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0
Further Convergence Criteria

While the Comparison and Ratio Tests suffice for many series, their
efficacy is limited by the need for explicit inequalities or the exis-
tence of a limit distinct from unity. To address simpler asymptotic
behaviours and the delicate boundary between convergence and di-
vergence, we introduce the Limit Comparison Test and the Root Test,
followed by the refined Raabe and Gauss tests.

0.1 The Limit Comparison Test

The Direct Comparison Test requires a global inequality an ≤ bn. Of-
ten, two series exhibit identical asymptotic behaviour, yet satisfy no
simple inequality. The Limit Comparison Test formalises the intuition
that if an ≈ cbn for large n, the series must behave identically.

Theorem 0.1. Limit Comparison Test.
Let ∑ an and ∑ bn be series with strictly positive terms. Suppose that
the limit exists:

lim
n→∞

an

bn
= c

(i) If 0 < c < ∞, then ∑ an and ∑ bn either both converge or both
diverge.

(ii) If c = 0 and ∑ bn converges, then ∑ an converges.
(iii) If c = ∞ and ∑ bn diverges, then ∑ an diverges.

定理

Proof

We prove (i). Since an/bn → c > 0, for ϵ = c/2, there exists N such
that for all n ≥ N:

c
2
<

an

bn
<

3c
2

=⇒ c
2

bn < an <
3c
2

bn

The result follows immediately from the Direct Comparison Test. If
∑ bn converges, ∑ an is bounded by a convergent multiple of ∑ bn.
If ∑ bn diverges, ∑ an is bounded below by a divergent multiple.
Cases (ii) and (iii) follow similarly from the definitions of limits 0
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and ∞.
■

Example 0.1. Rational Functions. Consider the series ∑∞
n=1

n+1
2n3−1 .

For large n, the term behaves like n/2n3 = 1/(2n2). We compare
with bn = 1/n2.

lim
n→∞

an

bn
= lim

n→∞

n2(n + 1)
2n3 − 1

=
1
2

Since 0 < 1/2 < ∞ and ∑ 1/n2 converges (p = 2), the original series
converges.

範例

The Root Test

The Ratio Test estimates convergence by comparing a series to a ge-
ometric series locally (term-by-term). The Root Test achieves this
globally. It is strictly stronger than the Ratio Test, as it does not re-
quire the limit of ratios to exist.

Theorem 0.2. Cauchy’s Root Test.
Let ∑ an be a series and let

L = lim sup
n→∞

n
√
|an|

(i) If L < 1, the series converges absolutely.
(ii) If L > 1, the series diverges.

(iii) If L = 1, the test is inconclusive.
定理

Case L < 1

Choose r such that L < r < 1. By the definition of limits, there ex-
ists N such that for all n ≥ N, n

√
|an| < r, which implies |an| < rn.

The series is dominated by the convergent geometric series ∑ rn.
証明終

Case L > 1

There exists a subsequence where nk

√
|ank | > 1, implying |ank | > 1.

The terms do not tend to zero, so the series diverges.
証明終

Note

The Root Test can determine convergence where the Ratio Test
fails or is inapplicable, such as for the rearranged geometric series
1/2 + 1 + 1/8 + 1/4 + . . . where consecutive ratios oscillate but the
root limit is constant.
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Refined Ratio Tests

When the Ratio Test yields L = 1, the series falls into a "grey zone"
of polynomial decay, typically behaving like 1/np. To resolve these
cases, we examine the rate at which the ratio approaches 1.

Theorem 0.3. Raabe’s Test.
Let ∑ an be a positive series. Suppose that:

lim
n→∞

n
(

an

an+1
− 1
)
= ρ

(i) If ρ > 1, the series converges.
(ii) If ρ < 1, the series diverges.

定理

Proof

If ρ > 1, choose p such that 1 < p < ρ. For large n, we have
n(an/an+1 − 1) > p, which rearranges to:

an+1

an
< 1 − p

n

Using the Taylor expansion (1 − 1/n)p = 1 − p/n + O(1/n2),
we can compare an with the sequence bn = 1/np. Since p > 1,
∑ 1/np converges, implying ∑ an converges. The divergence case is
analogous.

■

For series involving products of arithmetic progressions (hypergeo-
metric series), Gauss provided the definitive criterion.

Theorem 0.4. Gauss’s Test.
Let ∑ an be a positive series. Suppose the ratio admits the asymptotic
expansion:

an

an+1
= 1 +

µ

n
+ O

(
1

n1+ϵ

)
(ϵ > 0)

Then ∑ an converges if µ > 1 and diverges if µ ≤ 1.
定理

Note

Gauss’s Test resolves the case ρ = 1 in Raabe’s Test, confirming di-
vergence (like the harmonic series).

0.2 Case Study: Liu Hui’s Circle Division

We conclude this section with a historical application that serves as
an early precursor to modern series acceleration methods. In the 3rd
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century AD, the Chinese mathematician Liu Hui sought to calculate
π by inscribing regular polygons in a circle.
Let the circle have radius R = 1. Let Sn denote the area of a regular
polygon with N = 6 · 2n−1 sides. Using basic geometry, the area is
given by:

Sn = 3 · 2n−1 sin
( π

3 · 2n−1

)
As n → ∞, Sn → π. This generates a series of increments an =

Sn − Sn−1. Using the Taylor expansion sin x ≈ x − x3/6, we can
analyze the error term ∆n = π − Sn. Let xn = π

3·2n−1 . Then Sn =

π
xn

sin xn ≈ π
xn
(xn − x3

n
6 ) = π − πx2

n
6 . Since xn+1 = xn/2, the error

scales predictably:

π − Sn+1 ≈ 1
4
(π − Sn)

This asymptotic relationship implies that the error reduces by a factor
of 4 at each step (linear convergence with rate 1/4). Liu Hui empir-
ically observed this regular loss and proposed an extrapolation to
recover the limit.

π − Sn+1 ≈ 1
4
(π − Sn)

4π − 4Sn+1 ≈ π − Sn

3π ≈ 4Sn+1 − Sn

π ≈ Sn+1 +
1
3
(Sn+1 − Sn)

This formula, known as Richardson Extrapolation, allowed Liu Hui
to obtain a high-precision value of π from a relatively coarse poly-
gon.

P0

Pnew

P1

Hexagon
Dodecagon

Figure 1: Liu Hui’s method of
circle division. The area of the
inscribed polygon approaches
the area of the circle as the
number of sides doubles.

The corresponding infinite series is geometric in nature:

π = S1 +
∞

∑
n=2

(Sn − Sn−1)
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Liu Hui’s insight was that the tail of this series could be approxi-
mated by the tail of a geometric series with ratio 1/4, significantly
accelerating the convergence.

0.3 Kummer’s Criterion and Universal Scales

While the Ratio, Raabe, and Gauss tests provide a hierarchy of crite-
ria for convergence, they are but specific instances of a more general
principle established by Kummer. This criterion unifies the compari-
son methods into a single powerful theorem.

Theorem 0.5. Kummer’s Test.
Let (an) be a sequence of positive terms.

(i) The series ∑ an converges if and only if there exists a sequence
of positive numbers (bn) and a constant δ > 0 such that for all
sufficiently large n:

Kn = bn
an

an+1
− bn+1 ≥ δ

(ii) The series ∑ an diverges if and only if there exists a sequence of
positive numbers (bn) such that ∑ 1/bn diverges and for all suf-
ficiently large n:

bn
an

an+1
− bn+1 ≤ 0

定理

Sufficiency (Convergence)

Suppose the condition holds for n ≥ N. We rearrange the inequal-
ity as:

δan+1 ≤ bnan − bn+1an+1

Summing from n = N to M:

M

∑
n=N

δan+1 ≤
M

∑
n=N

(bnan − bn+1an+1) = bN aN − bM+1aM+1 < bN aN

Since the partial sums are bounded above, ∑ an converges.
証明終

Necessity (Convergence)

If ∑ an converges, let Rn = ∑∞
k=n+1 ak be the remainder. Set bn =

Rn/an. Then:

bn
an

an+1
− bn+1 =

Rn

an+1
− Rn+1

an+1
=

an+1

an+1
= 1

Choosing δ = 1 satisfies the condition.
証明終
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Sufficiency (Divergence)

The condition implies bn+1an+1 ≥ bnan. Thus, the sequence (bnan)

is non-decreasing. For n ≥ N, bnan ≥ bN aN = C > 0, so an ≥ C/bn.
By the Comparison Test, since ∑ 1/bn diverges, ∑ an diverges.

証明終

Necessity (Divergence)

If ∑ an diverges, let Sn = ∑n
k=1 ak be the partial sums. Set bn =

Sn/an. Then:

bn
an

an+1
− bn+1 =

Sn

an+1
− Sn+1

an+1
= −1 < 0

We must show ∑ 1/bn = ∑ an/Sn diverges. This follows from a
standard divergence property: if ∑ an diverges, so does ∑ an/Sn.
(Consider the integral analogue

∫
dx/x = ln x → ∞).

証明終

Note

Kummer’s Test generates the standard tests by specific choices of
the auxiliary sequence (bn):
• Ratio Test: Take bn = 1. The condition becomes an/an+1 − 1 ≥ δ,

or an+1/an ≤ 1/(1 + δ) < 1.
• Raabe’s Test: Take bn = n. The condition becomes n(an/an+1) −

(n + 1) ≥ δ, which rearranges to n(an/an+1 − 1) ≥ 1 + δ > 1.

The Non-Existence of a Universal Scale

Given the hierarchy of tests, one might hope to find a "universal"
comparison series that decides convergence for all series. Specifically,
is there a series that converges "so slowly" that any series decaying
slower must diverge, or a series that diverges "so slowly" that any
series decaying faster must converge? The theorems of Du Bois-
Reymond and Abel resolve this in the negative.

Theorem 0.6. Universal Comparison Theorems.
(i) Du Bois-Reymond: For any convergent positive series ∑ an, there

exists a convergent positive series ∑ bn such that lim
n→∞

an
bn

= 0.

(ii) Abel: For any divergent positive series ∑ an, there exists a diver-
gent positive series ∑ bn such that lim

n→∞
bn
an

= 0.

定理

Proof

(i) Let Rn = ∑∞
k=n+1 ak be the remainder of the convergent series.

Define bn =
√

Rn−1 −
√

Rn (with R0 the total sum). The series
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∑ bn is a telescoping sum converging to
√

R0. Checking the ratio:

an

bn
=

Rn−1 − Rn√
Rn−1 −

√
Rn

=
√

Rn−1 +
√

Rn

Since Rn → 0, the ratio tends to 0. Thus, ∑ bn converges "much
slower" than ∑ an.

