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0
Line Integrals

We develop the theory of integration along curves in IR"”. This gener-

alisation, known as the line integral, is fundamental to vector calcu-

lus, physics, and complex analysis.

We distinguish between two types of line integrals:

Scalar Line Integrals (Type I): Integration of a scalar field with re-
spect to arc length. This measures cumulative quantities like the
mass of a wire.

Vector Line Integrals (Type II): Integration of a vector field along a
directed curve. This measures quantities like work done by a force.

We begin with the scalar line integral.

Curves and Rectifiability

Before defining the integral, we must formalise the notion of a curve
and its length.

Definition o.1. Simple Curve.

A continuous mapping 7 : [a,b] — R" is called a curve. The image
set I = ([, b]) is the geometric locus of the curve.

- The curve is simple (or Jordan) if +y is injective on (a, b).

- The curve is closed if y(a) = y(b).

- The curve is smooth if 7 is continuously differentiable and ' (#) #
0 for all t € [a,b].

To define the length of a curve, we approximate it using polygonal
chains. Let P = {to,t1,...,f} be a partition of [a, b] such thata =
th <t < .-+ < tx = b. Let A; = 7(t;). The polygonal chain
connecting Ay, . .., A has length:

k k
L(T,P) =) |Ai—Ai4] = Zl ly(t:) —y(ti1)l-
i=1 =
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Definition o.2. Rectifiable Curve.

A curve I is rectifiable if the set of lengths of all inscribed polygonal
chains is bounded. The arc length I(T') is defined as the supremum of
these lengths:

I(T) = st;p{L(F,P)}.

e
S

0.1 The First Type of Line Integral

Let I be a simple rectifiable curve in R" with endpoints A and B. Let
f:T — R be a bounded function defined on the curve.

Consider a partition P that divides I into k arcs with lengths Asy, ..., Asy.
Let A(P) = max; As; be the mesh of the partition. Choose arbitrary
sample points ¢; on the i-th arc.

Definition 0.3. Scalar Line Integral.
The line integral of the first type (or integral with respect to arc length)
of f along I is defined as:

k
x)ds = lim ) ASs;,

JLFeds = tim 3 (@)
provided this limit exists and is independent of the choice of partitions
and sample points.
Note
Unlike the Riemann integral on an interval [a, b] where dx repre-
sents a signed length, the differential ds represents the scalar arc
length. Consequently, the first type line integral is independent
of orientation. If I'" denotes the curve traversed in the opposite
direction:

/f(x)ds = 7f(x)ds.
r r

Proposition o.1. Orientation Independence.
For any simple rectifiable curve I', the scalar line integral satisfies

/rde: 1tfds.

>

b

Proof
Parametrise I by «y : [a,b] — R" and its reverse by ¥(t) = y(a +b —

Figure 1: Approximation of a
curve I' by an inscribed polyg-
onal chain. As the partition

is refined, the polygon length
approaches the arc length.

5
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t). Then |9/ (t)| = |7/ (a+b—1t)|, and

b b
[ as= [ s 171 = [ fota+b—) @ sb-plar

The change of variables u = a + b — t shows the two integrals coin-
cide.

For a merely rectifiable curve one can approximate I' uniformly by
smooth parametrisations (or inscribed polygonal chains); the line
integral is the uniform limit of the smooth cases, so the equality
holds without assuming differentiability.

Proposition o.2. Additivity Over Subarcs.
IfT' = I't UT; with the common point their only intersection and a
consistent orientation along the chain, then

/rfds:/rlfds—i-/rzfds.

Proof

Take a C! parametrisation of I that runs first along I'; then T'. The
evaluation formula converts the line integral into the sum of the
ordinary integrals over the two parameter intervals. Alternately,

in the Riemann-sum definition choose partitions that respect the
junction point; the sum splits accordingly, and limits add.

[ |
Proposition o0.3. Uniform Bound by Length.
If |f| < M on a rectifiable curve I, then
/r Fds| < MI(T).

Proof

For any partition P, |} f(&;)As;| < Y [f(&i)]|As; < MY As; =
M L(T, P). Taking the supremum over partitions and then the limit
A(P) — 0 yields the claim.

Evaluation of Line Integrals

The definition involves limits of sums, which are cumbersome for
calculation. We reduce the evaluation to a standard Riemann integral
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via parametrisation.

Theorem o.1. Evaluation Formula.
Let I be a smooth curve parametrized by ¢ : [4,b] — R", where v
is continuously differentiable. If f is continuous on I', then:

b
/f(x)dsz/ Fer®)y ()] dt.
r a

In R3, with y(t) = (x(t),y(t),z(t)), this becomes:

b
[ e zds = [ fx(o,y0, 20002 + @07 + @07 ar

il
Proof
The arc length function from the starting point is given by
s(t) = ['|9(r)|dt. By the Fundamental Theorem of Calculus,

ds/dt = |y'(t)|, or formally ds = |7y/(t)|dt. Substituting the change
of variables from arc length s to parameter t in the integral defini-

tion yields the result.
[

Corollary o.1. Existence for Continuous f. If I is smooth and f is con-
tinuous on T, the scalar line integral [} f ds exists.

El]
Proof

The composition f o < is continuous on the compact interval [a, ],
hence Riemann integrable. The evaluation formula expresses [ f ds
as that Riemann integral, so the limit exists.

|

Proposition 0.4. Reparametrisation Invariance.
Let 7 : [a,b] — T be a smooth parametrisation with |y/| > 0, and let
¢ : [c,d] — [a,b] be a C! bijection with ¢/(t) > 0. Then

d
/fds :/ Fr(@(0)) |7 (p(1))] ¢’ (¢) dt.
r c

If ¢’ is everywhere negative (orientation reversal), the right-hand side
is unchanged because of the absolute value.

¥

bl
Proof
Substitute u = ¢(t) in the evaluation formula. For ¢/(t) < 0, the

integral limits swap but the absolute value on 7’ removes the sign,
leaving the same value.
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n
Example o.1. Line Integral on a Circle. Compute I = ¢-x%ds,
where C is the circle defined by the intersection of the sphere
x? + 1%+ 22 = R? and the plane x + y +z = 0.
#bl

Solution

This problem admits two approaches: a standard parametrisation
and a symmetry argument.

Parametrisation. The intersection lies on a plane passing through
the origin, so C is a great circle of radius R centred at the origin
(hence its length is 27TR, used again in the symmetry argument).
To parametrise, we construct an orthonormal basis for the plane
x+y+z = 0. Thenormalisn = (1,1,1). We choose two or-
thogonal unit vectors in the plane. Letu =  —-(1,—1,0) and

V2

v =n X u/||n X u||. Computing the cross product:
(1,1,1) x (1,—1,0) = (1,1, —2).
Normalising yields v = % (1,1, —2). The curve can be

parametrised as y(t) = R(cost)u+ R(sint)v for t € [0,27].

R R .
x(t) = —=cost+ —=sint.

V2 V6

Since C is a circle of radius R, |y/(¢)| = R. Thus ds = Rdt.

27T 2
R R
I:/ (Cost+sint> R dt
0 \/E \/8

3 1 2 1.5 1
=R / <cos t+ — sin t+sintcost> dt.
0 2 6 V3

Using fozncosztdt: foznsiHtht: 7 and fomsintcostdtzoz

1 1 2

Symmetry. This method is far more elegant. By the symmetry of
the sphere x? + y?> + z2 = R? and the plane x + y +z = 0 with
respect to permuting variables, the integrals of x2, 42, and z2
along C must be equal:

%xzds:ygyzds:%zzds.
c C c

3] = %(x2+y2+zz)ds.
C

Summing them:
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On the curve C, x* + y* + z2 = R? (a constant). Thus:
31 = 515 R*ds = Rzyf ds = R?-1(C).
C C
Since C is a great circle of radius R, its length is /(C) = 27R.

31 =R*(2nR) = [ = §HR3.

Applications of Type I Line Integrals

The first type line integral allows us to calculate geometric and physi-
cal properties of curved objects.

Mass and Centroids

Consider a wire represented by a curve I'. If the wire has a linear
mass density p(x,y,z) at point (x,y,z), the total mass M is:

M:/p(x,y,z) ds.
r

The coordinates of the centroid (or centre of mass) (¥, 7,z) are given
by the first moments normalised by the mass:

1 1 Y
x—M/rxpds, y—M/rypds, Z_M/erdS'

If the density is uniform (p = 1), this yields the geometric centroid.
Example o.2. Centroid of a Spherical Arc. Find the centroid

of the curve I' forming the boundary of the sphere octant
xz—l—yz—i-zz =a% x> 0,y>0,z>0.

X
Solution

The boundary I' consists of three circular arcs:

e T in the xy-plane (z = 0): quarter circle from (a,0,0) to (0,4,0).
e T in the yz-plane (x = 0): quarter circle from (0,4,0) to (0,0,4).
e T3 in the zx-plane (y = 0): quarter circle from (0,0,4) to (a,0,0).

The total length is L = 3 x (} - 2ma) = 372, Due to symmetry, ¥ =
7 = z. We compute ¥ = { [ xds.

/xds:/ xds+/ xds+/ xds.
T I I I3

1. OnTy, x =0, so frzxds =0.

2 +y?+22=R?

Figure 2: The intersection curve
C. The symmetry argument
exploits the fact that x,y, z play
identical roles in the definitions
of the sphere and the plane.
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2. On T, use polar coordinates: x = acosf,y = asinf,ds = adf for
6 €[0,7t/2].

/2
/ xds = / (acosf)add = az[sine]g/z = a2
I 0

3. On I'3, similarly x = acos ¢,z = asin ¢.

/ xds = a®.
I3

20> 4a
3ma/2 371

Thus, [ xds = 242,

X’:

37’ 3m’ 3

The centroid is (4” 4a 44 )

Change of Variables in Arc Length

Occasionally, algebraic curves require clever coordinate transforma-
tions to evaluate arc length.

Example 0.3. Curve Rectification. Find the length of the arc of the
curve defined by (x — y)? = a(x +y) and x2 — y? = 2z* from the
origin to a point A(xo, Yo, z0)-

ExRl
Solution

This system is difficult to parametrise directly in Cartesian coordi-
nates. We perform a change of variables to simplify the equations.
Let u = x —y and v = x +y. Note that x> — y> = uv. The equations

become: 9
2 2
ut=av, uv=-z"
8
Substitute v = u?/a into the second equation:
9 9a 1
u(u?/a) = 22> = ud = 72> — u==(9a)/322/3.
8 8 2
C 1 2 1923 4/3 Wi dvi
onsequently, v = % = _--=—z*°. We can express x and y in
terms of z:
‘= v+u _v—u
T2 YT

The differential arc length is ds?> = dx? + dy? + dz*. Note that dx? +
dy? = 1(du® + dv?), and

du 1 9a)1/37-1/3, do _ (9a)*/3 1/3.

E_g( iz 3a

I
I3

I

X

Figure 3: The boundary of the
first octant of the sphere. The
curve I is the union of three
quarter-circles.
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Hence

(&) ) @)

Since AB = %, the quadratic in z*1/3 is a perfect square:

B 9(1)2/3 (9,1)4/3
—14A72B 1828, A=t B = :
+ Az T B 18’ 1822

1+AZ_2/3+B22/3 — (pz—1/3+q21/3)2, pq = %’ p2 — A/ qz — B.

Therefore g = pz*1/3 + qzl/?’ and

ool 3p 3q
s(z) = pV/8 4 g1 /3) dp = ZE Z2/8 4 T1 5473
(z) /0 (P q ) > 1

Substituting u = 1(94)!/3z2/3 into x = 1(u + u?/a) shows that the
bracket equals 2x/ V2, giving

s(z) = V2x.
Thus the arc length from the origin to x = xg on the branch where
x increases from 0 is
I = \@XQ.

0.2 Vector Line Integrals

The physical motivation for the vector line integral is the calculation
of work done by a force field on a moving particle. Consequently,
the direction of motion is significant. We consider simple rectifiable
curves equipped with an orientation, referred to as directed curves.

Definition o0.4. Vector Line Integral.
Let I = AB be a simple rectifiable directed curve in R3. Let

F(x,y,2) = P(x,y,2)i+ Q(x,y,2)j + R(x, y,2)k

be a vector field defined on I'. For any partition T of I given by A =

Ao, Ay, ..., Am = B consistent with the orientation, let Ar; = (Ax;, Ay;, Az;)
be the displacement vector from A; 1 to A;. Let d(T) be the maximum

arc length of the segments. If the limit

lim i F(Zi, 1, Ci) - Ar;

d(T)—0,3

exists and is independent of the partition and the choice of sample points
(&i 1, Ci), it is called the vector line integral (or line integral of the sec-

11
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ond type) of F along I'. It is denoted by:
/F dr = / P(x,y,z)dx+ Q(x,y,z)dy + R(x,y,z) dz.
r r

This integral is also referred to as the integral with respect to coordi-
nates.

Proposition o0.5. Orientation Change.
If T~ denotes I' with reversed direction, then

/ F-dr:—/F-dr.
- r

3

A
Proof

Parametrise T by 7 : [a,b] — R3; then T~ is 4(t) = y(a + b — t) with
4" = —9'(a + b —t). The evaluation formula yields the sign change.
|

Proposition 0.6. Additivity Over Directed Subarcs.
If a directed curve I is decomposed as the concatenation of directed
subarcs I';, I'; with matching orientations, then

/F-dr:/ F'dr+/ F - dr.
r Iy I

<
&

Proof
Use a parametrisation that runs along I'; then I';; the evaluation

formula breaks the integral into the sum over the two parameter
intervals.

Theorem o.2. Evaluation Formula.
Let I be a piecewise smooth directed curve with parametric represen-
tation

x=x(t), y=yt), z=z(t), a<t<p,

where the parameter f increasing from a to b corresponds to the ori-
entation of I'. If P, Q, R are continuous on T’, then:

b
/rde—Iery—ierz :/ﬂ [P(x(8), y (1), 2(5)x' (F) + Q... )y () + R(... )2 (1)] dt.

i



INTRODUCTION TO VECTOR CALCULUS

Corollary o.2. Reparametrisation. If ¢ : [c,d] — [a,b] is a C! bijection
with ¢/ (t) > 0, then for the reparametrised curve ¥(t) = y(¢(t)),

/F-dr:/F~dr.
5 r

If ¢’ < 0, the value changes sign (orientation reversal).

e
Proof
Substitute u =  ¢(t) in the evaluation formula. A negative ¢’ re-
verses the limits, introducing the sign flip.
[ ]

Proposition o0.7. Gradient Fundamental Theorem.
IfF = V¢ with ¢ € C! on an open set containing T, then for end-
points A, B of T,

/r F.dr = ¢(B) — p(A),

so the integral depends only on the endpoints.

<
i

Proof
Parametrise I by (), t € [a,b]. The evaluation formula gives
b b d
| ooty @ = [ L lpre)] de = 9r8) = p(r(a)).
]
Example 0.4. Line Integral on an Ellipse. Compute

I= /(x2 + 2xy) dy,
C

where C is the upper half of the ellipse ;—; + z—; = 1 traversed coun-

terclockwise.
$o19)
Solution

We use the standard parametric equations for the ellipse:
x =acost, y=bsint.

For the upper half traversed counterclockwise, t varies from 0 to 7.

13
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Substituting dy = bcostdt:
7T
I= / (a® cos® t 4 2abcos tsint) bcos t dt
0

7T s
= azb/ Cos3tdt+2ab2/ cos? tsin t dt.
0 0
The first integral vanishes (odd symmetry of cos® t about 77/2 or
direct evaluation). The second integral is evaluated by substitution
U = cost:

3 = —ab?.

[ =0+ 2ab? _cos’t]" 4
O 3

Example o.5. Viviani’s Window. Find
I = /yzdx—i-zzdy—i-xzdz,
T

where I' is the curve defined by the intersection of the sphere

x> +y? + 22 = 4% and the cylinder x> + y> = ax (@ > 0)in the
region z > 0. The curve is oriented counterclockwise when viewed
from the positive x-axis.

$15)
Solution

We parametrise the curve using cylindrical coordinates. From
x? +y? = ax, we have r = a cos 0. Thus:

x =acos’d, y=acoshsinf, z=+/a2—r2=a|sind|.

For theloop z > 0, take two smooth pieces: § € [—7,0] with
z = —asinfand § € [0, F] withz = asin6. Viewed from the +x-
axis, counterclockwise traversal corresponds to 0 increasing from
—7 to Z; splitting the interval removes the cusp at = 0 while
keeping that orientation intact. On each piece the integral is

=Y / [v2x'(0) +22y/(6) + 2%2/(0)] de.
pieces
Substituting the functions:

e x'(0) = —2a cos B sin 6. The first term involves y?x’ &
(cos? sin?) (cos sin). This is an odd function of 6.

* z(0) = a| sin 6| is even. Thus 2/ () is odd. The third term
x?7'(#) « (cos*)(odd) is an odd function.

e /() = a(cos?6 — sin?) is even. The second term z2y/(6) is the
product of even functions, hence even.




INTRODUCTION TO VECTOR CALCULUS

The integrals of the odd terms vanish. We remain with:
/2 /2

I= / a*sin? 0 - a(cos? 6 — sin® 0) d = a3 / sin® 6(cos? 6 — sin? §) d6.

—/2 —t/2
Using symmetry on [—71/2,71/2] and the identity cos? 6 — sin®§ =
1—2sin?#:

/2
[ =243 / (sin? @ — 2sin* 0) d6.
0

Using Wallis” integrals On/ 2sin20d6 = % and fon/ 2sin*0de = ’%:

o (0 3 g (3T T
1—211(4 216>—2a(4 8>_ A

If a space curve lies on a surface z = f(x,y), we can project the
integral onto the plane.

Proposition 0.8. Reduction to Plane Integral.
Suppose a piecewise smooth curve I' lies on a smooth surface z = f(x,y),
and its projection onto the xy-plane is . If P(x,y,z) is continuous on
T, then:
}lgP(x,y,z) dx = §£ P(x,y, f(x,y))dx.
r

i

3

Rl
Proof
Let y be parametrized by x = ¢(t),y = (t) for t € [a,b]. ThenT is

given by x = ¢(t),y = ¢(t),z = f(¢(t), P(t)). Substituting into the
definition of the line integral:

b
y§ P(x,y,2) dx = / P(p(8), (1), F(p(8), p())) ¢/ (1) .

The right-hand side is precisely ¢, P(x,y, f(x,y)) dx.

Relationship Between the Two Types of Line Integrals

The coordinate differential vector dr is related to the arc length differ-
ential ds by the unit tangent vector 7:

dr = Tds.

Thus, the vector line integral can be expressed as a scalar line integral
of the tangential component of the field:

/FF~dr:/r(F-T)ds.

15
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If cos &, cos B, cos y are the direction cosines of T, then:

/de+Qdy+Rdz:/(Pcosoc+Qcos,[3+Rcos'y)ds.
r r

For a plane curve T, let n be the unit normal vector such that the
angle from n to T is 77/2. The direction cosines of n and T are related
by a rotation: If the tangent makes an angle 6 with the positive x-axis,
then dr = (cos 6, sinf) ds and

/de+Qdy:/[—Psin9+Qc059] ds.
r r

Example 0.6. Inverse Square Field. Consider a planar force field
pointing towards the origin with magnitude inversely proportional
to the square of the distance r:

Y
F=- 2t
Calculate the work done by this field on a particle of massm = 1

moving from point A to B (assume the path avoids the origin so
r > 0).

i
Solution
The force components are Fy = —p3 and Fy = — ‘u%. The work is
given by:
W= —,14 xdx —g y dy'
AB 4

Observe that xdx +ydy = %al(x2 +y?) = rdr. Thus:

xdx+ydy  rdr dr_d 1
B B2 '

Alternatively, using parametrisation x = ¢(t),y = (t), this rela-

tionship holds.
Bor1 11
e foa () =)

Definition o0.5. Gradient Curve.
Let f be a C! function on a domain D C R3 with Vf # 0. A curve
I is a gradient curve of f if the tangent direction at every point coin-
cides with the direction of Vf. If I is parametrized by r(t), it satisfies
the system:

dr  Vf

at— [VfT
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Along such a curve, ds = dt.
We use this concept to solve a classical problem from the Putnam
Competition.
Example o0.7. Bound on Gradient Magnitude. Let f(x,y) be contin-
uously differentiable on the unit disk D = {x? 4+ y?> < 1} and satisfy
|f(x,y)| < 1. Prove that there exists a point (xg,1p) € intD such
that

|V f(xo0,y0)] < 2.
ie, (F2+ D) xomo) <4
fb
Proof

If Vf vanishes anywhere, the inequality holds trivially. Assume in-
stead that |[Vf| > 2 everywhere on D. Consider the gradient curve
[ starting at the origin, defined by r'(t) = Vf(x(t))/|Vf(x(t))]; the
vector field is continuous and nonzero on the compact disk, so this
flow exists (and is unique) until it hits the boundary. Along T,

d
/() = [Vfx(t)] >2,

so f increases strictly and f(0,0) < 1 (an interior point with f = 1
would force Vf = 0 by Fermat’s lemma). Because Vf # 0 inside
D, f cannot attain its maximum value 1 in the interior, hence T
must reach 9D exactly when f hits 1. The time (and length) to do
so satisfies
- 0,00 = [ Lrawnarsor = 1< SO0 g
o dt 2
But any path from the origin to dD has length at least 1 (the Eu-
clidean distance), so I' cannot reach the boundary in length T < 1
— a contradiction. Therefore |V f| cannot exceed 2 everywhere, and
some point (xg, o) € int D must satisfy |V f(xo,y0)| < 2.
]
Remark.
This method can be generalised to prove a mean value theorem in
n-dimensions. For a ball of radius r, there exists a point pg such
that the oscillation of the function is related to the gradient by:

max f —min f = |V f(po)| - 2.

