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0
Geometry of Inner Product Spaces

The study of Fourier series relies fundamentally on decomposing
functions into superpositions of simpler "basis" functions (einx). To
formalise this, we must view functions not merely as maps from
domains to codomains, but as vectors in a space equipped with geo-
metric structure. Just as R3 has lengths and angles defined by the dot
product, function spaces require a notion of inner product to define
orthogonality and convergence.
We begin by formalising the geometry of finite-dimensional vector
spaces over C. The transition from Rn to C necessitates careful han-
dling of linearity to preserve positivity.
We assume familiarity with the definition of a vector space V over
a field F (where F is R or C). To measure lengths and angles, we
require an additional structure.

Definition 0.1. Euclidean Space.
Let V be a finite-dimensional vector space over R. An inner product
on V is a map ⟨·, ·⟩ : V × V → R satisfying:
1. Bilinearity: For all u, v, w ∈ V and α, β ∈ R:

⟨αu + v, w⟩ = α⟨u, w⟩+ ⟨v, w⟩,

⟨u, βv + w⟩ = β⟨u, v⟩+ ⟨u, w⟩.

2. Symmetry: For all v, w ∈ V, ⟨v, w⟩ = ⟨w, v⟩.

3. Positive Definiteness: For all v ∈ V, ⟨v, v⟩ ≥ 0, with equality if
and only if v = 0V .

The pair (V, ⟨·, ·⟩) is called a Euclidean space.
定義

Example 0.1. Rn. The canonical example is Rn with the dot product
⟨v, w⟩ = vTw = ∑ viwi.

範例 x

y

z

w

v

projwv

Figure 1: The inner product
provides the geometric struc-
ture required to define pro-
jections and orthogonality in
Rn, derived from the algebraic
axioms.

Let u, v, w ∈ Rn and α, β ∈ R. We verify the axioms directly using the
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component-wise definition.

Symmetry.

Since multiplication in R is commutative (viwi = wivi):

⟨v, w⟩ =
n

∑
i=1

viwi =
n

∑
i=1

wivi = ⟨w, v⟩.

証明終

Bilinearity.

Linearity in the first argument follows from the distributivity of
multiplication over addition in R:

⟨αu+ v, w⟩ =
n

∑
i=1

(αui + vi)wi = α
n

∑
i=1

uiwi +
n

∑
i=1

viwi = α⟨u, w⟩+ ⟨v, w⟩.

Linearity in the second argument is immediate by symmetry or by
an identical expansion.

証明終

Positive Definiteness.

The square of a real number is non-negative, implying:

⟨v, v⟩ =
n

∑
i=1

v2
i ≥ 0.

If ⟨v, v⟩ = 0, the sum of non-negative terms necessitates v2
i = 0 for

all i. Hence vi = 0 for all i, implying v = 0Rn . Conversely, v = 0Rn

implies ⟨v, v⟩ = 0 trivially.
証明終

Fourier analysis inherently involves complex numbers via einx. Ex-
tending the definition of an inner product to a complex vector space
V requires modification. If we strictly demanded bilinearity over C,
the positivity condition would collapse.

Note

Suppose ⟨·, ·⟩ were bilinear over C. Then for any v ̸= 0:

⟨iv, iv⟩ = i⟨v, iv⟩ = i2⟨v, v⟩ = −⟨v, v⟩.

If ⟨v, v⟩ > 0, then ⟨iv, iv⟩ < 0, violating positive definiteness.

To maintain ⟨v, v⟩ ≥ 0, the map must be conjugate linear in one
argument. We adopt the mathematical convention (anti-linear in the
second argument).

Definition 0.2. Hermitian Inner Product.
Let V be a finite-dimensional vector space over C. A Hermitian inner
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product is a map ⟨·, ·⟩ : V × V → C satisfying:

1. Sesquilinearity: It is linear in the first argument and anti-linear in
the second. For v1, v2, w ∈ V and α ∈ C:

⟨αv1 + v2, w⟩ = α⟨v1, w⟩+ ⟨v2, w⟩,
⟨v, αw1 + w2⟩ = ᾱ⟨v, w1⟩+ ⟨v, w2⟩.

2. Hermitian Symmetry: For all v, w ∈ V,

⟨v, w⟩ = ⟨w, v⟩.

3. Positive Definiteness: For all v ∈ V, ⟨v, v⟩ ≥ 0, with equality if
and only if v = 0V .

The pair (V, ⟨·, ·⟩) is called a Hermitian space.
定義

Remark.

Hermitian symmetry ensures ⟨v, v⟩ = ⟨v, v⟩, so ⟨v, v⟩ is always real,
making the positivity condition well-defined.

Re

Im

vk

w̄kθvθw̄

vk w̄k

Figure 2: In Cn, the inner prod-
uct encodes both geometric
projection and relative phase.

Example 0.2. The Standard Hermitian Product. On Cn, for column
vectors v = (v1, . . . , vn)T and w = (w1, . . . , wn)T , we define:

⟨v, w⟩ =
n

∑
k=1

vkwk = w†v,

where w† = (wT)∗ is the conjugate transpose.

範例

The inner product induces a natural notion of length (norm) and
proximity (metric).

Definition 0.3. Induced Norm.
Let (V, ⟨·, ·⟩) be an inner product space. The norm of a vector v is

∥v∥ =
√
⟨v, v⟩.

The distance between vectors v and w is defined as d(v, w) = ∥v −
w∥.

定義

A vector v is a unit vector if ∥v∥ = 1.
The Cauchy-Schwarz inequality governs the geometry of inner prod-
uct spaces, ensuring that the inner product cannot exceed the product
of the lengths of the vectors.
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Theorem 0.1. Cauchy-Schwarz Inequality.
For all v, w ∈ V:

|⟨v, w⟩| ≤ ∥v∥∥w∥.

Equality holds if and only if v and w are linearly dependent.
定理

x

y

z

w

v

⟨v,w⟩
∥w∥2 w

|⟨v, w⟩| ≤ ∥v∥∥w∥

Figure 3: Cauchy-Schwarz
geometrically: the projection
|⟨v, w⟩|/∥w∥ cannot exceed ∥v∥.

The case ⟨v, w⟩ = 0 is trivial. We assume ⟨v, w⟩ ̸= 0.

Case 1: Real Inner Product

Assume ⟨v, w⟩ ∈ R. Consider the function P(t) = ∥tv + w∥2 for
t ∈ R. By positive definiteness, P(t) ≥ 0 for all t. Expanding using
bilinearity (or sesquilinearity with real coefficients):

P(t) = ⟨tv + w, tv + w⟩
= t2⟨v, v⟩+ t⟨v, w⟩+ t⟨w, v⟩+ ⟨w, w⟩
= ∥v∥2t2 + 2⟨v, w⟩t + ∥w∥2.

Since P(t) is a non-negative quadratic polynomial, its discriminant
∆ must be non-positive:

∆ = (2⟨v, w⟩)2 − 4∥v∥2∥w∥2 ≤ 0.

This implies 4⟨v, w⟩2 ≤ 4∥v∥2∥w∥2, yielding |⟨v, w⟩| ≤ ∥v∥∥w∥.
証明終

Case 2: Complex Inner Product

In the general case, ⟨v, w⟩ ∈ C. We can reduce this to the real case
by rotating v. Let α = ⟨w,v⟩

|⟨w,v⟩| . This is a complex number of modulus
1. Define ṽ = αv. Then:

⟨ṽ, w⟩ = α⟨v, w⟩ = ⟨v, w⟩
|⟨v, w⟩| ⟨v, w⟩ = |⟨v, w⟩|2

|⟨v, w⟩| = |⟨v, w⟩|.

Since ⟨ṽ, w⟩ is real (indeed ⟨ṽ, w⟩ = |⟨v, w⟩|), we apply Case 1 to ṽ
and w:

|⟨ṽ, w⟩| ≤ ∥ṽ∥∥w∥.

Substituting back, |⟨v, w⟩| ≤ |α|∥v∥∥w∥ = ∥v∥∥w∥.
証明終

The properties of the induced norm follow from theorem 0.1.

Proposition 0.1. Properties of the Norm.
For all v, w ∈ V and λ in the base field (R or C):
1. ∥v∥ ≥ 0, and ∥v∥ = 0 ⇐⇒ v = 0.

2. ∥λv∥ = |λ|∥v∥ (Homogeneity).

3. ∥v + w∥ ≤ ∥v∥+ ∥w∥ (Triangle Inequality).
命題
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Proof

The first two follow from the definition of the inner product. We
prove the Triangle Inequality.

∥v + w∥2 = ⟨v + w, v + w⟩
= ∥v∥2 + ⟨v, w⟩+ ⟨w, v⟩+ ∥w∥2

= ∥v∥2 + 2Re(⟨v, w⟩) + ∥w∥2.

Since Re(z) ≤ |z|, we have 2Re(⟨v, w⟩) ≤ 2|⟨v, w⟩|. By Cauchy-
Schwarz:

∥v + w∥2 ≤ ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2

= (∥v∥+ ∥w∥)2.

Taking the square root yields the result.
■

v

w
v + w

∥v + w∥ ≤ ∥v∥+ ∥w∥

Figure 4: The Triangle Inequal-
ity: The length of the sum
vector is at most the sum of
the lengths of the constituent
vectors.

Convergence in Normed Spaces

The definition of distance allows us to discuss limits and conver-
gence, a prerequisite for defining infinite sums such as Fourier series.

Definition 0.4. Convergence of a Sequence.
Let (V, ∥ · ∥) be a normed vector space. A sequence of vectors {vn}∞

n=1 ⊂
V is said to converge to a limit v ∈ V if

lim
n→∞

∥vn − v∥ = 0.

We write vn → v or lim
n→∞

vn = v.

定義

In finite-dimensional spaces such as Cn, convergence in norm is
equivalent to coordinate-wise convergence. However, in infinite-
dimensional function spaces (the setting of Fourier analysis), conver-
gence in norm (e.g., mean square convergence) does not necessarily
imply pointwise convergence. The geometry established here pro-
vides the robust framework required to navigate these subtleties.

0.1 Orthogonal and Orthonormal Families

The most distinct feature of inner product spaces is the ability to de-
fine perpendicularity, or orthogonality, which generalises the intuitive
geometric concept to arbitrary dimensions.

Definition 0.5. Orthogonality.
Let (V, ⟨·, ·⟩) be an inner product space.
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1. Two vectors v, w ∈ V are orthogonal, denoted v ⊥ w, if ⟨v, w⟩ =

0.

2. A family of vectors F = {v1, . . . , vp} is an orthogonal family if vi ⊥
vj for all i ̸= j.

3. A family F is an orthonormal family if it is orthogonal and every
vector has unit norm: ∥vi∥ = 1 for all i.

定義

Using the Kronecker delta symbol, defined as δij = 1 if i = j and 0
otherwise, the condition for a family {vi} to be orthonormal can be
written compactly as:

⟨vi, vj⟩ = δij.

Remark (Normalization).

Any non-zero vector v can be normalised to a unit vector v̂ = v
∥v∥ .

Orthogonality simplifies the calculation of norms for sums of vectors,
leading to a generalisation of the Pythagorean theorem.

Proposition 0.2. Pythagorean Identity.
Let u, v ∈ V. If u ⊥ v, then:

∥u + v∥2 = ∥u∥2 + ∥v∥2.

命題

u

v
u + v

∥u∥

∥v∥

∥u + v∥

Figure 5: The Pythagorean
identity: when u ⊥ v, the
squared length of the hy-
potenuse equals the sum of
the squared lengths of the legs.

Proof

Expanding the squared norm:

∥u + v∥2 = ⟨u + v, u + v⟩
= ∥u∥2 + ⟨u, v⟩+ ⟨v, u⟩+ ∥v∥2

= ∥u∥2 + 2Re(⟨u, v⟩) + ∥v∥2.

Since u ⊥ v, ⟨u, v⟩ = 0, and the result follows.
■

Note

In complex vector spaces, the converse is false. The condition
∥u + v∥2 = ∥u∥2 + ∥v∥2 implies only that Re(⟨u, v⟩) = 0, not
that the inner product itself vanishes. For example, in C2, let
u = (1, 0)T and v = (i, 0)T . Then ∥u + v∥2 = |1 + i|2 = 2 and
∥u∥2 + ∥v∥2 = 1 + 1 = 2, yet ⟨u, v⟩ = 1 · (−i) = −i ̸= 0.

A crucial consequence of orthogonality is that it enforces linear inde-
pendence.

Theorem 0.2. Independence of Orthogonal Families.
Let {v1, . . . , vp} be an orthogonal family of non-zero vectors in V. Then
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the family is linearly independent.
定理

Proof

Suppose ∑
p
i=1 αivi = 0 for some scalars αi. We must show all αi van-

ish. Take the inner product of the sum with a specific vector vj:〈
p

∑
i=1

αivi, vj

〉
= ⟨0, vj⟩ = 0.

Using linearity in the first argument:

p

∑
i=1

αi⟨vi, vj⟩ = 0.

By orthogonality, ⟨vi, vj⟩ = 0 whenever i ̸= j. The sum collapses to
the single term i = j:

αj⟨vj, vj⟩ = αj∥vj∥2 = 0.

Since vj ̸= 0, we have ∥vj∥2 ̸= 0, implying αj = 0. This holds for all
j ∈ {1, . . . , p}.

■

Corollary 0.1. Orthogonal Bases. If V has dimension n, any orthogo-
nal family of n non-zero vectors forms a basis for V, called an orthog-
onal basis. If the vectors are orthonormal, it is an orthonormal basis.

推論

The primary utility of such bases is the ease of computing coordi-
nates. For a general basis, finding coefficients requires solving a lin-
ear system (often via Gaussian elimination). For an orthogonal basis,
coefficients are decoupled and given by simple inner products.

Theorem 0.3. Decomposition in Orthogonal Bases.
Let {u1, . . . , un} be an orthogonal basis for V. For any v ∈ V:

v =
n

∑
i=1

⟨v, ui⟩
∥ui∥2 ui.

If the basis is orthonormal, this simplifies to:

v =
n

∑
i=1

⟨v, ui⟩ui.

定理

Proof

Since {ui} is a basis, we may write v = ∑n
j=1 αjuj. Taking the inner
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product with ui:

⟨v, ui⟩ =
〈

n

∑
j=1

αjuj, ui

〉
=

n

∑
j=1

αj⟨uj, ui⟩ = αi∥ui∥2,

where the sum vanishes for j ̸= i due to orthogonality. Solving for
αi yields the result.

■

The decomposition formula above suggests a geometric interpre-
tation: the term ⟨v,ui⟩

∥ui∥2 ui represents the "shadow" or projection of v
onto the line spanned by ui. We generalise this to projections onto
subspaces.
Let S be a subspace of V spanned by an orthogonal family of non-
zero vectors F = {u1, . . . , um}. We define the orthogonal projection
of a vector v onto S as:

PS(v) =
m

∑
i=1

⟨v, ui⟩
∥ui∥2 ui.

This operator PS : V → S has three fundamental geometric proper-
ties: idempotence, orthogonality of the residual, and distance minimi-
sation.

Theorem 0.4. Properties of Orthogonal Projection.
Let S = Span{u1, . . . , um} where {ui} is an orthogonal family of non-
zero vectors.
1. Identity on S: If s ∈ S, then PS(s) = s.

2. Orthogonality: The residual vector v−PS(v) is orthogonal to the
subspace S. That is, for all s ∈ S,

⟨v − PS(v), s⟩ = 0.

3. Best Approximation: For all s ∈ S,

∥v − PS(v)∥ ≤ ∥v − s∥,

with equality if and only if s = PS(v).
定理

1. Identity

Let s ∈ S. Then s = ∑m
j=1 αjuj. Applying the decomposition formula

restricted to the basis of S yields PS(s) = ∑ αjuj = s.
証明終

2. Orthogonality
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We first check orthogonality against the basis vectors uk.

⟨PS(v), uk⟩ =
m

∑
i=1

⟨v, ui⟩
∥ui∥2 ⟨ui, uk⟩ =

⟨v, uk⟩
∥uk∥2 ∥uk∥2 = ⟨v, uk⟩.

Thus ⟨v − PS(v), uk⟩ = ⟨v, uk⟩ − ⟨PS(v), uk⟩ = 0. Since the residual
is orthogonal to every basis vector uk, it is orthogonal to any linear
combination s ∈ S.

証明終

3. Minimisation

Let s ∈ S. We write v − s = (v − PS(v)) + (PS(v) − s). Note that
PS(v) − s lies in S. By Property 2, v − PS(v) is orthogonal to S, and
hence to PS(v)− s. Applying the Pythagorean identity:

∥v − s∥2 = ∥v − PS(v)∥2 + ∥PS(v)− s∥2.

Since norms are non-negative, ∥v − s∥2 ≥ ∥v − PS(v)∥2, with equal-
ity only when ∥PS(v)− s∥ = 0, i.e., s = PS(v).

証明終
SPS (v)

v

v − PS (v)

s

Figure 6: The orthogonal pro-
jection PS(v) is the unique point
in S closest to v. The error vec-
tor v − PS(v) is orthogonal to
the subspace.

The utility of orthonormal bases prompts a natural question: does ev-
ery finite-dimensional inner product space possess one? The answer
is affirmative and constructive.

Theorem 0.5. Gram-Schmidt Process.
Let {v1, . . . , vp} be a linearly independent family in V. There exists an
orthonormal family {u1, . . . , up} such that for all k ≤ p:

Span{u1, . . . , uk} = Span{v1, . . . , vk}.

定理

We proceed inductively.

Base Step.

Set u1 = v1
∥v1∥

. Clearly Span{u1} = Span{v1}.
証明終

Inductive Step.

Suppose we have constructed {u1, . . . , uk−1}. We project vk onto the
subspace spanned by these vectors and subtract the projection to
obtain the orthogonal component. Let

wk = vk −
k−1

∑
j=1

⟨vk, uj⟩uj.

By theorem 0.4, wk is orthogonal to u1, . . . , uk−1. Since {vi} are lin-
early independent, vk /∈ Span{v1, . . . , vk−1} = Span{u1, . . . , uk−1},
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so wk ̸= 0. We normalise to obtain the next vector:

uk =
wk

∥wk∥
.

The span is preserved by construction.
証明終

u1

v2

u1 ⟨v2, u1⟩u1

w2u2

Figure 7: Gram-Schmidt: v2

is decomposed into its projec-
tion onto u1 and an orthogonal
component w2. Normalising w2

yields u2.

When working with an orthonormal basis {u1, . . . , un}, the inner
product structure is completely determined by the coefficients.

Theorem 0.6. Isometries of Coefficients.
Let {ui}n

i=1 be an orthonormal basis for V. For any v, w ∈ V:
1. Parseval’s Identity:

⟨v, w⟩ =
n

∑
i=1

⟨v, ui⟩⟨w, ui⟩ =
n

∑
i=1

⟨v, ui⟩⟨ui, w⟩.

2. Plancherel’s Identity:

∥v∥2 =
n

∑
i=1

|⟨v, ui⟩|2.

定理

Proof

By the decomposition theorem, v = ∑⟨v, ui⟩ui and w = ∑⟨w, uj⟩uj.
Using sesquilinearity:

⟨v, w⟩ =
〈

∑
i
⟨v, ui⟩ui, ∑

j
⟨w, uj⟩uj

〉
= ∑

i,j
⟨v, ui⟩⟨w, uj⟩⟨ui, uj⟩.

Since ⟨ui, uj⟩ = δij, the double sum reduces to the single sum over
i = j. Plancherel’s identity follows by setting w = v.

■

Plancherel’s identity admits a physical interpretation: the total "en-
ergy" (∥v∥2) of a signal is the sum of the energies of its harmonic
components (|⟨v, ui⟩|2). This conservation law is central to Fourier
Analysis.

0.2 Linear Operators and Matrices

The matrix representation of these operators, particularly those
preserving the inner product, is fundamental to the application of
Fourier theory. We adopt the standard convention for representing
vectors and operators in finite-dimensional spaces.
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Notation 0.1. Coordinate Vectors Let V be a vector space of dimension
n with a basis E = (e1, . . . , en). Any vector v ∈ V admits a unique
expansion v = ∑n

j=1 cjej. The coordinate vector of v relative to E is the
column vector:

[v]E =


c1
...

cn

 ∈ Fn.

記法

Consider a linear map L : V → W, where dim(V) = n and dim(W) =

m. Let E = (ej)
n
j=1 be a basis for V and F = ( fi)

m
i=1 be a basis for W.

The action of L is completely determined by its action on the basis
vectors of V. We decompose the image of each ej in the basis F :

L(ej) =
m

∑
i=1

aij fi, for j = 1, . . . , n. (1)

Theorem 0.7. Matrix Representation.
There exists a unique m × n matrix A = (aij), called the representa-
tive matrix of L relative to bases E and F , such that for all v ∈ V:

[L(v)]F = A[v]E .

We denote this matrix by A = AE ,F
L .

定理

Proof

Let v ∈ V with [v]E = (c1, . . . , cn)T . By linearity and eq. (1):

L(v) = L

(
n

∑
j=1

cjej

)
=

n

∑
j=1

cjL(ej) =
n

∑
j=1

cj

(
m

∑
i=1

aij fi

)
.

Interchanging the finite sums:

L(v) =
m

∑
i=1

(
n

∑
j=1

aijcj

)
fi.

The coefficient of fi corresponds exactly to the i-th row of the ma-
trix product A[v]E . Thus [L(v)]F = A[v]E .
To prove uniqueness, suppose another matrix B satisfies the condi-
tion. Then for all v, (A − B)[v]E = 0. Choosing v = ej (where [ej]E is
the standard basis vector of Fn) implies the j-th column of A − B is
zero. Since this holds for all j, A = B.

■
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Definition 0.6. Endomorphisms.
An operator L : V → V is called an endomorphism. The set of all
endomorphisms on V forms a vector space, denoted End(V). In this
case, the representative matrix is square (n × n).