(ii) Let Sn be the partial sums of the divergent series. Define
bn = an/Sn. By Theorem 0.5 proof (necessity of divergence),
∑ bn diverges. Checking the ratio:

bn

an
=

1
Sn

Since Sn → ∞, the ratio tends to 0. Thus, ∑ bn diverges "much
slower" than ∑ an.

■

This result implies that there is no "boundary" between convergence
and divergence; the scale is infinitely refutable.

0.4 Tests for Non-Absolute Convergence

In the previous notes, we established the Alternating Series Test for
(well you guessed it) alternating series. We now generalise this to
series of the form ∑ anbn, where (an) provides the sign oscillation
and (bn) provides the decay. These tests rely on a discrete analogue
of integration by parts.

Lemma 0.1. Abel’s Summation Formula.
Let (an) and (bn) be sequences. Let An = ∑n

k=1 ak be the partial sums
of (an). Then:

n

∑
k=1

akbk = Anbn+1 +
n

∑
k=1

Ak(bk − bk+1)

引理

Proof

Write ak = Ak − Ak−1 (with A0 = 0).

n

∑
k=1

(Ak − Ak−1)bk =
n

∑
k=1

Akbk −
n

∑
k=1

Ak−1bk

=
n

∑
k=1

Akbk −
n−1

∑
j=0

Ajbj+1 (shift index j = k − 1)

=
n

∑
k=1

Akbk −
n−1

∑
k=1

Akbk+1 (since A0 = 0)
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= Anbn +
n−1

∑
k=1

Ak(bk − bk+1)

= Anbn+1 + An(bn − bn+1) +
n−1

∑
k=1

Ak(bk − bk+1).

Combining terms yields the result.
■

This is structurally identical to
∫

udv =
uv −

∫
vdu.

Theorem 0.7. Dirichlet’s Test.
Let ∑ an be a series with bounded partial sums (i.e., |∑n

k=1 ak| ≤ M
for all n). Let (bn) be a sequence that is monotonic and converges to
0. Then the series ∑ anbn converges.

定理

Proof

We apply Lemma 0.1. Since bn → 0 and An is bounded, Anbn+1 → 0.
It remains to show that ∑ Ak(bk − bk+1) converges. Since (bn) is
monotonic, the terms (bk − bk+1) have constant sign. Thus:

n

∑
k=1

|Ak(bk − bk+1)| ≤ M
n

∑
k=1

|bk − bk+1| = M|b1 − bn+1|

Since bn → 0, this sum is bounded. The series converges absolutely,
implying the convergence of the original sum.

■

Theorem 0.8. Abel’s Test.
Let ∑ an be a convergent series. Let (bn) be a monotonic and bounded
sequence. Then the series ∑ anbn converges.

定理

Note

Unlike Dirichlet’s Test, Abel’s Test requires ∑ an to converge, but
relaxes the condition on (bn) to mere boundedness rather than
vanishing.

Example 0.2. Trigonometric Series. Consider the series ∑∞
n=1

sin nx
n

for x ∈ R. Let an = sin nx and bn = 1/n. The sequence (bn)

is monotonic and tends to 0. To apply Dirichlet’s Test, we re-
quire the partial sums of sin nx to be bounded. Using the identity
2 sin(x/2)∑n

k=1 sin kx = cos(x/2)− cos((n + 1/2)x), we have:∣∣∣∣∣ n

∑
k=1

sin kx

∣∣∣∣∣ ≤ 2
|2 sin(x/2)| =

1
| sin(x/2)|

Provided x ̸= 2kπ, the partial sums are bounded. Thus, the series
converges for all x not a multiple of 2π.
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範例

0.5 Inequalities and Further Examples

Carleman’s Inequality

A profound result in the theory of series is Carleman’s Inequality,
which asserts that the geometric mean of the terms of a convergent
series decays sufficiently fast to form a convergent series itself.

Theorem 0.9. Carleman’s Inequality.
Let ∑ an be a convergent series of positive terms. Then:

∞

∑
n=1

(a1a2 . . . an)
1/n ≤ e

∞

∑
n=1

an

The constant e is sharp.
定理

Proof

We use the AM-GM inequality with weighted terms. Recall that for

the sequence ck = (k+1)k

kk−1 , we have (c1 . . . cn)1/n = n + 1. Write the
geometric mean as:

Gn = (a1 . . . an)
1/n =

(a1c1 · a2c2 . . . ancn)1/n

(c1 . . . cn)1/n =
(a1c1 . . . ancn)1/n

n + 1

By AM-GM:

Gn ≤ 1
n(n + 1)

n

∑
k=1

akck

Summing over n:

∞

∑
n=1

Gn ≤
∞

∑
n=1

1
n(n + 1)

n

∑
k=1

akck =
∞

∑
k=1

akck

∞

∑
n=k

1
n(n + 1)

The inner sum is telescoping: ∑∞
n=k(

1
n − 1

n+1 ) =
1
k . Thus:

∞

∑
n=1

Gn ≤
∞

∑
k=1

ak
ck
k

=
∞

∑
k=1

ak
(k + 1)k

kk =
∞

∑
k=1

ak

(
1 +

1
k

)k

Since (1 + 1/k)k increases to e, we have ∑ Gn ≤ e ∑ an.
■

Quantitative Rearrangements

We previously established Riemann’s Rearrangement Theorem,
which guarantees that a conditionally convergent series can be re-
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arranged to sum to any value. We now provide a specific calculation
for the alternating harmonic series.

Example 0.3. Rearranging the Harmonic Series. Let ∑ an be a rear-

rangement of ∑ (−1)n−1

n . Suppose we construct the rearrangement
by taking p positive terms followed by q negative terms, repeat-
ing this pattern indefinitely. Let SN be the partial sum. Using the
asymptotic expansion Hn = ln n + γ + o(1), one can derive (see
Riemann’s rearrangement theorem context):

∞

∑
n=1

an = ln 2 +
1
2

ln
(

p
q

)
For the standard series (p = 1, q = 1), the sum is ln 2. If we take two
positive terms for every one negative term (p = 2, q = 1), the sum
shifts to ln 2 + 1

2 ln 2 = 3
2 ln 2. This explicitly demonstrates how the

"density" of positive terms shifts the limit.

範例

0.6 Infinite Products

Just as the study of the difference between consecutive terms of a
sequence an − an−1 leads to the theory of infinite series, the study of
the ratio an/an−1 leads naturally to the theory of infinite products.
While less ubiquitous than series in elementary calculus, infinite
products are indispensable in complex analysis and analytic number
theory, particularly in the study of the Riemann Zeta function and
the Gamma function.

Convergence and Properties

Definition 0.1. Infinite Product.
Let (pn)∞

n=1 be a sequence of non-zero real numbers. The infinite prod-
uct is denoted by:

∞

∏
n=1

pn = p1 p2 p3 . . .

Let Pn = ∏n
k=1 pk be the sequence of partial products.

1. We say the infinite product converges if the limit P = lim
n→∞

Pn ex-

ists and is non-zero. In this case, we write ∏∞
n=1 pn = P.

2. If the limit is zero, or does not exist, or is infinite, the product is said
to diverge. Specifically, if Pn → 0, we say the product diverges to
zero.

定義
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Note

The exclusion of zero from the definition of convergence is to main-
tain the analogy with sums. For a sum, "convergence to infinity" is
divergence; for a product, "convergence to zero" is similarly clas-
sified as divergence. This ensures that a convergent product has a
well-defined multiplicative inverse.

Proposition 0.1. Necessary Condition.
If ∏∞

n=1 pn converges, then lim
n→∞

pn = 1.

命題

Proof

Let P = lim Pn ̸= 0. Then:

pn =
Pn

Pn−1
→ P

P
= 1

■

Consequently, terms in a convergent product are typically written
in the form pn = 1 + an, where an → 0. The study of ∏(1 + an) is
inextricably linked to the series ∑ ln(1 + an).

Theorem 0.10. Logarithmic Criterion.
Let an > −1. The infinite product ∏∞

n=1(1+ an) converges if and only
if the series ∑∞

n=1 ln(1 + an) converges.
定理

Proof

Let Pn = ∏n
k=1(1 + ak). Then ln Pn = ∑n

k=1 ln(1 + ak). The sequence
(Pn) converges to a non-zero limit P if and only if (ln Pn) converges
to ln P.

■

If ∑ ln(1 + an) diverges to −∞, then
Pn → 0, consistent with our definition
of divergence to zero.

This criterion allows us to translate results from series directly to
products.

Theorem 0.11. Convergence Tests for Products.
(i) Positive Terms: If an ≥ 0, then ∏(1+ an) converges if and only

if ∑ an converges.
(ii) Absolute Convergence: We say ∏(1+ an) converges absolutely

if ∏(1+ |an|) converges. Absolute convergence implies ordinary
convergence.

(iii) Conditional Convergence: If ∑ an converges but ∑ a2
n diverges

(and terms alternate), the product may diverge. Specifically, us-
ing ln(1+ x) ≈ x− x2/2, one can show that if ∑ an converges,
then ∏(1 + an) converges if and only if ∑ a2

n converges.
定理
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Euler’s Product Formula for the Sine Function

The most celebrated infinite product is Euler’s factorisation of the
sine function. Just as a polynomial is determined by its roots P(x) =
C ∏(x − ri), Euler reasoned that sin x, having roots at nπ, should
behave like an infinite polynomial x ∏(1 − x2

n2π2 ).

Setting x = π/2 recovers Wallis’s
Product:

1 =
π

2

∞

∏
n=1

(
1 − 1

4n2

)
=⇒ π

2
=

∞

∏
n=1

(
2n

2n − 1
· 2n

2n + 1

)
Theorem 0.12. Euler’s Sine Product.
For all x ∈ R:

sin x = x
∞

∏
n=1

(
1 − x2

n2π2

)
定理

Proof

We employ a limit argument involving the factorisation of Cheby-
shev polynomials. Recall that sin(2n + 1)φ can be expressed
as a polynomial of degree 2n + 1 in sin φ. Roots occur when
(2n + 1)φ = kπ, i.e., sin2 φ = sin2( kπ

2n+1 ). This leads to the identity:

sin(2n + 1)φ = (2n + 1) sin φ
n

∏
k=1

(
1 − sin2 φ

sin2 kπ
2n+1

)
Let x ∈ R be fixed. Set φ = x

2n+1 . Substituting into the identity:

sin x = (2n + 1) sin
(

x
2n + 1

) n

∏
k=1

(
1 −

sin2 x
2n+1

sin2 kπ
2n+1

)
We split the product into a "head" (fixed m) and a "tail". Let m < n:

sin x = (2n + 1) sin
x

2n + 1︸ ︷︷ ︸
→x

·
m

∏
k=1

(
1 −

sin2 x
2n+1

sin2 kπ
2n+1

)
︸ ︷︷ ︸

Un,m

·
n

∏
k=m+1

(. . . )︸ ︷︷ ︸
Vn,m

As n → ∞, for fixed k,
sin2 x

2n+1
sin2 kπ

2n+1
→ (x/(2n+1))2

(kπ/(2n+1))2 = x2

k2π2 . Thus, the first

product converges to the desired infinite product partial sum:

lim
n→∞

Un,m =
m

∏
k=1

(
1 − x2

k2π2

)
We must show the tail Vn,m tends to 1 as m → ∞. Using the in-
equality sin y < y and Jordan’s inequality sin y ≥ 2

π y on [0, π/2],
we can bound the terms. For sufficiently large n, the terms in the
tail satisfy:

1 ≥ Termk ≥ 1 − x2

4k2

The product of these lower bounds converges to 1 as m → ∞ (since
∑ 1/k2 converges). By the Squeeze Theorem, the formula holds.

