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0
Line Integrals

We develop the theory of integration along curves in Rn. This gener-
alisation, known as the line integral, is fundamental to vector calcu-
lus, physics, and complex analysis.
We distinguish between two types of line integrals:
Scalar Line Integrals (Type I): Integration of a scalar field with re-

spect to arc length. This measures cumulative quantities like the
mass of a wire.

Vector Line Integrals (Type II): Integration of a vector field along a
directed curve. This measures quantities like work done by a force.

We begin with the scalar line integral.

Curves and Rectifiability

Before defining the integral, we must formalise the notion of a curve
and its length.

Definition 0.1. Simple Curve.
A continuous mapping γ : [a, b] → Rn is called a curve. The image
set Γ = γ([a, b]) is the geometric locus of the curve.
· The curve is simple (or Jordan) if γ is injective on (a, b).

· The curve is closed if γ(a) = γ(b).

· The curve is smooth if γ is continuously differentiable and γ′(t) ̸=
0 for all t ∈ [a, b].

定義

To define the length of a curve, we approximate it using polygonal
chains. Let P = {t0, t1, . . . , tk} be a partition of [a, b] such that a =

t0 < t1 < · · · < tk = b. Let Ai = γ(ti). The polygonal chain
connecting A0, . . . , Ak has length:

L(Γ, P) =
k

∑
i=1

|Ai − Ai−1| =
k

∑
i=1

|γ(ti)− γ(ti−1)|.
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Definition 0.2. Rectifiable Curve.
A curve Γ is rectifiable if the set of lengths of all inscribed polygonal
chains is bounded. The arc length l(Γ) is defined as the supremum of
these lengths:

l(Γ) = sup
P

{L(Γ, P)}.

定義

B

A

Γ

L(Γ, P)

Figure 1: Approximation of a
curve Γ by an inscribed polyg-
onal chain. As the partition
is refined, the polygon length
approaches the arc length.

0.1 The First Type of Line Integral

Let Γ be a simple rectifiable curve in Rn with endpoints A and B. Let
f : Γ → R be a bounded function defined on the curve.
Consider a partition P that divides Γ into k arcs with lengths ∆s1, . . . , ∆sk.
Let λ(P) = maxi ∆si be the mesh of the partition. Choose arbitrary
sample points ξi on the i-th arc.

Definition 0.3. Scalar Line Integral.
The line integral of the first type (or integral with respect to arc length)
of f along Γ is defined as:

ˆ
Γ

f (x) ds = lim
λ(P)→0

k

∑
i=1

f (ξi)∆si,

provided this limit exists and is independent of the choice of partitions
and sample points.

定義

Note

Unlike the Riemann integral on an interval [a, b] where dx repre-
sents a signed length, the differential ds represents the scalar arc
length. Consequently, the first type line integral is independent
of orientation. If Γ− denotes the curve traversed in the opposite
direction: ˆ

Γ
f (x) ds =

ˆ
Γ−

f (x) ds.

Proposition 0.1. Orientation Independence.
For any simple rectifiable curve Γ, the scalar line integral satisfies

ˆ
Γ

f ds =
ˆ

Γ−
f ds.

命題

Proof

Parametrise Γ by γ : [a, b] → Rn and its reverse by γ̃(t) = γ(a + b −
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t). Then |γ̃′(t)| = |γ′(a + b − t)|, and

ˆ
Γ−

f ds =
ˆ b

a
f (γ̃(t)) |γ̃′(t)| dt =

ˆ b

a
f (γ(a+ b− t)) |γ′(a+ b− t)| dt.

The change of variables u = a + b − t shows the two integrals coin-
cide.
For a merely rectifiable curve one can approximate Γ uniformly by
smooth parametrisations (or inscribed polygonal chains); the line
integral is the uniform limit of the smooth cases, so the equality
holds without assuming differentiability.

■

Proposition 0.2. Additivity Over Subarcs.
If Γ = Γ1 ∪ Γ2 with the common point their only intersection and a
consistent orientation along the chain, then

ˆ
Γ

f ds =
ˆ

Γ1

f ds +
ˆ

Γ2

f ds.

命題

Proof

Take a C1 parametrisation of Γ that runs first along Γ1 then Γ2. The
evaluation formula converts the line integral into the sum of the
ordinary integrals over the two parameter intervals. Alternately,
in the Riemann-sum definition choose partitions that respect the
junction point; the sum splits accordingly, and limits add.

■

Proposition 0.3. Uniform Bound by Length.
If | f | ≤ M on a rectifiable curve Γ, then∣∣∣∣ˆ

Γ
f ds
∣∣∣∣ ≤ M l(Γ).

命題

Proof

For any partition P, |∑ f (ξi)∆si| ≤ ∑ | f (ξi)|∆si ≤ M ∑ ∆si =

M L(Γ, P). Taking the supremum over partitions and then the limit
λ(P) → 0 yields the claim.

■

Evaluation of Line Integrals

The definition involves limits of sums, which are cumbersome for
calculation. We reduce the evaluation to a standard Riemann integral
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via parametrisation.

Theorem 0.1. Evaluation Formula.
Let Γ be a smooth curve parametrized by γ : [a, b] → Rn, where γ

is continuously differentiable. If f is continuous on Γ, then:

ˆ
Γ

f (x) ds =
ˆ b

a
f (γ(t))|γ′(t)| dt.

In R3, with γ(t) = (x(t), y(t), z(t)), this becomes:

ˆ
Γ

f (x, y, z) ds =
ˆ b

a
f (x(t), y(t), z(t))

√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt.

定理

Proof

The arc length function from the starting point is given by
s(t) =

´ t
a |γ′(τ)| dτ. By the Fundamental Theorem of Calculus,

ds/dt = |γ′(t)|, or formally ds = |γ′(t)|dt. Substituting the change
of variables from arc length s to parameter t in the integral defini-
tion yields the result.

■

Corollary 0.1. Existence for Continuous f . If Γ is smooth and f is con-
tinuous on Γ, the scalar line integral

´
Γ f ds exists.

推論

Proof

The composition f ◦ γ is continuous on the compact interval [a, b],
hence Riemann integrable. The evaluation formula expresses

´
Γ f ds

as that Riemann integral, so the limit exists.
■

Proposition 0.4. Reparametrisation Invariance.
Let γ : [a, b] → Γ be a smooth parametrisation with |γ′| > 0, and let
ϕ : [c, d] → [a, b] be a C1 bijection with ϕ′(t) > 0. Then

ˆ
Γ

f ds =
ˆ d

c
f (γ(ϕ(t)))

∣∣γ′(ϕ(t))
∣∣ ϕ′(t) dt.

If ϕ′ is everywhere negative (orientation reversal), the right-hand side
is unchanged because of the absolute value.

命題

Proof

Substitute u = ϕ(t) in the evaluation formula. For ϕ′(t) < 0, the
integral limits swap but the absolute value on γ′ removes the sign,
leaving the same value.
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■

Example 0.1. Line Integral on a Circle. Compute I =
¸

C x2 ds,
where C is the circle defined by the intersection of the sphere
x2 + y2 + z2 = R2 and the plane x + y + z = 0.

範例

Solution

This problem admits two approaches: a standard parametrisation
and a symmetry argument.

Parametrisation. The intersection lies on a plane passing through
the origin, so C is a great circle of radius R centred at the origin
(hence its length is 2πR, used again in the symmetry argument).
To parametrise, we construct an orthonormal basis for the plane
x + y + z = 0. The normal is n = (1, 1, 1). We choose two or-
thogonal unit vectors in the plane. Let u = 1√

2
(1,−1, 0) and

v = n × u/∥n × u∥. Computing the cross product:

(1, 1, 1)× (1,−1, 0) = (1, 1,−2).

Normalising yields v = 1√
6
(1, 1,−2). The curve can be

parametrised as γ(t) = R(cos t)u + R(sin t)v for t ∈ [0, 2π].

x(t) =
R√

2
cos t +

R√
6

sin t.

Since C is a circle of radius R, |γ′(t)| = R. Thus ds = R dt.

I =
ˆ 2π

0

(
R√

2
cos t +

R√
6

sin t
)2

R dt

= R3
ˆ 2π

0

(
1
2

cos2 t +
1
6

sin2 t +
1√
3

sin t cos t
)

dt.

Using
´ 2π

0 cos2 t dt =
´ 2π

0 sin2 t dt = π and
´ 2π

0 sin t cos t dt = 0:

I = R3
(

1
2

π +
1
6

π

)
=

2
3

πR3.

Symmetry. This method is far more elegant. By the symmetry of
the sphere x2 + y2 + z2 = R2 and the plane x + y + z = 0 with
respect to permuting variables, the integrals of x2, y2, and z2

along C must be equal:
˛

C
x2 ds =

˛
C

y2 ds =
˛

C
z2 ds.

Summing them:

3I =
˛

C
(x2 + y2 + z2) ds.
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On the curve C, x2 + y2 + z2 = R2 (a constant). Thus:

3I =
˛

C
R2 ds = R2

˛
C

ds = R2 · l(C).

Since C is a great circle of radius R, its length is l(C) = 2πR.

3I = R2(2πR) =⇒ I =
2
3

πR3.

■

C

x2 + y2 + z2 = R2

Figure 2: The intersection curve
C. The symmetry argument
exploits the fact that x, y, z play
identical roles in the definitions
of the sphere and the plane.

Applications of Type I Line Integrals

The first type line integral allows us to calculate geometric and physi-
cal properties of curved objects.

Mass and Centroids

Consider a wire represented by a curve Γ. If the wire has a linear
mass density ρ(x, y, z) at point (x, y, z), the total mass M is:

M =

ˆ
Γ

ρ(x, y, z) ds.

The coordinates of the centroid (or centre of mass) (x̄, ȳ, z̄) are given
by the first moments normalised by the mass:

x̄ =
1
M

ˆ
Γ

xρ ds, ȳ =
1
M

ˆ
Γ

yρ ds, z̄ =
1
M

ˆ
Γ

zρ ds.

If the density is uniform (ρ ≡ 1), this yields the geometric centroid.
Example 0.2. Centroid of a Spherical Arc. Find the centroid
of the curve Γ forming the boundary of the sphere octant
x2 + y2 + z2 = a2, x ≥ 0, y ≥ 0, z ≥ 0.

範例

Solution

The boundary Γ consists of three circular arcs:

• Γ1 in the xy-plane (z = 0): quarter circle from (a, 0, 0) to (0, a, 0).

• Γ2 in the yz-plane (x = 0): quarter circle from (0, a, 0) to (0, 0, a).

• Γ3 in the zx-plane (y = 0): quarter circle from (0, 0, a) to (a, 0, 0).

The total length is L = 3 × ( 1
4 · 2πa) = 3πa

2 . Due to symmetry, x̄ =

ȳ = z̄. We compute x̄ = 1
L
´

Γ x ds.
ˆ

Γ
x ds =

ˆ
Γ1

x ds +
ˆ

Γ2

x ds +
ˆ

Γ3

x ds.

1. On Γ2, x = 0, so
´

Γ2
x ds = 0.
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2. On Γ1, use polar coordinates: x = a cos θ, y = a sin θ, ds = a dθ for
θ ∈ [0, π/2].

ˆ
Γ1

x ds =
ˆ π/2

0
(a cos θ)a dθ = a2[sin θ]π/2

0 = a2.

3. On Γ3, similarly x = a cos ϕ, z = a sin ϕ.
ˆ

Γ3

x ds = a2.

Thus,
´

Γ x ds = 2a2.

x̄ =
2a2

3πa/2
=

4a
3π

.

The centroid is
(

4a
3π , 4a

3π , 4a
3π

)
.

■

y

z

x

Γ2

Γ3

Γ1

a

a

a

Figure 3: The boundary of the
first octant of the sphere. The
curve Γ is the union of three
quarter-circles.

Change of Variables in Arc Length

Occasionally, algebraic curves require clever coordinate transforma-
tions to evaluate arc length.

Example 0.3. Curve Rectification. Find the length of the arc of the
curve defined by (x − y)2 = a(x + y) and x2 − y2 = 9

8 z2 from the
origin to a point A(x0, y0, z0).

範例

Solution

This system is difficult to parametrise directly in Cartesian coordi-
nates. We perform a change of variables to simplify the equations.
Let u = x − y and v = x + y. Note that x2 − y2 = uv. The equations
become:

u2 = av, uv =
9
8

z2.

Substitute v = u2/a into the second equation:

u(u2/a) =
9
8

z2 =⇒ u3 =
9a
8

z2 =⇒ u =
1
2
(9a)1/3z2/3.

Consequently, v = u2

a = 1
a
(9a)2/3

4 z4/3. We can express x and y in
terms of z:

x =
v + u

2
, y =

v − u
2

.

The differential arc length is ds2 = dx2 + dy2 + dz2. Note that dx2 +

dy2 = 1
2 (du2 + dv2), and

du
dz

=
1
3
(9a)1/3z−1/3,

dv
dz

=
(9a)2/3

3a
z1/3.
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Hence(
ds
dz

)2
= 1+

1
2

[(
du
dz

)2
+

(
dv
dz

)2
]
= 1+ Az−2/3 +Bz2/3, A =

(9a)2/3

18
, B =

(9a)4/3

18a2 .

Since AB = 1
4 , the quadratic in z±1/3 is a perfect square:

1 + Az−2/3 + Bz2/3 =
(

pz−1/3 + qz1/3)2, pq = 1
2 , p2 = A, q2 = B.

Therefore
ds
dz

= pz−1/3 + qz1/3 and

s(z) =
ˆ z

0

(
pt−1/3 + qt1/3

)
dt =

3p
2

z2/3 +
3q
4

z4/3.

Substituting u = 1
2 (9a)1/3z2/3 into x = 1

2 (u + u2/a) shows that the
bracket equals 2x/

√
2, giving

s(z) =
√

2 x.

Thus the arc length from the origin to x = x0 on the branch where
x increases from 0 is

l =
√

2 x0.

■

0.2 Vector Line Integrals

The physical motivation for the vector line integral is the calculation
of work done by a force field on a moving particle. Consequently,
the direction of motion is significant. We consider simple rectifiable
curves equipped with an orientation, referred to as directed curves.

Definition 0.4. Vector Line Integral.
Let Γ = AB be a simple rectifiable directed curve in R3. Let

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k

be a vector field defined on Γ. For any partition T of Γ given by A =

A0, A1, . . . , Am = B consistent with the orientation, let ∆ri = (∆xi, ∆yi, ∆zi)

be the displacement vector from Ai−1 to Ai. Let d(T) be the maximum
arc length of the segments. If the limit

lim
d(T)→0

m

∑
i=1

F(ξi, ηi, ζi) · ∆ri

exists and is independent of the partition and the choice of sample points
(ξi, ηi, ζi), it is called the vector line integral (or line integral of the sec-
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ond type) of F along Γ. It is denoted by:
ˆ

Γ
F · dr =

ˆ
Γ

P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.

定義

This integral is also referred to as the integral with respect to coordi-
nates.

Proposition 0.5. Orientation Change.
If Γ− denotes Γ with reversed direction, then

ˆ
Γ−

F · dr = −
ˆ

Γ
F · dr.

命題

Proof

Parametrise Γ by γ : [a, b] → R3; then Γ− is γ̃(t) = γ(a + b − t) with
γ̃′ = −γ′(a + b − t). The evaluation formula yields the sign change.

■

Proposition 0.6. Additivity Over Directed Subarcs.
If a directed curve Γ is decomposed as the concatenation of directed
subarcs Γ1, Γ2 with matching orientations, then

ˆ
Γ

F · dr =
ˆ

Γ1

F · dr +
ˆ

Γ2

F · dr.

命題

Proof

Use a parametrisation that runs along Γ1 then Γ2; the evaluation
formula breaks the integral into the sum over the two parameter
intervals.

■

Theorem 0.2. Evaluation Formula.
Let Γ be a piecewise smooth directed curve with parametric represen-
tation

x = x(t), y = y(t), z = z(t), a ≤ t ≤ b,

where the parameter t increasing from a to b corresponds to the ori-
entation of Γ. If P, Q, R are continuous on Γ, then:

ˆ
Γ

P dx+Q dy+R dz =

ˆ b

a

[
P(x(t), y(t), z(t))x′(t) + Q(. . . )y′(t) + R(. . . )z′(t)

]
dt.

定理
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Corollary 0.2. Reparametrisation. If ϕ : [c, d] → [a, b] is a C1 bijection
with ϕ′(t) > 0, then for the reparametrised curve γ̃(t) = γ(ϕ(t)),

ˆ
γ̃

F · dr =
ˆ

Γ
F · dr.

If ϕ′ < 0, the value changes sign (orientation reversal).
推論

Proof

Substitute u = ϕ(t) in the evaluation formula. A negative ϕ′ re-
verses the limits, introducing the sign flip.

■

Proposition 0.7. Gradient Fundamental Theorem.
If F = ∇ϕ with ϕ ∈ C1 on an open set containing Γ, then for end-
points A, B of Γ, ˆ

Γ
F · dr = ϕ(B)− ϕ(A),

so the integral depends only on the endpoints.
命題

Proof

Parametrise Γ by γ(t), t ∈ [a, b]. The evaluation formula gives

ˆ b

a
∇ϕ(γ(t)) · γ′(t) dt =

ˆ b

a

d
dt
[
ϕ(γ(t))

]
dt = ϕ(γ(b))− ϕ(γ(a)).

■

Example 0.4. Line Integral on an Ellipse. Compute

I =
ˆ

C
(x2 + 2xy) dy,

where C is the upper half of the ellipse x2

a2 + y2

b2 = 1 traversed coun-
terclockwise.

範例

Solution

We use the standard parametric equations for the ellipse:

x = a cos t, y = b sin t.

For the upper half traversed counterclockwise, t varies from 0 to π.
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Substituting dy = b cos t dt:

I =
ˆ π

0
(a2 cos2 t + 2ab cos t sin t) b cos t dt

= a2b
ˆ π

0
cos3 t dt + 2ab2

ˆ π

0
cos2 t sin t dt.

The first integral vanishes (odd symmetry of cos3 t about π/2 or
direct evaluation). The second integral is evaluated by substitution
u = cos t:

I = 0 + 2ab2
[
−cos3 t

3

]π

0
=

4
3

ab2.

■

Example 0.5. Viviani’s Window. Find

I =
ˆ

Γ
y2 dx + z2 dy + x2 dz,

where Γ is the curve defined by the intersection of the sphere
x2 + y2 + z2 = a2 and the cylinder x2 + y2 = ax (a > 0) in the
region z ≥ 0. The curve is oriented counterclockwise when viewed
from the positive x-axis.

範例

Solution

We parametrise the curve using cylindrical coordinates. From
x2 + y2 = ax, we have r = a cos θ. Thus:

x = a cos2 θ, y = a cos θ sin θ, z =
√

a2 − r2 = a| sin θ|.

For the loop z ≥ 0, take two smooth pieces: θ ∈
[
−π

2 , 0
]

with
z = −a sin θ and θ ∈

[
0, π

2
]

with z = a sin θ. Viewed from the +x-
axis, counterclockwise traversal corresponds to θ increasing from
−π

2 to π
2 ; splitting the interval removes the cusp at θ = 0 while

keeping that orientation intact. On each piece the integral is

I = ∑
pieces

ˆ [
y2x′(θ) + z2y′(θ) + x2z′(θ)

]
dθ.

Substituting the functions:

• x′(θ) = −2a cos θ sin θ. The first term involves y2x′ ∝
(cos2 sin2)(cos sin). This is an odd function of θ.

• z(θ) = a| sin θ| is even. Thus z′(θ) is odd. The third term
x2z′(θ) ∝ (cos4)(odd) is an odd function.

• y′(θ) = a(cos2 θ − sin2 θ) is even. The second term z2y′(θ) is the
product of even functions, hence even.
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The integrals of the odd terms vanish. We remain with:

I =
ˆ π/2

−π/2
a2 sin2 θ · a(cos2 θ − sin2 θ) dθ = a3

ˆ π/2

−π/2
sin2 θ(cos2 θ − sin2 θ) dθ.

Using symmetry on [−π/2, π/2] and the identity cos2 θ − sin2 θ =

1 − 2 sin2 θ:

I = 2a3
ˆ π/2

0
(sin2 θ − 2 sin4 θ) dθ.

Using Wallis’ integrals
´ π/2

0 sin2 θ dθ = π
4 and

´ π/2
0 sin4 θ dθ = 3π

16 :

I = 2a3
(

π

4
− 2 · 3π

16

)
= 2a3

(
π

4
− 3π

8

)
= −π

4
a3.

■

If a space curve lies on a surface z = f (x, y), we can project the
integral onto the plane.

Proposition 0.8. Reduction to Plane Integral.
Suppose a piecewise smooth curve Γ lies on a smooth surface z = f (x, y),
and its projection onto the xy-plane is γ. If P(x, y, z) is continuous on
Γ, then: ˛

Γ
P(x, y, z) dx =

˛
γ

P(x, y, f (x, y)) dx.

命題

Proof

Let γ be parametrized by x = φ(t), y = ψ(t) for t ∈ [a, b]. Then Γ is
given by x = φ(t), y = ψ(t), z = f (φ(t), ψ(t)). Substituting into the
definition of the line integral:

˛
Γ

P(x, y, z) dx =

ˆ b

a
P(φ(t), ψ(t), f (φ(t), ψ(t)))φ′(t) dt.

The right-hand side is precisely
¸

γ P(x, y, f (x, y)) dx.
■

Relationship Between the Two Types of Line Integrals

The coordinate differential vector dr is related to the arc length differ-
ential ds by the unit tangent vector τ:

dr = τ ds.

Thus, the vector line integral can be expressed as a scalar line integral
of the tangential component of the field:

ˆ
Γ

F · dr =
ˆ

Γ
(F · τ) ds.
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If cos α, cos β, cos γ are the direction cosines of τ, then:
ˆ

Γ
P dx + Q dy + R dz =

ˆ
Γ
(P cos α + Q cos β + R cos γ) ds.

For a plane curve Γ, let n be the unit normal vector such that the
angle from n to τ is π/2. The direction cosines of n and τ are related
by a rotation: If the tangent makes an angle θ with the positive x-axis,
then dr = (cos θ, sin θ) ds and

ˆ
Γ

P dx + Q dy =

ˆ
Γ

[
− P sin θ + Q cos θ

]
ds.

Example 0.6. Inverse Square Field. Consider a planar force field
pointing towards the origin with magnitude inversely proportional
to the square of the distance r:

F = − µ

r2 r̂.

Calculate the work done by this field on a particle of mass m = 1
moving from point A to B (assume the path avoids the origin so
r > 0).

範例

Solution

The force components are Fx = −µ x
r3 and Fy = −µ

y
r3 . The work is

given by:

W =

ˆ
AB

−µ
x dx + y dy

r3 .

Observe that x dx + y dy = 1
2 d(x2 + y2) = r dr. Thus:

− x dx + y dy
r3 = − r dr

r3 = −dr
r2 = d

(
1
r

)
.

Alternatively, using parametrisation x = φ(t), y = ψ(t), this rela-
tionship holds.

W = µ

ˆ B

A
d
(

1
r

)
= µ

(
1
rB

− 1
rA

)
.

■

Definition 0.5. Gradient Curve.
Let f be a C1 function on a domain D ⊂ R3 with ∇ f ̸= 0. A curve
Γ is a gradient curve of f if the tangent direction at every point coin-
cides with the direction of ∇ f . If Γ is parametrized by r(t), it satisfies
the system:

dr
dt

=
∇ f
|∇ f | .
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Along such a curve, ds = dt.
定義

We use this concept to solve a classical problem from the Putnam
Competition.

