evaluating Euler’s formula at t = 71, and recalling that sin7t = 0
and cos T = —1, we arrive at the celebrated identity uniting the five
fundamental constants of analysis.

Corollary 1.2. Euler’s Identity.
e€"+1=0

ek

Exercises

10.1. The Parallelogram Law. In the study of Euclidean geometry,
the lengths of the diagonals of a parallelogram are related to
the lengths of its sides.

(a) Prove the identity:

1z 4+ w2+ |z — w|* = 2(|z|* + |w|?)

for any z, w € C. Interpret this geometrically.

(b) A normed vector space is an inner product space if and
only if the norm satisfies the parallelogram law. Show
that the space R? equipped with the “taxicab norm”
|(x,y)]1 = |x| + |y| cannot be induced by an inner product
by showing it fails the parallelogram law.

27
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10.2. Geometry of Roots of Unity. Let n > 2 be an integer. The roots
of the equation z" — 1 = 0 are given by 1, w, w?,...,w" 1 where
w = e2mi/n.

(a) Prove that 1+ w +w?* 4 - -+ +w" ™! = 0. Explain why this
implies that the centroid of a regular n-gon centered at the
origin is the origin itself.

(b) Consider the polynomial P(z) = z" — 1. Factor P(z) into

linear terms involving the roots of unity. By computing the
z"-1
7=

limit lim , prove that:
z—1

1-w)(1-w?) - (1-w"1) =n

(c) Interpret result (b) geometrically as a statement about the
product of the lengths of the chords from one vertex of a
regular n-gon to all other vertices.

10.3. Lagrange’s Trigonometric Identity. While real variable tech-
niques for summing trigonometric series can be cumbersome,
complex exponentials simplify the process significantly.

(a) Consider the geometric series Y ! Zk. By substituting
z = ¢/ (where 6 is not an integer multiple of 27), prove
that: i _ .

Y cos(kb) = % + smé(r.l +9§)9)
k=0 sin(3)

(b) Deduce a similar closed-form expression for }}_ sin(k6).

10.4. Differentiation of Power Series. Let ) a,z" be a power series
with radius of convergence R > 0.

(@) Prove that the “derived series” ¥ na,z" ! also has radius
of convergence R.

(b) Let f(z) = Y5 Z;. Use part (a) to show that f'(z) = f(z)
for all z € C (in the sense of term-wise differentiation).

10.5. Complex Trigonometry. The behaviour of sine and cosine in
the complex plane differs markedly from the real line.

(a) Using the definition sinz = %, prove that:

sin(x + iy) = sinx coshy + i cos x sinh y,

Y4e Y . Y e Y
where coshy = = and sinhy = 5—.

(b) Prove that | sin(x + iy)[> = sin? x + sinh?y.

(c) Conclude that the function sin z is unbounded on C, unlike
its real restriction. Find a sequence of points z, such that
| sinz,| — oo.

Recall that r}grt}o Yn=1.
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Ordinary Differential Equations Introduction

Having established the foundations of integration and infinite series
in previous notes, we now apply these tools to the study of differ-
ential equations. These equations, which relate functions to their
derivatives, are the fundamental language of dynamical systems

in physics, engineering, and geometry. Our goal is to classify these
equations and establish systematic methods for their solution, begin-
ning with the theory of first-order ordinary differential equations.

Fundamental Concepts

A differential equation is a mathematical relation linking an inde-
pendent variable, a dependent variable, and the derivatives of the
dependent variable with respect to the independent one.

Definition 2.1. Ordinary Differential Equation (ODE).

An ordinary differential equation is an equation involving an unknown
function y of a single independent variable x, and its derivatives y',y", ..., y".
It can be expressed generally as:

F(x,y,y’,...,y(”)) =0

The order of the differential equation is the order of the highest deriva-
tive appearing in the equation.

Note

If the unknown function depends on multiple independent vari-
ables (e.g., position x,y,z and time t) and the equation involves
partial derivatives, it is termed a Partial Differential Equation (PDE).
Famous examples include Maxwell’s equations for electromag-
netism or the Heat Equation. In this course, we restrict our atten-
tion to ODEs.

We classify ODEs based on their structure, as this determines the
methods available for their solution.
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Definition 2.2. Linearity and Homogeneity.
An n-th order ODE is said to be linear if it can be written in the form:

an ()Y + ay 1 ()y" T ey ()Y + ag(x)y = g(x)

where a;(x) and g(x) are functions of x alone.

- If g(x) = 0 for all x, the equation is homogeneous.

- If g(x) # 0, the equation is non-homogeneous.

- If the coefficients a;(x) are constants, the equation is said to have con-
stant coefficients.

