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V(fg) =fVg + g Vf
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Ve(fF)=fVe+ FeVf

VeFXG)=G*(VXF) —F+(VXG)
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* fand g are scalar functions of position, and F and G are vector functions of position.
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Preface to the Fourth Edition

Can we ever have too much of a good thing?

Miguel de Cervantes

This new edition differs from the Third in two major respects.
First, a number of new worked examples have been added. This
has been done in response to the comments of many students that
such examples would be an aid in understanding the material and
useful in preparing them to do the problem sets. My task was to
add enough examples to be helpful, without at the same time
lengthening the text significantly. (Two reviewers urged me not to
lengthen the book at all, inadvertently providing an answer to
Sr. de Cervantes’ question.)

The second major difference between this edition and its prede-
cessor involves switching the roles of the two spherical angles 6
and ¢. Years ago, when the book was written it was common to
use 0 as the polar angle and ¢ as the azimuthal. Nowadays, the
more common convention reverses this, making 6 the azimuthal
angle and ¢ the polar, the convention we adopt in this edition.

I wish to thank the many readers who, over the years, have
written me with suggestions for improvements in the text. These
suggestions have often been adopted and have been an important
reason for the book’s very long lifetime.






Chapter |

Introduction,
Vector Functions,
and Electrostatics

One lesson, Nature, let me learn of thee.

Matthew Arnold

Introduction

In this text the subject of vector calculus is presented in the con-
text of simple electrostatics. We follow this procedure for two
reasons. First, much of vector calculus was invented for use in
electromagnetic theory and is ideally suited to it. This presenta-
tion will therefore show what vector calculus is and at the same
time give you an idea of what it’s for. Second, we have a deep-
seated conviction that mathematics—in any case some mathe-
matics—is best discussed in a context that is not exclusively
1 mathematical. Thus, we will soft-pedal mathematical rigor,
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which we think is an obstacle to learning this subject on a first
exposure to it, and appeal as much as possible to physical and
geometric intuition.

Now, if you want to learn vector calculus but know little or
nothing about electrostatics, you needn’t be put off by our ap-
proach; no very great knowledge of physics is required to read
and understand this text. Only the simplest features of electrostat-
ics are involved, and these are presented in a few pages near the
beginning. It should not be an impediment to anyone. In fact, the
entire discussion is based on a search for a convenient method of
finding the electrostatic field given the distribution of electric
charges which produce it. This is the thread that runs through, and
unifies, our presentation, so that as a bare minimum all you really
need do is take our word for the fact that the electric field is an
important enough quantity to warrant spending some time and ef-
fort in setting up a general method for calculating it. In the
process, we hope you will learn the elements of vector calculus.

Having said what you do not need to know, we must now say
what you do need to know. To begin with, you should, of course,
be fluent in elementary calculus. Beyond that you should know
how to work with functions of several variables, partial deriva-
tives, and multiple (double and triple) integrals.! Finally, you
must know something about vectors. This, however, is a subject
of which too many writers and teachers have made heavy
weather. What you should know about it can be listed quickly:
definition of vector, addition and subtraction of vectors, multipli-
cation of vectors by scalars, dot and cross products, and finally,
resolution of vectors into components. An hour’s time with any
reasonable text on the subject should provide you with all you
need to know of it to follow this text.

Vector Functions

One of the most important quantities we deal with in the study of
electricity is the electric field, and much of our presentation will
make use of this quantity. Since the electric field is an example of
what we call a vector function, we begin our discussion with a
brief résumé of the function concept.

A function of one variable, generally written y = f(x), is a rule

! Differential equations are used in one section of this text. The section is not es-
sential and may be omitted if the mathematics is too frightening.
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which tells us how to associate two numbers x and y; given x, the
function tells us how to determine the associated value of y. Thus,
for example, if y = f(x) = x* — 2, then we calculate y by squaring
x and then subtracting 2. So, if x = 3,

y=3-2=1.

Functions of more than one variable are also rules for associat-
ing sets of numbers. For example, a function of three variables
designated w = F(x, y, z) tells how to assign a value to w given x,
y, and z. It is helpful to view this concept geometrically; taking (x,
y, 2) to be the Cartesian coordinates of a point in space, the func-
tion F(x, y, z) tells us how to associate a number with each point.
As an illustration, a function T(x, y, z) might give the temperature
at any point (x, y, Z) in a room.

The functions so far discussed are scalar functions; the result
of “plugging” x in f(x) is the scalar y = f(x). The result of “plug-
ging” the three numbers x, y, and z in T(x, y, 2) is the temperature,
a scalar. The generalization to vector functions is straightforward.
A vector function (in three dimensions) is a rule which tells us
how to associate a vector with each point (x, y, z). An example is
the velocity of a fluid. Designating this function v(x, y, z), it spec-
ifies the speed of the fluid as well as the direction of flow at the
point (x, y, z). In general, a vector function F(x, y, z) specifies a
magnitude and a direction at every point (x, y, ) in some region
of space. We can picture a vector function as a collection of ar-
rows (Figure I-1), one for each point (x, y, z).

Figure I-1

The direction of the arrow at any point is the direction specified
by the vector function, and its length is proportional to the magni-
tude of the function.

A vector function, like any vector, can be resolved into compo-



Introduction,
Vector Functions,
and Electrostatics

k A

Figure -2

nents, as in Figure [-2. Letting i, j, and k be unit vectors along the
x-, y-, and z-axes, respectively, we write

F(x,y,2) = iF(x,y,2) + jF(x, y, 2) + KF(x,, 2).

The three quantities F,, F,, and F,, which are themselves scalar
functions of x, y, and z, are the three Cartesian components of the
vector function F(x, y, z) in some coordinate system.’

An example of a vector function (in two dimensions for sim-
plicity) is provided by

F(x,y) = ix + jy,
which is illustrated in Figure I-3. You probably recognize this

y
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\

Figure I-3

% Some writers use subscripts to indicate the partial derivative; for example, F, =
dF/ox. We shall not adopt such notation here; our subscripts will always denote
the vector component.
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Electrostatics

function as the position vector r. Each arrow in the figure is in the
radial direction (that is, directed along a line emanating from the
origin) and has a length equal to its distance from the origin.> A
second example,

G )—M
s Y \/m’

is shown in Figure I-4. You should verify for yourself that for
this vector function all the arrows are in the tangential direction
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Figure [-4

(that is, each is tangent to a circle centered at the origin) and all
have the same length.

We shall base our discussion of electrostatics on three experimen-
tal facts. The first of these facts is the existence of electric charge
itself. There are two kinds of charge, positive and negative, and
every material body contains electric charge,* although often the
positive and negative charges are present in equal amounts so that
there is zero net charge.

The second fact is called Coulomb’s law, after the French
physicist who discovered it. This law states that the electrostatic

3 Note that by convention an arrow is drawn with its tail, not its head, at the point
where the vector function is evaluated.

4 Purists will point out that neutrons, neutral pi mesons, neutrinos, and the like, do
not contain charge.
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Figure I-5

force between two charged particles (a) is proportional to the
product of their charges, (b) is inversely proportional to the
square of the distance between them, and (c) acts along the line
joining them. Thus, if g, and g are the charges of two particles a
distance r apart (Figure I-5), then the force on g, due to g is

where 1l is a unit vector (that is, a vector of length 1) pointing from
g to q,, and K is a constant of proportionality. In this text we’ll
use rationalized MKS units. In that system length, mass, and time
are measured in meters, kilograms, and seconds, respectively, and
electric charge in coulombs. With this choice of units K =
1/(4me;), where the constant €,, called the permittivity of free
space, has the value 8.854 X 1072 coulombs’ per newton-
meters?, and Coulomb’s law reads

_ 1 944 _
= e, 2 O I-1)

F

You should convince yourself that the familiar rule “like charges
repel, unlike charges attract” is built into this formula.

The third and last fact is called the principle of superposition. If
F, is the force exerted on g, by g, when there are no other charges
nearby, and F, is the force exerted on g, by g, when there are no
other charges nearby, then the principle of superposition says that
the net force exerted on g, by ¢, and g, when they are both pres-
ent is the vector sum F, + F,. This is a deeper statement than it
appears at first glance. It says not merely that electrostatic forces
add vectorially (all forces add vectorially), but that the force be-
tween two charged particles is not modified by the presence of
other charged particles.

We now introduce a vector function of position, which will
play a leading role in our discussion. It is the electrostatic field,
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denoted E(r) and defined by the equation E(r) = F(r)/q,, or
F(r) = gE(r). That is, the electrostatic field is the force per unit
charge. From Equation (I-1) we have

E(r)=@= 1 49

4o 411'60 r2

u. (I-2)

This is the electrostatic field at r due to the charge q.

A natural extension of these ideas is the following. Suppose we
have a group of N charges with g, situated atr,, g, atr,, ..., gy
at ry. Then the electrostatic force these charges exert on a charge
qo situated at r is

N
1 909, A
Is
4mey =1 |r — 1|

F(r) = (I-3)

where 1, is the unit vector pointing from r, to r. From Equation
(I-3) we have

1 &, q A
E() = u, 14
( ) 41T€01=E] |r _ l.I|2 ! ( )

This is the electrostatic field at r = ix + jy + kz produced by the
charges g, at r; (I = 1, 2,..., N). Equation (I-4) says that the
field due to a group of charges is the vector sum of the fields each
produces alone. That is, superposition holds for fields as well as
forces. You may think of the region of space in the vicinity of a
charge or group of charges as “pervaded” by an electrostatic field;
the net electrostatic force exerted by those charges on a charge g
at a point r is then gE(r).

You may be a bit mystified about our bothering to introduce a
new vector function, the electrostatic field, which differs in an ap-
parently trivial way from the electrostatic force. There are two
major reasons for doing this. First, in electrostatics we are inter-
ested in the effect that a given set of charges produces on another
set. This problem can be conveniently divided into two parts by
introducing the electrostatic field, for then we can (a) calculate the
field due to a given distribution of charges without worrying
about the effect these charges have on other charges in the vicin-
ity and (b) calculate the effect a given field has on charges placed
in it without worrying about the distribution of charges that pro-
duced the field. In this book we will be concerned with the first of
these.
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PROBLEMS

The second reason for introducing the electrostatic field is
more basic. It turns out that all classical electromagnetic theory
can be codified in terms of four equations, called Maxwell’s equa-
tions, which relate fields (electric and magnetic) to each other and
to the charges and currents which produce them. Thus, electro-
magnetism is a field theory and the electric field ultimately plays a
role and assumes an importance which far transcends its simple
elementary definition as “force per unit charge.”

Very often it is convenient to treat a distribution of electric
charge as if it were continuous. To do this, we proceed as follows.
Suppose in some region of space of volume AV the total electric
charge is AQ. We define the average charge density in AV as

_ AQ

= — I-
Pav AV ( 5)
Using this, we can define the charge density at the point (x, y, ),
denoted p(x, y, z), by taking the limit of p,, as AV shrinks down
about the point (x, y, 2):

. A _ _

9= lm 2= lm By (16
av—0 AV AV—0
about (x,y,2) about (x,y,2)

The electric charge in some region of volume V can then be ex-
pressed as the triple integral of p(x, y, z) over the volume V; that is,

o= [[[ per o

In much the same way it follows that for a continuous distribution
of charges, Equation (I-4) is replaced by

p(r )u(r Vv

E(r) = I-7)

I-1 Using arrows of the proper magnitude and direction, sketch each of
the following vector functions:

(a) iy + jx. (e) jx.
(b) (i + V2. €) Gy + jx)/VEZ + ¥, (x,y) # (0, 0).
(c) ix — jy. (g) iy + jxy.

(d) iy. (h) i+ jy.



Problems I-2 Using arrows, sketch the electric field of a unit positive charge situ-
ated at the origin. [Note: You may simplify the problem by confining
your sketch to one of the coordinate planes. Does it matter which plane
you choose?]

I-3  (a) Write a formula for a vector function in two dimensions
which is in the positive radial direction and whose magnitude
is 1.

(b) Write a formula for a vector function in two dimensions
whose direction makes an angle of 45° with the x-axis and whose
magnitude at any point (x, y) is (x + y)*.

(c) Write a formula for a vector function in two dimensions
whose direction is tangential (in the sense of the example on page
5) and whose magnitude at any point (x, y) is equal to its distance
from the origin.

(d) Write a formula for a vector function in three dimensions
which is in the positive radial direction and whose magnitude
is 1.

I—4 An object moves in the xy-plane in such a way that its position vec-
tor r is given as a function of time ¢ by

r = ia cos wt + jb sin wt,

where a, b, and w are constants.
(a) How far is the object from the origin at any time ¢?
(b) Find the object’s velocity and acceleration as functions of
time.
(c) Show that the object moves on the elliptical path

e

I-5 A charge + 1 is situated at the point (1, 0, 0) and a charge —1 is sit-
uated at the point (—1, 0, 0). Find the electric field of these two
charges at an arbitrary point (0, y, 0) on the y-axis.

1-6 Instead of using arrows to represent vector functions (as in Prob-
lems I-1 and I-2), we sometimes use families of curves called field
lines. A curve y = y(x) is a field line of the vector function F(x, y) if
at each point (x, yo) on the curve, F(x,, y,) is tangent to the curve (see
the figure).

Y y=y)

F(XO, yO)

(xq» Yo)
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(a) Show that the field lines y = y(x) of a vector function
F(x,y) = iF,(x,y) + jF\,(x,y)
are solutions of the differential equation
Qzamw
dx  Fyx,y)
(b) Determine the field lines of each of the functions of Problem

I-1. Draw the field lines and compare with the arrow diagrams of
Problem I-1.
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Surface Integrals
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Gauss’ Law
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Oh, could I flow like thee, and make
thy stream
My great example. . . .

Sir John Denham

Since the electrostatic field is so important a quantity in electro-
statics, it follows that we need some convenient way to find it,
given a set of charges. At first glance it might appear that we
solved this problem before we even stated it, for, after all, do not
Equations (I-4) and (I-7) provide us with a means of finding E?
The answer is, in general, no. Unless there are very few charges
in the system and/or they are arranged simply or very symmetri-
cally, the sum in Equation (I-4) and the integral in Equation
(I-7) are usually prohibitively difficult—and frequently impos-
sible—to perform. Thus, these two equations provide what is
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usually only a “formal” solution' to the problem, not a practical
one, and we must cast about for some other way to calculate the
field E.

In the course of this casting about, we come inevitably to that
remarkable relation known as Gauss’ law. We say “inevitably”
because it is hard to think of any other expression in elementary
electricity and magnetism containing the electric field [apart, of
course, from Equations (I-4) and (I-7), which we have already
rejected]. Gauss’ law is

fLE-ﬁds=-€%. (-1)

If you don’t understand this equation, don’t panic. The left-hand
side of this equation is an example of what is called a surface
integral, an important concept in vector calculus and one that is
probably new to you. The integrand of this integral is the dot
product of the electric field and the quantity @i, which is called a
“unit normal vector” and is probably also unfamiliar. We are
about to discuss both surface integrals and unit normal vectors
in excruciating detail, and one of our main reasons for quoting
Gauss’ law at this point in our narrative is to motivate this
discussion.

We won’t stop here to derive Gauss’ law, since the derivation
wouldn’t mean much to you until you have read the next few sec-
tions. Then you can consult almost any text on electricity and
magnetism for the gory details. And if you can contain yourself,
wait until we’ve discussed the divergence theorem (pages 45-52),

after which you will be able to derive Gauss’ law easily (see
Problem 11-27).

The Unit Normal Vector

12

One of the factors in the integrand in Gauss’ law [Equation
(II-1)] is a quantity designated fi and called the unit normal vec-
tor. This quantity is part of the integrand in most if not all of the
surface integrals we’ll encounter; furthermore, as we’ll see, it
plays an important role in the evaluation of surface integrals even

! The word “formal” in this context is a euphemism for “useless.”
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when it does not appear explicitly. Thus, before discussing sur-
face integrals themselves, we’ll dispose of the questions of how
this vector function is defined and calculated.

The word “normal” in the present context means, loosely
speaking, “perpendicular.” Thus, a vector N normal to the xy-
plane is clearly one parallel to the z-axis (Figure II-1), while a

Figure 1I-1

vector normal to a spherical surface must be in the radial direction
(Figure II-2). To give a precise definition of a vector normal to a

N

Figure 1I-2

surface, consider an arbitrary surface S, as shown in Figure II-3.
Construct two noncollinear vectors u and v tangent to .S at some
point P. A vector N which is perpendicular to both u and v at P is,
by definition, normal to S at P. Now, as we know, the vector
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Figure I1-3

product of u and v has precisely this property; it is perpendicular
to both u and v. Thus, we may write N = u X v. To make this a
unit vector (that is, one whose length is 1) is simple: we just di-
vide N by its magnitude N. Thus,

uxyv
lu X v|

f=N_
N

1s a unit vector normal to S at P.
To find an expression for fi, we consider some surface S given
by the equation z = f(x, y); see Figure II-4. Following the proce-

|
|
—\|\\ :
— | | ‘\~C
| P i

Figure 114

dure suggested by the preceding discussion, we’ll find two vec-
tors u and v whose cross product will yield the required normal
vector n. For this purpose let’s construct a plane through a point
P on §S and parallel to the xz-plane, as shown in Figure II-4. This
plane intersects the surface S in a curve C. We construct the vec-



The Unit Normal tor u tangent to C at P and having an x-component of arbitrary
Vector length u,. The z-component of u is (3f/dx)u,; in this expression
we use the fact that the slope of u is, by construction, the same as

Figure II-5

that of the surface S in the x-direction (see Figure II-5). Thus,

u = iu, + k(—g];c>ux = [i + k(g—g)]ux. (I1-2)

To find v, the second of our two vectors, we pass another plane
through the point P on S, but in this case parallel to the yz-plane
(Figure II-6). It intersects S in a curve C’, and the vector v can

Figure II-6

now be constructed tangent to C’ at P with a y-component of arbi-
trary length v,. Arguing as above, we have

d
15 vV=ju,+ k(%)vy = [j + k(gy[):lvy. (I1-3)
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Using the two vectors u and v as given in Equations (II-2) and
(II-3), we now construct their cross product. The result,

uxv= |:—l<—g£) - J(%) + k:quvy,

is a vector, which as we stated above, is normal to S at P. To
make a unit vector of this, we divide it by its magnitude to get

Lof . of

uxv _ 0x J@

SN REiNE]
ox ay

This, then, is the unit vector normal to the surface z = f(x, y) at
the point (x, y, z) on the surface.? Note that it is independent of the
two arbitrary quantities u, and v,.

A couple of examples may be in order here. First a trivial one:
What is the unit vector normal to the xy-plane? The answer, of
course, is k (see Figure II-1). Let’s see how Equation (II-4) pro-
vides us with this answer. The equation of the xy-plane is

+k

fi(x,y,z) = | (I1-4)

z=fx,y) =0,
whence we have the profound observations
aflox =0 and af/oy = 0.

Substituting these in Equation (II-4), we get i = k/V1 = Kk, as
advertised.

As a second example, consider the sphere of radius 1 centered
at the origin (Figure II-2). Its upper hemisphere is given by

z=f(x,y) =1 —x*—y)'?

2 The uniqueness of our result [Equation (II-4)] may be questioned on two counts.
The first of these is a sign ambiguity: If i is a unit normal vector, so is — ii. The
matter of which sign to use is discussed below. The second question arises from
the fact that the two tangent vectors u and v used in determining fi are rather spe-
cial, since each is parallel to one of the coordinate planes. Would we get the same
result using two arbitrary tangent vectors? This issue is considered in Problem
IV-26, where it is shown that i as given by Equation (II4) is, apart from sign,
indeed unique.
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Using these in Equation (II-4) leads to

ix by
A~ ztZ Kk ity ke
fi = = =ix + jy + kg,
2 ) VX +y + 2
X+ +1
< Z

where we have used the equation of the unit sphere x* + y? +
7> = 1. This is, as expected, a vector in the radial direction (see
Figure II-2). To show that its length is 1, we observe that i *
n=x+y +z2=1

With the matter of the unit normal vector now disposed of, we
turn to our next task, a discussion of surface integrals.

Definition of Surface Integrals

17

We now define the surface integral of the normal component of a
vector function F(x, y, 7). This quantity is denoted by

ffs F e ds, (dI-5)

and as you can see, Gauss’ law [Equation (II-1)] is expressed in
terms of just such an integral. Let z = f(x, y) be the equation of
some surface. We’ll consider a limited portion of this surface,
which we designate S (see Figure I1-7). Our first step in formulat-

Figure II-7



Surface Integrals ing the definition of the surface integral (II-5) is to approximate S
and the by a polyhedron consisting of N plane faces each of which is tan-
Divergence gent to § at some point. Figure II-8 shows how this approximat-

Figure I1-8

ing polyhedron might look for an octant of a spherical shell. We
concentrate our attention on one of these plane faces, say the /th
one (Figure I1-9). Let its area be denoted AS, and let (x,, y,, 7)) be

xp Yo 2p)

F(x, y, 7))

Figure II-9

the coordinates of the point at which the face is tangent to the sur-
face S. We evaluate the function F at this point and then form its
dot product with fi,, the unit vector normal to the Ith face. The re-
sulting quantity, F(x,, y;, z;) * fi,, is then multiplied by the area AS,
of the face to give

F(x,ynz)° ﬁl AS,.

We carry out this same process for each of the N faces of the ap-
proximating polyhedron and then form the sum over all N faces:

N
18 1221 F(xb yb Z[) i ﬁl ASI.
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The surface integral (II-5) is defined as the limit of this sum as
the number of faces, N, approaches infinity and the area of each
face approaches zero.’ Thus,

N
f f FefidS= lim Y F(x,y,z)*0,AS. (II-6)
S =1

N—>ox

each AS—0

If we want to cross all the #’s and dot all the i’s, this integral,
strictly speaking, should be written

ffs F(x, y, z) * 0i(x, y, 2) dS

since both F and i are, in general, functions of position. We pre-
fer, and where possible will use, the less cluttered notation

ffF-ﬁdS
S

with the arguments of the functions understood.

The surface S over which we integrate a surface integral can be
one of two kinds: closed or open. A closed surface, such as a
spherical shell, divides space into two parts, an inside and an out-
side, and to get from inside to outside, you must go through the
surface. An open surface, such as a flat piece of paper, does not
have this property; it is possible to get from one side of the sheet
to the other without going through it. The definition of surface in-
tegrals given in Equation (II-6) applies equally well to both
closed and open surfaces. However, the surface integral is not
well defined until we specify which of the two possible directions
of the normal we are to use (see Figure II-10). In the case of an

Figure II-10

3 The statement “each AS; — 0” is not quite precise. The area of a rectangular
patch, for example, might tend to zero because its width decreases while its length
remains fixed. This would not be acceptable. Here and elsewhere we must inter-
pret “each AS, — (” to mean that all linear dimensions of the I/th patch tend to
zero.
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open surface, the direction must be given as part of the statement
of the problem. In the case of a closed surface, there is a gentle-
men’s agreement which specifies the direction once and for all:
the normal is chosen so that it points outward from the volume
enclosed by the surface.

The integral in Gauss’ law [Equation (II-1)] is taken over a
closed surface. Gauss’ law, in fact, says that the surface integral
of the normal component of the electric field over a closed surface
is equal to the total (net) charge enclosed by the surface. divided
by €,. Below (pages 33-37 and Problems II-11, II-12, and II-13)
we’ll see how, when the charges are arranged neatly and symmet-
rically, Gauss’ law can be used to determine the electric field. But
the thrust of our whole discussion will be to subject Gauss’ law to
a series of harrowing adventures which eventually transform it
into an expression useful for finding E even when we don’t have
symmetry to help us.