■
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The Gamma Function

The Gamma function, Γ(x), extends the factorial to real (and com-
plex) arguments. While often defined by an integral

∫ ∞
0 tx−1e−tdt, its

definition via infinite products is more fundamental for establishing
its functional properties.

Definition 0.2. Gamma Function (Euler Form).
For x ̸= 0,−1,−2, . . . , we define:

Γ(x) =
1
x

∞

∏
n=1

(1 + 1/n)x

1 + x/n

定義

The general term behaves like 1 + x(x−1)
2n2 , so the product converges

absolutely. Expanding the partial product:

Pn =
1
x

n

∏
k=1

( k+1
k )x

x+k
k

=
1
x
(n + 1)x

1
n!

∏n
k=1(x + k)

=
n!(n + 1)x

x(x + 1) . . . (x + n)

This yields the celebrated Euler-Gauss Limit:

Γ(x) = lim
n→∞

n!nx

x(x + 1) . . . (x + n)

(Replacing (n + 1)x with nx does not change the limit).

Proposition 0.2. Properties of Γ(x).
1. Functional Equation: Γ(x + 1) = xΓ(x).

Proof

Using the limit form:

Γ(x + 1)
Γ(x)

= lim
n!nx+1 · x(x + 1) . . . (x + n)
(x + 1) . . . (x + n + 1) · n!nx = lim

nx
x + n + 1

= x

■

2. Factorial Generalisation: Since Γ(1) = lim n!n
1·2...(n+1) = 1, induc-

tion gives Γ(n + 1) = n!.
3. Weierstrass Form: Using the Euler-Mascheroni constant γ = lim(∑n

k=1
1
k −

ln n), one can rewrite the product as:

1
Γ(x)

= xeγx
∞

∏
n=1

(
1 +

x
n

)
e−x/n

4. Reflection Formula:

Γ(x)Γ(1 − x) =
π

sin πx
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Proof

From the definition, Γ(1 − x) = −xΓ(−x). We compute the
product Γ(x)Γ(−x):

Γ(x)Γ(−x) =
1

−x2

∞

∏
n=1

(1 + 1/n)0

(1 + x/n)(1 − x/n)
=

−1
x2 ∏

1
1 − x2/n2

Comparing this with Euler’s Sine Product Theorem 0.12 (with
argument πx):

sin πx
πx

=
∞

∏
n=1

(
1 − x2

n2

)
Thus Γ(x)Γ(−x) = −π

x sin πx . Multiplying by −x gives the result.
■

命題

Example 0.4. Value at 1/2. Using the reflection formula at x = 1/2:

Γ(1/2)2 =
π

sin(π/2)
= π =⇒ Γ(1/2) =

√
π

This is equivalent to the Gaussian integral
∫ ∞
−∞ e−x2

dx =
√

π.

範例

Asymptotic Analysis of Products

Infinite products provide a powerful tool for analyzing the asymp-
totic behaviour of sequences.

Example 0.5. Stirling’s Approximation (Weak Form). We revisit the
sequence an =

∣∣(α
n)
∣∣. Using the Gamma function limit:∣∣∣∣(α

n

)∣∣∣∣ = ∣∣∣∣α(α − 1) . . . (α − n + 1)
n!

∣∣∣∣ ∼ 1
|Γ(−α)|n1+α

For α = −1/2, this yields (−1/2
n ) ∼ 1√

πn , consistent with our earlier
Wallis product derivations.

範例

This concludes our development of infinite processes.

0.7 Exercises

1. Convergence of Infinite Products. Determine the convergence or
divergence of the following infinite products.

(a)
∞

∏
n=1

n

√
n + 1
n + 2
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(b)
∞

∏
n=2

(
1 + (−1)n 1

n

)
(c)

∞

∏
n=1

(
1
e

(
1 +

1
n

)n)
Recall the asymptotic expansion of
(1 + 1/n)n involving e.

2. Series and Products. Suppose each term of the sequence (an)

satisfies 0 < an < π/2. Prove that the series ∑∞
n=1 a2

n converges if
and only if the infinite product ∏∞

n=1 cos an converges. Utilise the Logarithmic Criterion and
the Taylor expansion of ln(cos x).

3. Raabe’s Limit and Absolute Convergence. Suppose a positive
series ∑ an satisfies the limit condition of Raabe’s Test:

lim
n→∞

n
(

an

an+1
− 1
)
= r > 0.

(a) Prove that the alternating series ∑∞
n=1(−1)n−1an converges.

(b) Prove that the squared series ∑∞
n=1 a2

n converges.

4. Hypergeometric Products. Let α, β, γ be real parameters such that
none of the factors below are zero. Discuss the convergence of the Consider the asymptotic behaviour

of the general term pn. Under what
condition does pn = 1 + O(1/n) versus
1 + µ/n + O(1/n2)? This generalises
the convergence criteria for the Gamma
function.

infinite product:
∞

∏
n=1

(α + n)(β + n)
(1 + n)(γ + n)

.

5. Euler’s Partition Identity. For |x| < 1, prove the following identity
connecting infinite products: Multiply the left-hand side by (1 − x)

and observe the telescoping structure of
the terms (1 − x)(1 + x) = (1 − x2), etc.

(1 + x)(1 + x2)(1 + x3) · · · = 1
(1 − x)(1 − x3)(1 − x5) · · · .

6. The Boundary of Gauss’s Test. Suppose a positive sequence (an)

satisfies the ratio condition: This resolves the p = 1 case in Gauss’s
Test, confirming the divergence of
series behaving like the harmonic series
∑ 1/n.

an

an+1
= 1 +

1
n
+ O(bn),

where the series ∑ bn converges absolutely. Prove that the series
∑ an diverges.

7. Stirling’s Formula via Products. By analysing the infinite product
expansion of the Gamma function or otherwise, prove that the Consider the ratio un/un+1 and use

asymptotic expansions for logarithms.sequence

un =
n!en

nn+ 1
2

converges to a non-zero limit.

8. Product Growth. Prove using two different methods that for any
positive sequence (an) : Method 1: Consider the convergence

of the product. Method 2: Treat the
expression as terms of a telescoping
series.lim

n→∞

an

(1 + a1)(1 + a2) · · · (1 + an)
= 0.
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9. Monotonicity and Square Convergence. Let ∑ an be a positive
series with monotonically decreasing terms. Prove that if the
weighted series ∑ an√

n converges, then the series ∑ a2
n converges.

10. Discrete Abel Summation. Let (an) be a positive, monotonically
decreasing sequence converging to 0.

(a) Prove that the series ∑∞
n=1 an and the series ∑∞

n=1 n(an − an+1)

converge or diverge together, and if they converge, they sum
to the same value.

(b) Provide a counter-example to show that if monotonicity is
dropped, the conclusion no longer holds.

11. Sum of Zeta Functions. For integer m ≥ 2, let ζ(m) = ∑∞
n=1 n−m. This requires exchanging the order

of summation for a double series of
positive terms.

Prove that:
∞

∑
m=2

(ζ(m)− 1) = 1.

12. Decay of Tail Sums. Let ∑ anbn be a convergent series, where
(bn) is a monotonically decreasing sequence converging to 0. Let This result is a partial converse to

Abel’s Summation Lemma conditions.Sn = ∑n
k=1 ak. Prove that lim

n→∞
Snbn = 0.

13. Advanced Convergence Testing. Determine the absolute or condi-
tional convergence of the following series.

(a)
∞

∑
n=2

sin(nπ/12)
ln n

(b)
∞

∑
n=1

(−1)n(n1/n − 1)

(c)
∞

∑
n=1

sin nx
n

(
1 +

1
n

)n
(for x ∈ R)

(d)
∞

∑
n=1

ln
(

1 +
(−1)n

np

)
(for p > 0)

14. Generalised Rearrangements. Consider the alternating harmonic

series ∑ (−1)n−1

n . Construct a rearrangement such that every block
of p positive terms is followed by a block of q negative terms,
preserving their internal order. Prove that this rearranged series
converges to:

ln 2 +
1
2

ln
(

p
q

)
.

Deduce that the rearrangement converges to the original sum ln 2
if and only if p = q.

15. Averaged Alternating Series. Let (an) be a strictly decreasing
sequence converging to 0. Prove the convergence of the series
formed by the alternating averages: Let An be the average. Is An necessarily

monotonic? Does Dirichlet’s Test apply?
∞

∑
n=1

(−1)n
(

a1 + a2 + · · ·+ an

n

)
.
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Complex Numbers and Series

This chapter is basically a review of my previous notes but with a
new section on complex series and convergence.

1.1 The Field of Complex Numbers

We postulate the existence of an imaginary unit i satisfying the prop-
erty i2 = −1. The set of complex numbers C is constructed as a
formal extension of R.

Definition 1.1. Complex Numbers.
The set of complex numbers is defined as:

C := {x + iy : x, y ∈ R}

For a complex number z = x + iy, we define:
· The real part: ℜ(z) := x.
· The imaginary part: ℑ(z) := y.
Equality is defined component-wise: z1 = z2 if and only if ℜ(z1) =

ℜ(z2) and ℑ(z1) = ℑ(z2).
定義

Algebraic Structure

We define addition and multiplication on C to be consistent with the
arithmetic of real polynomials evaluated at i, subject to the reduction
i2 = −1. Let z1 = x1 + iy1 and z2 = x2 + iy2.

z1 + z2 := (x1 + x2) + i(y1 + y2)

z1z2 := (x1x2 − y1y2) + i(x1y2 + y1x2)

Under these operations, C forms a field. The additive identity is
0 = 0 + 0i, and the multiplicative identity is 1 = 1 + 0i.