Example 2.1. Classification.
2
1. ZTZ + 5y = 0: Second-order, linear, constant coefficient, homoge-
neous.
2.y + x2y = sin x: Third-order, linear, non-homogeneous.

3. % + y* = x: First-order, non-linear (due to the y? term).

Xl

2.2 Solutions to Differential Equations

Unlike algebraic equations, where solutions are numbers, the solu-
tion to a differential equation is a function (or a family of functions).
We distinguish between three types of solutions.

Definition 2.3. Types of Solutions.

1. An explicit solution is a function y = ¢(x) which, when substi-
tuted into the differential equation, satisfies the identity for all x in
an interval.

2. An implicit solution is a relation G(x,y) = 0 which defines y as
a function of x (locally) such that the function satisfies the differ-
ential equation.

3. The general solution is a family of functions containing arbitrary
constants (parameters). For an n-th order equation, the general so-

lution typically contains n independent constants.

Example 2.2. Families of Curves. Consider the first-order equation

% = 2x. Integration yields y = x? + C. This is the general solution,

representing a family of parabolas. Figure 2.1: Family of parabolas

- If we specify an initial condition, say y(0) = 1, we determine C =

o ) . : ) y=x*+C.
1, yielding the particular explicit solution y = x~ + 1.
- Consider the equation % = —;. Separating terms gives ydy =
—xdx. Integration yields %yz = —%xz + Cp, or x> + y?> = C. This

%
o

Figure 2.2: Family of circles
x> +y*=C.
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is an implicit solution describing a family of circles.

.4

2.3 Separation of Variables

The most elementary technique for solving first-order ODEs is the
method of separation of variables. This applies to non-linear equa-
tions where the dependence on x and y can be factored.

Theorem 2.1. Separable Equations.
A first-order differential equation is separable if it can be written in the
form:

W — g(on(y)

If h(y) # O, the general solution is given implicitly by:

/h(ly)dy:/g(x)dx—i—C

Proof
We treat y as a function of x. Rearranging the equation gives:

L dy
) dx S

We integrate both sides with respect to x:

/mgdx:/g(x)dx

On the left-hand side, we apply the substitution rule. Let u = y(x),
then du = y/(x)dx. The integral becomes:

/ﬁdu = /g(x)dx

This yields the required relation.
[

Remark.

One must be careful with division. The roots of h(y) = 0 corre-
spond to constant solutions y(x) = ¢, known as equilibrium solutions.
These are often lost during the separation process and must be
checked separately.

31
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Examples and Applications

We illustrate the method with a series of examples ranging from
elementary geometry to mechanics.

Example 2.3. Exponential Growth and Decay. Consider the linear
equation Z—Z = ky. Separating variables (assuming y # 0):

1
fd:/kdx

Inly| =kx+ C;

Exponentiating both sides yields |y| = e©1eF*. Letting C = +e“1, we
obtain y = Ce**. Note that y = 0 is an equilibrium solution, which
is recovered if we allow C = 0.

bl
Example 2.4. Implicit Solutions. Solve % = —% with initial condi-
tion y(4) = —3.
/ ydy = / —xdx
1, 1,
Ey = 2x + C]
P +yP=C

Using the initial condition (4, —3): 4% + (=3)?> = 16 +9 = 25,50
C = 25. The implicit solution is x? + y?> = 25. Solving for y gives
two branches: y = +1/25 — x2. Since y(4) = —3, we must select the

negative branch:
y=—V25—x2

#b
Example 2.5. Complex Algebraic Separation. Find the general solu-
tion to % = \/% Separating variables:

/y*3dy = /x(l—l—xz)*l/zdx

For the right-hand integral, let u = 1+ x2, so du = 2xdx.

-2
y _ _ %/uil/zdu = %(2u1/2) + Co

2
1
—=— = V1+x2+Co
2y
Rearranging for y:

—1 -1
2
Y 2(V1+ 224 Co) Y 2V1+x2+C

-2 -1 1 2

Figure 2.3: Exponential solu-
tions y = Cek*: growth (k > 0,
blue) and decay (k < 0, red).

Figure 2.4: Circle x> + y?> = 25
with particular solution

y = —v/25 — x? highlighted.
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This solution is valid only where the term under the square root is
non-negative.

Example 2.6. Trigonometric Substitution. Solve % = . Sepa-
rating variables implies:

/ dy / dx

V1-1? V1—x?

Recognising the standard integrals (inverse sine):
arcsiny = arcsinx + C

Taking the sine of both sides yields the explicit form y
sin(arcsinx + C). Using the addition formula sin(A + B)
sin A cos B + cos A sin B:

y=xcosC+v1—x2sinC

$o19]

2.4 Applications to Dynamics

Differential equations naturally arise in physics, particularly in me-
chanics where Newton’s Second Law relates force to acceleration (the
second derivative of position).