Sometimes we encounter surface integrals which are a little
simpler than the kind we’ve just defined, although basically they
are almost the same. These are surface integrals of the form

f L G(x,y, z) dS, (I1-7)

where the integrand G(x, y, z) is a given scalar function rather
than the dot product of two vector functions as in (II-5) and
(I1-6). We go about defining this kind of surface integral much
as we did above: we approximate S by a polyhedron, form the
product G(x,, y,, z;) AS,, sum over all faces, and then take the
limit:

N
J f G(x,y,2)dS = lim 2 G(x;, yi, 7)) AS,. (I1-8)
S =1

N—

each AS—0

As an example of this kind of surface integral, suppose we have a
surface of negligible thickness with surface density (that is, mass
per unit area) o(x, y, z), and we wish to determine its total mass.
Approximating this surface by a polyhedron as above, we recog-
nize that o(x,, y;, ;) AS, is approximately the mass of the Ith face
of the polyhedron and that

N

2 a(x, yi, 7)) AS;

=1

/

/

/
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N
Alllm E 0-('xl’ Y Zl) ASl = ff U(xa Yy, Z) dS,
— 00 I=
each AS—0 ! s

we get the total mass of the surface.
An example of an even simpler surface integral of this kind is

[[as

This integral is taken as the definition of the surface area of S.

Evaluating Surface Integrals
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Now that we have defined surface integrals, we must develop
methods to evaluate them, and that will be our task here. For sim-
plicity we’ll deal with surface integrals of the form (II-7), where
the integrand is a given scalar function, rather than the slightly
more complicated form (II-5). There will be no loss of generality
in doing this for all our results can be made to apply to integrals
of the form (II-5) just by replacing G(x, y, z) everywhere by
F(x,y,2)° n.
To evaluate the integral

f L G(x,y,2)dS

over a portion S of the surface z = f(x, y) (see Figure 1I-11), we
go back to the definition of the surface integral [Equation (II-8)].

Figure II-11
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Our strategy will be to relate AS; to the area AR, of its projection
on the xy-plane, as shown in Figure II-12. Doing so, as we’ll see,
will enable us to express the surface integral over S in terms of an
ordinary double integral over R, which is the projection of S on
the xy-plane, as shown in Figure II-11.

Relating AS, to AR, is not difficult if we recall that AS; (like the
area of any plane surface) can be approximated to any desired de-
gree of accuracy by a set of rectangles as shown in Figure II-13.

Figure I1-13

For this reason we need only find the relation between the area of
a rectangle and its projection on the xy-plane. Thus, consider a
rectangle so oriented that one pair of its sides is parallel to the
xy-plane (Figure 1I-14). If we call the lengths of these sides aq, it’s
clear that their projections on the xy-plane also have length a. But
the other pair of sides, of length b, have projections of length &',
and in general, b and b’ are not equal. Thus, to relate the area of
the rectangle ab to the area of its projection ab’, we must express
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Figure I1I-14

b in terms of b’. This is easy to do, for if 0 is the angle shown in
Figure II-14, we have b = b'/cos 0, and so

_ _ab’'
cos 0

If we let i denote the unit vector normal to our rectangle, then we
can readily convince ourselves that cos = n * k where k, as al-
ways, is the unit vector in the positive z-direction. Thus,

ab’

ab = —.
n-k

Since the area AS, can be approximated with arbitrary accuracy
by such rectangles, it follows that

AR,
nek’

ASI =

where, of course, ﬁ, is the unit vector normal to the /th plane
surface.

We can now rewrite the definition of the surface integral
[Equation (II-8)] as

: N AR,
f f G(x,y,2)dS= lim Y G(x,y,2) 7, (1-9)
s N-wo =] n,°k
each AR—0
where the statement “each AS, — 0” has been replaced by the

equivalent but now more appropriate “each AR, — 0.” We are
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now obviously well on the road to rewriting the surface integral
over § as a double integral over R. In fact,

G ’ ’ G ?
lim S22 \p o f YDy ari0)
N—-o =1 Db,k RO(x,y,2)°k
each AR—0

where fi(x, y, 2) is the unit vector normal to the surface § at the
point (x, y, z). This is a double integral over R even though it
does not quite look like one. What appears to spoil it is that
nasty z in G and fi; a double integral over a region in the
xy-plane clearly has no business containing any z’s. But the
z-dependence is spurious because (x, y, z) are the coordinates of
a point on S, and so z = f(x, y). Hence, at the expense of making
the integral look even fiercer than it already does in Equation
(II-10), we can eliminate the apparent z-dependence of the inte-
grand and write

G b b b
j _ [x, y, f(x, ¥)] (q1-11)
R 0[x, y, f(x, y)] * k
The faint of heart can take courage; in most cases this integrand
reduces quickly to something much simpler and pleasanter look-
ing—a fact we will demonstrate by example below. At this point

we introduce the expression for the unit normal vector [Equation
(I14)]. We find

_ 1
V1 + (3flax)* + (oflay):

=>
°

and so Equation (II-11) becomes

f fs Gy, 2)dS = f fR Glx, y, f(x, y)]
\/ b (af) (f) dxdy. (I-12)

Thus, the surface integral of G(x, y, z) over the surface S has been
expressed as a double integral of a messy-looking function over
the region R, the projection of S in the xy-plane. As we remarked
above, in practice the integral is usually much less ghastly than it
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appears written out in Equations (II-11) or (II-12). You will see
this in the examples we now give.
Let’s first compute the surface integral

fL(x+z)dS

where S is the portion of the plane x + y + z = 1 in the first oc-
tant shown in Figure II-15(a). The projection of S on the xy-plane

Figure II-15(a)

is the triangle R shown in the figure. The equation of S can be
written

z=fx,y)=1—x—y

from which we get

¥_¥_
ox dy
so that
2 0 2
UNERERY
0x ay
Hence

fL(x+z)dS=\f3fL(x+z)dxdy=

\/§”R(x+1—x—y)dxdy=\/§fL(1—y)dxdy,



Surface Integrals  where we have used z = 1 — x — y. This is a simple double inte-
and the gral with value l/\/g, as you should be able to verify.
Divergence As a second example let’s compute the surface integral

ffea
S

where S is the octant of the sphere of radius 1 centered at the ori-
gin as shown in Figure II-15(b). The projection of § on the

,/
Figure II-15(b)

xy-plane (that is, R) is the area enclosed by the quarter circle. The
equation of Sisx*> + y* + z> = 1, or

2=f(x,y) = +V1—x—y.

It follows then that

%= —% and %=—%,
so that
I (-
=V ey+2=1

where we have used x> + y? + z2 = 1. Hence,

26 JLzzdS=fL22%dxdy=szdxdy.
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Substituting for z in terms of x and y, we get
”zzds=” V1 — 22 — y*dx dy.
s R

This is an ordinary double integral, and you should verify that its
value is /6. [Suggestion: Convert to polar coordinates: x = r cos
0, and y = r sin 0. The integration is then trivial.]

It should be emphasized that the foregoing discussion was
based on the assumption that the surface S is described by an
equation of the form z = f(x, y); in such a situation a surface inte-
gral is converted into a double integral over a region in the
xy-plane. But it may happen that a given surface is more conve-
niently described by an equation of the form y = g(x, z) as in Fig-
ure II-16(a). If this is so, then

f J; G(x,y,2)dS
B ag \2 g \2
= ffR Glx, g(x, 2), ] \/1 + (5) + (a—z) dx dz,

Figure II-16(a)

where R is a region in the xz-plane. Similarly, if we have a surface
described by x = h(y, 2), as in Figure II-16(b), then we use

f f G(x,y,2)dS
S
=”G[h(yz) . 1+ Y, (R 4 4
R ’ ,y, ay az y ’
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Figure II-16(b)

where R in this case is a region in the yz-plane. Finally, a surface
may have several parts, and it may then be convenient to project
different parts on different coordinate planes.

To evaluate surface integrals of the form (II-5), that is,

fJF°ﬁdS,
S

we merely replace G by F ¢ i in Equation (II-12) to get

[fireaas=[[ren fie (Z) + (2] acar

If we now use Equation (II-4) to write this out in detail, we find
that the square root factor cancels and we get

[J peaas= [ {—Fx[x, y. ol o

)
— F,[x, y, f(x, y)] % + Filx, y, f(x, y)]} dxdy. (1I-13)

We leave it to the reader to write down the analogous formulas
when the surface S is given by y = g(x, z) or x = h(y, z), which must
be projected onto regions in the xz- and yz-planes, respectively.

This last equation [Equation (II-13)] is enough to make strong
men weep, but, as before, in most calculations it quickly reduces
to something quite tame. For example, suppose we wish to calcu-
late [ [ F * i dS, where F(x, y, z) = iz — jy + kx and § is the por-
tion of the plane

x+2y+2z=2
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Figure II-17(a)

bounded by the coordinate planes, that is, the triangle reclining
gracefully in Figure II-17(a). The normal vector f is chosen so
that it points away from the origin as shown in Figure II-17(a),
and we’ll project S onto the xy-plane. We have

z=fuy)=1-2-y

and so
af___l af__l
== -1 =
ox ay
We also have
F,=z=1-3- F, = - F,=
x - 2 y, )'_ y, z—x-

=”R{[_(1 -1 )] —%)+y(—1)+x}dxdy

The region R over which the integral must be taken is shown in
Figure II-17(b). The problem has thus been reduced to the compu-
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Figure II-17(b)

tation of a rather simple double integral, and you should carry out
the integration yourself (the answer is 3).
As a second example, suppose

F(x, y, 7) =ixz + k2

For § let’s take the octant of the spherical surface shown in Figure

II-15. Then z = f(xy) = V1 —x* =y’ and we have already
shown (see page 25) that

af=—£ and —=—

x Z ady

Thus

”SF-ﬁds
=IL|:—xz(—§)+z{|dxdy=J‘fR(x2+ 1 —x* — y)dxdy
=HR(1—yz)dxdy=dexdy—fLy2dxdy

where R, we recall, is the quarter-circle shown in Figure II-15.
The first integral in the last equality above is just the area of the
quarter-circle of radius 1, and is therefore equal to 7/4. The sec-
ond integral can be done by introducing polar coordinates. We get

2
ffy dxdy = f f r? sin® Or dr d6
=f sin Odef r2dr
0
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Both the r and 0 integrals here are elementary, and you should
have no trouble showing that this expression is equal to 7/16.
Thus [[¢F «n dS = w/4 — w/16 = 37/16.

An integral of the type

f fs F(x,y,z)* 0 dS (I1-14)

is sometimes called the “flux of F.” Thus Gauss’ law [Equation
(II-1)] states that the flux of the electrostatic field over some
closed surface is the enclosed charge divided by ¢,,.

It is useful in obtaining a geometrical feeling for some aspects
of vector calculus to understand the significance of the word flux
(Latin for “flow’’) used in this context. For this purpose let us con-
sider a fluid of density p moving with velocity v. We ask for the
total mass of fluid that crosses an area AS perpendicular to the di-
rection of flow in a time At. Clearly, all the fluid in the cylinder of
length v At with the patch AS as base will cross AS in the interval
At (Figure II-18). The volume of this cylinder is v Az AS, and it

VAt

Figure I1-18

contains a total mass pv At AS. Dividing out the At will give the
rate of flow. Thus,

Rate of flow
( through AS ) = pUAS.

Now let us consider a somewhat more complicated case in
which the area AS is not perpendicular to the direction of flow
(Figure I1-19). The volume containing the material that will flow
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Figure II-19

through AS in time At is now just the volume of the little skewed
cylinder shown in the diagram. The volume is v At AS cos 6, where
0 is the angle between the velocity vector v and N, the unit vector
normal to AS and pointing outward from the skewed cylinder. But
v cos O = v« ii. So, multiplying by p and dividing by At, we get

(Rate of ﬂow) = pve B AS.

through AS

Finally, consider a surface S in some region of space containing
flowing matter (Figure II-20). Approximate the surface by a poly-

S

i

Figure 11-20

hedron. By the above argument, the rate at which matter flows
through the Ith face of this polyhedron is approximately

PO, Y1 2DV, Y1, 2) ° ﬁz AS,.

Here, of course, (x;, y;, z) are the coordinates of the point on the /th
face at which it is tangent to S, and M, is the unit vector normal to
the /th face. Summing over all the faces and taking the limit, we get

Rate of flow | fJ’ L
( through S ) ) p(x, y, 2V(x, y, 2) * n dS.

If S happens to be a closed surface and there is a net rate of flow
out of the volume it encloses, then you can convince yourself that
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this integral will be positive, and if there is a net rate of flow in,
the integral will be negative.
If in this last equation we put

F(x,y,2) = plx, y, 2)v(x, y, 2),

the integral is seen to be formally identical with that in Equation
(II-14). For this reason any integral of the form (II-14) is called
“the flux of F over the surface S,” even when the function F is not
the product of a density and a velocity! The reason for stressing
this point about flux is that, misnomer though it may be, it
nonetheless gives a good geometric or physical picture of Gauss’
law: The electric field “flows” out of a surface enclosing charge,
and the “amount” of this “flow” is proportional to the net charge
enclosed. Warning: This is not to be taken literally; the electric
field is not flowing in the sense in which fluid flows. It is merely
picturesque language intended to aid us in understanding the
physics in Gauss’ law.

Law to Find the Field

Having rejected the two expressions for E [Equations (I-4) and
(I-7)], we find that the only candidate left for providing us with a
good general method for calculating the field is Gauss’ law. At
first glance it does not appear to be a very likely candidate be-
cause, unlike Equations (I-4) and (I-7), it is not an explicit ex-
pression for E. That is, it does not say “E equals something.”
Rather, it says “The flux of E (the surface integral of the normal
component of E) equals something.” Thus, to use Gauss’ law, we
must “disentangle” E from its surroundings. Despite this, there
are situations in which Gauss’ law can be used to find the field, as
an example will now show.

Consider a point charge g placed at the origin of a coordinate
system. Symmetry considerations tell us two things about its elec-
tric field: (1) It must be in the radial direction (that is, it must
point directly toward, or directly away from, the origin), and (2) it
must have the same magnitude at all points on the surface of a
sphere centered at the origin. Stating this in symbols, we have
E = € E(r), where €, = r/r is a unit vector in the radial direction.
Thus, Gauss’ law becomes

ff E(r) €, 1 dS = gle,.
s
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If, for the surface S, we now choose a spherical shell of radius
r centered at the origin, a little thought will convince you that
n=¢€,sothatn*€, = 1and we get

f fs E(r) dS = gle,.

This integral is trivial to perform if we recognize that r is a con-
stant over the spherical surface S. This means that E(r) is also a
constant on S and we get*

f fs E() dS = E(r) f fs 4S = 4mr?E() = dles

whence
_ 1 9
E(r) = 41e,
and
8, g

E( =& B0 =727,

in agreement with Equation (I-2).

We can see from this example how heavily we depend on sym-
metry when using Gauss’ law to obtain the field. In fact, to use
Gauss’ law in the form given in Equation (II-1) requires even
more symmetry and simplicity than Equations (I-4) and (I-7).
The blunt truth is that this form of the law yields the electric field
in a grand total of three situations (and combinations thereof):
(1) a spherically symmetric distribution of charge (of which the
point charge considered above is a special case), (2) an infinitely
long cylindrically symmetric distribution (including the case of an
infinitely long uniformly distributed line of charge), and (3) an in-
finite slab of charge (including as a special case an infinite uni-
formly charged plane).’ The real value of Equation (II-1) is that it
can be twisted and beaten into a more useful form.

* Shortcuts like this often make it possible to evaluate surface integrals without
using all the paraphernalia we discussed above. Further examples are given in
Problem II-10. '

3 Examples of these are given in Problems II-11, II-12, and I1-13.
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What is it about Equation (II-1) that makes it difficult to find
E? To answer this question, suppose we are doing a numerical
calculation on a computer and wish to evaluate [ E « fi dS. The
standard procedure for dealing with integrals numerically is to ap-
proximate them as sums, a rather obvious thing to do since an in-
tegral, after all, is the limit of a sum. Thus, suppose we divide the
surface § into, say, 10 patches. We then have as an approximation
to Equation (II-1)

10
2 E ﬁl AS; = gle,,
i=1

where E, is the value of E, and fi, is the unit normal, somewhere
on the Ith patch. There is little or no hope of finding E from this:
it is one equation in the 10 unknowns E,, E,, . .., E,,. Further-
more, it is probably not very accurate. To improve the accuracy,
we might make 100 subdivisions rather than just 10 to get

E

E,« i, AS, = gle,.

-~
1
—

Much more accurate! And much more hopeless too, because this
is one equation in 100 unknowns. Even more accurate (and more
hopeless) is

ij°ﬁdS=q/eO,
s

which is one equation in infinitely many unknowns. These un-
knowns are, of course, the values of E * fi at every one of the infi-
nitely many points of the surface S.°

We have now isolated the trouble with Equation (II-1): it in-
volves an entire surface and therefore the value of E » 0 at infi-
nitely many points. If, somehow, we could deal with the “flux at a
single point” (whatever that may mean!) rather than the flux
through a surface, perhaps then Gauss’ law might yield something
tractable. How might we arrange this? For simplicity let us sur-
round some point P by a set of concentric spherical shells §,, S,,
S5, and so on (Figure II-21), and calculate the flux ®,, ®,, P,

® The reason Gauss’ law yields the expression for the field of a point charge exam-
ined above is that symmetry in that case shows that the infinitely many unknowns
are all equal. This turns Gauss’ law into one equation in one unknown.
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Figure I1-21

and so on, through each shell. We might then attempt to define the
“flux at the point P as the limiting value approached by the se-
quence of fluxes calculated this way over smaller and smaller
shells centered at P.

This sounds good; it has a heartening “mathematical” ring to it.
Unfortunately, it does not work because (assuming the charge
density is finite everywhere) the sequence of fluxes, calculated as
described above, approaches zero for any point P. This is fairly
obvious since it is merely the statement that the flux through a
surface tends to zero as the surface shrinks to a point. Since our
objective was to find a way to determine the flux at a point, and
thereby learn something about the field at that point, and since we
get zero at any point no matter what the field there may be, we
have obviously not obtained what we want.

It is useful to give a physicist’s rough-and-ready proof of the
fact that the flux goes to zero as the surface shrinks down to a
point, for even though this fact may be obvious, the proof will
suggest how to pull this chestnut out of the fire. For this purpose
we note that if p,, denotes the average density of electric charge
[Equation I-5] in some region of volume AV, then the total
charge in AV is p,y, AV. Thus Gauss’ law [Equation (II-1)] may
be written

f f E * i dS = p,y AVle,, (II-15)
S

where, as indicated in Figure II-22, the surface integral is taken
over the surface S that encloses the volume AV. From this expres-
sion {Equation (!I-15)] we can see the validity of our assertion:
As § — 0, the enclosed volume AV must, of course, also approach
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Figure 11-22

zero. Thus, the flux also tends to zero and the assertion is proved.’
Not only have we given a proof, but (and this is the point) we can
now isolate a quantity that does not vanish as S — 0. Dividing
Equation (II-15) by AV, we get

1 PN —
H/fJ;E.ndsszV/eo.

This expression, awkward and unappealing though it may be, is
nonetheless close to what we are after, even though it still involves
an integral of E over an entire surface. For if we now take the limit
as S shrinks to zero about some point in AV whose coordinates are
(x, ¥, 2), then, as we see from Equation (I-6), the average density
pay approaches p(x, y, z), the density at (x, y, z), and we get

1 __1_- f on = —
lim AV f SE n ds = p(x, y, 2)/€,. dI1-16)

AV—0
about (x,y,z)
This expression is admittedly downright hideous, and whether it
will be of any practical use whatever depends on our being able to
pound the left-hand side into a form that looks and acts at least
half-civilized. We turn to this task now.

The Divergence
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Let us consider the surface integral of some arbitrary vector func-

tion F(x, y, 2):
f f F+n ds.
s

” This line of reasoning and the conclusion must be altered if the system contains
point charges.
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We shall be interested in the ratio of this integral to the volume
enclosed by the surface S as the volume shrinks to zero about
some point, for that is exactly the type of quantity that appears in
Equation (II-16). This limit is important enough to warrant a spe-
cial name and notation. It is called the divergence of F and is des-
ignated div F. Thus,

o 1 f J A
divF= 1 - F *n dS. II-17
v A‘llr—I;lO AV S ( )
about (x,y,z)
This quantity is clearly a scalar. Furthermore, it will, in general,
have different values at different points (x, y, z). Thus the diver-
gence of a vector function is a scalar function of position.

Equation (II-16) can now be written
div E = p/e,,. (II-18)

At this stage, however, our fancy new notation has only a cos-
metic value, helping to beautify an ugly equation. Whether it has
any practical value as well is the matter taken up in the following
discussion in which we actually calculate the limit of the ratio of
flux to enclosed volume and find that it can be expressed reason-
ably simply in terms of certain partial derivatives. Before turning
to this calculation, however, it’s worth mentioning that if we take
our new terminology literally, we can interpret Equation (II-18)
to mean that the field “diverges” from a point, and how much it
diverges, so to speak, depends on how much charge there is at
that point as represented by the density there.

Our next order of business is to find the reasonably simple ex-
pression for the divergence of a vector function promised above.
Thus, consider a small rectangular parallelepiped® with edges of
length Ax, Ay, and Az parallel to the coordinate axes (Figure
II-23). Let the point at the center of the little cuboid have coordi-
nates (x, y, z). We calculate the surface integral of F over the sur-
face of the cuboid by regarding the integral as a sum of six terms,
one for each cuboid face. We begin by considering the face
marked S, in the figure. We want

f Fefds.
M

® Henceforth we’ll refer to this as a “cuboid,” a made-up term that takes less time
and space than the sesquipedalian “rectangular parallelepiped.”
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Figure I1-23

Now it is clear the unit vector normal to this face and pointing
outward from the enclosed volume is i. Thus, since F *i = F_, the
preceding integral is

f F(x,y,z)dS.
)

By assumption the cuboid is small (eventually we shall take the
limit as it shrinks to zero). We can therefore calculate this integral
approximately as F, evaluated at the center of the face S; multi-
plied by the area of the face.” The coordinates of the center of S,
are (x + Ax/2, y, z). Thus,

J F.(x,y,2)dS = F,(x + % Y, z) AyAz  (II-19)
S,

® The rationale behind this is as follows: There is a mean value theorem, which
tells us that the integral of F, over S, is equal to the area of S; multiplied by the
function evaluated somewhere on S,. Since S, is small, the point where we should
evaluate F, and the point where we do evaluate it (that is, the center) must be close
together, and F, must have nearly the same value at the two points. Hence what
our procedure gives us is a good approximation to the value of the integral. Fur-
thermore, as the cuboid shrinks to zero, the two points get closer and closer so that
in the limit our result [Equation (I1I-22)] will be exact.
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The same kind of reasoning applied to the opposite face S,
[whose outward normal is —i and whose center is at (x — Ax/2, y,
2)] leads to

f FefidS = —j F.ds
S, S,

~ px(x -&y, z) Ay Az (I-20)

Adding together the contributions of these two faces [Equations
(II-19) and (II-20)], we get

JJ FeidS
5,+5,

~ [Fx<x+%,y,z> —Fx(x—%,y,zﬂ Ay Az
Ax _ _ Ax
Fx(x+7,y,z> Fx(x ) ,y,z>

Recognizing that Ax Ay Az = AV, the volume of the cuboid, we have
L j f F-fids
AV 5,+S,

Ax _ _ Ax
Fx(x+ > ,y,z) Fx(x 3 ,y,z)

= = . (I1=21)

We now must take the limit of this as AV approaches zero.!° But,
of course, as AV goes to zero, so do each of the sides of the
cuboid. Thus, on the right-hand side of Equation (II-21) we can
write lim,,_,4 in place of lim,y._,q, and we find

. 1 A
imay )], Fodas

Ax _ _ Ax
. Fx(x+ > ,y,z) Fx(x > ,y,z> SF
= lim ==

Ax—0 Ax ox

1 Note that we have postponed calculating the contributions from the other four
faces of the cuboid.
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evaluated at (x, y, z). This last equality follows from the definition
of the partial derivative. It should come as no surprise that the
other two pairs of faces of the cuboid contribute dF,/dy and
0F,/dz. Thus,

. 1 N _an aF)’ an
Altlfr—{loAVfLF nds = o + 3y + et

The limit on the left-hand side of this last equation, as we have al-
ready remarked, is the divergence of F [Equation (II-17)]. Thus
we have just demonstrated that

oF, , OF, oF,

divF = o 3y e

(I1-22)

It can be shown that this result is independent of the shape of the
volume used to obtain it (see Problem II-17).