Example 0.7. Bound on Gradient Magnitude. Let f (x, y) be contin-
uously differentiable on the unit disk D = {x2 + y2 ≤ 1} and satisfy
| f (x, y)| ≤ 1. Prove that there exists a point (x0, y0) ∈ intD such
that

|∇ f (x0, y0)| ≤ 2.

i.e., ( f 2
x + f 2

y )(x0,y0)
≤ 4.

範例

Proof

If ∇ f vanishes anywhere, the inequality holds trivially. Assume in-
stead that |∇ f | > 2 everywhere on D. Consider the gradient curve
Γ starting at the origin, defined by r′(t) = ∇ f (r(t))/|∇ f (r(t))|; the
vector field is continuous and nonzero on the compact disk, so this
flow exists (and is unique) until it hits the boundary. Along Γ,

d
dt

f (r(t)) = |∇ f (r(t))| > 2,

so f increases strictly and f (0, 0) < 1 (an interior point with f = 1
would force ∇ f = 0 by Fermat’s lemma). Because ∇ f ̸= 0 inside
D, f cannot attain its maximum value 1 in the interior, hence Γ
must reach ∂D exactly when f hits 1. The time (and length) to do
so satisfies

1 − f (0, 0) =
ˆ T

0

d
dt

f (r(t)) dt > 2T ⇒ T <
1 − f (0, 0)

2
≤ 1.

But any path from the origin to ∂D has length at least 1 (the Eu-
clidean distance), so Γ cannot reach the boundary in length T < 1
— a contradiction. Therefore |∇ f | cannot exceed 2 everywhere, and
some point (x0, y0) ∈ int D must satisfy |∇ f (x0, y0)| ≤ 2.

■

Remark.

This method can be generalised to prove a mean value theorem in
n-dimensions. For a ball of radius r, there exists a point p0 such
that the oscillation of the function is related to the gradient by:

max f − min f = |∇ f (p0)| · 2r.

Using this sharper mean-value estimate one can improve the con-
stant 2 in the previous example to 1; a short proof follows from
applying the identity with r = 1 to f on the unit disk (details
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omitted here for brevity).

0.3 Exercises

1. Calculating Scalar Integrals. Compute the following line integrals
of the first type:

(a)
ˆ

C
(x4/3 + y4/3) ds, where C is the astroid x2/3 + y2/3 = a2/3.

(b)
ˆ

C
e
√

x2+y2
ds, where C is the boundary of the circular sector

consisting of the two radial segments φ = 0, φ = π
4 and the

circular arc r = a joining them (orientation of C is arbitrary).

(c)
ˆ

C
|y| ds, where C is the lemniscate (x2 + y2)2 = a2(x2 − y2).

(d)
ˆ

C

ds
y2 , where C is the catenary y = a cosh x

a .

(e)
ˆ

C
z ds, where C is the space curve defined by the intersection

of x2 + y2 = z2 and y2 = ax from (0, 0, 0) to (a, a,
√

2a).

2. Arc Length in Space. Calculate the arc lengths of the following
curves from the origin (or specified starting point) to a generic
point (x0, y0, z0) or (x, y, z):

(a) The curve given by y = a arcsin x
a and z = a

4 ln a−x
a+x .

(b) The intersection of x2 + y2 + z2 = a2 and
√

x2 + y2 cosh
(
arctan y

x
)
=

a, starting from (a, 0, 0). (Note: cosh is intentional; since
cosh u ≥ 1, the relation forces x > 0 so the angle arctan y

x
is single-valued. If a different surface was intended, replace
cosh with the desired function.)

3. Centroid of a Catenary. Find the coordinates of the centroid of the
arc of the homogeneous catenary y = a cosh x

a between the points
(0, a) and (b, h).

4. Intrinsic Definition. Let Γ = AB be a simple rectifiable curve with
length L. For s ∈ [0, L], let x(s) be the unique point on Γ such that
the arc length from A to x(s) is s. Prove that for any function f
defined on Γ for which the line integral exists:

ˆ
Γ

f (x) ds =
ˆ L

0
f (x(s)) ds.

Remark.

This confirms that the scalar line integral is equivalent to a stan-
dard Riemann integral over the arc length parameter.
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5. Path Dependence. Compute the integral
ˆ

L
xy dx + (y − x) dy

where L is the directed path from A(1, 1) to B(2, 3) along:

(a) The straight line segment AB.

(b) The parabolic arc y = 2(x − 1)2 + 1.

(c) The broken line segment ADB, where D = (2, 1).

6. Cycloid Integral. Evaluate
ˆ

C

x
y

dx +
1

y − a
dy, where C is the arc

of the cycloid x = a(t − sin t), y = a(1 − cos t) for t ∈ [π/6, π/3].

7. Closed Loop Integration. Calculate
˛

C
(x + y)2 dx + (x2 − y2) dy,

where C is the triangle with vertices (1, 1), (3, 2), (3, 1) traversed
clockwise.

8. Parabolic Work. Find
ˆ

C
4xy2 dx − 3x4 dy along the parabola

y = 1
2 x2 from (0, 0) to (2, 2).

9. Space Curve Intersection. Compute
˛

C
(y2 + z2) dx + (z2 + x2) dy + (x2 + y2) dz,

where C is the intersection of the sphere x2 + y2 + z2 = 2Rx
and the cylinder x2 + y2 = 2ax (0 < a < R, z > 0), oriented
counterclockwise as viewed from the positive z-axis.

10. Spherical Curves. Evaluate
ˆ

C
y dx + z dy + x dz along curves on

the sphere of radius R:

x = R sin φ cos θ, y = R sin φ sin θ, z = R cos φ.

Consider the cases:

(a) A latitude circle (R, φ constant, θ varies from 0 to 2π).

(b) A longitude semi-circle (R, θ constant, φ varies from 0 to π).

11. Helix vs Line. Calculate the integral

I =
ˆ

C
(x2 + 5y + 3yz) dx + (5x + 3xy − 2) dy + (3xy − 4z) dz

along two different paths from A(a, 0, 0) to B(a, 0, b):

(a) The helical segment x = a cos t, y = a sin t, z = bt
2π for

t ∈ [0, 2π].

(b) The straight line segment connecting A and B.
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12. Work Done by a Field. Given the force field

F = yi − xj + (x + y + z)k,

find the work done moving a particle along one turn of the helix
x = a cos t, y = a sin t, z = b

2π t starting from (a, 0, 0).



1
Green’s Formula and Conservative Fields

We now establish the connection between double integrals over a pla-
nar region and line integrals along its boundary. This result, Green’s
Formula, provides powerful methods for evaluating integrals and
leads to the conditions for path independence of line integrals.

1.1 Green’s Formula

Let D be a bounded closed region in R2, whose boundary ∂D con-
sists of smooth or piecewise smooth curves. Let P(x, y) and Q(x, y)
be functions with continuous partial derivatives on D.

Theorem 1.1. Green’s Formula.
If the boundary ∂D is traversed in the positive direction with respect
to D (keeping the region on the left), then:

¨
D

(
−∂P

∂y
+

∂Q
∂x

)
dx dy =

˛
∂D

P dx + Q dy.

定理

From the relationship between the two types of line integrals on the
plane, Green’s Formula can be expressed using the unit outward
normal vector n. Recall that dx = − cos(y, n) ds and dy = cos(x, n) ds.
However, using the geometric identity ∠(x, n) = ∠(x, y) +∠(y, n) =
π
2 +∠(y, n), the formula transforms as follows:

¨
D

(
∂P
∂x

+
∂Q
∂y

)
dx dy =

˛
∂D

−Q dx + P dy

=

˛
∂D

[Q sin(x, n) + P cos(x, n)] ds.

Using the directional cosines:
¨

D

(
∂P
∂x

+
∂Q
∂y

)
dx dy =

˛
∂D

[P cos(x, n) + Q cos(y, n)] ds.

These formulas allow us to convert line integrals into double inte-
grals. This is particularly useful even when the curve C is not closed,
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by employing the method of adding "auxiliary lines" to form a closed
loop.

Example 1.1. Auxiliary Lines. Let C be the arc of the parabola 2x =

πy2 from O(0, 0) to B(π
2 , 1). Compute

I =
ˆ

C
(2xy3 − y2 cos x) dx + (1 − 2y sin x + 3x2y2) dy.

範例

Solution

Let P(x, y) = 2xy3 − y2 cos x and Q(x, y) = 1 − 2y sin x + 3x2y2. Cal-
culating the partial derivatives:

∂Q
∂x

= −2y cos x + 6xy2,
∂P
∂y

= 6xy2 − 2y cos x.

Thus, − ∂P
∂y + ∂Q

∂x = 0. To apply Green’s Formula, we add auxiliary
lines BA and AO to close the curve, where A = (π

2 , 0). Let D be the
region enclosed by C ∪ BA ∪ AO.

I +
ˆ

BA
+

ˆ
AO

=

¨
D

0 dx dy = 0.

Therefore, I = −
(´

BA +
´

AO
)
=
´

AB +
´

OA.

1. Along OA: y = 0, so dy = 0 and P(x, 0) = 0. The integral is 0.

2. Along AB: x = π
2 , so dx = 0. y ranges from 0 to 1.

ˆ
AB

=

ˆ 1

0

[
1 − 2y sin

π

2
+ 3

(π

2

)2
y2
]

dy =

ˆ 1

0

(
1 − 2y +

3π2

4
y2
)

dy.

Evaluating this:

I =
[

y − y2 +
π2

4
y3
]1

0
= 1 − 1 +

π2

4
=

π2

4
.

■ x

y

C

B

AO

BA

AO

Figure 1.1: The path of inte-
gration involving the parabolic
arc C (where 2x = πy2) and
auxiliary lines BA and AO.

Example 1.2. Normal Derivative Integral. Compute the integral

I =
˛

C

cos(r, n)
r

ds,

where C is a piecewise smooth simple closed curve, r = (x, y), r =

|r|, and n is the unit outward normal vector on C.

範例
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Solution

Using the identity cos(r, n) = r·n
r = 1

r (x cos(n, x) + y cos(n, y)), we
write:

I =
˛

C

( x
r2 cos(n, x) +

y
r2 cos(n, y)

)
ds.

We consider the position of the origin relative to C:

Case 1: (0, 0) is outside C. Using Green’s Formula in the form
involving directional cosines:

I =
¨

D

[
∂

∂x

( x
r2

)
+

∂

∂y

( y
r2

)]
dx dy.

Computing the derivatives shows the integrand is identically
zero. Thus I = 0.

Case 2: (0, 0) is inside C. We excise the singularity by drawing a
circle Cε centred at the origin with small radius ε. Let Dε be the
region between C and Cε.

I +
˛

Cε

( x
r2 cos(n, x) +

y
r2 cos(n, y)

)
ds =

¨
Dε

0 = 0.

In Green’s Formula the inner boundary is taken with clock-
wise orientation; rewriting that integral with the usual counter-
clockwise orientation (equivalently flipping the normal) changes
its sign. Hence:

I =
˛

Cε

( x
r2 cos(n, x) +

y
r2 cos(n, y)

)
ds.

On Cε, r = ε, cos(n, x) = x/ε, and cos(n, y) = y/ε.

I =
˛

Cε

(
x2

ε3 +
y2

ε3

)
ds =

˛
Cε

ε2

ε3 ds =
1
ε
(2πε) = 2π.

Case 3: (0, 0) lies on C. Draw tangents OA and OB to C at the
origin. Let θ be the angle between them inside the region. We
consider the limit as we excise the origin with a small arc Cε.

I = lim
ε→0

˛
Cε

1
ε

ds = lim
ε→0

θε = θ.

If C is smooth at the origin, θ = π.

■

C

O
I = 0

C

O
Cε

I = 2π

O θ

C

I = θ

Figure 1.2: Three cases for¸
C

cos(r,n)
r ds: origin outside

(I = 0), inside (I = 2π), or on
the curve (I = θ).

Note

It is crucial to verify the differentiability of P, Q. Many errors arise
from applying Green’s Formula when the origin (a singularity) is
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inside the domain.

Example 1.3. Singularity Handling. Compute

I =
˛

C

ey

x2 + y2 [(x sin x + y cos x)dx + (y sin x − x cos x)dy] ,

where C is the circle x2 + y2 = 1 traversed counterclockwise.

範例

Solution

Let P, Q be the components. We find that ∂P
∂y = ∂Q

∂x outside the ori-

gin. Since (0, 0) is inside C, we introduce a small circle Cϵ : x2 +

y2 = ϵ2. By Green’s Formula on the annulus, the outer boundary C
is counter-clockwise while the inner boundary Cϵ is clockwise:

˛
C
+

˛ (cw)

Cϵ

= 0, so
˛

C
= −

˛ (cw)

Cϵ

=

˛ (ccw)

Cϵ

.

On Cϵ:

I =
˛

Cϵ

ey

ϵ2 [. . . ] =
1
ϵ2

˛
Cϵ

ey[(x sin x+ y cos x)dx+(y sin x− x cos x)dy].

Now, let Dϵ be the disk enclosed by Cϵ. We apply Green’s Formula
again to this new integral (which is now over a loop enclosing a
region Dϵ where the integrand is defined everywhere, as we pulled
1/ϵ2 out). The new integrand in the double integral is:

∂

∂x
(ey(y sin x − x cos x))− ∂

∂y
(ey(x sin x + y cos x)).

Simplifying yields −2ey cos x. Thus:

I =
1
ϵ2

¨
Dϵ

−2ey cos x dx dy.

By the Mean Value Theorem for integrals, there exists (ξ, η) ∈ Dϵ

such that the integral equals Area(Dϵ)× (−2eη cos ξ).

I =
1
ϵ2 (πϵ2)(−2eη cos ξ) = −2πeη cos ξ.

Letting ϵ → 0, (ξ, η) → (0, 0).

I = −2πe0 cos 0 = −2π.

■

C
Cε

O

Dε

x

y

Figure 1.3: Excising the singu-
larity at the origin: the annulus
Dε between the outer curve C
(ccw) and inner circle Cε (cw).

Corollary 1.1. Area by line integral. The area S of a region D bounded
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by a piecewise smooth simple curve C is

S =

˛
C

x dy = −
˛

C
y dx =

1
2

˛
C
(x dy − y dx).

推論

Proof

Apply Green’s Formula with (P, Q) = (0, x):
¨

D

(
−∂P

∂y
+

∂Q
∂x

)
dx dy =

¨
D

1 dx dy = S =

˛
C

x dy.

Similarly, with (P, Q) = (−y, 0) we obtain S = −
¸

C y dx. Av-
eraging the two equal expressions yields the symmetric form
1
2
¸

C(x dy − y dx).
■

Example 1.4. Area of a Lemniscate. Calculate the area enclosed by
the lemniscate (x2 + y2)2 = a2(x2 − y2).

範例

Solution

Method 1: Line Integral. By symmetry, we consider the first and
fourth quadrants where −π

4 ≤ θ ≤ π
4 . Parametrising using

polar coordinates: x = r cos θ, y = r sin θ. The equation becomes
r2 = a2 cos 2θ, so r = a

√
cos 2θ.

x(θ) = a cos θ
√

cos 2θ, y(θ) = a sin θ
√

cos 2θ.

Calculating the differential form:

xy′ − yx′ = x
dy
dθ

− y
dx
dθ

.

Substituting the derivatives yields xy′ − yx′ = a2 cos 2θ.

S = 2 × 1
2

ˆ π/4

−π/4
a2 cos 2θ dθ = a2[

1
2

sin 2θ]π/4
−π/4 = a2.

(The prefactor 2 doubles the area of the one lobe covered by θ ∈
[−π/4, π/4].)

Method 2: Polar Area. Using the standard polar area formula:

S = 4 × 1
2

ˆ π/4

0
r2 dθ = 2

ˆ π/4

0
a2 cos 2θ dθ = a2.

■

x

y

a−a

Figure 1.4: The lemniscate (x2 +

y2)2 = a2(x2 − y2). Total area =

a2.
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1.2 Conditions for Path Independence

We investigate the conditions under which a line integral depends
only on the endpoints, a property characterising conservative fields.
Let Ω be a region in R2. If for any points A, B ∈ Ω, the integral´

L P dx + Q dy yields the same value for all piecewise smooth paths
L ⊂ Ω connecting A to B, the integral is called path-independent.

Theorem 1.2. Equivalence of Conditions.
Let D be a simply connected region (any simple closed curve encloses
a region entirely within D). Let P, Q have continuous partial deriva-
tives. The following are equivalent:
1. For any closed curve C ⊂ D,

¸
C P dx + Q dy = 0.

2. The integral is path-independent.

3. ∂P
∂y = ∂Q

∂x everywhere in D.

4. P dx+Q dy is an exact differential; i.e., there exists φ(x, y) such that
dφ = P dx + Q dy. φ is called the potential function.

If these conditions hold, the integral can be evaluated as:

ˆ (x,y)

(x0,y0)
P dx + Q dy = φ(x, y)− φ(x0, y0).

定理

Proof

We show the cycle of implications.

(3)⇒(1) For any simple closed curve C ⊂ D, Green’s Formula gives
˛

C
P dx + Q dy =

¨
DC

(
−∂P

∂y
+

∂Q
∂x

)
dx dy = 0.

Here DC is the region enclosed by C (possible since D is simply
connected).

(1)⇒(2) If L1, L2 join A to B, then L1 ∪ L2 is a closed curve (traverse
L2 backwards). By (1), its integral is 0, so the integrals along L1

and L2 coincide; the integral is path-independent.

(2)⇒(4) Fix a base point (x0, y0) and define

φ(x, y) =
ˆ (x,y)

(x0,y0)
P dx + Q dy,

which is well-defined by path independence. Differentiating
along horizontal and vertical segments yields φx = P, φy = Q, so
dφ = P dx + Q dy.
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(4)⇒(3) From φx = P, φy = Q and continuity of mixed partials,

∂P
∂y

= φxy = φyx =
∂Q
∂x

.

This closes the equivalence.
■

Example 1.5. Proof of Condition Equivalence. Prove that if P, Q
have continuous partial derivatives, the condition ∂P

∂y = ∂Q
∂x is neces-

sary and sufficient for the relation

ˆ (x,y)

(x0,y0)
P dx + Q dy =

ˆ x

x0

P(x, y0) dx +

ˆ y

y0

Q(x, y) dy

to hold (implying path independence).

範例

Sufficiency.

Assume the hypothesis ∂Q
∂x = ∂P

∂y holds on D. Define

φ(x, y) =
ˆ x

x0

P(x, y0) dx +

ˆ y

y0

Q(x, y) dy.

Differentiating with respect to y:

∂φ

∂y
= 0 + Q(x, y) = Q(x, y).

Now differentiate with respect to x. Note that the first term de-
pends on x in the limit and integrand, and the second on x in the
integrand. Differentiating the RHS with respect to y yields Q(x, y).
Differentiating the RHS with respect to x:

∂

∂x

(ˆ x

x0

P(t, y0) dt +
ˆ y

y0

Q(x, t) dt

)
= P(x, y0) +

ˆ y

y0

∂Q
∂x

(x, t) dt.

If
∂Q
∂x

=
∂P
∂y

,

then ˆ y

y0

∂P
∂y

(x, t)dt = P(x, y)− P(x, y0).

The expression becomes P(x, y0) + P(x, y) − P(x, y0) = P(x, y).
Thus dφ = Pdx + Qdy.

証明終
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Necessity.

If the integral is path independent, then φ(x, y) is a potential. ∂φ
∂x =

P and ∂φ
∂y = Q. By continuity of mixed partial derivatives:

∂P
∂y

=
∂2 φ

∂y∂x
=

∂2 φ

∂x∂y
=

∂Q
∂x

.

証明終

Example 1.6. Elliptic Circulation. Let a, b, c be constants satisfying
ac − b2 > 0. Consider the form

ω =
x dy − y dx

ax2 + 2bxy + cy2 .

Find the circulation
¸

C ω where C is any simple closed curve en-
closing the origin.

範例

Solution

Let P and Q be the components of ω. Direct calculation verifies
that ∂P

∂y = ∂Q
∂x everywhere except at (0, 0). Since ac − b2 > 0, the

quadratic form is definite, so the denominator vanishes only at
the origin. The value of the integral is independent of the specific
shape of C as long as it encloses the origin. Using the result related
to the area of the ellipse ax2 + 2bxy + cy2 ≤ 1, or by transforming
coordinates to diagonalise the form, the integral evaluates to:

˛
C

ω =
2π√

ac − b2
.

■

The Isoperimetric Inequality

The isoperimetric problem poses a classic geometric question: among
all simple closed curves of a fixed perimeter, which one encloses
the maximal area? While the answer — the circle — was intuited
by ancient Greek mathematicians such as Pappus (c. 300–350 AD),
rigorous proofs were not developed until the 19th century by Steiner
and others. We present here an elegant analytic proof for piecewise
smooth curves using Green’s Formula, provided by E. Schmidt in
1939.

Theorem 1.3. Isoperimetric Inequality.
Let Γ be a piecewise smooth simple closed curve of length L enclos-
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ing a region of area A. Then:

4πA ≤ L2.

Equality holds if and only if Γ is a circle.
定理

Proof

Let the curve Γ be enclosed between two parallel vertical tangent
lines l1 and l2. We construct a circle S of radius r that is also tan-
gent to these lines; thus the distance between l1 and l2 is 2r. We
establish a coordinate system with the origin at the centre of S
and the x-axis perpendicular to the tangents. Consequently, the
x-coordinates on Γ satisfy −r ≤ x ≤ r.
Let Γ be parametrised by arc length s, denoted by (x(s), y(s)) for
0 ≤ s ≤ L, traversed in the counter-clockwise (positive) direction.
Let s = 0 and s = s1 correspond to the points where Γ touches l1
and l2 (where x achieves its minimum −r and maximum r).
Using the area corollary of Green’s Formula (theorem 1.1), the area
enclosed by Γ is:

A =

ˆ L

0
x(s)y′(s) ds.

We define a comparison function ỹ(s) representing the y-
coordinates of the circle S corresponding to the x-coordinate x(s):

ỹ(s) =


√

r2 − x(s)2 if x(s) is on the upper arc,

−
√

r2 − x(s)2 if x(s) is on the lower arc.

Because l1 and l2 are the only vertical tangents, x′(s) keeps
one sign between them: x(s) increases strictly from −r to r
along the upper arc and decreases strictly from r back to −r
along the lower arc. Thus (x(s), ỹ(s)) traces the upper semi-
circle once (counter-clockwise) and the lower semicircle once
(counter-clockwise), i.e. the full circle once in the clockwise orien-
tation. Hence the signed area is that of the circle with a negative
sign: ˆ L

0
ỹ(s)x′(s) ds = −πr2.

We sum the area expressions:

A + πr2 =

ˆ L

0

(
x(s)y′(s)− ỹ(s)x′(s)

)
ds.

We treat the integrand as a dot product of vectors u = (x,−ỹ) and
v = (y′, x′). By the Cauchy-Schwarz inequality:

|xy′ − ỹx′| ≤
√

x2 + ỹ2
√
(y′)2 + (x′)2.
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From our construction, x(s)2 + ỹ(s)2 = r2 (the point is on the circle).
Since s is the arc length parameter, (x′)2 + (y′)2 = 1. Thus:

|xy′ − ỹx′| ≤ r · 1 = r.

Integrating the absolute value and using |
´

f | ≤
´
| f | gives

|A + πr2| ≤
ˆ L

0
|xy′ − ỹx′| ds ≤

ˆ L

0
r ds = Lr.

Both A and πr2 are nonnegative, so A + πr2 = |A + πr2|, yielding

A + πr2 ≤ Lr.

We now apply the Arithmetic Mean-Geometric Mean (AM-GM)
inequality to the terms A and πr2:

√
A · πr2 ≤ A + πr2

2
≤ Lr

2
.