Theorem 2.2. Newton’s Second Law.
The motion of a particle of mass m subject to a force F is governed by:

F*ma*mdz—x*md—v
o T2 T dt

where v is velocity and x is position.

i

When the force depends only on velocity (e.g., air resistance), we can
solve for velocity as a function of time. Often, however, we wish to
find velocity as a function of position. We employ the chain rule to
transform the derivative:

_dv  dvdx dv

Tt dedt Udx

This substitution reduces the second-order equation in time to a first-

a

order separable equation in space.
Example 2.7. Velocity-Dependent Force. Consider a particle of mass
m subject to a drag force F = —puv>. We wish to find the velocity



2.5

34 GUDFIT

v as a function of position x, given an initial velocity vg at x = 0.
Using F = ma:
—uv® = mv@
KO =00y
Assuming v # 0, we cancel one factor of v:
dv
—uv? = m—
pot =m_
Separating variables:
i =020
Integrating both sides:
Py +C=-0v!
1
=By +C
m

Atx=0,v=19g,s0C=1/vg.

1 X 1 VX +m
1_px 1 pooxtm

0 m (] mog

Inverting gives the explicit solution:

o(x) = 0
HUoX +m

$o19]

Modelling with First-Order Equations

Having developed the method of separation of variables, we now
apply it to model dynamic systems. We examine three archetypal
classes of problems: natural growth and decay, the logistic constraints
of populations, and the geometric problem of orthogonal trajectories.

Exponential Growth and Decay

The simplest dynamic model assumes that the rate of change of a
quantity y(f) is proportional to its current size. This assumption
governs phenomena ranging from radioactive decay to compound
interest and unrestricted biological reproduction.

Definition 2.4. The Law of Natural Growth.
A quantity y(t) obeys the law of natural growth (or decay) if it satis-

Figure 2.5: Velocity decay

v(x)
drag.

mog
HUgX+m

under cubic
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fies the linear differential equation:

dy _
=

where k is a constant. If k > 0, it is a growth constant; if k < 0, itis a
decay constant.

The solution is immediate via separation of variables. Assuming
y#0: .
/?dy:/kdt — Inly| =kt +C

Exponentiating yields y(t) = yoe", where yo = y(0) is the initial
quantity.

Parameters of the Model

For decay models (k < 0), it is customary to characterize the sub-
stance by its half-life T, the time required for the quantity to reduce to
half its initial value.

%yozyoeh = kt=In(1/2) = -In2 = T:_lnTZ

Conversely, for growth models, the doubling time is T p,p1, = 1“72

Example 2.8. Radioactive Decay. Let m(t) denote the mass of a ra-

dioactive isotope. The decay is governed by m/(t) = km(t). Suppose Fi 6 E 1 d
a sample of "Balonium" has a half-life of 1 year. We wish to deter- 1gur.e 20 xpo?enha .ecay
. - . . showing successive half-lives.
mine the remaining percentage after 0.1 years. First, we determine

k:
k= _lnTZ ~ —0.693

The mass function is m(t) = mge =069 At t = 0.1:

m(0.1)
Mo

= 009 ~ 0933

Thus, approximately 93.3% of the substance remains.

$15)
Remark.

Model Limitations: The exponential model for population growth
P(t) = Ppelt implies that P — oo as t — 0. In a finite universe, this
is physically impossible. Exponential models are thus valid only
over short time intervals where resources are effectively infinite.

For long-term predictions, we require a model that accounts for
environmental constraints.
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The Logistic Equation

To address the limitations of exponential growth, we introduce the
Logistic Model. This model assumes that the per-capita growth rate
%%’ is not constant, but decreases linearly as the population ap-

proaches a limiting value K, known as the carrying capacity.

Definition 2.5. Logistic Differential Equation.
The logistic equation is given by:

dap p

— =kP|1—-—

i~ (%)
where k > 0 is the intrinsic growth rate and K > 0 is the carrying
capacity.

Qualitative Analysis

Before solving the equation analytically, we can deduce the global
behaviour of solutions by examining the phase line (the sign of P’).
- Equilibria: P’ =0 when P =0o0r P =K.
- Growth: If 0 < P < K, then P’ > 0, so the population increases
towards K.
- Decay: If P > K, then P’ <0, so the population decreases towards
K.
To determine the concavity of the solution curves, we differentiate the
ODE with respect to t using the Chain Rule:
P d [ k Pz] dP 2k _dP

el L -l Bl il ey

dP 2P
=" (1 B K>

Since P’ > 0for 0 < P < K, the sign of the second derivative is

determined by the term (1 —2P/K).