Using this sharper mean-value estimate one can improve the con-
stant 2 in the previous example to 1; a short proof follows from
applying the identity withr = 1 to f on the unit disk (details
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omitted here for brevity).

0.3 Exercises

1. Calculating Scalar Integrals. Compute the following line integrals
of the first type:

(a) /(x4/3 +y*/3) ds, where C is the astroid x2/3 + y?/3 = a2/3,
C

(b) / eV ds, where C is the boundary of the circular sector
C

consisting of the two radial segments ¢ = 0, ¢ = 7 and the
circular arc r = a joining them (orientation of C is arbitrary).

(c) / ly| ds, where C is the lemniscate (x +y2)? = a?(x? — y?).
C

(d) / ;li, where C is the catenary y = acosh 7.
C

(e) / zds, where C is the space curve defined by the intersection
C
of x> + y*> = z% and y? = ax from (0,0,0) to (a,a,/2a).
2. Arc Length in Space. Calculate the arc lengths of the following
curves from the origin (or specified starting point) to a generic

point (xo, yo,20) or (x,y,z):

a—x
a+x’

; : 20,20 .2 2 _
(b) The intersection of x> + y* +z> = a* and \/x2 + y2 cosh (arctan £) =
a, starting from (a,0,0). (Note: cosh is intentional; since

(@) The curve given by y = aarcsin 7 and z = 7 In

coshu > 1, the relation forces x > 0 so the angle arctan%
is single-valued. If a different surface was intended, replace
cosh with the desired function.)

3. Centroid of a Catenary. Find the coordinates of the centroid of the
arc of the homogeneous catenary y = a cosh 7 between the points
(0,a) and (b, h).

4. Intrinsic Definition. Let I = AB be a simple rectifiable curve with
length L. For s € [0, L], let x(s) be the unique point on I such that
the arc length from A to x(s) is s. Prove that for any function f
defined on I' for which the line integral exists:

/rf(x) ds = /OLf(x(s))ds.

Remark.

This confirms that the scalar line integral is equivalent to a stan-
dard Riemann integral over the arc length parameter.
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Path Dependence. Compute the integral

/xydx+(y—x)dy
L

where L is the directed path from A(1,1) to B(2,3) along:

(a) The straight line segment AB.

(b) The parabolic arc y = 2(x — 1)> + 1.

(c) The broken line segment ADB, where D = (2,1).
Cycloid Integral. Evaluate / Y dx + %ﬂ dy, where C is the arc
of the cycloid x = a(t — sint)(f];/: a(ly— cost) for t € [rt/6,7/3].
Closed Loop Integration. Calculate yﬁ (x +y)?dx+ (22 —y?) dy,

C
where C is the triangle with vertices (1,1), (3,2), (3,1) traversed
clockwise.

Parabolic Work. Find / 4xy? dx — 3x* dy along the parabola
C
y = 1x2 from (0,0) to (2,2).

Space Curve Intersection. Compute
%(yz +2%)dx + (22 + ) dy + (¥ +y*) dz,
c

where C is the intersection of the sphere x* + y? + 22 = 2Rx
and the cylinder x? +y?> = 2ax (0 < a < R,z > 0), oriented
counterclockwise as viewed from the positive z-axis.

Spherical Curves. Evaluate / ydx + zdy + x dz along curves on
C
the sphere of radius R:

x = Rsingcosf, y = Rsingsinf, z = Rcos¢.

Consider the cases:
(a) A latitude circle (R, ¢ constant, 6 varies from 0 to 27).
(b) A longitude semi-circle (R, f constant, ¢ varies from 0 to 7).

Helix vs Line. Calculate the integral
= /(x2+5y+3yz)dx+ (5x +3xy —2) dy + (Bxy — 4z) dz
C

along two different paths from A(a,0,0) to B(a,0,b):

(a) The helical segment x = acost,y = asint,z = 2% for
t € [0,2m].

(b) The straight line segment connecting A and B.

19
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12. Work Done by a Field. Given the force field
F=vyi—x+ (x+y+2)k,

find the work done moving a particle along one turn of the helix
X =acost,y =asint,z = %t starting from (a,0,0).



1.1

1

Green’s Formula and Conservative Fields

We now establish the connection between double integrals over a pla-
nar region and line integrals along its boundary. This result, Green’s
Formula, provides powerful methods for evaluating integrals and
leads to the conditions for path independence of line integrals.

Green’s Formula

Let D be a bounded closed region in IR?, whose boundary 9D con-
sists of smooth or piecewise smooth curves. Let P(x,y) and Q(x,y)
be functions with continuous partial derivatives on D.

Theorem 1.1. Green’s Formula.
If the boundary 9D is traversed in the positive direction with respect
to D (keeping the region on the left), then:

// ( +x> dxdy = ygDde+Qdy.

From the relationship between the two types of line integrals on the

il

plane, Green’s Formula can be expressed using the unit outward
normal vector n. Recall that dx = — cos(y,n) ds and dy = cos(x,n) ds.
However, using the geometric identity Z(x,n) = Z(x,y) + Z(y,n) =
% + Z(y,n), the formula transforms as follows:

// (aP + ) dxdy = §I§D —Qdx + Pdy

= 35 [Qsin(x,n) + Pcos(x,n)]ds.
oD

Using the directional cosines:

//( )d xdy = yg [P cos(x,n) + Qcos(y,n)]ds

These formulas allow us to convert line integrals into double inte-
grals. This is particularly useful even when the curve C is not closed,
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by employing the method of adding "auxiliary lines" to form a closed
loop.

Example 1.1. Auxiliary Lines. Let C be the arc of the parabola 2x =
mty? from O(0,0) to B(%,1). Compute

= /(2xy3 —y?cosx)dx + (1 —2ysinx + 3x2y?) dy.
C

.45
Solution

Let P(x,y) = 2xy® — y*cosx and Q(x,y) = 1 — 2y sin x + 3x%y?. Cal-

culating the partial derivatives:

Q = —2ycos x + 6x17,

o 9P _ 6xy* — 2y cos X.

P
y

Thus, —g—ly) + %—% = 0. To apply Green’s Formula, we add auxiliary
lines BA and AO to close the curve, where A = (%,0). Let D be the
region enclosed by CUBA U AO.

1+/ +/ :/ Odxdy = 0.
BA AO D

Therefore, [ = — (fBA +on) = fAB +fOA‘

1. Along OA: y =0, so dy = 0 and P(x,0) = 0. The integral is o.

2. Along AB: x = 7, so dx = 0. y ranges from o to 1.

Evaluating this:

Example 1.2. Normal Derivative Integral. Compute the integral

1_7§w8<rfn>ds,
C

r

where C is a piecewise smooth simple closed curve, r = (x,y),r =
|r|, and n is the unit outward normal vector on C.

X

! LT ™2 , 1 372 ,
/AB—/O [1—2ysm2+3(2) y]dy—/o <1—2y+4y)dy.

B

1

1

l BA
k

1

1

f s x
A0 A

ol
Figure 1.1: The path of inte-
gration involving the parabolic
arc C (where 2x = my?) and
auxiliary lines BA and AO.
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Solution
Using the identity cos(r,n) = 2 = L(xcos(n,x) +ycos(n,y)), we
write:

1= .¢C (%cos(n,x) + % Cos(n,y)) ds.
We consider the position of the origin relative to C:

Case 1: (0,0) is outside C. Using Green’s Formula in the form
involving directional cosines:

9 [x 2 /Yy
= //D L)x () + 3y (rz)] ax dy.
Computing the derivatives shows the integrand is identically

zero. Thus I = 0.

Case 2: (0,0) is inside C. We excise the singularity by drawing a
circle C; centred at the origin with small radius €. Let D; be the
region between C and Ce.

i 1 = =
I+ 5£CE <r2 cos(n, x) + o cos(n,y)) ds //g 0=0.

In Green’s Formula the inner boundary is taken with clock-

wise orientation; rewriting that integral with the usual counter-
clockwise orientation (equivalently flipping the normal) changes
its sign. Hence:

= %C (%cos(n,x) + %cos(n,y)) ds.

On G, r = ¢, cos(n,x) = x/¢, and cos(n,y) = y/«.

x>y & 1
I-%CS (e3+s3) ds-?gcsﬁds— E(27re) = 271.

Case 3: (0,0) lies on C. Draw tangents OA and OB to C at the
origin. Let 8 be the angle between them inside the region. We
consider the limit as we excise the origin with a small arc Ce.

I =1lim 1d::;:lirnGg:G.
=0 /c, € e—0

If C is smooth at the origin, 8 = 7.

Note

It is crucial to verify the differentiability of P, Q. Many errors arise
from applying Green’s Formula when the origin (a singularity) is

Figure 1.2: Three cases for
¢ <=En) gs: origin outside
(I = 0),inside (I = 2m), or on

the curve (I = 6).
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| inside the domain.

Example 1.3. Singularity Handling. Compute
Y
I= ;1§C #yz [(xsinx 4 y cos x)dx + (ysinx — x cos x)dy],

where C is the circle x? + y? = 1 traversed counterclockwise.

Fufl
Solution
Let P, Q be the components. We find that g—ly) = %—Q outside the ori-

X

gin. Since (0,0) is inside C, we introduce a small circle C, x2 +

y?> = €% By Green’s Formula on the annulus, the outer boundary C

is counter-clockwise while the inner boundary Ce is clockwise:

(cw) (cw) (cew)
AL A A
C e C € €

On Cg:

Y
I :56 6—2[] = 12515 e’[(xsinx 4y cos x)dx + (y sin x — x cos x)dy].
Ce € € -

Now, let D, be the disk enclosed by C.. We apply Green’s Formula
again to this new integral (which is now over a loop enclosing a
region D, where the integrand is defined everywhere, as we pulled
1/€? out). The new integrand in the double integral is:

d d
— (Y i — — — (Y i
ax(e (ysinx — xcosx)) ay(e (xsinx + ycosx)).

Simplifying yields —2e¥ cos x. Thus:

1
I= g// —2¢6Y cos x dx dy.

By the Mean Value Theorem for integrals, there exists (§,77) € De
such that the integral equals Area(D.) x (—2e" cos ().

I = 617(7162)(—25’7 cos&) = —2me'l cos .

Letting e — 0, (§,17) — (0,0).

I =—2me cos0 = —271.

m D

Corollary 1.1. Area by line integral. The area S of a region D bounded

Figure 1.3: Excising the singu-
larity at the origin: the annulus
D, between the outer curve C
(ccw) and inner circle C; (cw).
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by a piecewise smooth simple curve C is

S:ygxdy:—}Igydleyg(xdy—ydx).
C C 2 Jc

Hk

Proof
Apply Green’s Formula with (P, Q) = (0, x):

I, <_8P+acj>d dy = [[ vaxdy =5 =  xay.

Similarly, with (P,Q) = (—y,0)weobtainS = —¢-ydx. Av-
eraging the two equal expressions yields the symmetric form

%Sﬁc(xdy —ydx).
|

Example 1.4. Area of a Lemniscate. Calculate the area enclosed by
the lemniscate (x? +y2)? = a?(x? — y?).

49

Solution

Method 1: Line Integral. By symmetry, we consider the first and

fourth quadrants where —% < 0 < %. Parametrising using

polar coordinates: x = rcos6,y = rsinf. The equation becomes
r2 = 4% cos 26, so r = av/cos 26.

x(0) = acosfvcos20, y(0) = asinbV cos?26.

Calculating the differential form:

X — x —xdy @
U a0 Yde

Substituting the derivatives yields xy’ — yx’ = a® cos 26.

1 /e 2 1 /4 2
S=2x 5 _n/4a cos20d0 =a [2 sin20]"7%, =a
(The prefactor 2 doubles the area of the one lobe covered by 6 ¢
[—7t/4,7t/4].)

Method 2: Polar Area. Using the standard polar area formula: y

1 /4 /4
5:4><,/ r2d6:2/ a2 c0s 20 do = a.
2 Jo 0

Figure 1.4: The lemniscate (x* +

y?)? = a?(x* — y?). Total area =
2

a*.
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Conditions for Path Independence

We investigate the conditions under which a line integral depends
only on the endpoints, a property characterising conservative fields.
Let Q) be a region in R If for any points A, B € (), the integral

J; Pdx + Qdy yields the same value for all piecewise smooth paths
L C Q) connecting A to B, the integral is called path-independent.

Theorem 1.2. Equivalence of Conditions.

a region entirely within D). Let P, Q have continuous partial deriva-
tives. The following are equivalent:
1. For any closed curve C C D, ¢~ Pdx + Qdy = 0.

2. The integral is path-independent.

3. %—I; = %—% everywhere in D.

dep = Pdx + Qdy. ¢ is called the potential function.
If these conditions hold, the integral can be evaluated as:

(xy)
/( Pdx + Qdy = ¢(x,y) — ¢(x0, y0)-

xOr]/O)

Proof

We show the cycle of implications.

(3)=(1) For any simple closed curve C C D, Green’s Formula gives

%de—l—Qdy //D (—ap+x> dxdy =

Here Dc is the region enclosed by C (possible since D is simply
connected).

(1)=(2) If L1, Ly join A to B, then L; U L, is a closed curve (traverse
Ly backwards). By (1), its integral is 0, so the integrals along L4
and Lp coincide; the integral is path-independent.

(2)=(4) Fix a base point (xg,1p) and define

(xy)
o(x,y) =/( Pdx+ Qdy,

x0,40)

which is well-defined by path independence. Differentiating
along horizontal and vertical segments yields ¢ = P, ¢y, = Q, so

dp = Pdx+ Qdy.

Let D be a simply connected region (any simple closed curve encloses

4. Pdx+ Qdy is an exact differential; i.e., there exists ¢(x,y) such that
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(4)=(3) From ¢, = P, ¢, = Q and continuity of mixed partials,

oP 20Q
@:q)xy:q)yx:g.
This closes the equivalence.
|
Example 1.5. Proof of Condition Equivalence. Prove that if P, Q
have continuous partial derivatives, the condition 3—5 = %—8 is neces-
sary and sufficient for the relation
(xy) x y
[ paxedy= [ P+ [ Qy)dy
(xo0.%0) xo Yo
to hold (implying path independence).
B
Sufficiency.
Assume the hypothesis % = g—l; holds on D. Define
x Y
p(x,y) = / P(x,yo)dx+ [ Q(x,y)dy.
Xo Yo
Differentiating with respect to y:
2 —0+Q(xy) = Q).
ay 7 7
Now differentiate with respect to x. Note that the first term de-
pends on x in the limit and integrand, and the second on x in the
integrand. Differentiating the RHS with respect to y yields Q(x,y).
Differentiating the RHS with respect to x:
0 * Y Y 0Q
P / P(t,yo)dt+ [ Q(x,t)dt | = P(x,yo) + / 55 (o t)dt.
* Xo Yo v 9%
If
9Q _op
ox  dy’
then
Y oP
/ 2 (x, 1)t = P(x,y) — P(x,y0).
v %Y
The expression becomes P(x,yo) + P(x,y) — P(x,y0) = P(x,y).

Thus dg = Pdx + Qdy.
BLES

27
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Necessity.

. . . . .19
If the integral is path independent, then ¢(x,y) is a potential. % =

P and 3—3 = Q. By continuity of mixed partial derivatives:

aP P9 P _9Q
dy  Jydx Oxdy  Ox

S B 4
Example 1.6. Elliptic Circulation. Let a,b, ¢ be constants satisfying

ac — b% > 0. Consider the form

_ xdy—ydx
~ax? 4 2bxy + cy?’

Find the circulation ¢~ w where C is any simple closed curve en-
closing the origin.

E
Solution
Let P and Q be the components of w. Direct calculation verifies
that g—l; = %—8 everywhere except at (0,0). Since ac — b> > 0, the

quadratic form is definite, so the denominator vanishes only at

the origin. The value of the integral is independent of the specific
shape of C as long as it encloses the origin. Using the result related
to the area of the ellipse ax? + 2bxy + cy?> < 1, or by transforming
coordinates to diagonalise the form, the integral evaluates to:

&5 2
W=—
C ac — b?

The Isoperimetric Inequality

The isoperimetric problem poses a classic geometric question: among
all simple closed curves of a fixed perimeter, which one encloses

the maximal area? While the answer — the circle — was intuited

by ancient Greek mathematicians such as Pappus (c. 300-350 AD),
rigorous proofs were not developed until the 19th century by Steiner
and others. We present here an elegant analytic proof for piecewise
smooth curves using Green’s Formula, provided by E. Schmidt in

1939.

Theorem 1.3. Isoperimetric Inequality.
Let I' be a piecewise smooth simple closed curve of length L enclos-



INTRODUCTION TO VECTOR CALCULUS

ing a region of area A. Then:
4A < L2

Equality holds if and only if I is a circle.

Proof

Let the curve I' be enclosed between two parallel vertical tangent
lines 1 and [,. We construct a circle S of radius r that is also tan-
gent to these lines; thus the distance between /1 and I, is 2r. We
establish a coordinate system with the origin at the centre of S

and the x-axis perpendicular to the tangents. Consequently, the
x-coordinates on I satisfy —r < x <.

Let I' be parametrised by arc length s, denoted by (x(s),y(s)) for

0 < s < L, traversed in the counter-clockwise (positive) direction.
Lets = Oands = sj correspond to the points where I' touches
and I, (where x achieves its minimum —r and maximum r).

Using the area corollary of Green’s Formula (t/icorem 1.1), the area
enclosed by I' is:

A= /OLx(s)]/(s) ds.

We define a comparison function §j(s) representing the y-
coordinates of the circle S corresponding to the x-coordinate x(s):

r2 —x(s)?  if x(s) is on the upper arc,
7(s) = o

—/r? —x(s)? if x(s) is on the lower arc.
Because /1 and [, are the only vertical tangents, x'(s) keeps
one sign between them: x(s) increases strictly from —r to r
along the upper arc and decreases strictly from r back to —r
along the lower arc. Thus (x(s), 7(s)) traces the upper semi-
circle once (counter-clockwise) and the lower semicircle once
(counter-clockwise), i.e. the full circle once in the clockwise orien-
tation. Hence the signed area is that of the circle with a negative
sign:

L
/ 7(s)x'(s) ds = —7r?.
0
We sum the area expressions:
L
A= [T (o) - 797 (s) s
0

We treat the integrand as a dot product of vectors u = (x, —j) and
v = (¥, x"). By the Cauchy-Schwarz inequality:

y — g < a2+ 2 )2+ ()2

29
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From our construction, x(s)? + (s)? = 2 (the point is on the circle).
Since s is the arc length parameter, (x')? + (y/)? = 1. Thus:

lxy —gx'| <r-1=r.
Integrating the absolute value and using | [ f| < [ |f| gives
L L
|A + 7r?| < / lxy — gx'|ds < / rds = Lr.
0 0
Both A and 772 are nonnegative, so A + 7tr2 = |A + 72|, yielding

A+ nr? < Lr.

We now apply the Arithmetic Mean-Geometric Mean (AM-GM)
inequality to the terms A and 772

2
\/A.HTZSM%S%.
Simplifying v tAr < % yields 2vmA < L.
gives the isoperimetric inequality:

Squaring both sides

ATA < L2

Equality Condition: For equality to hold, all intermediate inequali-
ties must be equalities.