Simplifying
√

πAr ≤ Lr
2 yields 2

√
πA ≤ L. Squaring both sides

gives the isoperimetric inequality:

4πA ≤ L2.

Equality Condition: For equality to hold, all intermediate inequali-
ties must be equalities.

1. A = πr2 (from AM-GM), implying Γ has the same area as the
circle S.

2. The vectors u and v must be parallel (from Cauchy-Schwarz)
and xy′ − ỹx′ ≥ 0 everywhere so that the absolute values can
be removed. That is, (−ỹ, x) = c(s)(x′, y′). Taking magnitudes
implies |c(s)| = r. By continuity, c(s) = r (assuming consistent
orientation).

The condition (−ỹ, x) = r(x′, y′) implies:

dx
ds

= − ỹ
r
= −

√
r2 − x2

r
and

dy
ds

=
x
r

.

This system of differential equations characterizes a circle of radius
r. Thus, Γ must be a circle.

■

l1 l2

Γ

S
x

y

2r

−r r

Figure 1.5: The curve Γ en-
closed by vertical tangent lines
l1, l2 separated by distance 2r,
and the comparison circle S of
radius r.
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1.3 Rotation Degree of Continuous Vector Fields

The rotation degree of a continuous vector field is an important topo-
logical invariant defined via line integrals. Let F : R2 → R2 be a
continuous mapping, which we refer to as a continuous vector field.
For a piecewise smooth oriented closed curve C ⊂ R2, if F(x) ̸= 0 for
all x ∈ C, we say F is non-degenerate on C.

Definition 1.1. Rotation Degree.
Define the unit direction vector field

T(x, y) =
F(x, y)

∥F(x, y)∥ .

This maps C to the unit circle S1. As (x, y) traverses C once in the pos-
itive (counter-clockwise) direction, the vector T(x, y) winds around S1.
The algebraic sum of the number of counter-clockwise winds is called
the rotation degree of F along C, denoted by γ(F, C).
If F(x, y) = (u(x, y), v(x, y)) is continuously differentiable (C1), an ori-
entation–invariant formula is

γ(F, C) =
1

2π

˛
C

u dv − v du
u2 + v2 .

This equals 1
2π

¸
C d(arg(u+ iv)) whenever a continuous branch of the

argument can be chosen along C; the differential form above avoids branch
issues when u changes sign.

定義

If D is a region with boundary ∂D =
⋃n

i=1 ∂Di, we define γ(F, ∂D) =

∑n
i=1 γ(F, ∂Di), assuming the interior normal lies to the left of the

positive direction.

Properties of Rotation Degree

The rotation degree satisfies the following fundamental properties.

Proposition 1.1. Additivity.
If D = D1 ∪ D2 where D1, D2 are closed regions with disjoint interi-
ors, then:

γ(F, ∂D) = γ(F, ∂D1) + γ(F, ∂D2).

命題

Proof

Orient ∂D1 and ∂D2 so that each keeps its region on the left. The
common boundary arc (if any) is then traversed once in each direc-
tion, so its contributions to the line integrals defining the degrees
cancel. What remains is exactly the integral along ∂D, proving the
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sum rule.
■

Proposition 1.2. Boundary Degree of Non-degenerate Fields.
If F is non-degenerate on a bounded closed connected region D (i.e.,
F ̸= 0 everywhere in D), then:

γ(F, ∂D) = 0.

命題

Assume D is simply connected with boundary L.

Smooth Case.

Because F ̸= 0 on all of D, the unit vector field T = F/∥F∥ is de-
fined and continuous on D, hence its restriction to L is homotopic
(within S1) to the constant map e1 = (1, 0). The rotation degree is
the winding number of T|L, so

γ(F,L) = 1
2π

˛
L

u dv − v du
u2 + v2 = deg(T|L) = 0,

because a map admitting an extension to the disk is null-homotopic
on the boundary.

証明終

Continuous Case.

The same extension argument works verbatim since T is continuous
on D; no smoothness is needed once we appeal to homotopy of
maps D → S1.

証明終

If D is multiply connected, we decompose it into simply connected
regions.

Definition 1.2. Homotopy.
Let F0, F1 be continuous non-degenerate vector fields on ∂D. A con-
tinuous deformation is a map G : ∂D× [0, 1] → R2 such that G(x, 0) =
F0(x) and G(x, 1) = F1(x). If G(x, λ) ̸= 0 for all λ ∈ [0, 1] and x ∈
∂D, it is a non-degenerate deformation, and F0, F1 are said to be ho-
motopic.

定義

Proposition 1.3. Homotopy Invariance.
Homotopic vector fields on ∂D have the same rotation degree.

命題

Proof

Let I(λ) = γ(G(·, λ), ∂D). The integrand in the degree formula
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depends continuously on λ because G does and never vanishes;
hence I is continuous on [0, 1]. But I(λ) is integer-valued for every
λ, so continuity forces it to be constant. Therefore I(0) = I(1), i.e.
γ(F0, ∂D) = γ(F1, ∂D).

■

Example 1.7. Brouwer Fixed-Point Theorem. Let D ⊂ R2 be a
bounded closed convex region with a smooth boundary ∂D. Let
F : D → D be a continuous mapping. Prove that F has a fixed point
in D.

範例

Proof

Assume F has no fixed point. Then F(x) − x ̸= 0 for all x ∈ D.
Consider the vector field V(x) = F(x) − x on ∂D. Since V is non-
degenerate on the entire region D, by Proposition 1.2, γ(V, ∂D) = 0.
However, let n(x) be the unit inward normal vector field on ∂D.
Since ∂D is a simple closed curve, the rotation degree of the nor-
mal vector is γ(n, ∂D) = 1. Since F maps D into itself, for any
x ∈ ∂D, the vector F(x) − x points into the region (or is tangent).
Specifically, the angle between F(x)− x and n(x) is at most π/2, so:

(F(x)− x) · n(x) ≥ 0.

Construct the homotopy G(x, λ) = λ[F(x) − x] + (1 − λ)n(x). For
λ ∈ (0, 1):

G · n = λ(F − x) · n + (1 − λ)∥n∥2 ≥ 1 − λ > 0.

Thus G is non-degenerate. This implies F − x is homotopic to n, so
γ(V, ∂D) = 1. This contradicts the earlier deduction that the degree
is 0. Thus, a fixed point must exist.

■

Example 1.8. Fundamental Theorem of Algebra. Prove that every
polynomial Pn(z) of degree n ≥ 1 has at least one root in C.

範例

Proof

Identify C with R2 via z = x + iy. Let F(x, y) = (ℜ(Pn),ℑ(Pn)).
Finding a root is equivalent to finding a point where F is degener-
ate. Assume F is non-degenerate everywhere. Then for any circle Sr

of radius r, γ(F, Sr) = 0.
Consider the polynomial Pn(z) = zn + . . . (monic WLOG). Let F0

correspond to zn. Direct calculation shows γ(F0, Sr) = n. Construct
the homotopy G(z, λ) = λzn + (1 − λ)Pn(z). For sufficiently large
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|z| = r, the term zn dominates the lower order terms. Specifically:

z̄nG(z, λ) = |z|2n + o(|z|2n) as |z| → ∞.

Thus G does not vanish on Sr for large r. Hence F is homotopic to
F0, implying γ(F, Sr) = n. Since n ≥ 1, this contradicts γ = 0. Thus
F must be degenerate somewhere.

■

Example 1.9. Miklós Schweitzer Competition 1995. Let f , g be inte-
grable on [0, 1] with

´ 1
0 f =

´ 1
0 g = 1. Prove there exists [a, b] ⊂ [0, 1]

such that
´ b

a f =
´ b

a g = 1/2.

範例

Proof

Define the region D = {(x, y) ∈ R2 | 0 ≤ x ≤ y ≤ 1} and the vector
field

G(x, y) =

(ˆ y

x
f (s) ds − 1

2
,
ˆ 1

y
g(s) ds − 1

2

)
.

This field is continuous on D. The problem is to find a zero of G.
Assume none exist. The boundary ∂D consists of three segments:

1. The diagonal x = y.

2. The vertical segment x = 0, 0 ≤ y ≤ 1.

3. The horizontal segment y = 1, 0 ≤ x ≤ 1.

Observe the values on the axes:

G(0, x) =

(ˆ x

0
f − 1

2
,
ˆ 1

x
g − 1

2

)
,

G(x, 1) =

(ˆ 1

x
f − 1

2
,
ˆ 1

1
g − 1

2

)
=

(
1 −
ˆ x

0
f − 1

2
,−1

2

)
=

(
1
2
−
ˆ x

0
f ,−1

2

)
.

Note that
´ 1

x g − 1/2 = 1 −
´ x

0 g − 1/2 = 1/2 −
´ x

0 g. The vectors at
the three vertices are

A = G(0, 0) =
(
− 1

2 , 1
2

)
, B = G(0, 1) =

(
1
2 ,− 1

2

)
, C = G(1, 1) =

(
− 1

2 ,− 1
2

)
.

Because G is nonzero on ∂D, its image is a closed curve in R2 \ {0}.
By homotopy invariance of the degree, we may deform this curve
(staying in R2 \ {0}) to the piecewise linear path A → B → C → A,
replacing the segment AB by a tiny detour that skirts the ori-
gin. That polygon clearly winds once around the origin, so
γ(G, ∂D) = ±1, in particular it is odd. By Proposition 1.2, G must
have a zero in D.

■
x = y

x = 0

y = 1

D

x

y

(0, 0)

(0, 1)
(1, 1)

1

Figure 1.6: The domain
D = {(x, y) : 0 ≤ x ≤ y ≤ 1} for
the Schweitzer problem.
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1.4 Exercises

1. Evaluate via Green’s Formula. Apply Green’s Formula to com-
pute the following vector line integrals. The curves are oriented in
the positive (counter-clockwise) direction.

(a)
˛

C
(x2 + xy) dx + (x2 + y2) dy, where C is the square with

vertices (±1,±1).

(b)
˛

C
ln

2 + y
1 + x2 dx +

x(y + 1)
2 + y

dy, where C is the same square as

above.

(c)
˛

C
(x2 − y2) dx − 2xy dy, where C is the boundary of the

region defined by x2 + y2 ≤ 1, x ≥ 0, y ≥ x.

(d)
˛

C

x dy − y dx
x2 + y2 , where C is:

(i) The arch of the cycloid x = a(t − sin t) − aπ, y =

a(1 − cos t) for t ∈ [0, 2π], closed by the x-axis.

(ii) The arc of (x − 1)2 + (y − 1)2 = 1 from (2, 1) to (0, 1)
via the upper semicircle, closed by the segment on
y = 1.

2. Identity for Radial Functions. Let L be a piecewise smooth closed
curve. If f is continuously differentiable, prove that:

(a)
˛

L
f (xy)(y dx + x dy) = 0.

(b)
˛

L
f (x2 + y2)(x dx + y dy) = 0.

3. Flux Integral. Calculate ˛
C

∂u
∂n

ds,

where u = x2 + y2, C is the circle x2 + y2 = 6x, and n is the unit
outward normal vector.

4. Directional Cosine Integral. Let C be a piecewise smooth sim-
ple closed curve and l be a fixed constant vector. Prove that¸

C cos(l, n) ds = 0.

5. Generalised Winding Number. Let C be a simple closed curve
enclosing the origin. Let aij be constants such that ∆ = a11a22 −
a12a21 ̸= 0. Let X = a11x + a12y and Y = a21x + a22y. Prove that:

˛
C

X dY − Y dX
X2 + Y2 = 2π sgn(∆).
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6. Line Integral on the Unit Circle. Evaluate
˛

L

(x − y) dx + (x + 4y) dy
x2 + 4y2

where L is the unit circle x2 + y2 = 1 traversed counter-clockwise.

7. Area Calculations. Use Green’s area formula to find the area
enclosed by:

(a) The astroid generalisation: x = a cos3 t, y = b sin3 t, 0 ≤ t ≤
2π.

(b) The folium of Descartes loop: x3 + y3 = 3axy.

(c) The Lamé curve: (x/a)2n+1 + (y/b)2n+1 = C(x/a)n(y/b)n,
with a, b, C > 0.

8. Path Independence. Verify that the following integrals are path-
independent and compute their values:

(a)
ˆ (3,4)

(1,2)
φ(x) dx + ψ(y) dy, for continuous φ, ψ.

(b)
ˆ (6,8)

(1,0)

x dx + y dy
x2 + y2 along a path not passing through the ori-

gin.

9. Integrating Factors. Find a non-zero integrating factor M(x, y) to
make the following forms exact, and find the primitive potential:

(a)

ω = [−y
√

x2 + y2 + 1− x(x2 + y2)] dx+[x
√

x2 + y2 + 1− y(x2 + y2)] dy.

(b)
ω = x[(ay + bx)3 + ay3] dx + y[(ay + bx)3 + bx3] dy.

Advanced Line Integrals

1. Bound Estimation. Prove the inequality∣∣∣∣ˆ
C

P dx + Q dy
∣∣∣∣ ≤ ML,

where L is the arc length and M = maxC
√

P2 + Q2. Use this to
show that lim

R→∞
IR = 0, where

IR =

˛
x2+y2=R2

y dx − x dy
(x2 + xy + y2)2 .

2. Logarithmic Potentials on Circles. Calculate:
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(a)
ˆ

x2+y2=R2
ln
√
(x − a)2 + y2 ds for |a| ̸= R.

(b)
ˆ

x2+y2=R2
ln
√
(x − a)2 + (y − b)2 ds for a2 + b2 ̸= R2.

3. Potential Decay. Let L be a simple closed curve. Let

u(x, y) =
˛

L
f (ξ, η) ln

√
(x − ξ)2 + (y − η)2 ds.

Prove that u(x, y) → 0 as x2 + y2 → ∞ if and only if
¸

L f ds = 0.

4. Mean Value Property Equivalence. Let u be continuous on R2.
Prove that the area mean value property (average over disk equals
value at centre) holds for all r > 0 if and only if the boundary
mean value property (average over circle equals value at centre)
holds for all r > 0.

5. Gradient Bound for Integral. Let f ∈ C1(G) with f = 0 on ∂G,
where G is the disk of radius a. Prove:∣∣∣∣¨

G
f (x, y) dx dy

∣∣∣∣ ≤ π

3
a3 max

G
|∇ f |.

6. High-Dimensional Mean Value Theorem. Let f ∈ C1(D) where
D ⊂ Rn is a ball of radius r. Prove there exists p0 ∈ intD such
that:

max
D

f − min
D

f = |∇ f (p0)| · 2r.

7. Retraction Construction. Assume f : B → B is a smooth map with
no fixed points.

(a) Construct a map g(x) by projecting x onto ∂B along the ray
from f (x) through x. Show g is well-defined and smooth.

(b) Verify that g(x) = x for x ∈ ∂B and g(B) ⊂ ∂B.

(c) Use the previous exercise to derive a contradiction, proving f
must have a fixed point.



2
Surface Integrals

Following the natural progression from integration along curves, we
extend our calculus to integration over surfaces in R3. We distinguish
between integrals of scalar fields (measuring quantities such as sur-
face area or mass) and integrals of vector fields (measuring flux). In
this chapter, we develop the theory of the former, known as surface
integrals of the first type.

2.1 Surfaces and Area

We begin by formalising the geometric object of study. Let S be a
surface in R3. We generally describe S via a parametrisation.

rurv

n

S

x

y

z

Figure 2.1: A parametric surface
with tangent vectors ru, rv and
normal n = ru × rv.

Definition 2.1. Parametric Surface.
A mapping r : D → R3 defined on a bounded region D ⊂ R2 is a
parametric surface if r is a continuous vector-valued function

r(u, v) = (x(u, v), y(u, v), z(u, v)).

The surface S is smooth if r is continuously differentiable and the tan-
gent vectors ru and rv are linearly independent everywhere on D. That
is, the normal vector is non-vanishing:

n = ru × rv ̸= 0, where ru =

(
∂x
∂u

,
∂y
∂u

,
∂z
∂u

)
.

定義

To define the area of a curved surface S, we employ an approxima-
tion method analogous to the rectification of curves, but with a sub-
tlety required to avoid the "Schwarz lantern" paradox (where limits
of inscribed polyhedra may not converge to the surface area).
Let S be a piecewise smooth surface (it may be closed or may have
boundary made of piecewise smooth curves). We partition S into m
sub-surfaces S1, . . . , Sm using a mesh of piecewise smooth curves.
Let d(Si) denote the diameter of the i-th element. For each Si, choose
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an arbitrary point Mi ∈ Si. Let Ti be the projection of the surface
element Si onto the tangent plane to S at Mi. The area of the planar
region Ti is denoted by ∆Ti.

Definition 2.2. Surface Area.
The area of the surface S, denoted A(S), is defined as the limit of the
sum of the areas of the tangential projections as the mesh size approaches
zero:

A(S) = lim
λ→0

m

∑
i=1

∆Ti,

where λ = max1≤i≤m{d(Si)}. If this limit exists and is finite, S is said
to be rectifiable.

定義

For a smooth parametric surface, the area element dS arises from the
magnitude of the fundamental vector product. The infinitesimal area
of the parallelogram spanned by ru du and rv dv is:

dS = ∥ru × rv∥ du dv.

Using the identity ∥a × b∥2 = ∥a∥2∥b∥2 − (a · b)2, we express this in
terms of the coefficients of the first fundamental form.

Notation 2.1. First Fundamental Form We define the Gaussian coef-
ficients:

E = ru · ru = x2
u + y2

u + z2
u,

F = ru · rv = xuxv + yuyv + zuzv,

G = rv · rv = x2
v + y2

v + z2
v.

Then the surface area element is dS =
√

EG − F2 du dv.
記法

2.2 The First Type of Surface Integral

Let S be a rectifiable surface and f : S → R a bounded function.
Consider a partition P = {S1, . . . , Sm} of S and sample points
Mi(ξi, ηi, ζi) ∈ Si. Let ∆Si be the area of the sub-surface Si.

Definition 2.3. Scalar Surface Integral.
The surface integral of the first type of f over S is defined as:

¨
S

f (x, y, z) dS = lim
λ(P)→0

m

∑
i=1

f (ξi, ηi, ζi)∆Si,

provided the limit exists independent of the partition and sample points.

定義
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Evaluation Formulae

The evaluation of surface integrals reduces to double integrals over
the parameter domain D.

Theorem 2.1. Evaluation on Parametric Surfaces.
If S is defined by r(u, v) for (u, v) ∈ D, and f is continuous on S, then:
¨

S
f (x, y, z) dS =

¨
D

f (x(u, v), y(u, v), z(u, v))
√

EG − F2 du dv.

定理

Corollary 2.1. Existence for Continuous f . If S is a smooth parametric
surface and f is continuous on S, then the surface integral

˜
S f dS ex-

ists.
推論

Proof

The composition f ◦ r is continuous on the compact domain D,
hence Riemann integrable. The evaluation formula expresses˜

S f dS as that double integral, so the limit in the Riemann-sum
definition exists.

■

In the common case where the surface is the graph of a function
z = z(x, y) over a region Dxy, we may choose x and y as parameters.
Then r(x, y) = (x, y, z(x, y)). Calculating the partial derivatives:

rx = (1, 0, zx), ry = (0, 1, zy).

It follows that E = 1 + z2
x, G = 1 + z2

y, and F = zxzy.

EG− F2 = (1+ z2
x)(1+ z2

y)− (zxzy)
2 = 1+ z2

x + z2
y + z2

xz2
y − z2

xz2
y = 1+ z2

x + z2
y.

Corollary 2.2. Evaluation on Explicit Surfaces. If S is given by z = z(x, y)
for (x, y) ∈ D, then:

¨
S

f (x, y, z) dS =

¨
D

f (x, y, z(x, y))

√
1 +

(
∂z
∂x

)2
+

(
∂z
∂y

)2
dx dy.

推論

Proof

Take the parametrisation r(x, y) = (x, y, z(x, y)) used above. Sub-
stituting the computed coefficients E, G, F into

√
EG − F2 gives√

1 + z2
x + z2

y. Applying the general evaluation formula with pa-

rameters (u, v) = (x, y) yields the stated expression.



introduction to vector calculus 41

■

Example 2.1. Integral over a Cone. Let S be the portion of the cone
z =

√
x2 + y2 lying inside the cylinder x2 + y2 = 2ax (a > 0).

Calculate:
I =
¨

S
(x2y2 + y2z2 + z2x2) dS.

範例

Solution

We represent S as the graph z =
√

x2 + y2. The projection domain
D is the disk x2 + y2 ≤ 2ax. First, we calculate the area element.

∂z
∂x

=
x√

x2 + y2
=

x
z

,
∂z
∂y

=
y
z

.

dS =

√
1 +

x2

z2 +
y2

z2 dx dy =

√
z2 + x2 + y2

z2 dx dy =

√
2(x2 + y2)

x2 + y2 dx dy =
√

2 dx dy.

Substituting z2 = x2 + y2 into the integrand:

f (x, y, z) = x2y2 + z2(x2 + y2) = x2y2 + (x2 + y2)2.

The integral becomes:

I =
√

2
¨

D
[x2y2 + (x2 + y2)2] dx dy.

We employ polar coordinates. The boundary x2 + y2 = 2ax becomes
r = 2a cos θ for θ ∈ [−π/2, π/2].

I =
√

2
ˆ π/2

−π/2
dθ

ˆ 2a cos θ

0
[(r2 cos2 θ)(r2 sin2 θ) + r4]r dr.

I =
√

2
ˆ π/2

−π/2
(cos2 θ sin2 θ + 1) dθ

ˆ 2a cos θ

0
r5 dr.

Evaluating the inner integral:
ˆ 2a cos θ

0
r5 dr =

1
6
(2a cos θ)6 =

32
3

a6 cos6 θ.

Thus:

I =
32
√

2
3

a6
ˆ π/2

−π/2
(cos8 θ sin2 θ + cos6 θ) dθ.

The integrand is even, so double the integral over [0, π/2] and use
the Beta–function identity

´ π/2
0 sinm θ cosn θ dθ = 1

2 B
(

m+1
2 , n+1

2

)
(or,

if preferred, apply the usual power-reduction formulas repeatedly
to the same effect):

ˆ π/2

−π/2
cos8 θ sin2 θ dθ = 2 · 1

2 B
( 3

2 , 9
2
)
=

7π

256
,
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ˆ π/2

−π/2
cos6 θ dθ = 2 · 1

2 B
(

1
2 , 7

2

)
=

5π

16
.

Combining,
´ π/2
−π/2(cos8 θ sin2 θ + cos6 θ) dθ = 87π

256 , hence

I =
32
√

2
3

a6 · 87π

256
=

29
8

√
2πa6.

Alternative Method: Spherical Parametrisation We may also
parametrise S using spherical coordinates. The cone equation
z =

√
x2 + y2 corresponds to the semi-vertical angle ϕ = π/4. We

parametrise S by:

x =
r√
2

cos θ, y =
r√
2

sin θ, z =
r√
2

,

defined on a domain D in the (r, θ) plane. The cylinder x2 + y2 =

2ax transforms to:

r2

2
= 2a

r√
2

cos θ =⇒ r = 2
√

2a cos θ.

Thus the parameter domain is D = {(r, θ) : −π/2 ≤ θ ≤ π/2, 0 ≤
r ≤ 2

√
2a cos θ}. We compute the coefficients of the first fundamen-

tal form with respect to the parameters (r, θ):

rr =
1√
2
(cos θ, sin θ, 1), rθ =

r√
2
(− sin θ, cos θ, 0).

E = rr · rr = 1, G = rθ · rθ =
r2

2
, F = rr · rθ = 0.