- If 0 < P < K/2, then P” > 0 (concave up). The growth accelerates.

- IfK/2 < P < K, then P” < 0 (concave down). The growth
decelerates.

- The point P = K/2 is an inflection point where the growth rate is
maximal.

Analytic Solution

We solve the equation by separating variables:

/P(KK_P)dP_./kdt



K/2
Inflection

The integrand on the left admits a partial fraction decomposition:

_x _1., 1
P(K—P) P K-P

Integrating term by term:

In|P|—In|K—P|=kt+C

In P
K—-P

—k+C

Exponentiating and solving for P (assuming 0 < P < K for the
moment): b X

k—p =2 = PO =14
where A is a constant determined by the initial population P,. Specif-
ically,att =0, A= (K—Py)/D.
Example 2.9. Population Prediction. Suppose a population obeys
logistic growth with carrying capacity K = 1000 (in millions). If
P(1990) = 250 and P(2000) = 275, we predict the population in
2100. Let t = 0 correspond to 1990. Thus Py = 250.

1000 — 250

A 250

3

The solution is P(t) = 153’29,“. We use the data point at t = 10 (year
2000) to find k:

1000 _oc 1000
275 = ——— 1 - 2P s
5= = 1% 77g ~ 3.636

In(0.8788)

3¢ 10k 2636 = ¢ 1% 08788 — k~ — 5

~ 0.0129

PRELUDES TO DYNAMICS 37

Figure 2.7: Solutions to the
Logistic Equation. Trajectories
approach the carrying capacity
K asymptotically. The growth is
fastest at P = K/2.
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For the year 2100, t = 110:

1000 1000 -
P(110) = 17 3¢ 0019110 S TT 3(0242) ~ 579 million

.41

Orthogonal Trajectories

In geometric optics and electrostatics, one often encounters two fami-
lies of curves that intersect at right angles. For instance, equipotential
lines are orthogonal to electric field lines.

Definition 2.6. Orthogonal Trajectories.

tion:
dy 1
dx — f(xy)
Geometrically, the product of the slopes of orthogonal curves is —1.

Example 2.10. Circles and Lines. Consider the family of circles cen-
tred at the origin, x> + y> = R2. We wish to find their orthogonal
trajectories. Differentiating the equation of the circles implicitly
with respect to x:

dy dy _ x
x0T T y

2x + 2y

This gives the slope of the tangent to the circle at (x,y). The slope
of the orthogonal trajectory must be the negative reciprocal:

(dy) ___ 1y
dx orth_ —x/y_x

We solve this new separable differential equation:

dy _y 1, _[1
dx  «x :/ydy_/xdx

Inly| =In|x|+C = y =mx

Thus, the orthogonal trajectories to the family of concentric circles
are lines passing through the origin, consistent with geometric

intuition.

X

Given a family of curves defined by the differential equation y' = f(x,y),
the orthogonal trajectories are the solution curves to the differential equa-

Figure 2.8: Circles x> + y? = R?
(blue) and their orthogonal

trajectories y
red).

mx (dashed



Example 2.11. Hyperbolas. Find the orthogonal trajectories to
the family of hyperbolas xy = C. Differentiating xy = C yields
y+xy = 0,s0y = —y/x. The differential equation for the orthog-
onal trajectories is:

dy 1 x

dx —y/x - y

Separating variables:
Lo, 1,
/ydy:/xdx = Y =5% +K

Rearranging gives y2 — x2 = 2K. This represents a family of hyper-
bolas rotated by 45° relative to the original family.

X

Mixing Problems

A classic application of first-order linear equations involves the mix-
ing of fluids in a tank. The governing physical principle is the conser-
vation of mass (or amount of substance).

Proposition 2.1. The Mixing Rate Law.

change of Y is given by:
dy
—— = Rate In — Rate Out
dt
where each rate is calculated as (Flow Rate) x (Concentration).
PN
o 28

Example 2.12. Saline Tank. Consider a tank containing 1000 L of
water in which 15 kg of salt is dissolved. Pure water enters the tank
at a rate of 10 L/min. The solution is kept thoroughly mixed and
drains from the tank at the same rate of 10 L/min. We determine
the amount of salt Y (¢) remaining after 20 minutes.

1. Rate In: Since pure water enters, the concentration of salt is 0.

Rate In = 10 L/min x 0 kg/L = 0 kg/min

2. Rate Out: The volume of fluid in the tank remains constant at

time f is Y (¢) /1000 kg /L.

o . Y(#) L Y(t) .
Rate Out = 10 L/min X 1000 kg/L = 100 kg/min

Let Y() be the amount of a substance in a tank at time f. The rate of

V = 1000 L (since flow in equals flow out). The concentration at
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Figure 2.9: Orthogonal tra-
jectories: xy = ¢ (blue) and
y? — x? = k (dashed red).