Using Equation (II-22) to find the divergence of a vector func-
tion is a straightforward matter, but we’ll give an example just for
the record. Consider the function

F(x,y,2) = ix? + jxy + kyz.

We have

Thus,
divF=2x+x+y=3x+y.

Returning now to the electrostatic field, we combine Equations
(IT-18) and (II-22) to get

OE, OE, JE,
=t e Pl (11-23)

This equation, which is much more general than our derivation of
it suggests, is one of Maxwell’s equations and is completely
equivalent to Gauss’ law [Equation (II-1)]. It is sometimes called
the “differential form” of Gauss’ law.

We have now arrived at our goal (almost!), for we have related a
property of the electrostatic field at a point (that is, its divergence) to
a known quantity (the charge density) at that point. In all faimess it
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should be said that Equation (II-23) can in a sense be regarded as a
single (differential) equation in three unknowns (E,, E,, E,) and for
this reason is not often used in this form to find the field. It tumns out,
however, that the three components of E can be related to each other
very elegantly; when we develop that relationship, we shall return to
this question of finding a convenient means of calculating E.

The Divergence in Cylindrical and Spherical Coordinates

42

One often sees Equation (II-22) given as the definition of the di-
vergence of the vector function F. While this is certainly accept-
able, we much prefer to define the divergence as the limit of flux
to volume as stated in Equation (II-16). Equation (II-22) is then
merely the form the divergence takes in Cartesian coordinates. In
other coordinate systems it looks quite different. For example, in
cylindrical coordinates the function F has three components,
which you will not be shocked to learn are designated F,, F, and
F, [see Figure 1I-24(a)]. To obtain the divergence of F in cylin-

‘ F,

A

|

|
] ’_,—? Fe

k<~
y
0 Z
r
X

Figure 11-24(a)

drical coordinates, we consider the “cylindrical cuboid” shown in
Figure II-24(b) with volume AV = r Ar A6 Az and center at the
point (r, 0, z)."! The flux of F through the face marked 1 is

f F-ﬁds=f F.dS
S, M

- Ar Ar
_F,(r+ > ,9,2)(r+ 2)A()Az,

' Note that in the Cartesian case (Figure 1I-23) each face of the cuboid is given by
an equation of the form x = constant, y = constant, or z = constant. In the same
way each face of the surface in Figure II-24(b) is given by an equation of the form
r = constant, = constant, or z = constant.
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Figure 11-24(b)

while through the face marked 2 it is

f Pﬁﬁ=—f F.ds
S, s,

Adding these two results and dividing by the volume AV of the
cuboid, we find

vl Fe8
AV s1+st nds
1 |(, A Ar
_rAr[(r+ 2)F,(r+ 2,9,2)
_|,_Ar _ Ar
(r > )F, (r > 0, z)],

which in the limit as Ar (and therefore AV) approaches zero becomes
19
T 5 (r F ,).

Arguing in an analogous way for the other four faces (see Prob-
lem II-18), we arrive finally at the expression for the divergence
in cylindrical coordinates:

L 9F, | O,

Fp=19 1% _
divF = 7 ar (rF) + T Fral (I1-24)
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In spherical coordinates where the components of F are F;, F,
and F (see Figure II-25), similar reasoning (see Problem II-21)
leads to the expression

div F r2or (riFp) + r sin ¢ o (sin bFy) + rsin 90"
(I1-25)

The Del Notation

There is a special notation in terms of which the divergence may
be written. There would be little or no reason for introducing it if
it served only to provide another way of writing “div,” but as we
shall soon see, it has considerable usefulness in vector calculus.

Let us define a quantity designated V (read “del”) by the fol-
lowing rather peculiar-looking equation:

B R R |
V—lax+_]ay+kaz.

If we take the dot product of V and some vector function F =
iF, + jF, + kF,, we get

R OO N I | DO
VeF (lax+']6y+kaz) (iF, + jF, + kF)

=9 9 9

= axe + ayFy + azFZ'
Now we interpret the “product” of 4/0x and F, as a partial deriva-
tive; that is,

o _ oF,
44 ax ¥ ax
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There are similar equations for the two other “products” (3/dy)F,
and (9/9z)F,. With this convention we recognize V ¢ F (“del dot
F”’) as the same as div F, and henceforth, to conform with modern
notational practice, we shall always use V ¢ F to indicate the di-
vergence. Thus, Equations (II-18) and (II-23) will be written

VeE = p/EO'

Mathematicians call a symbol like V an operator. When we
“operate” with V by dotting it into a vector function, we get the
divergence of that function, as we have just seen. In subsequent
discussions we shall introduce three other quantities (gradient,
curl, and Laplacian), all of which are operators and all of which
can be written in terms of V.

The Divergence Theorem

45

For the remainder of this chapter we digress from the mainstream
of our narrative to discuss a famous theorem that asserts a re-
markable connection between surface integrals and volume inte-
grals. Although this relation may be suggested by the work we
have done in electrostatics, the theorem is a mathematical state-
ment holding under quite general circumstances. It is independent
of any physics and is applicable in many different places. It is
called the divergence theorem and sometimes Gauss’ theorem
(not to be confused with Gauss’ law).

We shall not give a mathematically rigorous proof of the diver-
gence theorem; such a proof is given in many texts in advanced
calculus. Instead we present here another physicist’s rough-and-
ready proof. Thus, consider a closed surface S. Subdivide the vol-
ume V enclosed by § arbitrarily into N subvolumes, one of which
is shown in Figure II-26 (drawn as a cube for convenience). We

Figure 11-26
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begin our proof by asserting that the flux of an arbitrary vector
function F(x, y, z) through the surface S equals the sum of the
fluxes through the surfaces of each of the subvolumes:

N
”F-ﬁds=2f F-iids. (I1-26)
s I=1 S

Here S, is the surface that encloses the subvolume AV,. To estab-
lish Equation (II-26), consider two adjacent subvolumes (Figure
I1-27). Let their common face be denoted S,. The flux through the

Figure I1-27

subvolume marked 1 in Figure II-27 includes, of course, a contri-
bution from §,,, which is

f F-f,ds.
So

Here 1, is a unit vector normal to the face S,, and by our usual
convention, it points outward from subvolume 1. The flux through
the subvolume marked 2 also includes a contribution from S:

f F-f,ds.
So

The vector A, is a unit normal that points outward from subvol-
ume 2. Clearly i, = —1i,. Thus, in forming the sum in Equation
(II-26), we shall include, among other things, the pair of terms

f F-ﬁlds+f Fef,dS =
So So

f mma—f Fef, dS=0.
S, S,
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We see that these terms cancel each other and there is no net con-
tribution to the sum in Equation (II-26) due to the face S,. In fact,
this sort of cancellation will obviously occur for any subvolume
surface that is common to two adjacent subvolumes. But all sub-
volume surfaces are common to two adjacent subvolumes except
those that are part of the original (“outer’’) surface S. Hence the
only terms in the sum in Equation (II-26) that survive come from
those subvolume surfaces that, taken together, constitute the sur-
face S. This establishes the validity of Equation (II-26).

We now rewrite Equation (II-26) in the following curious
fashion:

N
”F-ﬁds=2 L” F-fids|Av. @1-27)
S 1=1 AV'l S,

This clearly alters nothing since we have just multiplied and di-
vided each term of the sum by AV,, the subvolume enclosed by the
surface S;,. We can now imagine partitioning the original volume V
into an ever larger number of smaller and smaller subvolumes. In
other words, we take the limit of the sum in Equation (II-27) as
the number of subdivisions tends to infinity and each AV, tends to
zero. We recognize that the limit of the quantity in square brackets
in Equation (II-27) is, by definition, (V * F),, that is, the divergence
of F evaluated at the point about which AV, is shrinking. Thus, for
each AV, very small, Equation (II-27) becomes

N
f f FefidS= ) (V+F) AV, (11-28)
S =1

Further, in the limit, this sum is, again by definition, the triple in-
tegral of V ¢ F over the volume enclosed by S:

lim g(V-F),AV,E f f fVV-de. (11-29)

N—x

each AV,—0

Putting together Equations (II-26) through (II-29), we arrive at

our result:
ffF-ﬁdS=f”V-de. (I1-30)
S v

This is the divergence theorem. In words, it says that the flux of a
vector function through some closed surface equals the triple inte-
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gral of the divergence of that function over the volume enclosed
by the surface.

The major reason the proof given above is not rigorous is that a
triple integral is defined as the limit of a sum of the form

2 g(x, yi, 2) AV,

where the function g is well defined. In Equation (II-27), how-
ever, the quantity multiplying the volume element AV, in each
term of the sum is not a well-defined function in this sense. That
is, as AV, tends to zero the quantity in the square brackets
changes; it can be identified as the divergence of F only in the
limit. A careful, rigorous treatment would show that Equation
(II-30) is valid if F (that is, F,, F,, and F)) is continuous and dif-
ferentiable, and its first derivatives are continuous in V and on S.

Now let’s illustrate the divergence theorem. Since endless
pages of hideous integrals will not serve our purpose, we’ll use a
simple example. Let

F(x,y,2) =ix + jy + kz

and choose for S the surface shown in Figure II-28, consisting
of the hemispherical shell of radius 1 and the region R of the

Figure I1-28

xy-plane enclosed by the unit circle. On the hemisphere we have
N =ix+ jy+ kg, sothatfi e F = x> + y? + z2 = 1. Thus, on the

hemisphere,
ffF-ﬁdS=fde=2ﬂ,
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where the last equality follows from the fact that the integral is
merely the surface area of the unit hemisphere. On the region R
we have i = —k so that fi * F = —z. Hence, on R,

[[#eas=[[ sarar=0

because z = 0 everywhere on R. Thus, there is no contribution to
the surface integral from the circular region R and

ffF°ﬁdS=2frr.
s

Next we find by a trivial calculation that V « F = 3. It follows

[[[verav=s [[[av=s2mm

where we use the fact that the volume of the unit hemisphere is
2m/3. Since the surface and volume integrals are equal, this illus-
trates Equation (II-30).

Two Simple Applications of the Divergence Theorem
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As one example of the use of the divergence theorem we give an
alternative derivation of Equation (II-18), the analysis of which
led us to the divergence theorem itself. In other words, this is how
easy it would have been if we had known the divergence theorem
to begin with!

We start with Gauss’ law in the form

”SE.ﬁdS=GLOJ”VpdV. (1-31)

Next we apply the divergence theorem to the surface integral in
the above equation to get

fLEoﬁdS=fvav.Edv. (11-32)

Thus, combining Equations (II-31) and (II-32), we find

f1f 5w 1] oo
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In general, if two volume integrals are equal, it is not necessarily
true that their integrands are equal. It might be that the integrals
are equal only over the particular volume of integration V, and by
integrating over a different volume, we would wreck the equality.
In the present case, however, this is not true because Gauss’ law
holds for any arbitrary volume V, and we cannot upset the equal-
ity by changing the volume. But this can be so only if the inte-
grands are equal. Hence,

V+E = ple,

which should look familiar!

Another example of the use of the divergence theorem is the
following. Suppose that in some region of space “stuff” (matter,
electric charge, anything) is moving (Figure 1I-29). Let the den-

\\k

Figure I1-29

sity of this stuff at any point (x, y, z) and any time ¢ be p(x, y, z, )
and let its velocity be v(x, y, z, f). Further, suppose this stuff is
conserved; that is, it is neither created nor destroyed. Concentrat-
ing on some arbitrary volume V in space, we ask: What is the rate
at which the amount of stuff in this volume is changing? At any
time ¢ the amount of stuff in V'is

fffvp(x,y,z, ) dv

and the rate at which it is changing is

& sencaar-[f[ o



Two Simple
Applications of
the Divergence
Theorem

51

(To be able to move the derivative under the integral sign this
way requires that dp/dt be continuous.)

Next we recall from an earlier discussion that the rate at which
stuff flows through a surface S is

H pv * i dS.
S

We then assert that the rate at which the amount of stuff in V is
changing is equal to the rate at which it is flowing through the en-
closing surface S; in equation form this statement reads

dp __ff A
ff VEdV_ Spv n ds.

There are two features about this equation that require discussion:

1. The negative sign must be included because the surface inte-
gral as defined is positive for a net flow out of the volume, but
a net flow out means the amount of stuff in the volume is de-
creasing.

2. This equation states that the amount of stuff in V can change
only as a result of stuff flowing across the boundary S. If stuff
were being created or destroyed in V, terms would have to be
included in the equation to reflect that fact. The absence of any
such terms is thus an expression of the conservation of the
stuff.

Now, finally, let us apply the divergence theorem. We find

ffspV°ﬁdS=fijV'(pv)dV.

Hence,

”fv%dh —vav-(pv)dv.

Arguing as we did above that V is an arbitrary volume, we can
then say

=== —Ve(pv). (I1-33)
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Usually we define the current density J = pv and write Equation
(I1-31) as

ap _
§+V J=0.

An equation of this type is referred to as a continuity equation and
is, as we have seen, an expression of a conservation law (see
Problems I1I-20, I1I-21, and IV-21). Besides playing an impor-
tant role in electromagnetic theory, it is a basic equation both in
hydrodynamics and diffusion theory. Finally, considerations simi-
lar to those that led to the continuity equation are involved in the
analysis of heat flow.

1I-1 Find a unit vector i normal to each of the following surfaces.
@ z=2-x—y. (c) z=(1 —xH'",
®) z=*+yH"%  d) z=x2+ Y.
)z = (1 — x¥a* — yHa»)'"".

II-2  (a) Show that the unit vector normal to the plane
ax +by+cz=d
is given by
fi = *(ia + jb + ko)/(a* + b* + H)'.

(b) Explain in geometric terms why this expression for f is inde-
pendent of the constant d.

II-3 Derive expressions for the unit normal vector for surfaces given by
y = g(x, z) and by x = h(y, z). Use each to rederive the expression for
the normal to the plane given in Problem II-2.

1I-4 In each of the following use Equation II-12 to evaluate the surface
integral [f, G(x, y, z) dS.
@) Gx,y,2) =z

where S is the portion of the plane x + y + z = 1 in the first

octant.
1
(b) G(x,y,2) = L+ 402 + )
where S is the portion of the paraboloid z = x> + y* between
z=0andz=1.

©) Gx,y,2) = (1 —x*— y»?,
where S is the hemisphere z = (1 — x* — y*)'"2,



Problems II-5 In each of the following use Equation II-13 to evaluate the surface
integral [, F*n dS.

(@) F(x,y,2) =ix — kg,
where § is the portion of the plane x + y + 2z = 2 in the first
octant.

(®) F(x,y,2) = ix + jy + kz,
where S is the hemisphere z = Va*> — x* — y%.

(©) F(x,y,2) =jy + K,
where S is the portion of the paraboloid z = 1 — x> — y?
above the xy-plane.

11-6 The distribution of mass on the hemispherical shell
2= R -2 = )"
is given by
o(x, y,2) = (6/R)(x* + y?)

where o is a constant. Find an expression in terms of o, and R for the
total mass of the shell.

1I-7 Find the moment of inertia about the z-axis of the hemispherical
shell of Problem II-6.

1I-8 An electrostatic field is given by
E = Niyz + jxz + kxy),

where \ is a constant. Use Gauss’ law to find the total charge enclosed
by the surface shown in the figure consisting of S}, the hemisphere

7= (R2 _ xZ _ y2)l/2,

and S,, its circular base in the xy-plane.

II-9 An electrostatic field is given by E = A(ix + jy), where A is a con-
stant. Use Gauss’ law to find the total charge enclosed by the surface
shown in the figure consisting of S, the curved portion of the half-
cylinder z = (r? — y»)'? of length h; S, and S, the two semicircular
plane end pieces; and S, the rectangular portion of the xy-plane. Ex-

53 press your results in terms of A, r, and A.
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II-10 It sometimes happens that surface integrals can be evaluated with-
out using the long-winded procedures outlined in the text. Try evaluat-
ing [[¢F « i dS for each of the following; think a bit and avoid a lot
of work!

(@ F=ix+jy + kz
S, the three squares each of side b as shown in the figure.

() F = (ix + jy) In(x* + »).
S, the cylinder (including the top and bottom) of radius R and
height & shown in the figure.

54 x/
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I-11

11-12

() F = (ix + jy + kg)e @™,
S, the surface of the sphere of radius R centered at the origin
as shown in the figure.

(d) F = iE(x), where E(x) is an arbitrary scalar function of x.
S, the surface of the cube of side b shown in the figure.

(a) Use Gauss’ law and symmetry to find the electrostatic field as
a function of position for an infinite uniform plane of charge. Let
the charge lie in the yz-plane and denote the charge per unit area
by o.

(b) Repeat part (a) for an infinite slab of charge parallel to the
yz-plane, whose density is given by

_Jpe —b< x<b,
p(x) {0’ le > b,

where p, and b are constants.
(c) Repeat part (b) with p(x) = pee .

(a) Use Gauss’ law and symmetry to find the electrostatic field as
a function of position for an infinite uniform line of charge. Let
the charge lie along the z-axis and denote the charge per unit
length by A.
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11-13

(b) Repeat part (a) for an infinite cylinder of charge whose axis
coincides with the z-axis and whose density is given in cylindrical
coordinates by

r=b,

’ < b,
p(r) = {80 r

where p, and b are constants.
(c) Repeat part (b) with p(r) = pee™ ™.

(a) Use Gauss’ law and symmetry to find the electrostatic field as
a function of position for the spherically symmetric charge distri-
bution whose density is given in spherical coordinates by

p(r) = {8(,)’ S

r=b,

where py and b are constants.
(b) Repeat part (a) for p(r) = poe ™.
(c) Repeat part (a) for

po, r<bn,
p(r)=13p1, b=r<2b,
0, r=2b.

How must p, and p, be related so that the field will be zero for
r > 2b? What is the total charge of this distribution under these
circumstances?

II-14 Calculate the divergence of each of the following functions using
Equation (II-22):

11-15

11-16

(@) i + jy* + k&

(b) iyz + jxz + kxy.

(c) ie™™ + je + ke™™

(d) i — 3j + k&%

) (—ixy + i) +y),  (xy) #(0,0).
(f) kVx* + y2.

(g) ix + jy + kz.

(h) (—iy + jx/VE2 +y*,  (xy) #(0,0).

(a) Calculate [f5 F « 0 dS for the function in Problem II-14(a)
over the surface of a cube of side s whose center is at (x,, o, Zo)
and whose faces are parallel to the coordinate planes.

(b) Divide the above result by the volume of the cube and calcu-
late the limit of the quotient as s — 0. Compare your result with
the divergence found in Problem II-14(a).

(c) Repeat parts (a) and (b) for the function of Problem II-14(b)
and (c).

(a) Calculate the divergence of the function

F(x’ Y, Z) = if(x) + jf(y) + kf(_2Z)

and show that it is zero at the point (c, ¢, —c/2).
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(b) Calculate the divergence of
G(x, y, 2) = if(y, 2) + jg(x, 2) + Kh(x, y).
II-17 In the text we obtained the result

OF, , OF, OF,

X

VeF= s T

by integrating over the surface of a small rectangular parallelepiped.
As an example of the fact that this result is independent of the surface,
rederive it using the wedge-shaped surface shown in the figure.

A
¢ Ax

Ay
II-18 (a) Leti, j, and k be unit vectors in Cartesian coordinates and &,,
€4, and €, be unit vectors in cylindrical coordinates. Show that
i =@.cos® — €sinb,

j = €,sin® + €, cosH,

o>

k =

z*

(b) Rewrite the function in Problem II-14(e) in cylindrical coor-
dinates and compute its divergence, using Equation (II-24). Con-
vert your result back to Cartesian coordinates and compare with
the answer obtained in Problem II-14(e).

(c) Repeat part (b) for the function of Problem II-14(f).

II-19 (a) Leti, j, and k be unit vectors in Cartesian coordinates and €,,
€, and €¢ be unit vectors in spherical coordinates. Show that

i=¢€ sindcosO+ €,cosdcosh — €sinf
j=¢€.sindsin0 + €, cos dsinb + € cos O
k==¢€,cosd—€,sind

[Hint: It’s easier to express €,, €y, and €, in terms of i, j, and k
and then solve algebraically for i, j, and k. To do this, first use the
fact that €, = r/r = (ix + jy + kz)/r. Next, reasoning geometri-
cally, show that € = —i sin 8 + j cos 0. Finally, calculate €, =
€ X €.]

(b) Rewrite the function of Problem II-14(g) in spherical coordi-
nates and compute its divergence using Equation (II-25). Convert
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your result back to Cartesian coordinates and compare with the
answer obtained in Problem II-14(g).
(c) Repeat part (b) for the function of Problem II-14(h).

II-20 In cylindrical coordinates the divergence of F is given by

In the text (pages 42-43) we derived the first term of this expression.
Proceeding the same way, obtain the other two terms.

II-2] Repeat Problem II-20 to obtain the divergence in spherical coordi-
nates by carrying out the surface integral over the surface of the vol-
ume shown in the figure and thereby obtaining the expression

L9 (gn pFy+—L %
r sin ¢ dd * " rsin ¢ 90 °

veF=L2 %)+
r

9
or

II-22 Consider a vector function of the form

F(r) = &.f(r),

where €, = (ix + jy + kz)/r is the unit vector in the radial direction,
r=(*+ y* + 725", and f(r) is a differentiable scalar function. Using
the results of Problem II-21, determine f(r) so that V+F = 0. A vector
function whose divergence is zero is said to be solenoidal.

II-23 Verify the divergence theorem

fLF-ﬁdS=ffva°FdV

in each of the following cases:
(a) F=ix + jy + kz.
S, the surface of the cube of side b shown in the figure.
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(b) F="¢r + &z
r=ix + jy.
S, the surface of the quarter cylinder (radius R, height &)
shown in the figure.

() F=¢.r,
r=ix+ jy + kz.
S, the surface of the sphere of radius R centered at the origin
as shown in the figure.
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Surface Integrals  ]I-24 (a) One of Maxwell’s equations states that V *+ B = 0, where B is
and the any magnetic field. Show that

Divergence
f f neBds=0
N

for any closed surface S.