The area element is dS =
√

EG − F2 dr dθ = r√
2

dr dθ. Substituting

into the integrand f = x2y2 + z2(x2 + y2):

x2y2 =
r4

4
cos2 θ sin2 θ, z2(x2 + y2) =

r2

2
· r2

2
=

r4

4
.

The integral becomes:

I =
ˆ π/2

−π/2
dθ

ˆ 2
√

2a cos θ

0

(
r4

4
cos2 θ sin2 θ +

r4

4

)
r√
2

dr.

Evaluating the inner integral with respect to r yields
1

6
√

2
(2
√

2a cos θ)6(cos2 θ sin2 θ + 1), which simplifies to the same
result:

I =
29
8

√
2πa6.

■
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Geometric and Physical Applications

As with line integrals, surface integrals allow us to compute geomet-
ric and physical properties of surfaces.

Area. If f (x, y, z) ≡ 1, the integral yields the surface area A(S) =˜
S dS.

Mass. If ρ(x, y, z) is the surface mass density, the total mass is m =˜
S ρ dS.

Centroid. The coordinates of the centre of mass (x0, y0, z0) are given
by:

x0 =
1
m

¨
S

xρ dS, y0 =
1
m

¨
S

yρ dS, z0 =
1
m

¨
S

zρ dS.

Example 2.2. Viviani’s Surface. Find the area and the centroid of
the surface portion of the upper hemisphere z =

√
a2 − x2 − y2 cut

out by the cylinder x2 + y2 = ax (a > 0).

範例

Solution

This surface is part of the boundary of the Viviani body (see fig-
ure 2.2). The domain D is the disk x2 + y2 ≤ ax. First, calculate dS
for the sphere x2 + y2 + z2 = a2:

zx =
−x√

a2 − x2 − y2
= − x

z
, zy = −y

z
.

dS =

√
1 +

x2

z2 +
y2

z2 dx dy =

√
a2

z2 dx dy =
a
z

dx dy =
a√

a2 − x2 − y2
dx dy.

Area Calculation.

A =

¨
D

a√
a2 − x2 − y2

dx dy.

Using polar coordinates, the region D corresponds to −π/2 ≤
θ ≤ π/2 and 0 ≤ r ≤ a cos θ.

A =

ˆ π/2

−π/2
dθ

ˆ a cos θ

0

a√
a2 − r2

r dr.

Let u = a2 − r2, then du = −2r dr.ˆ a cos θ

0

r√
a2 − r2

dr =
[
−
√

a2 − r2
]a cos θ

0
= a− a

√
1 − cos2 θ = a(1−| sin θ|).

Thus,

A = a2
ˆ π/2

−π/2
(1 − | sin θ|) dθ = 2a2

ˆ π/2

0
(1 − sin θ) dθ.

A = 2a2[θ + cos θ]π/2
0 = 2a2

(π

2
− 1
)
= (π − 2)a2.
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Centroid Calculation. By symmetry across the xz-plane, y0 = 0.
The density is uniform (ρ ≡ 1), so m = A. For x0:

x0 =
1
A

¨
S

x dS =
1
A

¨
D

ax√
a2 − x2 − y2

dx dy.

Switching to polar coordinates (x = r cos θ):
¨

D
· · · =

ˆ π/2

−π/2
cos θ dθ

ˆ a cos θ

0

ar2
√

a2 − r2
dr.

We employ the substitution r = a cos t, so dr = −a sin t dt. The
limits transform from 0 → a cos θ to π/2 → θ.ˆ a cos θ

0

ar2
√

a2 − r2
dr =

ˆ θ

π/2

a(a cos t)2

a sin t
(−a sin t) dt = a3

ˆ π/2

θ
cos2 t dt.

Substituting this back into the expression for the moment (noting
the factor of 2 from symmetry):

¨
S

x dS = 2
ˆ π/2

0
cos θ

(
a3
ˆ π/2

θ
cos2 t dt

)
dθ.

Changing the order of integration over the triangular domain
0 ≤ θ ≤ t ≤ π/2:¨

S
x dS = 2a3

ˆ π/2

0
cos2 t

(ˆ t

0
cos θ dθ

)
dt = 2a3

ˆ π/2

0
cos2 t sin t dt.

Elementary evaluation yields:
¨

S
x dS = 2a3

[
−1

3
cos3 t

]π/2

0
=

2
3

a3.

Therefore,

x0 =
2a3/3

(π − 2)a2 =
2a

3(π − 2)
.

For z0:

z0 =
1
A

¨
S

z dS.

Since dS = a
z dxdy, the integrand simplifies remarkably: z dS =

z a
z dxdy = a dxdy.¨

S
z dS =

¨
D

a dx dy = a · Area(D).

The domain D is a circle of radius a/2, so Area(D) = π(a/2)2 =

πa2/4. ¨
S

z dS =
πa3

4
.

z0 =
πa3/4

(π − 2)a2 =
πa

4(π − 2)
.

The centroid is
(

2a
3(π−2) , 0, πa

4(π−2)

)
.

■
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S

x

y

z

Figure 2.2: Viviani’s sur-
face S: the hemisphere
z =

√
a2 − x2 − y2 cut by

the cylinder x2 + y2 = ax.

2.3 The Second Type of Surface Integral

In vector calculus, we often integrate a vector field over a surface to
compute flux. This leads to the second type of surface integral, which
depends on the orientation of the surface.

Orientation of Surfaces

A smooth surface S is said to be orientable if it is possible to define
a continuous unit normal vector field n(x, y, z) on S. An orientable
surface has two sides; choosing a specific normal field n specifies the
orientation (or "side") of the surface.
· For a closed surface (like a sphere), the convention is usually to

choose the outward normal as positive.

· For a surface given by z = z(x, y), the upper side is the one where
n · k > 0.

Non-orientable surfaces, such as the Möbius strip, do not admit a
global consistent normal field and are excluded from this discussion.

Definition and Evaluation

Let S be a piecewise smooth oriented surface. Let F = (P, Q, R) be
a vector field defined on S. The flux of F across S is defined as the
surface integral of the normal component of F.

n

F
S

x

y

z

Figure 2.3: Flux of a vector field
F through an oriented surface S:
the integral

˜
S F ·n dS measures

net flow.

Definition 2.4. Vector Surface Integral.
The surface integral of the second type of F over S is denoted and de-
fined by:
¨

S
F · dS =

¨
S
(P dy dz + Q dz dx + R dx dy) =

¨
S
(P, Q, R) · n dS.

定義

Equivalently, for a partition of S into small patches with representa-
tive points Mi, unit normals ni consistent with the chosen orientation,
and areas ∆Si, ¨

S
F · dS = lim

max ∆Si→0
∑

i
F(Mi) · ni ∆Si,

mirroring the Riemann-sum definition used for Type I integrals. The
notation dy dz, dz dx, and dx dy represents the projections of the area
element dS onto the coordinate planes.
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Evaluation via Projection

Just as with the first type, we evaluate these integrals by projecting
onto coordinate planes. Signs are set by the components of the cho-
sen unit normal n:
·
˜

S P dy dz: project to Dyz and multiply by sgn(n · i).

·
˜

S Q dz dx: project to Dzx and multiply by sgn(n · j).

·
˜

S R dx dy: project to Dxy and multiply by sgn(n · k).
Equivalently, if a parametrisation gives the normal ru × rv, use a plus
sign when (ru × rv) · n > 0 and a minus sign when it is negative;
this keeps track of orientation when parameters run opposite to the
chosen normal. For a graph z = z(x, y) the upward normal is

n =
(−zx,−zy, 1)√

1 + z2
x + z2

y

,

so sgn(n · k) decides the sign for dx dy, and analogous expressions
hold if the surface is written as x = x(y, z) or y = y(x, z).

General Parametric Evaluation

If S is given by r(u, v) = (x, y, z), the vector area element is

dS = (ru × rv) du dv = (A, B, C) du dv,

where A = ∂(y,z)
∂(u,v) , B = ∂(z,x)

∂(u,v) , and C = ∂(x,y)
∂(u,v) are the Jacobians. Then:

¨
S

P dy dz + Q dz dx + R dx dy = ±
¨

D
(PA + QB + RC) du dv.

The sign is chosen to match the orientation of S: if the parametric
normal (A, B, C) agrees with the chosen orientation n, use +; other-
wise use −.

Example 2.3. Flux through a Hemisphere. Let Σ be the upper unit
hemisphere z =

√
1 − x2 − y2 with the inner orientation (normal

pointing towards the origin). Calculate:

I =
¨

Σ
dy dz + dz dx + dx dy.

範例

Solution

Method 1: Coordinate Projection. I = I1 + I2 + I3. Consider
I1 =

˜
Σ dy dz. The surface splits into two parts relative to the

x-projection: the front (x > 0) and back (x < 0). However, for
the sphere x2 + y2 + z2 = 1, the inner normal points towards the
origin. For the inward orientation n = −r we have nx = −x, so
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its sign flips across the plane x = 0: on the "front" side (x > 0)
the normal points in the −x direction, while on the "back" side
(x < 0) it points in the +x direction. Let Σ = Σfront ∪ Σback. On
Σback (where x < 0), the normal has positive x-component. Thus
we take +

˜
Dyz

dy dz. On Σfront (where x > 0), the normal has
negative x-component. Thus we take −

˜
Dyz

dy dz. By symmetry,

the domain Dyz is the semi-disk y2 + z2 ≤ 1, z ≥ 0. The contri-
butions cancel: I1 = 0. Similarly, I2 = 0. For I3 =

˜
Σ dx dy, the

normal n on the upper hemisphere points inwards (downwards),
so nz < 0. Thus we take the negative sign.

I3 = −
¨

Dxy

dx dy = −Area(Dxy) = −π(1)2 = −π.

Total integral I = −π.

Method 2: Parametrisation. Using spherical coordinates: x =

sin ϕ cos θ, y = sin ϕ sin θ, z = cos ϕ for ϕ ∈ [0, π/2], θ ∈ [0, 2π].
The parametric normal vector is

N =
∂r
∂ϕ

× ∂r
∂θ

= sin ϕ(sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = sin ϕ r.

This vector points outwards. Since we require the inner orienta-
tion, we must take the negative sign.

I = −
¨

D
[1 · A︸︷︷︸

dydz

+ 1 · B︸︷︷︸
dzdx

+ 1 · C︸︷︷︸
dxdy

]dϕdθ

Substituting the Jacobians (A = sin2 ϕ cos θ, B = sin2 ϕ sin θ, C =

sin ϕ cos ϕ):

I = −
ˆ 2π

0
dθ

ˆ π/2

0
(sin2 ϕ cos θ + sin2 ϕ sin θ + sin ϕ cos ϕ)dϕ.

The terms with cos θ and sin θ vanish upon integration over
[0, 2π].

I = −2π

ˆ π/2

0
sin ϕ cos ϕ dϕ = −2π

[
1
2

sin2 ϕ

]π/2

0
= −π.

■

Example 2.4. Flux through a Boundary. Calculate

I =
¨

Σ
(z + x) dy dz + (x + y) dz dx + (y + z) dx dy,

where Σ is the boundary of the solid Ω = {x2 + y2 ≤ 1, 0 ≤ z ≤
1, x ≥ 0, y ≥ 0} (first octant quarter-cylinder), oriented outwards.
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範例

Solution

Let F = (z + x, x + y, y + z). We decompose Σ into 5 faces:

• Σ1 (Curved surface x2 + y2 = 1): Projects to Dyz for the first term.
Normal points out (x, y > 0).

• Σ2 (Bottom z = 0): Normal −k.

• Σ3 (Top z = 1): Normal +k.

• Σ4 (Left y = 0): Normal −j.

• Σ5 (Back x = 0): Normal −i.

The radial condition x2 + y2 ≤ 1 does not restrict z, so the projec-
tions needed below are rectangles: 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 onto Dyz

and 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 onto Dzx. We calculate term by term.

1.
˜
(z + x) dy dz: Only Σ1 and Σ5 contribute (others have dx = 0

or normal ⊥ i). On Σ5 (x = 0), the normal is −i (backwards).
Projection is Dyz. Integral: −

˜
Dyz

(z + 0) dy dz. On Σ1 (x =√
1 − y2), normal has x > 0. Integral: +

˜
Dyz

(z +
√

1 − y2) dy dz.

Sum:
˜

Dyz
(
√

1 − y2) dy dz. Dyz is the square [0, 1] × [0, 1]. Inte-

gral =
´ 1

0
´ 1

0

√
1 − y2 dy dz = 1 · π

4 = π
4 .

2.
˜
(x + y) dz dx: By symmetry with the first term (swapping x, y

and the relevant surfaces), this yields π
4 .

3.
˜
(y + z) dx dy: Only Σ2 (z = 0) and Σ3 (z = 1) contribute. On Σ2

(normal down), integrand is y + 0. Integral: −
˜

Dxy
y dx dy. On

Σ3 (normal up), integrand is y + 1. Integral: +
˜

Dxy
(y + 1) dx dy.

Sum:
˜

Dxy
1 dx dy = Area(Dxy) =

π
4 .

Total I = π
4 + π

4 + π
4 = 3π

4 .
■

Relation between Type I and Type II Integrals

The vector surface integral relates to the scalar surface integral via
the normal vector.

Proposition 2.1. Conversion Formula.¨
S

F · dS =

¨
S
(F · n) dS.
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In coordinates, if n = (cos α, cos β, cos γ):
¨

S
P dy dz + Q dz dx + R dx dy =

¨
S
(P cos α + Q cos β + R cos γ) dS.

命題

Proof

For a parametrisation r(u, v) we have dS = (ru × rv) du dv = n dS,
so F · dS = (F · n) dS. Expanding ru × rv = (A, B, C) shows A =

∂(y, z)/∂(u, v) etc., yielding the coordinate expression above.
■

This is particularly useful when the scalar integral simplifies due to
symmetries in dS or n.

Example 2.5. Simplification via Normal. Calculate

I =
¨

Σ
xyz(y2z2 + z2x2 + x2y2) dS,

where Σ is the sphere portion x2 + y2 + z2 = a2 in the first octant.

範例

Solution

This is a Type I integral, but the integrand is complex. We ob-
serve the structure resembles a dot product. The integrand is
xyz(y2z2 + z2x2 + x2y2). Consider the vector field F and the nor-
mal n = (x/a, y/a, z/a). Note that

(y3z3, z3x3, x3y3) ·n = y3z3 x
a
+ z3x3 y

a
+ x3y3 z

a
=

1
a

xyz(y2z2 + z2x2 + x2y2).

Thus the original integrand is a(G · n) where G = (y3z3, z3x3, x3y3).
We convert to a Type II integral:

I = a
¨

Σ
G · dS = a

¨
Σ

y3z3 dy dz + z3x3 dz dx + x3y3 dx dy.

By symmetry of the sphere and the function in the first octant, the
three terms are equal.

I = 3a
¨

Σ
x3y3 dx dy.

This is now a simple integral over the quarter disk Dxy.

I = 3a
ˆ π/2

0
dθ

ˆ a

0
(r6 cos3 θ sin3 θ)r dr = 3a · a8

8

ˆ π/2

0
(sin θ cos θ)3 dθ.

Using sin θ cos θ = 1
2 sin 2θ:

I =
3a9

8

ˆ π/2

0

1
8

sin3 2θ dθ =
3a9

64

ˆ π

0
sin3 u

du
2

=
3a9

128
· 4

3
=

a9

32
.

■
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Example 2.6. Viviani Flux. Calculate

I =
¨

Σ
(y − z) dy dz + (z − x) dz dx + (x − y) dx dy

over the outer side of the sphere part x2 + y2 + z2 = 2Rx cut by x2 +

y2 = 2rx (z ≥ 0).

範例

Solution

The sphere equation is (x − R)2 + y2 + z2 = R2. The outward nor-
mal is n = 1

R (x − R, y, z). We convert to Type I:

I =
¨

Σ
F · n dS =

1
R

¨
Σ
[(y − z)(x − R) + (z − x)y + (x − y)z] dS.

Expanding the term in brackets:

(xy− yR− zx + zR) + (zy− xy)+ (xz− yz) = −yR+ zR = R(z− y).

So I =
˜

Σ
1
R · R(z − y) dS =

˜
Σ(z − y) dS. The surface Σ is symmet-

ric with respect to the plane y = 0 (since the defining equations are
even in y). The function y is odd. Thus

˜
Σ y dS = 0.

I =
¨

Σ
z dS.

For the sphere x2 + y2 + z2 = 2Rx, we differentiate implicitly to find
dS:

2x − 2R + 2zzx = 0 =⇒ zx =
R − x

z
, zy = −y

z
.

dS =

√
1 +

(R − x)2 + y2

z2 dxdy =

√
z2 + (R − x)2 + y2

z2 dxdy =

√
R2

z2 dxdy =
R
z

dxdy.

The integral becomes incredibly simple:

I =
¨

D
z
(

R
z

)
dxdy = R

¨
D

dxdy = R · Area(D).

The domain D is the disk x2 + y2 ≤ 2rx, which has radius r. Area =

πr2.
I = πRr2.

■

2.4 Exercises

1. Basic Calculations. Compute
˜

S z2 dS where:

(a) S is the upper part (z ≥ 0) of the cone z2 = x2 + y2 cut by the
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sphere x2 + y2 + z2 = R2.

(b) S is the conical surface parametrised by x = r sin α cos θ, y =

r sin α sin θ, z = r cos α for 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

2. Symmetry Exploitation. Calculate¨
S
(x + y + z) dS

over the upper unit hemisphere x2 + y2 + z2 = 1, z ≥ 0.

3. Integration over the Sphere. Evaluate¨
S
(x + y + z)2 dS

where S is the unit sphere.

4. Cone and Cylinder Intersection. Find¨
S
(x4 − y4 + y2z2 − z2x2 + 1) dS,

where S is the portion of the cone z2 = x2 + y2 inside the cylinder
x2 + y2 = 2x.

5. Polyhedral and Parabolic Surfaces. Compute
˜

S |xyz| dS where:

(a) S is the octahedron |x|+ |y|+ |z| = 1.

(b) S is the part of the paraboloid z = x2 + y2 cut by the plane
z = 1.

6. Moment of Inertia Term. Calculate¨
S
(x2 + y2 + z2) dS

where S is the boundary of the regular octahedron |x|+ |y|+ |z| =
a.

7. Parameter-Dependent Integral. Let f (x, y, z) = x2 + y2 if z ≥√
x2 + y2 and 0 otherwise. Calculate the function

F(t) =
¨

x2+y2+z2=t2
f (x, y, z) dS.

8. Potential of a Sphere. Let St be the sphere of radius t centred
at (x, y, z) (fixed, outside radius a). Let f (ξ, η, ζ) = 1 inside the
sphere ξ2 + η2 + ζ2 < a2 and 0 outside. Calculate

F(t) =
¨

St

f dS.

9. Tetrahedral Surface. Evaluate
¨

S

dS
(1 + x + y)2 ,
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where S is the boundary of the tetrahedron x + y + z ≤ 1, x, y, z ≥
0.

10. Viviani-Type Surface. Compute
¨

S

|x|
z

dS,

where S is the part of the cylinder x2 + y2 = 2ay cut out by z =√
x2 + y2 and z = 2a.

11. Explicit Formula. Let Σ be given by z = z(x, y) on domain D.
Prove that:¨

Σ
P dy dz + Q dz dx + R dx dy = ±

¨
D
(−Pzx − Qzy + R) dx dy.

Specify the sign for upper/lower orientations.

12. Symmetry Principles. Let Σ be symmetric about the xy-plane. Let
Σ1 be the upper part (z > 0).

(a) If f (x, y, z) = − f (x, y,−z), prove
˜

Σ f dS = 0.

(b) If R(x, y, z) = −R(x, y,−z), determine whether
˜

Σ R dx dy is
0 or 2

˜
Σ1

R dx dy.

13. Projection Area. Let Σ be a planar region with area S and normal
n. If cos(n, k) = µ, prove the projected area is µS.

14. Flux through a Sphere. Compute

I1 =

¨
Σ

z dx dy

and
I2 =

¨
Σ

z2 dx dy

for the sphere x2 + y2 + z2 = a2 with outward orientation. Explain
the result of I1 geometrically.

15. Gauss-Ostrogradsky Verification. Calculate the flux of F =

(x, y, z) through the boundary of the cube [0, 1]3 directly and com-
pare with the volume integral of the sum of partial derivatives.



3
Gauss’s Theorem

We now proceed to the three-dimensional analogue of Green’s For-
mula. Gauss’s Theorem establishes a fundamental link between a
triple integral over a bounded region in R3 and a surface integral
over its boundary.

3.1 The Gauss Formula

Let D ⊂ R3 be a bounded region whose boundary ∂D consists of
a finite number of piecewise smooth closed orientable surfaces. We
orient ∂D with the outward unit normal vector n. Let P, Q, R be
functions with continuous partial derivatives on D̄.

D n
∂D

Figure 3.1: Gauss’s Theorem:
the outward flux of F through
∂D equals the integral of the
sum of partial derivatives over
D.

Theorem 3.1. Gauss’s Formula.
The flux of the vector field F = (P, Q, R) across the boundary ∂D is
equal to the triple integral of the sum of partial derivatives of P, Q, R
over D:
˚

D

(
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

)
dx dy dz =

‹
∂D

P dy dz + Q dz dx + R dx dy.

In terms of the surface integral of the first type, using the outward nor-
mal n = (cos α, cos β, cos γ):
˚

D

(
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

)
dV =

‹
∂D

(P cos α + Q cos β + R cos γ) dS.

定理

This result generalises Green’s Formula to three dimensions. Just as
Green’s Formula relates domain integrals to boundary line inte-
grals, Gauss’s Formula relates volume integrals to boundary surface
integrals. All surface integrals below are taken with the outward
orientation unless explicitly stated otherwise.

Example 3.1. Flux through a Surface of Revolution. Calculate the
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surface integral

I =
¨

Σ
4xz dy dz − 2yz dz dx + (1 − z2) dx dy,

where Σ is the surface of revolution generated by the curve z = ey

(0 ≤ y ≤ a) rotating around the z-axis. The surface is oriented via
the "lower" side (the normal has a negative z-component).

範例

1

ea

Σ

Σ1

x

y

z

Figure 3.2: The region D en-
closed by the surface of revolu-
tion Σ and the top disk Σ1.

Solution

The equation of the surface is z = e
√

x2+y2 for x2 + y2 ≤ a2. Let P =

4xz, Q = −2yz, and R = 1 − z2. We observe that the sum of partial
derivatives is zero:

∂P
∂x

+
∂Q
∂y

+
∂R
∂z

= 4z − 2z − 2z = 0.

Direct calculation is cumbersome due to the parametrisation. In-
stead, we apply Gauss’s Formula. The surface Σ is not closed. We
close the region by adding the top disk Σ1 at z = ea defined by
x2 + y2 ≤ a2. Let D be the solid region bounded by Σ and Σ1.
The boundary ∂D = Σ ∪ Σ1. We must determine the orientation.
The problem specifies the "lower" side of Σ. Since Σ forms the bot-
tom/sides of the cup-shaped region D (described by 1 ≤ z ≤ ea and
0 ≤ r =

√
x2 + y2 ≤ ln z so that z = er), the outward normal to D

points downwards on Σ. This matches the specified orientation. On
Σ1, the outward normal is k (upward). By theorem 3.1:

˚
D

0 dV =

¨
Σ

F · dS +

¨
Σ1

F · dS.

Thus I = −
˜

Σ1
F · dS. On Σ1, z = ea is constant, so dz = 0. The nor-

mal is (0, 0, 1), so we project onto the xy-plane:
¨

Σ1

F · dS =

¨
x2+y2≤a2

R(x, y, ea) dx dy =

¨
x2+y2≤a2

(1 − e2a) dx dy.

= (1 − e2a) · πa2.

Therefore:
I = −(1 − e2a)πa2 = (e2a − 1)πa2.