In: 74,

Iﬁ/

Y (), V(#)

¥/i/—> Out: 7oyt

Figure 2.10: Mixing tank: fluid

enters at rate r;,, exits at rate

Yout-
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The differential equation is:

ay _,_ Y __ 1
dar 100 100

This is a standard exponential decay equation. With initial condi-
tion Y (0) = 15:
Y(t) = 15¢~1/10

At t = 20 minutes:
Y(20) = 15207100 — 15,702 ~ 12,28 kg

Xl

2.6 The Integrating Factor Method

We have seen that the method of separation of variables applies only
to a restricted class of differential equations. We now turn our atten-
tion to the general first-order linear differential equation. Linearity
allows us to develop a systematic algorithm for constructing the
general solution, relying on a clever transformation that reduces the
differential equation to a standard integration problem.

Definition 2.7. Standard Form.
A first-order linear ordinary differential equation is an equation that
can be written in the form:

W Py = Q)

where P and Q are continuous functions on a given interval.

bl
o

Derivation of the Method

Consider the equation in standard form. Our goal is to transform the
left-hand side into the derivative of a product. Recall the product rule
for differentiation:

2 ) = w0 2 4. 2

dx  dx

y

Comparing this with our equation Z—Z + P(x)y = Q(x), we see that
if we multiply the entire equation by a non-zero function u(x), we
obtain:

B % 4 () P()y = p(x) Q)



PRELUDES TO DYNAMICS

For the left-hand side to be the exact derivative % [iy], the second
term must satisfy:

dp _
o (x)P(x)

This is a separable differential equation for the auxiliary function
1(x), which we call the integrating factor. Separating variables:

1
—du = P(x)dx
e (x)

Integrating yields In |u| = | P(x) dx. Exponentiating, we choose the
simplest particular solution (setting the integration constant to zero):

u(x) =exp (/ P(x) dx)

With this choice of y(x), the differential equation becomes:

2 u(x)y] = 1) Q)

Integrating both sides with respect to x (by the Fundamental Theo-
rem of Calculus):

HEy = [ m(x)QM)dx +C
Solving for y gives the general solution.

Theorem 2.3. General Solution of Linear First-Order ODEs.
The general solution to the equation ¥’ 4+ P(x)y = Q(x) is given by:

y(x) = [/y(x)Q(x) dx+C

1
p(x)

where p(x) = e/ P dx,

Note

While the formula exists, it is pedagogically superior to perform
the steps (multiply, collapse derivative, integrate) for each spe-
cific problem. This provides a natural check: if the left-hand side
does not collapse into a perfect derivative, an error has occurred in

calculating p(x).

Examples

We illustrate the robustness of this method with several examples,
including cases where variable substitution is required.
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Example 2.13. Polynomial Coefficients. Consider the equation:

dy — 4,3
xa+2y—4x, x>0

First, we normalize the equation to standard form by dividing by x:

Here P(x) = 2/x. We calculate the integrating factor:

1(x) = exp (/idx) = exp(2Inx) = exp(Inx?) = 2

Multiplying the standard form by p(x) = x2:

d
24y
ol

—Z 4 2xy = 4x*
x+xy X

We observe that the LHS is indeed % [x?y]. Thus:

d
) =4

Integrating both sides:
2 4 4 5
xy:/4x dx:gx +C

Solving for y:

b
Example 2.14. Transcendental Functions. Solve the initial value
problem:
xy + (1+x)y =e *sin(2x), y(n)=1

Divide by x to standardise (assuming x # 0):

1 ~*sin(2
y,+< —I—x)y:e sin(2x)

x X
, 1 _ e ¥sin(2x)
y+ <x + 1) y=—">

The integrating factor is:

u(x) =exp (/ (ch + 1) dx) =exp(In|x| + x) = |x|e*

Restricting to x > 0 for the initial condition at 77, we use u(x) =
xe*. Multiplying the standardised equation by xe*:
e *sin(2x)

x

1
xe*y' + xe* <x + 1) y = xe"
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Simplifying the coefficients:
xey + (e + xe¥)y = sin(2x)

Recognising the reverse product rule (xe*)’ = e + xe*:

% [xe*y] = sin(2x)

Integrate:

xe'y = /sin(2x) dx = —% cos(2x) +C

Applying the initial condition y(71) = 1:

1 1 1
ne”(l):ficos(2n)+c = ne”:—§+c = C:ne”JrE

The specific solution is:

me™ + 3 — 1 cos(2x)
xe*

y(x) =
#b
Example 2.15. Swapping Variables. Occasionally, a non-linear equa-
tion in y(x) becomes linear if we regard x as the dependent variable
and y as independent. Consider:
ydx+ (2xy —e ¥)dy =0
Rearranging terms:
dx )
42 — Y
y dy +2xy =e
Dividing by y (standard form for x(y)):

dx e~
—+2x=—
dy Y
Here the independent variable is y. The integrating factor is y(y) =
el 24y — % Multiplying the equation by e%:
-2
ezydi +262yx = eZyﬂ — 1

dy y
Recognising the derivative:

i[XEZy] = 1

dy y
Integrating with respect to y:

xe¥ =1Inly| +C
x(y) = e ¥ (Inly| +C)
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Existence and Uniqueness

The explicit construction of the solution leads to a fundamental result
in the theory of linear ODEs. Unlike non-linear equations (e.g., ' =
y?/3), which may fail to have unique solutions at certain points, linear
equations behave predictably.

Theorem 2.4. Existence and Uniqueness for Linear ODEs.
If P(x) and Q(x) are continuous on an interval (a,b) containing x(, then
for any yp € R, there exists a unique solution y(x) to the initial value
problem
Y +P(x)y = Q(x), y(x0) =0
defined on the entire interval (a, b).
il

Proof

The formula derived in theoren 2.3 provides an explicit candidate
for the solution. Since P and Q are continuous, j(x) is continu-
ously differentiable and non-zero. The integral of uQ exists by the
Fundamental Theorem of Calculus. Thus, existence is guaranteed.
Uniqueness follows from the fact that each step in the derivation
(multiplication by non-zero y, integration) is reversible.

2.7 Second-Order Linear Homogeneous Equations

We conclude this chapter by examining a specific yet ubiquitous class
of differential equations: second-order linear homogeneous equations
with constant coefficients. These equations govern the dynamics of
mechanical vibrations, electrical circuits, and quantum mechanical

wavefunctions.

Definition 2.8. Constant Coefficient Homogeneous Equation.
A second-order linear homogeneous differential equation with constant
coefficients is of the form:

2 dy

dy _

where a,b,c € R are constants and a # 0.

The Characteristic Equation

To find the general solution, we exploit the property that the deriva-
tive of an exponential function is a multiple of itself. We propose a
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trial solution of the form y = ¥, where A is a constant to be deter-
mined. Substituting derivatives ' = Ae** and y” = A%eM into the
differential equation yields:

a(A2e™) + b(Ae™) +c(e?) =0

Factoring out the non-zero term e**:

M (aA? +bA4¢) =0

Since e* # 0, the characteristic parameter A must satisfy the alge-
braic equation:
aA* +bA+c=0

This quadratic equation is called the characteristic equation (or auxil-
iary equation). Its roots determine the nature of the solution.

Classification of Solutions

The roots of the characteristic equation are given by the quadratic

—b+Vb?>—4dac
’ 2a
We distinguish three cases based on the discriminant A = b? — 4ac.

formula:

Case I: Distinct Real Roots (A > 0)

If A > 0, there are two distinct real roots A; and A;. These generate
two fundamental solutions y; = eM* and y, = e2*. Since Ay # A,
these functions are linearly independent (their Wronskian is non-
zero). By the principle of superposition for linear equations, the
general solution is:

y(x) = c1eM 4 cpel2¥

Example 2.16. Real Roots. Solve y”" — 3y’ + 2y = 0. The characteris-
tic equation is A2 — 3\ +2 = 0, which factors as (A — 1)(A —2) = 0.
The roots are Ay = 1and A, = 2. The general solution is y(x) =
c16* + cpe?*.

$o19]

Case II: Repeated Real Roots (A = 0)

If A = 0, there is a single repeated root A = —b/2a. This yields only
one exponential solution y; = e**. To form the general solution,
we require a second linearly independent solution. We verify that

yo = xe* is a solution. Differentiating »:

yé — e/\x +AxeAx
vy = AeM 4 AeM 4 A2xe = 20eM 4 AZxet
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Substituting into ay” + by’ + cy = 0 (and noting b = —2aA and
c = al?):

a(2A + A2x)eM — 2aA (1 + Ax)e™ +ar?(x)eM =0

Terms involving x sum to aA? — 2aA? + aA? = 0. Constant terms sum
to 2aA — 2aA = 0. Thus, y; is a solution. The general solution is:

Ax )\X(

y(x) = c1e™ 4 cpxe e (c1 + cx)

Example 2.17. Critical Damping. Solve i’ + 4y’ + 4y = 0. Character-
istic equation: A2 +4A +4 = (A +2)? = 0. Root: A = —2 (repeated).
General solution: y(x) = c1e~2¥ + coyxe 2.