Definition 1.2. Conjugate and Modulus.
Let z = x + iy.
1. The complex conjugate of z is z̄ := x − iy.
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2. The modulus (or norm) of z is |z| :=
√

x2 + y2.
定義

The conjugate provides an immediate mechanism for division. Ob-
serve that zz̄ = (x + iy)(x − iy) = x2 + y2 = |z|2. Thus, for any
non-zero z ∈ C, the multiplicative inverse is given by:

z−1 =
z̄

|z|2 =
x

x2 + y2 − i
y

x2 + y2

Proposition 1.1. Properties of Conjugation and Modulus.
For all z, w ∈ C:
1. z + w = z̄ + w̄ and zw = z̄w̄.
2. |zw| = |z||w|.
3. |z| = 0 ⇐⇒ z = 0.
4. ℜ(z) = z+z̄

2 and ℑ(z) = z−z̄
2i .

命題

Proof

These follow directly from the definitions. For (ii), observe |zw|2 =

(zw)(zw) = zwz̄w̄ = (zz̄)(ww̄) = |z|2|w|2.
■

1.2 Geometric Interpretation

We identify the complex number z = x + iy with the vector (x, y)
in the Euclidean plane R2, often termed the Argand plane. Addition
of complex numbers corresponds to vector addition, obeying the
parallelogram law. Conjugation corresponds to reflection across the
real axis (x-axis).

ℜ

ℑ

r

z = x + iy

z̄ = x − iy

θ

x

y

Figure 1.1: The geometric repre-
sentation of a complex number
z and its conjugate z̄.

The modulus |z| represents the Euclidean distance from the origin
to z. This allows us to define the distance between two complex
numbers z, w as |z − w|.

Proposition 1.2. Triangle Inequality.
For any z1, z2 ∈ C:

|z1 + z2| ≤ |z1|+ |z2|

with equality if and only if one is a non-negative real multiple of the
other.

命題

Proof

Geometrically, this states that the length of one side of a triangle is
less than the sum of the other two. Algebraically, let z1 = x1 + iy1

and z2 = x2 + iy2. Squaring both sides, the inequality is equivalent
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to |z1 + z2|2 ≤ (|z1|+ |z2|)2.

|z1 + z2|2 = (z1 + z2)(z̄1 + z̄2) = |z1|2 + z1z̄2 + z̄1z2 + |z2|2

= |z1|2 + 2ℜ(z1z̄2) + |z2|2

The right hand side is |z1|2 + 2|z1||z2| + |z2|2. Thus, we must show
ℜ(z1z̄2) ≤ |z1z̄2|. This is true since for any complex number w,
ℜ(w) ≤ |w| (as x ≤

√
x2 + y2).

■

Polar Representation

Using polar coordinates (r, θ) in the plane, we can write x = r cos θ

and y = r sin θ, where r = |z|. Thus:

z = r(cos θ + i sin θ)

The angle θ is called the argument of z, denoted arg z. It is defined
modulo 2π. Polar form is particularly powerful for multiplication.
Let zk = rk(cos θk + i sin θk) for k = 1, 2.

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

This yields the fundamental geometric insight: multiplication by a
complex number scales the modulus by r and rotates the argument
by θ.

Theorem 1.1. De Moivre’s Theorem.
For any θ ∈ R and n ∈ N:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

定理

Proof

This follows immediately from the iterative application of the mul-
tiplication rule derived above.

■

This theorem provides an elegant method for finding roots of unity.
Example 1.1. Roots of Unity. We solve zn = 1. Let z = cos θ + i sin θ

(since |z| must be 1). By De Moivre, cos(nθ) + i sin(nθ) = 1. This re-
quires cos(nθ) = 1 and sin(nθ) = 0, implying nθ = 2πk for k ∈ Z.
The distinct solutions are given by θk =

2πk
n for k = 0, 1, . . . , n − 1.

ζk = cos
(

2πk
n

)
+ i sin

(
2πk

n

)
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These points form the vertices of a regular n-gon inscribed in the
unit circle.

範例

ζ1

ζ0 = 1

Figure 1.2: The 6-th roots
of unity forming a regular
hexagon.

1.3 Analysis of Complex Sequences

The modulus induces a metric on C, defined by d(z, w) = |z − w|.
This allows us to import the machinery of limits and convergence
from real analysis directly into the complex domain.

Definition 1.3. Convergence.
A sequence of complex numbers (zn)∞

n=1 is said to converge to z∗ ∈
C if the sequence of real distances |zn − z∗| converges to 0. Formally:

∀ϵ > 0, ∃N ∈ N such that n > N =⇒ |zn − z∗| < ϵ

定義

Convergence in C is equivalent to component-wise convergence in R.

Proposition 1.3. Component-wise Convergence.
Let zn = xn + iyn and z∗ = x∗ + iy∗. The sequence (zn) converges to
z∗ if and only if (xn) converges to x∗ and (yn) converges to y∗.

命題

Proof

We rely on the inequalities relating the modulus to the components:

max(|x|, |y|) ≤
√

x2 + y2 ≤ |x|+ |y|

Let ϵ > 0.
( =⇒ ) If |zn − z∗| → 0, then |xn − x∗| ≤ |zn − z∗| → 0 and similarly

for yn.
( ⇐= ) If |xn − x∗| → 0 and |yn − y∗| → 0, then |zn − z∗| ≤ |xn −

x∗|+ |yn − y∗| → 0.
■
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Corollary 1.1. Boundedness. Every convergent sequence of complex num-
bers is bounded. This follows directly from the real case applied to the
sequence of norms.

推論

Cauchy Sequences

Definition 1.4. Cauchy Sequence.
A sequence (zn) is called a Cauchy sequence if for every ϵ > 0, there
exists N such that n, m > N implies |zn − zm| < ϵ.

定義

Since R is complete (every Cauchy sequence converges), the component-
wise equivalence (Proposition 1.2) implies that C is also complete.
This is a fundamental result: we can verify convergence without
knowing the limit.

1.4 Complex Series

Definition 1.5. Infinite Series.
Given a sequence (zn), we define the infinite series ∑∞

n=0 zn as the limit
of the sequence of partial sums SN = ∑N

n=0 zn. If the limit S = lim
N→∞

SN

exists, we say the series converges to S.
定義

Proposition 1.4. Vanishing Condition.
If ∑ zn converges, then lim

n→∞
zn = 0.

命題

Proof

Let SN be the partial sums converging to S. Then zN = SN −
SN−1 → S − S = 0.

■

Absolute Convergence

Analogous to the real case, we distinguish between absolute and
conditional convergence.

Definition 1.6. Absolute Convergence.
The series ∑ zn is absolutely convergent if the series of real numbers
∑ |zn| is convergent.

定義
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Theorem 1.2. Completeness of C.
Every absolutely convergent series is convergent.

定理

Proof

Let SN be the partial sums of ∑ zn and TN be the partial sums of
∑ |zn|. For M > N:

|SM − SN | =
∣∣∣∣∣ M

∑
k=N+1

zk

∣∣∣∣∣ ≤ M

∑
k=N+1

|zk| = |TM − TN |

If ∑ |zn| converges, (TN) is a Cauchy sequence in R. The inequality
implies (SN) is a Cauchy sequence in C. By the completeness of C,
the series converges.

■

The Geometric Series

The geometric series serves as our primary benchmark for conver-
gence.

Example 1.2. Complex Geometric Series. Consider ∑∞
n=0 zn. The

partial sum is SN = 1−zN+1

1−z for z ̸= 1.
· If |z| < 1, then |z|N+1 → 0, so zN+1 → 0. The series converges to

1
1−z .

· If |z| ≥ 1, then |zn| ≥ 1, so terms do not vanish. The series di-
verges.

範例

This leads naturally to the Ratio Test for complex series, derived from
the real series of moduli.

Theorem 1.3. Ratio Test.
Suppose L = lim

n→∞

∣∣∣ zn+1
zn

∣∣∣ exists.

(i) If L < 1, the series ∑ zn converges absolutely.
(ii) If L > 1, the series diverges.

定理

Proof

If L < 1, then ∑ |zn| converges by the real Ratio Test, implying ab-
solute convergence. If L > 1, |zn| grows indefinitely, so zn ̸→ 0.

■

This framework of complex analysis allows us to define functions like
the complex exponential, sine, and cosine via power series, unifying
the disparate trigonometric identities seen in real analysis into a
cohesive algebraic structure.
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1.5 Complex Power Series

We now generalise the concept of power series to the complex do-
main. A complex power series is a series of the form

S(z) =
∞

∑
n=0

anzn

where the coefficients (an)∞
n=0 and the variable z are complex num-

bers.

Radius of Convergence

The convergence properties of complex power series mirrors that of
the real case, with intervals replaced by disks.

Theorem 1.4. Radius of Convergence.
For any power series ∑ anzn, there exists a unique R ∈ [0, ∞], called
the radius of convergence, such that:
1. The series converges absolutely for all z in the open disk DR(0) =

{z ∈ C : |z| < R}.
2. The series diverges for all |z| > R.
The radius R is given by the Cauchy-Hadamard formula (derived from
the Root Test):

1
R

= lim sup
n→∞

n
√
|an|

定理

Proof

Let L = lim sup n
√
|an|. If |z| < 1/L, then lim sup n

√
|anzn| =

|z|L < 1. By the Root Test for real series applied to ∑ |anzn|, the se-
ries converges absolutely. If |z| > 1/L, then lim sup n

√
|anzn| > 1, so

the terms anzn do not converge to 0. The series diverges.
■

Example 1.3. A Geometric Series. Consider the series ∑∞
n=0(−2z)n.

The coefficients are an = (−2)n. We compute the radius of conver-
gence:

n
√
|an| = | − 2| = 2 =⇒ R =

1
2

Thus, the series converges absolutely on the open disk |z| < 1/2
and represents the function 1/(1 + 2z).

範例
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1.6 The Complex Exponential

We define the exponential function for complex arguments via its
Maclaurin series.

Definition 1.7. Complex Exponential.
For any z ∈ C, we define:

ez :=
∞

∑
n=0

zn

n!
= 1 + z +

z2

2!
+

z3

3!
+ . . .

定義

Applying the Ratio Test, we find lim | zn+1/(n+1)!
zn/n! | = lim |z|

n+1 = 0 for
all z. Thus, the series has an infinite radius of convergence (R = ∞)
and defines an entire function on C.
The defining algebraic property of the exponential function is pre-
served in the complex domain.