定義

We often require the representation of a vector or operator in a
different basis to simplify calculations (e.g., diagonalisation). Let
E = (ej)

n
j=1 and F = ( fi)

n
i=1 be two bases of a vector space V.

We define the transition matrix P from E to F as the representative
matrix of the identity operator idV , where the domain is equipped
with basis F and the codomain with basis E . That is, P = AF ,E

id .

Proposition 0.3. Properties of the Transition Matrix.

1. The columns of P are the coordinates of the "new" basis vectors F
expressed in the "old" basis E .

2. The matrix P transforms coordinates from F to E :

[v]E = P[v]F . (2)

3. P is invertible. Its inverse Q = P−1 satisfies [v]F = Q[v]E and rep-
resents the coordinates of E expressed in F .

命題

Proof

Property 2 follows directly from the definition P = AF ,E
id and the

matrix representation theorem: [id(v)]E = P[v]F . For Property 1,
choose v = f j. Then [ f j]F is the j-th canonical vector of Fn. The
product P[ f j]F yields the j-th column of P. By eq. (2), this equals
[ f j]E . Invertibility follows because id is a bijection.

■

Note

Confusion often arises regarding the direction of P. A mnemonic is
that P acts on the new coordinates to produce the old coordinates.
Explicitly, if F are the eigenvectors of an operator, P is the matrix
containing these eigenvectors as columns.

The transformation of vectors induces a transformation of operators.

Theorem 0.8. Similarity of Matrix Representations.
Let L ∈ End(V). Let A be the matrix of L relative to basis E , and B
be the matrix of L relative to basis F . Let P be the transition matrix such
that [v]E = P[v]F . Then:

B = P−1 AP.



16 gudfit

定理

Proof

We rely on the commutativity of the mapping diagram. For any v ∈
V:

[L(v)]F = B[v]F .

Alternatively, we can map v through basis E :

[L(v)]F = P−1[L(v)]E (converting output)

= P−1(A[v]E ) (applying L in E)
= P−1 A(P[v]F ) (converting input).

Thus B[v]F = (P−1 AP)[v]F for all v, implying B = P−1 AP.
■

[v]E [v]F

[L(v)]E [L(v)]F

PP−1

PP−1

A B

Figure 8: Commutative dia-
gram illustrating the similarity
transformation. The operator L
can be computed via A in the E
basis or B in the F basis.

Matrices A and B satisfying B = P−1 AP are said to be similar.
Similar matrices represent the same linear operator under different
choices of basis. A primary goal in linear algebra, and essential for
Fourier analysis, is selecting a basis F such that B is diagonal.

Isometries and Unitary Operators

An operator that preserves the inner product preserves lengths and
angles, effectively acting as a rigid motion (possibly including reflec-
tion) in the vector space.

Definition 0.7. Preservation of Inner Product.
Let (V, ⟨·, ·⟩) be an inner product space. An endomorphism L ∈ End(V)

is said to preserve the inner product if:

∀v, w ∈ V, ⟨Lv, Lw⟩ = ⟨v, w⟩.

定義

Such operators are characterised by their action on orthonormal
bases.

Theorem 0.9. Preservation of Bases.
Let V be finite-dimensional. An operator L preserves the inner prod-
uct if and only if it maps every orthonormal basis of V to an orthonor-
mal basis of V.

定理

( =⇒ )

Assume L preserves the inner product. Let {ui}n
i=1 be an orthonor-

mal basis. Then:
⟨Lui, Luj⟩ = ⟨ui, uj⟩ = δij.

Thus, {Lui}n
i=1 is an orthonormal family. Since the dimension is
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preserved, it forms a basis.
証明終

( ⇐= )

Assume L maps any orthonormal basis {ui} to an orthonormal
basis {Lui}. Let v, w ∈ V. By Parseval’s identity (established in the
previous chapter), the inner product is determined by coordinates:

⟨v, w⟩ =
n

∑
i=1

⟨v, ui⟩⟨w, ui⟩.

By linearity, Lv = ∑n
i=1⟨v, ui⟩Lui. Since {Lui} is also an orthonor-

mal basis, we apply Parseval’s identity to the images:

⟨Lv, Lw⟩ =
n

∑
i=1

⟨v, ui⟩⟨w, ui⟩.

Comparing the two sums yields ⟨Lv, Lw⟩ = ⟨v, w⟩.
証明終

It is immediate that if L preserves the inner product, it preserves the
norm: ∥Lv∥2 = ⟨Lv, Lv⟩ = ⟨v, v⟩ = ∥v∥2. Such operators are often
called isometries. The converse holds due to the polarisation identity.

Proposition 0.4. Properties of Isometries.
Let L ∈ End(V) preserve the inner product.
1. Norm Preservation: ∥Lv∥ = ∥v∥ for all v ∈ V.

2. Injectivity: Ker(L) = {0}. Since V is finite-dimensional, L is in-
vertible.

3. Eigenvalues: If λ is an eigenvalue of L, then |λ| = 1.
命題

Re

Im

λ1
λ2

λ3 |λ| = 1

Figure 9: The eigenvalues of
an isometry lie on the unit cir-
cle in the complex plane. The
operator acts as a rotation or
reflection.

Proof

We prove property 3. Let v be a non-zero eigenvector such that
Lv = λv. Since L is an isometry:

∥v∥ = ∥Lv∥ = ∥λv∥ = |λ|∥v∥.

Dividing by ∥v∥ ̸= 0 yields |λ| = 1. Thus, in C, eigenvalues are of
the form eiθ .

■

Matrix Representation: Unitary and Orthogonal

The algebraic characterisation of isometries depends on the base
field. Let U be the representative matrix of L relative to an orthonor-
mal basis.
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Definition 0.8. Unitary Matrices.
A complex matrix U ∈ Mn(C) is unitary if its inverse is its conjugate
transpose (adjoint):

U−1 = U† = (U)T .

Equivalently, U†U = I.
定義

Definition 0.9. Orthogonal Matrices.
A real matrix O ∈ Mn(R) is orthogonal if its inverse is its transpose:

O−1 = OT .

Equivalently, OTO = I.
定義

These definitions precisely capture the preservation of the standard
Euclidean (or Hermitian) inner product.

Theorem 0.10. Equivalence of Definitions.
Let U ∈ Mn(C) (resp. O ∈ Mn(R)). The following are equivalent:
1. The matrix preserves the standard inner product: ⟨Ux, Uy⟩ = ⟨x, y⟩.

2. The matrix is an isometry: ∥Ux∥ = ∥x∥.

3. The matrix is Unitary (resp. Orthogonal).

4. The columns (and rows) form an orthonormal basis of Cn (resp. Rn).
定理

Diagonalisation and Spectral Theory

Diagonalisation is the process of finding a basis in which the action
of an operator is a simple scaling of coordinates.

Definition 0.10. Diagonalisability.
An endomorphism L is diagonalisable if there exists a basis of V con-
sisting of eigenvectors of L. Equivalently, its representative matrix A
is similar to a diagonal matrix D, i.e., A = PDP−1.

定義

While not all operators are diagonalisable, those interacting "nicely"
with the inner product often are. A central class of such operators are
those that are self-adjoint.

Definition 0.11. Hermitian Operators.
An endomorphism L is Hermitian (or self-adjoint) if for all v, w ∈ V:

⟨Lv, w⟩ = ⟨v, Lw⟩.
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定義

In terms of matrices, this corresponds to A = A† (Hermitian matrix)
in the complex case, or A = AT (Symmetric matrix) in the real case.
The Spectral Theorem is a cornerstone of linear algebra, guarantee-
ing that Hermitian operators can be decomposed into independent
modes (eigenvectors) that are orthogonal to each other.

Theorem 0.11. Spectral Theorem for Hermitian Operators.
Let L be a Hermitian endomorphism on a finite-dimensional inner prod-
uct space V. Then:
1. All eigenvalues of L are real.

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. V admits an orthonormal basis consisting of eigenvectors of L.
Consequently, the representative matrix A can be diagonalised by a uni-
tary matrix P:

A = PDP†,

where D is a real diagonal matrix and P is unitary.
定理

Eλ1

Eλ2

u1

u2
v

v = c1u1 + c2u2
Lv = λ1c1u1 + λ2c2u2

Figure 10: Spectral decompo-
sition: a Hermitian operator
acts by scaling along orthogonal
eigenspaces Eλi , each by its real
eigenvalue λi.

This theorem provides the algebraic justification for the decompo-
sition of signals into orthogonal modes, a principle we will exploit
extensively in the construction of Fourier series.



1
Introduction

The theory of Fourier series relies fundamentally on decomposing
complex functions into superpositions of elementary basis func-
tions, as introduced in chapter 0. This approach originates from the
analysis of partial differential equations governing physical phenom-
ena, specifically the heat and wave equations. Although physically
motivated, the resulting theory of trigonometric series necessitates
rigorous definitions of convergence, integration, and function spaces.

1.1 The Vibrating String

Consider an ideal elastic string of length l, fixed at endpoints x = 0
and x = l. At time t = 0, the string is displaced from its equilibrium
and released. The vertical displacement u(x, t) evolves according to
the one-dimensional wave equation:

∂2u
∂t2 = c2 ∂2u

∂x2 , (1.1)

where c2 is a physical constant relating tension and mass density. The
system is subject to Dirichlet boundary conditions:

u(0, t) = 0, u(l, t) = 0 for all t > 0. (1.2)

The state of the system is uniquely determined by the initial configu-
ration f (x) and the initial velocity g(x):

u(x, 0) = f (x),
∂u
∂t

(x, 0) = g(x). (1.3)

Note

To maintain the fixed-endpoint conditions for all t, we assume the
compatibility conditions f (0) = f (l) = 0 and g(0) = g(l) = 0.

x

u

n = 1

n = 2

l0

Figure 1.1: Fundamental modes
of a vibrating string. The dis-
placement vanishes at the
boundaries x = 0 and x = l.

d’Alembert (1747) provided the first solution using the method of
travelling waves. Observing that any function of the form ϕ(x ± ct)
satisfies eq. (1.1), he derived:

u(x, t) =
1
2
[ f (x + ct) + f (x − ct)] +

1
2c

∫ x+ct

x−ct
g(y) dy. (1.4)
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This is the Cauchy solution on the whole line. For a string fixed
at x = 0 and x = l, one extends f and g to R by odd 2l-periodic
reflection.

Bernoulli’s Separation of Variables

Daniel Bernoulli (1753) proposed a distinct method based on the
physical observation that strings vibrate in fundamental modes. Sep-
arating the solution into spatial and temporal components u(x, t) =

F(x)G(t) yields:

F(x)G′′(t) = c2F′′(x)G(t) =⇒ F′′(x)
F(x)

=
1
c2

G′′(t)
G(t)

.

Since the left side depends solely on x and the right solely on t, both
must equal a common separation constant k. This decouples the PDE
into two ordinary differential equations:

F′′(x)− kF(x) = 0, (1.1)

G′′(t)− kc2G(t) = 0. (1.2)

The boundary conditions (eq. (1.2)) imply F(0)G(t) = 0 and F(l)G(t) =
0. For non-trivial solutions (G(t) ̸≡ 0), we require F(0) = F(l) = 0.
We now analyse the eigenvalues k.

Proposition 1.1. Eigenvalues of the Fixed String.
The spatial boundary value problem given by eq. (1.1) with F(0) = F(l) =
0 admits non-trivial solutions if and only if k = −(nπ/l)2 for n ∈
Z+.

命題

We consider the three possible cases for the real constant k:

Case k = 0

The equation reduces to F′′(x) = 0, with general solution F(x) =

Ax + B. F(0) = 0 =⇒ B = 0. F(l) = 0 =⇒ Al = 0 =⇒ A = 0.
This yields only the trivial solution.

証明終

Case k = µ2 > 0

The equation is F′′(x)− µ2F(x) = 0. The general solution is F(x) =

Aeµx + Be−µx. F(0) = 0 =⇒ A + B = 0. F(l) = 0 =⇒ A(eµl −
e−µl) = 2A sinh(µl) = 0. Since µ ̸= 0 and l > 0, sinh(µl) ̸= 0, forc-
ing A = 0 and B = 0.

証明終

Case k = −λ2 < 0



22 gudfit

The equation is F′′(x) + λ2F(x) = 0. The general solution is:

F(x) = A cos(λx) + B sin(λx).

F(0) = 0 =⇒ A = 0. F(l) = 0 =⇒ B sin(λl) = 0. For a non-trivial
solution (B ̸= 0), we require sin(λl) = 0. This implies λl = nπ for
n ∈ Z. Since sin(−x) = − sin(x), we may restrict n to the positive
integers Z+. Thus λn = nπ

l .
証明終

Corresponding to each spatial eigenvalue λn = nπ/l, the temporal
equation (eq. (1.2)) becomes:

G′′
n (t) + c2λ2

nGn(t) = 0.

This is the equation of a simple harmonic oscillator, with solution:

Gn(t) = Cn cos(cλnt) + Dn sin(cλnt).

By the principle of superposition for linear differential equations,
Bernoulli asserted that the general solution is the sum of these nor-
mal modes:

u(x, t) =
∞

∑
n=1

sin
(nπx

l

) [
C̃n cos

(
nπct

l

)
+ D̃n sin

(
nπct

l

)]
. (1.5)

Evaluating this at t = 0 against the initial conditions (eq. (1.3)):

u(x, 0) =
∞

∑
n=1

C̃n sin
(nπx

l

)
= f (x), ∂tu(x, 0) =

∞

∑
n=1

(cλnD̃n) sin
(nπx

l

)
= g(x).

(1.1)

Bernoulli’s solution implied that any arbitrary function f (x) describ-
ing the initial displacement of a string could be represented as a
series of sines. This claim contradicted the prevailing intuition that
discontinuous plucks could not be constructed from smooth analytic
functions, a debate resolved by Joseph Fourier’s 1807 work on heat
conduction. Fourier considered the heat equation:

∂u
∂t

= κ
∂2u
∂x2 , (1.6)

subject to fixed temperatures at the ends u(0, t) = u(l, t) = 0 and
initial temperature distribution u(x, 0) = f (x).
Applying separation of variables yields the same spatial eigenfunc-
tions sin(λnx). However, the temporal equation is first-order:

G′(t) = −κλ2
nG(t) =⇒ Gn(t) = Ane−κλ2

nt.

Superposing these solutions leads to the series:

u(x, t) =
∞

∑
n=1

An sin
(nπx

l

)
e−κλ2

nt. (1.7)
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Setting t = 0, we recover the same fundamental problem encountered
by Bernoulli:

f (x) =
∞

∑
n=1

An sin
(nπx

l

)
.

Fourier provided explicit formulas for the coefficients An, asserting
that for any function f :

An =
2
l

∫ l

0
f (x) sin

(nπx
l

)
dx.

The validity of the expansion at t = 0 requires a rigorous theory
of integration and convergence. Throughout this chapter, we work
with functions defined on intervals, such as [0, l] for the string or
[−π, π] for the general theory. We briefly recall the relevant notions
of integrability.

Definition 1.1. Continuous Functions.
A complex-valued function f on [0, L] is continuous if it is continuous
at every point of [0, L] in the usual sense.

定義

Definition 1.2. Piecewise Continuous Functions.
A function f : [0, L] → C is piecewise continuous if:
· f is bounded on [0, L], and

· there are only finitely many points in [0, L] where f is discontinuous,
and at each such point the one-sided limits exist and are finite.

定義

Piecewise continuous functions are sufficient for many examples (e.g.
step functions, simple waves), but for a clean theory of Fourier coef-
ficients we adopt the more general framework of Riemann integrable
functions.

Definition 1.3. Riemann Integrable Function.
Let f : [0, L] → R be bounded. For a subdivision

0 = x0 < x1 < · · · < xN−1 < xN = L

define the upper sum and lower sum:

U =
N

∑
j=1

(
sup

xj−1≤x≤xj

f (x)
)
(xj − xj−1),

L =
N

∑
j=1

(
inf

xj−1≤x≤xj
f (x)

)
(xj − xj−1).

We say f is (Riemann) integrable on [0, L] if for every ϵ > 0 there ex-
ists a subdivision such that U − L < ϵ. For a complex-valued func-
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tion f : [0, L] → C, we say f is integrable if its real and imaginary
parts are both integrable.

定義

Note

It is a standard result that a bounded function is Riemann inte-
grable if and only if its set of discontinuities has measure zero.
From now on, unless explicitly stated otherwise, all functions are
assumed to be (Riemann) integrable.

1.2 Introduction to Fourier Series

The analysis of periodic phenomena is ubiquitous in the physical
sciences, appearing in contexts ranging from celestial mechanics to
the theory of sound and heat. Such phenomena are characterised by
the property that the state of the system repeats after a fixed duration
T, the period. Mathematically, this motivates the study of periodic
functions and their decomposition into elementary oscillatory com-
ponents.
The simplest periodic function is the harmonic wave:

x(t) = a sin(ωt + φ),

where a is the amplitude, ω = 2π/T is the angular frequency, and
φ is the initial phase. Linearity governs the superposition of such
waves. While the sum of two harmonics with identical frequency
remains a simple harmonic, the superposition of differing frequencies
yields complex waveforms.

Example 1.1. Superposition of Harmonics. Consider the waves
x1(t) = sin t and x2(t) = 1

3 sin 3t. The superposition x(t) =

x1(t) + x2(t) exhibits a more intricate structure than its constituents,
yet retains periodicity.

範例

t

x(t)

sin t

1
3 sin 3t

Sum

Figure 1.2: The superposition of
fundamental and third harmon-
ics approximates a square wave
structure.

This observation suggests an inverse hypothesis: can an arbitrary
periodic function f be decomposed into a series of simple harmonics?

f (t) =
∞

∑
n=0

An sin(nωt + φn). (1.8)

By rescaling the variable x = (2π/T)t, we may restrict our attention
to functions of period 2π (angular frequency ω = 1). Expanding the
sine term via the addition formula sin(nx + φn) = sin nx cos φn +

cos nx sin φn, we rewrite eq. (1.8) as:

f (x) =
a0

2
+

∞

∑
n=1

(an cos nx + bn sin nx), (1.9)
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where a0 = 2A0 sin φ0, an = An sin φn, and bn = An cos φn. The con-
stant term is conventionally written as a0/2 to unify the coefficient
formulas derived below.

The Orthogonality of the Trigonometric System

To determine the coefficients an and bn, we exploit the geometric
properties of the trigonometric system T = {1, cos x, sin x, cos 2x, sin 2x, . . . }.
In the language of chapter 0, we consider these functions as vectors
in an infinite-dimensional space equipped with the inner product
⟨ f , g⟩ =

∫ π
−π f (x)g(x) dx.

Proposition 1.2. Orthogonality of Real Trigonometric Functions.
The system T is orthogonal on [−π, π]. Specifically, for non-negative
integers m, n:

∫ π

−π
cos mx cos nx dx =


0 m ̸= n

π m = n ̸= 0

2π m = n = 0

(1.1)

∫ π

−π
sin mx sin nx dx =


0 m ̸= n

π m = n ̸= 0

0 m = n = 0

(1.2)

∫ π

−π
cos mx sin nx dx = 0 for all m, n. (1.3)

命題

Proof

We employ the product-to-sum identities:

cos mx cos nx =
1
2
[cos(m − n)x + cos(m + n)x].

If m ̸= n, integration yields terms of the form
[

sin kx
k

]π

−π
with k ∈

{m − n, m + n}, which vanish since sin(kπ) = 0. If m = n ̸= 0, the
identity becomes 1

2 [1+ cos 2nx]. The integral is 1
2 [x+

sin 2nx
2n ]π−π = π.

The case m = n = 0 is simply
∫ π
−π 1 dx = 2π.

Similarly for sine:

sin mx sin nx =
1
2
[cos(m − n)x − cos(m + n)x].

Integration follows the same logic, yielding πδmn for n ≥ 1.
Finally, cos mx sin nx = 1

2 [sin(m+ n)x − sin(m− n)x]. Since the inte-
grand is an odd function (assuming m, n integers) over a symmetric
interval, the integral vanishes identically.

■
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Assuming the series eq. (1.9) converges uniformly to f (x), we may
integrate term-by-term. Multiplying by cos kx and integrating over
[−π, π]:∫ π

−π
f (x) cos kx dx =

a0

2

∫ π

−π
cos kx dx+

∞

∑
n=1

(
an

∫ π

−π
cos nx cos kx dx + bn

∫ π

−π
sin nx cos kx dx

)
.

By orthogonality, all terms in the sum vanish except when n = k.
Thus, for k ≥ 1: ∫ π

−π
f (x) cos kx dx = ak(π).

A similar process isolates bk. This yields the Euler-Fourier formulas:

an =
1
π

∫ π

−π
f (x) cos nx dx, bn =

1
π

∫ π

−π
f (x) sin nx dx. (1.10)

1.3 Formal Fourier Series

To streamline the theory, we work on the interval [−π, π] and employ
the complex exponential einx. This transition highlights the connec-
tion between Fourier analysis and the geometry of inner product
spaces established in chapter 0.

Definition 1.4. Periodic Function.
Let f : R → C. We say that f is periodic if there exists T ̸= 0 such
that for all θ ∈ R,

f (θ + T) = f (θ).

We say that T is a period of f . If f admits a smallest period T > 0,
this is called the fundamental period.

定義

Remark.

If T is a period for f , then kT is also a period for all k ∈ Z \ {0}.
Common examples include θ 7→ einθ (period 2π/n) and θ 7→ tan θ

(period π).

There is a natural identification between 2π-periodic functions on R

and functions on the unit circle T = {z ∈ C : |z| = 1}. Every point
on T can be written as z = eiθ for some real θ, unique up to integer
multiples of 2π.

Definition 1.5. From the Circle to the Line.
Given a function F : T → C, define f : R → C by f (θ) = F(eiθ).
Then f is 2π-periodic. We may freely identify functions on T, 2π-periodic
functions on R, and functions on any interval of length 2π (e.g. [−π, π])
with matching endpoint values.