(b) Determine the flux of a uniform magnetic field B through the
curved surface of a right circular cone (radius R, height h) ori-
ented so that B is normal to the base of the cone as shown in the
figure. (A uniform field is one that has the same magnitude and
direction everywhere.)

II-25 Use the divergence theorem to show that

”ﬁds=0,
N

where S is a closed surface and n is the unit vector normal to the
surface S.

II-26 (a) Use the divergence theorem to show that

LHA. _
3 snrdS v,

where S is a closed surface enclosing a region of volume V, n is a
unit vector normal to the surface S, and r = ix + jy + kz.
(b) Use the expression given in () to find the volume of
(i) arectangular parallelepiped with sides a, b, c.
(i1) a right circular cone with height & and base radius R.
[Hint: The calculation is very simple with the cone ori-
ented as shown in the figure.]
60 (ii1) a sphere of radius R.
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II-27 (a) Consider a vector function with the property V « F = 0

everywhere on two closed surfaces S, and S, and in the volume V
enclosed by them (see the figure). Show that the flux of F
through S, equals the flux of F through S,. In calculating the
fluxes, choose the direction of the normals as indicated by the ar-
rows in the figure.

(b) Given the electrostatic field of a point charge g situated at
r=20,

-1 4
E 41'7602

n
: er,

~

where r2 = x? + y? + 7%, show by direct calculation that
VeE =0, for all r # 0.

(c) Prove Gauss’ law for the field of a single point charge given
in (b). [Hint: It is easy to calculate the flux of E over a sphere
centered at r = 0.]

(d) How would you extend this proof to cover the case of an ar-
bitrary charge distribution?
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II-28 (a) Show by direct calculation that the divergence theorem does

not hold for

F(r, 0, ) = —,
r
with S the surface of a sphere of radius R centered at the origin,
and V the enclosed volume. Why does the theorem fail?
(b) Verify by direct calculation that the divergence theorem does
hold for the function F of part (a) when S is the surface S, of a
sphere of radius R, plus the surface S, of a sphere of radius R,,
both centered at the origin, and V is the volume enclosed by S,
and S,.
(c) In general, what restriction must be placed on a surface S so
that the divergence theorem will hold for the function of part (a)?




Chapter 1l

Line Integrals
and the Curl

To err from the right path is common to Mankind.

Sophocles

Work and Line Integrals

63

We remarked above that the differential form of Gauss’ law,
Equations (II-18) and (II-23), although it fulfills our goal of relat-
ing a property of the electric field (its divergence) at a point to a
known quantity (the charge density) at the same point, nonethe-
less falls short of providing a convenient way to find E. The rea-
son is that V « E = p/g, is (or seems to be) a single differential
equation in three unknowns (E,, E,, E,). But there is another fea-
ture of electrostatic fields that has not yet played an explicit role
in our discussion and that will yield a relationship among the
components of E. It will thus provide us with the crucial last step
in obtaining a useful way to calculate fields. In the process of ex-
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amining this question, we shall encounter some of the most im-
portant topics in vector calculus.

The property of electrostatic fields that we shall now begin to
discuss is intimately bound up with the question of work and en-
ergy. You no doubt recall the elementary definition of work as
force times distance. Thus, in one dimension, if a force F(x) acts
from x = a to x = b, the work done is, by definition,

Lb F(x) dx.

To be able to handle more general situations, we must now intro-
duce the concept of the line integral.

(xlr )’1, Z[)
y

Figure III-1

Suppose we have a curve C in three dimensions (Figure III-1)
and suppose the curve is directed. By this we mean that we put an
arrow on the curve and say “This is the positive direction.” Let s
be the arc length measured along the curve from some arbitrary
point on it with s = s, at a point P, and s = s, at P,. Suppose fur-
ther that we have a function f(x, y, z) defined everywhere on C.
Now let us subdivide the portion of C between P, and P, arbitrar-
ily into N sections. Figure III-1 shows an example of such a sub-
division for N = 4. Next, join successive subdivision points by
chords, a typical one of which, say the Ith, has length As,. Now
evaluate f(x, y, 2) at (x,, y;, z;), which is any point on the /th subdi-
vision of the curve, and form the product f(x, y; z;) As,. Doing
this for each of the N segments of C, we form the sum

N
I_Elf (xp, y» 2)) As,.
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By definition, the line integral of f(x, y, z) along the curve C is the
limit of this sum as the number of subdivisions N approaches in-
finity and the length of each chord approaches zero:

N
[fenod= tm 3 o as

each As—0

To evaluate the line integral, we need to know the path C. Usu-
ally the most convenient way to specify this path is parametrically
in terms of the arc length parameter s. Thus, we write x = x(s),
y = y(s), and z = z(s). In such a situation the line integral can be
reduced to an ordinary definite integral:

f Cf (x,y,2)ds = f B FIx(s), y(s), z(s)] ds.

An example of a line integral will be helpful here. For simplic-
ity let us work in two dimensions and evaluate

fc (x + y) ds,

where C is the straight line from the origin to the point whose co-
ordinates are (1, 1) (Figure III-2). If (x, y) are the coordinates of

Y 1, 1)
C
\ P(x, y)

45°

Figure III-2

any point P on C and if s is the arc length measured from the ori-
gin, then x = s/V/2 and y = s/V2. Hence, x + y = 25/V2 =
V2s. Thus,

V2
f(x+y)ds=V§j sds =V2.
c 0
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Figure III-3

Let us integrate this same function (x + y) from (0, 0) to (1, 1)
along another path as shown in Figure III-3. Here we break the
integration into two parts, one along C, and the second along C,.
On C,wehavex = sand y = 0. Thus, on C;, x + y = s, and so

1

(x+y)ds=f sds = 3.

C, 0

Along C,, x = 1 and y = s [note that the arc length on this seg-
ment of the path is measured from the point (1, 0)]. It follows
then that

1
(x+y)ds=f (1 +s)ds=%,
G 0
Adding the results for the two segments, we find
f (x+y)ds=f (x+yds+ . (x+y)dS=%+%=2.
c ¢ .

The lesson to be learned is this: the value of a line integral can
(indeed, usually does) depend on the path of integration.

Line Integrals Involving Vector Functions

66

Although the preceding discussion tells us what a line integral is,
the kind of line integral we must deal with here has a feature not
yet mentioned. You will recall that we introduced our discussion
of line integrals with the concept of work. Work, in the most ele-
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mentary sense, is force times displacement. That this needs elabo-
ration becomes clear when we recognize that both force and dis-
placement are vectors.

Thus, consider some path C in three dimensions (Figure I11-4).
Let us suppose that under the action of a force an object moves on
this path from s, to s,. At any point P on the curve let the force

f(x y 2)

52
S

Figure 1114

acting be designated f(x, y, 7). The component of f that does work
is, by definition, only that one which acts along the curve, that is,
the tangential component. Let t denote a unit vector that is tan-
gent to the curve at P.! Then the work done by the force in mov-
ing the object from s, to s, along the curve C is

W=f £(x,y,2)* ¢t ds,
C

where it is understood, of course, that the integration begins at
s = s, and ends at s = s,. The new feature of this integral is that
the integrand is the dot product of two vector functions. To be
able to handle such a line integral, we must know how to find 't\,
and it is to this problem that we now turn.

Consider an arbitrary curve C (Figure III-5) parametrized by
its arc length. At some point s on the curve we have x = x(s),y =
y(s), and z = z(s). At another point s + As we have x + Ax =
x(s + As),y + Ay = y(s + As), and z + Az = z(s + As). Thus,

I 1 is a function of x, y, and z and should really be written ?(x, ¥, 2). We write sim-
ply 1 to avoid complicating the notation.
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2 s+ As
As

Ar

Figure III-5

the chord joining the two points on the curve directed from the
first to the second is the vector Ar = iAx + jAy + kAz, where

Ax = x(s + As) — x(s),

Ay = y(s + As) — ¥(s),
Az = z(s + As) — z(s).

If we now divide this vector by As, we get

Ar _ Ax By Az
As_ AS+JAs+kAs'

Taking the limit of this as As approaches zero yields

cdx . Ay dz
lds-‘-‘]dsﬂlhkds’

and we assert that this is €. To begin with, it’s clear that as As — 0,
the vector Ar becomes tangent to the curve at s. Further, in the limit
As — 0, we see that |Ar| — As. Hence, in the limit the magnitude of
this quantity is 1. It follows then that we can make the identification

p ol D e
t(s)—lds+_]ds+kds

If we return now to the expression for work W and use this for-
N
mula for t, we find

= . '@ d_ dz
W—Lf(x,y,z) [lds+st+kd]d

=jc(ﬂdx + f, dy + f, d2).
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This is a formal expression; often, to carry out the integration, it
is useful to restore the ds as the following example illustrates.
Consider

f(x,y,2) =iy — jx

and the path shown in Figure III-6(a). To calculate [ (f* 't\) ds in

Figure I11-6(a)

this case, we break the path C into three parts, C,, C,, and C; as
shown. Since f, = 0, we have

fﬁ?ﬁ=[ﬂw+ﬁ@
C C

=f ydx — x dy.
c

Now, on C;, y = 0 and dy = 0, so there is no contribution to the
integral. Similarly, on C; we have x = 0 and dx = 0, and again
the result is zero. Thus, the only contribution to the integral over
C can come from C,. Restoring the ds, we have
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Figure III-6(b)

But (1 — x)/s = cos 45° = 1/V2 and y/s = sin 45° = 1/V2
[Figure III-6(b)]. Thus,

dx 1
le_Lﬁ—z——
V2 ds \/EL
0=s=V2.
dy 1
s
=—=>_=—_
YTV Td Ve J
Hence, the integral is
fﬁ[L(_L>_<1_L)L]dS
o [V2\ V2 V2/ V2
1 V2
= —— ds=—1
V2 Jo

As a second example of a line integral involving a vector func-
tion, let

f(x,y,2) = ix* — jxy,

and take C to be the quarter circle of radius R oriented as shown
in Figure III-6(c). We then have

f f°tds=f x dx — xy dy.
c c
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Figure III-6(c)

Letting x = R cos 0, y = R sin 0, we find this integral becomes

T2
f [R? cos? O(—R sin 6) — R? sin 8 cos O(R cos 0)] d6
0

2
= —2R3f cos’ 0 sin 0. dd = —2R%/3.

0

Path Independence

71

In a line integral the path of integration is one of the ingredients
which determines the very function we integrate. It isn’t remark-
able, then, that the value of the integral can depend on the path of
integration. What is remarkable is that, under some conditions,
the value of the integral does not depend on the path!

We show how this path independence comes about in the case
of the Coulomb force. Let a charge g, be fixed at the origin and
let another charge g be situated at (x, y, z) (Figure III-7). The
Coulomb force on g is

_ 1 % _
Fofe 20 (IlI-1)

where r = (% + y* + z9)'? is the distance between the two
charges and U is a unit vector pointing from g, to g. With this
arrangement U is clearly in the radial direction. Even more
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Figure III-7

clearly, the radial vector r is in the radial direction. Thus, we have
i = r/r = (ix + jy + kg)/r, and so

_ 990 ix+jy+ke
4'T|'€0 r3 )

Thus,

qqo xdx +ydy + zdz
4'1T€0 r3

Fetds=F,dx+F,dy+F,dz=

The trick now is to use the relationship
r’=x+ y2 + 22

Taking differentials in this equation and dividing by a factor of 2
yields

xdx +ydy+ zdz = rdr,
so that

440 rdr _ 990 dr

Fetds= = :
t ds 4me, 3 4 p?

Suppose now that the charge g moves from a point P, at a dis-
tance r, from the origin to a point P, at a distance r,, over some
path C connecting the two points (Figure III-8). Then

oA = 990 rzﬂz—qqo _l_—l
fc Fetds 41T€0 r r2 41T€0 ( )
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90 4

Figure III-8

Notice that to get this result, we haven’t had to specify C in any
way whatever; we’d get the same answer for any path connecting
P, and P,. This, of course, proves that the line integral

fFﬁm
C

with F given by Equation (III-1) is path-independent, but the re-
sult, so far, has been established only for the Coulomb force on g
due to a single charge g, [Equation (III-1)]. If there are many
charges q;, ¢, . . -, gy, then the total force on g is F, + F, +
-+« + Fp, where F, is the Coulomb force on g due to the ith
charge g,. Hence,

_fm?a=pr?m+m+wa?m
C C C

Now the discussion given above shows that each term of this sum
is path independent; hence, so is the sum itself. (All this, of
course, is merely an application of the superposition principle.)
To phrase this result in terms of the field requires one last trivial
step: Since F = gE, it follows that g [-E ° t ds is path indepen-
dent, whence [-E ¢ 1 ds is also. Strange to say, it is this fact that
will enable us eventually to convert V « E = p/e, into a more use-
ful equation.

If you examine the foregoing discussion carefully, you’ll see
that the fact that the Coulomb force varies inversely as the square
of r has nothing whatever to do with the path independence of the
line integral. The path independence rests solely on two proper-
ties of the Coulomb force: (1) It depends only on the distance be-
tween the two particles, and (2) it acts along the line joining them.
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Any force F with these two properties is called a central force,
and [ F ¢ t ds is independent of path for any central force.?

One further step pertaining to path independence can be taken
here. If

fF-?ds
C

is independent of path, then

Fetds=| Fetds,

o G

where, as indicated in Figure II1I-9, C, and C, are two different ar-
bitrary paths connecting the two points P, and P, and directed as
shown in the figure. Now if instead of integrating along C, from
P, to P,, we go the other way, we simply change the sign of the
line integral; that is,

Figure I1I-9

where —C, merely indicates that the integration is to be carried
out along C, from P, to P,. Thus,

Fetds=—-| Fetds
C, -

2 Our having illustrated path independence with a central force may give the erro-
neous impression that only central forces have path-independent line integrals.
That is certainly not true; many functions which are not central forces have path-
independent line integrals. Later we’ll develop a simple criterion for identifying
such functions.
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But —C, + C; is just the closed loop from P, to P, and back, as
shown in Figure I1I-10. Thus, if [ F ¢ t dsis independent of path,
then

ng-?ds=o,

Figure III-10

where ¢ is the standard notation for a line integral around a closed
path. It follows that if E is an electrostatic field, we can write

ff E+tds=0. (I11-2)

The term “circulation” is often given to the path integral around a
closed curve of the tangential component of a vector function.
Thus we have demonstrated that the circulation of the electrosta-
tic field is zero. In what follows we’ll call this the circulation law.

If we are given some vector function F(x, y, z) and asked, “Could
this be an electrostatic field?”” we can, in principle, provide an an-
swer. If

ffF-?dsa&o
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over even one path, then F cannot be an electrostatic field. If
fﬁ Fetds=0

over every closed path, then F can (but does not have to) be an
electrostatic field.

Clearly, this criterion is not easy to apply since we must be sure
the circulation of F is zero over all possible paths. To develop a
more useful criterion, we proceed much as we did in dealing with
Gauss’ law, which, like the circulation law, is an expression involv-
ing an integral over the electric field. Gauss’ law is more useful in
the differential form [Equations (II-18) and (II-23)] obtained by
considering the ratio of flux to volume for ever-decreasing sur-
faces. We now treat the circulation law in the same spirit and at-
tempt to find the differential form of Equation (III-2). To stress
the generality of our analysis and results, we deal with an arbi-
trary function F(x, y, z) and specialize to E(x, y, z) at a later stage
in the development.

Let us consider the circulation of F over a small rectangle par-
allel to the xy-plane, with sides Ax and Ay and with the point
(x, y, z) at the center [Figure III-11(a)]. As shown in Figure
ITI-11(b), we carry out the path integration in a counterclockwise
direction looking down at the xy-plane. The line integral is broken
up into four parts: Cy (bottom), Cy (right), C; (top), and C; (left).
Since the rectangle is small (eventually we shall take the limit as
it shrinks down to zero), we’ll approximate the integral over each
segment by F t evaluated at the center of the segment, multi-
plied by the length of the segment.’

* ¥ 2

Figure I1I-11(a)

3 Reread footnote 9 of Chapter II and then give an argument in support of this
approximation.



The Curl y
CT
CL y [ ] Ay N\ CR
Ax
Cp x
Figure I1I-11(b)
Taking Cy first, we have
o Ay
Fetds= F.dx=F/\|x,y——,z|Ax. (IlI-3a)
Cs Cs 2
Over Cr we find
" Ay
Fetds= F.dx = —F, x,y+7,z Ax.  (III-3b)
Cr Cr

The negative sign here is required by the fact that

dex fF—ds
Cr

and dx/ds = —1 over Cy. Adding Equation (III-3a) and (III-3b),
we find

f (Fe1)ds
Crt+Cy

77 = - Ax Ay.
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The factor Ax Ay is clearly the area AS of the rectangle. Thus,

1

25 e (Fet)ds (I11-4)

Ay Ay
Fx(x,y+7,z> Fx(x,y 7,z>

Exactly the same sort of analysis applied to the left and right sides
of the rectangle (C; and Cg) results in

1

— Fet)ds
A5 e, F 7Y

Ax Ax
Fy<x+7,y,z) —Fy<x—7,y,z)

= Ax . (II-5)

Adding Equations (I1I4) and (III-5) and taking the limit as AS
shrinks down about a point (x, y, z) (in which case Ax and Ay — 0
as well), we get

lim - gﬁ Fetas= by _9F -6
Jim 5 S= %% oy WO
about (x,y,2)

where § is our semicomical notation meaning the circulation
around the little rectangle.

You may wonder about the generality and uniqueness of this
result since it is obtained using a path of integration that is spe-
cial in two ways: first, it is a rectangle, and second, it is parallel
to the xy-plane. If the path were not a rectangle, but a plane
curve of arbitrary shape, it would not affect our result (see
Problems III-2 and III-30). But our result definitely does de-
pend on the special orientation of the path of integration. The
choice of orientation made above clearly suggests two others,
and they are shown in Figure III-12(a) and (b) along with the
result of calculating

. 1 2
1 - [;ﬁ Fetd
A;TO AS s
about (x,y,2)

for each.
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Figure I1I-12(a)
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Figure I1I-12(b)

Each of these three paths is named in honor of the vector nor-
mal to the enclosed area. The convention we use is this: Trace the
curve C so that the enclosed area is always to the left [Figure
I1I-13(a)]. Then choose the normal so that it points “up” in the di-

Figure I1I-13(a)
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~
> 2>

Figure I1I-13(b)

rection shown in the picture. This convention is sometimes called
the right-hand rule, for if the right hand is oriented so that the fin-
gers curl in the direction in which the curve is traced, the thumb,
extended, points in the direction of the normal [Figure III-13(b)].
Using the right-hand rule, we have the following:

Calculating limus o § F * t ds/AS

f th wh al is i oF, o,
or a path whose normal is i, we getW i
. oF, OF,
for a path whose normal is j, we get T g (I1I-7a)
f th wh alis k taFy_an
or a path whose normal is k, we get — 3y

It turns out that these three quantities are the Cartesian compo-
nents of a vector. To this vector we give the name “curl of F,”
which we write curl F. Thus, we have

. an aFy . an an
CurlF_l(W_a_z +j 2 ox

oF, 9F,
+ k(g - 3y ) (ITI-7b)

This expression is often (indeed, usually) given as the definition
of the curl, but we prefer to regard it as merely the form of the
curl in Cartesian coordinates. We shall define the curl as the limit



The Curl

81

\

Figure I1I-14

of circulation to area as the area tends to zero. To be precise, let
$cF » t ds be the circulation of F about some path whose normal
is N as shown in Figure I1I-14. Then by definition

AeculF = lim A ffcn Fetds. (I11-8)
about (x,y,2)
By taking n successively equal to i, j, and k, we get back the results
given in Equation (III-7b). Since this limit will, in general, have dif-
ferent values for different points (x, y, z), the curl of F is a vector
function of position.* Note incidentally that although in our work we
always assumed that the area enclosed by the path of integration was
a plane, this need not be the case. Since the curl is defined in terms
of a limit in which the enclosed surface shrinks to zero about some
point, in the final stages of this limiting process the enclosed surface
is infinitesimally close to a plane, and all our considerations apply.
Since it is undoubtedly beyond the powers of a mere mortal to
remember the expression given above for curl F in Cartesian coor-
dinates [Equation (III-7b)], it is fortunate that there is a mnemonic
device to fall back on. If the three-by-three determinant

i j Kk
d/ox dldy dloz
F, F, F,

is expanded (most conveniently in minors of the first row) and if
certain “products” are interpreted as partial derivatives [for example,

* The word rotation (abbreviated “rot,” amusingly enough) was once used for
what we now call the curl. Though the term has long since dropped out of use, a
related one survives: If curl F = 0, the function F is said to be irrotational.
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(8/0x)F, = 3F,/dx], the result will be identical with the one given in
Equation (III-7b).> Thus, the anguish of remembering the form of
curl F in Cartesian coordinates can be replaced by the pain of re-
membering how to expand a three-by-three determinant. Chacun a
son golit.

As an example of calculating the curl, consider the vector
function

F(x,y,2) =ixz + jyz — kyz.
We have
i j k
curl F = |d/ox 0/dy d/dz

xz yz —y?

=i(-2y —y) +jx —0) + k(0 - 0)
= —=3iy + jx.
You may have noticed that the curl operator can be written in

terms of the del notation we introduced earlier. You can verify for
yourself that

curl F=V X F,

which is read “del cross F.” Henceforth, we shall always use
V X F to indicate the curl.

The Curl in Cylindrical and Spherical Coordinates
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To obtain the form of V X F in other coordinate systems, we pro-
ceed as we did above in finding the Cartesian form, merely modi-
fying the paths of integration appropriately. As an example, using
the path shown in Figure I1I-15(a) will yield the z-component of
V X F in cylindrical coordinates.® Note that we trace the curve in

5 A mathematician would object to this since, strictly speaking, a determinant can-
not contain either vectors or operators. We aren’t doing any serious damage, how-
ever, because our “determinant” is merely a memory aid.

® In deriving the Cartesian form of V X F, each segment of each path of integra-
tion (see Figures III-11 and III-12) was of the form x = constant, y = constant, or
z = constant. Similarly, in deriving the cylindrical form, each segment of each
path is of the form r = constant, ® = constant, or z = constant.
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Figure III-15(b)

accordance with the right-hand rule given in the previous section.
Viewing the path from above [as we do in Figure III-15(b)], the
line integral of F(r, 6, 2) * t along the segment of path marked 1 is

F°/t\ds=F,(r,0—%,z)Ar,

G

while along segment 3 it is

Fetds= —F,(r,6+%,z)Ar.