Theorem 1.5. Exponential Addition Theorem.
For any z, w ∈ C:

ez+w = ezew

定理

Proof

Since the series for ez and ew are absolutely convergent, Mertens’
Theorem (from our analysis of infinite sums) implies that their
Cauchy product converges to the product of their sums. The n-th
term of the Cauchy product is:

cn =
n

∑
k=0

zk

k!
wn−k

(n − k)!

Multiplying and dividing by n!, we recognise the binomial expan-
sion:

cn =
1
n!

n

∑
k=0

(
n
k

)
zkwn−k =

1
n!
(z + w)n

Summing these terms yields ∑∞
n=0 cn = ez+w.

■

Euler’s Formula

This series definition illuminates the profound connection between
the exponential function and trigonometry. Restricting the exponen-
tial to the imaginary axis z = it (where t ∈ R), we obtain:
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eit =
∞

∑
n=0

(it)n

n!
= 1 + it − t2

2!
− i

t3

3!
+

t4

4!
+ . . .

Separating the real and imaginary parts (which is permissible due to
absolute convergence):

eit =

(
1 − t2

2!
+

t4

4!
− . . .

)
+ i
(

t − t3

3!
+

t5

5!
− . . .

)
We recognise the series in the parentheses as the Maclaurin expan-
sions for cosine and sine respectively.

Theorem 1.6. Euler’s Formula.
For any real number t:

eit = cos t + i sin t

定理

This identity allows us to define the trigonometric functions for com-
plex arguments:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i

Evaluating Euler’s formula at t = π, and recalling that sin π = 0
and cos π = −1, we arrive at the celebrated identity uniting the five
fundamental constants of analysis.

Corollary 1.2. Euler’s Identity.

eiπ + 1 = 0

推論

1.7 Exercises

10.1. The Parallelogram Law. In the study of Euclidean geometry,
the lengths of the diagonals of a parallelogram are related to
the lengths of its sides.
(a) Prove the identity:

|z + w|2 + |z − w|2 = 2(|z|2 + |w|2)

for any z, w ∈ C. Interpret this geometrically.
(b) A normed vector space is an inner product space if and

only if the norm satisfies the parallelogram law. Show
that the space R2 equipped with the “taxicab norm”
|(x, y)|1 = |x|+ |y| cannot be induced by an inner product
by showing it fails the parallelogram law.
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10.2. Geometry of Roots of Unity. Let n ≥ 2 be an integer. The roots
of the equation zn − 1 = 0 are given by 1, ω, ω2, . . . , ωn−1 where
ω = e2πi/n.
(a) Prove that 1 + ω + ω2 + · · ·+ ωn−1 = 0. Explain why this

implies that the centroid of a regular n-gon centered at the
origin is the origin itself.

(b) Consider the polynomial P(z) = zn − 1. Factor P(z) into
linear terms involving the roots of unity. By computing the
limit lim

z→1
zn−1
z−1 , prove that:

(1 − ω)(1 − ω2) · · · (1 − ωn−1) = n.

(c) Interpret result (b) geometrically as a statement about the
product of the lengths of the chords from one vertex of a
regular n-gon to all other vertices.

10.3. Lagrange’s Trigonometric Identity. While real variable tech-
niques for summing trigonometric series can be cumbersome,
complex exponentials simplify the process significantly.
(a) Consider the geometric series ∑n

k=0 zk. By substituting
z = eiθ (where θ is not an integer multiple of 2π), prove
that:

n

∑
k=0

cos(kθ) =
1
2
+

sin((n + 1
2 )θ)

2 sin( θ
2 )

.

(b) Deduce a similar closed-form expression for ∑n
k=1 sin(kθ).

10.4. Differentiation of Power Series. Let ∑ anzn be a power series
with radius of convergence R > 0.
(a) Prove that the “derived series” ∑ nanzn−1 also has radius

of convergence R. Recall that lim
n→∞

n
√

n = 1.

(b) Let f (z) = ∑∞
n=0

zn

n! . Use part (a) to show that f ′(z) = f (z)
for all z ∈ C (in the sense of term-wise differentiation).

10.5. Complex Trigonometry. The behaviour of sine and cosine in
the complex plane differs markedly from the real line.
(a) Using the definition sin z = eiz−e−iz

2i , prove that:

sin(x + iy) = sin x cosh y + i cos x sinh y,

where cosh y = ey+e−y

2 and sinh y = ey−e−y

2 .
(b) Prove that | sin(x + iy)|2 = sin2 x + sinh2 y.
(c) Conclude that the function sin z is unbounded on C, unlike

its real restriction. Find a sequence of points zn such that
| sin zn| → ∞.
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Ordinary Differential Equations Introduction

Having established the foundations of integration and infinite series
in previous notes, we now apply these tools to the study of differ-
ential equations. These equations, which relate functions to their
derivatives, are the fundamental language of dynamical systems
in physics, engineering, and geometry. Our goal is to classify these
equations and establish systematic methods for their solution, begin-
ning with the theory of first-order ordinary differential equations.

2.1 Fundamental Concepts

A differential equation is a mathematical relation linking an inde-
pendent variable, a dependent variable, and the derivatives of the
dependent variable with respect to the independent one.

Definition 2.1. Ordinary Differential Equation (ODE).
An ordinary differential equation is an equation involving an unknown
function y of a single independent variable x, and its derivatives y′, y′′, . . . , y(n).
It can be expressed generally as:

F(x, y, y′, . . . , y(n)) = 0

The order of the differential equation is the order of the highest deriva-
tive appearing in the equation.

定義

Note

If the unknown function depends on multiple independent vari-
ables (e.g., position x, y, z and time t) and the equation involves
partial derivatives, it is termed a Partial Differential Equation (PDE).
Famous examples include Maxwell’s equations for electromag-
netism or the Heat Equation. In this course, we restrict our atten-
tion to ODEs.

We classify ODEs based on their structure, as this determines the
methods available for their solution.
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Definition 2.2. Linearity and Homogeneity.
An n-th order ODE is said to be linear if it can be written in the form:

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = g(x)

where ai(x) and g(x) are functions of x alone.
· If g(x) = 0 for all x, the equation is homogeneous.
· If g(x) ̸= 0, the equation is non-homogeneous.
· If the coefficients ai(x) are constants, the equation is said to have con-

stant coefficients.
定義

Example 2.1. Classification.

1. d2y
dx2 + 5y = 0: Second-order, linear, constant coefficient, homoge-
neous.

2. y′′′ + x2y = sin x: Third-order, linear, non-homogeneous.
3. dy

dx + y2 = x: First-order, non-linear (due to the y2 term).

範例

2.2 Solutions to Differential Equations

Unlike algebraic equations, where solutions are numbers, the solu-
tion to a differential equation is a function (or a family of functions).
We distinguish between three types of solutions.

Definition 2.3. Types of Solutions.
1. An explicit solution is a function y = ϕ(x) which, when substi-

tuted into the differential equation, satisfies the identity for all x in
an interval.

2. An implicit solution is a relation G(x, y) = 0 which defines y as
a function of x (locally) such that the function satisfies the differ-
ential equation.

3. The general solution is a family of functions containing arbitrary
constants (parameters). For an n-th order equation, the general so-
lution typically contains n independent constants.

定義
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Figure 2.1: Family of parabolas
y = x2 + C.
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Figure 2.2: Family of circles
x2 + y2 = C.

Example 2.2. Families of Curves. Consider the first-order equation
dy
dx = 2x. Integration yields y = x2 + C. This is the general solution,
representing a family of parabolas.
· If we specify an initial condition, say y(0) = 1, we determine C =

1, yielding the particular explicit solution y = x2 + 1.
· Consider the equation dy

dx = − x
y . Separating terms gives ydy =

−xdx. Integration yields 1
2 y2 = − 1

2 x2 + C0, or x2 + y2 = C. This
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is an implicit solution describing a family of circles.

範例

2.3 Separation of Variables

The most elementary technique for solving first-order ODEs is the
method of separation of variables. This applies to non-linear equa-
tions where the dependence on x and y can be factored.

Theorem 2.1. Separable Equations.
A first-order differential equation is separable if it can be written in the
form:

dy
dx

= g(x)h(y)

If h(y) ̸= 0, the general solution is given implicitly by:∫ 1
h(y)

dy =
∫

g(x) dx + C

定理

Proof

We treat y as a function of x. Rearranging the equation gives:

1
h(y(x))

· dy
dx

= g(x)

We integrate both sides with respect to x:∫ 1
h(y(x))

dy
dx

dx =
∫

g(x) dx

On the left-hand side, we apply the substitution rule. Let u = y(x),
then du = y′(x)dx. The integral becomes:∫ 1

h(u)
du =

∫
g(x) dx

This yields the required relation.
■

Remark.

One must be careful with division. The roots of h(y) = 0 corre-
spond to constant solutions y(x) = c, known as equilibrium solutions.
These are often lost during the separation process and must be
checked separately.
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Examples and Applications

We illustrate the method with a series of examples ranging from
elementary geometry to mechanics.

−2 −1 1 2

1

2

3

x

y

Figure 2.3: Exponential solu-
tions y = Cekx: growth (k > 0,
blue) and decay (k < 0, red).

Example 2.3. Exponential Growth and Decay. Consider the linear
equation dy

dx = ky. Separating variables (assuming y ̸= 0):∫ 1
y

dy =
∫

k dx

ln |y| = kx + C1

Exponentiating both sides yields |y| = eC1 ekx. Letting C = ±eC1 , we
obtain y = Cekx. Note that y = 0 is an equilibrium solution, which
is recovered if we allow C = 0.

範例
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(4,−3)
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Figure 2.4: Circle x2 + y2 = 25
with particular solution
y = −

√
25 − x2 highlighted.

Example 2.4. Implicit Solutions. Solve dy
dx = − x

y with initial condi-
tion y(4) = −3. ∫

y dy =
∫

−x dx

1
2

y2 = −1
2

x2 + C1

x2 + y2 = C

Using the initial condition (4,−3): 42 + (−3)2 = 16 + 9 = 25, so
C = 25. The implicit solution is x2 + y2 = 25. Solving for y gives
two branches: y = ±

√
25 − x2. Since y(4) = −3, we must select the

negative branch:
y = −

√
25 − x2

範例

Example 2.5. Complex Algebraic Separation. Find the general solu-

tion to dy
dx = xy3

√
1+x2 . Separating variables:∫

y−3 dy =
∫

x(1 + x2)−1/2 dx

For the right-hand integral, let u = 1 + x2, so du = 2xdx.

y−2

−2
=

1
2

∫
u−1/2 du =

1
2
(2u1/2) + C0

− 1
2y2 =

√
1 + x2 + C0

Rearranging for y:

y2 =
−1

2(
√

1 + x2 + C0)
=⇒ y = ±

√
−1

2
√

1 + x2 + C
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This solution is valid only where the term under the square root is
non-negative.