1. A = 7r? (from AM-GM), implying I has the same area as the
circle S.

2. The vectors u and v must be parallel (from Cauchy-Schwarz)
and xy' — gx’ > 0 everywhere so that the absolute values can

be removed. Thatis, (—7,x) = c¢(s)(x’,y’). Taking magnitudes
implies [c(s)| = r. By continuity, ¢(s) = r (assuming consistent
orientation).

The condition (—7,x) = r(x/,y’) implies:

- and i

ds

dx  §_ Vrr-x? dy _x
r

This system of differential equations characterizes a circle of radius
r. Thus, I' must be a circle.

Figure 1.5: The curve I' en-
closed by vertical tangent lines
I1, 1 separated by distance 2r,
and the comparison circle S of
radius r.
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1.3 Rotation Degree of Continuous Vector Fields

The rotation degree of a continuous vector field is an important topo-
logical invariant defined via line integrals. Let F : R*> — R?>bea
continuous mapping, which we refer to as a continuous vector field.
For a piecewise smooth oriented closed curve C C R?, if F(x) # 0 for
all x € C, we say F is non-degenerate on C.

Definition 1.1. Rotation Degree.
Define the unit direction vector field

_ Flxyy)
T = TRyl

This maps C to the unit circle S!. As (x,y) traverses C once in the pos-
itive (counter-clockwise) direction, the vector T(x,y) winds around S!.
The algebraic sum of the number of counter-clockwise winds is called
the rotation degree of F along C, denoted by 7 (F,C).

If F(x,y) = (u(x,y),v(x,y)) is continuously differentiable (C'), an ori-
entation-invariant formula is

1 udv—ovdu
FC)=—¢ ————.
7(EC) 271%3 u? + v?

This equals 5= ¢ d(arg(u +iv)) whenever a continuous branch of the
argument can be chosen along C; the differential form above avoids branch
issues when u changes sign.

If D is a region with boundary 0D = J!' ; dD;, we define y(F,0D) =
" 1 7(F,0D;), assuming the interior normal lies to the left of the
positive direction.

Properties of Rotation Degree

The rotation degree satisfies the following fundamental properties.

Proposition 1.1. Additivity.
If D = Dy U Dy where Dy, D; are closed regions with disjoint interi-
ors, then:

7(F,0D) = (F,0D1) + ¥(F,0D;).

>
@&

Proof

Orient 0D; and 9D, so that each keeps its region on the left. The
common boundary arc (if any) is then traversed once in each direc-
tion, so its contributions to the line integrals defining the degrees

cancel. What remains is exactly the integral along 0D, proving the
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sum rule.

Proposition 1.2. Boundary Degree of Non-degenerate Fields.
If F is non-degenerate on a bounded closed connected region D (i.e.,
F # 0 everywhere in D), then:

~v(F,aD) = 0.

>
@&

Assume D is simply connected with boundary L.

Smooth Case.

Because F # 0 onall of D, the unit vector field T = F/|F|| is de-
fined and continuous on D, hence its restriction to £ is homotopic
(within S') to the constant map e; = (1,0). The rotation degree is
the winding number of T| ., so

1 udv—vdu
= — —_— = T =
'Y(F/ L) 27T ygg 12 + 2 deg( |£) 0,

because a map admitting an extension to the disk is null-homotopic
on the boundary.

BLES
Continuous Case.

The same extension argument works verbatim since T is continuous
on D; no smoothness is needed once we appeal to homotopy of
maps D — S1.

LA

If D is multiply connected, we decompose it into simply connected

regions.

Definition 1.2. Homotopy.

Let Fy, F1 be continuous non-degenerate vector fields on 0D. A con-
tinuous deformation is a map G : 9D x [0,1] — RR? such that G(x,0) =
Fo(x) and G(x,1) = F1(x). If G(x,A) # 0forall A € [0,1] and x €
dD, it is a non-degenerate deformation, and Fy, F; are said to be ho-

motopic.
&,
Proposition 1.3. Homotopy Invariance.
Homotopic vector fields on dD have the same rotation degree.
o8
UP ;%

Proof
LetI(A) = 9(G(:,A),0D). The integrand in the degree formula
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depends continuously on A because G does and never vanishes;
hence I is continuous on [0, 1]. But I(A) is integer-valued for every
A, so continuity forces it to be constant. Therefore I(0) = I(1), i.e.
7(Fo,D) = 7(F,D).

[ |
Example 1.7. Brouwer Fixed-Point Theorem. LetD C R%bea
bounded closed convex region with a smooth boundary dD. Let

F : D — D be a continuous mapping. Prove that F has a fixed point
inD.

)
Proof
Assume F has no fixed point. Then F(x) —x # Oforallx € D.
Consider the vector field V(x) = F(x) — x on dD. Since V is non-

degenerate on the entire region D, by Proposition 1.2, ¢(V,0D) = 0.
However, let n(x) be the unit inward normal vector field on dD.
Since 9D is a simple closed curve, the rotation degree of the nor-
mal vector is y(n,0D) = 1. Since F maps D into itself, for any
x € dD, the vector F(x) — x points into the region (or is tangent).
Specifically, the angle between F(x) — x and n(x) is at most 71/2, so:

(F(x) —x) -n(x) > 0.

Construct the homotopy G(x,A) = A[F(x) — x| + (1 — A)n(x). For
A€ (0,1):

Gn=AF—-x)-n+(1-A)n]?>1-A>0.

Thus G is non-degenerate. This implies F — x is homotopic to n, so
7(V,0D) = 1. This contradicts the earlier deduction that the degree
is 0. Thus, a fixed point must exist.

[ |
Example 1.8. Fundamental Theorem of Algebra. Prove that every
polynomial P, (z) of degree n > 1 has at least one root in C.

Eid)
Proof
Identify C with R? viaz = x +iy. Let F(x,y) = (R(Pn), S(Py)).
Finding a root is equivalent to finding a point where F is degener-
ate. Assume F is non-degenerate everywhere. Then for any circle S,
of radius r, y(F,S,) = 0.
Consider the polynomial P,(z) = z" 4 ... (monic WLOG). Let Fy
correspond to z". Direct calculation shows y(Fy, S;) = n. Construct
the homotopy G(z,A) = Az" + (1 — A)Py,(z). For sufficiently large

33
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|z| = r, the term z" dominates the lower order terms. Specifically:
2'G(z,A) = |z)*" + o(|z]*") as |z| = co.

Thus G does not vanish on S, for large r. Hence F is homotopic to
Fo, implying y(F,S;) = n. Since n > 1, this contradicts v = 0. Thus
F must be degenerate somewhere.

|

Example 1.9. Mikl6s Schweitzer Competition 1995. Let f, g be inte-
grable on [0, 1] with fol f= fol ¢ = 1. Prove there exists [a,b] C [0,1]
such that fﬂbf = fubg =1/2.

b
Proof
Define the region D = {(x,y) € R?> | 0 < x < y < 1} and the vector

field .
Yy
G(x,y) = </x f(s)ds — ;,/y Q(s)ds — ;) .

This field is continuous on D. The problem is to find a zero of G.
Assume none exist. The boundary dD consists of three segments:

1. The diagonal x = y.
2. The vertical segment x = 0,0 <y < 1.
3. The horizontal segment y = 1,0 < x < 1.

Observe the values on the axes:

G(0, %) = (/Oxf—;,/xlg—;),
oo ([ -3 fs2) (- [1-3)-G )

Note that fxlg -1/2=1- [fg—1/2 =1/2— [; g. The vectors at
the three vertices are

A4=6(0,0=(-31), B=6O1=(}-1), c=6L1)=(-}-}).

Because G is nonzero on 9D, its image is a closed curve in R? \ {0}.
By homotopy invariance of the degree, we may deform this curve
(staying in R? \ {0}) to the piecewise linear path A — B — C — A,

Y
replacing the segment AB by a tiny detour that skirts the ori- Vo o
gin. That polygon clearly winds once around the origin, so e
7(G,0D) = =1, in particular it is odd. By Proposition 1.2, G must D
have a zero in D. ¥=0 vy
|
©0) T

Figure 1.6: The domain
D={(xy):0<x<y<1} for
the Schweitzer problem.
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1.4 Exercises

1. Evaluate via Green’s Formula. Apply Green’s Formula to com-
pute the following vector line integrals. The curves are oriented in
the positive (counter-clockwise) direction.

(a) 75 (x? + xy) dx + (x® + y?) dy, where C is the square with
C
vertices (+1,+1).

(b) 515 2+ y 5 dx + (2]/ _:_yl) dy, where C is the same square as

above
(c) ?§ %) dx — 2xy dy, where C is the boundary of the

region defined by x> +y> < 1,x > 0,y > x.
xdy —ydx .
(d) ¢ x2+ >—, where C is:
(i) The arch of the cycloid x = a(t —sint) —am,y =
a(1— cost) for t € [0,2r], closed by the x-axis.

(ii) The arc of (x —1)2+ (y — 1)2 = 1 from (2,1) to (0,1)
via the upper semicircle, closed by the segment on
y=1

2. Identity for Radial Functions. Let L be a piecewise smooth closed
curve. If f is continuously differentiable, prove that:

@ ¢ ) (ydx +xdy) = 0.

(b) jéf(xz +y?)(xdx +ydy) = 0.
3. Flux Integral. Calculate
u ds
con
where u = x2 + y?, C is the circle x> + y?> = 6x, and n is the unit
outward normal vector.

4. Directional Cosine Integral. Let C be a piecewise smooth sim-
ple closed curve and 1 be a fixed constant vector. Prove that
¢ cos(l,n) ds = 0.

5. Generalised Winding Number. Let C be a simple closed curve
enclosing the origin. Let a;; be constants such that A = ay1a2 —
aipap1 # 0. Let X = ay1x + ajpy and Y = a1 x + axpy. Prove that:

= 2msgn(A).

yg XdY —YdX
C X2 4+Y2

35
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6. Line Integral on the Unit Circle. Evaluate

yg (x —y)dx+ (x +4y) dy
L x2 4 4y?

where L is the unit circle x> + y? = 1 traversed counter-clockwise.

7. Area Calculations. Use Green’s area formula to find the area
enclosed by:

(a) The astroid generalisation: x = acos’ ty = bsin®t, 0 <t <
27T.

(b) The folium of Descartes loop: x> + 1> = 3axy.

(c) The Lamé curve: (x/a)?"*1 + (y/b)*"*! = C(x/a)"(y/b)",
with a,b,C > 0.

8. Path Independence. Verify that the following integrals are path-
independent and compute their values:

(34)
(a) / ¢(x)dx + ¢(y) dy, for continuous ¢, .
(

1,2)
(68) x dx +ydy
b —————< along a path not passing through the ori-
(b) 10 1P gap p g g
gin.

9. Integrating Factors. Find a non-zero integrating factor M(x,y) to
make the following forms exact, and find the primitive potential:

(a)
w=[y\/22+ 2+ 1= x(P+y?)]dx+ [x\ /22 + 2 + 1T —y(x* + )] dy.

(b)
w = x[(ay + bx)? + ay®] dx + y[(ay + bx)® + bx>] dy.

Advanced Line Integrals

1. Bound Estimation. Prove the inequality

/de—l—Qdy‘ < ML,
C

where L is the arc length and M = maxc /P2 + Q2. Use this to
show that Rlim Ig = 0, where
—00

[ _95 ydx —xdy
BT Jogp—re (@ +xy + 27

2. Logarithmic Potentials on Circles. Calculate:
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(a) In/(x —a)? +y?ds for |a] # R.
22 412=R2

(b) In \/(x—a)z—l- (y — b)2ds for a> + b # R2.
X2 412=R>

. Potential Decay. Let L be a simple closed curve. Let

() = FEm) Iy (=2 + (y— )2
Prove that u(x,y) — 0 as x*> + y* — o if and only if ¢ fds = 0.

. Mean Value Property Equivalence. Let u be continuous on R?.
Prove that the area mean value property (average over disk equals
value at centre) holds for all > 0 if and only if the boundary
mean value property (average over circle equals value at centre)
holds for all ¥ > 0.

. Gradient Bound for Integral. Let f € C'(G) with f = 0 on 9G,
where G is the disk of radius a. Prove:

‘//Gf(x,y)dxdy’ < ga3m§x|Vf|.

. High-Dimensional Mean Value Theorem. Let f € C!(D) where
D C R"is a ball of radius r. Prove there exists pg € intD such
that:

max f —min f = [V f(po)| - 2r.

D D
. Retraction Construction. Assume f : B — B is a smooth map with
no fixed points.

(a) Construct a map g(x) by projecting x onto dB along the ray
from f(x) through x. Show g is well-defined and smooth.

(b) Verify that g(x) = x for x € 0B and g¢(B) C 0B.

(c) Use the previous exercise to derive a contradiction, proving f
must have a fixed point.



2.1

2
Surface Integrals

Following the natural progression from integration along curves, we
extend our calculus to integration over surfaces in R3. We distinguish
between integrals of scalar fields (measuring quantities such as sur-
face area or mass) and integrals of vector fields (measuring flux). In
this chapter, we develop the theory of the former, known as surface
integrals of the first type.

Surfaces and Area

We begin by formalising the geometric object of study. Let S be a
surface in IR3. We generally describe S via a parametrisation.

Definition 2.1. Parametric Surface.
A mapping r : D — RR® defined on a bounded region D C R?is a
parametric surface if r is a continuous vector-valued function

r(u,v) = (x(u,v),y(u,v),z(u,v)).

The surface S is smooth if r is continuously differentiable and the tan-
gent vectors r, and r, are linearly independent everywhere on D. That
is, the normal vector is non-vanishing:

n=r, Xr, #0, wherer, = (gi, gZ'§f¢> .

To define the area of a curved surface S, we employ an approxima-
tion method analogous to the rectification of curves, but with a sub-
tlety required to avoid the "Schwarz lantern" paradox (where limits
of inscribed polyhedra may not converge to the surface area).

Let S be a piecewise smooth surface (it may be closed or may have
boundary made of piecewise smooth curves). We partition S into m
sub-surfaces Sy, ..., Sy using a mesh of piecewise smooth curves.
Let d(S;) denote the diameter of the i-th element. For each S;, choose

Figure 2.1: A parametric surface
with tangent vectors r,, r, and
normaln =r, X r,.
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an arbitrary point M; € S;. Let T; be the projection of the surface
element S; onto the tangent plane to S at M;. The area of the planar
region T; is denoted by AT;.

Definition 2.2. Surface Area.
The area of the surface S, denoted A(S), is defined as the limit of the
sum of the areas of the tangential projections as the mesh size approaches
Zero:
m
A(S) =i AT;,
() = lim 1; i

where A = maxj<;<,,{d(S;)}. If this limit exists and is finite, S is said
to be rectifiable.

For a smooth parametric surface, the area element dS arises from the
magnitude of the fundamental vector product. The infinitesimal area
of the parallelogram spanned by r, du and r, dv is:

dS = ||ty X 1y|| dudo.
Using the identity ||a x b||> = ||a||?||b||> — (a- b)?, we express this in
terms of the coefficients of the first fundamental form.

Notation 2.1. First Fundamental Form We define the Gaussian coef-
ficients:
E=r, 1, :xﬁ+yi+zi,

F=r1,- -1y = xyXy +YulYo + Zuzo,
G=rp 1, = x>+ 1>+ 22

Then the surface area element is dS = VEG — F? du dv.

ik

The First Type of Surface Integral

Let S be a rectifiable surface and f : S — R a bounded function.
Consider a partition P = {Sy,...,Su} of S and sample points
M;(Ci, 1;, Ci) € Si. Let AS; be the area of the sub-surface S;.

Definition 2.3. Scalar Surface Integral.
The surface integral of the first type of f over S is defined as:

//Sf(xr%z) ds IAhm if(ﬁirﬂirCi)ASi,

provided the limit exists independent of the partition and sample points.

39
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Evaluation Formulae

The evaluation of surface integrals reduces to double integrals over

the parameter domain D.

Theorem 2.1. Evaluation on Parametric Surfaces.
If S is defined by r(u,v) for (1,v) € D, and f is continuous on S, then:

//Sf(x,y,z) dS://Df(x(u,v),y(u,v),z(u,v))\/ﬂdudv.

T

Corollary 2.1. Existence for Continuous f. If S is a smooth parametric
surface and f is continuous on S, then the surface integral [[ f dS ex-
ists.

Hem
Proof
The composition f o ris continuous on the compact domain D,
hence Riemann integrable. The evaluation formula expresses
[fs f dS as that double integral, so the limit in the Riemann-sum

definition exists.

In the common case where the surface is the graph of a function
z = z(x,y) over a region Dy,, we may choose x and y as parameters.
Then r(x,y) = (x,y,z(x,y)). Calculating the partial derivatives:

re = (1,0,z¢), 1, =(0,1,2y).
It follows that E = 1 + ZJZC, G=1+ zi, and F = zyzy,.
EG-F*=(1+22)(1 +z§) —(2x2y)* = 1+z§+z§+z§z;—z§z§ = 1+z§+z§.

Corollary 2.2. Evaluation on Explicit Surfaces. If S is given by z = z(x, y)
for (x,y) € D, then:

//Sf(x,y/z)ds = //Df(X,y,z(x,y))\/lJr (gi)er (g;)zdxdy.

Proof
Take the parametrisation r(x,y) = (x,y,z(x,y)) used above. Sub-
stituting the computed coefficients E, G, F into VEG — F? gives

1+ 2% +zJ. Applying the general evaluation formula with pa-

rameters (u,v) = (x,y) yields the stated expression.
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Example 2.1. Integral over a Cone. Let S be the portion of the cone
z = +/x2+y? lying inside the cylinder x> + y> = 2ax (@ > 0).

Calculate:
I= //(x2y2 + y?2% 4 22x%) dS.
S

$o19]
Solution

We represent S as the graph z = /x? 4 y2. The projection domain
D is the disk x2 + y2 < 2ax. First, we calculate the area element.

oz x x 0z Yy

5_1/x2+y2_2l d

y  z
B xz y? _\/m [2(x24y?) B
_\/dedy— dedy— dedy—\@dxdy.

Substituting z> = x? + y? into the integrand:
fry,z) = PP +2( +7) = Py + (2 + 7).

The integral becomes:

I—\[// 2y 4 (P +y?)? dxdy.

We employ polar coordinates. The boundary x? +y? = 2ax becomes
r=2acosf for 0 € [—7t/2,7/2].

/2 24 cos 0
I=v2 / o / [(r2 cos? 0) (2 sin2 6) + r4]r dr.
0

/2

/2 24 cos 6
I= f/ coszesinzéH—l)dG/ P dr.
/2 0

Evaluating the inner integral:

2a cos 0
1 2
/ rdr = ‘ (2acosh)® = 3 “Za° cos® 6.
0

Thus:

32\[ /2
=2

/2

(cos® B sin? B + cos® B) db.

The integrand is even, so double the integral over [0, 77/2] and use
the Beta—function identity [*/%sin™ 6 cos™ 0 df = %B("Hl ”H) (or,
if preferred, apply the usual power-reduction formulas repeatedly
to the same effect):

2 e, J 1p(3 9 n
cos®0sin“0df =2-5B(5,5) = =—,
/n/z 2 <2 2) 256
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NIN

Combining, f 4 /2 cos8 0 sin? 0 + cos® ) do = %75761 , hence

NI—=

7w/2
/ cos®0dh =2 B(%
—7/2

I= 32\fa6 87—7( 29 271a®.
3 256 8
Alternative Method: Spherical Parametrisation We may also
parametrise S using spherical coordinates. The cone equation
z = +/x% + y? corresponds to the semi-vertical angle ¢ = 71/4. We
parametrise S by:

r roo. r
X=—=cosf, y=—=sinb, =z

V2 va ot T

defined on a domain D in the (r,0) plane. The cylinder x> + y*> =
2ax transforms to:

= Zai cosf = r=2v2acosb.

V2

Thus the parameter domain is D = {(r,0) : —/2 <6 < 71/2,0 <
r < 2v/2acosf}. We compute the coefficients of the first fundamen-

N o

tal form with respect to the parameters (r,6):

ry = 7(COS GISinell)/ rQ = (—Sin@,COS 9, 0)

V2

2

S

E=1r-1r=1, G:rg'rgzr— F=r-1y=0.