■

3.2 Singularities and Domain Excavation

A powerful application of Gauss’s Formula arises in calculating in-
tegrals of fields with singularities. If the field is undefined at a point
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P0 inside the closed surface, we cannot apply the theorem directly to
the interior. Instead, we "excavate" the singularity by surrounding P0

with a small sphere Sε, applying the theorem to the region between
the outer surface and Sε.

S

Sε

x
y

z

Figure 3.3: Excavation around
a singularity: the region Dε lies
between the outer sphere S and
the inner ellipsoid Sε.

Example 3.2. Flux of an Anisotropic Field. Calculate the surface
integral

I =
‹

S

x dy dz + y dz dx + z dx dy
(ax2 + by2 + cz2)3/2 ,

where S is the unit sphere x2 + y2 + z2 = 1 with the outward orien-
tation, and a, b, c > 0.

範例

Solution

Let P, Q, R be the components of the integrand. The denominator
vanishes at the origin, which lies inside S.

Method 1: Gauss’s Formula (Excavation). We compute the partial
derivative sum for r ̸= 0. Let ρ = (ax2 + by2 + cz2)1/2. Then
P = xρ−3.

∂P
∂x

= ρ−3 + x(−3ρ−4)
∂ρ

∂x
= ρ−3 − 3xρ−4 · 1

2
ρ−1(2ax) = ρ−3 − 3ax2ρ−5.

Summing the partial derivatives:

3ρ−3 − 3ρ−5(ax2 + by2 + cz2) = 3ρ−3 − 3ρ−5(ρ2) = 0.

Since this sum is zero everywhere except the origin, the flux
through S is equal to the flux through any small closed surface
surrounding the origin. We choose a surface Sε tailored to the
symmetry of the denominator: the ellipsoid ax2 + by2 + cz2 = ε2.
Let Dε be the region between S and Sε. By Gauss’s Formula:

‹
S

F · dS −
‹

Sε

F · dS =

˚
Dε

0 dV = 0.

(Note the sign is minus because the standard outward normal
of Dε on the inner boundary Sε points towards the origin, while
we define the integral over Sε with the outward normal relative
to the small ellipsoid itself). Thus I =

‚
Sε

F · dS. On Sε, the
denominator is (ε2)3/2 = ε3.

I =
1
ε3

‹
Sε

x dy dz + y dz dx + z dx dy.

We apply Gauss’s Formula again to the integral on the RHS, re-
garding it as an integral over the solid ellipsoid Eε defined by
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ax2 + by2 + cz2 ≤ ε2. The integrand is r · dS, so the sum of partial
derivatives is 3.

‹
Sε

r · dS =

˚
Eε

3 dx dy dz = 3 Vol(Eε).

The volume of the ellipsoid is 4π
3

ε3
√

abc
.

I =
1
ε3 · 3 · 4πε3

3
√

abc
=

4π√
abc

.

Method 2: Direct Parametrisation. Parametrise the unit sphere S
by spherical coordinates (φ, θ).

x = sin φ cos θ, y = sin φ sin θ, z = cos φ.

The vector area element matches the outward normal: A =

sin2 φ cos θ, B = sin2 φ sin θ, C = sin φ cos φ. Substituting into the
integral:

I =
ˆ 2π

0

ˆ π

0

xA + yB + zC
(ax2 + by2 + cz2)3/2 dφ dθ.

The numerator simplifies to sin φ (since x2 + y2 + z2 = 1). The
denominator term is D(φ, θ) = a sin2 φ cos2 θ + b sin2 φ sin2 θ +

c cos2 φ.

I = 8
ˆ π/2

0
dθ

ˆ π/2

0

sin φ dφ

(D(φ, θ))3/2 .

Let u = cos φ, then du = − sin φdφ. The limits become 1 → 0.
The denominator becomes K sin2 φ+ c cos2 φ = K(1− u2)+ cu2 =

K − (K − c)u2, where K = a cos2 θ + b sin2 θ.

ˆ 1

0

du
[K − (K − c)u2]3/2 =

1
K
√

c
.

(Using the standard integral
´ 1

0 (A − Bt2)−3/2dt = 1
A
√

A−B
). Here

A = K and A − B = K − (K − c) = c. Thus:

I =
8√
c

ˆ π/2

0

dθ

a cos2 θ + b sin2 θ
=

8√
c

ˆ π/2

0

sec2 θ dθ

a + b tan2 θ
.

Let t = tan θ.

I =
8√
c

ˆ ∞

0

dt
a + bt2 =

8√
c

[
1√
ab

arctan

(√
b
a

t

)]∞

0

.

I =
8√
abc

· π

2
=

4π√
abc

.

■
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Note

Using Gauss’s Formula for regions with singularities requires pre-
cise identification of the "hole" to be excised. The choice of the
auxiliary surface (sphere vs. ellipsoid) can significantly simplify the
subsequent calculation.

3.3 Volume by Surface Integrals

Just as Green’s Formula yields a method for computing the area of a
planar region via a line integral along its boundary, Gauss’s Formula
allows us to calculate the volume of a solid region using surface
integrals.
Let Ω ⊂ R3 be a bounded closed region with a piecewise smooth
boundary ∂Ω. Let V(Ω) denote its volume.

Ω
∂Ω

n
x

y
z

Figure 3.4: Volume via surface
integral: V = 1

3
‚

∂Ω r · n dS.

Corollary 3.1. Volume Formulas. The volume of Ω is given by the sur-
face integrals over the boundary ∂Ω, oriented with the outward nor-
mal n = (cos α, cos β, cos γ):

V(Ω) =

‹
∂Ω

x dy dz =

‹
∂Ω

y dz dx =

‹
∂Ω

z dx dy.

Symmetrising these expressions yields the vector form (using the cho-
sen outward orientation; take absolute value if a different orientation
is used):

V(Ω) =
1
3

‹
∂Ω

x dy dz + y dz dx + z dx dy =
1
3

‹
∂Ω

(r · n) dS.

推論

Proof

Apply Gauss’s Formula (theorem 3.1) to the vector fields F1 =

(x, 0, 0), F2 = (0, y, 0), and F3 = (0, 0, z). For F1, the partial deriva-
tive sum is 1. Thus: ˚

Ω
1 dV =

‹
∂Ω

x dy dz.

The other identities follow similarly. Averaging the three results
gives the symmetric form involving the sum of partial derivatives
equal to 3.

■

Parametric Evaluation

When the boundary ∂Ω is given by a parametric representation
r(u, v) = (x(u, v), y(u, v), z(u, v)) for (u, v) ∈ D, the symmetric
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volume formula transforms into a determinant integral over the pa-
rameter domain.
Recall the Jacobians of the surface components:

A =
∂(y, z)
∂(u, v)

, B =
∂(z, x)
∂(u, v)

, C =
∂(x, y)
∂(u, v)

.

Substituting these into the relation P dy dz + · · · = (PA + QB +

RC) du dv:

V(Ω) =
1
3

∣∣∣∣¨
D
(xA + yB + zC) du dv

∣∣∣∣ .

Expressing A, B, C explicitly as determinants yields a compact form
involving the scalar triple product of the position vector and its tan-
gents.

Proposition 3.1. Parametric Volume Formula.

V(Ω) =
1
3

∣∣∣∣¨
D

det(r, ru, rv) du dv
∣∣∣∣ = 1

3

∣∣∣∣∣∣∣
¨

D

∣∣∣∣∣∣∣
x y z
xu yu zu

xv yv zv

∣∣∣∣∣∣∣ du dv

∣∣∣∣∣∣∣ .

命題

Volumes in Spherical Coordinates

A particularly useful application arises when the surface is defined
by a radial function r = r(φ, θ) in spherical coordinates, where φ is
the polar angle (colatitude) and θ is the azimuthal angle. The surface
parametrisation is:

r(φ, θ) = r(φ, θ)(sin φ cos θ, sin φ sin θ, cos φ).

Corollary 3.2. Spherical Volume. If Ω is the star-shaped region 0 ≤ ρ ≤
r(φ, θ) for (φ, θ) ∈ D with r(φ, θ) ≥ 0, then:

V(Ω) =
1
3

¨
D

r3(φ, θ) sin φ dφ dθ.

推論

Proof

We can verify this directly via the surface integral or by triple inte-
gration.

Method 1: Surface Integral. We compute the determinant
det(r, rφ, rθ). Let eρ be the radial unit vector. Then r = reρ.
Differentiation yields rφ = rφeρ + reφ and rθ = rθeρ + r sin φeθ .
The cross product is:

rφ × rθ = (rφeρ + reφ)× (rθeρ + r sin φeθ).
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Ignoring terms with eρ × eρ = 0, the only term with a radial
component comes from (reφ) × (r sin φeθ) = r2 sin φ(eφ × eθ) =

r2 sin φeρ. Thus, the dot product with r is:

r · (rφ × rθ) = (reρ) · (· · ·+ r2 sin φeρ) = r3 sin φ.

Applying the parametric formula yields the result.

Method 2: Triple Integral. Integrating the volume element
ρ2 sin φ dρ dφ dθ:

V =

¨
D

sin φ dφ dθ

ˆ r(φ,θ)

0
ρ2 dρ =

¨
D

r3(φ, θ)

3
sin φ dφ dθ.

■

Example 3.3. Volume of a Cardioid of Revolution. Calculate the
volume enclosed by the surface given in spherical coordinates by
r(φ, θ) = a(1 + cos φ) (where a > 0, 0 ≤ φ ≤ π).

範例

Solution

Using the spherical volume formula with D = [0, π]× [0, 2π]:

V =
1
3

ˆ 2π

0
dθ

ˆ π

0
a3(1 + cos φ)3 sin φ dφ.

The θ integral gives 2π. For the φ integral, let u = 1 + cos φ. Then
du = − sin φ dφ. Limits: φ = 0 =⇒ u = 2; φ = π =⇒ u = 0.

V =
2πa3

3

ˆ 2

0
u3 du =

2πa3

3

[
u4

4

]2

0
=

2πa3

3
· 16

4
=

8πa3

3
.

■

∂Ω

x

y

z

Figure 3.5: The cardioid of rev-
olution r = a(1 + cos φ) in
spherical coordinates. Its vol-
ume is 8πa3

3 .

3.4 Exercises

1. Flux through Simple Closed Surfaces. Use Gauss’s Formula to
compute the following vector surface integrals.

(a)
‹

S
y(x − z) dy dz + z2 dz dx + (y2 + xz) dx dy, where S is the

surface of the cube [0, a]3 with inner orientation.

(b)
‹

Σ
(x3 + x) dy dz + (y2 − xz) dz dx + (z3 + z) dx dy, where Σ is

the sphere x2 + y2 + z2 = 2z with outer orientation.

(c) Let Σ be the surface of revolution obtained by rotating the
region bounded by z = 1 − y2 and z = 0 in the yz-plane
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around the z-axis (outer orientation). Calculate the surface
integral:
‹

Σ

(
∂A3

∂y
− ∂A2

∂z

)
dy dz+

(
∂A1

∂z
− ∂A3

∂x

)
dz dx+

(
∂A2

∂x
− ∂A1

∂y

)
dx dy,

where A1 = x3 − x2y + z3, A2 = xy2 + y3, A3 = xz + z2.

2. Open Surfaces and Auxiliary Caps. Calculate the following inte-
grals by closing the surface and applying Gauss’s Formula.

(a)
¨

Σ
(x2 cos α + y2 cos β + z2 cos γ) dS, where Σ is the conical

surface z2 = x2 + y2 for 0 ≤ z ≤ h, with downward normal
(cos α, cos β, cos γ).

(b)
¨

Σ
x3 dy dz + y3 dz dx + z3 dx dy, where Σ is the upper hemi-

sphere x2 + y2 + z2 = a2 (z ≥ 0) with upper orientation.

(c)
¨

Σ

(
x3

a3 + y3z3
)

dy dz+
(

y3

b3 + z3x3
)

dz dx+
(

z3

c3 + x3y3
)

dx dy,

where Σ is the part of the ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 with
x ≥ 0, oriented towards negative x.

3. Volume of a Cone. Let Σ be a conical surface F(x, y, z) = 0 with
vertex at the origin. Let Π be the plane Ax + By + Cz = D. Prove
that the volume of the cone formed by Σ and Π is V = 1

3 SH,
where S is the base area on Π and H is the perpendicular height
from the origin to Π.

Remark.

Use the vector volume formula V = 1
3
˜

r · n dS and consider the
contribution from the lateral surface.

4. Volume of a Lemniscate Surface. Find the volume of the solid
enclosed by the surface (x2 + y2 + z2)2 = a2xy.

Remark.

Use spherical coordinates.

5. Flux on a Hyperboloid. Calculate
˜

Σ(x3 + y3) dy dz + (x3 +

2x2y) dz dx − x2z dx dy, where Σ is the portion of the hyperboloid
x2 + y2 − z2 = 1 between z = 0 and z =

√
3, oriented outwards.

6. Paraboloid Flux. Let V = {(x, y, z) | x2 + y2 < z < 1} and S = ∂V.
Calculate the outward flux:‹

S
yz dz dx + (x2 + y2)z dx dy.
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7. Mixed Flux Integral. Evaluate the surface integral
‹

S
z dy dz + cos y dz dx + dx dy

over the outer side of the unit sphere x2 + y2 + z2 = 1.



4
Stokes’ Theorem

In the previous chapters, we established Green’s Formula, which
relates a line integral along a simple closed curve in the plane to a
double integral over the enclosed region. We also developed Gauss’s
Formula, linking surface flux to volume integrals. We now com-
plete this triad of fundamental theorems with Stokes’ Formula (often
called Stokes’ Theorem). This result generalises Green’s Formula to
oriented surfaces in R3, providing a profound connection between
the circulation of a vector field along a boundary curve and a surface
integral involving its partial derivatives.

4.1 The Stokes Formula

Let Σ be a piecewise smooth oriented surface in R3, bounded by
a piecewise smooth, simple closed curve ∂Σ. We adopt the right-
hand rule convention for orientation: if one’s right hand curls in the
direction of the traversal of ∂Σ, the thumb points in the direction of
the unit normal vector n of Σ.
Let P, Q, R be functions with continuous partial derivatives on a
region containing Σ.

Theorem 4.1. Stokes’ Formula.
The line integral of the vector field F = (P, Q, R) along the boundary
∂Σ is equal to the surface integral of the determinant of partial deriva-
tives over Σ. In coordinate form:

˛
∂Σ

P dx + Q dy + R dz =

¨
Σ

∣∣∣∣∣∣∣
dy dz dz dx dx dy

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ .

Using the relation between surface integrals of the first and second types
(proposition 2.1), this may be written in terms of the directional cosines
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(cos α, cos β, cos γ) of the normal n:

˛
∂Σ

F · dr =
¨

Σ

∣∣∣∣∣∣∣
cos α cos β cos γ

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ dS.

The integrand is composed of the terms:(
∂R
∂y

− ∂Q
∂z

)
cos α +

(
∂P
∂z

− ∂R
∂x

)
cos β +

(
∂Q
∂x

− ∂P
∂y

)
cos γ.

定理

Note

If the surface Σ lies entirely in the xy-plane, the normal is
k = (0, 0, 1). The determinant simplifies to ∂Q

∂x − ∂P
∂y , and Stokes’

Formula reduces directly to Green’s Formula (theorem 1.1).

Example 4.1. Cube Section Circulation. Calculate the circulation

I =
˛

C
(y2 − z2) dx + (z2 − x2) dy + (x2 − y2) dz,

where C is the intersection of the boundary of the cube Ω = {0 ≤
x, y, z ≤ a} and the plane x + y + z = 3

2 a. The orientation of C is
counter-clockwise when viewed from the positive z-axis.

範例

Solution

Calculating the integral directly would require parametrising the
six segments of the hexagonal intersection shown in figure 4.1.
Instead, we apply Stokes’ Formula. Let Σ be the planar region en-
closed by C on the plane x + y + z = 3

2 a. The normal vector to the
plane is (1, 1, 1). Normalising gives n = 1√

3
(1, 1, 1). Because n has

positive z-component, the stated “counter-clockwise when viewed
from +z” boundary orientation agrees with the right-hand rule for
Stokes.
We compute the terms for the surface integral from F = (y2 −
z2, z2 − x2, x2 − y2):(

∂R
∂y

− ∂Q
∂z

)
=

∂

∂y
(x2 − y2)− ∂

∂z
(z2 − x2) = −2y − 2z,(

∂P
∂z

− ∂R
∂x

)
=

∂

∂z
(y2 − z2)− ∂

∂x
(x2 − y2) = −2z − 2x,(

∂Q
∂x

− ∂P
∂y

)
=

∂

∂x
(z2 − x2)− ∂

∂y
(y2 − z2) = −2x − 2y.

The normal vector is n = ( 1√
3

, 1√
3

, 1√
3
). The integrand is the dot
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product of these terms with n:

1√
3
[(−2y− 2z)+ (−2z− 2x)+ (−2x− 2y)] = − 2√

3
(2x+ 2y+ 2z) = − 4√

3
(x+ y+ z).

On the surface Σ, we have x + y + z = 3
2 a. Therefore, the integrand

is constant:

− 4√
3

(
3
2

a
)
= −2

√
3a.

The integral becomes:

I =
¨

Σ
−2

√
3a dS = −2

√
3a · Area(Σ).

The intersection of the cube with this plane is a regular hexagon.
The distance from the origin to the plane is h = 3a/2√

3
=

√
3

2 a, which
passes through the centre of the cube. The hexagon vertices are the
midpoints of the cube edges. The side length is s = a√

2
. The area of

a regular hexagon is 3
√

3
2 s2 = 3

√
3

2

(
a2

2

)
= 3

√
3

4 a2. Substituting this
area:

I = −2
√

3a ·
(

3
√

3
4

a2

)
= −9

2
a3.

■
C

Figure 4.1: The hexagonal
intersection C of the plane
x + y + z = 3

2 a and the cube.

Example 4.2. Stokes’ Theorem on an Intersection Curve. Use
Stokes’ formula to calculate

I =
˛

C
(y2 + z2) dx + (z2 + x2) dy + (x2 + y2) dz,

where C is the intersection of the sphere x2 + y2 + z2 = 2Rx and the
cylinder x2 + y2 = 2rx (0 < r < R, z > 0). The boundary orientation
is the one induced by the outward normal of the spherical cap via
the right-hand rule (equivalently, traversing C keeps the smaller cap
on the left).

範例

Solution

Let Σ be the portion of the sphere x2 + y2 + z2 = 2Rx lying inside
the cylinder, oriented with the outward normal. The boundary ∂Σ
corresponds to the curve C with the specified orientation.
The vector field is F = (y2 + z2, z2 + x2, x2 + y2). The terms for the
surface integral are:(

∂R
∂y

− ∂Q
∂z

,
∂P
∂z

− ∂R
∂x

,
∂Q
∂x

− ∂P
∂y

)
.
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Substituting the components:

(2y − 2z, 2z − 2x, 2x − 2y).

The surface Σ is part of the sphere (x − R)2 + y2 + z2 = R2. The unit
outward normal vector n is:

n =
1
R
(x − R, y, z).

We evaluate the integrand for Stokes’ formula:

1
R
[(2y − 2z)(x − R) + (2z − 2x)y + (2x − 2y)z]

=
2
R
[(xy − yR − zx + zR) + (yz − xy) + (xz − yz)] .

Upon expansion, the terms xy, zx, and yz cancel:

2
R
(zR − yR) = 2(z − y).

Thus, the integral becomes:

I =
¨

Σ
2(z − y) dS = 2

¨
Σ

z dS − 2
¨

Σ
y dS.

The surface Σ and the domain D (x2 + y2 ≤ 2rx) are symmetric
with respect to the plane y = 0. Since the function f (x, y, z) = y
is odd with respect to y, the integral

˜
Σ y dS vanishes. We are left

with:
I = 2

¨
Σ

z dS.

For the sphere (x − R)2 + y2 + z2 = R2, projecting to the xy-plane
gives dS = R

z dx dy (standard Jacobian for z =
√

2Rx − x2 − y2);
multiplying by z yields the handy identity z dS = R dx dy. There-
fore, we reduce the surface integral to a double integral over the
projection domain D:

I = 2
¨

D
z
(

R
z

)
dx dy = 2R

¨
D

dx dy = 2R · Area(D).

The domain D is the disk x2 + y2 ≤ 2rx, which has radius r and
area πr2.

I = 2R(πr2) = 2πr2R.

■

C

Σ

x

y

z

Figure 4.2: The surface Σ on
the sphere cut by the cylinder,
bounded by the curve C.
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4.2 Theoretical Consequences

Stokes’ Formula allows us to prove general properties of vector fields
on closed surfaces.

Proposition 4.1. Closed Surface Integral.
Let Σ be a piecewise smooth closed surface enclosing a volume Ω. If
F = (P, Q, R) is a vector field with continuous partial derivatives, then:

‹
Σ

∣∣∣∣∣∣∣
cos(n, x) cos(n, y) cos(n, z)

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ dS = 0.

命題

We present two proofs to illustrate the consistency of vector calculus.

Gauss’s Formula

Assume F is twice continuously differentiable. Apply Gauss’s For-
mula (theorem 3.1). The integrand is:(

∂R
∂y

− ∂Q
∂z

)
cos α +

(
∂P
∂z

− ∂R
∂x

)
cos β +

(
∂Q
∂x

− ∂P
∂y

)
cos γ.

Applying Gauss’s Formula converts this surface integral into a
triple integral over Ω:
˚

Ω

[
∂

∂x

(
∂R
∂y

− ∂Q
∂z

)
+

∂

∂y

(
∂P
∂z

− ∂R
∂x

)
+

∂

∂z

(
∂Q
∂x

− ∂P
∂y

)]
dx dy dz.

By symmetry of mixed partial derivatives (Schwarz’s Theorem),
terms cancel (e.g., ∂2R

∂x∂y − ∂2R
∂y∂x = 0). The volume integral is identi-

cally zero.
証明終

Stokes’ Formula (Splitting Argument)

This method requires only first-order derivatives on Σ. Divide
the closed surface Σ into two patches Σ1 and Σ2 by introducing a
simple closed curve C on Σ. Orient Σ with the outward normal n.
Apply Stokes’ Formula to each patch:

¨
Σ1

(. . . ) dS =

˛
∂Σ1

P dx + Q dy + R dz,

¨
Σ2

(. . . ) dS =

˛
∂Σ2

P dx + Q dy + R dz.

Note that the boundaries ∂Σ1 and ∂Σ2 are the same curve C, but
their induced orientations are opposite (see figure 4.3). Let C be
oriented consistently with Σ1. Then ∂Σ2 is traversed in the reverse
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direction, so the second integral is the negative of the first. Sum-
ming the two integrals gives zero.

証明終

Σ1

Σ2

C

∂Σ1 = C, ∂Σ2 = −C

Figure 4.3: Splitting a closed
surface Σ into Σ1 and Σ2 along
curve C. The induced orienta-
tions on C cancel.

4.3 Conditions for Path Independence in Space

We now extend the conditions for path independence of line inte-
grals, previously established for planar regions, to three-dimensional
space. The result relies fundamentally on Stokes’ Formula, which
links the circulation of a field to the derivatives of its components.
However, the validity of this extension depends on the topological
nature of the domain.

Simply Connected Regions in R3

In the plane, a region is simply connected if it contains no "holes".
In R3, the concept is slightly more subtle. For Stokes’ Formula to
imply that vanishing partial derivative terms lead to a vanishing
circulation, we require that every closed curve C in the domain Ω
bounds a surface Σ that lies entirely within Ω.