定義
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We can always reduce a general T-periodic function to a 2π-periodic
one via a simple change of variables.

Proposition 1.3. Rescaling.
Let T > 0. A function ϕ : R → C is T-periodic if and only if the

function f (θ) = ϕ
(

Tθ
2π

)
is 2π-periodic.

命題

Proof

If ϕ is T-periodic, then f (θ + 2π) = ϕ
(

T(θ+2π)
2π

)
= ϕ

(
Tθ
2π + T

)
=

ϕ
(

Tθ
2π

)
= f (θ). The converse is analogous.

■

Consequently, we restrict our attention to 2π-periodic functions with-
out loss of generality.

Trigonometric Polynomials and Series

The central idea of Fourier analysis is to decompose a periodic signal
into a sum of simple building blocks:

en(θ) = einθ , n ∈ Z. (1.11)

The set of finite linear combinations of these functions forms the
space of trigonometric polynomials.

Definition 1.6. Trigonometric Polynomial.
A function P is a trigonometric polynomial if it is of the form

P(θ) =
N

∑
n=−N

cneinθ ,

where cn ∈ C are constants and N ∈ N. Using Euler’s formula, this
can equivalently be written in terms of sines and cosines:

P(θ) =
a0

2
+

N

∑
n=1

(an cos(nθ) + bn sin(nθ)).

定義

To determine the coefficients cn for a general function f , we exploit
the orthogonality of the basis functions {einθ} with respect to the
standard inner product on the circle. This corresponds to the Her-
mitian inner product defined in definition 0.2, scaled by a factor of
2π.

Proposition 1.4. Orthogonality.
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For any integers n, m,

1
2π

∫ π

−π
einθe−imθ dθ = δnm =

1 if n = m,

0 if n ̸= m.

命題

Proof

If n = m, the integrand is e0 = 1, and the integral is 2π. Thus the
value is 1. If n ̸= m, let k = n − m ̸= 0. The integral is:

∫ π

−π
eikθ dθ =

[
eikθ

ik

]π

−π

=
eikπ − e−ikπ

ik
=

(−1)k − (−1)k

ik
= 0.

■

This orthogonality property suggests that if f can be written as a
uniformly convergent series f (θ) = ∑ cneinθ , then the coefficients cn

must be given by projecting f onto en.

Definition 1.7. Fourier Coefficients.
Let f be an integrable 2π-periodic function. The n-th Fourier coeffi-
cient of f is defined as:

f̂ (n) =
1

2π

∫ π

−π
f (θ)e−inθ dθ, n ∈ Z.

定義

Definition 1.8. Fourier Series.
The Fourier series of f is the formal series formed by these coefficients:

S[ f ](θ) ∼
+∞

∑
n=−∞

f̂ (n)einθ .

In real form, using the relations einθ = cos nθ + i sin nθ, this corresponds
to the series eq. (1.9) with:

an = f̂ (n) + f̂ (−n), bn = i( f̂ (n)− f̂ (−n)).

定義

Notation 1.1. The notation ∼ indicates that the series is associated with
f , but implies nothing about equality or convergence.

記法

The fundamental questions of the theory are:

Convergence. In what sense does the partial sum SN [ f ](θ) = ∑N
n=−N f̂ (n)einθ

converge to f (θ) as N → ∞?
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· Pointwise? (∀θ)

· Uniformly? (supθ |SN − f | → 0)

· In the mean? (
∫
|SN − f |2 → 0)

Uniqueness. If f̂ (n) = 0 for all n, is f identically zero?

These questions depend heavily on the regularity of f (continuity,
differentiability) and form the core of the subsequent analysis.

1.4 The Geometry of Periodic Functions

The orthogonality of the exponentials {einx} observed previously
hints at a deeper geometric structure. By viewing functions as vectors
in an infinite-dimensional space, Fourier coefficients behave like co-
ordinates with respect to an orthonormal basis. To make this precise,
we introduce a Hermitian inner product structure, referencing the
definitions established in chapter 0.

Inner Product Spaces

We consider the space of "sufficiently regular" 2π-periodic functions,
denoted R2π . For our purposes, this space consists of Riemann inte-
grable functions on [−π, π] extended periodically to R.

Definition 1.9. Inner Product and Norm.
For two functions f , g ∈ R2π , we define the inner product:

⟨ f , g⟩ = 1
2π

∫ π

−π
f (θ)g(θ) dθ.

This induces the L2-norm (or root-mean-square norm) as per definition 0.3:

∥ f ∥2 =
√
⟨ f , f ⟩ =

(
1

2π

∫ π

−π
| f (θ)|2 dθ

)1/2
.

定義

Remark.

Strictly speaking, ∥ f ∥2 = 0 implies f = 0 only if f is continuous.
For general integrable functions, ∥ f ∥2 = 0 implies f (θ) = 0 al-
most everywhere. Identifying functions that differ only on a set of
measure zero renders this a true inner product space.

The shift-invariance of the integral for periodic functions is a crucial
property for calculations.

Proposition 1.5. Shift Invariance.
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Let f be a 2π-periodic integrable function. For any α ∈ R:∫ α+2π

α
f (θ) dθ =

∫ π

−π
f (θ) dθ.

命題

Proof

Let I(α) =
∫ α+2π

α f (θ) dθ. By periodicity, we may replace α by α −
2πk and assume α ∈ [−π, π]. We split the integral at π:∫ α+2π

α
f (θ) dθ =

∫ π

α
f (θ) dθ +

∫ α+2π

π
f (θ) dθ.

Using the substitution ϕ = θ − 2π in the second integral and ob-
serving f (ϕ + 2π) = f (ϕ), we obtain:∫ α

π−2π
f (ϕ) dϕ =

∫ α

−π
f (ϕ) dϕ.

Thus the sum recombines to
∫ π
−π f (θ) dθ.

■

Using this notation, the Fourier coefficient definition becomes simply
the projection of f onto the basis vector en(θ) = einθ :

f̂ (n) = ⟨ f , en⟩.

The orthogonality relation derived in section 1.2 can be restated as
⟨en, em⟩ = δnm. Thus, the Fourier series f ∼ ∑ f̂ (n)en is formally the
expansion of f in the orthonormal system {en}n∈Z.

Real and Complex Representations

While the complex exponential basis is algebraically superior, phys-
ical applications often require the decomposition into sines and
cosines. Recall the real Fourier coefficients:

an =
1
π

∫ π

−π
f (θ) cos(nθ) dθ, bn =

1
π

∫ π

−π
f (θ) sin(nθ) dθ.

The transition between these forms is given by Euler’s formula.

Proposition 1.6. Coefficient Relations.
For n ≥ 1, the coefficients are related by:

f̂ (n) =
an − ibn

2
, f̂ (−n) =

an + ibn

2
,

an = f̂ (n) + f̂ (−n), bn = i( f̂ (n)− f̂ (−n)).

The constant term is f̂ (0) = a0/2.
命題
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Proof

Using e−inθ = cos(nθ)− i sin(nθ), for n ≥ 1 we have:

f̂ (n) =
1

2π

∫ π

−π
f (θ) cos(nθ) dθ − i

2π

∫ π

−π
f (θ) sin(nθ) dθ =

an

2
− ibn

2
.

Similarly, einθ = cos(nθ) + i sin(nθ) implies f̂ (−n) = an
2 + ibn

2 . Solv-
ing this linear system yields the stated relations.

■

These relations reveal symmetries based on the range of the function
f .

Proposition 1.7. Symmetry Properties.
Let f be a 2π-periodic function.
1. Real-Valued: If f (R) ⊆ R, then f̂ (−n) = f̂ (n). Consequently, an

and bn are real numbers.

2. Evenness: If f is even ( f (−θ) = f (θ)), then bn = 0 for all n. The
series consists only of cosines.

3. Oddness: If f is odd ( f (−θ) = − f (θ)), then an = 0 for all n. The
series consists only of sines.

命題

Proof

For 1, since f is real, f̂ (n) = ⟨ f , en⟩ = ⟨ f , en⟩ = ⟨ f , e−n⟩ = f̂ (−n).
For 2 and 3, consider the integral of odd functions over symmetric
intervals. If f is even, f (θ) sin(nθ) is odd, so bn = 0. If f is odd,
f (θ) cos(nθ) is odd, so an = 0.

■

Example 1.2. The Sawtooth Wave. Consider the function f (x) = x
for x ∈ (−π, π], extended periodically. This function is odd, so
an = 0 for all n ≥ 0. We compute bn:

bn =
1
π

∫ π

−π
x sin(nx) dx =

2
π

∫ π

0
x sin(nx) dx.

Integrating by parts:

bn =
2
π

([
− x cos(nx)

n

]π

0
+
∫ π

0

cos(nx)
n

dx
)
=

2
π

(
−π(−1)n

n

)
= (−1)n+1 2

n
.

Thus, the Fourier series is:

x ∼
∞

∑
n=1

(−1)n+1 2
n

sin(nx).

範例
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x

f (x)

π−π

Figure 1.3: The periodic ex-
tension of f (x) = x creates a
sawtooth wave with discon-
tinuities at odd multiples of
π.

1.5 Regularity and Decay

A fundamental principle in Fourier analysis is that the smoothness
of a function f dictates the rate at which its Fourier coefficients f̂ (n)
decay as |n| → ∞. Conversely, the decay rate of the coefficients
determines the smoothness of the function constructed from the
series.
We begin with the Riemann-Lebesgue Lemma, which asserts that
high-frequency oscillations "cancel out" when integrated against an
integrable function.

Theorem 1.1. Riemann-Lebesgue Lemma.
If f is Riemann integrable on [−π, π], then

lim
|n|→∞

f̂ (n) = 0.

定理

Proof

Let ϵ > 0. Since f is Riemann integrable, there exists a step function
g such that ∥ f − g∥1 =

∫ π
−π | f (θ) − g(θ)| dθ < 2πϵ. By the triangle

inequality:
| f̂ (n)| ≤ | f̂ − g(n)|+ |ĝ(n)|.

The first term is bounded by the L1 norm:

| f̂ − g(n)| ≤ 1
2π

∫ π

−π
| f (θ)− g(θ)||e−inθ | dθ < ϵ.

For the step function g = ∑M
k=1 ck1[ak ,bk ]

, we compute ĝ(n) explicitly:

ĝ(n) =
1

2π

M

∑
k=1

ck

∫ bk

ak

e−inθ dθ =
1

2π

M

∑
k=1

ck
e−inbk − e−inak

−in
.
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Thus |ĝ(n)| ≤ 1
π|n| ∑ |ck| → 0 as |n| → ∞. It follows that

lim sup|n|→∞ | f̂ (n)| ≤ ϵ. Since ϵ was arbitrary, the limit is zero.
■

From the Riemann-Lebesgue Lemma, we immediately obtain that
the real coefficients an and bn also tend to zero as n → ∞. If the
function admits derivatives, we can obtain stronger decay bounds
using integration by parts.

Theorem 1.2. Decay of Coefficients for Differentiable Functions.
Let f be differentiable on [−π, π] such that f ′ is integrable. If f satis-
fies the periodicity condition f (−π) = f (π), then:

an = o
(

1
n

)
, bn = o

(
1
n

)
as n → ∞.

定理

Proof

Let a′n and b′n denote the Fourier coefficients of the derivative f ′.
We integrate the expression for an by parts:

an =
1
π

∫ π

−π
f (x) cos(nx) dx

=
1
π

[
f (x)

sin(nx)
n

]π

−π

− 1
nπ

∫ π

−π
f ′(x) sin(nx) dx.

The boundary term vanishes because sin(nπ) = sin(−nπ) = 0. The
remaining integral is proportional to the sine coefficient of f ′:

an = − 1
n

(
1
π

∫ π

−π
f ′(x) sin(nx) dx

)
= − 1

n
b′n.

Similarly for bn:

bn =
1
π

∫ π

−π
f (x) sin(nx) dx

=
1
π

[
− f (x)

cos(nx)
n

]π

−π

+
1

nπ

∫ π

−π
f ′(x) cos(nx) dx.

Using the periodicity f (π) = f (−π) and cos(nπ) = cos(−nπ), the
boundary term vanishes. Thus:

bn =
1
n

(
1
π

∫ π

−π
f ′(x) cos(nx) dx

)
=

1
n

a′n.

Since f ′ is integrable, the Riemann-Lebesgue Lemma implies a′n →
0 and b′n → 0 as n → ∞. Therefore, an = o(1/n) and bn = o(1/n).

■

We can generalise this result to functions with higher-order deriva-
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tives.

Theorem 1.3. Decay for Ck Functions.
Let f have derivatives up to order k on [−π, π] such that f (k) is inte-
grable. Assume f and its first k− 1 derivatives satisfy periodic bound-
ary conditions:

f (j)(π) = f (j)(−π) for j = 0, . . . , k − 1.

Then:

an = o
(

1
nk

)
, bn = o

(
1
nk

)
as n → ∞.

定理

Proof

Let a(j)
n and b(j)

n denote the Fourier coefficients of the j-th deriva-
tive f (j). Applying the relations derived in the previous theorem
iteratively:

an = − 1
n

b(1)n = − 1
n

(
1
n

a(2)n

)
= · · · =

± 1
nk b(k)n k odd

± 1
nk a(k)n k even

and

bn =
1
n

a(1)n =
1
n

(
− 1

n
b(2)n

)
= · · · =

± 1
nk a(k)n k odd

± 1
nk b(k)n k even

.

Since f (k) is integrable, its Fourier coefficients a(k)n and b(k)n are o(1).
Consequently, an and bn are o(1/nk).

■

This provides a rapid test for the smoothness of a function based on
its spectrum:
· Discontinuous functions (e.g., Sawtooth, figure 1.3) typically have

coefficients decaying as O(1/n).

· Continuous functions with discontinuous derivatives (e.g., triangle
wave) decay as O(1/n2).

· Smooth (C∞) functions decay faster than any polynomial.

1.6 Exercises

1. Consistency of the Definition. Let TN(x) be a trigonometric poly-
nomial of degree N:

TN(x) =
α0

2
+

N

∑
k=1

(αk cos kx + βk sin kx).
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Prove that the Fourier coefficients of TN are exactly the coefficients
defining it. That is, show that an(TN) = αn for 0 ≤ n ≤ N (and 0
otherwise), and bn(TN) = βn for 1 ≤ n ≤ N (and 0 otherwise).

Remark.

This confirms that the operation of taking Fourier coefficients
acts as the identity map on the space of trigonometric polynomi-
als.

2. Symmetry and Periodicity. Let f be a Riemann integrable func-
tion with period 2π.

(a) Period Halving. Suppose f satisfies the condition f (x + π) =

f (x) for all x. Prove that the odd-indexed Fourier coefficients
vanish:

a2n−1 = b2n−1 = 0 for all n ≥ 1.

(b) Anti-periodicity. Suppose f satisfies f (x + π) = − f (x) for all
x. Prove that the even-indexed Fourier coefficients vanish:

a2n = b2n = 0 for all n ≥ 0.

(c) Translation. Let h ∈ R. Express the Fourier coefficients ãn, b̃n

of the translated function g(x) = f (x + h) in terms of an, bn of
the original function f . Show that:

ãn = an cos nh + bn sin nh, b̃n = bn cos nh − an sin nh.

3. Absolute Convergence. Prove the converse to the definition of
Fourier coefficients in the following sense: If a sequence of coeffi-
cients satisfies

|a0|
2

+
∞

∑
k=1

(|ak|+ |bk|) < +∞,

then the trigonometric series

a0

2
+

∞

∑
k=1

(ak cos kx + bk sin kx)

converges uniformly to a continuous function f (x), and {ak, bk}
are precisely the Fourier coefficients of f .

4. Spectral Positivity and Decay. Let f be a 2π-periodic function
that is monotonic on the interval (0, 2π).

(a) If f is decreasing on (0, 2π), prove that the sine coefficients
satisfy bn ≥ 0 for all n ≥ 1. Conversely, if f is increasing,
show that bn ≤ 0.
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Remark.

Hint: Use the Second Mean Value Theorem for integrals.

(b) Prove that for such monotonic functions, the coefficients
decay as O(1/n). That is, there exists a constant C such that:

|an| ≤
C
n

, |bn| ≤
C
n

.

5. Asymptotic Mean Values. The Riemann-Lebesgue Lemma asserts
that

∫
f (x) sin nx dx → 0. Here we investigate the limit when

the absolute value is taken. Let f be Riemann integrable on [a, b].
Prove that:

lim
n→∞

∫ b

a
f (x)| sin nx| dx =

2
π

∫ b

a
f (x) dx.

Show that the same result holds if | sin nx| is replaced by | cos nx|.

Remark.

Consider | sin nx| as a periodic function itself. What is the mean
value of | sin x|? You may find it helpful to expand | sin x| as a
Fourier series and integrate term-by-term, or approximate f by
step functions.

6. Improper Integrals and Riemann-Lebesgue.

(a) Let f be absolutely integrable on (−∞, ∞). Generalise the
result of the previous exercise to show:

lim
n→∞

∫ +∞

−∞
f (x)| sin nx| dx =

2
π

∫ +∞

−∞
f (x) dx.

(b) Calculate the following limit explicitly:

lim
λ→∞

∫ 1

0
log x cos2(λx) dx.

Remark.

Hint: Linearise the squared cosine term and check if the
Riemann-Lebesgue lemma applies to the improper integral
of log x.

7. A Singular Integral Limit. Let f be a continuously differentiable
function on [−a, a].

(a) Show that the function g(x) = f (x)− f (−x)
x is bounded on

[−a, a] (defining g(0) = 2 f ′(0)).

(b) Consider the parity of the kernel K(x) = 1−cos λx
x . Show that∫ a

−a K(x) feven(x) dx = 0.
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(c) Using the Riemann-Lebesgue lemma on the function g(x),
prove that:

lim
λ→+∞

∫ a

−a

1 − cos λx
x

f (x) dx =
∫ a

0

f (x)− f (−x)
x

dx.



2
Partial Sums and Convolution

Having defined Fourier coefficients and their decay properties in
chapter 1, we address the inverse problem: recovering f from the
sequence { f̂ (n)}. This necessitates the study of the partial sums.

2.1 Partial Sums and Examples

The central object of study is the sequence of trigonometric polyno-
mials formed by truncating the Fourier series.

Definition 2.1. Partial Sums.
Let f be an integrable function on [−π, π]. For any N ∈ N, the N-
th partial sum is defined as:

SN [ f ](x) =
N

∑
n=−N

f̂ (n)einx.

In terms of the real coefficients an and bn defined in eq. (1.10), this is
equivalent to:

SN [ f ](x) =
a0

2
+

N

∑
n=1

(an cos(nx) + bn sin(nx)) .

定義

We examine the behaviour of these sums through specific examples.
These computations illustrate the correlation between the regular-
ity of a function and the rate of decay of its coefficients derived in
theorem 1.1 and subsequent theorems.

Example 2.1. The Square Wave. Let H be the 2π-periodic function
defined on (−π, π] by:

H(x) =


−1 x ∈ (−π, 0),

1 x ∈ (0, π),

0 x = 0, π.
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Since H is odd, Ĥ(0) = 0 and the expansion consists solely of sine
terms (an = 0). We compute the complex coefficients for n ̸= 0:

Ĥ(n) =
1

2π

∫ π

−π
H(x)e−inx dx

=
1

2π

(∫ 0

−π
(−1)e−inx dx +

∫ π

0
(1)e−inx dx

)
.

Evaluating the second integral:

∫ π

0
e−inx dx =

[
e−inx

−in

]π

0
=

(−1)n − 1
−in

=
1 − (−1)n

in
.

By the symmetry of the integrand, the integral from −π to 0 con-
tributes an identical value. Thus:

Ĥ(n) =
1
π

1 − (−1)n

in
.

If n is even, Ĥ(n) = 0. If n is odd, Ĥ(n) = 2
iπn . Converting to the

sine coefficients via bn = 2iĤ(n) yields bn = 4
nπ for odd n. The

Fourier series is:

H(x) ∼ 4
π

∞

∑
k=0

sin((2k + 1)x)
2k + 1

.

The coefficients decay as O(1/n), consistent with the jump disconti-
nuities in H.

範例

x

H(x)

N = 3

Figure 2.1: The square wave
H(x) and its partial sum
S3[H](x). The oscillation near
the discontinuity is the Gibbs
phenomenon.

Example 2.2. The Triangular Wave. Let T be the 2π-periodic func-
tion defined on [0, π] by T(x) = 2

π − x, extended as an even func-
tion to [−π, 0].
Since T is even, bn = 0. The mean value is a0 = 0. For n ≥ 1, we
compute an:

an =
2
π

∫ π

0

(
2
π

− x
)

cos(nx) dx.

Integrating by parts with u = 2
π − x:

an =
2
π

[(
2
π

− x
)

sin(nx)
n

]π

0
+

2
πn

∫ π

0
sin(nx) dx

= 0 +
2

πn

[
− cos(nx)

n

]π

0
=

2
πn2 (1 − (−1)n).

If n is even, an = 0. If n is odd, an = 4
πn2 . The series is:

T(x) ∼ 4
π

∞

∑
k=0

cos((2k + 1)x)
(2k + 1)2 .
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The decay O(1/n2) reflects the continuity of T. Note that
T′(x) = −H(x) almost everywhere (except at x = 0, π). By defi-
nition 1.7 (implied), differentiation corresponds to multiplication by
in, transforming the O(1/n2) decay of T into the O(1/n) decay of
H.

範例

Example 2.3. The Parabolic Wave. Let f (x) = x2 on [−π, π].
This function is even and continuous on the circle (since f (−π) =

f (π) = π2).
The mean value is f̂ (0) = π2

3 . For n ̸= 0, two integrations by parts
yield:

f̂ (n) =
2(−1)n

n2 .

The expansion is:

x2 ∼ π2

3
+ 4

∞

∑
n=1

(−1)n

n2 cos(nx).