G

The area enclosed by the path is » Ar A6, so

1
AS Jc i,

~ __Ar 46 ) _ _ 48
83 ~ rArAe [F,(r,9+ 2 ,z) F,(r,B 2 ’Z>]'

Fetds




Line Integrals In the limit as Ar and A6 tend to zero, this becomes
and the Curl

evaluated at the point (7, 9, 2).
Along segment 2 we find

F-?ds=Fe(r+%,e,z)<r+%) A®,

G

and along segment 4

Fetds= —Fo(r - Q, O,z)(r— _A_r) A6.
c, 2 2

Thus,

1 A A6 Ar Ar
—_— . ~ _— + =—
AS etV E T T Ar e [(” 2)F°<’ 7 ’9’Z>

-0

In the limit this becomes (1/r)(8/dr)(rF,) evaluated at (r, 6, z).
Hence,

= |i 1 oA -—li _la_E
(VXF)Z_A%ToE F tds_rar(rF9) TR

Paths for finding the r- and 6-components of V X F are shown in
Figures I1I-15(c) and (d), respectively. You are asked to obtain
these two components yourself in Problem III-8. For com-
pleteness we give all three components of V X F in cylindrical

coordinates:
_10F, dF,
VXE) =73 ~ o
oF, OF,
(V X F)O - a - ?9
_ 139 __10F,
84 (VXF)z_rE.(rFO) 30 -
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Figure I1I-15(d)

As an example of calculating the curl in cylindrical coordinates
consider the function

F(r,0,2) = €,r%z + egrz>cos 6 + €,r°

Then

(VXF),= %% r? — a% (rz%cos ) = —2rzcos 0

(VX F)y = a%(rzz) - % r’) = =2r?

190

_10 22 _10 ,2,_+2
(VxF)z—rar(rz cos 0) rae(rz) 2z“cos 0

Hence

85 VXF=—2€rzcos® —2€,r>+2€,z% cos 0



Line Integrals The three components of curl F in spherical coordinates (see

and the Curl Problem III-9) are as follows:
19 _ 1 9
(VX F), = rsin & dd (sin & Fy) rsind 90
__1 9 134
(VX Ty = rsind 90 To (rFo)
_19 1 oF,
(V X F)O —75(7'174, -7 a(t)

As an example of calculating the curl in spherical coordinates,
consider the function

. er ’e\cb 69
F(,0,8) = 5+ 7 + oo

2
_ 1 3. 1 Y 1 ,_sec’d
(VXF),= i (smd) ) Fsind 0

rcos & r? sin ¢

r or od \r0
Hence
2
vxr=obe oL g,
resin ¢ r<0° sin ¢
The Meaning of the Curl

The preceding discussion may leave you with the feeling that
knowing how to define and calculate the curl of some vector func-
tion is a far cry from knowing what it is. The fact that the curl has
something to do with a line integral around a closed path (indeed,
the word “‘curl” itself) may suggest to you that it somehow has to
do with things rotating, swirling, or curling around. By means of
a few examples taken from fluid motion, we’ll try to make these
86 vague impressions a little clearer.
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Figure I1I-16

Suppose water is flowing in circular paths, something like the
water draining from a bathtub. A small volume of the water at a
point (x, y) at time ¢ has coordinates x = r cos wt, y = r sin ot,
where o is the constant angular velocity of the water (Figure
I11-16).” Thus, its velocity at (x, y) is

v = i(dx/dt) + j(dy/dt) = ro[—1i sin ot + j cos wt]
= w(—1iy + jx).

This expression gives what is called the velocity field of the
water; it tells us the velocity of the water at any point (x, y). Your
intuition probably tells you that, because the motion is circular,
this velocity must have a nonzero curl. In fact, as you can show
very easily,

V X v = 2ko.

This result should seem quite reasonable because it says that curl of
the velocity is proportional to the angular velocity of the swirling
water. We see that V X v is a vector perpendicular to the plane of
motion and in the positive z-direction [Figure III-17(a)]. If the
water were rotating around in the other direction, the curl of v
would then be in the negative z-direction [Figure III-17(b)]. Note
that this is consistent with the right-hand rule (see page 79-80). If

" This is not a realistic description of water draining from a tub since rotating
water shears tangentially and its angular velocity will therefore vary with r. The
crude description we use here is adequate for our purposes and has the virtue of
being simple.
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curl v

Figure I1I-17(b)

we were to put a small paddle wheel in the water, it would com-
mence spinning because the impinging water would exert a net
torque on the paddles (Figure III-18). Furthermore, the paddle
wheel would rotate with its axis pointing in the direction of the curl.

0

Figure ITI-18

Now consider a different velocity field, namely,

88 vV = ij e—yz/)\Z’
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Figure III-19

where v, and A\ are constants. Water with such a velocity field
would have a flow pattern as indicated in Figure III-19. The ve-
locity at all points is in the positive y-direction, and its magnitude
(indicated by the length of the arrows) varies with y. Since you
see only straight line flow here without any rotational motion, you
would probably guess that V X v = 0 in this case, and you would
be right, as a simple calculation shows. There would be no net
torque on a paddle wheel placed anywhere in this flow pattern,
and as a consequence, it would not spin.®

Our last example is trickier than the two given previously and
shows that intuition can lead you astray if you’re not careful. Let
a velocity field be given by

v = juge ™
0 .

As in the previous example, the velocity in this case is every-
where in the y-direction, but now it varies with x, not y (Figure
III-20). Here, as in the preceding example, you see no evidence
of rotational motion and you might guess that V X v = 0 once
again. But as you should show for yourself,

2x e—le)\z .

VXV= _kvop

A small paddle wheel placed in this flow pattern would spin, even
though the water is everywhere moving in the same direction. The

8If V X v = 0, the flow is said to be irrotational. Compare with footnote 4.
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reason this happens is that the velocity of the water varies with x,
so that it strikes one of the paddles (P in Figure III-21) with
greater velocity than the other (P’). Thus, there will be a net
torque. In more mathematical terms, the line integral of v t
around a small rectangle (Figure III-22) will be different from
zero, for while

f V°’t\ds=f vetds=0,
bottom top

the contributions from the other two sides are

f V°’t\ds=vy(x+Ax)Ay
right

(AN
\.]/

v
<\
O/

90 Figure [11-21
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and

f veltds= —v, (x) Ay.
left

These do not cancel because v,(x) # v,(x + Ax). Incidentally,
you should try to explain to your own satisfaction why in this ex-
ample V X v is in the negative (positive) z-direction when x is
positive (negative) and why V X v =0atx = 0.

Differential Form of the Circulation Law

The curl is defined to be the limit of circulation to area. Thus,

VXE—AI.%EOA_S§ E-t ds,

where fi is a unit vector normal to the surface enclosed by C at the
point about which the curve shrinks to zero. But if E is an electro-

static field, then
fﬁ Etds=0
C

for any path C. It follows that

91 fi-VXE=0.
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Since the curve C is arbitrary, we can arrange matters so that n is
a unit vector pointing in any direction we choose. Thus,

taking i = i, we have (V X E), = 0;
taking i = j, we have (V X E), = 0;
taking i = Kk, we have (V X E), = 0.

Thus, all three Cartesian components of V X E vanish, and we
can conclude that for an electrostatic field,

VXE=0.

This is the long-sought-after differential form of the circulation
law. We are now in a position to give an alternative and much
more tractable answer to the question “Can a given vector func-
tion F(x, y, z) be an electrostatic field?”” The answer is

If VX F = 0, then F can be an electrostatic field, and
if VX F # 0, then F cannot be an electrostatic field.

This is clearly a much more convenient criterion to apply than our
earlier one (page 77), which required us to determine the line in-
tegral of F over all closed paths! To see how it works, let us do
several examples.

Example 1. Could F = K(iy + jx) be an electrostatic field? (K
is a constant.) Here we have

1
EVXF

(2o ), (¥ o ax _ 3
_l<6y0 az>+~'<az 6x0)+k(6x ay)
=0=VXF=0.

Answer: Yes.
Example 2. Could F = K(iy — jx) be an electrostatic field? In
this case

1 _pfox ) _ _ __
KVXF——k( p ay> 2k =V X F = —2KkK.
Answer: No.



Stokes’ Theorem From these examples we can see how easy this criterion is to
apply.

Stokes’ Theorem

For the remainder of this chapter we digress from our presenta-
tion to discuss another famous theorem, one strongly reminiscent
of the divergence theorem and yet, as we’ll see, quite different
from it. This theorem, named for the mathematician Stokes, re-
lates a line integral around a closed path to a surface integral over
what is called a capping surface of the path, so the first item on
our agenda is to define this term. Suppose we have a closed curve
C, as shown in Figure I1I-23(a), and imagine that it is made of

Figure I1I-23(a)

wire. Now let us suppose we attach an elastic membrane to the
wire as indicated in Figure III-23(b). This membrane is a capping

Figure I1I-23(b)

surface of the curve C. Any other surface which can be formed by
stretching the membrane is also a capping surface; an example is
shown in Figure III-23(c). Figure I1I-24 shows four different
capping surfaces of a plane circular path: (a) the region of the

93 Figure [11-23(c)
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(@ (b) © (d)
Figure 11I-24

plane enclosed by the circle, (b) a hemisphere with the circle as
its rim, (c) the curved surface of a dunce cap (a right circular
cone), and (d) the upper and lateral surfaces of a tuna fish can.
With these preliminary remarks in mind, you won’t be sur-
prised to see us begin this discussion of Stokes’ theorem by con-
sidering some closed curve C and a capping surface S [Figure
I1I-25(a)]. As we have done before, we approximate this capping

Figure I1I-25(a)

surface by a polyhedron of N faces, each of which is tangent to S
at some point [Figure III-25(b)]. Note that this will automatically
create a polygon [marked P in Figure I1I-25(b)] that is an approx-

Figure III-25(b)
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imation to the curve C. Let F(x, y, z) be a well-behaved vector
function defined throughout the region of space occupied by the
curve C and its capping surface S. Let us form the circulation of F
around C,, the boundary of the I/th face of the polyhedron:

Fetds.

G

If we do this for each of the faces of the polyhedron and then add
together all the circulations, we assert that this sum will be equal
to the circulation of F around the polygon P:

N

> F-?ds=§fF-’t‘ds. (I11-9)
P

i=17¢
This is easy to prove. Consider two adjacent faces as shown in Fig-
ure I[I-26. The circulation about the face on the left [Figure
II-26(a)] includes a term from the segment AB, which is [5F « t ds.

But the segment AB is common to both faces, and its contribution to
the circulation around the right-hand face [Figure I1I-26(b)] is

A N B N
fF°tds=—f Fetds.
B A

Figure I1I-26(a)

Figure I1I-26(b)
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We see that we traverse the common segment AB one way as part
of the boundary of the left-hand face, and the other way as part of
the boundary of the right-hand face. Thus, when we add the circu-
lations of F over the two faces, the segment AB contributes

B A A A
fF-tds+fF°ta's=O.
A B

It is clear that any segment common to two adjacent faces con-
tributes nothing to the sum in Equation (III-9) because such seg-
ments always give rise to pairs of canceling terms. But all segments
are common to pairs of adjacent faces except those that, taken to-
gether, constitute the polygon P. This establishes Equation (III-9).

Now we go through an analysis very similar to that which
yielded the divergence theorem. We write

N
§F°tds=2 Fetds
P

i=17¢
&1 1

=121 . cF t ds| AS, (II1-10)
= l !

where AS, is the area of the I/th face. The quantity in the square
brackets is, approximately, equal to @i, - (V X F), where 1, is the unit
positive normal on the /th face and (V X F), is the curl of the vector
function F evaluated at the point on the /th face at which it is tangent
to S. We say “approximately” because it is actually the limit as AS,
tends to zero of the bracketed quantity in Equation (III-10), which is
to be identified as i, * (V X F),. Ignoring this lack of rigor, we write

N
: 1
1}/1—{2 E[AS, C,F tds:|AS,

each AS—0

N
= lim Y fi, (VX F),AS,
N—ow =]

each AS—0

=Hﬁ-Vdes. (II-11)
S

Since the curve C is the limiting shape of the polygon P, we also
have

lim F tds= % Fetds. (I11-12)

N—w

each AS—0
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Combining Equations (11I-10), (IlI-11), and (III-12), we arrive,
finally, at Stokes’ theorem:

3§F-?ds=”ﬁ-Vdes, (IlI-13)
C S

where S is any surface capping the curve C. Thus, in words,
Stokes’ theorem says that the line integral of the tangential com-
ponent of a vector function over some closed path equals the sur-
face integral of the normal component of the curl of that function
integrated over any capping surface of the path. Stokes’ theorem
holds for any vector function F that is continuous and differen-
tiable and has continuous derivatives on C and S.

Let’s work an example. Take F(x, y, z) = iz + jx — kx, with
C the circle of radius 1 centered at the origin and lying in the
xy-plane, and S the part of the xy-plane enclosed by the circle [see
Figure III-27(a)]. Now

F°'t\ds=zdx+xdy—xdz.

\H

Figure I11-27(a)

Thus, §-F * t ds = § x dy. Heretofore we have always parame-
trized curves with the arc length s. In this situation, however, the
path C is most easily parametrized in terms of the angle 6 shown
in Figure III-27(b). Thus, we write

dy 2m )
xdy=P x—-do = cos“0d0 =, (IIlI-14)
de o

where we use x = cos 0 and y = sin 0.
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Figure I1I-27(b)

Next we calculate
i J k
VXF=|dox 0d/dy dldz| =2j+Kk
Z x —X

The capping surface here is a portion of the xy-plane, so that the
unit normal in the positive direction is i = k. Thus,

A VXF=keQ2j+k =1

and

J’fﬁ-VXFdS=fde=Tr, (III-15)
s s

where this last equality follows from the fact that the surface inte-
gral in this case is merely the area of the unit circle. Since this re-
sult [Equation (III-15)] is identical with the one obtained above
[Equation (III-14)], we have illustrated Stokes’ theorem [Equa-
tion (I11-13)].

Let’s redo this calculation, this time choosing the hemisphere
shown in Figure III-27(c) as our capping surface S. Using Equa-
tion (II-13) with F replaced by V X F, we get

fJ;ﬁoVXFdS=fL[—2<—%)+l]dxdy
=2”R§dxdy+HRdxdy
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Figure I1I-27(c)

where R is the unit circle in the xy-plane shown in Figure
I1I-27(a). The second integral in the right-most equality above is
just the area of that circle, and so its value is w. The first integral
can be handled by introducing polar coordinates. We find

2[L%dxdy=2f£\/1_y_dxx2d_y_y2

=2f2" 'rsinOrdrdezfz"sinedef' r’dr
o Jo VI1-r? 0 o V1-r2

It’s easy to show that the integral over 6 is zero. Hence
ffsn eV X F dS = m, consistent with our earlier result.

An Application of Stokes” Theorem
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An important application of Stokes’ theorem is provided by Am-
pere’s circuital law. Consider any closed loop C enclosing a cur-
rent / as in Figure III-28. Note that the direction of C and that of /
correspond to the same right-hand rule that relates the directions
of C and the positive normal to a surface capping C. Ampére’s

\ c

~L_

Figure I11-28
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circuital law says that the line integral of the magnetic field B is
related to the current thus:

fﬁB-?deol
C

where the constant ., called the permeability of free space, has
the value 1.257 X 107° newtons per ampere’. This law, like
Gauss’ law and the circulation law, says something about the inte-
gral of a field (the magnetic field in this case), and just as in the
two previous cases, it is convenient to re-express it so that it will
tell us something about the field at a point. To this end, we first
introduce the current density J (see page 52). Thus, if current is
flowing through an area AS with normal n (Figure I11-29), the
current density J is such that

Al = J 0 AS,

\\ﬁ

AS

Figure I11-29

where Al is the total current. That is, current density is a vector
function whose magnitude is the current per unit area and whose
direction is that of the current flow. If J(x, y, z) is the current den-
sity, then the total current flowing through a surface S is

”J-ﬁds.
S

Thus, Ampere’s law can be written

§B°'t\ds=p.offJ°ﬁdS.
a s

S can be any surface capping the curve C. If, as is usually the
case, the current flows through a wire the cross section of which
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~

J#0 v
C

Figure I1I-30

does not include the entire capping surface, it does not matter; we
can integrate over more than the wire cross section if we remem-
ber that J # O for that part of the surface S cut by the wire and
J = O for the rest (Figure I1I-30). Thus,

ffJ-ﬁds=ffJ-ﬁdS.

cross section entire capping
of wire surface S

Now using Stokes’ theorem [Equation (III-13)], we have

§B-€d5=”ﬁ-Vdes=%”ﬁ-JdS.
C S S

Since C and S are arbitrary, we conclude that
VXB=pl.

This is the differential form of Ampere’s law. It is also a special
case of one of Maxwell’s equations, valid when the fields do not
vary with time.

Stokes’ Theorem and Simply Connected Regions
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For many purposes, including some important applications, we
must be able to assert that Stokes’ theorem holds throughout
some region D in three-dimensional space. By this we mean that
we want the theorem to hold for any closed curve C lying entirely
in D and any capping surface of C also lying entirely in D. This,
of course, means the function F must be continuous and differen-
tiable and have continuous first derivatives in D. But in addition
we must impose a restriction on the region D itself. To understand
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how this comes about, suppose first that D is the interior of a
sphere. If F is smooth® everywhere in D, then Stokes’ theorem
holds for any closed curve C lying entirely in D, and any capping
surface of C also lying entirely in D. In other words, Stokes’ theo-
rem holds everywhere in D. A little thought should convince you
that the same line of reasoning applies to the region between two
concentric spheres, provided F is smooth in that region. But for
certain kinds of regions, troubles can arise. As an example, sup-
pose D is the interior of a torus (roughly like a bagel or an inflated
inner tube; see Figure I1I-31). The problem in this case is that it’s

Figure I11-31

possible to construct a closed curve in D like the one shown in the
figure with the property that none of its capping surfaces lies en-
tirely in D. Although we insist that F be smooth in D, no condi-
tions are imposed upon it elsewhere, so that outside the region it
may not fulfill the requirements of smoothness that ensure the va-
lidity of Stokes’ theorem. The relation between the line integral
over C and the surface integral over S asserted by the theorem
can, and in many cases does, break down if F is not smooth on S.
Mathematicians refer to regions such as the interior of a
sphere or the space between two concentric spheres as simply
connected, whereas the interior of a torus is not simply con-
nected. By definition, a region D is simply connected if any
closed curve lying entirely in D can shrink down to a point with-
out leaving D. Using this definition, you should be able to verify
that the interior of a sphere and the region between two concen-
tric spheres are both simply connected, but that the interior of a
torus is not. With the concept of simple connectedness available
to us, we can easily specify the conditions under which Stokes’
theorem holds throughout a region: The vector function F must

° Hereafter when we say that a function is “smooth,” we’ll mean that it is continu-
ous, differentiable, and has continuous first derivatives.



Path
Independence
and the Curl

be smooth everywhere in a simply connected region D. Then
Stokes’ theorem [Equation (III-13)] is valid for any closed
curve C and any capping surface S of C, both of which lie en-
tirely in D.

Most of the time we’ll assume that the functions we work with
are smooth and that the regions of interest are simply connected.
There are situations, however, like the one discussed in the next
section, where simple connectedness plays an essential role, and
we’ll point them out as we come to them.

Path Independence and the Curl
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In our discussion of the differential form of the circulation law,
we showed that because the line integral of an electrostatic field E
is zero over any closed path, the curl of E is zero. The same is
true of any vector function F; that is, if

3§F-?ds=0
C

for all closed paths C, then
VXF=0.

The proof of this fact is precisely the same as the one given on
pages 90-91 with E replaced everywhere by F.

Is the converse of this statement also true? That is, if V X F =
0, does this imply that the circulation of F is zero over all closed
paths? At first glance it might appear that the answer to this ques-
tion is yes. All we have to do is use Stokes’ theorem and observe
that since by assumption V X F = 0,

3§F-?ds=”ﬁ-v><Fds=o.
C S

However, there is a flaw in this line of reasoning. Recall that the
validity of Stokes’ theorem requires that F be smooth in a simply
connected region. If the region is not simply connected, Stokes’
theorem may not hold, at least for some closed paths lying in the
region, and the fact that V X F = 0 does not guarantee that the
circulation of F is zero over all closed paths. The closest we can
come to a converse is to say that if V X F = 0 everywhere in a
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simply connected region, then the circulation of F is zero for all
closed paths in that region. The two statements “circulation
equals zero” and “curl equals zero” are equivalent only in a sim-
ply connected region.

There is a slightly different, but often useful, way to state this
connection between circulation and curl; namely, if [- F * t ds s
independent of path, then V X F = 0, and if V X F = 0 in a sim-
ply connected region, then - F ¢ t dsis independent of path. You
should have no difficulty in establishing this for yourself.

I1I-1 Use an argument like the one given in the text for the Coulomb
force (pages 71-73) to show that - F ¢ t dsis independent of path for
any central force F.

I11-2 In the text we obtained the result

oF, oF,
VXE): = %

by integrating over a small rectangular path. As an example of the fact
that this result is independent of the path, rederive it, using the triangu-
lar path shown in the figure.

AyY

o 7

III-3 Calculate the curl of each of the following functions using Equa-
tion (III-7b):
(@) i + jx* — ky~
(b) 3ixz — kx*
(c) e + je " + ke™.
(d) iyz + jxz + kxy.
(e) —iyz + jxz.
® ix + jy + k(x> + y*).
(®) ixy +jy* + kyz.
(h) (ix + jy + ka)/(x* + y* + 2)%, (x, 3,2 # (0, 0, 0).
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III4 (a) Calculate § F t ds for the function in Problem I11-3(a)
over a square path of side s centered at (x;, yy, 0), lying in the
xy-plane, and oriented so that each side is parallel to the x- or y-axis.
(b) Divide the result of part (a) by the area of the square and take
the limit of the quotient as s — 0. Compare your result with the
z-component of the curl found in Problem III-3(a).

(c) Repeat parts (a) and (b) for the functions in Problem III-3(b),
(c), and (d). (You may find it interesting to try paths of different
orientations and/or shapes.)

HI-5 (a) Calculate § F« t ds where
F=k(y +)
over the perimeter of the triangle shown in the figure (integrate in
the direction indicated by the arrows).

<
©0,0,a)

0,a,0)

(a,0,0)

(b) Divide the result of part (a) by the area of the triangle and
take the limit asa — 0.

(c) Show that the result of part (b) is i - V X F evaluated at
(0, 0, 0) where 1 is the unit vector normal to the triangle and
directed away from the origin.

III-6 Show that

where r = ix + jy + kz and A is a constant vector.

III-7 Show that V * (V X F) = 0. (Assume that mixed second partial de-
rivatives are independent of the order of differentiation. For example,
8%F,/dx 3z = 8°F,/dz ax.)

III-8 In the text (pages 82-86) we obtained the z-component of V X F in
cylindrical coordinates. Proceeding the same way, obtain the 6- and
r-components given on page 86.

II1-9 Following the procedure suggested in the text (pages 82-86), ob-
tain the expression for V X F in spherical coordinates given on page
86. The figures given on page 106 will be helpful.



Line Integrals III-10 (a) Rewrite the function in Problem III-3(e) in cylindrical coordi-

and the Curl nates and compute its curl using the expression given on page 86.
Convert your result back to Cartesian coordinates and compare
with the answer obtained in Problem III-3(e) (see Problem II-16).
(b) Repeat the above calculation for the function of Problem
II-3(f).

ITI-11 (a) Rewrite the function in Problem III-3(g) in spherical coordi-
nates and compute its curl using the expression given on page 86.
Convert your result back to Cartesian coordinates and compare
with the answer obtained in Problem I1I-3(g) (see Problem II-17).
(b) Repeat the above calculation for the function of Problem
II-3(h).

A9

Ar

A©

11I-12 Any central force can be written in the form

F(r) = €,f(r),

where €, is a unit vector in the radial direction and f is a scalar func-
106 tion. Show by direct calculation of the curl that this function is irrota-
tional (that is, V X F = 0).



Problems III-13 Which of the functions in Problem III-3 could be electrostatic
fields?