2 4
The area element is dS = VEG — F2drdf = ﬁ dr df. Substituting
into the integrand f = x?y? + z%(x? + y?):

N
N

X2y = ﬁCOSZQSinze (¥ +y?) = oL
4 ’ 2 2

r
T
The integral becomes:

/2 2+/2a cos 0 1’4 ) ) ;,4 r
I:/ dG/ (cos 0 sin 9—1—) —dr.
—t/2 0 4 4 \/E

Evaluating the inner integral with respect to r yields
\1—5 (2v/2ac0s0)®(cos?0sin?0 + 1), which simplifies to the same
result:

I = 289 \@mz
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Geometric and Physical Applications

As with line integrals, surface integrals allow us to compute geomet-
ric and physical properties of surfaces.

Area. If f(x,y,z) = 1, the integral yields the surface area A(S) =
Jfsds.

Mass. If p(x,y,z) is the surface mass density, the total mass is m =
[lseds.

Centroid. The coordinates of the centre of mass (xo, o, z0) are given

by:

1 1 1
xoza//sxpds, yoza//sypds, ZO:E//SZpdS'

Example 2.2. Viviani’s Surface. Find the area and the centroid of
the surface portion of the upper hemisphere z = /a%> — x% — y? cut
out by the cylinder x? + y? = ax (a > 0).

#b
Solution

This surface is part of the boundary of the Viviani body (see fig-
ure 2.2). The domain D is the disk x% + y2 < ax. First, calculate dS

for the sphere x? + 2 + z2 = a%:
_ X - x =Y
Zx = /2 —x2— 2z y =3

[ x2 2 _/a? _a B a

Area Calculation.

dxdy.

a
A: _—
//D Va2 —x2 —y?

Using polar coordinates, the region D corresponds to —m/2 <
0<m/2and 0 <r < acosb.

/2 acost a
A :/ dG/ —rdr.
—7/2 0 Vaz —r?

Let u = a%2 — 12, then du = —2rdr.
acosf 0
r acos
 dr=|=\/ag2 -2 =ag—av1—cos?20 =a(l—|sind|).
/0 N r { a 7}0 a—ay1— cos (1—|sinb)|)
Thus,

/2 /2
A:az/ (1—|sin9|)d9:2a2/ (1 —sin6)d6.
—m/2 0

A = 242[0 + cos 0]7/% = 24 (g - 1) = (m—2)a°.
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Centroid Calculation. By symmetry across the xz-plane, yp = 0.
The density is uniform (o = 1), so m = A. For xo:

1 ax
Xg = — de:—//—
0 A/fs A Jlp /a2 —x2 =2

Switching to polar coordinates (x =  cos 0):

/2 acosf m,z
//:/ cosGdG/ —dr.
D —7/2 0 az —r2

We employ the substitution » = acost, sodr = —asintdt. The

dxdy.

limits transform from 0 — acosf to 7t/2 — 0.

acos 6 2 0 2 /2
ar alacost
/ _ a4 _/ Q(—asint) dt = a3/ cos? t dt.
0 2 — 2 n/2 asint 6

Substituting this back into the expression for the moment (noting
the factor of 2 from symmetry):

/2 /2
//de:Z/ cos 0 aa/ cos? tdt | de.
S 0 0

Changing the order of integration over the triangular domain
0<0<t<m/2

/2 t /2
// xdS = 2a3/ cos? t (/ Cos9d9) dt = 2a3/ cos® tsin t dt.
S 0 0 0

Elementary evaluation yields:

1 /2o
//xds =24° [cos3 t} = 245

203/3  2a
(r—2)a2  3(mr—2)

20:%//52015.

Since dS = %dxdy, the integrand simplifies remarkably: zdS
zZdxdy = adxdy.

//SZdSZ//D”dXdy:ll'Area(D),

The domain D is a circle of radius a/2, so Area(D) = r(a/2)? =

a? /4. ,
Ta

zdS = —.
Jfzas =7

ad /4 na

(r—2)a2  4(mr—-2)

The centroid is (3(7%762)’ 0, ﬁ)

Therefore,

X =

For zg:

zZ0 =
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2.3 The Second Type of Surface Integral

In vector calculus, we often integrate a vector field over a surface to
compute flux. This leads to the second type of surface integral, which
depends on the orientation of the surface.

Orientation of Surfaces

A smooth surface S is said to be orientable if it is possible to define

a continuous unit normal vector field n(x,y,z) on S. An orientable

surface has two sides; choosing a specific normal field n specifies the

orientation (or "side") of the surface.

- For a closed surface (like a sphere), the convention is usually to
choose the outward normal as positive.

- For a surface given by z = z(x,y), the upper side is the one where
n-k > 0.

Non-orientable surfaces, such as the Mobius strip, do not admit a

global consistent normal field and are excluded from this discussion.

Definition and Evaluation

Let S be a piecewise smooth oriented surface. Let F = (P,Q, R) be
a vector field defined on S. The flux of F across S is defined as the
surface integral of the normal component of F.

Definition 2.4. Vector Surface Integral.
The surface integral of the second type of F over S is denoted and de-
fined by:

//SF'dS://S(Pdl/dZWLQdde"‘Rdxd]/)://S(P,Q,R)-nds.

Equivalently, for a partition of S into small patches with representa-
tive points M;, unit normals n; consistent with the chosen orientation,
and areas AS;,

//5 S maxlAnS’:—ﬂ); (Ml) n; ASi,

mirroring the Riemann-sum definition used for Type I integrals. The
notation dy dz, dzdx, and dx dy represents the projections of the area
element dS onto the coordinate planes.

Figure 2.2: Viviani’s sur-
face S: the hemisphere
Va2 — x* — y? cut by

the cylinder x> + y* = ax.

ya =

Figure 2.3: Flux of a vector field
F through an oriented surface S:
the integral [[; F-ndS measures
net flow.
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Evaluation via Projection

Just as with the first type, we evaluate these integrals by projecting
onto coordinate planes. Signs are set by the components of the cho-
sen unit normal n:

- [[¢ P dy dz: project to D,; and multiply by sgn(n - i).
- [[s Qdzdx: project to D, and multiply by sgn(n - j).

- [l Rdx dy: project to Dy, and multiply by sgn(n - k).

Equivalently, if a parametrisation gives the normal r, x ry, use a plus
sign when (r, X r;) - n > 0 and a minus sign when it is negative;
this keeps track of orientation when parameters run opposite to the
chosen normal. For a graph z = z(x, y) the upward normal is

(—2zx, —2zy,1)
V1+23+22

so sgn(n - k) decides the sign for dx dy, and analogous expressions

n—

hold if the surface is written as x = x(y, z) or y = y(x, z).

General Parametric Evaluation

If S is given by r(u,v) = (x,y,z), the vector area element is

dS = (v, X tp) dudv = (A, B,C) dudo,

where A = g(y,z) , B = %, and C = ggiz ; are the Jacobians. Then:

Q)

//dedz—l—dedx—i—Rdxdy::I://(PA—i—QB—I—RC)dudU.
S D

The sign is chosen to match the orientation of S: if the parametric
normal (A, B, C) agrees with the chosen orientation n, use +; other-
wise use —.

Example 2.3. Flux through a Hemisphere. Let X be the upper unit
hemisphere z = /1 — x? — 42 with the inner orientation (normal
pointing towards the origin). Calculate:

I = // dydz +dzdx +dx dy.
z

Fobl

Solution
Method 1: Coordinate Projection. | = I + I + I3. Consider
I = [[;dydz. The surface splits into two parts relative to the

x-projection: the front (x > 0) and back (x < 0). However, for
the sphere x> + y? + z> = 1, the inner normal points towards the
origin. For the inward orientationn = —r we have n, = —x, so




INTRODUCTION TO VECTOR CALCULUS

its sign flips across the plane x = 0: on the "front" side (x > 0)
the normal points in the —x direction, while on the "back" side

(x < 0) it points in the 4-x direction. Let ¥ = Xg. ot U Zpaek. On
Zpack (Where x < 0), the normal has positive x-component. Thus
we take + [, Dy- dydz. On Lgone (Where x> 0), the normal has
negative x-component. Thus we take — [J, Dy dy dz. By symmetry,
the domain D, is the semi-disk y2 +22 < 1,z > 0. The contri-
butions cancel: I; = 0. Similarly, , = 0. For I3 = [[; dxdy, the
normal n on the upper hemisphere points inwards (downwards),
so 1, < 0. Thus we take the negative sign.

I3 = —/ dxdy = —Area(Dyy) = —7(1)* = — .
Dyy

Total integral I = —7t.

Method 2: Parametrisation. Using spherical coordinates: x =
singcosf,y = singsinf,z = cos¢ for ¢ € [0,71/2],0 € [0,27].
The parametric normal vector is

N=_—x o _ sin¢(sin ¢ cos 0, sin ¢ sin b, cos ) = sin¢r.

3~ 09

This vector points outwards. Since we require the inner orienta-
tion, we must take the negative sign.

I= —// 1-A+1-B+1-Cldpdo
DN~ N~ =~
dydz dzdx  dxdy
Substituting the Jacobians (A = sin® ¢ cos§, B = sin? ¢sinf,C =
sin ¢ cos ¢):
27 /2
I= —/ dG/ (sin? ¢ cos O + sin® ¢ sin  + sin ¢ cos P)dp.
0 0
The terms with cos 6 and sin § vanish upon integration over
[0,27].
/2

/2 1
I = —27‘[/ singcospdp = —2m {2 sin’ 47] = —7.
0

0

Example 2.4. Flux through a Boundary. Calculate

I://(z+x)dydz+(x+y)dzdx+(y+z)dxdy,
b

where X is the boundary of the solid () = {x2 + y2 <10 <z <
1,x > 0,y > 0} (first octant quarter-cylinder), oriented outwards.

47
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| #a )
Solution
Let F = (z+x,x+y,y +z). We decompose X into 5 faces:

* ¥ (Curved surface x> + y* = 1): Projects to Dy, for the first term.
Normal points out (x,y > 0).

* Y (Bottom z = 0): Normal —k.
¢ Y3 (Top z =1): Normal +k.
e ¥4 (Left y = 0): Normal —j.
e Y5 (Back x = 0): Normal —i.

The radial condition x?> + y> < 1 does not restrict z, so the projec-
tions needed below are rectangles: 0 < y < 1,0 < z < 1onto Dy,
and 0 < x <1,0 <z <1onto D;x. We calculate term by term.

1. [[(z+ x)dydz: Only £; and X5 contribute (others have dx = 0
ornormal L 1i). On X5 (x = 0), the normal is —i (backwards).
Projection is D,,. Integral: — [, Dy (z + 0)dydz. OnX; (x =

/1—1?), normal has x > 0. Integral: + fnyZ (z+ /1—y?)dydz.
Sum: fnyZ(\/l — y?)dydz. Dy, is the square [0,1] x [0,1]. Inte-
gral = [ 1 T=Pdydz =17 = F.

2. [[(x+y)dzdx: By symmetry with the first term (swapping x,y
and the relevant surfaces), this yields 7.

3. [[(y+z)dxdy: Only %, (z = 0) and X3 (z = 1) contribute. On X,
(normal down), integrand is y + 0. Integral: — [J, Dy, ¥ dxdy. On
Y3 (normal up), integrand is y + 1. Integral: + || fny (y + 1)dxdy.
Sum: ffny ldxdy = Area(Dyy,) = 7.

_ _3
Total I = 5 + 4+ § = 3.

Relation between Type I and Type 1I Integrals

The vector surface integral relates to the scalar surface integral via
the normal vector.

Proposition 2.1. Conversion Formula.

//SF-dS://S(Fn)dS.
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In coordinates, if n = (cos«, cos B, cos 7y):

//dedz+dedx+Rdxdy://(Pcostx—i—Qcos/S—FRcos'y)dS.
s S

Proof
For a parametrisation r(u#,v) we have dS = (r, x 1,)dudv = ndsS,

soF-dS = (F-n)dS. Expandingr, x r, = (A,B,C)shows A =
a(y,z)/9(u,v) etc., yielding the coordinate expression above.
|

This is particularly useful when the scalar integral simplifies due to
symmetries in 4S or n.

Example 2.5. Simplification via Normal. Calculate
I= // xyz(y?z? + 226 + x*y?) dS,
z

where X is the sphere portion x2 + y2 + z% = 4 in the first octant.

Eid)
Solution
This is a Type I integral, but the integrand is complex. We ob-
serve the structure resembles a dot product. The integrand is
xyz(y?z* + z2x*> + x?y?). Consider the vector field F and the nor-
maln = (x/a,y/a,z/a). Note that

1
(23,2223, x%y%) -n = y3232 +z3x3% + x3y3§ = Exyz(yzz2 +2222 + 2.

3,3 53,3

Thus the original integrand is a(G - n) where G = (y°z%,23x3, x%)?).

We convert to a Type Il integral:

:a//G~dS=a//y3z3dydz+23x3dzdx+x3y3dxdy.
z z

By symmetry of the sphere and the function in the first octant, the

I = 3a// 3y3 dx dy.
b

This is now a simple integral over the quarter disk Dyy.

three terms are equal.

/2 a a8 /2
I=23a / d9/ (r° cos® @'sin’ 0)r dr = 3a - 5 / (sin 6 cos 0)3 d6.
0 0 0

Using sinf cos 6 = % sin 26:

9 /2 9 pm 9 9
_ 30 1sin3 20d6 = 3i/ sin3ud—u _ a4 z
0

I _o &
8 Jo 8 64 2 128 3 32

49
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Example 2.6. Viviani Flux. Calculate
I= //(y—z)dydz+ (z—=x)dzdx + (x —y)dxdy
b
over the outer side of the sphere part x* +1? + z> = 2Rx cut by x? +
y2 =2rx (z > 0).
E
Solution

The sphere equation is (x — R)? + y? + z2 = RZ. The outward nor-
malis n = % (x — R, y,z). We convert to Type I

I://ZFndS:%//Z[(y—z)(x—RH—(z—x)y—l—(x—y)z]ds.

Expanding the term in brackets:
(xy —yR —zx +zR) + (zy —xy) + (xz —yz) = —yR+zR = R(z —y).

Sol= [fs % R(z—y)dS = [[s(z—y)dS. The surface ¥ is symmet-
ric with respect to the plane y = 0 (since the defining equations are
even in y). The function y is odd. Thus ([ ydS = 0.

1= [] zas.

For the sphere x? + 2 + z> = 2Rx, we differentiate implicitly to find
das:

R —
2x-2R+ZZZx:0:>Zx: X, Zy:—y.
z z

_ (R—x)2+y _\/zz—i—(R—x)Z—f—yz _JR, R
dS\/l+ 2 dxdy = 7 dxdy = szxdyf dedy.

The integral becomes incredibly simple:

I= //Dz (5) dxdy = R//Ddxdy = R - Area(D).

The domain D is the disk x2 + y2 < 2rx, which has radius r. Area =

r2.

I = tRr2.

2.4 Exercises

1. Basic Calculations. Compute [[sz*dS where:

(a) S is the upper part (z > 0) of the cone z> = x* + y? cut by the
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sphere x* + 1%+ z2 = R*.

(b) S is the conical surface parametrised by x = rsinacosf,y =
rsinasin®,z =rcosa for0 <r <g4,0 <06 <2m.

. Symmetry Exploitation. Calculate

//S(x+y+z)d5

over the upper unit hemisphere x2 + > +2z? = 1,z > 0.

. Integration over the Sphere. Evaluate

//5(x+y+z)2d5

where S is the unit sphere.

. Cone and Cylinder Intersection. Find

//(x4 —yt + 2% — 22 1) dS,
S

2

where S is the portion of the cone z? = x? + y? inside the cylinder

x% 4 y2 = 2x.
. Polyhedral and Parabolic Surfaces. Compute [[¢ |xyz|dS where:
(a) Sis the octahedron |x| + |y| + |z| = 1.

(b) S is the part of the paraboloid z = x? + y? cut by the plane
z=1

. Moment of Inertia Term. Calculate

//5(x2 +y? +22)dS

where S is the boundary of the regular octahedron |x| + |y| + |z| =
a.

. Parameter-Dependent Integral. Let f(x,y,z) = x> +y?ifz >
v/ x? 4+ y? and 0 otherwise. Calculate the function

E(t) = //Y SOV

. Potential of a Sphere. Let S; be the sphere of radius ¢ centred
at (x,y,z) (fixed, outside radius a). Let f(&,%,{) = 1 inside the
sphere ¢? + 2 + {? < a? and 0 outside. Calculate

F(t) = /Srfds.

. Tetrahedral Surface. Evaluate

51
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10.

11.

12.

13.

14.

15.

where S is the boundary of the tetrahedron x +y +z < 1,x,y,z >
0.

Viviani-Type Surface. Compute

[l

s Z

where S is the part of the cylinder x? + y?> = 2ay cut out by z =
VX2 +y? and z = 2a.

Explicit Formula. Let X be given by z = z(x,y) on domain D.
Prove that:

//dedz+dedx+Rdxdy::t//(—sz—sz—i-R)dxdy.
b2 D

Specify the sign for upper/lower orientations.

Symmetry Principles. Let X be symmetric about the xy-plane. Let
21 be the upper part (z > 0).

(@ If f(x,y,z) = —f(x,y, —z), prove [[5 fdS = 0.

(b) If R(x,y,z) = —R(x,y, —z), determine whether ffz Rdxdy is
Oor2 [fy, Rdxdy.

Projection Area. Let ¥ be a planar region with area S and normal
n. If cos(n, k) = y, prove the projected area is uS.

Flux through a Sphere. Compute

11://zdxdy

z

12://22dxdy
z

for the sphere x? + y? + z2 = a2 with outward orientation. Explain

and

the result of I; geometrically.

Gauss-Ostrogradsky Verification. Calculate the flux of F =
(x,y,z) through the boundary of the cube [0,1]® directly and com-
pare with the volume integral of the sum of partial derivatives.



3.1

3
Gauss’s Theorem

We now proceed to the three-dimensional analogue of Green’s For-
mula. Gauss’s Theorem establishes a fundamental link between a
triple integral over a bounded region in R? and a surface integral
over its boundary.

The Gauss Formula

Let D C R3 be a bounded region whose boundary 9D consists of
a finite number of piecewise smooth closed orientable surfaces. We
orient 0D with the outward unit normal vector n. Let P, Q, R be
functions with continuous partial derivatives on D.

Theorem 3.1. Gauss’s Formula.

The flux of the vector field F = (P, Q, R) across the boundary oD is
equal to the triple integral of the sum of partial derivatives of P, Q, R
over D:

P 3Q oR B
///D(ax+ay+az> dxdydz—ﬁgDdedz+dedx+Rdxdy.

In terms of the surface integral of the first type, using the outward nor-
mal n = (cosw, cos B, cosy):

oP 9Q OR B
///D<8x+ay+az) dV—%D(Pcosa+Qcosﬁ+Rcos'y)dS.

il

This result generalises Green's Formula to three dimensions. Just as
Green’s Formula relates domain integrals to boundary line inte-
grals, Gauss’s Formula relates volume integrals to boundary surface
integrals. All surface integrals below are taken with the outward
orientation unless explicitly stated otherwise.

Example 3.1. Flux through a Surface of Revolution. Calculate the

Figure 3.1: Gauss’s Theorem:
the outward flux of F through
0D equals the integral of the
sum of partial derivatives over
D.
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surface integral

I://4xzdydz—2yzdzdx+(1—zz)dxdy,
z

where X is the surface of revolution generated by the curve z = ¢/ -
(0 < y < a)rotating around the z-axis. The surface is oriented via \\\§§~:

4

the "lower" side (the normal has a negative z-component).

ExRl
Solution

The equation of the surface is z = eV 42 for x2 + y?> <a? LetP =

Figure 3.2: The region D en-
4xz, Q = —2yz,and R = 1 — z2. We observe that the sum of partial gHe 5 &

closed by the surface of revolu-

derivatives i : : :
CHIVATIVES 15 ZeT0 tion X and the top disk ;.

9P 90 , oR

ax—i— 3y +$:4Z_ZZ_ZZZO'

Direct calculation is cumbersome due to the parametrisation. In-
stead, we apply Gauss’s Formula. The surface X. is not closed. We
close the region by adding the top disk X atz =  ¢? defined by
x> + y* < 4% Let D be the solid region bounded by * and %;.
The boundary 0D = X U X;. We must determine the orientation.
The problem specifies the "lower" side of X. Since ¥ forms the bot-
tom/sides of the cup-shaped region D (described by 1 < z < ¢” and
0 <r=4/x2+4+y? < Inzso that z = ¢"), the outward normal to D
points downwards on X. This matches the specified orientation. On
21, the outward normal is k (upward). By theorem 3.1:

///I)Odv_//ZF'ds+//>:1F-dS.