範例

Example 2.4. Shifted Poles. We consider a case where the coeffi-
cients are rational functions of n. Let α ∈ R \ Z. Define f on [0, 2π]

by:

f (x) =
π

sin(πα)
ei(π−x)α.

Computing the coefficients directly:

f̂ (n) =
1

2π

∫ 2π

0

π

sin(πα)
ei(π−x)αe−inx dx

=
eiπα

2 sin(πα)

∫ 2π

0
e−i(n+α)x dx

=
eiπα

2 sin(πα)

[
e−i(n+α)x

−i(n + α)

]2π

0

.

Using e−i2πn = 1, the bracketed term simplifies to (1 −
e−i2πα)/(i(n + α)). Algebraic manipulation confirms:

f̂ (n) =
1

n + α
.

範例

General Intervals

While the canonical theory is developed on [−π, π], physical ap-
plications often dictate the geometry of the domain. Adapting the
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machinery to an arbitrary interval [a, b] of length L = b − a is a
straightforward rescaling.

Definition 2.2. Fourier Coefficients on General Intervals.
Let f : [a, b] → C be an integrable function. The Fourier coefficients
adapted to this interval are defined by:

f̂ (n) =
1
L

∫ b

a
f (x) e−2πinx/L dx, n ∈ Z.

The corresponding formal Fourier series is:

f (x) ∼
∞

∑
n=−∞

f̂ (n) e2πinx/L.

定義

Remark.

In the context of the vibrating string discussed in chapter 1, we set
a = 0 and b = l. The basis functions become exp(2πinx/l).

2.2 The Dirichlet Kernel and Convolution

To analyse the convergence of SN [ f ](x) to f (x), we seek an integral
representation of the partial sum. Substituting the definition of the
coefficients into the partial sum yields:

SN [ f ](x) =
N

∑
n=−N

(
1

2π

∫ π

−π
f (t)e−int dt

)
einx

=
1

2π

∫ π

−π
f (t)

(
N

∑
n=−N

ein(x−t)

)
dt.

Let u = x − t. By the shift invariance of the integral for periodic func-
tions (proposition 1.5), we may integrate over any interval of length
2π. The summation term depends only on the difference x − t and
acts as a kernel function.

Definition 2.3. Dirichlet Kernel.
For N ≥ 0, the Dirichlet kernel is the trigonometric polynomial:

DN(x) =
N

∑
n=−N

einx.

定義

Using the geometric series summation formula, we derive a closed
form for DN .

D2

D4

D6

D8

Figure 2.2: Dirichlet kernels
DN(x) for N = 2, 4, 6, 8. As
N increases, the central peak
sharpens while oscillations per-
sist.
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Proposition 2.1. Closed Form of the Dirichlet Kernel.
For x /∈ 2πZ:

DN(x) =
sin((N + 1/2)x)

sin(x/2)
.

For x ∈ 2πZ, DN(x) = 2N + 1.
命題

Proof

The sum is a geometric progression with ratio w = eix.

DN(x) = e−iNx
2N

∑
k=0

(eix)k = e−iNx 1 − ei(2N+1)x

1 − eix =
e−iNx − ei(N+1)x

1 − eix .

To symmetrise the expression, we multiply the numerator and
denominator by e−ix/2:

DN(x) =
e−i(N+1/2)x − ei(N+1/2)x

e−ix/2 − eix/2 =
−2i sin((N + 1/2)x)

−2i sin(x/2)
=

sin((N + 1/2)x)
sin(x/2)

.

The value at x = 0 follows from L’Hôpital’s rule or direct summa-
tion of 2N + 1 ones.

■

The partial sum can now be expressed as the convolution of f with
DN .

SN [ f ](x) = ( f ∗ DN)(x) :=
1

2π

∫ π

−π
f (x − t)DN(t) dt. (2.1)

For the specific purpose of proving convergence theorems, it is often
useful to exploit the symmetry of DN . Since DN is an even function,
we can fold the integral onto [0, π]. Substituting u = x − t (so t =

x − u) into eq. (2.1) and shifting the bounds to [−π, π]:

SN [ f ](x) =
1

2π

∫ π

−π
f (x − t)DN(t) dt

=
1

2π

(∫ 0

−π
f (x − t)DN(t) dt +

∫ π

0
f (x − t)DN(t) dt

)
.

In the first integral, let t = −s. Using DN(−s) = DN(s):∫ 0

−π
f (x− t)DN(t) dt =

∫ 0

π
f (x+ s)DN(s)(−ds) =

∫ π

0
f (x+ s)DN(s) ds.

Combining terms leads to the Dirichlet Integral:

SN [ f ](x) =
1
π

∫ π

0

f (x + t) + f (x − t)
2

DN(t) dt. (2.2)

Or explicitly:

SN [ f ](x) =
1
π

∫ π

0

(
f (x + t) + f (x − t)

2

)
sin((N + 1/2)t)

sin(t/2)
dt. (2.3)
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The convergence problem of Fourier series is thus reduced to de-
termining whether the limit of this integral exists as N → ∞. The
oscillatory nature of the kernel means that convergence depends on
the local behaviour of f . This formulation underpins the convergence
proofs in chapter 3.

The Poisson Kernel and the Dirichlet Problem

While the Dirichlet kernel arises from truncation, the Poisson ker-
nel arises from solving Laplace’s equation on the unit disc D =

{z = reiθ : r < 1}. The Dirichlet Problem asks: given a continuous
function f on the boundary ∂D (the circle), find a function u(r, θ)

harmonic in D such that u(1, θ) = f (θ).
In polar coordinates, ∆u = 0 is:

r2urr + rur + uθθ = 0.

Separation of variables yields solutions of the form r|n|einθ . To match
the boundary condition f (θ) = ∑ f̂ (n)einθ , we propose the solution:

u(r, θ) =
∞

∑
n=−∞

f̂ (n)r|n|einθ .

This series converges absolutely for r < 1 because |r|n|| decays geo-
metrically. Substituting the formula for f̂ (n) and swapping sum and
integral yields:

u(r, θ) =
1

2π

∫ π

−π
f (t)Pr(θ − t) dt,

where Pr(θ) is the Poisson kernel.

Proposition 2.2. Poisson Kernel.
For 0 ≤ r < 1, the Poisson kernel is:

Pr(θ) =
∞

∑
n=−∞

r|n|einθ =
1 − r2

1 − 2r cos θ + r2 .

命題

θ

Pr

π−π

r=0.3

r=0.6

r=0.9

Figure 2.3: Poisson kernel Pr(θ)

for r = 0.3, 0.6, 0.9. As r → 1−,
the kernel concentrates at θ = 0,
approximating a delta function.

Proof

We split the sum into non-negative and negative powers. Let
z = reiθ . Note that |z| < 1.

∞

∑
n=0

zn =
1

1 − z
,

−∞

∑
n=−1

z̄|n| =
∞

∑
k=1

z̄k =
z̄

1 − z̄
.

Summing these:

Pr(θ) =
1

1 − z
+

z̄
1 − z̄

=
1 − z̄ + z̄(1 − z)

|1 − z|2 =
1 − |z|2

1 − 2Re(z) + |z|2 .
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Substituting z = reiθ gives the result.
■

Unlike the Dirichlet kernel, the Poisson kernel is strictly positive.
This property is crucial for proving that u(r, θ) → f (θ) uniformly as
r → 1−.
Returning to Fourier’s original problem, the heat equation ut = uxx

on the circle with initial data u(x, 0) = f (x) yields the solution:

u(x, t) =
∞

∑
n=−∞

f̂ (n)e−n2teinx.

This can be expressed as a convolution with the Heat Kernel:

Ht(x) =
∞

∑
n=−∞

e−n2teinx.

Unlike the Dirichlet and Poisson kernels, Ht(x) (a Jacobi theta func-
tion) does not possess a simple closed form in terms of elementary
functions, though it is intimately related to the Gaussian distribution
via the Poisson Summation Formula.

2.3 Convergence of Fourier Series

The oscillatory nature of the kernel suggests that the behaviour of the
integral is dominated by the singularity at t = 0. This observation
leads to the fundamental principle of localization, which asserts that
the convergence of the Fourier series at a point depends solely on the
behaviour of the function in the immediate neighbourhood of that
point.
To analyse the contribution of different intervals to the integral, we
fix δ ∈ (0, π) and partition the domain of integration into [0, δ] and
[δ, π]. We rewrite eq. (2.3) as:

SN [ f ](x) =
1
π

∫ δ

0
. . . dt+

1
π

∫ π

δ

f (x + t) + f (x − t)
2 sin(t/2)

sin
((

N + 1
2

)
t
)

dt.

(2.4)
Consider the second term. The function

g(t) =
f (x + t) + f (x − t)

2 sin(t/2)
,

is integrable on [δ, π] because sin(t/2) is bounded away from zero on
this interval. Applying the Riemann-Lebesgue Lemma (theorem 1.1),
this integral vanishes as N → ∞.
Consequently, the convergence properties are entirely determined by
the integral over the arbitrarily small neighbourhood [0, δ].
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Theorem 2.1. Riemann’s Localization Principle.
Let f be an integrable periodic function of period 2π. The convergence
of the Fourier series SN [ f ](x) at a specific point x depends only on the
values of f in an arbitrarily small neighbourhood (x− δ, x+ δ). Specif-
ically, if two functions f and g coincide on an interval (x − δ, x + δ),
then:

lim
N→∞

(SN [ f ](x)− SN [g](x)) = 0.

定理

This result is somewhat counter-intuitive, as the Fourier coefficients
an, bn depend on the values of f over the entire domain [−π, π].
Changes to f far from x will alter every coefficient, yet these changes
cancel out perfectly in the sum at x.

t
f

g

2δ

Figure 2.4: The Localization
Principle: If f and g agree on
(x − δ, x + δ), their Fourier
series exhibit identical conver-
gence behaviour at x.

Pointwise Convergence Criteria

We now establish sufficient conditions for the Fourier series to con-
verge to a specific value s. Usually, s = f (x), but at points of dis-
continuity, we expect convergence to the average of the left and right
limits.
Let s be a candidate for the limit. Since 1

π

∫ π
0 DN(t) dt = 1

2 (integrat-
ing over half the symmetric interval of the total mass 2π), we have
2
π

∫ π
0 DN(t) dt = 1. We can write the error as:

SN [ f ](x)− s =
1
π

∫ π

0

f (x + t) + f (x − t)
2

DN(t) dt − s
π

∫ π

0
DN(t) dt

=
1
π

∫ π

0

(
f (x + t) + f (x − t)− 2s

2 sin(t/2)

)
sin
(
(N + 1

2 )t
)

dt.

Define the difference function φx(t) = f (x + t) + f (x − t)− 2s. By
the Riemann-Lebesgue Lemma, the integral on the right converges to
zero provided that the factor multiplying the sine term is integrable.
Since sin(t/2) ∼ t/2 as t → 0, integrability hinges on the ratio
φx(t)/t.

Theorem 2.2. Dini’s Criterion.
Let f be integrable on [−π, π]. If for some s ∈ C there exists δ > 0
such that ∫ δ

0

∣∣∣∣ f (x + t) + f (x − t)− 2s
t

∣∣∣∣ dt < ∞,

then lim
N→∞

SN [ f ](x) = s.

定理

Proof

Let g(t) = f (x+t)+ f (x−t)−2s
2 sin(t/2) . Since lim

t→0
t

2 sin(t/2) = 1, the integrability
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of φx(t)/t on [0, δ] implies the integrability of g(t) on [0, δ]. Outside
this neighbourhood, g(t) is integrable because sin(t/2) is bounded
away from zero. Thus g is integrable on [0, π]. We have:

SN [ f ](x)− s =
1
π

∫ π

0
g(t) sin

(
(N + 1

2 )t
)

dt.

By theorem 1.1, this integral tends to zero as N → ∞.
■

While Dini’s condition is precise, it is often difficult to check directly.
A more practical condition involves the smoothness of the function.

Definition 2.4. Lipschitz Continuity.
A function f satisfies a Lipschitz condition of order α at x if there ex-
ist constants L, δ > 0 such that for all |h| < δ:

| f (x + h)− f (x)| ≤ L|h|α.

定義

Proposition 2.3. Convergence for Lipschitz Functions.
If f satisfies a Lipschitz condition of order α > 0 at x, then the Fourier
series converges to f (x).

命題

Proof

Take s = f (x). Then | f (x + t) + f (x − t) − 2 f (x)| ≤ | f (x + t) −
f (x)|+ | f (x − t)− f (x)| ≤ 2Ltα. The integrand in Dini’s criterion is
bounded by 2Ltα−1. This is integrable near 0 for any α > 0.

■

Piecewise Smooth Functions

In physical applications, functions often possess jump discontinuities.
We define a class of functions covering most practical cases.

Definition 2.5. Piecewise Differentiable.
A function f on [a, b] is piecewise differentiable if there exists a par-
tition a = t0 < t1 < · · · < tn = b such that f is differentiable on
each open interval (ti−1, ti), and the one-sided limits of f and f ′ exist
at the endpoints ti.

定義

Such functions satisfy a Lipschitz condition of order 1 everywhere
(one-sided at discontinuities). This leads to the classic convergence
theorem often attributed to Dirichlet.
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Theorem 2.3. Dirichlet’s Convergence Theorem.
Let f be a 2π-periodic function that is piecewise differentiable on [−π, π].
Then for every x ∈ R, the Fourier series converges to the average of
the one-sided limits:

lim
N→∞

SN [ f ](x) =
f (x+) + f (x−)

2
,

where f (x±) = lim
h→0+

f (x ± h). In particular, at points of continuity,

the series converges to f (x).
定理

Proof

Set s = f (x+)+ f (x−)
2 . The numerator in Dini’s integrand becomes:

φx(t) =
(

f (x + t)− f (x+)
)
+
(

f (x − t)− f (x−)
)

.

Since f has finite one-sided derivatives at x, the Mean Value
Theorem (or the definition of the derivative) implies that
| f (x ± t) − f (x±)| ≤ Kt for small t. Thus |φx(t)|/t ≤ 2K, which is
bounded and hence integrable. The result follows by Dini’s Crite-
rion.

■

The convergence theorems allow us to evaluate the sums of numeri-
cal series by substituting specific values of x into Fourier expansions.

Example 2.5. The Parabolic Wave and ζ(2). Consider f (x) = x2 on
[−π, π], extended periodically. Since f is continuous and piecewise
smooth, the Fourier series converges to x2 for all x ∈ [−π, π].
Recall the expansion derived in the previous chapter:

x2 =
π2

3
+ 4

∞

∑
n=1

(−1)n

n2 cos(nx).

Evaluating at x = π:

π2 =
π2

3
+ 4

∞

∑
n=1

(−1)n

n2 cos(nπ) =
π2

3
+ 4

∞

∑
n=1

(−1)n(−1)n

n2 .

Simplifying yields 4 ∑∞
n=1

1
n2 = π2 − π2

3 = 2π2

3 . Thus we recover the
Basel problem solution:

∞

∑
n=1

1
n2 =

π2

6
.

Evaluating at x = 0 gives ∑∞
n=1

(−1)n−1

n2 = π2

12 .

範例
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Example 2.6. Expansion of Cosine. Let f (x) = cos(ax) for x ∈
[−π, π] with a /∈ Z. The periodic extension is continuous. The coef-
ficients are:

an =
2
π

∫ π

0
cos(ax) cos(nx) dx = (−1)n 2a sin(aπ)

π(a2 − n2)
.

The series is:

cos(ax) =
sin(aπ)

π

[
1
a
+

∞

∑
n=1

(−1)n 2a
a2 − n2 cos(nx)

]
.

Setting x = 0, we obtain a partial fraction decomposition for the
cosecant:

π

sin(aπ)
=

1
a
+

∞

∑
n=1

(−1)n 2a
a2 − n2 .

This formula is instrumental in complex analysis for evaluating
residues and infinite sums.

範例

2.4 Half-Range Expansions

Often, a function f is defined only on an interval [0, L]. To apply
Fourier theory, we can extend f to [−L, L] and then periodically to R.
The choice of extension determines the nature of the series.
Let f : [0, π] → R.

Even Extension. Define fe(x) = f (|x|) for x ∈ [−π, π]. Since fe is
even, bn = 0. The series contains only cosine terms:

f (x) ∼ a0

2
+

∞

∑
n=1

an cos(nx), an =
2
π

∫ π

0
f (x) cos(nx) dx.

Odd Extension. Define fo(x) = sgn(x) f (|x|) for x ∈ [−π, π]. Since fo

is odd, an = 0. The series contains only sine terms:

f (x) ∼
∞

∑
n=1

bn sin(nx), bn =
2
π

∫ π

0
f (x) sin(nx) dx.

x

f (x)Even

Odd

Figure 2.5: A function on [0, π]

(black) can be extended evenly
(blue dashed) or oddly (red
dotted), resulting in purely co-
sine or sine series respectively.

Example 2.7. Expansions of f (x) = x. Consider f (x) = x on (0, π).

Sine Series. We extend f oddly. This matches the example of the
sawtooth wave, yielding:

x = 2
∞

∑
n=1

(−1)n−1

n
sin(nx), x ∈ [0, π).

Note that at x = π, the series sums to 0, while f (π) = π. The
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odd extension is discontinuous at π.

Cosine Series. We extend f evenly to |x| on [−π, π]. The coeffi-
cients are:

an =
2
π

∫ π

0
x cos(nx) dx =

2
πn2 ((−1)n − 1).

This is non-zero only for odd n. Thus:

x =
π

2
− 4

π

∞

∑
k=0

cos((2k + 1)x)
(2k + 1)2 , x ∈ [0, π].

Here, the extension is continuous at x = π, and the series con-
verges uniformly. Setting x = 0 yields ∑∞

k=0
1

(2k+1)2 = π2

8 .

範例

For a function defined on an interval [0, L], the same principles apply
by rescaling to [0, π] via the transformation t = πx

L . The sine series
becomes:

f (x) =
∞

∑
n=1

bn sin
(nπx

L

)
, bn =

2
L

∫ L

0
f (x) sin

(nπx
L

)
dx.

This form is ubiquitous in the solution of boundary value problems
where the physical domain length is L, such as the vibrating string
discussed in chapter 1.

2.5 Exercises

1. Step Function Series. Expand the signum function

f (x) =

−1 −π < x < 0

1 0 ≤ x ≤ π

into a Fourier series on (−π, π). Use this series to evaluate the
sum:

∞

∑
n=1

(−1)n−1

2n − 1
.

2. Basic Expansions. Compute the Fourier series for the following
functions on the interval (−π, π):

(a) f (x) = |x|.

(b) f (x) = sin(ax) where a is not an integer.

(c) f (x) = x sin x.

3. Fractional Part. Expand the periodic function f (x) = x − ⌊x⌋ into
a Fourier series. Note that the fundamental interval here is [0, 1],
not [−π, π].
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4. General Intervals. Expand the following functions into Fourier
series on the interval (−l, l):

(a) f (x) = x.

(b) f (x) = x + |x|.

5. Piecewise Linear Function. Expand the following function, de-
fined on [0, 3], into a Fourier series:

f (x) =


x 0 ≤ x ≤ 1

1 1 < x < 2

3 − x 2 ≤ x ≤ 3

Assume the function is extended to an odd function on [−3, 3]
(sine series) or generally on [0, 3] with period 3.

6. Rectified Waves. Prove the following expansions for the absolute
values of sine and cosine:

| cos x| = 2
π

+
4
π

∞

∑
n=1

(−1)n+1

4n2 − 1
cos(2nx) for x ∈ R,

| sin x| = 2
π

− 4
π

∞

∑
n=1

1
4n2 − 1

cos(2nx) for x ∈ R.

7. Exponential Expansion. For x ∈ (0, 2π) and a non-zero constant
a ̸= 0, prove:

eax =
e2aπ − 1

π

(
1
2a

+
∞

∑
k=1

a cos kx − k sin kx
k2 + a2

)
.

8. Log-Trigonometric Series. Establish the following identities by
integrating known Fourier series:

(a) ∑∞
n=1(−1)n−1 cos nx

n = log
(
2 cos x

2
)

for − π < x < π.

(b) ∑∞
n=1

cos nx
n = − log

(
2 sin x

2
)

for 0 < x < 2π.

9. Mean Values of Modulated Functions. Let f be Riemann inte-
grable on [a, b]. Using the expansions for | cos x| and | sin x| from
Exercise 6, prove:

lim
λ→+∞

∫ b

a
f (x)| cos λx| dx =

2
π

∫ b

a
f (x) dx,

lim
λ→+∞

∫ b

a
f (x)| sin λx| dx =

2
π

∫ b

a
f (x) dx.

10. The Dirichlet Integral. Let 0 < x < 2π.

(a) By integrating the Dirichlet kernel identity 1
2 + ∑n

k=1 cos kt =
sin(n+1/2)t

2 sin(t/2) , prove that:

n

∑
k=1

sin kx
k

= − x
2
+
∫ x

0

sin((n + 1
2 )t)

2 sin t
2

dt.
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(b) Use the fact that the Fourier series of the sawtooth wave
(π − x)/2 converges to the function on (0, 2π) to deduce the
value of the improper integral:∫ +∞

0

sin x
x

dx =
π

2
.

11. Localisation for Monotonic Functions. Let g be an increasing
function on the interval [0, h] with h > 0. Prove:

lim
λ→+∞

∫ h

0
g(t)

sin λt
t

dt =
π

2
g(0+).

Remark.

Hint: Use the Second Mean Value Theorem for integrals.

12. Partial Fractions via Fourier Series. Using the Fourier expansion
of cos(ax) on [−π, π] derived in the text, prove the following
partial fraction decompositions valid for x /∈ πZ:

(a) cot x = 1
x + ∑∞

n=1
2x

x2−n2π2 .

(b) csc x = 1
x + ∑∞

n=1(−1)n 2x
x2−n2π2 .



3
Uniqueness and Uniform Convergence

In chapter 2, we analysed pointwise convergence, establishing Dini’s
criterion (theorem 2.2) and Dirichlet’s theorem. We now address two
fundamental questions: does the set of Fourier coefficients uniquely
determine an integrable function, and under what conditions does
the series converge uniformly?