Definition 4.1. Surface Simply Connected Region.
A region Ω ⊂ R3 is said to be surface simply connected (or simply
connected) if for every piecewise smooth simple closed curve C ⊂ Ω,
there exists a piecewise smooth orientable surface Σ ⊂ Ω such that
∂Σ = C.

定義

Example 4.3. Topological Examples.
1. Concentric Spheres: The region between two concentric spheres

(a spherical shell) is surface simply connected. Any closed loop
within the shell can be "shrunk" or spanned by a surface without
hitting the central void.

2. Cylindrical Hole: The region Ω = {(x, y, z) ∈ R3 | 1 < x2 + y2}
(space with a cylinder removed) is not simply connected. A loop
encircling the z-axis cannot be spanned by a surface within Ω.

3. Torus: The interior of a torus is not simply connected.

範例

Equivalence of Conditions

Theorem 4.2. Conservative Fields in Space.
Let Ω be a surface simply connected region in R3. Let F = (P, Q, R)
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be a vector field with continuous partial derivatives on Ω. The follow-
ing conditions are equivalent:
1. Irrotational Field: The cross-partial derivatives are equal everywhere

in Ω:
∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

,
∂Q
∂x

=
∂P
∂y

.

2. Zero Circulation: For any piecewise smooth closed curve C ⊂ Ω,¸
C F · dr = 0.

3. Path Independence: For any path L ⊂ Ω from A to B, the integral´
L F · dr depends only on the endpoints A, B.

4. Exact Differential: There exists a scalar potential φ on Ω such that
F = ∇φ (i.e., dφ = P dx + Q dy + R dz).

定理

Proof

We outline the cyclic implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).

(1) ⇒ (2): Let C be a closed curve. Since Ω is surface simply
connected, there exists a surface Σ ⊂ Ω with ∂Σ = C. By
Stokes’ Formula, the integrand involving the differences of par-
tial derivatives vanishes (since they are equal), so:

˛
C

F · dr =
¨

Σ
0 dS = 0.

(2) ⇐⇒ (3): Standard argument identical to the planar case (see
theorem 1.2).

(3) ⇒ (4): Fix a base point M0(x0, y0, z0). Define φ(M) =
´ M

M0
F · dr.

Since the integral is path-independent, φ is well-defined. Differ-
entiating φ with respect to x, y, z recovers P, Q, R.

(4) ⇒ (1): If F = ∇φ, then the mixed partials are equal (e.g., ∂P
∂y =

∂2 φ
∂y∂x = ∂2 φ

∂x∂y = ∂Q
∂x ).

■

When these conditions are met, the potential function φ(x, y, z) can
be recovered by integrating along a piecewise linear path parallel to
the axes from (x0, y0, z0) to (x, y, z):

φ(x, y, z) =
ˆ x

x0

P(t, y0, z0) dt +
ˆ y

y0

Q(x, t, z0) dt +
ˆ z

z0

R(x, y, t) dt + C.

Example 4.4. Recovering the Potential. Consider the differential
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form

ω = z
(

1
x2y

− 1
x2 + z2

)
dx +

z
xy2 dy +

(
x

x2 + z2 − 1
xy

)
dz.

Determine if a potential exists, and if so, find it.

範例

Solution

Let P, Q, R be the coefficients of dx, dy, dz. We verify the equality of
partial derivatives on the domain x, y > 0.

1. ∂Q
∂x = ∂

∂x (zx−1y−2) = −zx−2y−2. ∂P
∂y = ∂

∂y (zx−2y−1) = −zx−2y−2.
(Match)

2. ∂R
∂y = ∂

∂y (−x−1y−1) = x−1y−2. ∂Q
∂z = ∂

∂z (z(xy2)−1) = (xy2)−1.
(Match)

3. ∂P
∂z = 1

x2y − 1(x2+z2)−z(2z)
(x2+z2)2 = 1

x2y − x2−z2

(x2+z2)2 . ∂R
∂x = 1(x2+z2)−x(2x)

(x2+z2)2 −

(−x−2y−1) = z2−x2

(x2+z2)2 +
1

x2y . (Match)

Since the cross-partials match, a potential φ exists. We compute it
using two methods.

Path Integration. We integrate from (x0, y0, 0) to (x, y, z).
We choose z0 = 0 to simplify terms involving z. Path:
L1 : (x0, y0, 0) → (x, y0, 0); L2 :→ (x, y, 0); L3 :→ (x, y, z).

• Along L1 (y = y0, z = 0, dz = 0, dy = 0): P(x, y0, 0) = 0(. . . ) =
0. Integral is 0.

• Along L2 (x = x, z = 0, dz = 0, dx = 0): Q(x, y, 0) = 0/(xy2) =

0. Integral is 0.

• Along L3 (x = x, y = y fixed, z varies): Integrand is
R(x, y, z) = x

x2+z2 − 1
xy .

φ =

ˆ z

0

(
x

x2 + t2 − 1
xy

)
dt =

[
arctan

t
x
− t

xy

]z

0
= arctan

z
x
− z

xy
.

Thus φ(x, y, z) = arctan z
x − z

xy + C.

Indefinite Integration. Since ∂φ
∂z = R, we integrate R with respect to

z:

φ =

ˆ (
x

x2 + z2 − 1
xy

)
dz = arctan

z
x
− z

xy
+ ψ(x, y).

Now differentiate with respect to y:

∂φ

∂y
= − z

x
(−y−2) +

∂ψ

∂y
=

z
xy2 +

∂ψ

∂y
.
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Equating to Q = z
xy2 implies ∂ψ

∂y = 0, so ψ = ψ(x). Differentiate
with respect to x:

∂φ

∂x
=

1
1 + (z/x)2

(
− z

x2

)
− z(−x−2y−1)+ψ′(x) =

−z
x2 + z2 +

z
x2y

+ψ′(x).

Equating to P shows ψ′(x) = 0. Thus ψ is a constant.

φ(x, y, z) = arctan
z
x
− z

xy
+ C.

■

4.4 Exercises

1. Exact Differentials. Prove that the following forms are exact and
find their primitives:

(a) (x2 − 2yz) dx + (y2 − 2xz) dy + (z2 − 2xy) dz.

(b)
[

x
(x2 − y2)2 − 1

x
+ 2x2

]
dx +

[
1
y
− y

(x2 − y2)2 + 3y3
]

dy +

5z3 dz.

2. Path Independence Calculation. Evaluate
ˆ (6,1,1)

(1,2,3)
yz dx + xz dy + xy dz.

3. Radial Field Work. Let C be any piecewise smooth path from a
point on the sphere r = a to a point on the sphere r = b (b > a).
Prove: ˆ

C
r3(x dx + y dy + z dz) =

1
5
(b5 − a5).

4. Plane Area via Determinant. Let C be a simple closed curve on
the plane x cos α + y cos β + z cos γ = p, enclosing an area S. If the
orientation of C and the normal vector (cos α, cos β, cos γ) form a
right-handed system, show that:

˛
C

∣∣∣∣∣∣∣
dx dy dz

cos α cos β cos γ

x y z

∣∣∣∣∣∣∣ = 2S.

5. Intersection Circulation. Calculate˛
C
(y − z) dx + (z − x) dy + (x − y) dz,

where C is the intersection of the cylinder x2 + y2 = 1 and the
plane x + y + z = 1, oriented counter-clockwise when viewed from
the positive x-axis.
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6. Path Integral on a Cone. Find
ˆ

C
(z3 + 3x2y) dx + (x3 + 3y2z) dy + (y3 + 3z2x) dz,

where C is the intersection of the cone z =
√

a2 − x2 − y2 and the
plane x = y, from A( a√

2
, a√

2
, 0) to B(− a√

2
,− a√

2
, 0). Note that the

path goes over the apex of the cone.

7. Stokes on an Open Surface. Use Stokes’ formula to compute:
ˆ

C
ex+z{[(x + 1)y2 + 1] dx + 2xy dy + xy2 dz},

where C is the intersection arc of the half-cylinder |x| + |y| = a
(y > 0) and the plane y = z from (−a, 0, 0) to (a, 0, 0).

8. Vanishing Circulation. Let C be any piecewise smooth simple
closed curve. Let f , g, h be continuous functions. Prove that:

˛
C
[ f (x)− yz] dx + [g(y)− xz] dy + [h(z)− xy] dz = 0.

9. Surface Integral. Calculate

¨
Σ

∣∣∣∣∣∣∣
cos α cos β cos γ

∂
∂x

∂
∂y

∂
∂z

x − z x3 − yz −3xy2

∣∣∣∣∣∣∣ dS,

where Σ is the upper hemisphere x2 + y2 + z2 = R2 (z ≥ 0) with
the lower (inner) normal orientation.

10. Great Circle Circulation. Find˛
C

y dx + z dy + x dz,

where C is the great circle formed by x2 + y2 + z2 = a2 and
x + y + z = 0, oriented counter-clockwise viewed from the positive
z-axis.



5
Outer Product of Vectors, Exterior Differentiation, and
the General Stokes Formula

Although differential forms and exterior differentiation may not ap-
pear in every standard curriculum, they have become fundamental
tools in modern analysis. Their concise expression and structure pro-
vide significant convenience when addressing fundamental problems
in calculus.

5.1 Outer Product of Vectors

We begin by considering two linearly independent vectors a =

(a1, a2) and b = (b1, b2) in the plane R2. Let Π be the parallelogram
spanned by a and b.
We stipulate an orientation for this area: when a rotates counter-
clockwise to b, the area of the parallelogram is positive; otherwise, it
is negative. From analytic geometry, the signed area of Π under this
definition is given by the second-order determinant:∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣ .

Definition 5.1. Outer Product in R2.
The outer product of vectors a and b is defined as:

a ∧ b =

∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣ .

定義

Note

Here ∧ denotes the determinant (oriented area) of two vectors.
Later, the same symbol is used for the wedge product of differential
forms; context distinguishes the two, but both encode orientation.
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Proposition 5.1. Properties of the Outer Product.
The outer product operation satisfies the following properties for all
a, b, c ∈ R2 and λ ∈ R:
1. Antisymmetry: a ∧ b = −b ∧ a. It follows immediately that a ∧

a = 0.

2. Linear Distribution Law:

a ∧ (b + c) = a ∧ b + a ∧ c,

(a + b) ∧ c = a ∧ c + b ∧ c,

(λa) ∧ b = a ∧ (λb) = λ(a ∧ b).

命題

Proof

These properties follow directly from the algebraic properties of the
determinant.

1. Antisymmetry: Swapping the columns of a determinant changes
its sign:

b ∧ a =

∣∣∣∣∣b1 b2

a1 a2

∣∣∣∣∣ = −
∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣ = −(a ∧ b).

2. Linearity: The determinant is linear in each of its columns. For
the first distribution law:

a∧ (b+ c) =

∣∣∣∣∣ a1 a2

b1 + c1 b2 + c2

∣∣∣∣∣ =
∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣+
∣∣∣∣∣a1 a2

c1 c2

∣∣∣∣∣ = a∧b+ a∧ c.

Scalar multiplication follows similarly from factoring constants
out of rows or columns.

■
a

b +

O

Π

Figure 5.1: The parallelogram Π
spanned by a and b. The outer
product is positive when the
rotation from a to b is counter-
clockwise.

We extend this definition to higher dimensions.

Definition 5.2. Outer Product in Rn.
Let ai = (ai1, ai2, . . . , ain) for i = 1, 2, . . . , n be vectors in Rn. The outer
product is defined as the determinant:

a1 ∧ a2 ∧ · · · ∧ an =

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
.

定義



74 gudfit

Proof

The determinant is an alternating multilinear map in its rows (or
columns): it is linear in each row separately and changes sign when
two rows are interchanged. Both facts are standard consequences
of Laplace expansion. Since the n-vector outer product is exactly
this determinant, the two-dimensional properties in proposition 5.1
carry over verbatim: swapping any two ai reverses the sign (an-
tisymmetry), and each row is linear in the corresponding vector
(multilinearity).

■

In the specific case where n = 3, the outer product of three linearly
independent vectors a1, a2, a3 represents the oriented volume of the
parallelepiped having these vectors as edges.
· When a1, a2, a3 form a right-handed system, the volume is positive.

· Otherwise, the volume is negative.

a1

a2

a3

O
+

Figure 5.2: The parallelepiped
spanned by a1, a2, a3 in R3. The
outer product gives positive
volume when the vectors form
a right-handed system.

5.2 Differential Forms

The geometric intuition of the outer product allows us to construct
a rigorous algebraic framework for integration and differentiation in
higher dimensions. We begin by revisiting the total differential of a
continuously differentiable function f : U → R on a region U ⊂ Rn.
Recall that the total differential is given by:

d f =
n

∑
i=1

∂ f
∂xi

dxi.

Here, the differentials dx1, dx2, . . . , dxn are traditionally viewed as
independent increments of the variables. In the language of differen-
tial forms, we reinterpret these dxi as basis vectors of a linear space,
independent of the specific values of x. The differential d f is thus a
vector in the space spanned by this basis.

First-Order Differential Forms

We formalise the space of these objects. Let U ⊆ Rn be a region
and let Ck(U) denote the set of k-times continuously differentiable
functions on U.

Definition 5.3. 1-Form.
A first-order differential form (or simply a 1-form) on U is an expres-
sion of the type:

ω = a1(x) dx1 + a2(x) dx2 + · · ·+ an(x) dxn,

where the coefficients ai(x) are continuous functions on U (i.e., ai ∈
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C0(U)).
定義

The set of all such 1-forms on U is denoted by Λ1(U).
Note

If the coefficient functions ai(x) belong to Ck(U) for some integer
k ≥ 1, we say the form is of class Ck. Under standard pointwise
addition and scalar multiplication by functions in C0(U), Λ1(U)

forms a linear space (specifically, a module) over the ring of contin-
uous functions.

Higher-Order Differential Forms

To define forms of higher degree, we construct a new basis by tak-
ing the outer product of the differentials dxi. We denote the outer
product of dxi and dxj by the symbol ∧ (read as "wedge").
Consistent with the properties of the outer product of vectors derived
in the previous section, we impose the following algebraic rules:
1. Antisymmetry: dxi ∧ dxj = −dxj ∧ dxi for all i, j.

2. Vanishing Property: dxi ∧ dxi = 0 for all i.

dx

dy

dx ∧ dy

= −dy

dxdy ∧ dx

Figure 5.3: Antisymmetry of the
wedge product: swapping the
order reverses the orientation.

2-Forms

From the set of differentials {dx1, . . . , dxn}, we can form ordered
pairs dxi ∧ dxj. Due to antisymmetry, we only require basis elements
where the indices are strictly increasing.

Definition 5.4. 2-Form.
A second-order differential form (or 2-form) is an element of the lin-
ear space Λ2(U) spanned by the basis elements {dxi ∧ dxj | 1 ≤ i <
j ≤ n}. The standard form of a 2-form is:

ω = ∑
1≤i<j≤n

gij(x) dxi ∧ dxj,

where gij(x) are function coefficients.
定義

The dimension of this basis over the function space is the binomial
coefficient (n

2).
x

y

dx

dy
dx ∧ dy

(x, y)

Figure 5.4: Visualisation of the
basis 2-form dx ∧ dy in R2 as an
oriented area element.

General p-Forms

We generalise this construction to arbitrary order p. A basis element
is formed by the wedge product of p differentials:

dxi1 ∧ dxi2 ∧ · · · ∧ dxip .
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The antisymmetry rule extends to these products: swapping any two
adjacent terms changes the sign of the product.

· · · ∧ dxu ∧ dxv ∧ · · · = −(· · · ∧ dxv ∧ dxu ∧ . . . ).

Consequently, if any index is repeated (i.e., ir = is for r ̸= s), the
entire product vanishes.

Definition 5.5. p-Form.
A p-th order differential form (or p-form) is an element of the linear
space Λp(U) with basis elements:

{dxi1 ∧ dxi2 ∧ · · · ∧ dxip | 1 ≤ i1 < i2 < · · · < ip ≤ n}.

The standard form is given by:

ω = ∑
1≤i1<i2<···<ip≤n

gi1i2 ...ip(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxip .

定義

There are (n
p) such basis elements. We note two important boundary

cases:
1. Top-dimensional forms (Λn): Since there is only one way to

choose n distinct indices from n possibilities (up to permutation),
the space Λn is 1-dimensional over the functions. Any n-form can
be written as:

ω = g(x) dx1 ∧ dx2 ∧ · · · ∧ dxn.

2. Zero forms (Λ0): By convention, a 0-form is simply a scalar func-
tion on U. Thus Λ0(U) = C0(U), and the function g(x) ≡ 1 serves
as a basis.

3. Vanishing forms (p > n): If p > n, any product of p differen-
tials from a set of n must contain a repetition (by the Pigeonhole
Principle). Thus, dxi1 ∧ · · · ∧ dxip = 0, and Λp = {0}.

5.3 Outer Product of Differential Forms

Having defined the spaces Λp, we now construct the algebra of dif-
ferential forms by introducing the outer product operation on the
direct sum space Λ = Λ0 + Λ1 + · · · + Λn. This space has di-
mension ∑n

k=0 Ck
n = 2n. Any element ω ∈ Λ can be written as

ω = ω0 + · · ·+ ωn, where ωi ∈ Λi.

Definition 5.6. Outer Product of Forms.
Let dxI = dxi1 ∧ · · · ∧ dxip and dxJ = dxj1 ∧ · · · ∧ dxjq be basis ele-
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ments. Their outer product is defined as:

dxI ∧ dxJ = dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq .

This yields a (p+ q)-form. If the index sets {i1, . . . , ip} and {j1, . . . , jq}
share any common elements, then dxI ∧ dxJ = 0. For general forms
ω = ∑I gI(x)dxI ∈ Λp and η = ∑J hJ(x)dxJ ∈ Λq, the product is:

ω ∧ η = ∑
I,J

gI(x)hJ(x) dxI ∧ dxJ .

For a 0-form f ∈ Λ0, we define f ∧ ω = f ω = ∑I f (x)gI(x)dxI .
定義

Proposition 5.2. Properties of the Outer Product of Forms.
The operation ∧ satisfies the following properties:
1. Dimensional Vanishing: If ω ∈ Λp, η ∈ Λq and p + q > n, then

ω ∧ η = 0.

2. Graded Commutativity: For ω ∈ Λp, η ∈ Λq:

ω ∧ η = (−1)pqη ∧ ω.

3. Distributivity and Associativity: For any ω, η, σ ∈ Λ:

(ω + η) ∧ σ = ω ∧ σ + η ∧ σ,

σ ∧ (ω + η) = σ ∧ ω + σ ∧ η,

(ω ∧ η) ∧ σ = ω ∧ (η ∧ σ).

命題

Proof

The properties stem from the definition of the outer product on
basis elements and its linear extension.

1. Dimensional Vanishing: A basis p-form dxI uses p distinct
differentials; a basis q-form dxJ uses q distinct differentials. If
p + q > n, the combined list of indices must repeat some dxk,
and antisymmetry forces dxk ∧ dxk = 0, so every summand in
ω ∧ η vanishes.

2. Graded Commutativity: Swapping dxI (length p) past dxJ

(length q) involves pq swaps of 1-forms; each swap contributes a
factor −1, yielding (−1)pq overall.

3. Distributivity and Associativity: Let ω = ∑ gIdxI , η = ∑ hJdxJ ,
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and σ = ∑ kKdxK. Then

(ω + η) ∧ σ = ∑
I,K

(gI + hI)kK dxI ∧ dxK = ω ∧ σ + η ∧ σ,

and similarly on the right. For associativity, note that
(dxI ∧ dxJ) ∧ dxK = dxI ∧ (dxJ ∧ dxK) because concatenating
the ordered list of differentials does not depend on parenthesisa-
tion; linearity extends this to general forms.

■

Corollary 5.1. Self-Product of Forms. If ω ∈ Λp and ω ̸= 0:
· If p is odd, then ω ∧ ω = 0.

· If p is even, ω ∧ ω is not necessarily zero.
推論

Proof

By graded commutativity, ω ∧ ω = (−1)p2
ω ∧ ω. Bringing terms to

one side gives (1 − (−1)p2
)ω ∧ ω = 0. If p is odd, (−1)p2

= −1,
so the factor is 2 and the only solution is ω ∧ ω = 0. If p is even,
(−1)p2

= 1, the prefactor vanishes, and no cancellation forces the
square to be zero—indeed, example 5.1 shows it can be non-zero.

■

Note

Unlike the outer product of vectors in Rn (where a ∧ a = 0), the
outer product of differential forms allows for non-zero squares
when the degree is even.

Example 5.1. Non-zero Square in R4. Consider the 2-form
ω = dx1 ∧ dx2 + dx3 ∧ dx4 in R4.

ω ∧ ω = (dx1 ∧ dx2 + dx3 ∧ dx4) ∧ (dx1 ∧ dx2 + dx3 ∧ dx4)

= (dx1 ∧ dx2) ∧ (dx1 ∧ dx2) + (dx1 ∧ dx2) ∧ (dx3 ∧ dx4)

+ (dx3 ∧ dx4) ∧ (dx1 ∧ dx2) + (dx3 ∧ dx4) ∧ (dx3 ∧ dx4).

Terms with repeated indices vanish. Using the property that
α ∧ β = β ∧ α for 2-forms (since (−1)2×2 = 1):

ω ∧ ω = 2 dx1 ∧ dx2 ∧ dx3 ∧ dx4.

範例

Exterior Differentiation

We introduce the exterior differentiation operator d : Λ → Λ.
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Definition 5.7. Exterior Derivative.
Let U ⊂ Rn.
1. For a differentiable function f (0-form), d f is the total differential:

d f =
n

∑
i=1

∂ f
∂xi

dxi.

2. For a p-form ω = g(x)dxi1 ∧ · · · ∧ dxip , defined on U:

dω =
n

∑
j=1

∂g
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxip .

3. The operator is extended to all of Λ by linearity: d(αω+ βη) = αdω+

βdη.
定義

Example 5.2. Derivative of Basis Elements. Let ω = dxi1 ∧ · · · ∧
dxik . Then dω = 0.

範例

Proof

Regard ω as 1 · dxi1 ∧ · · · ∧ dxik . Then dω = d(1) ∧ ω = 0 ∧ ω = 0.
■

Example 5.3. Calculation in R3. Let ω = P dx + Q dy + R dz be a C1

1-form in R3. Calculate dω.

範例

Solution

dω = dP ∧ dx + dQ ∧ dy + dR ∧ dz.

Expanding dP = ∂P
∂x dx + ∂P

∂y dy + ∂P
∂z dz:

dP ∧ dx =

(
∂P
∂y

dy +
∂P
∂z

dz
)
∧ dx =

∂P
∂y

dy ∧ dx +
∂P
∂z

dz ∧ dx.

Summing all terms and using antisymmetry (dy ∧ dx = −dx ∧ dy,
etc.):

dω =

(
∂R
∂y

− ∂Q
∂z

)
dy∧ dz+

(
∂P
∂z

− ∂R
∂x

)
dz∧ dx+

(
∂Q
∂x

− ∂P
∂y

)
dx∧ dy.

■

Example 5.4. Second Derivative of a Function. Let f ∈ Λ0 be of
class C2. Then d2 f = 0.

範例
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Proof

d2 f = d

(
n

∑
i=1

∂ f
∂xi

dxi

)
=

n

∑
i=1

d
(

∂ f
∂xi

)
∧ dxi =

n

∑
i=1

n

∑
j=1

∂2 f
∂xj∂xi

dxj ∧ dxi.

We split the sum into i < j and i > j. Using ∂2 f
∂xj∂xi

= ∂2 f
∂xi∂xj

and dxj ∧
dxi = −dxi ∧ dxj:

d2 f = ∑
i<j

(
∂2 f

∂xi∂xj
− ∂2 f

∂xj∂xi

)
dxi ∧ dxj = 0.