ERl

Case III: Complex Conjugate Roots (A < 0)

If A < 0, the roots are complex conjugates A = a £ i, where

a = —b/2aand B = V4ac — b?/2a. The formal solution is y =
Kle(’”’ﬁ)x + Kze(”"iﬁ)x. Using Euler’s formula ¢ = cos@ + isin 0, we
can extract real-valued solutions.

e(WHB)X — %% (cos Bx + i sin )
e@WiB)Y — %% (cos Bx — i sin i)
By taking linear combinations, we isolate the real and imaginary

parts:
y1 = e**cosBx, Yo = e*sinPx

The general real-valued solution is:
y(x) = " (c1 cos Bx + ¢z sin x)

Example 2.18. Simple Harmonic Motion. Solve y”" 4+ w?y = 0. Char-
acteristic equation: A2 + w? = 0 = A = Fiw. Herea = 0and
B = w. General solution: y(t) = c1 cos wt + ¢, sin wt. This describes
undamped oscillations with angular frequency w.

#h)
Example 2.19. Damped Oscillations. Solve the initial value problem
v ' +2yY +57 = 0, y(0) = 1,¥/(0) = 3. Characteristic equa-

tion: A2+ 20 +5 = 0.Roots: A = —2=Y420 — 1+ i Thus
a = —1,B8 = 2. General solution: y(x) = e *(cq cos2x + c; sin2x).

Applying initial conditions:

y(0)=1(c1-14+c2-0)=c1 = 1 =1




Differentiating y(x):
y'(x) = —e *(cos2x + cp sin2x) + e *(—2sin 2x + 2c; cos 2x)

Y(0) = ~1(1) +1(26) = ~1+ 2,
Setting y/'(0) = 3:

—14200=3 = 200=4 = ¢, =2

Solution: y(x) = e~ *(cos2x + 2sin 2x).
b

y

™ —x 1
e~ * envelope
\

2.8 Summary of Methods

Equation Type General Solution

Separable iy’ = ¢(x)h(y) % = [g(x)dx+C

Linear y/ + P(x)y = Q(x)  y = &= [/ n(x)Q(x)dx+C], = el Pix
ay” +by' +cy=0(A>0)

AX

ay" +by' +cy=0(A=0) y=cre™+cyxe

ay” +by' +cy=0(A <0) y=e"(cqcosBx+ cysin fx)

This concludes our introductory study of differential equations. The
techniques established here form the bedrock for analyzing more
complex systems, including forced oscillations (ay” + by’ + cy = F(x))
and systems of coupled equations, which will be explored in future
analysis courses.
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Figure 2.11: Solution to a
damped harmonic oscillator.
The amplitude decays expo-
nentially while the frequency
remains constant.

Table 2.1: Classification of so-
lutions for standard differential
equations.
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Exercises

1. Classification and Verification. Classify the following differential
equations by order, linearity, and homogeneity. Verify the indi-
cated solution.

(@) ¥y +y=tanx; y(x)= —cosxIn(secx + tanx).
(b) 2y —xy' +y=0; y(x)=xInx (for x > 0).
© v =%+tan(); sin(y/x)=Cx.

2. Separation of Variables. Find the general solution to the follow-
ing equations. Express the solution explicitly where possible.

@ (1+eY)yy' =e"
dy _ X>+xy+y?
(b) 2= %
Remark.
Hint: This is a homogeneous polar equation. Substitute y =
vX.
(c) e¥sin(2x)dx + cos x(e? —y)dy = 0.
3. Linear First-Order and Integrating Factors. Solve the following
initial value problems.
(a) Z—Z—%:dxex, y(1)=e—1.
(b) (x*+1)7 +3xy=6x, y(0)=2.
(©) ¥ +ycosx = }sin(2x), y(0)=1.
4. Second-Order Constants. Determine the general solution for the
following second-order equations.
(@) ¥y’ —4y +13y =0.
®) v —6y' +9y =0.
(© y"+ (w? —€)y = 0, where e < w?. Use the approximation
V1 —x~1—x/2 to describe the behaviour of the frequency.

5. Population Dynamics. A population P(t) obeys the logistic equa-
tion with carrying capacity K and intrinsic rate r.

(a) Prove that the rate of population growth is maximised when
P =K/2.

(b) If the population starts at Py = K/3, how long does it take to
reach 2K/3? Express your answer in terms of r.

6. Bernoulli’s Equation. A differential equation of the form

¥ +P(x)y=Qx)y", n#0,1
is non-linear but can be reduced to a linear form.

(a) Make the substitution u = y!~". Show that the equation
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transforms into the linear equation:

1
1—n

u' + P(x)u = Q(x).