3.1 Uniqueness of Fourier Coefficients

If two integrable functions f and g have identical Fourier coefficients,
are they necessarily equal? By linearity, this is equivalent to deter-
mining whether a function with vanishing Fourier coefficients must
itself vanish.

f̂ (n) = 0 ∀n ∈ Z =⇒ f ≡ 0 ?

For Riemann integrable functions, the function can be altered on a
finite set of points without changing the integrals defining the coeffi-
cients. Thus, we cannot expect strict equality everywhere. However,
we can assert equality at all points of continuity.

Theorem 3.1. Uniqueness Theorem.
Let f be a 2π-periodic integrable function such that f̂ (n) = 0 for all
n ∈ Z. If f is continuous at θ0, then f (θ0) = 0.

定理

Proof

We first consider the case where f is real-valued and proceed by
contradiction. Suppose there exists a point of continuity θ0 such
that f (θ0) ̸= 0. Without loss of generality: we assume θ0 = 0
and f (0) > 0. Since f is continuous at the origin, we can choose
δ ∈ (0, π/2] such that f (θ) > f (0)/2 whenever |θ| < δ.
The proof relies on constructing a family of trigonometric polyno-
mials that "peak" at the origin while remaining small elsewhere
(figure 3.1). Let p(θ) = ϵ + cos θ, where ϵ > 0 is chosen small
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enough so that |p(θ)| < 1 − ϵ/2 for all θ ∈ [−π, π] \ (−δ, δ). Since
cos θ is strictly increasing as θ → 0 on the interval [−δ, δ], we can
find η ∈ (0, δ) such that p(θ) ≥ 1 + ϵ/2 for all |θ| < η.
Define pk(θ) = [p(θ)]k for k ∈ N. Since the Fourier coefficients
of f vanish, and pk is a finite linear combination of terms einθ , the
orthogonality of the exponentials implies:∫ π

−π
f (θ)pk(θ) dθ = 0 for all k ∈ N.

We estimate this integral by partitioning the domain into three
regions. Let B = sup | f (θ)|.
Case 1: |θ| ≥ δ. On this region, |pk(θ)| ≤ (1 − ϵ/2)k. The contribu-
tion to the integral is bounded by:∣∣∣∣∫

δ≤|θ|≤π
f (θ)pk(θ) dθ

∣∣∣∣ ≤ 2πB(1 − ϵ/2)k → 0 as k → ∞.

Case 2: η ≤ |θ| < δ. In this intermediate region, f (θ) > f (0)/2 > 0
and p(θ) > p(δ) ≥ 0 (since ϵ > 0 and δ ≤ π/2). Thus, the integrand
is non-negative: ∫

η≤|θ|<δ
f (θ)pk(θ) dθ ≥ 0.

Case 3: |θ| < η. In this neighbourhood of the peak, f (θ) > f (0)/2
and p(θ) ≥ 1 + ϵ/2. The integral is bounded below by:∫

|θ|<η
f (θ)pk(θ) dθ ≥ 2η

f (0)
2

(1 + ϵ/2)k → ∞ as k → ∞.

Combining these estimates, we conclude that
∫ π
−π f pk dθ → ∞ as

k → ∞, which contradicts the assumption that the integrals vanish
for all k. Thus f (0) = 0.
For a general complex-valued function f = u + iv, the condition
f̂ (n) = 0 implies ̂̄f (n) = f̂ (−n) = 0. By linearity, the
Fourier coefficients of the real-valued functions u = ( f + f̄ )/2 and
v = ( f − f̄ )/(2i) also vanish. Applying the previous result to u and
v independently yields f (θ0) = 0.

■

θ

k = 1

k = 6

k = 25

π−π

Figure 3.1: The peaking poly-
nomials pk(θ) = (ϵ + cos θ)k

concentrate mass at the origin
as k increases, acting as an ap-
proximate identity.

An immediate consequence is the injectivity of the Fourier transform
on the space of continuous functions.

Corollary 3.1. Injectivity on Continuous Functions. Let f and g be con-
tinuous 2π-periodic functions. If f̂ (n) = ĝ(n) for all n ∈ Z, then f =

g everywhere.
推論
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Proof

Define h = f − g. By linearity, ĥ(n) = f̂ (n) − ĝ(n) = 0 for
all n. Since h is continuous, theorem 3.1 implies h(θ) = 0 for all θ, so
f (θ) = g(θ).

■

This corollary provides a powerful method for verifying identities. If
we can verify that two continuous functions share the same Fourier
series, they must be identical. This logic was implicit in the solution
to the Basel problem in chapter 2, where we equated the function x2

with its series sum.

3.2 Uniform Convergence

While the Uniqueness Theorem links the function to its coefficients, it
does not guarantee that the Fourier series converges to the function.
It merely states that if the series converges to some continuous g, and
that series is the Fourier series of f , then f = g.
We now identify a condition on the coefficients that guarantees the
Fourier series converges uniformly to f .

Theorem 3.2. Absolute Convergence Implies Uniform Convergence.
Let f be a continuous 2π-periodic function. If the Fourier coefficients
satisfy

∞

∑
n=−∞

| f̂ (n)| < ∞,

then the partial sums SN [ f ](θ) converge uniformly to f (θ) as N → ∞.
定理

Proof

Consider the infinite series ∑∞
n=−∞ f̂ (n)einθ . Since |einθ | = 1, we

have: ∣∣∣ f̂ (n)einθ
∣∣∣ = | f̂ (n)|.

By the Weierstrass M-test, the condition ∑ | f̂ (n)| < ∞ implies
that the series converges absolutely and uniformly to some limit
function g(θ):

g(θ) =
∞

∑
n=−∞

f̂ (n)einθ .

Since each term einθ is continuous and convergence is uniform, the
limit g is a continuous function.
It remains to show that g = f . We compute the Fourier coefficients
of g. Due to uniform convergence, we may interchange the sum
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and the integral:

ĝ(k) =
1

2π

∫ π

−π

(
∞

∑
n=−∞

f̂ (n)einθ

)
e−ikθ dθ

=
∞

∑
n=−∞

f̂ (n)
(

1
2π

∫ π

−π
einθe−ikθ dθ

)
.

By the orthogonality of the exponentials, the inner integral is δnk.
Thus the sum collapses to f̂ (k). Since g and f are continuous func-
tions with identical Fourier coefficients (ĝ(k) = f̂ (k)), theorem 3.1
implies f = g.

■

This theorem reduces the problem of uniform convergence to the
problem of estimating the decay rate of the coefficients. If f̂ (n) de-
cays sufficiently fast (e.g., faster than 1/|n|), the series converges uni-
formly. Recall from chapter 1 that the smoothness of f dictates this
decay. Specifically, we established that if f is Ck, then f̂ (n) = o(n−k).

Corollary 3.2. Uniform Convergence for C2 Functions. If f is a 2π-periodic
function of class C2 (twice continuously differentiable), then its Fourier
series converges absolutely and uniformly to f .

推論

Proof

Since f ∈ C2, we can apply integration by parts twice to relate the
coefficients of f to those of f ′′. As derived in the previous chapters:

f̂ (n) =
1

(in)2 f̂ ′′(n) = − 1
n2 f̂ ′′(n) for n ̸= 0.

Since f ′′ is continuous, it is bounded, and thus its coefficients f̂ ′′(n)
are bounded (in fact they tend to zero). Let C = sup | f̂ ′′(n)|. Then:

| f̂ (n)| ≤ C
n2 .

The series ∑ | f̂ (n)| is dominated by C ∑ 1
n2 , which converges (p-

series with p = 2). By theorem 3.2, the result follows.
■

Remark (Stronger Results).

The C2 condition is sufficient but not necessary. A more precise
analysis shows that f ∈ C1 is sufficient for absolute convergence.
Even weaker, if f satisfies a Hölder condition of order α > 1/2
(i.e., | f (x) − f (y)| ≤ C|x − y|α), the series converges absolutely.
For continuous functions that are merely piecewise smooth (like
the triangle wave), the decay is O(1/n2), ensuring uniform con-
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vergence. However, for functions with jump discontinuities (like
the square wave), the decay is only O(1/n); the series does not
converge absolutely, nor uniformly (due to the Gibbs phenomenon).

3.3 The Convolution Product

In chapter 2, we observed that the partial sum SN [ f ] is an integral
transform of f against the Dirichlet kernel DN . This is a specific
instance of convolution, which generalises the partial sum representa-
tion and is central to the theory of approximation.

Definition 3.1. Convolution.
Let f and g be 2π-periodic integrable functions. The convolution of
f and g, denoted f ∗ g, is the function defined by:

( f ∗ g)(x) =
1

2π

∫ π

−π
f (y)g(x − y) dy. (3.1)

定義

The integral is well-defined for every x because the product of Rie-
mann integrable functions is integrable. Due to the shift-invariance of
the integral over a period (proposition 1.5), the variable of integration
can be shifted, yielding the symmetric form:

( f ∗ g)(x) =
1

2π

∫ π

−π
f (x − y)g(y) dy. (3.2)

Geometric intuition suggests that if g is a localised "bump" function
with unit area (such as the peaking polynomials constructed in the
proof of theorem 3.1), then ( f ∗ g)(x) represents an average of f in the
neighbourhood of x, weighted by the profile of g.

y

f (y)
g(x − y)

( f ∗ g)(x)

Figure 3.2: Convolution at a
point x: the value ( f ∗ g)(x) is
the integral of the product of f
and the reversed, shifted kernel
g.

Recall that the partial sum of the Fourier series is given by:

SN [ f ](x) = ( f ∗ DN)(x).

Thus, the convergence of Fourier series is essentially a question of
how the convolution with the sequence of Dirichlet kernels {DN}
behaves as N → ∞.

Algebraic and Analytic Properties

The convolution operation endows the space of integrable functions
with a multiplicative structure that interacts gracefully with Fourier
coefficients.

Proposition 3.1. Properties of Convolution.
Let f , g, h be 2π-periodic integrable functions and c ∈ C.
1. Linearity: f ∗ (g + h) = f ∗ g + f ∗ h and (c f ) ∗ g = c( f ∗ g).
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2. Commutativity: f ∗ g = g ∗ f .

3. Associativity: ( f ∗ g) ∗ h = f ∗ (g ∗ h).

4. Regularity: The function f ∗ g is continuous on R.

5. Convolution Theorem: For all n ∈ Z,

f̂ ∗ g(n) = f̂ (n)ĝ(n).

命題

While the Fourier coefficient of a product f g is not simply f̂ ĝ, the
Fourier coefficient of a convolution is the product of the coefficients.
This transforms convolution into multiplication in the frequency
domain.

Proof

Properties 1 (Linearity) follow immediately from the linearity of the
integral.

Commutativity. Using the substitution z = x − y (so y = x − z and
dy = −dz):

( f ∗ g)(x) =
1

2π

∫ x−π

x+π
f (x − z)g(z)(−dz)

=
1

2π

∫ x+π

x−π
g(z) f (x − z) dz.

By periodicity, the interval [x − π, x + π] is equivalent to [−π, π].
Thus ( f ∗ g)(x) = (g ∗ f )(x).

Associativity. This follows by writing out the double integral and
interchanging the order of integration (Fubini’s theorem), which
is justified for bounded Riemann integrable functions.

(( f ∗ g) ∗ h)(x) =
1

4π2

∫ ∫
f (y)g(z − y)h(x − z) dy dz.

The substitution u = z − y allows one to regroup terms to obtain
f ∗ (g ∗ h).

Regularity. We first prove this for continuous functions. If g is con-
tinuous on the circle, it is uniformly continuous. Given ϵ > 0,
there exists δ > 0 such that |s − t| < δ =⇒ |g(s) − g(t)| < ϵ.
Then for any x1, x2 with |x1 − x2| < δ:

|( f ∗ g)(x1)− ( f ∗ g)(x2)| =
∣∣∣∣ 1
2π

∫ π

−π
f (y)[g(x1 − y)− g(x2 − y)] dy

∣∣∣∣
≤ 1

2π

∫ π

−π
| f (y)| · ϵ dy = ϵ∥ f ∥1.

Thus f ∗ g is continuous.

■
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Note

For the general case where f and g are merely integrable, we re-
quire a density argument. We cite the following standard result
from measure theory (adapted for Riemann integration).

Claim 3.1. Approximation Lemma. Let f be Riemann integrable on [−π, π]

and bounded by B. There exists a sequence of continuous functions { fk}
bounded by B such that ∥ f − fk∥1 = 1

2π

∫
| f − fk| → 0 as k → ∞.

主張

Proof of Approximation Lemma

Let { fk} and {gk} be continuous approximations of f and g. Then:

f ∗ g − fk ∗ gk = ( f − fk) ∗ g + fk ∗ (g − gk).

Estimating the first term:

|(( f − fk) ∗ g)(x)| ≤ 1
2π

∫
| f (y)− fk(y)| sup |g| dy = ∥ f − fk∥1 sup |g|.

This tends to 0 uniformly in x. Similarly for the second term. Thus
fk ∗ gk converges uniformly to f ∗ g. Since the uniform limit of
continuous functions is continuous, f ∗ g is continuous.

証明終

Proof Continuation

Convolution Theorem. Assume f , g are continuous. We define the
coefficients:

f̂ ∗ g(n) =
1

2π

∫ π

−π

(
1

2π

∫ π

−π
f (y)g(x − y) dy

)
e−inx dx

=
1

2π

∫ π

−π
f (y)e−iny

(
1

2π

∫ π

−π
g(x − y)e−in(x−y) dx

)
dy.

The inner integral (substituting z = x − y) is exactly ĝ(n).
The remaining outer integral yields f̂ (n). For integrable func-
tions, we again use the approximation sequence fk, gk. Since
fk ∗ gk → f ∗ g uniformly, the Fourier coefficients converge:
f̂k ∗ gk(n) → f̂ ∗ g(n). Simultaneously, f̂k(n) → f̂ (n) and
ĝk(n) → ĝ(n). The identity holds in the limit.

■

Remark.

The smoothing property of convolution (Regularity) is crucial. Con-
volving an integrable function (which may be discontinuous) with
another integrable function yields a continuous function. If g is
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differentiable, f ∗ g inherits that differentiability.

3.4 Good Kernels and Approximation

In the proof of the Uniqueness Theorem (theorem 3.1), we constructed
a sequence of trigonometric polynomials {pk} that peaked at the ori-
gin. This behaviour allowed us to isolate the value of f at a specific
point. We now generalise this idea by introducing the concept of a
good kernel, often referred to as an approximation to the identity. These
kernels provide a systematic mechanism for recovering a function
from its convolutions.

Definition 3.2. Good Kernels.
A sequence of kernels {Kn}∞

n=1 on the circle is called a family of good
kernels if it satisfies the following properties:
1. Normalisation: For all n ≥ 1,

1
2π

∫ π

−π
Kn(x) dx = 1.

2. Boundedness: There exists a constant M > 0 such that for all n ≥
1: ∫ π

−π
|Kn(x)| dx ≤ M.

3. Concentration: For every δ > 0, the mass outside the neighbour-
hood (−δ, δ) vanishes as n → ∞:∫

δ≤|x|≤π
|Kn(x)| dx → 0.

定義

In many practical cases, we encounter kernels where Kn(x) ≥ 0. In
such instances, the boundedness property follows automatically from
the normalisation condition (with M = 2π). We may interpret such
kernels as weight distributions that concentrate their mass near the
origin as n increases.
The importance of these kernels lies in their ability to approximate
continuous functions via convolution.

Theorem 3.3. Convergence of Convolutions.
Let {Kn} be a family of good kernels and let f be an integrable func-
tion on the circle.
1. If f is continuous at a point x, then

lim
n→∞

( f ∗ Kn)(x) = f (x).
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2. If f is continuous everywhere on the circle, then the convergence
is uniform:

lim
n→∞

sup
x

|( f ∗ Kn)(x)− f (x)| = 0.

定理

Proof

Let ϵ > 0. If f is continuous at x, there exists δ > 0 such that |y| <
δ implies | f (x − y) − f (x)| < ϵ. By the normalisation property, we
may write:

( f ∗ Kn)(x)− f (x) =
1

2π

∫ π

−π
Kn(y)[ f (x − y)− f (x)] dy.

We split the integral into the region near the origin (|y| < δ) and the
region away from the origin (δ ≤ |y| ≤ π).

|( f ∗ Kn)(x)− f (x)| ≤ 1
2π

∫
|y|<δ

|Kn(y)|| f (x − y)− f (x)| dy

+
1

2π

∫
δ≤|y|≤π

|Kn(y)|| f (x − y)− f (x)| dy.

In the first integral, the difference term is bounded by ϵ. Using the
boundedness property of the kernel:

1
2π

∫
|y|<δ

|Kn(y)|ϵ dy ≤ ϵ

2π

∫ π

−π
|Kn(y)| dy ≤ M

2π
ϵ.

In the second integral, since f is integrable and therefore bounded
by some B, we have | f (x − y)− f (x)| ≤ 2B. Thus:

1
2π

∫
δ≤|y|≤π

|Kn(y)|2B dy ≤ B
π

∫
δ≤|y|≤π

|Kn(y)| dy.

By the concentration property, this integral tends to 0 as n → ∞.
Thus, for sufficiently large n, this term is negligible. Combining
these estimates, the difference can be made arbitrarily small, prov-
ing pointwise convergence.
If f is continuous everywhere, it is uniformly continuous on the
compact domain [−π, π]. Thus δ can be chosen independent of x,
ensuring uniform convergence.

■

The Dirichlet Kernel Revisited

Recall that the partial sums of a Fourier series can be expressed as a
convolution with the Dirichlet kernel: SN [ f ] = f ∗ DN . It is natural
to ask whether {DN} constitutes a family of good kernels. If so,



fourier series 61

theorem 3.3 would imply that the Fourier series of any continuous
function converges to the function.
We verify the properties for DN :

Normalisation.
1

2π

∫ π

−π
DN(x) dx = 1.

This holds.

Boundedness. We examine the integral of the absolute value.∫ π

−π
|DN(x)| dx ≥ c log N as N → ∞.

Since the integral of |DN | grows logarithmically with N, {DN} is not
a family of good kernels. The signed integral is 1 while the integral
of the absolute value diverges due to rapid oscillations (see figure 3.3).
This failure necessitates alternative summation methods, such as
Cesàro means, employing kernels with bounded L1 norm (chapter 4).

x

DN

N = 8

Rapid oscillation and negative lobes cause
∫
|DN | to diverge.

Figure 3.3: The Dirichlet ker-
nel takes significant negative
values. These negative lobes
accumulate area, violating the
boundedness condition of good
kernels.

3.5 Exercises

1. Identity from Uniqueness. Let f and g be continuous 2π-periodic
functions. Suppose that f̂ (n) = ein ĝ(n) for all n ∈ Z. Prove that
f (θ) = g(θ + 1) for all θ.

Remark.

Hint: Calculate the Fourier coefficients of the function
h(θ) = g(θ + 1).

2. Checking Uniform Convergence. Let f (x) be the 2π-periodic
function defined by f (x) = |x| for x ∈ [−π, π].

(a) Does the Fourier series of f converge uniformly to f ? Justify
your answer using the decay of the coefficients computed in
the previous chapter.

(b) Does the Fourier series of the derivative f ′ (where it exists)
converge uniformly?

3. Convolution Properties. Let f (x) = cos x. Compute the convolu-
tion ( f ∗ f )(x). Verify the Convolution Theorem by comparing the
Fourier coefficients of the result with the square of the coefficients
of f .

4. Testing a Kernel. Consider the sequence of kernels Kn(x) =

nϕ(nx), where ϕ(x) = e−|x| for x ∈ R (and periodised for the cir-
cle, or considered locally). Check whether this sequence satisfies
the three conditions for a family of good kernels: normalisation
(after appropriate scaling), boundedness, and concentration.
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Cesàro Summation

chapter 3 established that the Fourier series of a continuous func-
tion is unique but not necessarily pointwise convergent. Du Bois-
Reymond (1876) constructed continuous functions with divergent
Fourier series. Since convergence requires additional regularity (e.g.,
theorem 2.2), we introduce Cesàro summation, which recovers the
function by averaging partial sums to dampen oscillations.

4.1 Cesàro Summability

The concept of convergence for infinite series ∑ an is rigid: the se-
quence of partial sums SN = ∑N

n=0 an must tend to a limit. Many
natural series fail this condition despite oscillating around a clearly
defined "centre".

Definition 4.1. Cesàro Summation.
Let {Sn}∞

n=0 be the sequence of partial sums of a series ∑ ak. The se-
ries is said to be Cesàro summable to σ if the arithmetic means of the
partial sums converge to σ:

lim
N→∞

σN = σ, where σN =
S0 + S1 + · · ·+ SN−1

N
.

In this case, we write ∑∞
k=0 ak = σ (C).

定義

It is a standard result in analysis that Cesàro summation extends the
usual definition of convergence. If SN → s, then σN → s. However,
σN may converge even when SN diverges.

Example 4.1. Grandi’s Series. Consider the series ∑∞
n=1(−1)n−1 =

1 − 1 + 1 − 1 + . . . .
The partial sums are S0 = 1, S1 = 0, S2 = 1, S3 = 0, and so on. The
sequence {Sn} diverges. However, the means behave as follows:

σ2k =
k · 1 + k · 0

2k
=

1
2

, σ2k+1 =
(k + 1) · 1 + k · 0

2k + 1
→ 1

2
.
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Thus, 1 − 1 + 1 − · · · = 1
2 (C).

範例

4.2 The Fejér Kernel

We apply this summation method to the Fourier series of a 2π-
periodic integrable function f . Let Sk[ f ] denote the k-th partial sum.
The N-th Cesàro mean of the Fourier series is:

σN [ f ](x) =
1
N

N−1

∑
k=0

Sk[ f ](x).