■

Proposition 5.3. Properties of Exterior Differentiation.

1. Leibniz Rule: If ω ∈ Λp and η ∈ Λq are C1, then:

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

2. Nilpotency: If ω is C2, then d(dω) = 0.

命題

Proof

It suffices to prove these for basis elements. Let ω = f dxI where I is
a multi-index of length p, and η = gdxJ where J is a multi-index of
length q.

1. Leibniz Rule: Note that ω ∧ η = ( f g)dxI ∧ dxJ .

d(ω ∧ η) = d( f g) ∧ dxI ∧ dxJ

= (g d f + f dg) ∧ dxI ∧ dxJ

= (g d f ∧ dxI ∧ dxJ) + ( f dg ∧ dxI ∧ dxJ).

For the first term, we can commute g to the front (scalar):
(d f ∧ dxI) ∧ (gdxJ) = dω ∧ η. For the second term, we must
move the 1-form dg past the p-form dxI . This requires p transpo-
sitions, introducing a factor of (−1)p:

f (dg∧ dxI)∧ dxJ = f ((−1)pdxI ∧ dg)∧ dxJ = (−1)p( f dxI)∧ (dg∧ dxJ) = (−1)pω∧ dη.

Summing these gives the result.

2. Nilpotency: Using the Leibniz rule on ω = f dxI (regarding dxI

as a form with constant coefficient 1, so d(dxI) = 0):

d(dω) = d(d f ∧ dxI) = d(d f ) ∧ dxI − d f ∧ d(dxI).
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We know d(d f ) = d2 f = 0 (from the previous Example) and
d(dxI) = 0 (derivative of basis). Thus d2ω = 0.

■

Transformation and Jacobi Determinant

Let A be a linear transformation on R3 with matrix (aij). Let Ω be a
cube with side lengths α, β, γ. Its volume corresponds to the vector
outer product:

V = αi ∧ βj ∧ γk = αβγ(i ∧ j ∧ k).

The image set A(Ω) is a parallelepiped spanned by the transformed
vectors ¸, ȷ, ı. Its oriented volume is:

¸ ∧ ȷ ∧ ı = det A · (αβγ i ∧ j ∧ k) = (det A)V.

If det A > 0, the vectors form a right-handed system; otherwise, they
form a left-handed system. The factor det A is the oriented volume
scaling; the unsigned volume scales by |det A|.
For a general bounded closed set Ω, using the definition of multiple
integrals:

Vol(A(Ω)) =

˚
A(Ω)

dx dy dz = det A
˚

Ω
du dv dw = (det A)Vol(Ω).

Thus, det A represents the volume expansion coefficient.
· If det A > 0, the transformation is direction-preserving.

· If |det A| = 1, the transformation is volume-preserving (area-
preserving).

This extends to differentiable mappings f : R3 → R3. Near a point
P0, f is approximated by its linearisation with determinant equal to
the Jacobian:

J =
∂(x, y, z)
∂(u, v, w)

.

If J > 0 everywhere, f preserves direction; if |J| = 1, f preserves
volume.

5.4 Change of Variables in Multiple Integrals

The exterior product of differential forms provides a natural and rig-
orous mechanism for handling the change of variables in integration.
Let the volume element in a right-handed Cartesian coordinate sys-
tem O − xyz be dx dy dz. Geometrically, this represents the volume of
an infinitesimal cube. In the language of forms, we denote this as the
wedge product dx ∧ dy ∧ dz.
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Consider a coordinate transformation T : D ⊂ R3 → R3 given by:

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w).

Let the volume element in the parameter space be du ∧ dv ∧ dw.
Using the properties of the wedge product and the total differential,
we compute the transformed volume form directly:

dx ∧ dy ∧ dz =

(
∂x
∂u

du + . . .
)
∧
(

∂y
∂u

du + . . .
)
∧
(

∂z
∂u

du + . . .
)

.

Terms with repeated differentials (like du ∧ du) vanish. The remain-
ing terms assemble into the Jacobian determinant:

dx ∧ dy ∧ dz =
∂(x, y, z)
∂(u, v, w)

du ∧ dv ∧ dw.

This yields the change of variables formula:
ˆ

T(D)
f (x, y, z) dx∧ dy∧ dz =

ˆ
D

f (x(u, v, w), y(u, v, w), z(u, v, w))
∂(x, y, z)
∂(u, v, w)

du∧ dv∧ dw.

Proof

Substitute the total differentials dx = ∑u xu du + xv dv + xw dw (and
similarly for dy, dz) into dx ∧ dy ∧ dz. By antisymmetry every term
containing a repeated factor such as du ∧ du vanishes. Exactly one
term survives for each permutation of (du, dv, dw); its coefficient is
the corresponding signed minor of the Jacobian matrix. Collecting
these gives the determinant ∂(x,y,z)

∂(u,v,w)
times du ∧ dv ∧ dw. Integrating

both sides over D yields the stated change-of-variables formula and
automatically tracks orientation via the sign of the determinant.

■

Note

Unlike the standard scalar change of variables formula involving∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ ,

the form-based version does not require absolute values. The
orientation is handled automatically: if the Jacobian is negative,
the orientation of the integration domain is reversed, and the
wedge product du ∧ dv ∧ dw carries that sign. Also, note the or-
der sensitivity: dx ∧ dy ∧ dz is the positive volume element, while
dy ∧ dx ∧ dz = −dx ∧ dy ∧ dz corresponds to a left-handed system.

Example 5.5. Polar Coordinates. For x = r cos θ, y = r sin θ:

dx∧ dy =
∂(x, y)
∂(r, θ)

dr∧ dθ = (cos θ · r cos θ − (−r sin θ) sin θ) dr∧ dθ = r dr∧ dθ.
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範例

The General Stokes Formula

We now arrive at the unification of the fundamental theorems of
vector calculus. By interpreting integrands as differential forms, we
see that the Fundamental Theorem of Calculus, Green’s Theorem,
Gauss’s Theorem, and Stokes’ Theorem are all special cases of a
single result.
Let M be an oriented region (manifold) of dimension k, and let ∂M
be its boundary with the induced orientation.

1. Newton-Leibniz: M = [a, b]. ∂M = {b} − {a}. For a 0-form f :
ˆ b

a
d f (x) = f (b)− f (a) =⇒

ˆ
M

d f =

ˆ
∂M

f .

2. Green’s Theorem: D ⊂ R2. ω = Pdx + Qdy. Then dω = (∂xQ −
∂yP)dx ∧ dy.
˛

∂D
Pdx + Qdy =

¨
D

(
∂Q
∂x

− ∂P
∂y

)
dx ∧ dy =⇒

˛
∂D

ω =

ˆ
D

dω.

3. Classical Stokes’ Theorem: Σ ⊂ R3. ω = Pdx + Qdy + Rdz. Then
dω corresponds to (∇× F) · ndS.˛

∂Σ
F · dr =

¨
Σ
(∇× F) · dS =⇒

˛
∂Σ

ω =

ˆ
Σ

dω.

4. Gauss’s Theorem: Ω ⊂ R3. ω = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy.
Then dω = (∇ · F)dx ∧ dy ∧ dz.‹

∂Ω
F · dS =

˚
Ω
∇ · F dV =⇒

˛
∂Ω

ω =

ˆ
Ω

dω.

These observations lead to one of the most celebrated results in anal-
ysis:

Theorem 5.1. General Stokes Formula.
Let M be an oriented smooth k-dimensional region (manifold with bound-
ary), and let ω be a smooth (k− 1)-form with compact support on M.
Then: ˆ

M
dω =

˛
∂M

ω.

定理

This formula states that the integral of the derivative of a form over
the interior is equal to the integral of the form itself over the bound-
ary. It encapsulates the essence of calculus: local variations (deriva-
tive) sum up to a global boundary value. This elegant unification



84 gudfit

paves the way for advanced studies in differential geometry and
topology.

5.5 Exercises

1. Geometric Interpretation. Let a, b ∈ R3 and consider the associ-
ated 1-forms α = a1dx + a2dy + a3dz and β = b1dx + b2dy + b3dz.
Show that the coefficients of the 2-form α ∧ β are the components
of the cross product a × b, and that the norm of this 2-form (use
the Euclidean norm of its coefficient vector) is equal to the area of
the parallelogram spanned by a and b.

2. Triple Product. Let a, b, c ∈ R3. Show that the scalar triple prod-
uct a · (b× c) corresponds to the coefficient of the standard volume
form e1 ∧ e2 ∧ e3 in the expansion of a ∧ b ∧ c.

3. Basis Expansion. Let ω ∈ Λ2(R4). Write ω in the standard basis
{dxi ∧ dxj | 1 ≤ i < j ≤ 4}.

4. Coordinate Transformation. Let T : R2 → R2 be the polar
coordinate map (r, θ) 7→ (r cos θ, r sin θ). Express the form ω =

x dy − y dx in terms of r, θ, dr, dθ.

5. Algebraic Properties. Verify the graded commutativity property
directly for 1-forms α, β, γ ∈ Λ1(Rn):

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

Does this property hold if β is a 2-form?

6. Computing Derivatives. Let ω = xyz dx + x2 dy + z2 dz. Compute
dω. Check explicitly that d(dω) = 0.

7. Volume Expansion. Let A be a 3 × 3 matrix with det A = −2. If
Ω is the unit cube, describe the geometric effect of the transforma-
tion T(x) = Ax on Ω in terms of volume and orientation.

8. Spherical Coordinates. Compute the exterior product dx ∧ dy ∧ dz
in spherical coordinates (x, y, z) = (ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ)

directly using the properties of the wedge product. Use this to set
up the integral for the volume of a ball of radius R.

9. Generalized Polar Coordinates. Let x = ar cos θ, y = br sin θ.
Compute the area element dx ∧ dy in terms of r, θ and use it to
find the area of the ellipse x2/a2 + y2/b2 ≤ 1.

10. Integration by Parts. (Advanced/optional—assumes integra-
tion of forms on a k-manifold.) Let M be a compact oriented
k-dimensional manifold with boundary. Let α ∈ Λp(M) and
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β ∈ Λk−p−1(M). Prove the integration by parts formula:
ˆ

M
dα ∧ β =

ˆ
∂M

α ∧ β + (−1)p+1
ˆ

M
α ∧ dβ.

Remark.

Hint: Apply Stokes’ Theorem to ω = α ∧ β and use the Leibniz
rule for d(α ∧ β).



6
Field Theory (Introduction)

Historically, the concept of a field arose in physics to describe con-
tinuous quantities distributed over space, such as temperature, grav-
itational, or electromagnetic fields. Mathematically, we classify these
into scalar fields (assigning a magnitude to each point) and vector
fields (assigning a magnitude and direction). Having developed the
machinery of surface and line integrals, we now formalise the dif-
ferential operators — divergence and curl — that characterise the
local behaviour of these fields, and unify the integral theorems of the
previous chapters.

6.1 Divergence

We begin by quantifying the "outward flow" of a vector field from a
point.

Definition 6.1. Divergence.
Let D be a region in R3 and let F : D → R3 be a vector field defined
by F(x, y, z) = Pi + Qj + Rk, where P, Q, R have continuous partial
derivatives. The divergence of F is the scalar function defined by:

div F = ∇ · F =
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

.

In R2, for a field F(x, y) = Pi+Qj, the divergence is similarly defined
as:

div F =
∂P
∂x

+
∂Q
∂y

.

定義

This operator measures the rate at which "fluid" (represented by the
vector field) expands or compresses at a point. Positive divergence
indicates a source; negative divergence indicates a sink.

∇ · F > 0

Figure 6.1: A vector field with
positive divergence acts as a
source.
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6.2 The Generalised Divergence Theorem

The notion of divergence allows us to express the integral theorems
of vector calculus in a unified, coordinate-free manner.
Recall Gauss’s Formula (theorem 3.1). In terms of divergence, the rela-
tion between the volume integral over a region D ⊂ R3 and the flux
through its boundary ∂D becomes:

˚
D

div F dV =

‹
∂D

F · n dS.

Here, n is the unit outward normal to ∂D.
Similarly, Green’s Formula in the plane (specifically the normal form,
derived from Green’s Formula) relates the double integral over a pla-
nar region D to the flux across its boundary curve ∂D. If F = (P, Q),
then: ¨

D
div F dA =

˛
∂D

F · n ds =
˛

∂D
−Q dx + P dy.

Theorem 6.1. The Divergence Theorem.
Let D be a bounded region in Rn (n = 1, 2, 3) with a piecewise smooth
boundary ∂D oriented by the unit outward normal n. If F is a contin-
uously differentiable vector field on D̄, then:

ˆ
D

div F dV =

˛
∂D

F · n dS.

定理

This statement unifies the fundamental theorems of calculus across
dimensions:

Dimension n = 1: The region D is an interval [a, b]. The boundary
∂D consists of the endpoints {a, b}. The "normals" are n(b) = 1
and n(a) = −1. The divergence is simply the derivative f ′(x). The
theorem yields the Newton-Leibniz formula:

ˆ b

a
f ′(x) dx = f (b) · (1) + f (a) · (−1) = f (b)− f (a).

Dimension n = 2: This yields the vector form of Green’s Theorem.

Dimension n = 3: This yields Gauss’s Theorem.

Proof for a Rectangular Solid

Suppose F is differentiable near the rectangular solid E = [x1, x2]×
[y1, y2]× [z1, z2]. We denote the six faces of the solid as follows:
· S1: x = x1, (y, z) ∈ [y1, y2]× [z1, z2] with inward normal −i. Area

element dS = −i dy dz.
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· S2: x = x2, (y, z) ∈ [y1, y2]× [z1, z2] with outward normal i. Area
element dS = i dy dz.

· S3: y = y1, (x, z) ∈ [x1, x2]× [z1, z2] with inward normal −j. Area
element dS = −j dx dz.

· S4: y = y2, (x, z) ∈ [x1, x2]× [z1, z2] with outward normal j. Area
element dS = j dx dz.

· S5: z = z1, (x, y) ∈ [x1, x2]× [y1, y2] with inward normal −k. Area
element dS = −k dx dy.

· S6: z = z2, (x, y) ∈ [x1, x2]× [y1, y2] with outward normal k. Area
element dS = k dx dy.

The rectangular geometry ensures that only one component of F =

(P, Q, R) contributes to the flux through any given face. We compute
the net flux through the pair of faces perpendicular to the x-axis, S1

and S2:

Φ12 =

¨
S1

F · dS +

¨
S2

F · dS

=

ˆ z2

z1

ˆ y2

y1

F(x1, y, z) · (−i) dy dz +
ˆ z2

z1

ˆ y2

y1

F(x2, y, z) · (i) dy dz

=

ˆ z2

z1

ˆ y2

y1

[P(x2, y, z)− P(x1, y, z)] dy dz.

By the Fundamental Theorem of Calculus, the difference in P can be
expressed as an integral of its derivative:

P(x2, y, z)− P(x1, y, z) =
ˆ x2

x1

∂P
∂x

dx.

Substituting this back:

Φ12 =

ˆ z2

z1

ˆ y2

y1

ˆ x2

x1

∂P
∂x

dx dy dz.

Similarly, for the faces S3 and S4 perpendicular to the y-axis:

Φ34 =

¨
S3

F · dS +

¨
S4

F · dS

=

ˆ z2

z1

ˆ x2

x1

[Q(x, y2, z)− Q(x, y1, z)] dx dz

=

ˆ z2

z1

ˆ x2

x1

ˆ y2

y1

∂Q
∂y

dy dx dz.
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And for the faces S5 and S6 perpendicular to the z-axis:

Φ56 =

¨
S5

F · dS +

¨
S6

F · dS

=

ˆ y2

y1

ˆ x2

x1

[R(x, y, z2)− R(x, y, z1)] dx dy

=

ˆ y2

y1

ˆ x2

x1

ˆ z2

z1

∂R
∂z

dz dx dy.

The total flux over the boundary ∂E is the sum of the fluxes through
all faces. By the linearity of the triple integral, we sum the results:

‹
∂E

F · dS = Φ12 + Φ34 + Φ56

=

ˆ x2

x1

ˆ y2

y1

ˆ z2

z1

(
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

)
dz dy dx

=

˚
E

div F dV.

This completes the proof for the rectangular solid. ■

Proof for a Cylindrical Region

Consider a cylindrical region E = {(x, y, z) | x2 + y2 ≤ R2, 0 ≤ z ≤ h}.
The boundary ∂E consists of three parts: the bottom disk Sbot (z = 0),
the top disk Stop (z = h), and the lateral surface Slat (x2 + y2 = R2).
We aim to show: ‹

∂E
F · n dS =

˚
E
∇ · F dV.

Vertical Flux contribution: The outward normals on the top and bot-
tom are k and −k respectively. The flux of the vertical component
Rk is:

Φvertical =

¨
Stop

F · k dS +

¨
Sbot

F · (−k) dS

=

¨
x2+y2≤R2

[R(x, y, h)− R(x, y, 0)] dx dy.

By the Fundamental Theorem of Calculus with respect to z:

R(x, y, h)− R(x, y, 0) =
ˆ h

0

∂R
∂z

dz.

Thus:

Φvertical =

¨
D

(ˆ h

0

∂R
∂z

dz

)
dx dy =

˚
E

∂R
∂z

dV.
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Horizontal Flux contribution: On the lateral surface Slat, the outward
normal is radial: n = (cos θ, sin θ, 0) in cylindrical coordinates. The
area element is dS = R dθ dz. Only the horizontal components P
and Q contribute to the flux through Slat.

Φlat =

ˆ h

0

ˆ 2π

0
(P cos θ + Q sin θ)R dθ dz.

Consider the horizontal divergence ∇H · F = ∂P
∂x + ∂Q

∂y . We integrate
this over the volume E:
˚

E

(
∂P
∂x

+
∂Q
∂y

)
dV =

ˆ h

0

[¨
x2+y2≤R2

(
∂P
∂x

+
∂Q
∂y

)
dx dy

]
dz.

For each fixed z, the inner double integral can be transformed
via Green’s Theorem (or the 2D Divergence Theorem) into a line
integral over the boundary circle x2 + y2 = R2:

¨
D

(
∂P
∂x

+
∂Q
∂y

)
dA =

˛
∂D

(Pi + Qj) · n2D ds.

Here n2D = (cos θ, sin θ) and ds = R dθ.
˛

∂D
(P cos θ + Q sin θ)R dθ.

Integrating this result from z = 0 to z = h yields exactly the
expression for Φlat.

Summing the vertical and horizontal contributions:
‹

∂E
F ·n dS = Φvertical +Φlat =

˚
E

∂R
∂z

dV +

˚
E

(
∂P
∂x

+
∂Q
∂y

)
dV =

˚
E

div F dV.

This confirms the theorem for the cylindrical region. ■

Applications to Integration

The Divergence Theorem provides a mechanism for transferring
derivatives from the interior of a region to its boundary, generalizing
integration by parts.

Proposition 6.1. Integration by Parts in R3.
Let Ω ⊂ R3 be a bounded region with piecewise smooth boundary
Σ, oriented outwards. If u, v are continuously differentiable scalar func-
tions on Ω̄, then:

˚
Ω

u
∂v
∂x

dV =

‹
Σ

uv dy dz −
˚

Ω
v

∂u
∂x

dV.

命題
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Proof

Consider the vector field F = (uv, 0, 0). The divergence of F is:

div F =
∂

∂x
(uv) + 0 + 0 = u

∂v
∂x

+ v
∂u
∂x

.

Applying the Divergence Theorem (theorem 6.1) to F:
˚

Ω

(
u

∂v
∂x

+ v
∂u
∂x

)
dV =

‹
Σ

F · n dS.

The surface integral term is the flux of (uv, 0, 0). In coordinate
form, F · n dS = P dy dz = uv dy dz. Thus:

˚
Ω

u
∂v
∂x

dV +

˚
Ω

v
∂u
∂x

dV =

‹
Σ

uv dy dz.

Rearranging terms yields the result.
■

Corollary 6.1. Integral of a Derivative. Setting v(x, y, z) ≡ 1 in propo-
sition 6.1 yields:

˚
Ω

∂u
∂x

dV =

‹
Σ

u dy dz =

‹
Σ

u cos α dS,

where cos α is the x-component of the outward normal. Analogous for-
mulae hold for partial derivatives with respect to y and z.

推論

Proof

We apply proposition 6.1 with v(x, y, z) ≡ 1. Since v is constant, ∂v
∂x =

0. The integration by parts formula simplifies to:

0 =

‹
Σ

u dy dz −
˚

Ω

∂u
∂x

dV.

Rearranging gives the result. Alternatively, apply Gauss’s Theorem
directly to the vector field F = (u, 0, 0).

■

6.3 Curl

While divergence measures the expansion of a field at a point, the
curl measures its local rotation or circulation.

Definition 6.2. Curl.
Let F(x, y, z) = Pi + Qj + Rk be a vector field on a region D ⊂ R3,
where P, Q, R are continuously differentiable. The curl of F is the vec-
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tor field defined by:

curl F =

(
∂R
∂y

− ∂Q
∂z

)
i +
(

∂P
∂z

− ∂R
∂x

)
j +
(

∂Q
∂x

− ∂P
∂y

)
k.

The determinant notation provides a convenient mnemonic:

curl F = ∇× F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

P Q R

∣∣∣∣∣∣∣ .

定義

With this notation, Stokes’ Formula (theorem 4.1) takes a concise vector
form. If Σ is an oriented surface with unit normal n and boundary
∂Σ oriented by the right-hand rule with tangent τ:¨

Σ
(∇× F) · n dS =

˛
∂Σ

F · τ ds.
∇× F ̸= 0

Figure 6.2: A vector field with
non-zero curl exhibits local ro-
tation.

6.4 The Hamilton Operator

The symbols ∇ · F and ∇× F introduced above are instances of the
Hamilton operator (or del operator), denoted ∇.

Definition 6.3. The Del Operator.
The operator ∇ is defined formally as a vector of partial differential
operators:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

Its action depends on the operand:
· Gradient: If f is a scalar function, ∇ f = grad f .

· Divergence: If F is a vector field, ∇ · F = div F (formal dot prod-
uct).

· Curl: If F is a vector field, ∇× F = curl F (formal cross product).
定義

The operator ∇ is linear. For constants α, β, scalar functions f , g, and
vector fields a, b, the following identities hold:

∇(α f + βg) = α∇ f + β∇g (6.1)

∇ · (αa + βb) = α∇ · a + β∇ · b (6.2)

∇× (αa + βb) = α∇× a + β∇× b (6.3)

Product Rules and Second-Order Identities

The product rules for ∇ combine the logic of the Leibniz rule for
differentiation with vector algebra.
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Proposition 6.2. Vector Calculus Identities.
Let f , g be differentiable scalar fields and a, b be differentiable vector
fields.
1. ∇( f g) = g∇ f + f∇g.

2. ∇ · ( f a) = f (∇ · a) + a · ∇ f .

3. ∇× ( f a) = f (∇× a) + (∇ f )× a.

4. ∇ · (a × b) = b · (∇× a)− a · (∇× b).
Furthermore, if the fields are twice continuously differentiable:
5. ∇ · (∇× a) = 0 (Divergence of curl is zero).

6. ∇× (∇ f ) = 0 (Curl of gradient is zero).
命題

Remark.

Identities (5) and (6) are crucial for classifying fields. Identity (6)
implies that conservative fields are irrotational, while (5) implies
that solenoidal fields (divergence-free) can often be expressed as the
curl of a vector potential.

We prove the fourth, fifth and sixth identity to illustrate the manipu-
lation of these operators.

Proof of Identity 4

Let a = (a1, a2, a3) and b = (b1, b2, b3). The cross product is given
by the determinant:

a × b =

∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ .

The divergence is the sum of partial derivatives of the components.