IlI-14 Use Stokes’ theorem to show that

§?¢=Q
C

where C is a closed curve and 1 is a unit vector tangent to the curve C.

IlI-15 Verfy Stokes’ theorem

§F-?ds=”ﬁ-Vdes
C K}

in each of the following cases:
(a) F =iz — jy’.
C, the square of side 1 lying in the xz-plane and directed as
shown.
S, the five squares S, S, S3, S4, and S5 as shown in the figure.

(b) F =iy + jz + kx.
C, the three quarter circle arcs C,, C,, and C; directed as
shown in the figure.
S, the octant of the sphere x?> + y*> + 72 = 1 enclosed by the
three arcs.

107 C,



Line Integrals (c) F=iy — jx + kz
and the Curl C, the circle of radius R lying in the xy-plane, centered at
(0, 0, 0) and directed as shown in the figure.

S, the curved and upper surfaces of the cylinder of radius R
and height h.

III-16 (a) Consider a vector function with the property V X F = 0
everywhere on two closed curves C, and C, and on any capping
surface S of the region enclosed by them (see the figure). Show
that the circulation of F around C, equals the circulation of F
around C,. In calculating the circulations direct the curves as indi-
cated by the arrows in the figure.

(b) The magnetic field due to an infinitely long straight wire car-
rying a uniform current I is B = (pol/27r)€,. Show that V X B =
0 everywhere except at r = 0.

NI

—

(c) Prove Ampere’s circuital law for the field of the wire given in
part (b). [Hint: Use the result of (b) to find the circulation of B
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around a circle with the wire passing through its center and normal
to its plane. Then use the result of part (a) to relate this circulation
to the circulation around an arbitrary curve enclosing the current.]

III-17 (a) Consider the function given in cylindrical coordinates by

A

€g
F(r,0,2) = -

Show that Stokes’ theorem does not hold for this function if C is
the circle of radius R in the xy-plane centered at the origin, and S
is the portion of the xy-plane enclosed by C. Why does the theo-
rem fail in this case?

(b) Consider the region D that consists of all of three-dimensional
space with the z-axis removed. Is the function F defined in
(a) smooth in D? Does Stokes’ theorem hold in D? Is D a simply
connected region?

I1I-18 The electromotive force € in a circuit C is equal to the circulation
of the electric field E around the circuit:

€ = fﬁ E-t ds.
c
Faraday discovered that in a stationary circuit an electromotive force is

induced by a changing magnetic flux. That is,

_do
dt’

cp=”n-ﬁds,
N

t is time (don’t confuse it with the tangent vector t), and S is any cap-
ping surface of C. Use this information and Stokes’ theorem to derive
the equation

€ =

where

)
VXE= R

which is one of Maxwell’s equations.
II-19 Determine the value of the line integral [ F t ds, where
F=("—ze i+t (e*—xe)j+ (e —ye Ok

and C is the path

\
1
= — +
X ln2ln(l D),
y=sm1T2£, » O0=p=1
1 —e?
1—¢€’
J

from (0, 0, 0) to (1, 1, 1). [Suggestion: Think before you write!]



Line Integrals I1I-20 Maxwell’s equations are

and the Curl V+E = ple, VeB=0,
VXE=—%—?, and VXB=eOp,O%+p.OJ,

where E is the electric field, B the magnetic field, p the charge density,
and J the current density. Use Maxwell’s equations to derive the conti-
nuity equation

ap
v J+§—0.

Interpret this equation.

III-21 The electromagnetic field stores energy, and it is possible to show
that in a volume V the amount of electromagnetic energy is

1] e

pe = 2(&E *E + B+ B/pg) = 3(6E> + B’/py).

where the energy density

Use Maxwell’s equations (see Problem III-20) to show that

ot Ko
Interpret this equation.
III-22 (a) Apply the divergence theorem to the function
G(x, y) = iGy(x, y) + JG,(x, y),

using for V and S the volume and surface shown in the diagram;
its bottom is a region R of the xy-plane, its top has the same shape
as, and is parallel to, the bottom, and its side is parallel to the
z-axis. In this way obtain the relation

tidy—Gydx:”R(

which is the divergence theorem in two dimensions.

G, 29 ea
ox ay Y

z R

110 y



Problems (b) Apply Stokes’ theorem to the function
F(x,y) = iF(x,y) + jF,(x,y)

using for C a closed curve lying entirely in the xy-plane and for S
the region R of the xy-plane enclosed by C. In this way obtain the

relation
%Fdx+ﬁ dy——ff t a"dxa’y
c Y g\ 0x  dy ’

which is Stokes’ theorem in two dimensions.
(c) Show that in two dimensions the divergence theorem and
Stokes’ theorem are identical.

II1-23 (a) Let C be a closed curve lying in the xy-plane. What condition
must the function F satisfy in order that

3‘; Fetds=A,
C

where A is the area enclosed by C? [Hint: See Problem II1I-22.]
(b) Give some examples of functions F having the property de-
scribed in (a).
(c) Use line integrals to find formulas for the area of
(i) arectangle.

(ii) aright triangle.

(i11) a circle.
(d) Show that the area enclosed by the plane curve C is the mag-
nitude of

14; A

= X

2 Cr t ds,
where r = ix + jy.

I11-24 (a) There is an important theorem in vector calculus that says V+ G
= 0 (where G is some differentiable vector function) implies and is
implied by G = V X H (where H is another differentiable func-
tion). To prove this we note first of all that G = V X H implies that
V G = 0 (see Problem III--7). To show that V « G = 0 implies that
we can write G = V X H, the simplest procedure is to give H:

H, =0,
Hy = f Gz(x" ¥, 2) dx',

x y
H = - f G, y, 9 dx' + f Gi(xp, y', 2) dy',
Xo Yo

where x;, and y, are arbitrary constants. Show by direct calcula-
111 tion that if Ve G = 0, then G = V X H.
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(b) Is the vector function H specified in (a) unique? That is, can we
alter it in any way without invalidating the relation G = V X H?

III-25 Determine in which of the following cases it is possible to write
G = V X H. In the cases where it is possible, find H (see Problem
I11-24).

(@) G =iy + jz + kx.

(b) G = Bk, B,a constant.
(c) G =ix? — ky%.

(d) G =2ix — jy — kz.

(e) G =2ix—jy + kz.

III-26 Since the divergence of any magnetic field B is zero, we can write
B = V X A (see Problem III-24). Prove that the circulation of A

around an arbitrary closed path C is equal to the flux of B through any
surface S capping C.

III-27 Prove the statement made in Problem I11-24(a) by applying Stokes’
theorem and the divergence theorem. [Hint: See the diagram below.]

III-28 (a) What is the integral form of the equation G = V X H? [Hint:
Compare the differential and integral forms of Ampere’s circuital
law.]

(b) Verify your result in part (a) using for G and H functions se-
lected from Problem III-25, and paths and surfaces of integration
of your own choice.

II1-29 In the text we defined the curl as the limit of a certain ratio. An al-
ternative definition is provided by the equation

AV—0

. l N
VXF= — X
F = lim fJ;n F ds,

where F is a vector function of position, the integration is carried out
over a closed surface S which encloses the volume AV, and i is the unit
vector normal to S pointing outward from the enclosed volume. (This
definition does not display the geometric significance of the curl as well
as the one given in the text. Nonetheless, in one respect at least it may be
preferable: it gives the V X F rather than just a component of it.)

(a) Following a procedure similar to the one used in the text in

treating the divergence, integrate over a “cuboid” and show that

the definition given above yields Equation (III-7b).
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(b) Arguing as we did in the text in establishing the divergence
theorem, use the above expression for the curl to derive the

equation
[[axEas=[[[ vxrav
s v

where V is the volume enclosed by S.

(c) Derive the equation of part (b) directly from the divergence
theorem. [Hint: In the divergence theorem [Equation (II-30)] re-
place F by e X F, where e is an arbitrary constant vector.]

(d) Verify the equation of part (b) for F = iy — jz + kx and V the
unit cube shown in the figure.

<

II-30 The result

oF, 9F,
ox ay

(VXF), =

has been established by calculating the circulation of F around a rec-
tangle (see the text, pages 75 ff.) and around a right triangle (see Prob-
lem III-2). In this problem you will show that the result holds when
the circulation is calculated around any closed curve lying in the
xy-plane.
(a) Approximate an arbitrary closed curve C in the xy-plane by a
polygon P as shown in the figure. Subdivide the area enclosed by
P into N patches of which the I/th has area AS,. Convince yourself
by means of a sketch that this subdivision can be made with only
two kinds of patches: rectangles and right triangles.

C
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(b) Letting C(x, y) = 0F,/dx — dF,/dy, use Taylor series to show
that for N large and each AS, small,

§Ft¢—2 th
aC Y
= C(xo, yo) AA + ax 2 (x1 — xo) AS,
Xo.yo [=1
d
+ ( C) 2 (yi = yo) AS; + -+,
Xo.Yo |

dy

where C, is the perimeter of the Ith patch, (x,, y,) is some point in
the region enclosed by P, and AA is the area enclosed by P.
(c) Show that

lim F tds—éF t ds

N—ox

each AS,—0
) ) aC
= I:C(xO’ )’0) + (x x0)< ax )Xod’o

+G- yo)(%) + ] s,
Xo-Yo

where AS is the area of the region R enclosed by C and (x, y) are
the coordinates of the centroid of the region R; that is,

=) Y
x AS Rxdxdy and y AS Rydxdy.

(d) Finally, calculate
. 1 A
(VXF),= lim —AS§CF°tds.

AS—0
about xo. o



Chapter IV

The Gradient

For mostly they goes up and down . . .
P. R. Chalmers

Line Integrals and the Gradient

We have now investigated the relationship between the following
two statements:

1. §Fe t ds = 0 for any closed curve C.
2. VXF=0.

We saw in the last chapter that the first of these statements im-
plies the second and is equivalent to the assertion that the line
integral of F t is independent of the path. We also saw that
the second statement implies the first if F is smooth in a simply
connected region. You might think that two ways of saying
something would be enough, but there is a third way, as we
shall now see.

115
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Let us suppose that a given vector function F(x, y, z) has asso-
ciated with it a scalar function y(x, y, z) and that the two functions
are related as follows:

_ oy _ oy _ o
Fx—a, F)’_:)—);’ and Fz—a—z. (IV—I)
If the preceding relations hold, then the line integral of F ¢ t is in-
dependent of path. To show this, we use the three relations given in

Equation (IV-1) and the formula for the unit tangent vector to get

A _Olgy obdy dbdr db
F t_axds_‘_ayds_‘_azds_ds

where the second equality follows from a familiar chain rule of
multivariate calculus. Suppose now that the path C joins the two
points (xo, Yo, Zo) and (x;, yy, z,)- Then

LF-?ds=fC ‘;—'i’ds=fcd¢

= q’(xl’ Y Z1) - lIJ(x(), Yo, ZO)-

You can see that this result depends only on the points at which
the path C begins and ends. We’d get the same result for any path
joining these two points. This proves our assertion: with F and {s
related as in Equations (IV-1), the line integral of F ¢ t is inde-
pendent of path. We shall now show that the converse of this
statement is also true; that is, if the line integral of F e t is inde-
pendent of path, there is a scalar function Yi(x, y, z) related to F as
specified in Equations (IV-1).

We begin with the observation that, because the line integral
JcFe t dsis independent of path, if we integrate from some fixed
point Py(x, Yo, Zo) to a second point P(x, y, z), the result is a scalar
function of the coordinates (x, y, z):

x,,2)

P(x, y,2) = f Fe 1t ds. (IV-2)

(X0,Y0:Z0)

It is important to understand that this would not be true if the inte-
gral depended on path, for then its value would depend not only
on the coordinates (x, y, z) of the point P but also on the path join-
ing P, and P, and the integral would not then be a function within
the standard definition of the term.



Line Integrals Since the integral we’re examining is path independent, we are
and the Gradient  free to select any curve as the path of integration. We choose the
one shown in Figure IV-1. It consists of two parts. The first, C,,

Figure IV-1

connects P, to an intermediate point P, whose coordinates are
(a, y, 2), where a is some constant. Beyond fixing its two end points
and requiring it to be reasonably smooth, we do not need to specify
anything more about C,. The second part of the curve, C,, is the
straight-line segment from P, to P. Thus, Equation (IV-2) becomes

P,

n P
P(x, y,2) = Fetds+ J F.(x',y,2)dx'.
P,

Py

The first term on the right-hand side of this equation is indepen-
dent of the variable x. The second term is, effectively, nothing
more than an ordinary one-dimensional integral, since y and z are
constant on C, and just come along for the ride. That is,

P x
F.(x',y,2)dx' = f F.(x',y = const., z = const.) dx',
P, a

and so
o d f o _ :
) F(x',y = const., z = const.) dx
= x(x’ y’ Z)’

where we use the fact that the derivative of an integral with re-
117 spect to its upper limit is merely the integrand evaluated at that



The Gradient limit. This establishes one of the three relations we sought. The
other two, F, = d{/dy and F, = dy/dz, can be obtained by the
same sort of reasoning, and you should carry out the derivations
yourself. Figure IV-2(a) and (b) will be helpful.

z
Py(x, b, 2)
P,
o G
-
R
' | |
. | |
1 I
! l
¢ ¢
X
Figure IV-2(a)
b4 P
Po Cs
I
| Py (x,y,¢)
I
I
|| y
|
'y

Figure IV-2(b)

You have probably recognized by now that we have here an-
other use for the del notation. That is,

0
, F,=—, and Fz=a—f

can be combined to give
s

. . d

—|{: J —
118 —(15+J5+k&)¢—v¢,
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which is read “del psi.” This operator is called the gradient and is
sometimes written grady. However, we shall always write Vi in
keeping with modern usage. The gradient of s is a vector function of
position. Its geometric significance will be discussed in detail later.

We have now established the relationship between path inde-
pendence and the existence of a scalar function {(x, y, z) such that
F = V. Since there is also a relationship between path indepen-
dence and the fact that V X F = 0, you may suspect that V X F = 0
and F = Vi are also related. Indeed, if F = Vy, then under suit-
able conditions, V X F = 0. This is easily established. Consider,
for example, the x-component of V X F:

_OF, _OF, 5 () _ (0¥
(VXF)X‘?»?“a—z‘@(a—z)‘a—z B

P
"~ dydz ozdy

This last equality follows if s and its first and second derivatives
are continuous, for then 8°0/dy dz = 9*/dz dy. Obviously, the
other two components of V X F can be shown to vanish in ex-
actly the same way. Thus,

ad
Fq=:% gq=x,y,2) = VXF=0.

The converse of what we have just shown would assert that if
V X F = 0, then there exists a scalar function ¥ such that F = Vy,
a statement that is true, provided the region of interest is simply
connected. To understand this, we can consult Figure IV-3,
which shows how path independence of the line integral of F ° ’t\
V X F =0, and F = Vi are related. The solid arrows in the dia-
gram represent implications that hold in general, provided F is
smooth. The dashed arrows represent implications requiring not
only that F be smooth, but that the region of interest be simply
connected. We have already shown that (1) implies both (2) and
(3) and that (3) implies (1) in a simply connected region. Combin-
ing these two statements, we see that (3) implies (2) in a simply
connected region.

In practice, just as the functions we deal with usually have con-
tinuous first derivatives (and are therefore smooth), the regions
we work with are simply connected. In such circumstances we
can relax a bit and regard the three statements summarized in Fig-
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1. 2.
L Fetds
independent < F=Vy
of path
\ 3 U
VxF=0

Figure IV-3

ure IV-3 as equivalent: each implies and is implied by each of the
others. However, you should be aware of simple connectedness
and its implications for the relations among the three statements.

To give a simple example of the ideas we have been dis-
cussing, consider the vector function

F(x,y,2) =1y + jx.

This function is smooth everywhere, and we have already noted
that its curl is zero (page 91). According to what we have just
said, this means there must be a scalar function Y(x, y, z) such that
F is its gradient. Thus, ¢ must satisfy

0
sz ___—LIJ, F:x:
ox

y

, F,=0=

2| &

o
0z °

Clearly, y(x, y, 2) = xy + C, where C is an arbitrary constant, sat-
isfies these relations. This should be contrasted with the case of
the function F = iy — jx, the curl of which does not vanish (page
92). If this function were the gradient of a scalar function {5, we
should have

8 8 8



Finding the
Electrostatic
Field

but, as you should be able to convince yourself, there is no func-
tion s that satisfies these three equations.

The expression we have written for the gradient of a scalar
function {yi(x, y, z), namely,

0P Loy oy

V¢=l'5;+]—a;+k'éz,
is really just the form of this operator in Cartesian coordinates. To
find the form of the gradient in other coordinate systems, if you
go about it straightforwardly, is a tedious job. For example, to
find the gradient in cylindrical coordinates, we would first have to
express the Cartesian unit vectors i, j, and k in terms of the analo-
gous quantities €,, €,, and €, in cylindrical coordinates. Then,
using x = r cos 6, y = r sin 0, and the chain rule for differentia-
tion, we would have to express derivatives with respect to x, y,
and z in terms of those with respect to r, 8, and z. We shall not
pursue this matter here because later (see pages 141 ff.) an easier
and faster method will be available to us. For the present we
merely quote the form of the gradient in cylindrical and in spheri-
cal coordinates.

Cylindrical:
Vi = 6,% + 69%3—‘“ + ’éz%'i’—. (IV-3)
Spherical:
V¢=’é,¥+’é¢%g—+é‘ersiln¢% (IV-4)

A coordinate-free definition of the gradient analogous to the ones
given for the divergence [Equation (II-17)] and the curl [Equa-
tion (ITI-8)] is discussed in Problem IV-25.

Finding the Electrostatic Field
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We began our discussion of vector calculus with a search for
some convenient method for finding the electrostatic field. Our in-
vestigations led us to the differential form of Gauss’ law,

V.E = p/eo.
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Even this expression is not often useful for finding E because it is
one equation in three unknowns (E,, E,, and E, in Cartesian coor-
dinates). Now, at last, we are able to complete our discussion and
write down the equations that are often the most useful of all
known methods for finding the field.

This final step rests on the observation that since

fﬁE-’t‘ds=0
C

for any closed path C, the field E can be written as the gradient of
a scalar function. Conventionally, this function, called the electro-
static potential, is designated ®(x, y, z), and we write'

E= -V

Combining this equation with the differential form of Gauss’ law
[Equation (II-17)], we get

Ve (=V®) = ple,
or
Ve (V(I)) = ""p/eo.

When we write out the left-hand side of this equation in detail, we
find

V-(Vcb)=(ni+3i+k )(nai’ﬂ%‘f k@)

_ 9P azcb + 9P
ax2 0%’

and so

P | *D P _
+ + /e IV-5
ot 9 I ( )

Equation (IV-5) can be written more compactly by introducing
a new operator, called the Laplacian, which is denoted, for

! The negative sign in this equation is not put there just to make life more difficult;
there is a good reason for it. See the discussion on page 139.
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fairly obvious reasons, by the symbol V? (read “del squared”).
That is,

2 ° = °_a_ 'i i.'_a_ '_a_ i
Vei=V.V (lax+‘]ay+kaz) ('ax+~‘ay+kaz)

I Y A
—Q“La—yﬁa_zz' (IV-6)

In this new notation Equation (IV-5) becomes
VP = —ple,, av-7

Equation (IV-6) provides the form of the Laplacian in Carte-
sian coordinates; its forms in cylindrical and spherical coordinates
will be given in the next section. The best definition of the Lapla-
cian is probably

Vif =V V),

where f is some suitably continuous scalar function of position.
This definition has the important advantage of being independent
of the coordinate system.

Equation (IV-7) is called Poisson’s equation. It is a linear,
second-order partial differential equation in one unknown, the
scalar function ®(x, y, z), and is the culmination of our long
search for a method of determining the electrostatic field. A great
body of work exists describing the many elegant mathematical
schemes that have been devised to solve it, and a few simple ex-
amples are given in the next section. In any problem, once we
have ®, the field is trivial to find using E = —V®.

At any point in space where there is no electric charge, the den-
sity p is zero and Poisson’s equation reduces to

VP = 0.

This is called Laplace’s equation and is more often used than
Poisson’s equation. The reason for this is that usually charges are
distributed over various objects; this gives rise to a field, and we
are interested in finding the potential (and from it, the field) in the
charge-free space between the objects. In the simplest of situa-
tions it is possible to specify “boundary conditions,” that is, the
value of the potential on the surfaces of these objects (Figure
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IV-4). We then find that solution of Laplace’s equation which
takes on the given values on the surfaces. This is illustrated in the
next section.

Figure IV-4

Using Laplace’s Equation®
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Whether solving Laplace’s equation is or is not a topic in vector
calculus is a moot point, but the basis of our entire discussion has
been a search for a method to calculate electric fields. Since
Laplace’s equation is the end product of that search, we can
scarcely omit a few examples to show how it works.

We begin with an especially simple problem. Imagine we have
two very large (“infinite”’) parallel plates separated by a distance s
(Figure IV-5). Choosing a coordinate system as shown in the fig-
ure, let the plate at x = O be held at zero potential and that at x = s
at V,,. Our object is to find the potential and the electric field in the
space between the two plates. Because the plates are infinitely
large, there is nothing to distinguish a point (x, y, z) from any
other point (x, y’, z') having the same x-coordinate. It follows that
the potential ® depends on x but not on y or z. Thus, V>® reduces
in this case simply to d°®/dx?, and so Laplace’s equation and the
associated boundary conditions are

2 This section is not essential to what follows and may be omitted.
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Figure IV-5

and

0 atx=20

Vo atx = s.

This is a trivial problem and the solution is

The electric field is found using E = —V®, which yields

_VO
Ex=—S_ and Ey=E=0.

Thus, the field is a constant vector normal to the plates. This is an
excellent approximation to the potential and field between, but far
from the edges of, two plates whose linear dimensions are large
compared with their separation. You may recognize this arrange-
ment as a parallel plate capacitor.

Our second example is a spherical capacitor, that is, two con-
centric spheres having radii R, and R, with the inner one main-
tained at a potential V, and the outer at zero (Figure IV-6). We
are required to find the potential and field everywhere between
the spheres. In this situation we would obviously do well to work



The Gradient

126

Figure IV-6

in spherical coordinates r, 6, and ¢, in which Laplace’s equation
between the spheres has the imposing form

1 o (. ,od 1 &P
+——— T |sind | + =
r?sin ¢ 3¢( n ¢ 3¢> r?sin’ ¢ 96?

(See Problem IV-23.) Fortunately, we need not work with this equa-
tion as it stands; a little thought will convince you that ® can only be
a function of r, since there is no way to distinguish a point (7, 0, ¢)
from another (r, 8, ¢’) with the same r but different 6 and ¢. Thus,

and Laplace’s equation reduces to

o
%% (r2 E) = 0. (IV-8)

We are interested in the solution of this equation that is valid for
R, < r <R, and satisfies the boundary conditions

Vo atr = R,
o) =
0 atr = R,.
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Multiplying Equation (IV-8) by r* and putting § = d®/dr, we get

and so
rig = ¢,

where c, is a constant. Hence,

_dd_a
ll} B dr r2 ’
and it follows that
Cy
(I) = ‘_7 + Cs, (IV—9)

where ¢, is another constant. Imposing the boundary conditions,
we find

_a - _a =
Rl + Cy VO and R2 + Cy 0,
whence
o = VoRR, and o = VoR,
! Rl - Rz 2 Rl - R2 |

Substituting these in the expression for the potential [Equation
(IV-9)], we get

ey = VR ( R,

- — <r<
Rl — R2 1 r ), Rl r Rz.