Thus I = — [f5, F-dS. On £, z = ¢” is constant, so dz = 0. The nor-
mal is (0,0,1), so we project onto the xy-plane:

// F~dS:// R(x,y,e”)dxdy:// (1—e*)dxdy.
o 2412 <a? 2412 <a?

=(1—¢€*) - ma®.

Therefore:

3.2 Singularities and Domain Excavation

A powerful application of Gauss’s Formula arises in calculating in-
tegrals of fields with singularities. If the field is undefined at a point
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Py inside the closed surface, we cannot apply the theorem directly to
the interior. Instead, we "excavate" the singularity by surrounding Py
with a small sphere S;, applying the theorem to the region between
the outer surface and S..

Example 3.2. Flux of an Anisotropic Field. Calculate the surface
integral

7

[— # xdydz +ydzdx 4+ zdxdy
Il (ax? + by? + c22)3/2
where S is the unit sphere x> + y? + z2 = 1 with the outward orien-
tation, and a,b,c > 0.
ExRl
Solution
Let P, Q, R be the components of the integrand. The denominator

vanishes at the origin, which lies inside S.

Method 1: Gauss’s Formula (Excavation). We compute the partial
derivative sum forr # 0.Letp = (ax? 4 by? + cz?)'/2. Then
P=xp3.

dp
ox

Summing the partial derivatives:
3073 =302 (ax? + by? +cz?) = 3p 2 —3p>(p?) = 0.

Since this sum is zero everywhere except the origin, the flux
through S is equal to the flux through any small closed surface
surrounding the origin. We choose a surface S; tailored to the
symmetry of the denominator: the ellipsoid ax? + by? + cz? = ¢2.
Let D, be the region between S and S,. By Gauss’s Formula:

#F-dS—# F~dS:// 04V =0.
S e D

(Note the sign is minus because the standard outward normal
of D, on the inner boundary S, points towards the origin, while
we define the integral over S, with the outward normal relative

denominator is (£2)3/2 = €3,

I:s% xdydz +ydzdx + zdxdy.
Se

We apply Gauss’s Formula again to the integral on the RHS, re-

garding it as an integral over the solid ellipsoid E¢ defined by

— =p 2 +x(-3p )t =p 3 —3xp % %pil(Zax) =p 3 —3ax’0°.

to the small ellipsoid itself). Thus I = #Sg F - dS. On S, the

Figure 3.3: Excavation around
a singularity: the region D lies
between the outer sphere S and
the inner ellipsoid S.
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ax? + by? + cz* < 2. The integrand is r - dS, so the sum of partial
derivatives is 3.

# r-dS:/// 3dxdydz = 3Vol(E;).
Se E.

4n &
The volume of the ellipsoid is 3 Ui
1 dmed A

I==--3. = .
€3 3V abc vabc

Method 2: Direct Parametrisation. Parametrise the unit sphere S
by spherical coordinates (¢, 6).

x =singcosf, y=singsinf, z=cosg.

The vector area element matches the outward normal: A =
sin? g cos 6, B = sin? ¢ sinf, C = sin ¢ cos ¢. Substituting into the

integral:
2
xA+yB+zC
I= dede.
/ / (ax? 4 by? + cz2)3/2 ¢
The numerator simplifies to sin ¢ (since x> + y*> + z> = 1). The
denominator term is D(¢@,8) = asin? ¢ cos? 6 + bsin? ¢sin? 0 +
¢ cos? g.
/2 /2
I—3 / 6 / s1nq0dq)
‘P 9 (D(o.0))3/2"
Letu = cos¢, thendu = —sin (pd(p. The limits become 1 — 0.

The denominator becomes Ksin? ¢ +ccos? ¢ = K(1 —u?) + cu? =
K — (K — ¢)u?, where K = acos? 0 + bsin? .

1 du 1
A[K—W—dﬂwz_Kﬁf

. . 1 - _ 1
(Using the standard integral [; (A — Bt?)3/2dt = W
A=Kand A—B=K-—(K—c¢)=c. Thus:

_/W a9 _ 8 [? sec?fdf
VcJo  acos20+bsin?0 o a+btan26’
Let t = tan@.
/ —i Larctan \/Et )
f Ll‘l—btz o \/E ab a 0 ’
[ 8 T 47T
Vabe 2 abc
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Note

Using Gauss’s Formula for regions with singularities requires pre-
cise identification of the "hole" to be excised. The choice of the
auxiliary surface (sphere vs. ellipsoid) can significantly simplify the
subsequent calculation.

3.3 Volume by Surface Integrals

Just as Green’s Formula yields a method for computing the area of a
planar region via a line integral along its boundary, Gauss’s Formula
allows us to calculate the volume of a solid region using surface
integrals.

Let O C R® be a bounded closed region with a piecewise smooth
boundary Q). Let V(Q) denote its volume.

Corollary 3.1. Volume Formulas. The volume of () is given by the sur-
face integrals over the boundary 9}, oriented with the outward nor-
mal n = (cosw, cos B, cosy):

V(Q) = ﬁgnxdydz = ﬁgoydzdx = ﬁgnzdxdy.

Symmetrising these expressions yields the vector form (using the cho-
sen outward orientation; take absolute value if a different orientation

Figure 3.4: Volume via surface
integral: V = 1 §f,,r-nds.

is used):

V(Q) = %ﬁgnxdydz—b—ydzdx—i—zdxdy: %ﬁéﬂ(r'n)ds‘

ek
Proof
Apply Gauss’s Formula (t/icorem 3.1) to the vector fields Fy =
(x,0,0),F, = (0,y,0), and F3 = (0,0,z). For Fy, the partial deriva-

tive sum is 1. Thus:
/// 1dV = # xdydz.
Q 20

The other identities follow similarly. Averaging the three results
gives the symmetric form involving the sum of partial derivatives

equal to 3.
[

Parametric Evaluation

When the boundary d() is given by a parametric representation
r(u,v) = (x(u,v),y(u,v),z(u,v)) for (u,v) € D, the symmetric
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volume formula transforms into a determinant integral over the pa-
rameter domain.
Recall the Jacobians of the surface components:

B R CEO R 1)
(u,v)’ a(u,v)’ d(u,v)’
Substituting these into the relation Pdydz + --- = (PA+ QB +

RC) du dv:
V(Q) = % ’// (xA+yB+zC)dudv)|.
D

Expressing A, B, C explicitly as determinants yields a compact form
involving the scalar triple product of the position vector and its tan-
gents.

Proposition 3.1. Parametric Volume Formula.

// Xy yu zu| dudv|.

V(Q) ‘/ det(r, r,, 1p) dudvo| =
Zy

<
&

Volumes in Spherical Coordinates

A particularly useful application arises when the surface is defined
by a radial function r = r(¢, ) in spherical coordinates, where ¢ is
the polar angle (colatitude) and 0 is the azimuthal angle. The surface
parametrisation is:

r(¢,0) =r(¢p,0)(sin@cosb, sin¢sinb, cos ¢).

Corollary 3.2. Spherical Volume. If ) is the star-shaped region 0 < p <
r(¢,0) for (¢,0) € D with r(¢,0) > 0, then:

= 1// (¢, 0) sin pde db.
3 J/p

e
Proof
We can verify this directly via the surface integral or by triple inte-

gration.

Method 1: Surface Integral. We compute the determinant
det(r, ry, 19). Let e, be the radial unit vector. Then r = rep.
Differentiation yields r, = rye, + re, and rg = rge, + rsin gey.
The cross product is:

ry X 19 = (ryep +1rey) X (rge, + rsin gey).
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Ignoring terms with e, x e, = 0, the only term with a radial

component comes from (re,) X (rsin gey) = r’sing(e, x eg) =

12 sin ge,. Thus, the dot product with r is:

1 (rp X19) = (rep) - (- +1’2sin(pep) =

sin @.
Applying the parametric formula yields the result.

Method 2: Triple Integral. Integrating the volume element
p%sin @ dp dg do:

r(¢,0) 3
V:// sinqodcpdG/ p?dp = // r’(9.9) singdgde.
D 0 p 3

Example 3.3. Volume of a Cardioid of Revolution. Calculate the

volume enclosed by the surface given in spherical coordinates by
r(¢,0) = a(1+ cos ¢) (where a > 0,0 < ¢ < ).

Eal
Solution

Using the spherical volume formula with D = [0, t] x [0,271]:

1 27 T
V= 5/ d9/ a®(1+ cos @)’ sin p dog.
0 0

The 6 integral gives 27t. For the ¢ integral, let u = 1 4 cos ¢. Then

tz

du = —sing@de. Limits: ¢ =0 = u=2,9p=nm = u=0.

1%

4

3 4 3

 2ma /2 gy 2 [t 2ma 16 8mad
3 3 0 B .

3.4 Exercises Figure 3.5: The cardioid of rev-

olutionr = a(l 4+ cos¢) in
1. Flux through Simple Closed Surfaces. Use Gauss’s Formula to spheliicastrgg)ordinates. Its vol-
compute the following vector surface integrals. ume1s =3—.

(a) # y(x — z)dydz + 22 dzdx + (y* + xz) dx dy, where S is the
suiface of the cube [0, 4] with inner orientation.

(b) # (x® + x)dydz + (y* — xz) dzdx + (2> + z) dx dy, where T is
thﬁ sphere x? + y? + z2 = 2z with outer orientation.

(c) Let X be the surface of revolution obtained by rotating the
region bounded by z = 1 — y? and z = 0 in the yz-plane
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around the z-axis (outer orientation). Calculate the surface
integral:

0A3 0A; 0A1 0A3 0A; 04
ﬁé(ay 5 )dydz—l—( e ax)dzdx+<ax ay)dxdy,

where Ay = x® — x%y + 2%, Ay = xy? + 13, A3 = xz + z°.

2. Open Surfaces and Auxiliary Caps. Calculate the following inte-
grals by closing the surface and applying Gauss’s Formula.

(a) // (x?cosa + y? cos B + z% cos ) dS, where X is the conical
b

2

surface z2 = x2 + y2 for 0 < z < h, with downward normal

(cosw, cos B, cosy).

(b) // x3dydz + y® dz dx + z° dx dy, where ¥ is the upper hemi-
=

sphere x% + y? + z2 = a? (z > 0) with upper orientation.

x3 y3 Z3
(©) //Z (a3 +y3z3) dy dz + <b3 +z3x3> dz dx + (C3 + x3y3> dx dy,

where X is the part of the ellipsoid ;—; + Zé + i—; = 1 with
x > 0, oriented towards negative x.

3. Volume of a Cone. Let X be a conical surface F(x,y,z) = 0 with
vertex at the origin. Let IT be the plane Ax 4+ By + Cz = D. Prove
that the volume of the cone formed by X and ITis V' = %SH,
where S is the base area on I and H is the perpendicular height
from the origin to I1.

Remark.
Use the vector volume formula V = % J/ r-ndS and consider the
contribution from the lateral surface.

4. Volume of a Lemniscate Surface. Find the volume of the solid
enclosed by the surface (x? + y? + z2)? = a%xy.

Remark.

Use spherical coordinates.

5. Flux on a Hyperboloid. Calculate [[5(x® + %) dydz + (x® +
2x%y) dz dx — x*zdx dy, where ¥ is the portion of the hyperboloid
X%+ y2 — z2 = 1 between z = 0 and z = /3, oriented outwards.

6. Paraboloid Flux. Let V = {(x,y,z) | x> +y>* <z < 1} and S = 9V.
Calculate the outward flux:

# yzdzdx + (x* + y*)zdx dy.
S



INTRODUCTION TO VECTOR CALCULUS 61

7. Mixed Flux Integral. Evaluate the surface integral
#zdydz—l—cosydzdx—l—dxdy
S

over the outer side of the unit sphere x? + > +z? = 1.



4
Stokes” Theorem

In the previous chapters, we established Green’s Formula, which
relates a line integral along a simple closed curve in the plane to a
double integral over the enclosed region. We also developed Gauss'’s
Formula, linking surface flux to volume integrals. We now com-
plete this triad of fundamental theorems with Stokes” Formula (often
called Stokes” Theorem). This result generalises Green’s Formula to
oriented surfaces in R3, providing a profound connection between
the circulation of a vector field along a boundary curve and a surface
integral involving its partial derivatives.

The Stokes Formula

Let ¥ be a piecewise smooth oriented surface in IR?>, bounded by

a piecewise smooth, simple closed curve 0X. We adopt the right-
hand rule convention for orientation: if one’s right hand curls in the
direction of the traversal of 0%, the thumb points in the direction of
the unit normal vector n of %.

Let P, Q, R be functions with continuous partial derivatives on a
region containing X..

Theorem 4.1. Stokes’ Formula.

The line integral of the vector field F = (P, Q, R) along the boundary
0 is equal to the surface integral of the determinant of partial deriva-
tives over 2. In coordinate form:

dydz dzdx dxdy

55 de—l—Qdy—i—Rdz:// 2 2 2
0% >
P Q R

Using the relation between surface integrals of the first and second types

(proposition 2.1), this may be written in terms of the directional cosines
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(cosw, cos B, cosy) of the normal n:

cosx cosf3 cos7y

F.dr:// 2 2 2 | 4s.
éz z al_f % %z

Q R

The integrand is composed of the terms:

a—R—a—Q cosu + a—P—a—R cos b + a—Q—a—P cos
dy 0z Jdz  ox p ox 9y T

%
Note
If the surface X lies entirely in the xy-plane, the normal is
k = (0,0,1). The determinant simplifies to aa—g — 3—1;, and Stokes’

Formula reduces directly to Green’s Formula (t/eorern 1.1).

Example 4.1. Cube Section Circulation. Calculate the circulation

I= §1§(y2 —22)dx + (22 — ) dy + (x* — y?) dz,
C

where C is the intersection of the boundary of the cube O = {0 <
x,y,z < a} and the plane x +y +z = 3a. The orientation of C is
counter-clockwise when viewed from the positive z-axis.

Xl
Solution

Calculating the integral directly would require parametrising the
six segments of the hexagonal intersection shown in figure 4.1.
Instead, we apply Stokes” Formula. Let X be the planar region en-

closed by Contheplanex +y +z = %a. The normal vector to the
plane is (1,1,1). Normalising givesn = %(1, 1,1). Because n has

positive z-component, the stated “counter-clockwise when viewed
from +z” boundary orientation agrees with the right-hand rule for
Stokes.

We compute the terms for the surface integral fromF = (2 —

22,22 — x2,x2 —y?):

JR 0 0 0
(5~ 5) = =) - @) = -2,

oP OdR d 0

(az_8x> =5 V=) -5 () =222
0Q 9P\ _ 9 o 2y 92 oy 5
<8x ay>_ax(z x°) ay(y z%) = —=2x — 2y.

The normal vectorisn = (%, \%, %) The integrand is the dot

63
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product of these terms with n:

1 2 4
— -2y —2z)+(—2z—2x)+ (—2x-2y)| = ——=(2x+ 2y +2z) = ——=(x+y +2z2).
("2 —22)+( )+ ( Y= - Fx++2) = -ty +2)
On the surface ¥, we have x +y +z = %a. Therefore, the integrand
is constant: 4 /3
2 (3)) = 2y
)

The integral becomes:
I= // —2v/3adS = —2/3a - Area(%).
by

The intersection of the cube with this plane is a regular hexagon.

The distance from the origin to the plane is h = 3%2 = ?a, which

passes through the centre of the cube. The hexagon vertices are the

. . o a4
midpoints of the cube edges. The side length is s = N The area of

a regular hexagon is %sz = % (%) = %az. Substituting this

area: // \

[=—-2v3a- (3\@112) = —ga3.

4

Example 4.2. Stokes’ Theorem on an Intersection Curve. Use

Stokes’” formula to calculate Figure 4.1: The hexagonal

intersection C of the plane

I = 2422 dx + (22 + x2) dy + (22 4+ y?) dz,
ygc(y ) ( )dy +( v x+y+z:%aandthecube.

where C is the intersection of the sphere x> + y? + z2 = 2Rx and the
cylinder x2 +y? = 2rx (0 < r < R,z > 0). The boundary orientation
is the one induced by the outward normal of the spherical cap via
the right-hand rule (equivalently, traversing C keeps the smaller cap
on the left).

#b)
Solution
Let T be the portion of the sphere x> + y? + z2 = 2Rx lying inside
the cylinder, oriented with the outward normal. The boundary 0x
corresponds to the curve C with the specified orientation.

The vector field is F = (y* + z2,z% + x2,x2 + y?). The terms for the
surface integral are:

R _9Q P R 99 P
dy 9z 9z 9x’ dx dy /)’
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Substituting the components:
(2y — 22,2z — 2x,2x — 2y).

The surface ¥ is part of the sphere (x — R)% +y? + z? = R?. The unit
outward normal vector n is:

n= %(x—R,y,z).

We evaluate the integrand for Stokes’ formula:

1

R [(2y —2z)(x — R) + (2z — 2x)y + (2x — 2y)z]
(

2
zﬁ[ xy —yR —zx + zR) + (yz — xy) + (xz — yz)].

Upon expansion, the terms xy, zx, and yz cancel:

2 (=R~ yR) =2(z — y).

Thus, the integral becomes:

I://Z2(z—y)d5:2//zzd5—2//zyd5.

The surface & and the domain D (x* + y?> <  2rx) are symmetric
with respect to the plane y = 0. Since the function f(x,y,z) = y
is odd with respect to y, the integral [[;. y dS vanishes. We are left

with:
[=2 // 2dSs.
>

For the sphere (x — R)? + y? + z> = R2, projecting to the xy-plane
gives dS = 2 dxdy (standard Jacobian for z = +/2Rx —x% — 2);
multiplying by z yields the handy identity zdS = Rdxdy. There-
fore, we reduce the surface integral to a double integral over the
projection domain D:

122// z <R) dxdyzZR// dxdy = 2R - Area(D).
D \Z% D

The domain D is the disk x% + y2 < 2rx, which has radius r and b2

area 7'[1’2 .

N

[ = 2R(7r?) = 27°R.

X

Figure 4.2: The surface X on
the sphere cut by the cylinder,
bounded by the curve C.
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4.2 Theoretical Consequences

Stokes” Formula allows us to prove general properties of vector fields
on closed surfaces.

Proposition 4.1. Closed Surface Integral.
Let X be a piecewise smooth closed surface enclosing a volume ). If
F = (P,Q,R) is a vector field with continuous partial derivatives, then:

cos(n,x) cos(n,y) cos(n,z)
o o o
P Q R
A

We present two proofs to illustrate the consistency of vector calculus.
Gauss's Formula

Assume F is twice continuously differentiable. Apply Gauss’s For-
mula (theorem 3.1). The integrand is:

oR 9Q oP OR Q op
(50 =50 (5 50 oo (55 55 o
Applying Gauss’s Formula converts this surface integral into a
triple integral over ():

R 30 9 (0P OR d /0Q P
/A [ax (‘&)*w(&‘w)*az(ax‘ay)] dxdy dz.

By symmetry of mixed partial derivatives (Schwarz’s Theorem),
terms cancel (e.g., g’i—aRy — aa;—ali = 0). The volume integral is identi-
cally zero.

EXCES
Stokes’” Formula (Splitting Argument)
This method requires only first-order derivatives on X. Divide
the closed surface X into two patches ¥; and X, by introducing a
simple closed curve C on X. Orient ¥ with the outward normal n.
Apply Stokes” Formula to each patch:

// dS—yg Pdx + Qdy+ Rdz,

% oz

// ds_7§ Pdx +Qdy + Rdz.
oy B

Note that the boundaries 0%, and 0%, are the same curve C, but
their induced orientations are opposite (see figure 4.3). Let C be
oriented consistently with 2. Then 0%, is traversed in the reverse
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direction, so the second integral is the negative of the first. Sum-
ming the two integrals gives zero.

- -3

ER & 1 8 C

4.3 Conditions for Path Independence in Space

We now extend the conditions for path independence of line inte- 0xy =G, 0% = —C

grals, previously established for planar regions, to three-dimensional Figure 4.3: Splitting a closed

space. The result relies fundamentally on Stokes” Formula, which surface £ into £; and , along

links the circulation of a field to the derivatives of its components. . .
curve C. The induced orienta-

However, the validity of this extension depends on the topological .
tions on C cancel.

nature of the domain.