∇ · (a × b) =
∂

∂x
(a2b3 − a3b2)−

∂

∂y
(a1b3 − a3b1) +

∂

∂z
(a1b2 − a2b1).

We apply the product rule to each term. We group terms contain-
ing components of b without derivatives, and terms containing
components of a without derivatives. Let I1 be the terms where
derivatives act on a:

I1 = b3
∂a2

∂x
− b2

∂a3

∂x
− b3

∂a1

∂y
+ b1

∂a3

∂y
+ b2

∂a1

∂z
− b1

∂a2

∂z
.

Rearranging by components of b:

I1 = b1

(
∂a3

∂y
− ∂a2

∂z

)
+ b2

(
∂a1

∂z
− ∂a3

∂x

)
+ b3

(
∂a2

∂x
− ∂a1

∂y

)
= b · (∇× a).

Similarly, let I2 be the terms where derivatives act on b:

I2 = a2
∂b3

∂x
− a3

∂b2

∂x
− a1

∂b3

∂y
+ a3

∂b1

∂y
+ a1

∂b2

∂z
− a2

∂b1

∂z
.



94 gudfit

Rearranging by components of a reveals a sign change relative to
the curl formula:

I2 = −a1

(
∂b3

∂y
− ∂b2

∂z

)
− a2

(
∂b1

∂z
− ∂b3

∂x

)
− a3

(
∂b2

∂x
− ∂b1

∂y

)
= −a · (∇×b).

Thus ∇ · (a × b) = I1 + I2 = b · (∇× a)− a · (∇× b).
証明終

Proof of Identity 5

Let a = (P, Q, R) be twice continuously differentiable. The curl is:

∇× a =

(
∂R
∂y

− ∂Q
∂z

)
i +
(

∂P
∂z

− ∂R
∂x

)
j +
(

∂Q
∂x

− ∂P
∂y

)
k.

The divergence of this vector field is:

∇ · (∇× a) =
∂

∂x

(
∂R
∂y

− ∂Q
∂z

)
+

∂

∂y

(
∂P
∂z

− ∂R
∂x

)
+

∂

∂z

(
∂Q
∂x

− ∂P
∂y

)
.

Expanding the terms:

∂2R
∂x∂y

− ∂2Q
∂x∂z

+
∂2P
∂y∂z

− ∂2R
∂y∂x

+
∂2Q
∂z∂x

− ∂2P
∂z∂y

.

Since a is twice continuously differentiable, Schwarz’s Theo-
rem guarantees the equality of mixed partial derivatives (e.g.,
∂2R
∂x∂y = ∂2R

∂y∂x ). Grouping matching terms:(
∂2R
∂x∂y

− ∂2R
∂y∂x

)
+

(
∂2P
∂y∂z

− ∂2P
∂z∂y

)
+

(
∂2Q
∂z∂x

− ∂2Q
∂x∂z

)
= 0+ 0+ 0 = 0.

証明終

Proof of Identity 6

Let f be a twice continuously differentiable scalar field. The gradi-
ent is ∇ f = ( ∂ f

∂x , ∂ f
∂y , ∂ f

∂z ). The curl of the gradient is:

∇× (∇ f ) =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

∂ f
∂x

∂ f
∂y

∂ f
∂z

∣∣∣∣∣∣∣ .

The i-component is:(
∂

∂y
∂ f
∂z

− ∂

∂z
∂ f
∂y

)
=

∂2 f
∂y∂z

− ∂2 f
∂z∂y

.

By Schwarz’s Theorem, this difference is zero. Similarly, the j-

component involves ∂2 f
∂z∂x − ∂2 f

∂x∂z = 0, and the k-component involves
∂2 f

∂x∂y − ∂2 f
∂y∂x = 0. Thus, ∇× (∇ f ) = 0.

証明終
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Example 6.1. Mean Value Property for Harmonic Functions. Let
u(x, y, z) be a scalar field defined on a ball BR(M0) centred at M0

with radius R. Suppose the surface integral of the normal deriva-
tive vanishes on every concentric sphere Bρ(M0) for 0 < ρ ≤ R:

‹
∂Bρ

∂u
∂n

dS = 0.

Show that the value of u at the centre is the average of its values on
the boundary surface ∂BR:

u(M0) =
1

4πR2

‹
∂BR

u dS.

範例

Solution

We use spherical parametrisation about M0:

x = x0 + ρ sin φ cos θ, y = y0 + ρ sin φ sin θ, z = z0 + ρ cos φ.

On the sphere ∂Bρ, the unit normal is n = eρ. The normal deriva-
tive is the directional derivative in the radial direction:

∂u
∂n

= ∇u · n =
∂u
∂ρ

.

Using the scaling relation of surface elements established in Chap-
ter 25 (dSρ = ρ2dS1, where dS1 is the element on the unit sphere):

0 =

‹
∂Bρ

∂u
∂ρ

dSρ =

‹
∂B1

∂u
∂ρ

(M0 + ρn) ρ2dS1.

Since ρ > 0, we may divide by ρ2 and move the derivative outside
the integral (differentiation under the integral sign):

d
dρ

(‹
∂B1

u(M0 + ρn) dS1

)
= 0.

This implies that the integral I(ρ) =
‚

∂B1
u(M0 + ρn) dS1 is con-

stant for ρ ∈ (0, R]. We equate the value at ρ = R to the limit as
ρ → 0+. At ρ = R:

I(R) =
1

R2

‹
∂BR

u dSR.

As ρ → 0+, by continuity of u, u(M0 + ρn) → u(M0). Thus:

lim
ρ→0

I(ρ) =
‹

∂B1

u(M0) dS1 = u(M0) · Area(∂B1) = 4πu(M0).
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Equating the two expressions:

4πu(M0) =
1

R2

‹
∂BR

u dS.

Rearranging yields the result.
■

M0

ρ
R

∂Bρ

∂BR

Figure 6.3: The mean value
property relates the value at the
centre M0 to the average over
the sphere ∂BR.

6.5 Exercises

1. Basic Calculation. Let F(x, y, z) = (x2y, y2z, z2x). Compute curl F.
Is this field irrotational?

2. Irrotational Field. Let r = xi + yj + zk. Prove that curl r = 0. If c is
a constant vector, prove that curl(c × r) = 2c.

3. Operator Identities. Verify the identity ∇( f g) = f∇g + g∇ f for
scalar fields f , g.

4. Radial Fields. Let f : R → R be differentiable. Let r = (x, y, z)
and r = |r|. Compute:

(a) grad f (r)

(b) div( f (r)r)

(c) curl( f (r)r)

5. Solenoidal Radial Field. Find the function f (r) such that the field
f (r)r is solenoidal (divergence-free) for r > 0.

6. Cross Product Divergence. Verify the identity ∇ · (a × b) =

b · (∇× a) − a · (∇× b) for the specific fields a = (y, z, x) and
b = (z, x, y).

7. Integral Definitions. Let V ⊂ D ⊂ R3 be a volume with boundary
Σ, diameter δ(V), and volume |V|. Let n be the outward normal.
Prove that for any p0 ∈ V:

(a) div A(p0) = lim
δ(V)→0

1
|V|

‹
Σ

A · n dS.

(b) curl A(p0) = lim
δ(V)→0

1
|V|

‹
Σ

n × A dS.

(c) grad φ(p0) = lim
δ(V)→0

1
|V|

‹
Σ

φn dS.



7
The Laplace Operator and Harmonic Functions

We now turn our attention to the second-order differential operator
that governs diffusion, electrostatics, and gravitation: the Laplace
operator.

7.1 The Laplacian

Definition 7.1. Laplace Operator.
The Laplace operator, denoted by ∆ or ∇2, is the divergence of the gra-
dient:

∆u = ∇ · (∇u).

In Cartesian coordinates for R3, if u(x, y, z) is twice differentiable:

∆u =
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 .

Analogously in R2, ∆u = uxx + uyy.
定義

Green’s Identities

The integration by parts formula for the Laplacian yields Green’s
Identities, which are fundamental to the theory of partial differential
equations.

Theorem 7.1. Green’s First Identity.
Let Ω ⊂ R3 be a bounded region with piecewise smooth boundary
Σ, and let u, v be twice continuously differentiable functions on Ω̄. Then:

˚
Ω
(v∆u +∇u · ∇v) dV =

‹
Σ

v
∂u
∂n

dS.

Here ∂u
∂n = ∇u ·n is the directional derivative along the outward unit

normal n.
定理
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Proof

We apply the Divergence Theorem (theorem 6.1) to the vector field
F = v∇u. First, compute the divergence using the product rule
(proposition 6.2):

∇ · (v∇u) = ∇v · ∇u + v(∇ · ∇u) = ∇v · ∇u + v∆u.

By the Divergence Theorem:
˚

Ω
∇ · (v∇u) dV =

‹
Σ
(v∇u) · n dS.

Substituting the divergence expression and noting (v∇u) · n =

v(∇u · n) = v ∂u
∂n completes the proof.

■

Corollary 7.1. Integral of the Laplacian. Taking v ≡ 1 in Green’s First
Identity yields: ˚

Ω
∆u dV =

‹
Σ

∂u
∂n

dS.

This states that the total "generation" of the field inside Ω (measured
by ∆u) equals the net flux of the gradient through the boundary.

推論

Proof

Set v(x, y, z) ≡ 1 in theorem 7.1. Then ∇v = 0. The identity becomes:
˚

Ω
(1 · ∆u +∇u · 0) dV =

‹
Σ

1 · ∂u
∂n

dS,

which simplifies immediately to the result. Alternatively, apply the
Divergence Theorem directly to F = ∇u.

■

Theorem 7.2. Green’s Second Identity.
Under the same conditions as theorem 7.1:

˚
Ω
(v∆u − u∆v) dV =

‹
Σ

(
v

∂u
∂n

− u
∂v
∂n

)
dS.

定理

Proof

Write Green’s First Identity for the pair (u, v) and then for (v, u)
(interchanging the roles). Subtracting the second equation from the
first cancels the symmetric term ∇u · ∇v, leaving the result.

■
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Spherical Means and the Radial Laplacian

The behaviour of the Laplacian is closely tied to the average value
of functions over spheres. We formalise the relationship between the
spherical mean and the radial derivatives.
Let h(x, y, z) be a twice continuously differentiable function. For a
fixed point M ∈ R3, we define the spherical mean Mh(M, r) on the
sphere ∂Br(M) of radius r:

Mh(M, r) =
1

4πr2

‹
∂Br(M)

h(ξ, η, ζ) dSr.

Proposition 7.1. Differential Equation for Spherical Means.
The spherical mean Mh satisfies the radial differential equation:(

∂2

∂r2 +
2
r

∂

∂r

)
Mh(M, r) = ∆Mh(M, r),

where the Laplacian ∆ on the right acts on the spatial coordinates of
the centre M.

命題

Proof

Differentiability: By rescaling to the unit sphere using ξ = M + rα

(where α ∈ ∂B1(0)), we write:

Mh(M, r) =
1

4π

‹
∂B1(0)

h(M + rα) dS1.

Differentiation under the integral sign shows Mh is C2 in r and
M.

First Derivative: Differentiating with respect to r:

∂Mh
∂r

=
1

4π

‹
∂B1

∇h(M + rα) · α dS1.

Scaling back to the radius r sphere (where α = n):

∂Mh
∂r

=
1

4πr2

‹
∂Br(M)

∂h
∂n

dSr.

Applying corollary 7.1 (Gauss’s Theorem for gradients), we con-
vert the surface integral to a volume integral:

∂Mh
∂r

=
1

4πr2

˚
Br(M)

∆h dV.

Second Derivative: We differentiate (7.1) with respect to r. Using
the rule for differentiating a volume integral with variable radius
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( d
dr
´ r

0 · · · = . . . ), or simply product rule on r−2 × Integral:

∂2Mh
∂r2 = − 2

4πr3

˚
Br(M)

∆h dV +
1

4πr2

‹
∂Br(M)

∆h dSr.

Combining Terms:

∂2Mh
∂r2 +

2
r

∂Mh
∂r

=
1

4πr2

‹
∂Br(M)

∆h dSr.

The RHS is exactly the spherical mean of the function ∆h. How-
ever, since the Laplacian commutes with the translation involved
in defining the mean (or by differentiating under the integral
sign on the unit sphere form):

∆MMh =
1

4π

‹
∂B1

∆Mh(M + rα) dS1 =
1

4πr2

‹
∂Br

∆h dSr.

Thus, the radial operator equals the spatial Laplacian.

■

Corollary 7.2. Behaviour at Origin.

lim
r→0+

∂

∂r
Mh(M, r) = 0.

推論

Proof

From (7.1), ∂Mh
∂r is the average value of ∆h over the ball Br times 1

3 r
(since volume is 4

3 πr3). As r → 0, this term vanishes (boundedness
of ∆h).

■

7.2 Harmonic Functions

The Laplace operator gives rise to one of the most important classes
of functions in analysis.

Definition 7.2. Harmonic Function.
A twice continuously differentiable function u : Ω → R is called har-
monic on the region Ω if it satisfies Laplace’s equation:

∆u = 0

everywhere in Ω.
定義
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Harmonic functions exhibit remarkable properties related to averages
and extrema, which we now establish.

The Mean Value Property

We previously encountered the mean value property in the context of
example 6.1. Here, we state it formally as a fundamental property of
harmonic functions.

Theorem 7.3. Mean Value Formula.
Let u be harmonic on a region Ω. For any point M0 ∈ Ω and any ra-
dius R > 0 such that the closed ball B̄R(M0) is contained in Ω:

u(M0) =
1

4πR2

‹
∂BR(M0)

u(x, y, z) dS.

In other words, the value of a harmonic function at the centre of a sphere
is the average of its values on the surface of the sphere.

定理

Proof

Consider the spherical mean Mu(M0, ρ) defined in the previous
section. By the radial differential equation for spherical means:(

∂2

∂r2 +
2
r

∂

∂r

)
Mu(M0, r) = ∆Mu(M0, r).

Since u is harmonic (∆u = 0), the spatial Laplacian of its mean is
also zero. Thus Mu satisfies the ODE:

1
r2

∂

∂r

(
r2 ∂Mu

∂r

)
= 0.

This implies r2 ∂Mu
∂r = C. Since ∂Mu

∂r → 0 as r → 0 (from the previous
section), we must have C = 0. Consequently, ∂Mu

∂r = 0, so Mu(M0, r)
is constant with respect to r. By continuity, lim

r→0
Mu(M0, r) = u(M0).

Thus Mu(M0, R) = u(M0).
■

The Maximum Principle

The mean value property implies that a harmonic function cannot
have local "peaks" or "valleys" inside its domain, as a peak would
require the value at the centre to exceed the surrounding average.

Theorem 7.4. Maximum Principle.
Let u be a harmonic function on a connected region Ω. If u attains its
supremum or infimum at an interior point of Ω, then u is constant on
Ω.
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定理

Proof

Suppose u attains its maximum value K at an interior point M0 ∈
Ω. Assume for contradiction that u is not constant. Then the set of
points where u < K is non-empty. Let U = {x ∈ Ω : u(x) = K}.
Since u is continuous, U is closed in Ω. Since Ω is connected, if U
were also open, then U would be all of Ω. We show U is open. Let
x ∈ U. Choose a ball BR(x) ⊂ Ω. By the Mean Value Formula:

K = u(x) =
1

4πR2

‹
∂BR(x)

u dS.

Since u ≤ K everywhere, if there were any point on the sphere
where u < K, continuity would imply u < K on a small patch,
strictly lowering the average below K. Thus u = K on the entire
sphere. Since this holds for all 0 < ρ < R, u = K on the whole
ball BR(x). This proves U is open. Since U is non-empty, open, and
closed in the connected set Ω, we have U = Ω. Thus u is constant,
proving the contrapositive.

■

Corollary 7.3. Boundary Extrema. If Ω is a bounded region and u is con-
tinuous on Ω̄ and harmonic on Ω, then the maximum and minimum
values of u are attained on the boundary ∂Ω.

推論

Proof

Since Ω̄ is compact and u is continuous, u attains a global maxi-
mum at some point M ∈ Ω̄. If M ∈ ∂Ω, the result holds. If M ∈ Ω
(interior), then by the Maximum Principle, u is constant on the con-
nected component of Ω containing M. By continuity, u is constant
on the closure of that component, so the value at the boundary is
the same maximum value. Thus, the maximum is always attained
on the boundary. The same logic applies to the minimum.

■

Note

This principle is powerful for proving uniqueness of solutions to
boundary value problems. If two harmonic functions agree on the
boundary, their difference is harmonic and zero on the boundary;
by the maximum principle, the difference must be zero everywhere.
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7.3 The Poisson Integral Formula

In the theory of differential equations, a central problem is the
Dirichlet problem: given a continuous function f on the boundary
of a region Ω, does there exist a harmonic function u on the interior
of Ω such that u|∂Ω = f ? We resolve this affirmatively for the case
where Ω is a disk in R2.
To do so, we introduce a tool from harmonic analysis.

Definition 7.3. Approximate Identity.
An approximate identity is a family of 2π-periodic functions {Kr(t)}0≤r<1

satisfying:
1. Positivity: Kr(t) ≥ 0.

2. Normalisation: 1
2π

´ π
−π Kr(t) dt = 1.

3. Concentration: For any δ > 0, lim
r→1−

maxδ≤|t|≤π Kr(t) = 0.

Common examples include the Heat kernel and the Fejér kernel. These
kernels "concentrate" mass near t = 0 as r → 1, allowing us to re-
cover a function from its weighted average.

定義

See Fourier Series Notes.

Proposition 7.2. Convergence of Convolution.
Let {Kr} be an approximate identity and f be a continuous 2π-periodic
function. Then the convolution ur(θ) = 1

2π

´ π
−π f (θ − t)Kr(t) dt sat-

isfies:
lim

r→1−
ur(θ) = f (θ)

uniformly in θ.
命題

Proof

Let ε > 0. Since f is continuous on a compact circle, it is uniformly
continuous. Choose δ > 0 such that |t| < δ =⇒ | f (θ − t)− f (θ)| <
ε/2. Using the normalisation property of Kr:

|ur(θ)− f (θ)| =
∣∣∣∣ 1
2π

ˆ π

−π
[ f (θ − t)− f (θ)]Kr(t) dt

∣∣∣∣ .

We split the integral into I1 (where |t| < δ) and I2 (where δ ≤ |t| ≤
π). For I1:

1
2π

ˆ
|t|<δ

| f (θ − t)− f (θ)|Kr(t) dt <
ε

2
· 1

2π

ˆ π

−π
Kr(t) dt =

ε

2
.

For I2: Let M = sup | f |. Then | f (θ − t)− f (θ)| ≤ 2M.

I2 ≤ 2M · max
δ≤|t|≤π

Kr(t).
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By the concentration property, for r sufficiently close to 1, this maxi-
mum is less than ε

4M . Thus I2 < ε/2. Hence |ur(θ)− f (θ)| < ε.
■

Theorem 7.5. Poisson Integral Formula.
Let f (θ) be a continuous, 2π-periodic function representing boundary
values on the unit circle. The function u defined on the unit disk D =

{(r, θ) : 0 ≤ r < 1} by:

u(r, θ) =
1

2π

ˆ 2π

0
f (φ)Pr(θ − φ) dφ,

where Pr(t) = 1−r2

1−2r cos t+r2 is the Poisson kernel, satisfies the follow-
ing properties:
1. u is harmonic in D (i.e., ∆u = 0).

2. u approaches the boundary values continuously:

lim
(r,θ)→(1,θ0)

u(r, θ) = f (θ0)

for every θ0 ∈ [0, 2π).
定理

Uniqueness.

Suppose two such functions u and v exist. Their difference
w = u− v is harmonic in D and continuous on D̄ with w|∂D = 0. By
the Maximum Principle (theorem 7.4), the maximum and minimum
of w are both 0. Thus w ≡ 0, proving uniqueness.

証明終

Existence and Harmonicity.

Motivated by the polar form of the Laplacian ∆ = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 ,
we observe that rn cos nθ and rn sin nθ are harmonic for n ≥ 0. We
construct u as a power series suggested by the Fourier series of f :

u(r, θ) =
a0

2
+

∞

∑
n=1

rn(an cos nθ + bn sin nθ),

where an, bn are the Fourier coefficients of f . Substituting the inte-
gral definitions of an, bn and summing the geometric series (using
complex exponentials) yields the kernel:

1
2
+

∞

∑
n=1

rn cos n(θ − φ) = Re

[
1
2
+

∞

∑
n=1

(rei(θ−φ))n

]
= Re

[
1
2
+

z
1 − z

]
=

1
2

1 − r2

1 − 2r cos(θ − φ) + r2 .

Since the series converges uniformly for r ≤ r0 < 1, term-by-term
differentiation is valid. Since each term rn cos nθ is harmonic, the
sum u is harmonic.

証明終
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Boundary Behaviour.

The Poisson kernel Pr(t) acts as an "approximate identity" (similar
to the heat kernel or Dirichlet kernel discussed in definition 7.3).
Specifically:

• Pr(t) > 0.

• 1
2π

´ π
−π Pr(t) dt = 1.

• For any δ > 0, lim
r→1−

maxδ≤|t|≤π Pr(t) = 0.

Using these properties, the convolution integral converges to f (θ0)

as r → 1 (see the proof in proposition 7.2).
証明終

Corollary 7.4. Poisson Formula for Disk of Radius R. If u is harmonic on
the open disk BR(0) and continuous on its closure, then for any point
(r, θ) with 0 ≤ r < R:

u(r, θ) =
1

2π

ˆ 2π

0
u(R, φ)

R2 − r2

R2 − 2Rr cos(θ − φ) + r2 dφ.

推論

This formula allows us to recover the values of a harmonic function
anywhere inside a disk solely from its values on the boundary circle.

(r, θ)

R

φ

Values from boundary
determine interior

Figure 7.1: The Poisson inte-
gral reconstructs the harmonic
function inside the disk from
boundary data.

7.4 Exercises

1. Vector Calculus Identity. Prove the identity ∇(∇ · a)−∇× (∇×
a) = ∆a, where the Laplacian of a vector a = (a1, a2, a3) is defined
component-wise as (∆a1, ∆a2, ∆a3).

2. Energy Method for Uniqueness. Let u be harmonic on Ω and
twice continuously differentiable on Ω̄.

(a) Prove the identity:
˚

Ω
|∇u|2 dV =

‹
Σ

u
∂u
∂n

dS.

(b) Suppose u = 0 on the boundary Σ. Show that ∇u = 0
everywhere in Ω, and thus u is constant (and hence zero).

(c) Deduce that the solution to the Dirichlet problem (∆u = f in
Ω, u = g on Σ) is unique.

3. Solvability Condition. Consider the Neumann problem:

∆u = f in D,
∂u
∂n

= g on ∂D.
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Prove that a necessary condition for a solution to exist is:
˚

D
f dV =

‹
∂D

g dS.

4. Volume Mean Value Property. Using the surface mean value
property, prove that if u is harmonic on a ball BR(M0), its value at
the centre is the average over the volume:

u(M0) =
1

4
3 πR3

˚
BR(M0)

u(x, y, z) dV.

5. Regularity. Prove that harmonic functions are infinitely differen-
tiable (C∞).

Remark.

Hint: Use the Mean Value Property and differentiation under the
integral sign.

6. Composition Property. Let f be a non-constant harmonic function
on a connected open set. Let g : R → R be twice continuously
differentiable. Prove that if the composition g ◦ f is also harmonic,
then g must be a linear function.

7. Direct Verification. Verify by direct calculation that the Poisson
integral

u(r, θ) =
1

2π

ˆ 2π

0

1 − r2

1 − 2r cos(θ − ϕ) + r2 f (ϕ) dϕ

satisfies Laplace’s equation in polar coordinates.
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