To get the electric field, we must take the gradient of ®, and this
is clearly most conveniently done in spherical coordinates [see
Equation (IV—4)]. However, since in this case ® depends only on
r, we get only a radial component:

E =_@=_V0R1R2_1_
r dr Rl_Rzrz,

E9=E¢=O, (R1<r<R2).
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)
N

Figure IV-7

Our third and last example is more complicated (and more in-
teresting) than the foregoing. If a potential difference is main-
tained between two “infinite” parallel plates P and P’ (Figure
IV-7), then we know from our first example that the field be-
tween them is a constant vector normal to the plates. Choosing a
coordinate system as shown in the figure (with the z-axis out of
the plane of the paper), we have E = Ei, where E| is a constant.
Let an “infinitely” long cylinder held at zero potential be situated
between the plates with its axis along the z-axis. Let its radius
R be small compared with the plate separation. What are the
potential and the electric field outside the cylinder and between
the plates? Here, clearly, we should use cylindrical coordinates
(r, 0, 2), in which case Laplace’s equation reads

2 2
vo-13(,8), 170, 70,
r< 2o 0z

(See Problem IV-21.) You should convince yourself that ® in
this case must be independent of z, so this equation simplifies
somewhat to

75 r or +=—=0. (IV—IO)

14 < acb) 1 52
r? 96?
There are two boundary conditions, of which the first is

®(r,0)=0 at r=R

The second condition has to do with the fact that at large values
of r, the influence of the cylinder is negligible and the field must
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be, to a good approximation, what it would be if the cylinder were
not present at all, that is, Egi. To put this in terms of the potential,
we note that

® = —FEyx

will provide just such a field. Since x = r cos 0, we can write the
second boundary condition

®(r,0) = —Eyrcos 0, r>>R. (Iv-11)

Let’s try to solve Laplace’s equation for this problem [Equa-
tion (IV-10)] by assuming we can write

®(r, 8) = f(r) cos 0, (IV-12)

where f(r) is an as yet unknown function. What prompts us to do
this is the fact that the second boundary condition [Equation
(IV-11)] has precisely this form—a function of r multiplied by
cos 0. If we substitute Equation (IV-12) into Equation (IV-10),
the result is a differential equation for the function f(r):

d’f

1
T

a 1,
— ﬁf—O.

Putting f(r) = r* where \ is a constant leads to
AN = DA N2 = A2 =0,
or
A =1,
and A = *1. Hence we get

f) = Ar+ 2,

where A and B are constants. Thus, our solution is

D(r, 0) = (Ar + g) cos 0.
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The first boundary condition requires that

B _
AR+R—0,

or
B = —AR%.
Hence,

2
®(r,0) = Arcos 6 — 45— cos 0.

To impose the second condition, we note that for r large, the second
term in this last equation is negligible compared with the first. Thus,

®(r, 0) = Arcos 0, r large.

We satisfy the second boundary condition by choosing A = —E,,.
The complete solution is thus

R2
®(r,0) = —Ey|{1 —=)cos0.

r2

To find the electric field, we proceed as usual with E = —V®.
Using Equation (IV-3), we get

_ 9P _ RY

E,—-—Er——Eo[l'F(T)]COSG,
__19® _ R\ ..

Ee——739———E0|:1—(7)i|Sln9,

Ez=—a—z=0.

You should verify that for large r, this field reduces to Eji as
required.

You may find this last example disquieting, since a certain
amount of clever guesswork is used in finding the potential. Actu-
ally, there are standard procedures that, in problems of this kind, lead
more or less straightforwardly to the solution. A discussion of these
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procedures, however, would be very lengthy and (in the well-worn
phrase) beyond the scope of this text. Before moving on, however,
one further point is worth making: A solution of Laplace’s equation
that satisfies appropriate boundary conditions is unique. That is to
say, there is one and only one such solution, so that if we solve a
problem by guesswork and skullduggery, and someone else solves it
with refined and elegant mathematical techniques, the two solutions,
in spite of their disparate pedigrees, must be the same. In Problem
IV-24 you will be led through a proof of this remarkable fact.

Directional Derivatives and the Gradient
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We have introduced the gradient as a sort of mathematical artifice
useful in discussing path-independent line integrals. We now turn
to a more detailed examination of the gradient in order to describe
its geometrical significance.

Before beginning our discussion, we make a few comments on
Taylor series, since these are needed in what follows. For a scalar
function of one variable that is suitably continuous and differen-
tiable, we have

flx + Ax) = f0) + Axf'(x) + A0 + .

This says that the value of the function at some point x + Ax can be
written as the sum of (usually) infinitely many terms that involve the
function and its derivatives at some other point x. Among other
things, this Taylor series is useful for calculation, for if the two
points are close together (that is, if Ax is small), then we can truncate
the series after a certain number of terms (which we hope is small),
since the neglected terms, each proportional to some large power of
the small number Ax, will sum to a value that is negligible.

Taylor series can also be formed for functions of several vari-
ables. Thus, for a function of two variables we have

f(x + Ax,y + Ay)

of f

9
=fOoy) + Axgo+ Aygo+oe (AV-13)

This says that the value of the function at some point (x + Ax,
y + Ay) can be written as a sum of (usually) infinitely many terms
that involve the function and its derivatives at some other point
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(x, ). We shall never need the explicit form of the remaining
terms of this series [represented by the dots in Equation (IV-13)].
We should know, however, that these terms involve higher pow-
ers of the “small” numbers Ax and Ay (for example, Ax?, Ay?
AxAy, Ax®, Ay?, Ax* Ay, and so on). With these simple ideas in
mind we turn now to our main task.

Consider some function z = f(x, y). Geometrically, this repre-
sents a surface as shown in Figure IV-8(a). Let (x, y) be the coor-
dinates of a point P in the xy-plane. The height of the surface
above this point is represented by the length of the dotted line PQ;
that is, PQ = z = f(x, y). Suppose now we take a short step in the
xy-plane to a new point P’ with coordinates (x + Ax, y + Ay).
The height of the surface above this point is P'Q’ = f(x + Ax,
y + Ay). Let As be the length of the step (As = PP’).

—_—————————\———®

.
|
|
I
I
|
|
|
|
|
|
1
1
|
|
|
|

P

X P'(x + Ax, y + Ay)

Figure IV-8(a)

We next ask how much the function f has changed as a result of
taking this step. Clearly, this change is the difference in the two
heights PQ and P'Q’, and

P'Q" — PQ = Af=f(x + Ax,y + Ay) — f(x, y).

Applying the Taylor series formula stated above [Equation
(IV-13)], we get

) )
Af = f(x, y) +Ax5£+Ay£+"'—f(x,y)

A Y of L ...
—Axb—;'i'Aya—y‘f‘ .
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We now recast this expression by what at first may seem an un-
necessary elaboration of the notation. Let As be a vector that has
magnitude As and points from P to P’. Clearly,

As =i Ax + j Ay.

But the gradient of fis
_f Lof
Vf— lgx-'f“‘lgy—

(an obvious specialization of the gradient notation to a function of
two, rather than three, variables). It follows at once that

Af = (As) - (V) + - --.

Complicating matters slightly more, let i be a unit vector in the
direction of As. Then

As = 1 As
and
Af=@{Vf)As+ -,
so that
Af_,\
—A—;—ll Vf+ .

We now take the limit of this equation to get

af _ .. A .
&= hmg, = 8- av-14

There is no longer any need for “+ ---,” since the dots repre-
sented terms that go to zero as As goes to zero.

This new expression [Equation (IV-14)] has a simple interpreta-
tion: it is the rate of change of the function f(x, y) in the direction of
As (that is, of @). Redrawing Figure IV-8(a) and passing a plane
through P and P’ parallel to the z-axis [Figure IV-8(b)], we see that
it cuts the surface z = f(x, y) in a curve C. The quantity df/ds de-
fined in Equation (IV-14) is the slope of this curve at the point Q.
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Figure IV-8(b)

The quantity df/ds is called the directional derivative of f. Al-
though the analysis given earlier that led to this derivative was for
functions of two variables, the results all apply to functions of
three (or more) variables. Thus,

d :A.
s F(x,y,z) = u°*VF

is the rate of change of the function F(x, y, z) in the direction
specified by the unit vector .

An example of the directional derivative may be amusing here.
We’ll work with a function of two variables so that we can draw
pictures. Thus, let’s consider

z=fx,y) = (& + )",

which is an inverted right circular cone whose axis coincides with
the z-axis [see Figure IV-9(a)]. We ask for the directional deriva-
tive of this function at some point x = a and y = b and in the di-
rection specified by i = i cos 8 + j sin 0 [see Figure IV-9(b)].
First we need the gradient of f(x, y). But

N =

and

Fl
I

S IR

|

as you can easily verify. Thus,

ix + jy
Vf = Z
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Figure IV-9(a)

Figure IV-9(b)
and

___XC059+)’Sin9_>acos9+bsin6

¢ Va® + b

Suppose 0 is chosen so that Ul is in the radial direction as indi-
cated in Figure IV-9(c). This means

= GVf

&

cos 6 = 2—a—,
(@ + b))
. _ b
sin 0 = —(a2 " bz)”z’
and so
df _ a a b b

1.

. <+ . =
ds @+ Va+b Va®+b Va + b

135 The significance of this result is brought out in Figure IV-9(d).
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Figure IV-9(c)

Figure IV-9(d)

A second interesting case is that in which 1 is chosen perpen-
dicular to the direction of the previous example [see Figure
IV-9(e)]. We then have

COSG':'Z_—bz],
(a® + b°) 12

. _ a
sin 6 = (az + b2)1/2’

and so

i 4 (_ b )
ds /@ + b? Va + b2

b a
+ =0
Va* + b? (\/a2 + b2)

The meaning of this result is illustrated in Figure IV-9(f).
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Figure IV-9(e)

Figure IV-9(f)
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With the concept of the directional derivative at our disposal, we
are now in a position to give a geometric interpretation of the gra-
dient. At some point P, with coordinates (x,, yo, Zo) Wwe have

dF\ _ A,
(E>O = u *(VF),,

where the subscript 0 means the quantity is to be evaluated at the
point (xy, Yo, 2p)- Now (VF),, the gradient of F evaluated at P,
may be represented by an arrow emanating from that point as
shown in Figure IV-10(a). If we ask in what direction we must
move to make (dF/ds), as large as possible, it is clear that i
should be in the same direction as (VF),. This is because if we let
a be the angle between i1 and (VF),, then (dF/ds), = |VF], cos a,
and this is as large as it can be when a = 0. Thus, the gradient of
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y

Figure IV-10(a)

a scalar function F(x, y, z) is a vector that is in the direction in
which F undergoes the greatest rate of increase and that has
magnitude equal to the rate of increase in that direction.

To illustrate this interpretation of the gradient, let us go back to
the inverted cone z = f(x, y) = (& + y*)'? we discussed earlier.
We learned that

ix + jy
Vf= Z

and

df _acos®+ bsinb
ds Va*+ b

= D(0).

To find the direction in which f(x, y) undergoes the greatest rate
of change, we set

dD _ —asin +bcos _

de Va*+ b* O

This gives tan = b/a, whence cos 8 = a/(a®> + b»)'? and sin 6 =
bl(a®> + b*)'2. So (df/ds),,,. = 1. On the other hand,

x2+ 2112
IVf|=[ Zzy] =1,

since z2 = x* + y*. Furthermore, tan ® = b/a corresponds to the
direction ai + bj, while at the point (a, b),

ai + bj
Vf= 3
f (a2 + b2)1/2
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which is a vector in the same direction. Thus both properties of
the gradient are illustrated; it’s in the direction of maximum rate
of increase, and its magnitude is equal to the rate of increase in
that direction.

As a second example of the interpretation of the gradient, we con-
sider the plane z = f(x, y) = 1 — x — y shown in Figure IV-10(b).
It’s easy to see that Vf= —i — j. Using i = i cos ® + j sin 0 as be-
fore, we find df/ds = @ * Vf = —cos 6 — sin 8 = D(6). Thus

dD _ . . _
de—sme cos 6 =0,

Figure IV-10(b)

which yields 6 = w/4 or 5m/4. The second derivative test shows
that /4 corresponds to a minimum and 57/4, to a maximum. It
can be seen from Figure IV-10(b) that the greatest rate of in-
crease is indeed at an angle of 5m/4. Moreover, the greatest rate of
increase is

(Q‘) = D(5w/4) = V2,
ds | nax

whereas |Vf| = |—i — j| = V2. Again, both properties of the gra-
dient are illustrated by this example.

With this geometric interpretation of the gradient at our disposal,
we can now see the reason for the negative sign in the equation
E = —V®: Since V& is a vector in the direction of increasing ®, the
force on a positive charge g is F = gE = —gV®, which is in the di-
rection of decreasing ®. Thus, the negative sign ensures that a pos-
itive charge moves ‘“downhill” from a higher to a lower potential.

There is another property of the gradient useful in understand-
ing its geometric significance. To make this discussion concrete,
let T(x, y, z) be a scalar function that gives the temperature at
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vT

Figure IV-11

any point (x, y, z). The locus of all points having the same temper-
ature T, is (in the simplest case) a surface whose equation is
T(x, y, z) = T, (Figure IV-11). This is called an isothermal sur-
face. We now show that VT is a vector normal to the isothermal
surface. Let C be any curve lying in the isothermal surface and let
P be any point on C. Let #i be the unit vector tangent to C at P (it
doesn’t matter which direction along C we take). The directional
derivative in the direction i is

d—T‘on =
(a's) u-Vr=90

because T does not change as we move along the isothermal sur-
face. If the scalar product of two vectors, neither of them zero,
vanishes, the two vectors are perpendicular. Thus VT is perpen-
dicular to C at P. By the same argument it is perpendicular to any
curve on the surface through P (such as C' in Figure IV-11). But
this can be true only if VT is normal to the isothermal surface at
P. In general then, Vf(x, y, z), where f(x, y, z) is a scalar function,
is normal to the surface (X, y, z) = constant.’

A simple example of this property of the gradient is provided
by the function F(x, y, z) = x* + y* + 7% The surface F(x,y,z) =
constant is, of course, a sphere (assuming the constant is posi-
tive). As you should verify for yourself, VF = 2(ix + jy + kz) =
2r. Thus, we have a familiar result: A vector normal to a spherical
surface is in the radial direction. We’ll leave it to you to ponder
the geometric relation between the electrostatic field E and its
equipotential surfaces ®(x, y, z7) = constant.

3 The connection between this property of the gradient and our earlier expression
for the unit vector normal to a surface [Equation (II4)] is the subject of Problem
IV-20.
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We can make a simple connection between the property of the
gradient just discussed and the fact that it is in the direction of
the greatest rate of increase. Any displacement from the surface
f(x, v, z7) = constant, regarded as a vector s, can be resolved into a
component along the surface (s) and one normal to it (s,), as
shown in Figure IV-12. That part of the displacement along the
surface is “wasted motion” if our aim in moving is to cause a
change in the value of f(x, y, z). Only the normal component car-
ries us away from the surface and causes a change in f. From this
it is clear that the greatest increase possible for a given magnitude
of displacement should occur when we move away from the sur-
face in the normal direction. But we have already established that
the greatest rate of increase occurs in the direction of the gradient.
Thus the gradient is normal to the surface.

Figure IV-12
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A by-product of our discussion of the directional derivative is the
“easier and faster’” method for calculating the gradient in spherical
and cylindrical coordinates mentioned earlier (see page 120). To de-
termine this method, we begin by outlining our derivation of df/ds:*

1. Our first step is to consider a scalar function of three Carte-
sian coordinates f(x, y, z) and use Taylor series to determine
the change in f caused by a displacement from the point
(x, y, 2) to a second point (x + Ax,y + Ay, z + Az). We find
for this change

9 9 of
Af=%Ax+a—£Ay+a—zA+---

% The calculation outlined here pertains to a function of three variables and is a
simple generalization of the calculation on pages 130-133, which deals with a
function of two variables.



The Gradient 2. We next write Afin terms of As, the vector displacement from
(x,y, ) to (x + Ax, y + Ay, z + Az). Clearly (see Figure
IV-13),

As =iAx + jAy + k Az,

so that

Figure IV-13

3. Finally, we write As = 1 As, divide by As, and take the limit:

. Af _df _(.of  Lof ) A
E%E‘%‘('ax”aﬁkaz "

The quantity that is dotted into @i in this last expression is
then recognized as the gradient of fin Cartesian coordinates.

To obtain the gradient of a scalar function in cylindrical coordi-
nates we proceed in much the same way:

1. We consider a scalar function of three cylindrical coordi-
nates, f(r, 0, z). Using Taylor series, we find the change in f
due to a displacement from the point (r, 0, z) to a second
point (r + Ar, 8 + A6, z + Az):

d ) d
Af=a—{Ar+£A9+a—§Az+---.

2. Next, we write Afin terms of As. This is the heart of the cal-
culation. From Figure IV-14 we have

142

As = €,Ar + €,r A0 + €,Az.
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Figure IV-14

Two features of this expression require some discussion. First,
the displacement in the direction of increasing 0 (of magnitude
r A9) is an arc of a circle rather than a straight line segment.
However, since we will eventually pass to the limit as As — 0,
we may regard A9 (as well as Ar and Az) as arbitrarily small,
in which case the arc is arbitrarily close to its subtending
chord. Thus, as indicated in Figure IV-15, Ar, r A6, and Az

rAD

Figure IV-15

approximate to any desired degree of accuracy three mutually
perpendicular displacements, the analogs of the three Carte-
sian displacements Ax, Ay, and Az (see Figure IV-13).

The second feature of our expression for As that requires
comment also has to do with the displacement in the direction
of increasing 0. It is this: Since the arc is part of a circle of ra-
dius r + Ar, we should, strictly speaking, write the displace-
ment as (r + Ar) A0, not r A6. But the additional term Ar A6
is “second order”; that is, it is the product of two small quan-
tities and therefore negligible compared with r A6.

If we now write our expression for Afin terms of As, we get

_ (4 A 19 A
Af—(e,5—+ee7—+e—z>°As+-”.



The Gradient Note the factor 1/r in the second term to compensate for the
factor r in €4 AQ in As.
3. Finally, putting As = 1 As, we find

. Af _df (A f A1 A )
A A= as T <° ar " Corge t Cg)

The quantity in the preceding expression dotted into i is the
gradient of fin cylindrical coordinates.

An analogous procedure can be used to find the gradient in
spherical coordinates; this has been left as an exercise (see Prob-
lem IV-22).

PROBLEMS

IV-1 (a) Calculate F = Vffor each of the following scalar functions:
() f= xyz.
(i) f=X2+y + 2
(i) f=xy + yz + xz.
(iv) f=3x2 — 42~
(v) f=e *siny.
(b) Verify that

ngo?ds=o
C

for one or more of the functions F determined in part (a) choosing
for the curve C:
(i) the square in the xy-plane with vertices at (0, 0), (1, 0),
(1, 1), and (0, 1).
(ii) the triangle in the yz-plane with vertices at (0, 0), (1, 0),
and (0, 1).
(1) the circle of unit radius centered at the origin and lying
in the xz-plane.
(c) Verify by direct calculation that V X F = 0 for one or more
of the functions F determined in part (a).

IV=2 Verify the following identities in which fand g are arbitrary differ-
entiable scalar functions of position, and F and G are arbitrary differ-
entiable vector functions of position.

(@) V(fg) =fVg +gVf.
b) VF*G)=(G*V)F+ (FV) G+ F X (VXG) +GX
(V X F).
(c) Ve(fF)=fVeF + Fe Vf.
d) Ve FXG)=G*(VXF)—F+(VXG).
(e) VX (fF)=fVXF+ (Vf) XF.
144 ) VXEXG)=(G+*V)F — (F+V)G + F(V+G) —G(V+F).
@ VX (VXF)=V(V+F) — V7F.
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IV-3 Show that V X Vf = 0 where f(x, y, 2) is an arbitrary differentiable
scalar function. Assume that mixed second-order partial derivatives
are independent of the order of differentiation. For example, azf/ax 0z
= 8%f/9z7 ox.

IV—4 (a) Each of the following functions is smooth in a simply con-
nected region. Determine which of them may be written as the
gradient of a scalar function, and for those that can, use Equation
(IV-2) to find that scalar function.

(1) F =iy.
(1) F = Ck, C a constant.
(i) F =iyz + jxz + kxy.
(iv) F =ix + jy + kz.
(v) F=ie*siny + je”sinz + ke *sin y.
(b) Neither of the following functions is smooth everywhere.
Nonetheless each can be written as the gradient of a scalar func-
tion. Use Equation (IV-2) to find that scalar function.
(i) F =r/r? r = ix + jy.
() F=r/r'"?, r=ix+jy+kz

IV-5 The function F(r, 0, z) defined in Problem III-17 is smooth and has
zero curl in a nonsimply connected region consisting of all of three-
dimensional space with the z-axis removed. Show that there is no
scalar function {s such that F = Vs by evaluating the line integral of
F « t from the point P,(0, —1, 0) to the point P,(0, 1, 0) over two dif-
ferent paths: Cy, the right-hand side of the circle of radius 1 lying in
the xy-plane and centered at the origin (see figure), and C,, the left-
hand side of the same circle. Orient the paths as shown. Why does the
fact that the two paths give different results imply that there is no
scalar function s such that F = V{s?

P

IV-6 (a) An electric dipole of strength p situated at the origin and ori-
ented in the positive z-direction gives rise to an electrostatic field

E(.0.4)= 5=

P (28, cos b + &, sin d)
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Use Equation (IV-2) to show that the dipole potential is given by

1 pcosd
dmrey, 2

Useful information: In spherical coordinates,

2 A Q A “¥ A . é@

t = e,ds+ ed,rds + eersmd>ds
(b) Calculate the flux of the dipole field through a sphere of ra-
dius R centered at the origin.
(c) What is the flux of the dipole field over any closed surface

that does not pass through the origin?

IV-7 Here is a “proof” that there is no such thing as magnetism. One of

Maxwell’s equations tells us that
VeB =0,

where B is any magnetic field. Then using the divergence theorem, we

find
[[Bedas=[[[ v-Bav=0
s v

Because B has zero divergence, we know (see Problem III-24) there
exists a vector function, call it A, such that

B=VXA.
Combining these last two equations, we get

ffﬁ-VXAdS=O.
s

Next we apply Stokes’ theorem and the preceding result to find

%A-?dp”ﬁ-VxAds:o.
C S

Thus we have shown that the circulation of A is path independent. It
follows that we can write A = V{5, where s is some scalar function.
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Since the curl of the gradient of a function is zero, we arrive at the re-
markable fact that

B=VXV=0;

that is, all magnetic fields are zero! Where did we go wrong? [Taken
from G. Arfken, Amer. J. Phys., 27, 526 (1959).]

IV-8 Fick’s law states that in certain diffusion processes the current den-
sity J is proportional to the negative of the gradient of the density p;
that is, J = —k Vp, where k is a positive constant. If a substance of
density p(x, y, z, ¢) and velocity v(x, y, z, t) diffuses according to Fick’s

law,

1v-9

1V-10

show that the flow is irrotational (thatis, V X v = 0).