(b) Use this method to solve the logistic equation P’ = kP — %PZ
purely as a Bernoulli equation (identifying n = 2).

(c) Solve xy’ +y = x?y? with y(1) = 1.

7. Reduction of Order. Suppose we know one non-trivial solution
y1(x) to the second-order linear homogeneous equation:

y'+P(x)y +Q(x)y = 0.

(a) Lety(x) = v(x)yi(x). Differentiate and substitute this into
the ODE to show that v(x) satisfies the separable equation:

y19” + (2y] + Py;)v' = 0.

(b) By solving for v/, derive the formula for the second linearly
independent solution:

exp (— [ P(x)dx) p
y1(x)?

X.

1) =n) |

(c) Use this method to find the general solution to x2y" + xy’ —

y = 0 given that y; = x is a solution.

8. The Riccati Equation. The non-linear equation y’ = go(x) +
71(x)y + g2(x)y? is known as a Riccati equation.

(a) Show that the substitution y = — q%u transforms the Riccati
equation into the second-order linear equation:

!/
u” — (q1 + 612) u' + gagou = 0.
q2

(b) Solve the equation ¥’ = 1+ x? + y? is generally difficult,
but solve the simpler case y' = 1 + y? using this substitution
method and verify it matches the tangent solution.

9. Orthogonal Trajectories in Polar Coordinates.

(a) If a curve is given in polar coordinates by r = r(6), show that

the angle ¢ between the tangent line and the radial vector
satisfies tan ¢ = r%.

(b) Deduce that the differential equation for the orthogonal tra-

jectories to the family F(r,0,c) = 0 is found by replacing %

: 2do
with —r FrE
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(c) Find the orthogonal trajectories to the family of cardioids
r=a(l+ cos?).

10. The Catenary Problem. A flexible cable of uniform density hangs
between two poles. Let y(x) denote the shape of the cable. Bal-
ancing horizontal and vertical tensions leads to the differential

2 2
‘Lg:k 1+<dy>,

equation:

dx dx

where k is a constant depending on density and tension.

(a) Let p = y'. Solve the resulting first-order separable equation
for p(x).

(b) Integrate p(x) to show that the cable hangs in the shape of a
hyperbolic cosine (catenary): y(x) = } cosh(kx + Cy) + Co.

11. Variable Mass Systems (The Rocket Equation). A rocket of mass
m(t) moves with velocity v(t). It expels fuel at a constant speed
u relative to the rocket. By conserving momentum over a time
interval At, the equation of motion (ignoring gravity) is:

it dt’
(a) Solve this differential equation to derive Tsiolkovsky’s rocket
equation:
v(t) =vg+uln (%) .
(b) Now include gravity g. The equation becomes m% = —u% -
mg. Solve for v(t) assuming the burn rate 2% = —a is con-
stant.

12. Cauchy-Euler Equations. An equation of the form ax?y” + bxy' +
cy = 0 is a Cauchy-Euler equation.

(a) Use the substitution x = e to transform the equation into
a constant coefficient equation in terms of the independent

variable t.

Remark.
dy _ dy od?y  dby  dy
Showthatxﬂ =4 and x =3 d@r

(b) Solve x?y" — 2xy’ + 2y = 0 using this method.
(c) Generalise the method to solve x?y" — 3xy’ + 4y = 0 (Re-

peated roots case).

13. Pursuit Curves. A rabbit runs up the y-axis with constant speed v.
A dog starts at (L,0) and chases the rabbit with speed kv, always
running directly towards the rabbit’s current position.
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(a) Let (x,y) be the dog’s position. Explain why the line of sight

condition implies % = y_xvt, where t is time.

(b) Use the chain rule t = [ ds/(kv) and the arc length formula
to derive the second-order equation:

Py _ dy\’

(c) Using the substitution p = y//, solve the equation. Show that if
k =1, the dog never catches the rabbit.

14. Torricelli’s Law and Uniqueness. Water drains from a tank
through a hole in the bottom. The depth K(t) satisfies i’ = —kv/h.

(a) Solve the equation given h(0) = H. At what time T does the
tank empty?

(b) Consider the solution %(t) = 0 for all . Show that at the point
where the tank empties, the solution is not unique by splicing
the non-zero solution with the zero solution.

(c) Relate this failure of uniqueness to the condition on g—flz in the
Existence and Uniqueness Theorem near i = 0.

15. Integral Equations. Consider the Volterra integral equation:

y(x) =3+ /Ox(t — xX)y(t) dt.

(a) Differentiate the equation with respect to x twice to convert
it into a second-order initial value problem. (Use Leibniz’s
Integral Rule).

(b) Solve the resulting ODE to find the function y(x).
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