Simply Connected Regions in R®

In the plane, a region is simply connected if it contains no "holes".
In R3, the concept is slightly more subtle. For Stokes’ Formula to
imply that vanishing partial derivative terms lead to a vanishing
circulation, we require that every closed curve C in the domain
bounds a surface X that lies entirely within Q).

Definition 4.1. Surface Simply Connected Region.

A region Q) C R is said to be surface simply connected (or simply
connected) if for every piecewise smooth simple closed curve C C (),
there exists a piecewise smooth orientable surface ¥ C () such that
o =C.

Example 4.3. Topological Examples.

1. Concentric Spheres: The region between two concentric spheres
(a spherical shell) is surface simply connected. Any closed loop
within the shell can be "shrunk” or spanned by a surface without
hitting the central void.

2. Cylindrical Hole: The region Q = {(x,y,z) € R® | 1 < x® +y?}
(space with a cylinder removed) is 170t simply connected. A loop
encircling the z-axis cannot be spanned by a surface within Q).

3. Torus: The interior of a torus is not simply connected.

.41

Equivalence of Conditions

Theorem 4.2. Conservative Fields in Space.
Let Q be a surface simply connected region in R3. Let F = (P, Q, R)
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be a vector field with continuous partial derivatives on (). The follow-
ing conditions are equivalent:
1. Irrotational Field: The cross-partial derivatives are equal everywhere
in )
OR 0Q oP oOR 0Q P

0 9z ax ox ay
2. Zero Circulation: For any piecewise smooth closed curve C C (),
¢ F-dr=0.
3. Path Independence: For any path L C () from A to B, the integral
J; F - dr depends only on the endpoints A, B.

4. Exact Differential: There exists a scalar potential ¢ on (2 such that
F=Vg (ie,dp = Pdx + Qdy+ Rdz).
g

Proof
We outline the cyclic implications (1) = (2) = (3) = (4) = (1).

(1) = (2): Let C be a closed curve. Since () is surface simply
connected, there exists a surface>. C QwithdX = C. By
Stokes” Formula, the integrand involving the differences of par-
tial derivatives vanishes (since they are equal), so:

¢F~dr://0d520.
C x

(2) <= (3): Standard argument identical to the planar case (see
theorem 1.2).

(3) = (4): Fix a base point My (xo, Yo, 20). Define (M fM F-dr.
Since the integral is path-independent, ¢ is well- deﬁned Differ-
entiating ¢ with respect to x, y, z recovers P, Q, R.

(4) = (1): If F = Vg, then the mixed partials are equal (e.g., ay =
) ) )

oyox E)xay - Bx

When these conditions are met, the potential function ¢(x,y,z) can
be recovered by integrating along a piecewise linear path parallel to
the axes from (xo, yo,20) to (x,y,2):

Z

Q(x, t,zg) dt + / R(x,y,t)dt + C.

Z0

x y
o(x,y,2) :/ P(t,yo,zo)dt+/
X

0 Yo

| Example 4.4. Recovering the Potential. Consider the differential
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form

T\ x%y w2422 xy? YT\ )%

Determine if a potential exists, and if so, find it.
$45)
Solution

Let P, Q, R be the coefficients of dx, dy, dz. We verify the equality of
partial derivatives on the domain x,y > 0.

9 o o o o
1% = 9z ly ) = 2y 2 ‘g—ly) = a%(zx 2yl = —zx 2y 2.
(Match)
- 1.2 9 _ _
2 5 = Gy ) =y F = ST = ()
(Match)
op _ 1 1(x2+zz)fz(22) 1 x22 R 1(x2+zz)fx(2x) B
302 Ty T T GERRE T Ry GERE ox T (PR

2 2

—2,-1y 22— 1
(—x—2y™ ) = ﬁ + 2, (Match)

Since the cross-partials match, a potential ¢ exists. We compute it
using two methods.

Path Integration. We integrate from (xg,yo,0) to (x,y,z).
We choose z = 0 to simplify terms involving z. Path:

Ly : (x0,Y0,0) = (x,10,0); Lp :— (x,y,0); L3 :— (x,y,2).

e Along L; (y = yo,z = 0,dz = 0,dy = 0): P(x,10,0) =0(...) =
0. Integral is o.

e Along Ly (x = x,z = 0,dz = 0,dx = 0): Q(x,y,0) = 0/(xy2) =
0. Integral is o.

e Along L3(x = xy = yfixed, z varies): Integrand is
R(x,Y,2) = @iz — 55

x2422 xy’

z x 1 t  t]* z oz
Q= — 5 — — |dt=|arctan- — —| =arctan_— —.
0 \Xx-+t xy X xylg X xy

Thus ¢(x,y,z) = arctan ¥ — xiy +C.

Indefinite Integration. Since %—(’ZD = R, we integrate R with respect to
z:

—/ L dz = arctan = — = + (x,y)
¢= x2 422 xy - x o oxy plxy).

Now differentiate with respect to y:

ai’:_f(_ ,2)+871p z 9

oy Y ay_xy2+ay'

69
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Equating to Q = xiyz implies %} = 0,s0 ¢ = (x). Differentiate
with respect to x:

dp _ L ZN o iy TR B
a_l—l—(z/x)z( xz) 2(=x"%y )+lp(x)_x2+zz+x2y+¢(x)-

Equating to P shows ¢’(x) = 0. Thus ¢ is a constant.

o(x,y,z) = arctang — xiy +C.

4.4 Exercises

1.

Exact Differentials. Prove that the following forms are exact and
find their primitives:

(@) (¥* —2yz)dx + (y* — 2xz) dy + (z* — 2xy) dz.

_ox 1 2 1y 3
(b) {(;2_%)2 x+2x]dx+[y (x2—y2)2+3y dy +
5z° dz.

Path Independence Calculation. Evaluate

(6,1,1)
/(123) yzdx + xzdy + xy dz.

Radial Field Work. Let C be any piecewise smooth path from a
point on the sphere r = a to a point on the sphere r = b (b > a).
Prove:

/Cr3(xdx +ydy +zdz) = %(zﬁ O

Plane Area via Determinant. Let C be a simple closed curve on
the plane x cosa 4y cos B+ zcosy = p, enclosing an area S. If the
orientation of C and the normal vector (cos«, cos B, cosy) form a
right-handed system, show that:

dx dy dz
?§ cosax cosf3 cosvy|=2S.
€l x Yy z

Intersection Circulation. Calculate
by dxt (z=vdy+ (x -y,
C

where C is the intersection of the cylinder x*> + y> = 1 and the
plane x +y + z = 1, oriented counter-clockwise when viewed from
the positive x-axis.
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Path Integral on a Cone. Find
/ (2% +3x%y) dx + (2 + 3y°z) dy + (y° + 32°x) dz,
C

where C is the intersection of the cone z = \/a%? — x2 — y? and the
plane x = y, from A(%, %,0) to B(—%, —\%,O). Note that the
path goes over the apex of the cone.

Stokes on an Open Surface. Use Stokes’ formula to compute:
/ T [(x + 1)y* + 1] dx + 2xy dy + xy? dz},
C
where C is the intersection arc of the half-cylinder |x| + |y| = a

(y > 0) and the plane y = z from (—a,0,0) to (a,0,0).

Vanishing Circulation. Let C be any piecewise smooth simple
closed curve. Let f, g, h be continuous functions. Prove that:

(P F(3) =zl + [5(4) — x2]dy + [n(z) = ) dz = .

Surface Integral. Calculate

cosx  cosff  cos7y
9 9 o
x—z x>—yz —3xy?
where ¥ is the upper hemisphere x> + y? 4 z2 = R? (z > 0) with
the [ower (inner) normal orientation.

Great Circle Circulation. Find
?ﬁ yax+zdy +xdz,
C

where C is the great circle formed by x2 + y? + z2 = 42 and
x +y +z = 0, oriented counter-clockwise viewed from the positive
z-axis.

71



5.1

>

Outer Product of Vectors, Exterior Differentiation, and

the General Stokes Formula

Although differential forms and exterior differentiation may not ap-
pear in every standard curriculum, they have become fundamental
tools in modern analysis. Their concise expression and structure pro-
vide significant convenience when addressing fundamental problems
in calculus.

Outer Product of Vectors

We begin by considering two linearly independent vectors a =
(a1,a2) and b = (b1, by) in the plane R%. Let I1 be the parallelogram
spanned by a and b.

We stipulate an orientation for this area: when a rotates counter-
clockwise to b, the area of the parallelogram is positive; otherwise, it
is negative. From analytic geometry, the signed area of IT under this
definition is given by the second-order determinant:

ay ap
by by

Definition 5.1. Outer Product in R?,
The outer product of vectors a and b is defined as:

ay az

Ab =
a by by

Note

Here A denotes the determinant (oriented area) of two vectors.
Later, the same symbol is used for the wedge product of differential
forms; context distinguishes the two, but both encode orientation.
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Proposition 5.1. Properties of the Outer Product.

The outer product operation satisfies the following properties for all

abceR?and A € R:

1. Antisymmetry: aAb = —b A a. It follows immediately that a A
a=0.

2. Linear Distribution Law:

aAN(b+c)=aAb+aAc,
(a+b)Ac=aAc+bAg,
(Aa) Ab=aA (Ab) = A(aADb).

¥

P
Proof

These properties follow directly from the algebraic properties of the
determinant.

1. Antisymmetry: Swapping the columns of a determinant changes
its sign:

by by
ay ap

ay az

bAra=
a by by

=—(aADb).

2. Linearity: The determinant is linear in each of its columns. For
the first distribution law:

a1 a
bi4+c1 b+

a; az
by by

ap dap
1 €

aA(b+c) =

+

Scalar multiplication follows similarly from factoring constants
out of rows or columns.

We extend this definition to higher dimensions.

Definition 5.2. Outer Product in R".
Let a; = (aj1,ap,...,a;,) fori=1,2,...,n be vectors in R". The outer
product is defined as the determinant:

ai app ... aip

azr 4 ... Oy
agNayA---Na, =

Ayl Ap2  --- Gun

=aAb+aAc

Figure 5.1: The parallelogram I1
spanned by a and b. The outer
product is positive when the
rotation from a to b is counter-
clockwise.
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Proof

The determinant is an alternating multilinear map in its rows (or
columns): it is linear in each row separately and changes sign when
two rows are interchanged. Both facts are standard consequences
of Laplace expansion. Since the n-vector outer product is exactly
this determinant, the two-dimensional properties in proposition 5.1
carry over verbatim: swapping any two a; reverses the sign (an-
tisymmetry), and each row is linear in the corresponding vector
(multilinearity).

[ |

In the specific case where n = 3, the outer product of three linearly
independent vectors aj, ap, a3 represents the oriented volume of the
parallelepiped having these vectors as edges.

- When aj, ay, a3 form a right-handed system, the volume is positive. 2

- Otherwise, the volume is negative. ) )
Figure 5.2: The parallelepiped

. . spanned by aj, ap, a3 in R3. The
Differential Forms outer product gives positive
e volume when the vectors form
The geometric intuition of the outer product allows us to construct i
. . . . . e a right-handed system.
a rigorous algebraic framework for integration and differentiation in
higher dimensions. We begin by revisiting the total differential of a
continuously differentiable function f : U — R on a region U C R".

Recall that the total differential is given by:
n af
df = 1; E)Tcz dx;.

Here, the differentials dxq,dx», ..., dx, are traditionally viewed as
independent increments of the variables. In the language of differen-
tial forms, we reinterpret these dx; as basis vectors of a linear space,
independent of the specific values of x. The differential df is thus a
vector in the space spanned by this basis.

First-Order Differential Forms

We formalise the space of these objects. Let U C R”" be a region
and let CK(U) denote the set of k-times continuously differentiable
functions on U.

Definition 5.3. 1-Form.
A first-order differential form (or simply a 1-form) on U is an expres-
sion of the type:

w=ay(x)dxy +ax(x)dxy+ - + ay(x) dxy,

where the coefficients 4;(x) are continuous functions on U (i.e., a; €
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co(u)).

A
2

The set of all such 1-forms on U is denoted by Al(U).

Note

If the coefficient functions a;(x) belong to C¥(U) for some integer
k>
addition and scalar multiplication by functions in C°(U), A}(U)

1, we say the form is of class C¥. Under standard pointwise

forms a linear space (specifically, a module) over the ring of contin-

uous functions.

Higher-Order Differential Forms

To define forms of higher degree, we construct a new basis by tak-
ing the outer product of the differentials dx;. We denote the outer
product of dx; and dx; by the symbol A (read as "wedge").

Consistent with the properties of the outer product of vectors derived
in the previous section, we impose the following algebraic rules:

1. Antisymmetry: dx; Adx; = —dx; Adx; for all i, j.

2. Vanishing Property: dx; A dx; = 0 for all 7.

2-Forms

From the set of differentials {dxy,...,dx,}, we can form ordered
pairs dx; A dx;. Due to antisymmetry, we only require basis elements

where the indices are strictly increasing.
Definition 5.4. 2-Form.

ear space A?(U) spanned by the basis elements {dx; Adx; |1 < i <
j < n}. The standard form of a 2-form is:

w =

2 gl](x) dxi/\dx]-,

1<i<j<n

where g;i(x) are function coefficients.

The dimension of this basis over the function space is the binomial
coefficient (7).

General p-Forms

We generalise this construction to arbitrary order p. A basis element
is formed by the wedge product of p differentials:

dx,-l A dxiz VANRIRWAN dxl-p.

A second-order differential form (or 2-form) is an element of the lin-

] I

d UT g\ I = —ay Q !
] I

\ N

dx R dy dy R dx

75

Figure 5.3: Antisymmetry of the

wedge product: swapping the
order reverses the orientation.

Figure 5.4: Visualisation of the

basis 2-form dx A dy in R? as an

oriented area element.
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The antisymmetry rule extends to these products: swapping any two
adjacent terms changes the sign of the product.

s Ndxy Ndxg A== ANdxg Adxy AL L)

Consequently, if any index is repeated (i.e., i, = is for r # s), the
entire product vanishes.

Definition 5.5. p-Form.
A p-th order differential form (or p-form) is an element of the linear
space AP (U) with basis elements:

{dxi]/\dxizA~~~/\dxip|1§i1<i2<---<ip§n}.

The standard form is given by:

w = 2 giliz---ip (x) dxil A dxiz VANEEIEIVAN dxip.
1§i1<l’2<~“<l’p§}’l
There are (’;) such basis elements. We note two important boundary

cases:
1. Top-dimensional forms (A"): Since there is only one way to
choose n distinct indices from 7 possibilities (up to permutation),
the space A" is 1-dimensional over the functions. Any n-form can
be written as:
w = g(x)dxg Ndxg A+ ANdxy,.

2. Zero forms (A”): By convention, a o-form is simply a scalar func-
tion on U. Thus A%(U) = C°(U), and the function g(x) = 1 serves
as a basis.

3. Vanishing forms (p > n): If p > n, any product of p differen-
tials from a set of n must contain a repetition (by the Pigeonhole
Principle). Thus, dx;; A--- Adx;, =0, and AP = {0}.

Outer Product of Differential Forms

Having defined the spaces A, we now construct the algebra of dif-
ferential forms by introducing the outer product operation on the
direct sum space A = A’ + Al + ... + A". This space has di-
mension Y}_,Ck = 2". Any element w € A can be written as

w = wy+ -+ wy, where w; € Al

Definition 5.6. Outer Product of Forms.
Letdx; = dx;; A+ A dxip and dx; = dxj; A+ A dqu be basis ele-
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ments. Their outer product is defined as:
dxl/\dx] = dx,'] /\~~~/\dxip /\dle /\"'/\dqu‘

This yields a (p + q)-form. If the index sets {iy,...,i,} and {ji,...,js}
share any common elements, then dx; A dx; = 0. For general forms
w =Y 81(x)dx; € AP and 1 = Y hj(x)dx; € A1, the product is:

wAn =Y gr(x)hy(x)dx; Adx;.
L]
For a o-form f € A, we define f Aw = fw = Y1 f(x)g1(x)dx.

Proposition 5.2. Properties of the Outer Product of Forms.

The operation A satisfies the following properties:

1. Dimensional Vanishing: If v € A?,y € AT and p+q > n, then
wAn=0.

2. Graded Commutativity: For w € AP, € A1:

wAy=(-1PIg Nw.

3. Distributivity and Associativity: For any w, 7,0 € A:
(wH+n)No=wAho+nAo,

cAN(w+n)=cAw+oAy,

(WA ANo=wA(gAo).

>
&

Proof
The properties stem from the definition of the outer product on
basis elements and its linear extension.

1. Dimensional Vanishing: A basis p-form dx; uses p distinct
differentials; a basis g-form dx; uses g distinct differentials. If
p+4q > n,the combined list of indices must repeat some dxy,
and antisymmetry forces dx; A dxy = 0, so every summand in
w A 1 vanishes.

2. Graded Commutativity: Swapping dx; (length p) past dx;
(length g) involves pq swaps of 1-forms; each swap contributes a
factor —1, yielding (—1)P7 overall.

3. Distributivity and Associativity: Let w = Y ¢dx;, 1 = Y hjdxy,

77
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and 0 = Y kgdxg. Then
(wW+n)ANo = Z(gl—l—h[)dexI/\de =wAoT+yAo0,
LK
and similarly on the right. For associativity, note that
(dxp Adxp) Ndxg = dxp A (dxj A dxg) because concatenating
the ordered list of differentials does not depend on parenthesisa-
tion; linearity extends this to general forms.
|
Corollary 5.1. Self-Product of Forms. If w € AP and w # 0:
- If pis odd, then w Aw = 0.
- If p is even, w A w is not necessarily zero.
i
Proof
By graded commutativity, w A w = (—1)Pw A w. Bringing terms to
one side gives (1 — (fl)pz)w Aw = 0.If pis odd, (—1)”2 = -1,
so the factor is 2 and the only solutionis w A w = 0. If p is even,
(—1)172 = 1, the prefactor vanishes, and no cancellation forces the
square to be zero—indeed, example 5.1 shows it can be non-zero.
|
Note
Unlike the outer product of vectors in R” (wherea A a = 0), the
outer product of differential forms allows for non-zero squares
when the degree is even.
Example 5.1. Non-zero Square in R*. Consider the 2-form
w = dx; Adxp +dxz Adxy in R,
wAw = (dxy Ndxy 4+ dxg Adxg) A (dxy Adxy +dxs Adxy)
= (dx1 A dJCz) N (dxl AN dXZ) + (dx1 AN de) N (dX3 N dX4)
+ (dxz Adxy) A (dxg Adxp) + (dxs Adxg) A (dxg Adxy).
Terms with repeated indices vanish. Using the property that
a A B = BAa for 2-forms (since (—1)?*? = 1):
wAw=2dxy Ndxy Ndxz N dxy.
#a )

Exterior Differentiation

We introduce the exterior differentiation operator d : A — A.
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Definition 5.7. Exterior Derivative.
Let U C R™
1. For a differentiable function f (o-form), df is the total differential:

df = Z af dx;.
2. For a p-form w = g(x)dx;, A--- Adx;,, defined on U:

n
d
dw = ;a—fjdxj/\dxil Ao Ndxg,.

3. The operator is extended to all of A by linearity: d(aw + p1) = adw +

pdr.
&R
Example 5.2. Derivative of Basis Elements. Letw = dx; A--- A
dx;,. Then dw = 0.
Eid)

Proof

Regard was 1-dx; A---Adx;. Thendw =d(1) A\w =0Aw = 0.
]

Example 5.3. Calculation in R®. Let w = Pdx + Qdy+ Rdzbea C!
1-form in R3. Calculate dw.

Exia

Solution

dw=dP ANdx+dQANdy+dR Ndz.
Expanding dP = ax L iy + d]/ + %lzjdz

oP oP oP oP
dP Ndx = <aydy—|— 52 =—dz > Ndx = @dy/\dx—i- gdz/\dx.
Summing all terms and using antisymmetry (dy A dx = —dx A dy,
etc.):
_ [(OR 0Q oP 0R 0Q P
dw = (E)y az> dy Ndz+ (E)z ax) dz Ndx+ (8 ay) dx Ndy.

Example 5.4. Second Derivative of a Function. Let f € AP be of
class C2. Then d?f = 0.