(a) A substance diffuses according to Fick’s law (see Problem
IV-8). Assuming the diffusing matter is conserved, derive the
diffusion equation
p 2

E =kV P.
(b) Bacteria of density p diffuse in a medium according to Fick’s
law and reproduce at a rate Ap per unit volume (A is a positive
constant). Show that

p )

E =kV P + )\p
(a) A fluid is said to be incompressible if its density p is a con-
stant (that is, is independent of x, y, z, and #). Use the continuity
equation to show that the velocity v of an incompressible fluid
satisfies the equation Ve v = 0.
(b) If V X v = 0, the fluid flow is said to be irrotational. Show
that for an incompressible fluid undergoing irrotational flow,

Vb =0,

where ¢, a scalar function called the velocity potential, is so de-
fined that v = V.

IV-11 The heat Q in a body of volume V is given by

o= [[[ v

where c is a constant called the specific heat of the body, and T(x, y, z, )
and p(x, y, z) are, respectively, the temperature and density of the
body. (Note that we are assuming the density to be independent of
time.) The rate at which heat flows through S, the bounding surface of
the body, is given by

£=kffﬁ-VTdS,
dt s
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where k (assumed constant) is the thermal conductivity of the body,
and the integral is taken over the surface S bounding the body. Use
these facts to derive the heat flow equation

op = o 3T
vT aat,

where a = cp/k.

IV-12 In nonrelativistic quantum mechanics a particle of mass m mov-
ing in a potential V(x, y, z) is described by the Schrédinger equation

I _ . 0
2mV¢+V¢—tﬁ 3
where £ is Planck’s constant divided by 27 and y(x, y, z, t), which is
complex, is called the wave function. The quantity p = y*{ is inter-
preted as the probability density.
(a) Use the Schrodinger equation to derive an equation of the form

ap _

and obtain thereby an expression for J in terms of ¢, ¢*, m,
and #.
(b) Give an interpretation of J and of the equation derived in (a).

IV-13 (a) Find the charge density p(x, y, z) that produces the electric
field
E = g(ix + jy + ko),
where g is a constant.
(b) Find an electrostatic potential ® such that —V® is the field E
given in (a).
(c) Verify that V>® = —ple,.

I1V-14 (a) Starting with the divergence theorem, derive the equation

J 8- wmas= [[[ v+ o @onav

where u and v are scalar functions of position and S is a closed
surface enclosing the volume V. This is sometimes called the first
form of Green’s theorem.

(b) If V2u = 0 use the first form of Green’s theorem to show that

fLﬁ -(uVu)dS=fij]Vu|2dV,

where |Vu|* = (Vu) - (Vu).
(c) Use the first form of Green’s theorem to show that

ffsﬁ-(qu—vVu)dS=fffV(uVZU—szu)dV.

This is the second form of Green’s theorem.
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IV-15 An equation of the form

62
vr=1%
v? 9
where f is a twice-differentiable function of position and time, is
called a wave equation. It describes a wave propagating in space
with velocity v. Use Maxwell’s equations (Problem III-20) to show
that in the absence of charges and currents (that is, p and J both
zero), all three Cartesian components of both E and B satisfy a wave
equation with v = ¢, where ¢ = 1/V gy, is the velocity of light. For
example,
O’E
Vi, =Lk
c? ot
Thus, the existence of electromagnetic waves traveling in empty space
with the velocity of light is a consequence of Maxwell’s equations.

IV-16 (a) In the text we found the potential and field for the case of an

infinite cylinder between parallel plates with the cylinder held at
zero potential. How must the solution be modified if the cylinder
is held at a potential V,, # 0?

(b) Show that there is no net charge on the cylinder.

IV-17 (a) A sphere of radius R is situated between two very large paral-

lel plates that are separated by a distance s. A potential difference
is maintained between the plates and the sphere is held at zero po-
tential. Find the potential and field everywhere outside the sphere
and between the plates. Assume that R <<'s.

(b) Show that there is no net charge on the sphere.

(c) Repeat part (a) assuming the sphere is held at a potential
Vo # 0.

IV-18 Let f(x, y) be a differentiable scalar function of x and y, and let

il =icos ® + j sin 0. Transform to a rotated coordinate system x’, y’
such that x’ is parallel to i (see the figure). Show that the directional
derivative in the direction of i is given by.

af _ . _of
:1;—-“ Vf——ax,.
’ y
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IV-19 You are at a point (a, b, ¢) on the surface

2

=@ =x=yH"  @=0.

Assuming both a and b are positive, in what direction must you move
(a) so that the rate of change of z will be zero?
(b) so that the rate of increase of z will be greatest?
(c) so that the rate of decrease of z will be greatest?

Draw a sketch to show the geometric significance of your answers.

IV-20 The unit vector normal to the surface z = f(x, y) is given by

~ Lof L of of \? of \2
“=("'a“ 5“‘)“‘*(&) +(5)

[see Equation (II4)]. We have also established that VF is a vector
normal to the surface F(x, y, z) = const. (page 140) so that VF/|VF]| is
a unit vector normal to the surface F(x, y, z) = const. Show that these
two expressions for the unit normal vector are identical if F(x,y,z) =
const. and z = f(x, y) describe the same surface.

IV-21 Use the results of Problem II-18 and the expression for the gradi-
ent in cylindrical coordinates (see page 144) to obtain the form of the
Laplacian in cylindrical coordinates given on page 129.

IV-22 Using the procedure outlined in the text (pages 141-144) obtain
the expression for the gradient of ¢ in spherical coordinates:

A0 1 . 1 o
= — 4+ —_ —_
Vb= T v T 0 sing 90

IV=23 Use the results of Problem II-19 and the expression for the gradi-
ent in spherical coordinates derived in Problem IV-22 to obtain the
form of the Laplacian in spherical coordinates given on page 126.

1V-24 Suppose you find a solution of Laplace’s equation that satisfies
certain boundary conditions. Is this solution unique or are there oth-
ers? This problem will answer that question in certain simple cases.
Consider the region of space completely enclosed by a surface S, and
containing in its interior objects 1, 2, 3, . . . (two of which are pictured
in the diagram). Suppose that S, is maintained at a constant potential
®,, object no. 1 at ®,, object no. 2 at ®,, and so on. Then in the
charge-free region R enclosed by S, and between the objects, the po-
tential must satisfy Laplace’s equation

Vi =0
and the boundary conditions
@, on S,
@ — ®, on S,

(bz on S2
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The following steps will guide you through a proof that ® is unique.

(a) Assume that there are two potentials u and v, both of which
satisfy Laplace’s equation and the boundary conditions listed ear-
lier. Form their difference w = u — v. Show that V2w = 0 in R.
(b) What are the boundary conditions satisfied by w?

(c) Apply the divergence theorem to

”Sﬁ-(wvw)ds,

where the integration is carried out over the surface S, + S, + S,
+ - -+, and show thereby that

f”v|vw|2dv= 0,

where V is the volume of the region R.

(d) From the result of (c) argue that Vw = 0 and that this, in turn,
means w is a constant.

(e) If wis a constant, what is its value? (Use the boundary condi-
tions on w to answer this.) What does this say about u and v?

(f) The uniqueness proof outlined in (a) to (e) involves specify-
ing the value of the potential on various surfaces. Might we have
specified a different kind of boundary condition and still proved
uniqueness? If so, in what way or ways would the proof and the
result differ from those given above?

IV-25 In the text we defined the gradient in terms of certain partial de-
rivatives. It is possible to give an alternative definition similar in form
to our definitions of the divergence and the curl. Thus,

w1 (A
o=t wes

Here fis a scalar function of position, S a closed surface, and AV the
volume it encloses. As usual, 01 is a unit vector normal to S and point-
ing out from the enclosed volume.

(a) Following a procedure similar to the one used in the text in
treating the divergence, integrate over a “cuboid” and show that
the preceding definition yields the expression

.o L of of
Vf—la‘l'_]@-*-ka—z.
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(b) Use the alternative definition of the gradient given above to
show that the directional derivative of f in the direction specified
by the unit vector i is given by

&1 &

=6V
[Hint: Evaluate

ﬁ-”sﬁfds=Usﬁ-ﬁfds

over a small cylinder (length As, cross-sectional area AA; see fig-
ure) whose axis is in the direction of the constant unit vector .
Then divide by the volume of the cylinder (As AA) and take the
limit as the volume approaches zero.]

Zz /\ ﬁ
e
N

AA

y

(c) Arguing as we did in the text in establishing the divergence
theorem, use the alternative definition of the gradient to show that

f L nfds = f J fv Vfav,

where S is a closed surface enclosing the volume V.

(d) Obtain the relation stated in (c) directly from the divergence
theorem. [Hint: In [[FefidS = [[[,V*FdVputF = €f where
€ is a constant unit vector.]
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1V-26

1v=-27

(e) Verify the relation stated in (c) for the scalar function
f= x2 + y2 + ZZ
integrating over the unit cylinder shown in the figure.

(a) Consider a surface z = f(x, y). Let u be a vector of arbitrary
length tangent to the surface at a point P(x, y, z) in the direction of
the unit vector p = ip, + j py as indicated in the figure. Use the
directional derivative to show that

u=p+k(p-Vy),

where Vfis evaluated at (x, y). [Note: Since the length of u is ar-
bitrary, your result may differ from the preceding by some posi-
tive multiplicative constant.]

(b) Let v be a second vector of arbitrary length tangent to the
surface at P but in the direction of the unit vector § = ig, + jg,
(p # @). Then from (a) we have

v=q + k(q * V).
Show that
uXxv=_[ke@® X Qlk - V)

and use this to rederive Equation (II-4) for the unit vector i nor-
mal to the surface z = f(x, y) at (x, y, ). This shows that the result
derived in the text for f is unique (apart from sign) even though it
was obtained with the special choices p =iand q = j.

¢ z=f(x,y)

(a) Using Maxwell’s equations (see Problem III-20), show that
we can write

B=VXA,

E=-vo -4
ot
where A (called the vector potential) is some vector function of
position and time, and ® (the scalar potential) is some scalar
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function of position and time, provided A and ® satisfy the
equations

V2 + %(V cA) = —ple,,

2
VZA - }LOeOQA = _l.LoJ + V[V.A + Po€o %].

ar
(b) Show that if we define two new potentials
A'=A + Vy,
)
o' =0 a3

where Y is an arbitrary scalar function of position and time, then
B=VXA

E=-ve -4
at
That is, the fields E and B are not modified by the change in the
potentials A and ®. The change from (A, ®) to (A’, ®’) is called
a gauge transformation.
(c) Show that if we require x to satisfy the equation

2

X P
Vix — eol’«og? = _[V'A + Goll'o'a"t‘jl,

then

’

V.A’ +€0}L0%=0.

(d) If x satisfies the equation given in (c), show that A’ and &’
satisfy the equations

2 ’?P _ P
Vo ©ho—3 = g
and
A’
VA’ — egpg —— = —mol.
oMo 32 HoJ

The point to all of this is that we can make a gauge transformation [as
in (b)], impose the condition given in (c), and thereby obtain a scalar
and a vector potential that satisfy the equations in part (d), which are
wave equations with source terms proportional to p and J.

IV-28 The equation of motion of an ideal fluid can be written

”fﬂﬁndv*fLﬁPd5=”fvp[%+(v-V)v]dv

where V is the volume of the fluid and S is its surface. Here £, (x, y, )
is the external force per unit mass acting on the fluid, p(x, y, z) is the
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pressure of the fluid, and p(x, y, z) is its density, all at a point (x, y, z) in
the fluid, and v(x, y, z, ?) is the velocity of the fluid at the point (x, y, z)
and at time .
(a) Use the form of the divergence theorem given in Problem
IV-25(c) to rewrite the equation of motion of an ideal fluid in the
form

f.—-Vp= ‘3—: + (veV)v.

1
P
(b) Show that in the static case (v = 0), the equation of motion
becomes

fex = (1/p) Vp.

(c) Consider a column of incompressible fluid oriented vertically
parallel to the z-axis as shown in the figure. Assuming that the
only external force acting on the fluid is the downward uniform
gravitational attraction of the earth, apply the equation for the
static case given in (b) to show that

P = Po — P82

where g is the acceleration due to gravity and p, is a constant.

/




Solutions
to Problems

One must learn by doing the thing; for
though you think you know it, you have no
certainty until you try.

Sophocles

Chapter |

3. (@) (ix + jy/ V2 + y*.
®) G+ jix + V2.
() —iy + jx.
(d) (ix + jy + ko) V2 + y* + 2.

4. (a) (a®cos? wt + b?sin® ).
(b) —iwa sin ot + jwb cos wt (velocity).

—iw’a cos wt — jo?b sin wt (acceleration).
i 1
© o 2mey (2 + 1)

156



Solutions to 6. In the following, c is an arbitrary constant.

Problems @ -y =c. (e) x=c.
b) y=x+c. @ -y =c
(c) xy=c. (g) y=3x*+c.
d) y=c. (h) y =c€'.
Chapter Il

1. (@ (+j+k/Va3.
(b) —(ix + jy — ka)/V2z.
(c) ix + kz.
(d) (—2ix — 2jy + k)V1 + 4z.
() (ix + jy + ka’)laV'l + (@® — DZ.
3. [—i(3g/ox) — k(3gloz) + jIV1 + (3g/ax)* + (9g/dz)?
fory = g(x, 2).

[—j(ahay) — k(ah/oz) + il/V'1 + (8h/3y)* + (3h/az)?
for x = h(y, 2).
4. (a) V3/6.

(b) g(\fs - 1.

(c) m/2.

5. (a) 0.
(b) 2ma’.
(c) 3m/2.
4mR%c,/3.
16mR ay/15
0.
wr\he,.
10. (a) 0. (c) 4nRe®,

(b) 4mR*h In R. (d) [E(b) — E(0)]b%.
11. (a) E = ai/2¢p, x > 0, and —o1i/2¢j, x < 0.

(b) E = pybiley, x > b; pyxiley, —b < x < b;

and —pybi/ey, x < —b.

(c) E= = (pobleg)(1 — e ™)i  (+ forx > 0, — forx < 0)
12. (a) E = (\2mey)e,/r

(b) E = (poh*2€,)€,/r, r = b, and (pyr/2€y)€,, r < b.

(c) E = (pob*ep)(1/N[1 — (1 + rib)e™"]¢, .

bpo/3€p) €, /r:, r > b,
13. (@ E = Ep;fgeo)eroi)?,,r <b.
(b) E = b’pyle)(1/r3)[2 — (r¥b? + 2r/b + 2)e” ™€, .
(po/3€q)re,, r <b,
(c) E =31/3e)(1/r)[bpy + (r* — b*)p,1€,, b < r =< 2b,
(b 13e0)(1/r¥)(py + Tp1)€,. r > 2b.

The field is zero for r > 2b if p; = —p,/7. The total charge is then zero.

0 oo
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Solutions to
Problems

Chapter Il
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14.

15.

16.
22.
23.

24.

13.
15.

19.
25.

(@) 2(x +y +2). () —y/( + D).
(b) 0. ) 0.
) —(e*+e?+e™d. (g) 3.
(d) 2z (h) 0.

Surface integral equals 25*(x, + y, + zo) for the function of Problem
II-14a.

Surface integral equals O for function of Problem II-14b.

Surface integral equals s’(e”** — e"?)(e™™ + ™ + e~%) for func-
tion of (II-14c¢).

(b) V<G =0.

f(r) = constant/r’.

(a) 3b°.

(b) 3WR*h/A.

(c) 4mR°.

(b) wR*B.

(@) 2(—iy + jz + kx). (e) —ix —jy + 2kz.

(b) 5jx. ® 23y — jx).

(c) ie7* + je ™ + ke™. (g) iz — kx.

(d) 0. (h) 0.

Line integral equals 2x,s* for function of Problem I1I-3a.

Line integral equals O for function of Problem III-3b.

Line integral equals s(e”> — e~*?)e ™ for function of Problem ITI-3c.
Line integral equals O for function of Problem III-3d.

. (@) aR+a3

2 (1, a 1
(b)7—3‘ 5+§ —>73asa—>0
A 1 1
cVUXF=—(+2y)=—=aty=0
© " Y Y, i
(d) and (h).

(a) Line integral and surface integral equal 1.

(b) Line integral and surface integral equal —3m/4.
(c) Line integral and surface integral equal —2wR>.
3/e.

IfVeG=0,then G=V X H.

(@ H=3j2 +k [3)" — (x — x0zl.

(b) H = jByx.

(¢) V.G #0.

(d) H= —j(x — xp)z + k(x + xp)y.

(e) VeG #0.

[Note: Your results may differ from these by additive constants.]
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Problems

29

Chapter IV

13.

16.
17.

19.

25.
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(@) $cH * t ds = JJsG « i dS where S is a capping surface of the
closed curve C.
(d) Surface and volume integral each equali — j — k.

. (@) (@) F=iyz+ jxz + kxy.

(i) F = 2(ix + jy + kz).

Gii)) F =iy + 2) + j(x + 2) + k(x + y).
(iv) F = 6ix — 8kz.

(v) F= —ie *siny + je *cos y.

. (@) (1) Not path independent.

(11) ¢ = cz + const.
(iii) ¥ = xyz + const.
(iv) ¢ = 302 + y? + 7%) + const.
(v) Not path independent.
(b) (@) ¥ =Inr + const.
(ii) ¢ =32 + const.

(@) p = 3ge,.

(b) & = —2g(® + y* + ).

(a) Add V, to the result obtained in the text.

(a) ®(r, ) = —Eyr(1 — R3/r?) cos & where the sphere is centered
at the origin and the two plates are parallel to the xy-plane and
situated at z = *s/2.

(c) Add V, to the result given in part (a).

(a) Move in the direction *(ib — ja)/Va® + b*.

(b) Move in the direction of the gradient:

—(ia + jb)/Vr* — a* — b*.

(c) Move in the direction opposite to the gradient:

(ia + jp)Vrt — a* — b*.

(e) Surface integral and volume integral each equal k.
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Ampere’s circuital law, 99-101

differential form of, 101
Arfken, G., 147
Arnold, Matthew, 1
Azimuthal angle, ix

Beethoven, Ludwig van, v

Capping surface, 93-94

and Stokes’ theorem, 97-98
Central force, 74
and irrotational function, 106
Cervantes, Miguel de, quoted, ix
Chalmers, P. R, 115
Charge density, 8
Circulation, 75
and curl, 104
Circulation law, differential
form of, 91-93
Conservation, 50-51
Continuity equation, 52
Coulomb force, 71, 73
Coulomb’s law, 5-6
and path independence, 71-74
“Cuboid,” 38n
cylindrical, 4243
Curl, 75-82, 91
alternative definition of,
112-113
in Cartesian coordinates, 80
and circulation, 104
in cylindrical and spherical
coordinates, 82-86
meaning of, 86-91
as operator, 45
and path independence,
103-104

Current density, 52
Cylindrical cuboid, 4243

Del notation, 4445, 118-120
curl operator in, 82
divergence operation in, 44
gradient operation in, 118
and Laplacian, 122-123

Denham, Sir John, quoted, 11
Density, charge, 8
current, 52
Differential equations, 2n
Diffusion equation, 147
Directed curve, 64
Directional derivative, 131-137
Divergence, 3742
in Cartesian coordinates,
3841, 57
in cylindrical and spherical
coordinates, 4244, 58
and operator, 45
Divergence theorem, 45-52,
110, 155
applications of, 49-52
derivation, 4549
illustration of, 48—49
statement of, 48
Stones’ theorem, reaction to,
109-110
in two dimensions, 109-110
validity of, 48-49

Electric charge, 5-6, 8
Electric field, as vector
function, 2
Electromagnetic theory, and
Maxwell’s equations, 8



Electromotive force, 109
Electrostatic field, 7-8
determination of, 121-124
and Gauss’s law, 11-12
and line integral, 63-64
and vector function, 92
Electrostatic potential, 122
Electrostatics, 5-8
and vector calculus, 1-2
Equation of motion, of ideal
fluid, 154-155

Index

Faraday, Michael, 109
Fick’s law, 147
Field, electrostatic, 7-8
Field lines, 9
Field theory, electromagnetism
as, 8
Fluid, ideal, 154-155
incompressible, 147
Fluid ideal, equation of
154-155
Flux, 31-33, 35-36
“Formal,” 12n
Function
of more than one variable, 3
of one variable, 2-3

Gauge transformation, 154
Gauss’ law, 11-12, 17
and closed surface, 20
differential form of, 41, 63,
76, 121-122
and divergence theorem, 50
use in finding the field, 33-37
and flux, 31-33
Gauss’ theorem. See divergence
theorem
Geometric significance of
gradient, 137-141
Gradient, 119-121
alternative definition of, 151
in Cartesian coordinates, 118
in cylindrical and spherical
coordinates, 141-144
and directional derivative,
131-137
in finding electrostatic field,
121-124
geometric significance of,
137-141
and Laplace’s equation,
123-131
as operator, 45
Green’s theorem, 148-149

162

Heat, 147
Heat flow, analysis of, 52
equation, 147-148

Ideal fluid, equation of motion of,
154-155
Irrotational flow, 81n, 147
Isothermal surface, 140

Laplace’s equation, 123-131
in Cartesian coordinates, 122
in cylindrical coordinates,
128
solutions of, 123-131
in spherical coordinates, 126
uniqueness of solutions of,
130, 150-151
Laplacian, 122-124
as operator, 45
Line integrals, 64—66
definition of, 6465
evaluation of, 65-66, 69-71
involving vector function,
63-72
and path independence,
71-75, 116-119

Magnetic field
and Ampere’s circuital law,
99-100
proof of absence of, 146-147
Mathematics, and non-
mathematical contexts, 1
Maxwell’s equations, 8
and electromagnetic waves,
149
and Gauss’ law, 41
and Stokes’ theorem, 101
MKS units, 6
Motion of ideal fluid, 154-155

Normal vector, 12-17
alternative form of, 140, 150
uniqueness of, 153, 164
unit normal, 16

Open surface, 19
Operator, 45

Parallel plate capacitor, 124-125
Path independence, 71-75
and central forces, 73-74
and curl, 103-104
and line integral, 71-75,
116-119
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Permittivity of free space, 6
Planck’s constant, 148
Poisson’s equation, 123

Polar angle, ix

Principle of superposition, 6, 7

Radial vector, 5

Rationalized MKS units, 6
Right-hand rule, 79-80
“Rotation,” 81n

Scalar function, 3

Scalar potential, 153—-154
Schrodinger equation, 148
Simply connected regions, and
Stokes’ theorem, 101-103,
103-104
Smooth function, 102n, 103
Solenoidal vector function, 58
Sophocles, quoted, 63, 156
Spherical capacitor, 125-127
Stokes’ theorem, 93-99
applications of, 99-101
derivation of, 93-97
divergence theorem, relation
to, 110-111
illustration of, 97-99
and simply connected
regions, 101-3, 1034
in two dimensions, 111
validity of, 97

Subscripts, 4n
Subvolume surfaces, 47
Superposition, principle of,
6,7
Surface integral, 12
definition of, 17-21
evaluation of, 21-33, 54

Tangent vector, 67-68
Taylor series, 131-132
Torus, 102

Unit normal vector. See normal
vector

Vector calculus, and
electrostatics, 1
Vector functions, 2—-5
and electrostatic field, 92
gradients as, 119
line integrals involving,
66-71
of position, 81
solenoidal, 58
Vector potential, 153
Velocity field, 87-91
Velocity potential, 147

Wave equation, 149
Wave function, 148
Work, 64, 6667









DIVERGENCE
divF
VeF
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