Recall from chapter 2 that Sk[ f ] = f ∗ Dk. By the linearity of convo-
lution (section 3.3), the Cesàro mean is the convolution of f with the
average of the Dirichlet kernels.

Definition 4.2. Fejér Kernel.
The N-th Fejér kernel FN is defined as:

FN(t) =
1
N

N−1

∑
k=0

Dk(t).

Consequently, σN [ f ](x) = ( f ∗ FN)(x) = 1
2π

∫ π
−π f (x − t)FN(t) dt.

定義

Unlike the Dirichlet kernel, the Fejér kernel possesses a closed form
that is strictly non-negative.

Proposition 4.1. Closed Form of Fejér Kernel.
For t /∈ 2πZ:

FN(t) =
1
N

sin2(Nt/2)
sin2(t/2)

.

For t ∈ 2πZ, FN(t) = N.
命題

Proof

Recall the identity Dk(t) = sin((k+1/2)t)
sin(t/2) . We sum these terms using

the identity 2 sin(A) sin(B) = cos(A − B)− cos(A + B).

2 sin(t/2)
N−1

∑
k=0

sin((k + 1/2)t) =
N−1

∑
k=0

(cos(kt)− cos((k + 1)t)) .

This is a telescoping sum. The terms cancel, leaving:

1 − cos(Nt) = 2 sin2(Nt/2).

Dividing by 2 sin(t/2) recovers the sum of the numerators. Di-
viding further by N (from the definition of the mean) and the



64 gudfit

remaining sin(t/2) yields the result.
■

t

FN

N = 6

FN (t) ≥ 0

Figure 4.1: The Fejér kernel
FN(t). Unlike DN , it is non-
negative. As N increases, the
area concentrates at t = 0.

The positivity of FN is the decisive factor. We verify that {FN} consti-
tutes a family of good kernels as defined in section 3.4:

Normalization. 1
2π

∫ π
−π Kn(t) dt = 1. This follows because the in-

tegral of D0 is 1 and the integral of Dk for k ≥ 1 is also 1 (as
established in chapter 2).

Positivity. Kn(t) ≥ 0 for all t. This is immediate from the squared
form.

Concentration. For any δ ∈ (0, π), the integral of the kernel away
from the origin vanishes as n → ∞:

lim
n→∞

∫
δ≤|t|≤π

Kn(t) dt = 0.

Fejér’s Convergence Theorem

Because {Fn} constitutes a family of good kernels, we can apply
the general theory of approximations. We first establish pointwise
convergence at points of continuity or jump discontinuities.

Theorem 4.1. Fejér’s Theorem.
Let f be a 2π-periodic integrable function. If the one-sided limits f (x+)
and f (x−) exist at a point x, then the Fourier series of f is Cesàro summable
to the average of these limits:

lim
n→∞

σn[ f ](x) =
f (x+) + f (x−)

2
.

In particular, if f is continuous at x, then σn[ f ](x) → f (x).
定理

Proof

Let s = f (x+)+ f (x−)
2 . By the symmetry Fn(t) = Fn(−t) and the nor-

malisation property, we can write the difference as an integral over
[0, π]:

σn[ f ](x)− s =
1
π

∫ π

0

(
f (x + t) + f (x − t)

2
− s
)

Fn(t) dt.

Let φ(t) = f (x + t) + f (x − t)− 2s. Note that φ(t) → 0 as t → 0+.

σn[ f ](x)− s =
1

2π

∫ π

0
φ(t)Fn(t) dt.

Given ϵ > 0, there exists δ > 0 such that |φ(t)| < ϵ for 0 < t < δ.
We split the integral into I1 (over [0, δ]) and I2 (over [δ, π]).
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For I1, using the positivity of Fn:

|I1| ≤
1

2π

∫ δ

0
|φ(t)|Fn(t) dt <

ϵ

2π

∫ δ

0
Fn(t) dt ≤ ϵ

2π

∫ π

0
Fn(t) dt =

ϵ

2
.

For I2, let A =
∫ π

0 |φ(t)| dt. Since f is integrable, A is finite. Using
the concentration estimate Fn(t) ≤ 1

n sin2(δ/2)
for t ∈ [δ, π]:

|I2| ≤
1

2π
max

t∈[δ,π]
Fn(t)

∫ π

δ
|φ(t)| dt ≤ A

2πn sin2(δ/2)
.

For fixed δ, this term vanishes as n → ∞. Thus, for sufficiently large
n, |σn[ f ](x)− s| < ϵ.

■

This theorem provides a powerful consistency result for Fourier
series: the series cannot converge to an arbitrary value.

Corollary 4.1. Consistency of Fourier Limits. Let f be integrable. If the
Fourier series Sn[ f ](x) converges at a point x where the one-sided lim-

its of f exist, it must converge to f (x+)+ f (x−)
2 .

推論

Proof

If a sequence Sn converges to L, its arithmetic means σn must also

converge to L. By theorem 4.1, the limit of σn is f (x+)+ f (x−)
2 . By the

uniqueness of limits, L must equal this value.
■

We now consider the case where f is continuous everywhere. Since
Fn is a good kernel, we can appeal to the general approximation
property established in theorem 3.3.

Theorem 4.2. Uniform Cesàro Convergence.
If f is a continuous 2π-periodic function, then the Cesàro means σn[ f ]
converge uniformly to f on R.

定理

Proof

Since {Fn} is a family of good kernels (verified in chapter 4), and
f is continuous (and thus uniformly continuous on [−π, π]), the
result follows immediately from theorem 3.3.

■

Weierstrass Approximation Theorem

An important consequence of Fejér’s theorem is the density of
trigonometric polynomials in the space of continuous periodic func-
tions.
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Theorem 4.3. Weierstrass Approximation Theorem (Trigonometric).
Let f be a continuous 2π-periodic function. For any ϵ > 0, there ex-
ists a trigonometric polynomial P such that:

sup
x∈R

| f (x)− P(x)| < ϵ.

定理

Proof

The Cesàro mean σN [ f ](x) is the arithmetic average of partial sums
Sk[ f ](x). Since each Sk is a trigonometric polynomial of degree at
most k, the average σN is a trigonometric polynomial of degree at
most N − 1. By the uniform convergence part of theorem 4.1, there
exists N sufficiently large such that ∥σN − f ∥∞ < ϵ. We simply take
P(x) = σN [ f ](x).

■

This constructive proof not only asserts the existence of such poly-
nomials but provides an explicit formula for them via the Fourier
coefficients.

Note

This density result is crucial for the spectral theory of operators. It
implies that the trigonometric system {einx} is a complete basis for
the space of continuous functions; no non-zero continuous function
is orthogonal to every einx, reaffirming the result of theorem 3.1.

4.3 Abel Summability and the Dirichlet Problem

While Cesàro summation provides a robust method for reconstruct-
ing a function from its Fourier series using the arithmetic means of
partial sums, it is not the only summation method available. Abel
developed a method based on power series, originally motivated by
the study of boundary value problems.

Abel Means

We first define the concept for numerical series.

Definition 4.3. Abel Summability.
A series of complex numbers ∑∞

k=0 ck is said to be Abel summable to
s if the power series

A(r) =
∞

∑
k=0

ckrk

converges for all 0 ≤ r < 1, and the limit as r → 1− exists and equals
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s:
lim

r→1−
A(r) = s.

定義

Abel summability is a strictly stronger condition than Cesàro summa-
bility. It is a standard result (Abel’s Theorem) that if a series con-
verges to s, it is Abel summable to s. Furthermore, if a series is
Cesàro summable, it is also Abel summable to the same value. The
converse, however, does not hold.

Example 4.2. A Divergent Alternating Series. Consider the series

∞

∑
k=0

(−1)k(k + 1) = 1 − 2 + 3 − 4 + . . . .

The partial sums oscillate with increasing amplitude, and the
Cesàro means do not converge. However, we consider the asso-
ciated power series for |r| < 1:

A(r) =
∞

∑
k=0

(−1)k(k + 1)rk =
d
dr

∞

∑
k=0

(−1)krk+1 =
d
dr

(
r

1 + r

)
.

Calculating the derivative:

A(r) =
(1 + r)− r
(1 + r)2 =

1
(1 + r)2 .

As r → 1−, A(r) → 1/4. Thus, the series is Abel summable to 1/4.

範例

We adapt this definition to Fourier series. Given a function f ∼
∑ f̂ (n)einθ , we introduce the radial factor r|n| to dampen the coeffi-
cients.

Definition 4.4. Abel Means of Fourier Series.
For an integrable function f and 0 ≤ r < 1, the Abel mean Ar[ f ] is
defined by:

Ar[ f ](θ) =
∞

∑
n=−∞

r|n| f̂ (n)einθ .

定義

Since | f̂ (n)| is bounded, this series converges absolutely and uni-
formly for any fixed r < 1, yielding a continuous function of θ.
Substituting the definition of the Fourier coefficients f̂ (n) = 1

2π

∫
f (ϕ)e−inϕ dϕ

and interchanging the sum and integral (justified by uniform conver-
gence), we obtain a convolution structure:
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Ar[ f ](θ) =
∞

∑
n=−∞

r|n|
(

1
2π

∫ π

−π
f (ϕ)e−inϕ dϕ

)
einθ

=
1

2π

∫ π

−π
f (ϕ)

(
∞

∑
n=−∞

r|n|ein(θ−ϕ)

)
dϕ

= ( f ∗ Pr)(θ),

where Pr(θ) is the Poisson kernel introduced in chapter 1.

Convergence via the Poisson Kernel

Recall the explicit formula for the Poisson kernel derived in figure 2.3:

Pr(θ) =
1 − r2

1 − 2r cos θ + r2 .

To prove that Ar[ f ] → f , we must verify that {Pr}0≤r<1 acts as an
approximation to the identity as r → 1−. Although our definition of
"good kernels" in section 3.4 used a discrete index n, the properties
translate directly to the continuous parameter r.

Lemma 4.1. The Poisson Kernel is a Good Kernel.
The family {Pr}0≤r<1 satisfies the following properties as r → 1−:
1. Normalisation: 1

2π

∫ π
−π Pr(θ) dθ = 1.

2. Positivity: Pr(θ) > 0 for all θ.

3. Concentration: For any δ > 0, lim
r→1−

supδ≤|θ|≤π Pr(θ) = 0.

引理

Positivity.

Since r < 1, 1 − r2 > 0. The denominator is |1 − reiθ |2, which is
strictly positive. Thus Pr > 0.

証明終

Normalisation.

Integrating the series expansion term-by-term:

1
2π

∫ π

−π

∞

∑
n=−∞

r|n|einθ dθ =
∞

∑
n=−∞

r|n|δn0 = 1.

証明終

Concentration.

We estimate the denominator for δ ≤ |θ| ≤ π.

1 − 2r cos θ + r2 = (1 − r)2 + 2r(1 − cos θ).

For |θ| ≥ δ, 1 − cos θ ≥ 1 − cos δ > 0. Let cδ = 1 − cos δ. Then the
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denominator is bounded below by 2rcδ. Consequently:

Pr(θ) ≤
1 − r2

2rcδ
.

As r → 1−, the numerator vanishes while the denominator remains
bounded away from zero. Thus the kernel converges uniformly to 0

outside the interval (−δ, δ).
証明終

With these properties established, the convergence theorem for Abel
means follows the same logic as Fejér’s theorem.

Theorem 4.4. Abel Summability of Fourier Series.
Let f be an integrable function on the circle.
1. At every point θ where f is continuous, lim

r→1−
Ar[ f ](θ) = f (θ).

2. If f is continuous everywhere, the convergence is uniform.
定理

Proof

The proof is identical to that of theorem 3.3, replacing the sequence
index n → ∞ with the parameter r → 1−.

■

Solution to the Dirichlet Problem

The convergence of Abel means provides the rigorous solution to the
Dirichlet problem on the unit disc D, a motivating example discussed
in chapter 1. The problem asks for a function u(r, θ) continuous on
the closed disc D and harmonic in the interior, such that u(1, θ) =

f (θ).
We propose the solution u(r, θ) = Ar[ f ](θ) = ( f ∗ Pr)(θ).

(r, θ)

f (ϕ)

∆u = 0

u|∂D = f

Figure 4.2: The Dirichlet prob-
lem: extending boundary data
f to a harmonic function u in
the interior.

Theorem 4.5. Solution to the Dirichlet Problem.
Let f be a continuous function on the unit circle. The function u(r, θ)

defined by the Poisson integral

u(r, θ) =
1

2π

∫ π

−π
f (ϕ)Pr(θ − ϕ) dϕ

satisfies the following:
1. Harmonicity: u ∈ C2(D) and ∆u = 0 for r < 1.

2. Boundary Continuity: lim
r→1−

u(r, θ) = f (θ) uniformly in θ.

3. Uniqueness: u is the unique solution to the Dirichlet problem.
定理
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(i) Harmonicity.

Recall the series representation u(r, θ) = ∑∞
n=−∞ f̂ (n)r|n|einθ . For

any fixed ρ < 1, the series converges uniformly on the disc r ≤ ρ.
Since term-by-term differentiation is valid for power series inside
the radius of convergence, u is smooth. In polar coordinates, the
Laplacian is ∆ = ∂2

r + 1
r ∂r + 1

r2 ∂2
θ . Applying this to a single term

vn = r|n|einθ :

∆vn =

(
|n|(|n| − 1)r|n|−2 +

1
r
|n|r|n|−1 − n2

r2 r|n|
)

einθ =
r|n|

r2

(
|n|2 − |n|+ |n| − n2

)
einθ = 0.

By linearity, ∆u = 0.
証明終

(ii) Boundary Continuity.

This is precisely the statement that the Fourier series of f is uni-
formly Abel summable to f , which follows from the previous
theorem since f is continuous.

証明終

(iii) Uniqueness.

Suppose v(r, θ) is another solution. Let r ∈ (0, 1) be fixed. Since
v is continuous in θ, we can compute its Fourier coefficients with
respect to θ:

cn(r) =
1

2π

∫ π

−π
v(r, θ)e−inθ dθ.

Since ∆v = 0, substituting the Fourier series into the Laplacian
equation (justified by smoothness) implies that cn(r) satisfies the
ordinary differential equation:

c′′n(r) +
1
r

c′n(r)−
n2

r2 cn(r) = 0.

This is an Euler-Cauchy equation. The general solution is of the
form Anr|n| + Bnr−|n| for n ̸= 0 (and A0 + B0 ln r for n = 0).
Boundedness of v at the origin requires Bn = 0 (and B0 = 0). Thus
cn(r) = Anr|n|.
As r → 1−, the uniform convergence v(r, θ) → f (θ) implies cn(r) →
f̂ (n). Therefore, An = f̂ (n), and cn(r) = f̂ (n)r|n|. This uniquely de-
termines the Fourier series of v(r, θ) for every r, and hence v itself.

証明終

Remark.

The uniqueness result implies that a harmonic function on the disc
is completely determined by its boundary values. Conversely, if a
harmonic function vanishes on the boundary, it must vanish ev-
erywhere (a consequence of the Maximum Principle, which this



fourier series 71

Fourier-based proof recovers).

4.4 Exercises

1. Calculating Cesàro Sums. Determine the Cesàro sum of the fol-
lowing divergent series.

(a) The sequence of terms 1, 0,−1, 1, 0,−1, . . . repeated periodi-
cally.

(b) The cosine series 1
2 + ∑∞

n=1 cos nx for x ∈ (0, 2π).

(c) The sine series ∑∞
n=1 sin nx for x ∈ (0, 2π).

2. Cosine Approximation. Prove that any continuous function on
the interval [0, π] can be uniformly approximated by polynomials
involving only cosines, i.e., of the form P(x) = ∑N

k=0 ak cos kx.

Remark.

Hint: Consider the even extension of the function to [−π, π] and
apply Weierstrass’s theorem.

3. Necessary Condition for Cesàro. Prove that if a series ∑ an is
Cesàro summable, then the terms must satisfy the growth condi-
tion an = o(n) as n → ∞.

4. Abel Summability Basics.

(a) Verify that the series ∑∞
n=0(−1)n is Abel summable to 1/2.

(b) Prove generally that if ∑∞
n=0 an converges to s in the standard

sense, then it is Abel summable to s.

5. Hierarchy of Summability.

(a) Prove that if ∑∞
n=0 an is Cesàro summable to s, then it is Abel

summable to s.

(b) Prove that the series ∑∞
n=0(−1)n(n + 1) is Abel summable to

1/4, but is not Cesàro summable.

Remark.

This establishes the strict inclusion: Convergence ⊊ Cesàro ⊊
Abel.

6. Logarithmic Series. Prove that the series ∑∞
n=2(−1)n log n is

Cesàro summable to 1
2 log π

2 .

Remark.

Consider the derivative of the Dirichlet eta function or appropri-
ate Fourier expansions involving log(sin x).



72 gudfit

7. Product of Series. Let ∑ an = A and ∑ bn = B be convergent
series. Let cn = ∑n

k=0 akbn−k be their Cauchy product. Prove that
∑ cn is Abel summable to AB, even if it does not converge.

8. Polynomial Approximation. Derive the classical Weierstrass Ap-
proximation Theorem for algebraic polynomials on [a, b] (every
continuous function can be uniformly approximated by polynomi-
als) from the trigonometric version proven in the text.

Remark.

Map the interval [a, b] to [0, π] and approximate f (cos θ) using
cosine polynomials.



5
Mean-Square Convergence

Continuous periodic functions admit uniform approximation by
trigonometric polynomials (theorem 4.2). However, for general inte-
grable functions, uniform convergence is too restrictive. We instead
seek to approximate f "on average" using the mean-square norm.

5.1 Inner Products and Mean-Square Error

We restrict our attention to the set of square-integrable functions
on an interval [a, b], denoted by R[a, b]. For bounded functions, we
assume Riemann integrability (implying f 2 is integrable). For un-
bounded functions, we assume f 2 is improperly integrable. From the
inequality | f | ≤ 1

2 (1 + f 2), such functions are absolutely integrable.

Definition 5.1. Mean-Square Convergence.
Let f ∈ R[−π, π]. A sequence of trigonometric polynomials {Tn} is
said to converge to f in the mean-square sense if:

lim
n→∞

∫ π

−π
| f (x)− Tn(x)|2 dx = 0.

定義

To formalise this, we utilise the inner product structure on R[a, b]
introduced in chapter 0.

Definition 5.2. Inner Product and Norm on R.
The space of square-integrable functions R[a, b] inherits an inner prod-
uct structure from the axioms established in chapter 0. For f , g ∈ R[a, b]:

⟨ f , g⟩ =
∫ b

a
f (x)g(x) dx.

The induced norm is ∥ f ∥ =
√
⟨ f , f ⟩ =

(∫ b
a f 2(x) dx

)1/2
.

定義
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Orthogonal Systems

The geometric notion of orthogonality generalises to this infinite-
dimensional space. Two functions f , g are orthogonal if ⟨ f , g⟩ = 0.

Definition 5.3. Orthonormal Systems.
Let {φ0, φ1, . . . } be a system of functions in R[a, b]. It is an orthogo-
nal system if:

⟨φk, φl⟩ =

0 k ̸= l,

λk > 0 k = l.

If λk = 1 for all k, the system is said to be orthonormal.
定義

Example 5.1. Trigonometric Systems. The system
{1, cos x, sin x, . . . , cos nx, sin nx, . . . } is an orthogonal system on
[−π, π]. Normalising these functions yields the orthonormal sys-
tem: {

1√
2π

,
cos x√

π
,

sin x√
π

, . . . ,
cos nx√

π
,

sin nx√
π

, . . .
}

.

範例

Given an orthonormal system {φk} and a function f ∈ R[a, b], we
define the Fourier coefficients of f with respect to {φk} as:

ck = ⟨ f , φk⟩ =
∫ b

a
f (x)φk(x) dx. (5.1)

The associated series f (x) ∼ ∑∞
k=0 ck φk(x) is the Generalised Fourier

Series.

The Extremal Property of Partial Sums

We now address the central question of approximation: given a func-
tion f and a fixed degree n, which linear combination of the basis
functions {φ0, . . . , φn} provides the best approximation to f in the
mean-square sense?
Let Sn(x) = ∑n

k=0 ck φk(x) be the partial sum of the Fourier series
using the coefficients defined above. Let Tn(x) be an arbitrary poly-
nomial of degree n formed by the system:

Tn(x) =
n

∑
k=0

αk φk(x),

where αk are arbitrary real numbers. We seek to minimise the error
∥ f − Tn∥.

Theorem 5.1. Extremal Property.
Let {φk} be an orthonormal system. For any f ∈ R[a, b] and any co-
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efficients α0, . . . , αn:∥∥∥∥∥ f −
n

∑
k=0

ck φk

∥∥∥∥∥ ≤
∥∥∥∥∥ f −

n

∑
k=0

αk φk

∥∥∥∥∥ ,

where ck = ⟨ f , φk⟩. Equality holds if and only if αk = ck for all k.
定理

Proof

We compute the squared norm of the difference using the proper-
ties of the inner product and the orthonormality of {φk}.

∥ f − Tn∥2 = ⟨ f − Tn, f − Tn⟩

=

〈
f −

n

∑
k=0

αk φk, f −
n

∑
k=0

αk φk

〉
.

Expanding the inner product by linearity:

∥ f − Tn∥2 = ⟨ f , f ⟩ − 2

〈
f ,

n

∑
k=0

αk φk

〉
+

〈
n

∑
k=0

αk φk,
n

∑
l=0

αl φl

〉
.

Using ⟨ f , φk⟩ = ck and ⟨φk, φl⟩ = δkl :

∥ f − Tn∥2 = ∥ f ∥2 − 2
n

∑
k=0

αk⟨ f , φk⟩+
n

∑
k=0

n

∑
l=0

αkαlδkl

= ∥ f ∥2 − 2
n

∑
k=0

αkck +
n

∑
k=0

α2
k .