ERl
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Proof

n af n af n n a f
f=d (Zl axidxi> = Z%d <8x> Adx; = Z% Z% axidxj Adx;.
1= 1= 1=1j=

i — aX]
We split th into i < jand i > j. Using ~od— = 24 and dx; A
e split the sum into i < j an j- Using g = ey and dx;
dx; = —dx; N dx]':

0% f 0 f
20 _ _ ‘ _
a°f = ; <axiax]- ax;0x; dx; Ndxj = 0.

u
Proposition 5.3. Properties of Exterior Differentiation.
1. Leibniz Rule: If w € AP and 77 € A7 are C!, then:
dlwAn)=dwAny+(—1)PwAdy.
2. Nilpotency: If w is C?, then d(dw) = 0.

Proof
It suffices to prove these for basis elements. Let w = fdx; where [ is

a multi-index of length p, and = gdx; where | is a multi-index of
length g.

1. Leibniz Rule: Note that w Ay = (fg)dx; Adx;.
dlwNn) =d(fg) Ndxy Adxg

= (gdf + fdg) Ndx; Ndx;
= (gdf Ndxy Ndxp) + (f dg ANdxp Adxy).

For the first term, we can commute g to the front (scalar):

(df Ndxp) A (gdxy) = dw A 1. For the second term, we must
move the 1-form dg past the p-form dx;. This requires p transpo-
sitions, introducing a factor of (—1)*:

fldg ndxp) Ndxp = f((—=1)Pdx; ANdg) Ndxp = (=1)P(fdxr) A(dg Ndxp) = (=1)Pw Ad.
Summing these gives the result.

2. Nilpotency: Using the Leibniz rule on w = fdx; (regarding dx;
as a form with constant coefficient 1, so d(dx;) = 0):

d(dw) = d(df Adx;) = d(df) Adx; —df Ad(dx;).
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We know d(df) = d?f = O (from the previous Example) and
d(dx;) = 0 (derivative of basis). Thus d*w = 0.

Transformation and Jacobi Determinant

Let A be a linear transformation on IR® with matrix (aij). Let QO be a
cube with side lengths «, B, . Its volume corresponds to the vector
outer product:

V=aiABjAyk=aBy(iNjAk).

The image set A(Q) is a parallelepiped spanned by the transformed
vectors ,J,1. Its oriented volume is:

AJA1=detA- (afyiNjAk) = (detA)V.

If det A > 0, the vectors form a right-handed system; otherwise, they
form a left-handed system. The factor det A is the oriented volume
scaling; the unsigned volume scales by | det A|.

For a general bounded closed set (), using the definition of multiple
integrals:

Vol(A(Q)) = ///A(Q) dxdydz = detA///Qdu dvdw = (det A)Vol(Q)).

Thus, det A represents the volume expansion coefficient.
- If det A > 0, the transformation is direction-preserving.

- If |det A| = 1, the transformation is volume-preserving (area-
preserving).
This extends to differentiable mappings f : R3 — R3. Near a point
Py, f is approximated by its linearisation with determinant equal to
the Jacobian:
_ 9xyz)
J= o(u,v,w)’
If ] > 0 everywhere, f preserves direction; if |J| = 1, f preserves
volume.

Change of Variables in Multiple Integrals

The exterior product of differential forms provides a natural and rig-
orous mechanism for handling the change of variables in integration.
Let the volume element in a right-handed Cartesian coordinate sys-
tem O — xyz be dx dy dz. Geometrically, this represents the volume of
an infinitesimal cube. In the language of forms, we denote this as the
wedge product dx A dy A dz.
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Consider a coordinate transformation T : D C R* — RR® given by:
x=x(u,v,w), y=yuow), z=zu,ow).

Let the volume element in the parameter space be du A dv A dw.
Using the properties of the wedge product and the total differential,
we compute the transformed volume form directly:

_ [ox ay 0z
dx Ndy Ndz = <audu—0—...>/\ (E)leu—l—...)/\(wdu—i-...).

Terms with repeated differentials (like du A du) vanish. The remain-
ing terms assemble into the Jacobian determinant:

a(x,y,z)

31, 0, w du ANdo A dw.

dx Ndy Ndz =

This yields the change of variables formula:

/ f(x,y,z)dx/\dy/\dz:/f(x(u,v,w),y(u,v,w),z(u,v,w))a(x'y'z)du/\dv/\dw.
T(D) D d(u,v,w)

Proof

Substitute the total differentials dx = Y, x,, du + x, dv 4 xy, dw (and
similarly for dy, dz) into dx A dy A dz. By antisymmetry every term
containing a repeated factor such as du A du vanishes. Exactly one
term survives for each permutation of (du,dv,dw); its coefficient is

the corresponding signed minor of the Jacobian matrix. Collecting
I(xy.2)
a(u,0,w)
both sides over D yields the stated change-of-variables formula and

these gives the determinant

times du A dv A dw. Integrating

automatically tracks orientation via the sign of the determinant.
n

Note

Unlike the standard scalar change of variables formula involving

7

a(x,y,z)
a(u,v,w)

the form-based version does not require absolute values. The
orientation is handled automatically: if the Jacobian is negative,

the orientation of the integration domain is reversed, and the
wedge product du A dv A dw carries that sign. Also, note the or-
der sensitivity: dx A dy A dz is the positive volume element, while
dy Ndx Ndz = —dx N\ dy A dz corresponds to a left-handed system.

Example 5.5. Polar Coordinates. For x = rcosf,y = rsin6:

dx Ndy = g((f'g))dr/\d() = (cos0-rcosf — (—rsinf)sin®) dr Ado = rdr A db.
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Exia

The General Stokes Formula

We now arrive at the unification of the fundamental theorems of
vector calculus. By interpreting integrands as differential forms, we
see that the Fundamental Theorem of Calculus, Green’s Theorem,
Gauss’s Theorem, and Stokes” Theorem are all special cases of a
single result.

Let M be an oriented region (manifold) of dimension k, and let oM
be its boundary with the induced orientation.

1. Newton-Leibniz: M = [4,b]. oM = {b} — {a}. For a o-form f:

/abdf(X)=f(b)f(a) — [ = r.

2. Green’s Theorem: D C R%. w = Pdx + Qdy. Then dw = (9:Q —
9yP)dx N dy.

yg Pdx + Qdy = // (E)x )d Ady:>31§ a)—/dw

3. Classical Stokes’ Theorem: £ C R3. w = Pdx + Qdy + Rdz. Then
dw corresponds to (V x F) - ndS.

yngdr://z(VxF)-dS = ézw:/zdw.

4. Gauss’s Theorem: Q C R®. w = Pdy Adz + Qdz A dx + Rdx A dy.
Then dw = (V - F)dx A dy A dz.

# F-dS:// V- -FdVv :>y§ w:/dw.
Q) Q Q) Q

These observations lead to one of the most celebrated results in anal-
ysis:

Theorem 5.1. General Stokes Formula.
Let M be an oriented smooth k-dimensional region (manifold with bound-
ary), and let w be a smooth (k — 1)-form with compact support on M.

Then:
/ dw :§£ w.
M oM

This formula states that the integral of the derivative of a form over

i

the interior is equal to the integral of the form itself over the bound-
ary. It encapsulates the essence of calculus: local variations (deriva-
tive) sum up to a global boundary value. This elegant unification
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paves the way for advanced studies in differential geometry and
topology.

Exercises

10.

Geometric Interpretation. Let a,b € R3 and consider the associ-
ated 1-forms & = aydx + axdy + a3dz and B = bidx + bydy + bzdz.
Show that the coefficients of the 2-form « A B are the components
of the cross product a x b, and that the norm of this 2-form (use
the Euclidean norm of its coefficient vector) is equal to the area of
the parallelogram spanned by a and b.

Triple Product. Let a,b,c € R3. Show that the scalar triple prod-
uct a- (b x ¢) corresponds to the coefficient of the standard volume
form e; A ey A e3 in the expansion of aAb Ac.

Basis Expansion. Let w € A%(R*). Write w in the standard basis
{dxi/\dx]-|1§i<j§4}.

Coordinate Transformation. Let T : R? — IR? be the polar
coordinate map (r,6) — (rcos6,rsin®). Express the form w =
xdy — ydx in terms of 7,0, dr, d6.

Algebraic Properties. Verify the graded commutativity property
directly for 1-forms a, 8,7 € A'(R"):

(& AB) Ay =an(BAY).
Does this property hold if  is a 2-form?

Computing Derivatives. Let w = xyzdx + x> dy + z> dz. Compute
dw. Check explicitly that d(dw) = 0.

Volume Expansion. Let A be a 3 x 3 matrix with detA = —2. If
() is the unit cube, describe the geometric effect of the transforma-
tion T(x) = Ax on Q) in terms of volume and orientation.

Spherical Coordinates. Compute the exterior product dx A dy A dz
in spherical coordinates (x,y,z) = (psin¢ cos6, psin¢sin6, p cos ¢)
directly using the properties of the wedge product. Use this to set
up the integral for the volume of a ball of radius R.

Generalized Polar Coordinates. Let x = arcosf,y = brsin6.
Compute the area element dx A dy in terms of #, 6 and use it to
find the area of the ellipse x%/a? +y?/b% < 1.

Integration by Parts. (Advanced/optional—assumes integra-
tion of forms on a k-manifold.) Let M be a compact oriented
k-dimensional manifold with boundary. Let« € AP(M) and
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B € AF=P=1(M). Prove the integration by parts formula:

/MdocA,B:/aMuc/\/%—l—(—l)PH/Mvc/\dﬁ.

Remark.

Hint: Apply Stokes” Theorem to w = a A B and use the Leibniz
rule for d(a A B).



6.1

6
Field Theory (Introduction)

Historically, the concept of a field arose in physics to describe con-
tinuous quantities distributed over space, such as temperature, grav-
itational, or electromagnetic fields. Mathematically, we classify these
into scalar fields (assigning a magnitude to each point) and vector
fields (assigning a magnitude and direction). Having developed the
machinery of surface and line integrals, we now formalise the dif-
ferential operators — divergence and curl — that characterise the
local behaviour of these fields, and unify the integral theorems of the
previous chapters.

Divergence

We begin by quantifying the "outward flow" of a vector field from a
point.

Definition 6.1. Divergence.

Let D be a region in R? and let F: D — R3 be a vector field defined
by F(x,y,z) = Pi+ Qj + Rk, where P, Q, R have continuous partial
derivatives. The divergence of F is the scalar function defined by:

0P 0Q OR
divF=V -F= —+ —+ —.
v v ox * ay + 0z
In R?, for a field F(x,y) = Pi+ Qj, the divergence is similarly defined
as: P 3
divF = 5 a—Q.
L N 1422
E%ﬁ NN\NKNKrr A AT
NN K AT T T
This operator measures the rate at which "fluid" (represented by the IV E>0."
vector field) expands or compresses at a point. Positive divergence A
KA V¥ NN
indicates a source; negative divergence indicates a sink. SV NN
T EEER R RN

Figure 6.1: A vector field with
positive divergence acts as a
source.
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6.2 The Generalised Divergence Theorem

The notion of divergence allows us to express the integral theorems
of vector calculus in a unified, coordinate-free manner.

Recall Gauss's Formula (theorem 3.1). In terms of divergence, the rela-
tion between the volume integral over a region D C R® and the flux
through its boundary 0D becomes:

JJ[ divEav=dp E-nas.
D oD

Here, n is the unit outward normal to dD.

Similarly, Green’s Formula in the plane (specifically the normal form,
derived from Green’s Formula) relates the double integral over a pla-
nar region D to the flux across its boundary curve oD. If F = (P, Q),

then:
//dideA:yg F-nds:§£ —Qdx + Pdy.
D oD oD

Theorem 6.1. The Divergence Theorem.

Let D be a bounded region in R" (n = 1,2,3) with a piecewise smooth
boundary 9D oriented by the unit outward normal n. If F is a contin-
uously differentiable vector field on D, then:

/dideV:yg F-ndS.
D oD

il

This statement unifies the fundamental theorems of calculus across
dimensions:

Dimension n = 1: The region D is an interval [4, b]. The boundary
oD consists of the endpoints {a,b}. The "normals" are n(b) = 1
and n(a) = —1. The divergence is simply the derivative f’(x). The
theorem yields the Newton-Leibniz formula:

b
/a fl(x)dx = f(b) - (1) + f(a) - (=1) = f(b) = f(a).

Dimension n = 2: This yields the vector form of Green’s Theorem.

Dimension n = 3: This yields Gauss’s Theorem.

Proof for a Rectangular Solid

Suppose F is differentiable near the rectangular solid E = [x7, xp] X

[y1,y2] X [21,22]. We denote the six faces of the solid as follows:

- S1:x = x1, (y,2) € [y1,y2] X [z1,22] with inward normal —i. Area
element dS = —idydz.
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- Spix = x, (1,2) € [y1,Y2) X [21,22] with outward normal i. Area
element dS = idydz.

- S3:y =1, (x,2) € [x1,x2] X [21,22] with inward normal —j. Area
element dS = —jdxdz.

- Sty = yo, (x,2) € [x1,x2] X [21,22] with outward normal j. Area
element dS = jdxdz.

- Ss:z = z1, (x,y) € [x1,x2] X [y1,y2] with inward normal —k. Area
element dS = —kdxdy.

- S¢: z = zp, (x,y) € [x1,x2] X [y1,y2] with outward normal k. Area
element dS = kdxdy.

The rectangular geometry ensures that only one component of F =

(P,Q,R) contributes to the flux through any given face. We compute

the net flux through the pair of faces perpendicular to the x-axis, Sy

and Sy:

q>12:// F~dS+// F.dS
51 52
22 (Y2 2 Y2
= / / F(x1,y,z) - (—i)dydz +/ / F(x,y,z) - (i) dy dz
z1 Jig Z1 Y
AL
n

By the Fundamental Theorem of Calculus, the difference in P can be

(x2,9,2) — P(x1,y,2)] dy dz.

expressed as an integral of its derivative:

2 9P
P(xz,y,2) — P(xq,y,2) = / a—dx
X

1

Substituting this back:

Z X2 a
chZ = / / / af dx d]/ dz.
21 n X1

Similarly, for the faces S3 and S, perpendicular to the y-axis:

q>34:// F~dS+// F-dS
S3 Sy

- / 2 / 2[Q(x,yz,z) — Q(x,y1,2)] dxdz

/zz /xz /yz aQ dy drdz.
Kt
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And for the faces Ss and S¢ perpendicular to the z-axis:

@56:// FodS+// F-ds
S5 Se
Y2 X2
= [ RGyz)  Rey 2] drdy
n oJn

Y2 X2 22
/ / / R dzdxdy.
V1

The total flux over the boundary JE is the sum of the fluxes through
all faces. By the linearity of the triple integral, we sum the results:

# F-dS = &gy + P3y + Psg
JoE

Yy
/ /2/ <8P +BR) dzdydx
vz dz
:// divFdV.
E

This completes the proof for the rectangular solid. u

Proof for a Cylindrical Region

Consider a cylindrical region E = {(x,y,z) | ¥* +y> < R?, 0 <z < h}.
The boundary JE consists of three parts: the bottom disk Sy, (z = 0),
the top disk Sty (z = h), and the lateral surface Sy, (x> +y? = R?).

We aim to show:
# F-ndS:// V- FdV.
oE E

Vertical Flux contribution: The outward normals on the top and bot-
tom are k and —k respectively. The flux of the vertical component

Rk is:
cbverticul = / F-kdS+ // F
Stap Shot

_ //2+ o [RG ) ~ R(xy,0))dxdy.
XETYts

By the Fundamental Theorem of Calculus with respect to z:

R(x,y,h) — R(x,y,0) = %—R dz.
0 Z

Thus:

®portical = //D ( /0 dz) dxdy = // —dV.
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Horizontal Flux contribution: On the lateral surface S, the outward
normal is radial: n = (cos 6, sin6,0) in cylindrical coordinates. The
area element is dS = Rdfdz. Only the horizontal components P
and Q contribute to the flux through ;.

h 21
Dy = / / (Pcosf + Qsinf)Rd0 dz.
0o Jo

Consider the horizontal divergence Vg - F = 35 +3 aQ . We integrate
this over the volume E:

T2 av= [ [[L.. . (332 ]

For each fixed z, the inner double integral can be transformed
via Green’s Theorem (or the 2D Divergence Theorem) into a line
integral over the boundary circle x? + y> = R%:

// (ap + > dA = ygD(piJrQi) “nyp ds.

Here nyp = (cos 6, sinf) and ds = Rd6.
% (Pcosb + Qsinb)Rde.
oD

Integrating this result from z = 0to z = h yields exactly the
expression for ®,,;.

Summing the vertical and horizontal contributions:

# F-ndS=® vert,m,+q>lat_// —dv+/// (ap >dV // divFdV.
JE

This confirms the theorem for the cylindrical region.

Applications to Integration

The Divergence Theorem provides a mechanism for transferring
derivatives from the interior of a region to its boundary, generalizing
integration by parts.

Proposition 6.1. Integration by Parts in R>.

Let O C RR® be a bounded region with piecewise smooth boundary

Y, oriented outwards. If u,v are continuously differentiable scalar func-
tions on (), then:

I wSlav = b woayaz— [Jf o2 4v.

&

%
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Proof
Consider the vector field F = (uv,0,0). The divergence of F is:

.o 0 v Jdu
d1vF—£(uv)+0+O_ua+v£.

Applying the Divergence Theorem (t/icorem 6.1) to F:

/// ( %y )dV y][él:-nds.

The surface integral term is the flux of (uv,0,0). In coordinate
form, F-ndS = Pdydz = uvdydz. Thus:

// dV+/// —dV g][éuvdydz.

Rearranging terms yields the result.
|

Corollary 6.1. Integral of a Derivative. Setting v(x,y,z) = 1 in propo-
sition 6.1 yields:

// —dV # udydz = # ucosads,
z

where cos « is the x-component of the outward normal. Analogous for-
mulae hold for partial derivatives with respect to i and z.

Hem
Proof

We apply proposition 6.1 with v(x,y,z) = 1. Since v is constant, g—z =
0. The integration by parts formula simplifies to:

0—#udyd2—/// Lav.

Rearranging gives the result. Alternatively, apply Gauss’s Theorem
directly to the vector field F = (1,0,0).
|

6.3 Curl

While divergence measures the expansion of a field at a point, the
curl measures its local rotation or circulation.

Definition 6.2. Curl.
Let F(x,y,z) = Pi+ Qj + Rk be a vector field on a region D C R3,
where P, Q, R are continuously differentiable. The curl of F is the vec-
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tor field defined by:

_ (3R 2Q\. (3P AR\, (3Q P
win- (312 (221 (550

The determinant notation provides a convenient mnemonic:

i j k
curlF =V xF = a% % %
P Q R
With this notation, Stokes” Formula (theorem 4.1) takes a concise vector

form. If ¥ is an oriented surface with unit normal n and boundary
oX oriented by the right-hand rule with tangent t:

//Z(VXF)mdS:ngF-Tds.

The Hamilton Operator

The symbols V - F and V X F introduced above are instances of the
Hamilton operator (or del operator), denoted V.

Definition 6.3. The Del Operator.
The operator V is defined formally as a vector of partial differential
operators:

0,0
ax ) dy oz

Its action depends on the operand:

- Gradient: If f is a scalar function, Vf = grad f.

V=i

- Divergence: If F is a vector field, V - F = divF (formal dot prod-
uct).

- Curl: If F is a vector field, V x F = curl F (formal cross product).

The operator V is linear. For constants «, B, scalar functions f, g, and
vector fields a, b, the following identities hold:

V(af+Bg) =aVf+BVg (6.1)
V-(va+pb) =aV-a+pV-b (6.2)
V x (ra+ pb) =aV xa+ BV xb (6.3)

Product Rules and Second-Order Identities

The product rules for V combine the logic of the Leibniz rule for
differentiation with vector algebra.

44\‘\‘\,\
JITTo TN
s NN
Rty

! 1

/.

Figure 6.2: A vector field with
non-zero curl exhibits local ro-
tation.
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Proposition 6.2. Vector Calculus Identities.

fields.

1. V(fg) =gVf+[Vg

2. V-(fa)=f(V-a)+a-Vf.

3. Vx (fa)=f(Vxa)+(Vf) xa.

4. V-(axb)=b-(Vxa)—a-(Vxb).
Furthermore, if the fields are twice continuously differentiable:
5. V- (V x a) = 0 (Divergence of curl is zero).

6. V x (Vf) = 0 (Curl of gradient is zero).

<
]

Remark.

Identities (5) and (6) are crucial for classifying fields. Identity (6)
implies that conservative fields are irrotational, while (5) implies
that solenoidal fields (divergence-free) can often be expressed as the
curl of a vector potential.