範例

Example 2.6. Trigonometric Substitution. Solve dy
dx =

√
1−y2

√
1−x2 . Sepa-

rating variables implies:∫ dy√
1 − y2

=
∫ dx√

1 − x2

Recognising the standard integrals (inverse sine):

arcsin y = arcsin x + C

Taking the sine of both sides yields the explicit form y =

sin(arcsin x + C). Using the addition formula sin(A + B) =

sin A cos B + cos A sin B:

y = x cos C +
√

1 − x2 sin C

範例

2.4 Applications to Dynamics

Differential equations naturally arise in physics, particularly in me-
chanics where Newton’s Second Law relates force to acceleration (the
second derivative of position).

Theorem 2.2. Newton’s Second Law.
The motion of a particle of mass m subject to a force F is governed by:

F = ma = m
d2x
dt2 = m

dv
dt

where v is velocity and x is position.
定理

When the force depends only on velocity (e.g., air resistance), we can
solve for velocity as a function of time. Often, however, we wish to
find velocity as a function of position. We employ the chain rule to
transform the derivative:

a =
dv
dt

=
dv
dx

dx
dt

= v
dv
dx

This substitution reduces the second-order equation in time to a first-
order separable equation in space.

Example 2.7. Velocity-Dependent Force. Consider a particle of mass
m subject to a drag force F = −µv3. We wish to find the velocity
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v as a function of position x, given an initial velocity v0 at x = 0.
Using F = ma:

−µv3 = mv
dv
dx

Assuming v ̸= 0, we cancel one factor of v:

−µv2 = m
dv
dx

Separating variables:

− µ

m
dx = v−2 dv

Integrating both sides:

− µ

m
x + C = −v−1

1
v
=

µ

m
x + C

At x = 0, v = v0, so C = 1/v0.

1
v
=

µx
m

+
1
v0

=
µv0x + m

mv0

Inverting gives the explicit solution:

v(x) =
mv0

µv0x + m

範例 1 2 3 4

0.5

1

1.5

2
v0

x

v

Figure 2.5: Velocity decay
v(x) = mv0

µv0x+m under cubic
drag.

2.5 Modelling with First-Order Equations

Having developed the method of separation of variables, we now
apply it to model dynamic systems. We examine three archetypal
classes of problems: natural growth and decay, the logistic constraints
of populations, and the geometric problem of orthogonal trajectories.

Exponential Growth and Decay

The simplest dynamic model assumes that the rate of change of a
quantity y(t) is proportional to its current size. This assumption
governs phenomena ranging from radioactive decay to compound
interest and unrestricted biological reproduction.

Definition 2.4. The Law of Natural Growth.
A quantity y(t) obeys the law of natural growth (or decay) if it satis-
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fies the linear differential equation:

dy
dt

= ky

where k is a constant. If k > 0, it is a growth constant; if k < 0, it is a
decay constant.

定義

The solution is immediate via separation of variables. Assuming
y ̸= 0: ∫ 1

y
dy =

∫
k dt =⇒ ln |y| = kt + C

Exponentiating yields y(t) = y0ekt, where y0 = y(0) is the initial
quantity.

Parameters of the Model

For decay models (k < 0), it is customary to characterize the sub-
stance by its half-life τ, the time required for the quantity to reduce to
half its initial value.

1
2

y0 = y0ekτ =⇒ kτ = ln(1/2) = − ln 2 =⇒ τ = − ln 2
k

Conversely, for growth models, the doubling time is τdouble =
ln 2

k .
τ 2τ 3τ 4τ

y0
8

y0
4

y0
2

y0

t

y

Figure 2.6: Exponential decay
showing successive half-lives.

Example 2.8. Radioactive Decay. Let m(t) denote the mass of a ra-
dioactive isotope. The decay is governed by m′(t) = km(t). Suppose
a sample of "Balonium" has a half-life of 1 year. We wish to deter-
mine the remaining percentage after 0.1 years. First, we determine
k:

k = − ln 2
1

≈ −0.693

The mass function is m(t) = m0e−0.693t. At t = 0.1:

m(0.1)
m0

= e−0.0693 ≈ 0.933

Thus, approximately 93.3% of the substance remains.

範例

Remark.

Model Limitations: The exponential model for population growth
P(t) = P0ekt implies that P → ∞ as t → ∞. In a finite universe, this
is physically impossible. Exponential models are thus valid only
over short time intervals where resources are effectively infinite.
For long-term predictions, we require a model that accounts for
environmental constraints.
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The Logistic Equation

To address the limitations of exponential growth, we introduce the
Logistic Model. This model assumes that the per-capita growth rate
1
P

dP
dt is not constant, but decreases linearly as the population ap-

proaches a limiting value K, known as the carrying capacity.

Definition 2.5. Logistic Differential Equation.
The logistic equation is given by:

dP
dt

= kP
(

1 − P
K

)
where k > 0 is the intrinsic growth rate and K > 0 is the carrying
capacity.

定義

Qualitative Analysis

Before solving the equation analytically, we can deduce the global
behaviour of solutions by examining the phase line (the sign of P′).
· Equilibria: P′ = 0 when P = 0 or P = K.
· Growth: If 0 < P < K, then P′ > 0, so the population increases

towards K.
· Decay: If P > K, then P′ < 0, so the population decreases towards

K.
To determine the concavity of the solution curves, we differentiate the
ODE with respect to t using the Chain Rule:

d2P
dt2 =

d
dt

[
kP − k

K
P2
]
= k

dP
dt

− 2k
K

P
dP
dt

= k
dP
dt

(
1 − 2P

K

)
Since P′ > 0 for 0 < P < K, the sign of the second derivative is
determined by the term (1 − 2P/K).
· If 0 < P < K/2, then P′′ > 0 (concave up). The growth accelerates.
· If K/2 < P < K, then P′′ < 0 (concave down). The growth

decelerates.
· The point P = K/2 is an inflection point where the growth rate is

maximal.

Analytic Solution

We solve the equation by separating variables:∫ K
P(K − P)

dP =
∫

k dt
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t

P

KK

K/2

P0 < K

P0 > K

Inflection

Figure 2.7: Solutions to the
Logistic Equation. Trajectories
approach the carrying capacity
K asymptotically. The growth is
fastest at P = K/2.

The integrand on the left admits a partial fraction decomposition:

K
P(K − P)

=
1
P
+

1
K − P

Integrating term by term:

ln |P| − ln |K − P| = kt + C

ln
∣∣∣∣ P
K − P

∣∣∣∣ = kt + C

Exponentiating and solving for P (assuming 0 < P < K for the
moment):

P
K − P

= Aekt =⇒ P(t) =
K

1 + Ae−kt

where A is a constant determined by the initial population P0. Specif-
ically, at t = 0, A = (K − P0)/P0.

Example 2.9. Population Prediction. Suppose a population obeys
logistic growth with carrying capacity K = 1000 (in millions). If
P(1990) = 250 and P(2000) = 275, we predict the population in
2100. Let t = 0 correspond to 1990. Thus P0 = 250.

A =
1000 − 250

250
= 3

The solution is P(t) = 1000
1+3e−kt . We use the data point at t = 10 (year

2000) to find k:

275 =
1000

1 + 3e−10k =⇒ 1 + 3e−10k =
1000
275

≈ 3.636

3e−10k ≈ 2.636 =⇒ e−10k ≈ 0.8788 =⇒ k ≈ − ln(0.8788)
10

≈ 0.0129



38 gudfit

For the year 2100, t = 110:

P(110) =
1000

1 + 3e−0.0129×110 ≈ 1000
1 + 3(0.242)

≈ 579 million

範例

Orthogonal Trajectories

In geometric optics and electrostatics, one often encounters two fami-
lies of curves that intersect at right angles. For instance, equipotential
lines are orthogonal to electric field lines.

Definition 2.6. Orthogonal Trajectories.
Given a family of curves defined by the differential equation y′ = f (x, y),
the orthogonal trajectories are the solution curves to the differential equa-
tion:

dy
dx

= − 1
f (x, y)

Geometrically, the product of the slopes of orthogonal curves is −1.
定義

x

y

Figure 2.8: Circles x2 + y2 = R2

(blue) and their orthogonal
trajectories y = mx (dashed
red).

Example 2.10. Circles and Lines. Consider the family of circles cen-
tred at the origin, x2 + y2 = R2. We wish to find their orthogonal
trajectories. Differentiating the equation of the circles implicitly
with respect to x:

2x + 2y
dy
dx

= 0 =⇒ dy
dx

= − x
y

This gives the slope of the tangent to the circle at (x, y). The slope
of the orthogonal trajectory must be the negative reciprocal:(

dy
dx

)
orth

= − 1
−x/y

=
y
x

We solve this new separable differential equation:

dy
dx

=
y
x

=⇒
∫ 1

y
dy =

∫ 1
x

dx

ln |y| = ln |x|+ C =⇒ y = mx

Thus, the orthogonal trajectories to the family of concentric circles
are lines passing through the origin, consistent with geometric
intuition.

範例
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Example 2.11. Hyperbolas. Find the orthogonal trajectories to
the family of hyperbolas xy = C. Differentiating xy = C yields
y + xy′ = 0, so y′ = −y/x. The differential equation for the orthog-
onal trajectories is:

dy
dx

= − 1
−y/x

=
x
y

Separating variables:∫
y dy =

∫
x dx =⇒ 1

2
y2 =

1
2

x2 + K

Rearranging gives y2 − x2 = 2K. This represents a family of hyper-
bolas rotated by 45◦ relative to the original family.

範例

−2 2

−2

2

x

y

Figure 2.9: Orthogonal tra-
jectories: xy = c (blue) and
y2 − x2 = k (dashed red).

Mixing Problems

A classic application of first-order linear equations involves the mix-
ing of fluids in a tank. The governing physical principle is the conser-
vation of mass (or amount of substance).

Proposition 2.1. The Mixing Rate Law.
Let Y(t) be the amount of a substance in a tank at time t. The rate of
change of Y is given by:

dY
dt

= Rate In − Rate Out

where each rate is calculated as (Flow Rate)× (Concentration).
命題

In: rin

Out: rout

Y(t), V(t)

Figure 2.10: Mixing tank: fluid
enters at rate rin, exits at rate
rout.

Example 2.12. Saline Tank. Consider a tank containing 1000 L of
water in which 15 kg of salt is dissolved. Pure water enters the tank
at a rate of 10 L/min. The solution is kept thoroughly mixed and
drains from the tank at the same rate of 10 L/min. We determine
the amount of salt Y(t) remaining after 20 minutes.
1. Rate In: Since pure water enters, the concentration of salt is 0.