We complete the square with respect to αk:

∥ f − Tn∥2 = ∥ f ∥2 −
n

∑
k=0

c2
k +

n

∑
k=0

c2
k − 2

n

∑
k=0

αkck +
n

∑
k=0

α2
k

=

(
∥ f ∥2 −

n

∑
k=0

c2
k

)
+

n

∑
k=0

(ck − αk)
2.

Since (ck − αk)
2 ≥ 0, the expression is minimised if and only if

each term in the final summation vanishes, i.e., αk = ck. In this case,
Tn = Sn.

■

The minimum error is given explicitly by the remaining terms:

∥ f − Sn∥2 = ∥ f ∥2 −
n

∑
k=0

c2
k . (5.2)
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5.2 Bessel’s Inequality and Parseval’s Identity

From the identity derived in eq. (5.2), we observe that ∥ f − Sn∥2 ≥
0. This immediately implies a bound on the sum of the squared
coefficients.

Theorem 5.2. Bessel’s Inequality.
Let {ck} be the Fourier coefficients of f with respect to an orthonor-
mal system {φk}. Then for any n:

n

∑
k=0

c2
k ≤ ∥ f ∥2.

Since the right-hand side is independent of n, letting n → ∞ yields:

∞

∑
k=0

c2
k ≤ ∥ f ∥2.

定理

This inequality ensures that the series ∑ c2
k converges. A necessary

consequence is that lim
k→∞

ck = 0, recovering the Riemann-Lebesgue

lemma in this general context.
The question of mean-square convergence reduces to determining
when the inequality becomes an equality. If ∥ f − Sn∥ → 0 as n → ∞,
then eq. (5.2) implies:

Theorem 5.3. Parseval’s Identity.
The Fourier series of f converges to f in the mean-square sense if and
only if:

∞

∑
k=0

c2
k = ∥ f ∥2.

定理

Geometrically, this is the infinite-dimensional analogue of the Pythagorean
theorem. If we view {φk} as a basis, Parseval’s identity asserts that
the squared length of the vector f equals the sum of the squared
lengths of its components. This occurs precisely when the orthogonal
system is complete (or closed) in R[a, b].

Completeness of the Space

While the vector spaces Rd and Cd are complete (every Cauchy se-
quence converges to a limit within the space), the space of Riemann
integrable functions R equipped with the mean-square norm is not.
A sequence { fn} in R may satisfy ∥ fn − fm∥ → 0 as n, m → ∞ (a
Cauchy sequence), yet there may be no function f ∈ R such that
∥ fn − f ∥ → 0.
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Example 5.2. Incompleteness of R. Consider the function f on
[0, 2π] defined by:

f (θ) =

0 θ = 0,

log(1/θ) 0 < θ ≤ 2π.

This function is unbounded, so it does not belong to the space of
bounded Riemann integrable functions. However, consider the
sequence of truncations { fn}:

fn(θ) =

0 0 ≤ θ ≤ 1/n,

f (θ) 1/n < θ ≤ 2π.

Each fn is bounded and integrable. It can be shown that { fn} forms
a Cauchy sequence in the mean-square norm. However, this se-
quence cannot converge to an element in R. Any such limit would
have to equal f almost everywhere, but f is not square-integrable in
the Riemann sense (it requires improper integration).

範例

This difficulty motivates the completion of the space R to the Lebesgue
space, where such limits exist. Within the context of Riemann inte-
gration, however, we can prove that Parseval’s identity holds (and
thus mean-square convergence is achieved) for all f where the inte-
gral is defined. We first formalise the condition for completeness.

Definition 5.4. Completeness of an Orthonormal System.
Let {φk} be an orthonormal system in R[a, b]. The system is said to be
complete if for any f ∈ R[a, b], Parseval’s identity holds:

∞

∑
k=0

|ck|2 = ∥ f ∥2.

定義

From the Extremal Property (theorem 5.1), we immediately obtain the
following equivalence.

Corollary 5.1. Approximation Equivalence. A necessary and sufficient con-
dition for the orthonormal system {φk} to be complete is that for any
f ∈ R[a, b]:

lim
n→∞

∥∥∥∥∥ f −
n

∑
k=0

ck φk

∥∥∥∥∥
2

= 0.

That is, f can be approximated in the mean square by the partial sums
of its Fourier series.

推論
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Proof

From the identity derived in eq. (5.2), we have:

∥ f − Sn∥2 = ∥ f ∥2 −
n

∑
k=0

c2
k .

Taking the limit as n → ∞, the left-hand side vanishes if and only if
the right-hand side becomes ∥ f ∥2 − ∑∞

k=0 c2
k = 0, which is exactly

Parseval’s identity.
■

We now prove that the trigonometric system is indeed complete.

Theorem 5.4. Completeness of the Trigonometric System.
Let f ∈ R[−π, π], and let an, bn be its Fourier coefficients. Then Par-
seval’s identity holds:

a2
0

2
+

∞

∑
n=1

(a2
n + b2

n) =
1
π

∫ π

−π
f 2(x) dx.

定理

The proof proceeds in three steps, extending the class of functions
from continuous to Riemann integrable, and finally to improperly
integrable.

Step 1: Continuous Functions.

Let f be a continuous function on [−π, π] with f (−π) = f (π). By
the property of uniform approximation (theorem 4.2), for any ϵ > 0,
there exists a trigonometric polynomial Tn0(x) of degree n0 such
that | f (x)− Tn0(x)| <

√
ϵ/2π for all x. Consequently:

∥ f − Tn0∥2 =
∫ π

−π
| f (x)− Tn0(x)|2 dx < ϵ.

By the Extremal Property (theorem 5.1), the Fourier partial sum Sn0

provides an even better approximation:

∥ f − Sn0∥2 ≤ ∥ f − Tn0∥2 < ϵ.

Since ∥ f − Sn∥2 is non-increasing with n, for all n > n0, ∥ f − Sn∥2 <

ϵ. Thus, lim
n→∞

∥ f − Sn∥ = 0.

証明終

Step 2: Riemann Integrable Functions.

Let f be Riemann integrable on [−π, π]. For any ϵ > 0, there exists
a partition −π = x0 < · · · < xm = π such that the lower and upper
Darboux sums satisfy ∑ ωi∆xi < ϵ/(4Ω), where ωi is the oscillation
on [xi−1, xi] and Ω is the total oscillation.
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We construct a continuous polygonal approximation g(x) by con-
necting the points (xi, f (xi)) linearly, ensuring g(−π) = g(π). On
each subinterval, | f (x)− g(x)| ≤ ωi. Thus:

∥ f − g∥2 =
m

∑
i=1

∫ xi

xi−1

( f (x)− g(x))2 dx ≤
m

∑
i=1

ω2
i ∆xi ≤ Ω ∑ ωi∆xi <

ϵ

4
.

By Step 1, there exists a trigonometric polynomial T(x) such that
∥g − T∥2 < ϵ/4. Using the inequality ∥A + B∥2 ≤ 2(∥A∥2 + ∥B∥2):

∥ f − T∥2 ≤ 2∥ f − g∥2 + 2∥g − T∥2 <
ϵ

2
+

ϵ

2
= ϵ.

As before, this implies ∥ f − Sn∥ → 0.
証明終 x

y

x0 xm

Figure 5.1: A continuous func-
tion (blue) approximated by a
polygonal chain (red).

Step 3: Improperly Integrable Functions.

Assume f 2 is integrable. Suppose π is the only singular point. For
ϵ > 0, choose η > 0 such that

∫ π
π−η f 2(x) dx < ϵ/4. decompose

f into f1 (bounded on [−π, π − η], zero elsewhere) and f2 (zero
on [−π, π − η], f elsewhere). Since f1 is Riemann integrable, there
exists a polynomial T such that ∥ f1 − T∥2 < ϵ/4. Then:

∥ f − T∥2 ≤ 2∥ f1 − T∥2 + 2∥ f2∥2 <
ϵ

2
+ 2

( ϵ

4

)
= ϵ.

証明終

This concludes the proof.

Example 5.3. Evaluation of ζ(2). Consider the expansion of f (x) =

x/2 on (−π, π), which has coefficients bn = (−1)n−1/n and an = 0.

x
2
∼

∞

∑
n=1

(−1)n−1

n
sin nx.

Applying Parseval’s identity:

1
π

∫ π

−π

( x
2

)2
dx =

∞

∑
n=1

(
1
n

)2
.

Evaluating the integral:

1
4π

[
x3

3

]π

−π

=
1

4π

2π3

3
=

π2

6
.

Thus, we recover the famous identity ∑∞
n=1

1
n2 = π2

6 .

範例

From Parseval’s identity, two fundamental corollaries follow immedi-
ately.
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Corollary 5.2. Completeness and Zero Function. If a continuous function
f on [−π, π] is orthogonal to every function in the trigonometric sys-
tem {1, cos x, sin x, . . . }, then f ≡ 0.

推論

Proof

By assumption, all Fourier coefficients an and bn are zero. Parse-
val’s identity implies

∫ π
−π f 2(x) dx = 0. Since f is continuous and f 2

is non-negative, f must be identically zero.
■

Corollary 5.3. Uniqueness Theorem. If two continuous functions have the
same Fourier series, they must be identically equal.

推論

Proof

Let f and g be continuous functions with identical Fourier series.
By linearity, the Fourier coefficients of h = f − g are all zero. By
corollary 5.2, h ≡ 0, so f = g.

■

5.3 Generalised Parseval Identity

The isometric nature of the Fourier transform established in theo-
rem 5.3 extends beyond the norm to the inner product itself. By con-
sidering the interaction between two different functions, we obtain
the Generalised Parseval Identity.

Theorem 5.5. Generalised Parseval Identity.
Let f , g ∈ R be 2π-periodic integrable functions with Fourier coef-
ficients {cn} and {dn} respectively. Then:

1
2π

∫ π

−π
f (x)g(x) dx =

∞

∑
n=−∞

cndn.

In terms of the real coefficients (where f ∼ a0
2 +∑ an cos nx+ bn sin nx

and g ∼ α0
2 + ∑ αn cos nx + βn sin nx), this reads:

1
π

∫ π

−π
f (x)g(x) dx =

a0α0

2
+

∞

∑
n=1

(anαn + bnβn).

定理

Proof

We employ the polarisation identity, which reconstructs the inner
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product from the norm. For any complex inner product space:

4⟨ f , g⟩ = ∥ f + g∥2
2 − ∥ f − g∥2

2 + i∥ f + ig∥2
2 − i∥ f − ig∥2

2.

Applying Parseval’s Identity (theorem 5.3) to each norm term on the
right-hand side, we substitute terms like ∥ f + g∥2

2 = ∑ |cn + dn|2.
By the linearity of the coefficients, the algebraic expansion of the
sums mirrors the expansion of the norms, yielding 4 ∑ cndn.
Alternatively, for real-valued functions, we may simply consider:

∥ f + g∥2
2 = ∥ f ∥2

2 + ∥g∥2
2 + 2⟨ f , g⟩.

Substituting the series sums for the squared norms yields the result
immediately.

■

This theorem reinforces the geometric perspective: the Fourier trans-
form preserves the angle between vectors as well as their lengths.

5.4 Integration of Fourier Series

One of the most powerful features of Fourier series is their robust-
ness under integration. While term-by-term differentiation of a Fourier
series requires strict conditions on the smoothness of the function (to
ensure the coefficients decay fast enough to counteract the n factor),
integration improves convergence (introducing a 1/n factor). Conse-
quently, term-by-term integration is valid for any integrable function,
regardless of whether the original Fourier series converges pointwise.

Theorem 5.6. Term-by-Term Integration.
Let f be a 2π-periodic integrable function with Fourier coefficients cn.
For any interval [a, b] ⊆ [−π, π]:∫ b

a
f (x) dx =

∞

∑
n=−∞

cn

∫ b

a
einx dx.

Explicitly: ∫ b

a
f (x) dx = c0(b − a) + ∑

n ̸=0

cn

in
(einb − eina).

定理

Proof

We apply the Generalised Parseval Identity. Let g be the character-
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istic function of the interval [a, b], extended periodically:

g(x) =

1 x ∈ [a, b],

0 x ∈ [−π, π) \ [a, b].

The Fourier coefficients dn of g are:

dn =
1

2π

∫ π

−π
g(x)e−inx dx =

1
2π

∫ b

a
e−inx dx.

By theorem 5.5:

1
2π

∫ π

−π
f (x)g(x) dx =

∞

∑
n=−∞

cndn.

The left-hand side evaluates to:

1
2π

∫ b

a
f (x) dx.

The right-hand side becomes:

∞

∑
n=−∞

cn

(
1

2π

∫ b

a
e−inx dx

)
=

1
2π

∞

∑
n=−∞

cn

∫ b

a
einx dx.

Cancelling the factor of 1/2π from both sides yields the result.
■

This theorem allows us to integrate series that may diverge. For
instance, the Fourier series of the Dirac delta function (conceptually
∑ einx) does not converge, but its integral yields the step function,
whose Fourier series (∑ 1

in einx) is well-behaved.
Parseval’s identity is particularly effective for evaluating the sums of
numerical series.

Example 5.4. Evaluation of ζ(4). Consider the function f (x) = x2

on [−π, π].
Its Fourier coefficients were found in chapter 2 to be c0 = π2/3 and
cn = 2(−1)n

n2 for n ̸= 0. We compute the square of the norm of f :

∥ f ∥2
2 =

1
2π

∫ π

−π
|x2|2 dx =

1
2π

∫ π

−π
x4 dx =

1
2π

[
x5

5

]π

−π

=
π4

5
.

Applying Parseval’s identity:

∥ f ∥2
2 = |c0|2 + ∑

n ̸=0
|cn|2.

Substituting the coefficients:

π4

5
=

(
π2

3

)2

+ ∑
n ̸=0

∣∣∣∣2(−1)n

n2

∣∣∣∣2 =
π4

9
+ ∑

n ̸=0

4
n4 .
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Rearranging the terms:

∑
n ̸=0

1
n4 =

1
4

(
π4

5
− π4

9

)
=

π4

4

(
4

45

)
=

π4

45
.

Since the sum over n ̸= 0 is twice the sum over positive integers:

2
∞

∑
n=1

1
n4 =

π4

45
=⇒ ζ(4) =

∞

∑
n=1

1
n4 =

π4

90
.

範例

5.5 Exercises

1. Autocorrelation and Parseval. Let f be a continuous 2π-periodic
function. Define its autocorrelation function F(x) by:

F(x) =
1
π

∫ π

−π
f (t) f (x + t) dt.

Let {an, bn} and {An, Bn} denote the Fourier coefficients of f and
F respectively.

(a) Prove that A0 = a2
0.

(b) Prove that An = a2
n + b2

n and Bn = 0 for n ≥ 1.

(c) Use the convergence of the Fourier series of F at x = 0 to
deduce Parseval’s identity for f .

2. Wirtinger’s Inequality. Let f be a continuously differentiable
2π-periodic function with zero mean:∫ π

−π
f (x) dx = 0.

Prove the inequality:∫ π

−π
( f ′(x))2 dx ≥

∫ π

−π
f 2(x) dx.

Show that equality holds if and only if f (x) = a cos x + b sin x.

Remark.

Hint: Use Parseval’s identity on f and f ′. Recall the relationship
between their coefficients.

3. Poincaré Inequality on an Interval. Let f be continuously differ-
entiable on [0, 1] satisfying the boundary conditions f (0) = f (1) =
0 and the symmetry condition f ( 1

2 − x) = − f ( 1
2 + x). Prove that:∫ 1

0
f 2(x) dx ≤ 1

4π2

∫ 1

0
( f ′(x))2 dx.

Determine the class of functions for which equality holds.
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Remark.

Hint: Extend f to a periodic function and analyse which Fourier
modes are permitted by the symmetry.

4. Completeness via Fejér. Provide an alternative proof of the Com-
pleteness Corollary using Fejér’s Theorem. Specifically, prove that
if a continuous 2π-periodic function f is orthogonal to all trigono-
metric polynomials, then f ≡ 0.

Remark.

Consider the integral of | f |2 and approximate one factor by a
trigonometric polynomial.

5. Rademacher Functions. Define the system of functions {φn}∞
n=1

on [0, 1] by:
φn(t) = sgn(sin(2nπt)).

Prove that this system is orthonormal on [0, 1].

Remark.

Consider the binary expansion of t. Is this system complete?



6
Pointwise Convergence and Divergence

This chapter establishes the conditions for pointwise convergence.
While local differentiability guarantees convergence, reinforcing
the Localisation Principle, continuity alone is insufficient. This is
demonstrated via an explicit counterexample relying on "symmetry
breaking" within the partial sums.

6.1 A Local Convergence Result

The relationship between smoothness and convergence is strength-
ened here. While Dini’s Criterion (theorem 2.2) offers a sufficient con-
dition, the following proof demonstrates directly that differentiability
ensures convergence.

Theorem 6.1. Convergence for Differentiable Functions.
Let f be an integrable function on the circle. If f is differentiable at a
point x0, then

lim
N→∞

SN [ f ](x0) = f (x0).

定理

Proof

The Dirichlet integral representation of the partial sum is:

SN [ f ](x0) =
1

2π

∫ π

−π
f (x0 − t)DN(t) dt.

Since 1
2π

∫ π
−π DN(t) dt = 1, we can express the error as:

SN [ f ](x0)− f (x0) =
1

2π

∫ π

−π
( f (x0 − t)− f (x0)) DN(t) dt.

Define the difference quotient function g(t):

g(t) =


f (x0−t)− f (x0)

t t ̸= 0, t ∈ [−π, π]

− f ′(x0) t = 0.

Since f is differentiable at x0, g is bounded in a neighbourhood of
0. Away from the origin (|t| > δ), t is bounded away from zero,
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so the integrability of f implies the integrability of g. Thus g is
integrable on [−π, π].
Substituting the explicit form of the Dirichlet kernel DN(t) =
sin((N+1/2)t)

sin(t/2) :

SN [ f ](x0)− f (x0) =
1

2π

∫ π

−π
g(t) t

sin((N + 1/2)t)
sin(t/2)

dt

=
1

2π

∫ π

−π
g(t)

(
t

sin(t/2)

)
sin((N + 1/2)t) dt.

The function h(t) = g(t) t
sin(t/2) is the product of the integrable

function g and the continuous (and bounded) function t/ sin(t/2).
Therefore, h is integrable. By the Riemann-Lebesgue Lemma
(theorem 1.1), the integral of h(t) against the oscillatory term
sin((N + 1/2)t) tends to zero as N → ∞.

■

Remark.

The proof relies only on the boundedness of the difference quo-
tient. Consequently, theorem 6.1 holds under the weaker assumption
that f satisfies a Lipschitz condition at x0, i.e., | f (x) − f (x0)| ≤
M|x − x0|.

This result provides a rigorous justification for Riemann’s Localisa-
tion Principle.

Corollary 6.1. Localisation Principle. Let f and g be two integrable func-
tions. If f (x) = g(x) for all x in an open interval I containing x0, then

lim
N→∞

(SN [ f ](x0)− SN [g](x0)) = 0.

推論

Proof

The difference h = f − g is identically zero on I. Consequently, h is
differentiable at x0 (with derivative 0). By theorem 6.1, SN [h](x0) →
h(x0) = 0. By the linearity of the partial sum operator, SN [ f ](x0) −
SN [g](x0) → 0.

■

This confirms that the convergence of a Fourier series at a point
is entirely determined by the local behaviour of the function. The
"global" information contained in the Fourier coefficients cancels out
perfectly via interference at points where the functions agree.
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6.2 Symmetry Breaking and Divergence

Does continuity imply convergence? The partial sum SN [ f ](x) =

∑N
n=−N f̂ (n)einx truncates the spectrum symmetrically. However,

"breaking" this symmetry by summing over only positive or negative
indices reveals unbounded behaviour.

x

Im( f )

π 2π

Figure 6.1: The sawtooth func-
tion f (x) = i(π − x). The
imaginary part decreases lin-
early from π to −π, with jump
discontinuities at multiples of
2π.

Consider the sawtooth function f (similar to figure 1.3), which is odd
and defined by f (x) = i(π − x) for x ∈ (0, 2π). Its Fourier series is:

f (x) ∼ ∑
n ̸=0

1
n

einx.

While f is bounded, the "half-series" ∑∞
n=1

einx

n behaves like the har-
monic series at x = 0, which diverges logarithmically. This is for-
malised by defining truncated blocks.

Definition 6.1. Sawtooth Blocks.
For N ≥ 1, define the trigonometric polynomials:

fN(x) = ∑
1≤|n|≤N

einx

n
, f̃N(x) = ∑

−N≤n≤−1

einx

n
.

定義

The polynomial fN represents the symmetric partial sum of the
bounded sawtooth function. The polynomial f̃N represents the asym-
metric "negative half". Two properties are crucial:
1. At the origin, the asymmetric sum grows logarithmically: | f̃N(0)| ≥

c log N.

2. The symmetric sums fN(x) are uniformly bounded in N and x.
The first property follows directly from the definition: f̃N(0) =

∑N
n=1

1
−n = −HN , where HN is the harmonic number. Thus | f̃N(0)| ∼

log N.

N

|HN |

1 5 10

∼ log N

Figure 6.2: The harmonic sum
HN = ∑N

n=1
1
n grows like log N.

This unbounded growth drives
the divergence.

The second property requires a more refined estimate. We prove it
using a comparison with Abel means.

Lemma 6.1. Uniform Boundedness of fN .
There exists a constant C such that | fN(x)| ≤ C for all N and all x ∈
[−π, π].

引理

Proof

A Tauberian-style argument suffices. Let SN(x) be the partial sums
of a series ∑ cneinx, and let Ar(x) be its Abel means. Suppose the
coefficients satisfy cn = O(1/n) and the Abel means are uniformly
bounded, i.e., |Ar(x)| ≤ M. Estimating the difference |SN − Ar|
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where r = 1 − 1/N:

|SN − Ar| =

∣∣∣∣∣∣ ∑
|n|≤N

cn(1 − r|n|)einx − ∑
|n|>N

cnr|n|einx

∣∣∣∣∣∣
≤ ∑

|n|≤N
|cn|(1 − r|n|) + ∑

|n|>N
|cn|r|n|.