We prove the fourth, fifth and sixth identity to illustrate the manipu-
lation of these operators.

Proof of Identity 4

Leta = (aj,ap,a3) and b = (by,by,b3). The cross product is given
by the determinant:

i j k
axb=|a a a3l.
by by b3

The divergence is the sum of partial derivatives of the components.
V- (axb) = 2 (aghs — ashy) — > (arbs — asby) + - (a1by — ashy)
= 9y 7203~ sh2) — 5 (b3 — dstr) 5 (@02 — a2b).
We apply the product rule to each term. We group terms contain-
ing components of b without derivatives, and terms containing
components of a without derivatives. Let I; be the terms where

derivatives act on a:

0y das daq daz
I =bs . 2ax b3ay+b1ay+b2

Rearranging by components of b:

Im _y, 9%
0z Yoz

dy 0z oz  ox 9x Ay
Similarly, let I be the terms where derivatives act on b:
ob3 oby dbs aby oby ob;

h=mgr —agy —mg, tag tags g

Let f, g be differentiable scalar fields and a, b be differentiable vector

I = by (6”3—6”2>+b2 (aal—aa‘"’>+b3 (E)az a‘”) —b-(Vxa).
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Rearranging by components of a reveals a sign change relative to
the curl formula:

B dbs b, ob;  dbs ob, ob\
b= (G- 3) (% 5) n(E-5) =
Thus V-(axb)=L+L=b-(Vxa)—a-(Vxb).
SiE B 5
Proof of Identity 5
Let a = (P, Q, R) be twice continuously differentiable. The curl is:

_ (dR 9Q\. (9P AR\, (dQ 9P
veas (G5 )i (5 5 (55

The divergence of this vector field is:

0 (R Q) 2 (9 aRY, D (30 P
V'(V“)_ax(ay az>+ay(az ax>+az<ax ay)'

Expanding the terms:

PR *Q N PP &R N ’Q  9*P
oxdy 0dxdz Jydz Jydx  0zOx  0zdYy

Since a is twice continuously differentiable, Schwarz’s Theo-
rem guarantees the equality of mixed partial derivatives (e.g.,

2 2 . .
aax—aRy = %—ali). Grouping matching terms:

2 2 2 2 2 2
d0°R  9°R n 0°P  0°P n 0°Q  0°Q —04040=0.
oxdy  dyox dydz  9dzdy 0zox  0x0z

FEER #

Proof of Identity 6
Let f be a twice continuously differentiable scalar field. The gradi-

entis Vf = (%, %, %) The curl of the gradient is:

V % (Vf) =

¥ =

LY =
Sl —-

The i-component is:

Q0f 0of\_ Pf
dyodz 0dzdy) Oydz 0zdy
By Schwarz’s Theorem, this difference is zero. Similarly, the j-

. Pf o Pf .
component involves 5—- — 5~ = 0, and the k-component involves

22 d?
ﬁ_ayiafxzo,Thus,VX(vf):o’

LB 4
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Example 6.1. Mean Value Property for Harmonic Functions. Let
u(x,y,z) be a scalar field defined on a ball Bg(Mj) centred at My
with radius R. Suppose the surface integral of the normal deriva-
tive vanishes on every concentric sphere B,(Mp) for 0 < p < R:

a—u ds =0.
aBP on

Show that the value of u at the centre is the average of its values on
the boundary surface dBg:

1
M(MO) = m #QBR uds.
#.1)
Solution

We use spherical parametrisation about My:
x=x9+psingcos, y=1yo+psingsinh, z=zy+pcose.
On the sphere dB,, the unit normalisn = e,. The normal deriva-

tive is the directional derivative in the radial direction:

Ju ou
%—vun—g

Using the scaling relation of surface elements established in Chap-
ter 25 (dS, = p?dS, where dS; is the element on the unit sphere):

ou

o=q¢p &
a8, 9P

ou
qs :# % (Mg + on) 0%dS;.
14 aBlap< 0 P)p 1

Since p > 0, we may divide by p? and move the derivative outside
the integral (differentiation under the integral sign):

o )
— u(Mp+pn)dS; | =0.
dP< 2B, ( 0 P) 1

This implies that the integral I(p) = ¢f,5 u(Mo + pn)dS; is con-
stant for p € (0, R]. We equate the value at p = R to the limit as
p— 0. Atp=R:

1
I(R) = — dSg.
(R)= g b, was
As p — 01, by continuity of u, u(Mg + pn) — u(Mj). Thus:

tim 1(p) = ﬁgBl (M) dS; = u(My) - Area(dBy) = drru(Mp).
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Equating the two expressions:

1
4tu(My) = 72 5{%3 uds.
R

Rearranging yields the result.

6.5 Exercises

1.

Basic Calculation. Let F(x,y,z) = (x?y,y?z,z%x). Compute curl F.
Is this field irrotational?

Irrotational Field. Let r = xi 4 yj + zk. Prove that curlr = 0. If c is
a constant vector, prove that curl(c x r) = 2c.

Operator Identities. Verify the identity V(fg) = fVg+ gV f for
scalar fields f, g.

Radial Fields. Let f : R — R be differentiable. Let r = (x,y,2)
and r = |r|. Compute:

(@) grad f(r)
(b) div(f(r)r)
(c) curl(f(r)r)

Solenoidal Radial Field. Find the function f(r) such that the field
f(r)r is solenoidal (divergence-free) for r > 0.

Cross Product Divergence. Verify the identity V - (a x b) =
b-(V xa)—a- (V xb) for the specific fields a = (y,z,x) and
b= (z,xy).

Integral Definitions. Let V C D C R3 be a volume with boundary
¥, diameter §(V), and volume |V|. Let n be the outward normal.
Prove that for any pg € V:

(@) divA(py) = hm |V| #A nds.
(b) curl A(po) = hm |V| # n x AdS.

d = lim — ds.
(© grad(po) = Hm -y yj[ésvn

Figure 6.3: The mean value
property relates the value at the
centre My to the average over
the sphere dBg.
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The Laplace Operator and Harmonic Functions

We now turn our attention to the second-order differential operator
that governs diffusion, electrostatics, and gravitation: the Laplace
operator.

The Laplacian

Definition 7.1. Laplace Operator.
The Laplace operator, denoted by A or V2, is the divergence of the gra-
dient:

Au=V-(Vu).

In Cartesian coordinates for R3, if u(x,y,z) is twice differentiable:

Pu  Pu  u

Analogously in R2, Au = tyy + Uyy.

Green’s Identities

The integration by parts formula for the Laplacian yields Green’s
Identities, which are fundamental to the theory of partial differential
equations.

Theorem 7.1. Green’s First Identity.
Let QO C R?be a bounded region with piecewise smooth boundary
%, and let u, v be twice continuously differentiable functions on Q. Then:

/// (vAu+ Vu-Vo)dV = Ua—u ds.
0 z on

Here g—x = Vu -n is the directional derivative along the outward unit
normal n.

T
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Proof

We apply the Divergence Theorem (t/¢corern 6.1) to the vector field
F = oVu. First, compute the divergence using the product rule
(proposition 6.2):

V. (vVu)=Vov-Vu+v(V-Vu) =Vov-Vu+vAu.

By the Divergence Theorem:

//Q V- (vVu)dv = #é(vVu) -ndS.

Substituting the divergence expression and noting (vVu) - n

o(Vu -n) = 3% completes the proof.
u

Corollary 7.1. Integral of the Laplacian. Taking v = 1 in Green’s First

/// AudV = ai‘ds.
Q ):a}’l

This states that the total "generation" of the field inside () (measured

Identity yields:

by Au) equals the net flux of the gradient through the boundary.
Wk

Proof

Set v(x,y,z) = 1 in theorem 7.1. Then Vv = 0. The identity becomes:

///(1~Au+Vu~0)dV:#1-a—udS,
le) ¥ on

which simplifies immediately to the result. Alternatively, apply the
Divergence Theorem directly to F = Vu.

|
Theorem 7.2. Green’s Second Identity.
Under the same conditions as theoren 7.1:
ou dv
Au —ulv)dV = — —u— | dS.
///Q(v 1 — ulv) #é(van u8n> S
i

Proof

Write Green’s First Identity for the pair (u,v) and then for (v, u)
(interchanging the roles). Subtracting the second equation from the

first cancels the symmetric term Vu - Vo, leaving the result.
[




INTRODUCTION TO VECTOR CALCULUS

Spherical Means and the Radial Laplacian

The behaviour of the Laplacian is closely tied to the average value
of functions over spheres. We formalise the relationship between the
spherical mean and the radial derivatives.

Let h(x,y,z) be a twice continuously differentiable function. For a
fixed point M € IR3, we define the spherical mean M, (M, r) on the
sphere 0B,(M) of radius r:

1
My(M,r) = s ﬁgmm n(Z,1,0) dS,.

Proposition 7.1. Differential Equation for Spherical Means.
The spherical mean M), satisfies the radial differential equation:
ﬁ—l-%i MM, r) = AM,(M, 1)

o2 " par) T T SRR
where the Laplacian A on the right acts on the spatial coordinates of

the centre M.

A

Proof

Differentiability: By rescaling to the unit sphere using § = M + ra
(where & € 9B1(0)), we write:

1

M,(M,r) = yp %Bl(o) h(M +ra)dS;.

Differentiation under the integral sign shows M;, is C? in r and
M.

First Derivative: Differentiating with respect to r:

oM, 1
7 = E 25, Vh(M+ra) . leS].

Scaling back to the radius » sphere (wWhere & = n):

oM, 1 h
or  4mr? g,y on

Applying corollary 7.1 (Gauss’s Theorem for gradients), we con-
vert the surface integral to a volume integral:

o [ anav.
or 47r? B, (M)

Second Derivative: We differentiate (7.1) with respect to r. Using
the rule for differentiating a volume integral with variable radius

99
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(% fo ---=...), or simply product rule on r~2 x Integral:

M, 2 1
P ///B . AhdV + e 77%3,(1\4) AhdS,.

Combining Terms:

2
oMy  2oMy _ 1 # AR dS,.
B, (M)

or? r or  A4mnr?

The RHS is exactly the spherical mean of the function Ah. How-
ever, since the Laplacian commutes with the translation involved
in defining the mean (or by differentiating under the integral
sign on the unit sphere form):

1 1

Thus, the radial operator equals the spatial Laplacian.

|
Corollary 7.2. Behaviour at Origin.
lim —M;(M,r) =
r—1>r(r)Er or h( ,7’) 0
i

Proof
From (7.1), % is the average value of Ah over the ball B, times %r

(since volume is %7‘[1’3 ). Asr — 0, this term vanishes (boundedness

of Ah).
(]

7.2 Harmonic Functions

The Laplace operator gives rise to one of the most important classes
of functions in analysis.

Definition 7.2. Harmonic Function.
A twice continuously differentiable function u : () — R is called har-
monic on the region () if it satisfies Laplace’s equation:

Au=20

everywhere in ().

e
S
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Harmonic functions exhibit remarkable properties related to averages
and extrema, which we now establish.

The Mean Value Property

We previously encountered the mean value property in the context of
example 6.1. Here, we state it formally as a fundamental property of

harmonic functions.
Theorem 7.3. Mean Value Formula.

Let u be harmonic on a region (). For any point My € () and any ra-
dius R > 0 such that the closed ball Bg(Mj) is contained in Q:

1
u(Mp) = TR2 ﬁgBR(Mo) u(x,y,z)ds.

In other words, the value of a harmonic function at the centre of a sphere
is the average of its values on the surface of the sphere.

il
Proof

Consider the spherical mean M,,(My, p) defined in the previous
section. By the radial differential equation for spherical means:

? 20
<ar2 + rar> Mll(MO/ 1’) - AMM(MO,T’)
Since u is harmonic (Au = 0), the spatial Laplacian of its mean is
also zero. Thus M, satisfies the ODE:

19 [,0M,\
1’281'<r Br)_o'

This implies 72% = C. Since ag/rl,, — 0 as r — 0 (from the previous

section), we must have C = 0. Consequently, ag/f” =0, so M, (My,7)
is constant with respect to r. By continuity, lirré M, (My,r) = u(My).
r—r

Thus M, (Mo, R) = M(Mo).

The Maximum Principle

The mean value property implies that a harmonic function cannot
have local "peaks" or "valleys" inside its domain, as a peak would
require the value at the centre to exceed the surrounding average.

Theorem 7.4. Maximum Principle.

Let u be a harmonic function on a connected region (). If u attains its
supremum or infimum at an interior point of (2, then u is constant on
Q.
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Proof

Suppose u attains its maximum value K at an interior point My €
Q). Assume for contradiction that u is not constant. Then the set of
points where 1 < K is non-empty. Let U = {x € Q : u(x) = K}.
Since u is continuous, U is closed in Q). Since () is connected, if U
were also open, then U would be all of (3. We show U is open. Let
x € U. Choose a ball Bg(x) C Q. By the Mean Value Formula:

1
K= M(X) = W #gBR(X) uds.

Sinceu < K everywhere, if there were any point on the sphere
where u < K, continuity would imply u < K on a small patch,
strictly lowering the average below K. Thusu = K on the entire
sphere. Since this holds forall0 < p < R,u = K on the whole
ball Br(x). This proves U is open. Since U is non-empty, open, and

closed in the connected set (3, we have U = . Thus u is constant,

proving the contrapositive.
n

Corollary 7.3. Boundary Extrema. If Q) is a bounded region and u is con-
tinuous on Q) and harmonic on (), then the maximum and minimum
values of u are attained on the boundary 0Q).

Ham

Proof

Since () is compact and u is continuous, u attains a global maxi-
mum at some point M € Q. If M € 9Q), the result holds. If M € O
(interior), then by the Maximum Principle, u is constant on the con-
nected component of () containing M. By continuity, u is constant
on the closure of that component, so the value at the boundary is
the same maximum value. Thus, the maximum is always attained

on the boundary. The same logic applies to the minimum.
|

Note

This principle is powerful for proving uniqueness of solutions to
boundary value problems. If two harmonic functions agree on the
boundary, their difference is harmonic and zero on the boundary;
by the maximum principle, the difference must be zero everywhere.
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7.3 The Poisson Integral Formula

In the theory of differential equations, a central problem is the
Dirichlet problem: given a continuous function f on the boundary
of a region (), does there exist a harmonic function u on the interior
of Q) such that u|yn = f? We resolve this affirmatively for the case
where Q) is a disk in R?.

To do so, we introduce a tool from harmonic analysis.

Definition 7.3. Approximate Identity.

An approximate identity is a family of 27r-periodic functions {K;(t) }o<r<1

satisfying:

1. Positivity: K,(t) > 0.

2. Normalisation: 5 [™ K,(t)dt = 1.

3. Concentration: For any ¢ > 0, lg?f max;< < Kr(t) = 0.

Common examples include the Her:at kernel and the Fejér kernel. These

kernels "concentrate” mass near t = Oasr — 1, allowing us to re- . )
See Fourier Series Notes.

cover a function from its weighted average.

Proposition 7.2. Convergence of Convolution.
Let {K;} be an approximate identity and f be a continuous 27t-periodic
function. Then the convolution u,(8) = 5= [™ f(6 — t)K(t) dt sat-
isfies:

lim u,(0) = f(6)

r—1-

uniformly in 0.

3

A
Proof
Let e > 0. Since f is continuous on a compact circle, it is uniformly

continuous. Choose § > 0 such that |t| <6 = |f(0 —t) — f(0)] <
¢/2. Using the normalisation property of K;:

(®) = £0) = |5 [ 70 =1) = F@lK )]

—7T

We split the integral into I (where |t| < ¢) and I, (where § < |t| <

7). For Iy:
1 e 1 [T €
— 0—1t)— f(O)|K (t)dt < =+ — K. (t)dt = =.
3w [, MO0 =@ wa <55 [ Ko =3

For I: Let M = sup |f|. Then |f(6 —t) — f(8)| < 2M.

I <2M- max K(t).

o<t|<m

103
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By the concentration property, for r sufficiently close to 1, this maxi-
mum is less than z5;. Thus I, < /2. Hence |u,(8) — f(0)| < .
[ |

Theorem 7.5. Poisson Integral Formula.

Let f(0) be a continuous, 27r-periodic function representing boundary
values on the unit circle. The function u defined on the unit disk D =
{(r,0): 0 <r <1} by:

1 27T
ur8) =52 | o) —¢)dg,
where P, (t) = ﬁ is the Poisson kernel, satisfies the follow-

ing properties:
1. u is harmonic in D (i.e., Au = 0).

2. u approaches the boundary values continuously:

li u(r,0) = (8
o) (r,0) = f(6o)

for every 6 € [0,27).

Uniqueness.

Suppose two such functions u and v exist. Their difference
w = u — v is harmonic in D and continuous on D with w|yp = 0. By
the Maximum Principle (theoremn 77.4), the maximum and minimum
of w are both 0. Thus w = 0, proving uniqueness.

EXLES

Existence and Harmonicity.

Motivated by the polar form of the Laplacian A = % + %% + %2 %,

we observe that " cos n6 and " sin nf are harmonic forn > 0. We
construct u as a power series suggested by the Fourier series of f:
ap i n .
u(r,0) = 5+ Y " (ay cosnb + by sinnd),
n=1
where a,,, b, are the Fourier coefficients of f. Substituting the inte-
gral definitions of a;, b, and summing the geometric series (using
complex exponentials) yields the kernel:

[ee]

1 - n 1 i(0—¢)\n
E—FZr cosn(f —¢) =Re 5t Z(re( ?))

n=1

1,z ] 1 1—r2
2 1-z] 21

—Re |- .
e{ + —2rcos(0 — @) + 12

n=1
Since the series converges uniformly for » < rg < 1, term-by-term

differentiation is valid. Since each term r” cos n6 is harmonic, the
sum u is harmonic.

LB 4



7.4 Exercises
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Boundary Behaviour.

The Poisson kernel P, () acts as an "approximate identity" (similar
to the heat kernel or Dirichlet kernel discussed in definition 7.3).
Specifically:

e P(t) > 0.
o L [T P(t)dt=1.

e Forany é >0, lir? maXxs<y|<n Pr(t) = 0.
r—1=- -

Using these properties, the convolution integral converges to f(6)
as r — 1 (see the proof in proposition 7.2).
FER #

Corollary 7.4. Poisson Formula for Disk of Radius R. If u is harmonic on
the open disk Bg(0) and continuous on its closure, then for any point
(r,0) with0 <r < R:

1 [ R? — 12 p —
u(r,0) = E/O M(R’(P)R2—2chos(9—(p)+r2 ¢- // \\

Heh ‘

Values from boundary

\ determine interiof /
\ -~ /

This formula allows us to recover the values of a harmonic function \ / 0
anywhere inside a disk solely from its values on the boundary circle. ~_

1. Vector Calculus Identity. Prove the identity V(V -a) — V x (V x
a) = Aa, where the Laplacian of a vector a = (a1, 43, a3) is defined
component-wise as (Aay, Aap, Aas).

boundary data.

2. Energy Method for Uniqueness. Let u be harmonic on () and
twice continuously differentiable on ().

(a) Prove the identity:

// \Vu|2dV:#ua—udS.
Q 5 ai’l

(b) Suppose u = 0 on the boundary >.. Show that Vu = 0
everywhere in (), and thus u is constant (and hence zero).

(c) Deduce that the solution to the Dirichlet problem (Au = f in
0, u = g on ¥) is unique.

3. Solvability Condition. Consider the Neumann problem:

Au= fin D, a—Z:gonaD.

]

Figure 77.1: The Poisson inte-

function inside the disk from

105
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Prove that a necessary condition for a solution to exist is:

//Dde = %ngs.

4. Volume Mean Value Property. Using the surface mean value
property, prove that if u is harmonic on a ball Bg(M)y), its value at
the centre is the average over the volume:

1
u(Mp) = —— /// u(x,y,z)dv.
37TR® M Br(vo)

5. Regularity. Prove that harmonic functions are infinitely differen-
tiable (C®).

Remark.

Hint: Use the Mean Value Property and differentiation under the
integral sign.

6. Composition Property. Let f be a non-constant harmonic function
on a connected open set. Let ¢ : R — IR be twice continuously
differentiable. Prove that if the composition g o f is also harmonic,
then g must be a linear function.

7. Direct Verification. Verify by direct calculation that the Poisson
integral

1o 1—72
u(r,0) = E/O 1—2rcos(60 —¢) + rzf(('b) a9

satisfies Laplace’s equation in polar coordinates.
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