Rate In = 10 L/min × 0 kg/L = 0 kg/min

2. Rate Out: The volume of fluid in the tank remains constant at
V = 1000 L (since flow in equals flow out). The concentration at
time t is Y(t)/1000 kg/L.

Rate Out = 10 L/min × Y(t)
1000

kg/L =
Y(t)
100

kg/min
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The differential equation is:

dY
dt

= 0 − Y
100

= − 1
100

Y

This is a standard exponential decay equation. With initial condi-
tion Y(0) = 15:

Y(t) = 15e−t/100

At t = 20 minutes:

Y(20) = 15e−20/100 = 15e−0.2 ≈ 12.28 kg

範例

2.6 The Integrating Factor Method

We have seen that the method of separation of variables applies only
to a restricted class of differential equations. We now turn our atten-
tion to the general first-order linear differential equation. Linearity
allows us to develop a systematic algorithm for constructing the
general solution, relying on a clever transformation that reduces the
differential equation to a standard integration problem.

Definition 2.7. Standard Form.
A first-order linear ordinary differential equation is an equation that
can be written in the form:

dy
dx

+ P(x)y = Q(x)

where P and Q are continuous functions on a given interval.
定義

Derivation of the Method

Consider the equation in standard form. Our goal is to transform the
left-hand side into the derivative of a product. Recall the product rule
for differentiation:

d
dx

[µ(x)y] = µ(x)
dy
dx

+
dµ

dx
y

Comparing this with our equation dy
dx + P(x)y = Q(x), we see that

if we multiply the entire equation by a non-zero function µ(x), we
obtain:

µ(x)
dy
dx

+ µ(x)P(x)y = µ(x)Q(x)
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For the left-hand side to be the exact derivative d
dx [µy], the second

term must satisfy:
dµ

dx
= µ(x)P(x)

This is a separable differential equation for the auxiliary function
µ(x), which we call the integrating factor. Separating variables:

1
µ

dµ = P(x) dx

Integrating yields ln |µ| =
∫

P(x) dx. Exponentiating, we choose the
simplest particular solution (setting the integration constant to zero):

µ(x) = exp
(∫

P(x) dx
)

With this choice of µ(x), the differential equation becomes:

d
dx

[µ(x)y] = µ(x)Q(x)

Integrating both sides with respect to x (by the Fundamental Theo-
rem of Calculus):

µ(x)y =
∫

µ(x)Q(x) dx + C

Solving for y gives the general solution.

Theorem 2.3. General Solution of Linear First-Order ODEs.
The general solution to the equation y′ + P(x)y = Q(x) is given by:

y(x) =
1

µ(x)

[∫
µ(x)Q(x) dx + C

]
where µ(x) = e

∫
P(x) dx.

定理

Note

While the formula exists, it is pedagogically superior to perform
the steps (multiply, collapse derivative, integrate) for each spe-
cific problem. This provides a natural check: if the left-hand side
does not collapse into a perfect derivative, an error has occurred in
calculating µ(x).

Examples

We illustrate the robustness of this method with several examples,
including cases where variable substitution is required.
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Example 2.13. Polynomial Coefficients. Consider the equation:

x
dy
dx

+ 2y = 4x3, x > 0

First, we normalize the equation to standard form by dividing by x:

dy
dx

+
2
x

y = 4x2

Here P(x) = 2/x. We calculate the integrating factor:

µ(x) = exp
(∫ 2

x
dx
)
= exp(2 ln x) = exp(ln x2) = x2

Multiplying the standard form by µ(x) = x2:

x2 dy
dx

+ 2xy = 4x4

We observe that the LHS is indeed d
dx [x

2y]. Thus:

d
dx

[x2y] = 4x4

Integrating both sides:

x2y =
∫

4x4 dx =
4
5

x5 + C

Solving for y:

y(x) =
4
5

x3 +
C
x2

範例

Example 2.14. Transcendental Functions. Solve the initial value
problem:

xy′ + (1 + x)y = e−x sin(2x), y(π) = 1

Divide by x to standardise (assuming x ̸= 0):

y′ +
(

1 + x
x

)
y =

e−x sin(2x)
x

y′ +
(

1
x
+ 1
)

y =
e−x sin(2x)

x
The integrating factor is:

µ(x) = exp
(∫ ( 1

x
+ 1
)

dx
)
= exp(ln |x|+ x) = |x|ex

Restricting to x > 0 for the initial condition at π, we use µ(x) =

xex. Multiplying the standardised equation by xex:

xexy′ + xex
(

1
x
+ 1
)

y = xex e−x sin(2x)
x
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Simplifying the coefficients:

xexy′ + (ex + xex)y = sin(2x)

Recognising the reverse product rule (xex)′ = ex + xex:

d
dx

[xexy] = sin(2x)

Integrate:

xexy =
∫

sin(2x) dx = −1
2

cos(2x) + C

Applying the initial condition y(π) = 1:

πeπ(1) = −1
2

cos(2π) + C =⇒ πeπ = −1
2
+ C =⇒ C = πeπ +

1
2

The specific solution is:

y(x) =
πeπ + 1

2 − 1
2 cos(2x)

xex

範例

Example 2.15. Swapping Variables. Occasionally, a non-linear equa-
tion in y(x) becomes linear if we regard x as the dependent variable
and y as independent. Consider:

y dx + (2xy − e−2y) dy = 0

Rearranging terms:

y
dx
dy

+ 2xy = e−2y

Dividing by y (standard form for x(y)):

dx
dy

+ 2x =
e−2y

y

Here the independent variable is y. The integrating factor is µ(y) =

e
∫

2 dy = e2y. Multiplying the equation by e2y:

e2y dx
dy

+ 2e2yx = e2y e−2y

y
=

1
y

Recognising the derivative:

d
dy

[xe2y] =
1
y

Integrating with respect to y:

xe2y = ln |y|+ C

x(y) = e−2y(ln |y|+ C)

範例
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Existence and Uniqueness

The explicit construction of the solution leads to a fundamental result
in the theory of linear ODEs. Unlike non-linear equations (e.g., y′ =
y2/3), which may fail to have unique solutions at certain points, linear
equations behave predictably.

Theorem 2.4. Existence and Uniqueness for Linear ODEs.
If P(x) and Q(x) are continuous on an interval (a, b) containing x0, then
for any y0 ∈ R, there exists a unique solution y(x) to the initial value
problem

y′ + P(x)y = Q(x), y(x0) = y0

defined on the entire interval (a, b).
定理

Proof

The formula derived in theorem 2.3 provides an explicit candidate
for the solution. Since P and Q are continuous, µ(x) is continu-
ously differentiable and non-zero. The integral of µQ exists by the
Fundamental Theorem of Calculus. Thus, existence is guaranteed.
Uniqueness follows from the fact that each step in the derivation
(multiplication by non-zero µ, integration) is reversible.

■

2.7 Second-Order Linear Homogeneous Equations

We conclude this chapter by examining a specific yet ubiquitous class
of differential equations: second-order linear homogeneous equations
with constant coefficients. These equations govern the dynamics of
mechanical vibrations, electrical circuits, and quantum mechanical
wavefunctions.

Definition 2.8. Constant Coefficient Homogeneous Equation.
A second-order linear homogeneous differential equation with constant
coefficients is of the form:

a
d2y
dx2 + b

dy
dx

+ cy = 0

where a, b, c ∈ R are constants and a ̸= 0.
定義

The Characteristic Equation

To find the general solution, we exploit the property that the deriva-
tive of an exponential function is a multiple of itself. We propose a
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trial solution of the form y = eλx, where λ is a constant to be deter-
mined. Substituting derivatives y′ = λeλx and y′′ = λ2eλx into the
differential equation yields:

a(λ2eλx) + b(λeλx) + c(eλx) = 0

Factoring out the non-zero term eλx:

eλx(aλ2 + bλ + c) = 0

Since eλx ̸= 0, the characteristic parameter λ must satisfy the alge-
braic equation:

aλ2 + bλ + c = 0

This quadratic equation is called the characteristic equation (or auxil-
iary equation). Its roots determine the nature of the solution.

Classification of Solutions

The roots of the characteristic equation are given by the quadratic
formula:

λ1,2 =
−b ±

√
b2 − 4ac

2a
We distinguish three cases based on the discriminant ∆ = b2 − 4ac.

Case I: Distinct Real Roots (∆ > 0)

If ∆ > 0, there are two distinct real roots λ1 and λ2. These generate
two fundamental solutions y1 = eλ1x and y2 = eλ2x. Since λ1 ̸= λ2,
these functions are linearly independent (their Wronskian is non-
zero). By the principle of superposition for linear equations, the
general solution is:

y(x) = c1eλ1x + c2eλ2x

Example 2.16. Real Roots. Solve y′′ − 3y′ + 2y = 0. The characteris-
tic equation is λ2 − 3λ + 2 = 0, which factors as (λ − 1)(λ − 2) = 0.
The roots are λ1 = 1 and λ2 = 2. The general solution is y(x) =

c1ex + c2e2x.

範例

Case II: Repeated Real Roots (∆ = 0)

If ∆ = 0, there is a single repeated root λ = −b/2a. This yields only
one exponential solution y1 = eλx. To form the general solution,
we require a second linearly independent solution. We verify that
y2 = xeλx is a solution. Differentiating y2:

y′2 = eλx + λxeλx

y′′2 = λeλx + λeλx + λ2xeλx = 2λeλx + λ2xeλx
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Substituting into ay′′ + by′ + cy = 0 (and noting b = −2aλ and
c = aλ2):

a(2λ + λ2x)eλx − 2aλ(1 + λx)eλx + aλ2(x)eλx = 0

Terms involving x sum to aλ2 − 2aλ2 + aλ2 = 0. Constant terms sum
to 2aλ − 2aλ = 0. Thus, y2 is a solution. The general solution is:

y(x) = c1eλx + c2xeλx = eλx(c1 + c2x)

Example 2.17. Critical Damping. Solve y′′ + 4y′ + 4y = 0. Character-
istic equation: λ2 + 4λ + 4 = (λ + 2)2 = 0. Root: λ = −2 (repeated).
General solution: y(x) = c1e−2x + c2xe−2x.

範例

Case III: Complex Conjugate Roots (∆ < 0)

If ∆ < 0, the roots are complex conjugates λ = α ± iβ, where
α = −b/2a and β =

√
4ac − b2/2a. The formal solution is y =

K1e(α+iβ)x + K2e(α−iβ)x. Using Euler’s formula eiθ = cos θ + i sin θ, we
can extract real-valued solutions.

e(α+iβ)x = eαx(cos βx + i sin βx)

e(α−iβ)x = eαx(cos βx − i sin βx)

By taking linear combinations, we isolate the real and imaginary
parts:

y1 = eαx cos βx, y2 = eαx sin βx

The general real-valued solution is:

y(x) = eαx(c1 cos βx + c2 sin βx)

Example 2.18. Simple Harmonic Motion. Solve y′′ + ω2y = 0. Char-
acteristic equation: λ2 + ω2 = 0 =⇒ λ = ±iω. Here α = 0 and
β = ω. General solution: y(t) = c1 cos ωt + c2 sin ωt. This describes
undamped oscillations with angular frequency ω.

範例

Example 2.19. Damped Oscillations. Solve the initial value problem
y′′ + 2y′ + 5y = 0, y(0) = 1, y′(0) = 3. Characteristic equa-
tion: λ2 + 2λ + 5 = 0. Roots: λ = −2±

√
4−20

2 = −1 ± 2i. Thus
α = −1, β = 2. General solution: y(x) = e−x(c1 cos 2x + c2 sin 2x).
Applying initial conditions:

y(0) = 1(c1 · 1 + c2 · 0) = c1 =⇒ c1 = 1
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Differentiating y(x):

y′(x) = −e−x(cos 2x + c2 sin 2x) + e−x(−2 sin 2x + 2c2 cos 2x)

y′(0) = −1(1) + 1(2c2) = −1 + 2c2

Setting y′(0) = 3:

−1 + 2c2 = 3 =⇒ 2c2 = 4 =⇒ c2 = 2

Solution: y(x) = e−x(cos 2x + 2 sin 2x).

範例

x

y

e−x envelope

Damped Oscillation

Figure 2.11: Solution to a
damped harmonic oscillator.
The amplitude decays expo-
nentially while the frequency
remains constant.

2.8 Summary of Methods

Equation Type General Solution

Separable y′ = g(x)h(y)
∫ dy

h(y) =
∫

g(x)dx + C

Linear y′ + P(x)y = Q(x) y = 1
µ(x) [

∫
µ(x)Q(x)dx + C], µ = e

∫
Pdx

ay′′ + by′ + cy = 0 (∆ > 0) y = c1eλ1x + c2eλ2x

ay′′ + by′ + cy = 0 (∆ = 0) y = c1eλx + c2xeλx

ay′′ + by′ + cy = 0 (∆ < 0) y = eαx(c1 cos βx + c2 sin βx)

Table 2.1: Classification of so-
lutions for standard differential
equations.

This concludes our introductory study of differential equations. The
techniques established here form the bedrock for analyzing more
complex systems, including forced oscillations (ay′′ + by′ + cy = F(x))
and systems of coupled equations, which will be explored in future
analysis courses.
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2.9 Exercises

1. Classification and Verification. Classify the following differential
equations by order, linearity, and homogeneity. Verify the indi-
cated solution.

(a) y′′ + y = tan x; y(x) = − cos x ln(sec x + tan x).
(b) x2y′′ − xy′ + y = 0; y(x) = x ln x (for x > 0).
(c) y′ = y

x + tan
( y

x
)
; sin(y/x) = Cx.

2. Separation of Variables. Find the general solution to the follow-
ing equations. Express the solution explicitly where possible.

(a) (1 + ex)yy′ = ex.

(b) dy
dx = x2+xy+y2

x2 .

Remark.

Hint: This is a homogeneous polar equation. Substitute y =

vx.

(c) ey sin(2x)dx + cos x(e2y − y)dy = 0.

3. Linear First-Order and Integrating Factors. Solve the following
initial value problems.

(a) dy
dx − y

x = xex, y(1) = e − 1.

(b) (x2 + 1) dy
dx + 3xy = 6x, y(0) = 2.

(c) y′ + y cos x = 1
2 sin(2x), y(0) = 1.

4. Second-Order Constants. Determine the general solution for the
following second-order equations.

(a) y′′ − 4y′ + 13y = 0.
(b) y′′ − 6y′ + 9y = 0.
(c) y′′ + (ω2 − ϵ)y = 0, where ϵ ≪ ω2. Use the approximation√

1 − x ≈ 1 − x/2 to describe the behaviour of the frequency.

5. Population Dynamics. A population P(t) obeys the logistic equa-
tion with carrying capacity K and intrinsic rate r.

(a) Prove that the rate of population growth is maximised when
P = K/2.

(b) If the population starts at P0 = K/3, how long does it take to
reach 2K/3? Express your answer in terms of r.

6. Bernoulli’s Equation. A differential equation of the form

y′ + P(x)y = Q(x)yn, n ̸= 0, 1

is non-linear but can be reduced to a linear form.

(a) Make the substitution u = y1−n. Show that the equation
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transforms into the linear equation:

1
1 − n

u′ + P(x)u = Q(x).

(b) Use this method to solve the logistic equation P′ = kP − k
K P2

purely as a Bernoulli equation (identifying n = 2).

(c) Solve xy′ + y = x2y2 with y(1) = 1.

7. Reduction of Order. Suppose we know one non-trivial solution
y1(x) to the second-order linear homogeneous equation:

y′′ + P(x)y′ + Q(x)y = 0.

(a) Let y(x) = v(x)y1(x). Differentiate and substitute this into
the ODE to show that v(x) satisfies the separable equation:

y1v′′ + (2y′1 + Py1)v′ = 0.

(b) By solving for v′, derive the formula for the second linearly
independent solution:

y2(x) = y1(x)
∫ exp (−

∫
P(x)dx)

y1(x)2 dx.

(c) Use this method to find the general solution to x2y′′ + xy′ −
y = 0 given that y1 = x is a solution.

8. The Riccati Equation. The non-linear equation y′ = q0(x) +
q1(x)y + q2(x)y2 is known as a Riccati equation.

(a) Show that the substitution y = − u′
q2u transforms the Riccati

equation into the second-order linear equation:

u′′ −
(

q1 +
q′2
q2

)
u′ + q2q0u = 0.

(b) Solve the equation y′ = 1 + x2 + y2 is generally difficult,
but solve the simpler case y′ = 1 + y2 using this substitution
method and verify it matches the tangent solution.

9. Orthogonal Trajectories in Polar Coordinates.

(a) If a curve is given in polar coordinates by r = r(θ), show that
the angle ψ between the tangent line and the radial vector
satisfies tan ψ = r dθ

dr .

(b) Deduce that the differential equation for the orthogonal tra-
jectories to the family F(r, θ, c) = 0 is found by replacing dr

dθ

with −r2 dθ
dr .
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(c) Find the orthogonal trajectories to the family of cardioids
r = a(1 + cos θ).

10. The Catenary Problem. A flexible cable of uniform density hangs
between two poles. Let y(x) denote the shape of the cable. Bal-
ancing horizontal and vertical tensions leads to the differential
equation:

d2y
dx2 = k

√
1 +

(
dy
dx

)2
,

where k is a constant depending on density and tension.

(a) Let p = y′. Solve the resulting first-order separable equation
for p(x).

(b) Integrate p(x) to show that the cable hangs in the shape of a
hyperbolic cosine (catenary): y(x) = 1

k cosh(kx + C1) + C2.

11. Variable Mass Systems (The Rocket Equation). A rocket of mass
m(t) moves with velocity v(t). It expels fuel at a constant speed
u relative to the rocket. By conserving momentum over a time
interval ∆t, the equation of motion (ignoring gravity) is:

m
dv
dt

= −u
dm
dt

.

(a) Solve this differential equation to derive Tsiolkovsky’s rocket
equation:

v(t) = v0 + u ln
(

m0

m(t)

)
.

(b) Now include gravity g. The equation becomes m dv
dt = −u dm

dt −
mg. Solve for v(t) assuming the burn rate dm

dt = −α is con-
stant.

12. Cauchy-Euler Equations. An equation of the form ax2y′′ + bxy′ +
cy = 0 is a Cauchy-Euler equation.

(a) Use the substitution x = et to transform the equation into
a constant coefficient equation in terms of the independent
variable t.

Remark.

Show that x dy
dx = dy

dt and x2 d2y
dx2 = d2y

dt2 − dy
dt .

(b) Solve x2y′′ − 2xy′ + 2y = 0 using this method.

(c) Generalise the method to solve x2y′′ − 3xy′ + 4y = 0 (Re-
peated roots case).

13. Pursuit Curves. A rabbit runs up the y-axis with constant speed v.
A dog starts at (L, 0) and chases the rabbit with speed kv, always
running directly towards the rabbit’s current position.
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(a) Let (x, y) be the dog’s position. Explain why the line of sight
condition implies dy

dx = y−vt
x , where t is time.

(b) Use the chain rule t =
∫

ds/(kv) and the arc length formula
to derive the second-order equation:

x
d2y
dx2 = k

√
1 +

(
dy
dx

)2
.

(c) Using the substitution p = y′, solve the equation. Show that if
k = 1, the dog never catches the rabbit.

14. Torricelli’s Law and Uniqueness. Water drains from a tank
through a hole in the bottom. The depth h(t) satisfies h′ = −k

√
h.

(a) Solve the equation given h(0) = H. At what time T does the
tank empty?

(b) Consider the solution h(t) ≡ 0 for all t. Show that at the point
where the tank empties, the solution is not unique by splicing
the non-zero solution with the zero solution.

(c) Relate this failure of uniqueness to the condition on ∂ f
∂h in the

Existence and Uniqueness Theorem near h = 0.

15. Integral Equations. Consider the Volterra integral equation:

y(x) = 3 +
∫ x

0
(t − x)y(t) dt.

(a) Differentiate the equation with respect to x twice to convert
it into a second-order initial value problem. (Use Leibniz’s
Integral Rule).

(b) Solve the resulting ODE to find the function y(x).


	Further Convergence Criteria
	The Limit Comparison Test
	Case Study: Liu Hui's Circle Division
	Kummer's Criterion and Universal Scales
	Tests for Non-Absolute Convergence
	Inequalities and Further Examples
	Infinite Products
	Exercises

	Complex Numbers and Series
	The Field of Complex Numbers
	Geometric Interpretation
	Analysis of Complex Sequences
	Complex Series
	Complex Power Series
	The Complex Exponential
	Exercises

	Ordinary Differential Equations Introduction
	Fundamental Concepts
	Solutions to Differential Equations
	Separation of Variables
	Applications to Dynamics
	Modelling with First-Order Equations
	The Integrating Factor Method
	Second-Order Linear Homogeneous Equations
	Summary of Methods
	Exercises