Using 1 − r|n| ≤ |n|(1 − r) and |cn| ≤ K/|n|, the first sum is
bounded by

N

∑
n=1

K
n

n
1
N

= K.

The second sum is bounded by

K
N

∞

∑
n=N+1

rn ≤ K
N

rN+1

1 − r
≤ K.

Thus, SN is bounded if Ar is bounded.
For the sawtooth function f (x) ∼ ∑n ̸=0

einx

n , the coefficients are
O(1/n). The Abel means are Ar[ f ] = f ∗ Pr (proposition 2.2). Since f
is bounded and Pr has unit mass, ∥Ar[ f ]∥∞ ≤ ∥ f ∥∞. Therefore, the
partial sums fN(x) are uniformly bounded.

■

6.3 Counterexample Construction

We define a continuous function whose Fourier series diverges at
x = 0 by summing scaled and shifted versions of fN . Shifting the
spectrum of fN allows specific partial sums to isolate the logarithmic
growth of f̃N .

Definition 6.2. Shifted Polynomials.
Let PN(x) be the polynomial obtained by shifting the frequencies of fN

by 2N:

PN(x) = ei(2N)x fN(x) = ∑
1≤|n|≤N

1
n

ei(2N+n)x.

定義

The frequencies of fN lie in [−N,−1] ∪ [1, N]. The frequencies of PN

lie in [2N − N, 2N − 1]∪ [2N + 1, 2N + N] = [N, 2N − 1]∪ [2N + 1, 3N].
Crucially, the "centre" of PN is at the frequency 2N.
If we compute the partial sum S2N of PN , we sum all frequencies up
to 2N. This captures exactly the lower block [N, 2N − 1] and discards
the upper block [2N + 1, 3N]. Note that the lower block corresponds
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n
−N −1 1 N

×fN :

n
N 2N−12N+1 3N

×PN :

S2N cutoff

shift by 2N

Figure 6.3: Spectral shifting. fN

is symmetric around 0. PN is
shifted to be symmetric around
2N. A partial sum S2N cuts PN

in half, isolating the logarithmi-
cally divergent part.

to the negative indices of the original fN shifted by 2N.

S2N [PN ](x) =
2N−1

∑
k=N

P̂N(k)eikx =
−1

∑
n=−N

1
n

ei(2N+n)x = ei(2N)x f̃N(x).

At x = 0, we have |S2N [PN ](0)| = | f̃N(0)| ≥ c log N. Conversely, if we
take SM[PN ] for M ≥ 3N, we capture the entire polynomial PN . Since
|PN(x)| = | fN(x)|, this is uniformly bounded by lemma 6.1.
These blocks are now assembled into a single series.

Theorem 6.2. Existence of a Divergent Continuous Function.
There exists a continuous 2π-periodic function f such that the sequence
of partial sums {Sk[ f ](0)}∞

k=1 is unbounded.
定理

n

PN1
PN2

PN3

2N2gap

Figure 6.4: Disjoint spectral
blocks. Each PNk occupies
[Nk, 3Nk]. Since Nk+1 > 3Nk,
blocks don’t overlap. The cutoff
S2N2 splits only PN2 .

Proof

Choose a sequence of integers Nk increasing rapidly enough to
separate the spectra of the shifted polynomials, and a sequence of
scaling factors αk to ensure continuity. Let Nk = 32k

and αk = 1/k2.
Define:

f (x) =
∞

∑
k=1

αkPNk (x).

1. Continuity. Since |PNk (x)| = | fNk (x)| ≤ C (lemma 6.1), the series
is dominated by C ∑ 1/k2, which converges. By the Weierstrass
M-test, the series defines a continuous function f .

2. Divergence. Consider the partial sum of the Fourier series of f at
index Mm = 2Nm. Because the spectra of PNk are supported on
[Nk, 3Nk] and Nk+1 > 3Nk, the spectral blocks are disjoint. The
partial sum operator is linear.

S2Nm [ f ](0) =
m−1

∑
k=1

αkS2Nm [PNk ](0)+ αmS2Nm [PNm ](0)+
∞

∑
k=m+1

αkS2Nm [PNk ](0).

Analysing the terms:

• For k < m, 2Nm > 3Nk. The partial sum captures the entire poly-
nomial PNk . The value is αkPNk (0) = 0 (since fN(0) = 0). Even if
non-zero, it is bounded.
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• For k > m, 2Nm < Nk. The partial sum captures none of PNk . The
value is 0.

• For k = m, the partial sum cuts PNm exactly in the middle.

|S2Nm [PNm ](0)| =
∣∣ f̃Nm(0)

∣∣ ≥ c log Nm.

Thus, the total sum is dominated by the m-th term:

|S2Nm [ f ](0)| ≥ cαm log Nm − O(1).

Substituting our choices for αm and Nm:

αm log Nm =
1

m2 log(32m
) =

2m log 3
m2 .

As m → ∞, this quantity tends to infinity. Therefore, the Fourier se-
ries of f diverges at x = 0.

■

Remark.

To construct a function diverging at an arbitrary point x0, one sim-
ply considers f (x − x0). Using the Baire Category Theorem (a topic
for a course on Functional Analysis), one can show that the set of
continuous functions with divergent Fourier series is, in a topo-
logical sense, "generic" or typical, while those that converge are
rare.

6.4 Exercises

1. Lipschitz Convergence. Prove that if a function f satisfies a Lip-
schitz condition of order α ∈ (0, 1) at a point x0, then its Fourier
series converges to f (x0). Specifically, check that the integral con-
dition in Dini’s Criterion is satisfied.

2. Symmetry Breaking. Calculate the value of the asymmetric sum
f̃N(0) = ∑−1

n=−N
1
n explicitly. Compare it with the symmetric sum

fN(0). Why does the symmetric sum vanish while the asymmetric
sum diverges?

3. Constructing Boundedness. Let g(x) = ∑∞
n=1

sin nx
n . Prove that Use the integral representation

∫ sin t
t dt

or summation by parts with the Dirich-
let kernel.

the partial sums of this series are uniformly bounded, i.e., there
exists M such that |∑N

n=1
sin nx

n | ≤ M for all N, x.

4. Failure of Convergence. Consider the function constructed in
the proof of divergence. Is this function differentiable at x = 0?
Why or why not? Reconcile this with the convergence theorem for
differentiable functions.



7
Applications of Fourier Series

While the theory of pointwise convergence reveals certain subtleties
(as seen in chapter 6), the robustness of the L2 theory allows us to
solve significant problems in geometry, number theory, and analysis.

7.1 The Riemann Zeta Function and Bernoulli Polynomials

In chapter 5, we utilized Parseval’s identity to evaluate ∑ n−2 and
∑ n−4. To generalize this to all even positive integers, we introduce a
recursive family of functions known as Bernoulli polynomials.

Definition 7.1. Bernoulli Polynomials.
The Bernoulli polynomials Bn(x) for n ≥ 0 are defined recursively
by the conditions:
1. B0(x) = 1.

2. For n ≥ 1, B′
n(x) = nBn−1(x).

3. For n ≥ 1,
∫ 1

0 Bn(x) dx = 0.
The Bernoulli numbers Bn are the values at the origin: Bn = Bn(0).

定義

We compute the first few polynomials explicitly. Since B0(x) = 1,
condition (2) implies B′

1(x) = 1, so B1(x) = x + c. Condition (3) fixes
the constant: ∫ 1

0
(x + c) dx =

1
2
+ c = 0 =⇒ c = −1

2
.

Thus B1(x) = x − 1/2. Continuing this process, one obtains B2(x) =
x2 − x + 1/6, yielding the Bernoulli numbers B0 = 1, B1 = −1/2, B2 =

1/6.
We restrict our attention to the interval [0, 1]. Since these polynomials
are not periodic, we consider their periodic extensions (which may
have discontinuities at the endpoints) to apply Fourier analysis.
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Proposition 7.1. Fourier Series of Bernoulli Polynomials.
For n ≥ 1, the Fourier coefficients of the 1-periodic extension of Bn(x)
are given by:

B̂n(k) = − n!
(2πik)n for k ̸= 0,

and B̂n(0) = 0. Consequently, for x ∈ (0, 1):

Bn(x) = −n! ∑
k ̸=0

e2πikx

(2πik)n .

命題

Proof

We proceed by induction on n. For n = 1, B1(x) = x − 1/2. The
constant term is zero by definition. For k ̸= 0:

B̂1(k) =
∫ 1

0

(
x − 1

2

)
e−2πikx dx.

Integrating by parts with u = x − 1/2 and dv = e−2πikxdx:

B̂1(k) =

[
(x − 1/2)e−2πikx

−2πik

]1

0

−
∫ 1

0

e−2πikx

−2πik
dx.

The boundary term evaluates to (1/2)(1)−(−1/2)(1)
−2πik = 1

−2πik . The inte-
gral term vanishes. Thus the formula holds for n = 1.
Assume the formula holds for n − 1. For Bn(x), we have B′

n(x) =

nBn−1(x). We relate the coefficients using integration by parts:

B̂n(k) =
∫ 1

0
Bn(x)e−2πikx dx =

[
Bn(x)e−2πikx

−2πik

]1

0

+
1

2πik

∫ 1

0
B′

n(x)e−2πikx dx.

For n ≥ 2, Bn(1) = Bn(0), so the boundary term vanishes. Substi-
tuting B′

n = nBn−1:

B̂n(k) =
n

2πik
B̂n−1(k).

Using the inductive hypothesis:

B̂n(k) =
n

2πik

(
− (n − 1)!
(2πik)n−1

)
= − n!

(2πik)n .

■

This explicit expansion allows us to relate the Bernoulli numbers to
the values of the Riemann zeta function, ζ(s) = ∑∞

m=1 m−s.
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Theorem 7.1. Values of ζ(2m).
For any integer m ≥ 1:

ζ(2m) =
(−1)m+1(2π)2m

2(2m)!
B2m.

定理

Proof

Consider the Fourier series of B2m(x) evaluated at x = 0. Since
B2m(x) is continuous on the circle for 2m ≥ 2, the series converges
pointwise.

B2m(0) = −(2m)! ∑
k ̸=0

1
(2πik)2m .

Using i2m = (−1)m, we simplify the summand:

B2m = − (2m)!
(2π)2m(−1)m ∑

k ̸=0

1
k2m .

The sum over non-zero integers is twice the sum over positive
integers: ∑k ̸=0 k−2m = 2ζ(2m).

B2m = (−1)m+1 (2m)!
(2π)2m (2ζ(2m)).

Rearranging for ζ(2m) yields the result.
■

Example 7.1. Calculation of ζ(2) and ζ(4). We previously com-
puted B2 = 1/6. Applying the theorem with m = 1:

ζ(2) =
(−1)2(2π)2

2(2!)

(
1
6

)
=

4π2

24
=

π2

6
.

To find ζ(4), we compute B4. By recursion:

B3(x) = x3 − 3
2

x2 +
1
2

x =⇒ B3 = 0.

B4(x) = x4 − 2x3 + x2 + C.

Using
∫ 1

0 B4 = 0, we find 1/5 − 2/4 + 1/3 + C = 0, so C = −1/30.
Thus B4 = −1/30.

ζ(4) =
(−1)3(2π)4

2(24)

(
− 1

30

)
=

16π4

1440
=

π4

90
.

範例
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7.2 Infinite Products and Wallis’ Formula

Fourier series can also be used to derive infinite product expansions
for elementary functions. We return to the interval [−π, π] and con-
sider the function f (x) = cos(px), where p ∈ R \ Z.
The Fourier coefficients are given by:

f̂ (n) =
1

2π

∫ π

−π
cos(px)e−inx dx

=
1

4π

∫ π

−π

(
ei(p−n)x + e−i(p+n)x

)
dx.

Evaluating the integrals yields:

f̂ (n) =
1

4π

[
ei(p−n)π − e−i(p−n)π

i(p − n)
+

e−i(p+n)π − ei(p+n)π

−i(p + n)

]
.

Using einπ = (−1)n, this simplifies to:

f̂ (n) =
(−1)n sin(pπ)

π

(
1

p − n
+

1
p + n

)
1
2
=

(−1)n p sin(pπ)

π(p2 − n2)
.

Since ∑ | f̂ (n)| < ∞ (decay is O(n−2)), the Fourier series converges
uniformly to cos(px) on [−π, π]:

cos(px) =
sin(pπ)

π

[
1
p
+ ∑

n ̸=0

(−1)n p
p2 − n2 einx

]
.

Grouping positive and negative n, we obtain the cosine series:

cos(px) =
2p sin(pπ)

π

[
1

2p2 +
∞

∑
n=1

(−1)n

p2 − n2 cos(nx)

]
. (7.1)

Setting x = π in eq. (7.1), and noting cos(nπ) = (−1)n:

cos(pπ) =
2p sin(pπ)

π

[
1

2p2 +
∞

∑
n=1

1
p2 − n2

]
.

Dividing by sin(pπ) (valid since p /∈ Z), we derive the partial frac-
tion decomposition of the cotangent:

π cot(pπ) =
1
p
+

∞

∑
n=1

2p
p2 − n2 =

1
p
+

∞

∑
n=1

(
1

p − n
+

1
p + n

)
. (7.2)

This identity holds for all p ∈ R \ Z. To obtain the product formula
for the sine function, we integrate eq. (7.2) with respect to p from 0
to x. For small p, π cot(pπ) − 1/p ≈ π(1/(πp) − πp/3) − 1/p =

−π2 p/3, which is bounded. Thus we integrate:∫ x

0

(
π cot(πp)− 1

p

)
dp =

∞

∑
n=1

∫ x

0

2p
p2 − n2 dp.
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The left side is [ln(sin(πp))− ln p]x0 = ln
(

sin(πx)
πx

)
(taking the limit

at 0). The right side is ∑∞
n=1 ln

(
1 − x2

n2

)
. Exponentiating both sides

yields Euler’s infinite product formula:

sin(πx)
πx

=
∞

∏
n=1

(
1 − x2

n2

)
.

Theorem 7.2. Wallis’ Product Formula.
π

2
=

∞

∏
n=1

2n
2n − 1

· 2n
2n + 1

=
2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · ·

定理

Proof

Set x = 1/2 in Euler’s product formula.

sin(π/2)
π/2

=
1

π/2
=

∞

∏
n=1

(
1 − 1

4n2

)
=

∞

∏
n=1

4n2 − 1
4n2 .

Inverting the expression:

π

2
=

∞

∏
n=1

4n2

4n2 − 1
=

∞

∏
n=1

(2n)2

(2n − 1)(2n + 1)
.

This matches the stated product.
■

7.3 The Isoperimetric Inequality

We now turn to a classical problem in geometry: among all simple
closed curves of a fixed length L, which one encloses the maximal
area? Intuition suggests the circle is the unique solution. We prove
this using the orthogonality of the trigonometric system.

Geometric Preliminaries

We define a parameterised curve γ as a C1 map γ : [a, b] → R2, de-
noted γ(t) = (x(t), y(t)). The curve is simple if it does not intersect
itself (except at the endpoints) and closed if γ(a) = γ(b).
The length L of the curve is given by:

L =
∫ b

a

√
x′(t)2 + y′(t)2 dt.

We may always reparameterise the curve by its arc length s. If we
scale the domain such that s ∈ [0, 2π], the constant speed condition
implies:

x′(s)2 + y′(s)2 =

(
L

2π

)2
. (7.3)
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The area A enclosed by γ is determined by Green’s Theorem. A
convenient symmetric form is:

A =
1
2

∫ 2π

0
(x(s)y′(s)− y(s)x′(s)) ds. (7.4)

Theorem 7.3. The Isoperimetric Inequality.
Let Γ be a simple closed C1 curve of length L enclosing an area A. Then:

A ≤ L2

4π
.

Equality holds if and only if Γ is a circle.
定理

Proof

1. Rescaling. Let us define a scaling factor λ = 2π/L. The map
(x, y) 7→ (λx, λy) scales length by λ and area by λ2. If we prove
the inequality for a curve of length 2π (where A′ ≤ π), the gen-
eral case follows:

λ2 A ≤ π =⇒
(

2π

L

)2
A ≤ π =⇒ A ≤ L2

4π
.

Thus, without loss of generality, assume L = 2π.

2. Fourier Representation. Let γ(s) = (x(s), y(s)) be param-
eterised by arc length on [0, 2π]. The arc length condition
x′(s)2 + y′(s)2 = 1 implies:

1
2π

∫ 2π

0
(x′(s)2 + y′(s)2) ds = 1. (7.5)

We expand x(s) and y(s) in Fourier series:

x(s) ∼ ∑ aneins, y(s) ∼ ∑ bneins.

Since x, y are real, a−n = an and b−n = bn. The derivatives
have coefficients inan and inbn. Applying Parseval’s Identity
(theorem 5.3) to eq. (7.5):

∞

∑
n=−∞

|n|2(|an|2 + |bn|2) = 1. (7.6)

3. Area Estimation. Using the Generalised Parseval Identity (chap-
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ter 5) on the area formula eq. (7.4):

A =
1
2

∫ 2π

0
(xy′ − yx′) ds

= π
∞

∑
n=−∞

(
an(inbn)− bn(inan)

)
= π

∞

∑
n=−∞

(−inanbn + inbnan)

= π
∞

∑
n=−∞

ni(bnan − anbn).

Observe that bnan − anbn is purely imaginary (it is z − z̄ =

2iIm(z)). Thus the sum yields a real value, as expected. We
apply the algebraic inequality |z − z̄| ≤ 2|z| and 2|anbn| ≤
|an|2 + |bn|2:

|ni(bnan − anbn)| ≤ 2|n||an||bn| ≤ |n|(|an|2 + |bn|2).

Therefore:

A ≤ π
∞

∑
n=−∞

|n|(|an|2 + |bn|2). (7.7)

4. The Inequality. We compare the series for the length constraint
(eq. (7.6)) and the area bound (eq. (7.7)).

L2

4π
− A = π − A ≥ π

∞

∑
n=−∞

(n2 − |n|)(|an|2 + |bn|2).

Since n2 − |n| = |n|(|n| − 1) ≥ 0 for all integers n, the right-hand
side is non-negative. Thus π − A ≥ 0, or A ≤ π.

5. Equality Case. For A = π, we require the term (n2 − |n|)(|an|2 +
|bn|2) to vanish for all n.

• For |n| ≥ 2, n2 − |n| > 0, so we must have an = bn = 0.

• For n = 0, the term vanishes automatically.

• For |n| = 1, the term vanishes.

Thus, x(s) and y(s) must be trigonometric polynomials of degree
1:

x(s) = a0 + a1eis + a−1e−is, y(s) = b0 + b1eis + b−1e−is.

Since x, y are real, a−1 = a1. This implies:

x(s) = a0 + 2Re(a1eis) = a0 + α cos(s) + β sin(s).



98 gudfit

Similarly for y(s). From the constraint eq. (7.6), only n = ±1
terms contribute (since an = bn = 0 for |n| ≥ 2):

12(|a1|2 + |b1|2)+ (−1)2(|a−1|2 + |b−1|2) = 1 =⇒ 2(|a1|2 + |b1|2) = 1.

Using the area equality condition 2|a1||b1| = |a1|2 + |b1|2 (from
the arithmetic-geometric mean inequality used in step 3), we find
|a1| = |b1| = 1/2. The geometric constraints imply x(s) and y(s)
define a circle parameterised by arc length.

■

A < π

Circle

Fixed L = 2π

Figure 7.1: The Isoperimetric
Inequality: For a fixed perime-
ter L, the circle maximizes the
enclosed area A.

This proof relies entirely on the fact that the Fourier coefficients diag-
onalize the derivative operator ( d

ds 7→ in), allowing algebraic compari-
son of the "energy" of the derivative (Length) and the "correlation" of
coordinates (Area).

Wirtinger’s Inequality

The core analytic engine driving the isoperimetric proof is the spec-
tral gap between the constant function (n = 0) and the first harmonic
(n = 1). This principle is encapsulated independently as Wirtinger’s
Inequality.

Proposition 7.2. Wirtinger’s Inequality.
Let f be a 2π-periodic C1 function with mean zero, i.e.,

∫ π
−π f (x) dx =

0. Then: ∫ π

−π
| f (x)|2 dx ≤

∫ π

−π
| f ′(x)|2 dx.

Equality holds if and only if f (x) = A cos x + B sin x.
命題

Proof

Since f has mean zero, the Fourier coefficient f̂ (0) = 0. By Parse-
val’s identity:

∥ f ∥2
2 = 2π ∑

n ̸=0
| f̂ (n)|2.

The Fourier series of the derivative f ′ has coefficients in f̂ (n). Thus:

∥ f ′∥2
2 = 2π ∑

n ̸=0
|in f̂ (n)|2 = 2π ∑

n ̸=0
n2| f̂ (n)|2.

Since n is a non-zero integer, n2 ≥ 1. It follows immediately that:

∑
n ̸=0

| f̂ (n)|2 ≤ ∑
n ̸=0

n2| f̂ (n)|2.

Equality holds if and only if coefficients for |n| > 1 are zero, mean-
ing f contains only frequencies n = ±1.

■
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7.4 Weyl’s Equidistribution Theorem

Consider the sequence formed by the multiples of a real number γ:
γ, 2γ, 3γ, . . . . We are interested in the behaviour of this sequence
modulo the integers.

Definition 7.2. Fractional Part.
For any x ∈ R, we define the integer part of x, denoted [x], as the great-
est integer less than or equal to x. The fractional part of x is defined
as:

⟨x⟩ = x − [x].

By definition, ⟨x⟩ ∈ [0, 1) for all x ∈ R.
定義

Reducing a sequence modulo Z isolates its fractional parts. If we
define the equivalence relation x ≡ y (mod Z) if x − y ∈ Z, then
every real number is congruent to a unique number in [0, 1).
The sequence of fractional parts ⟨nγ⟩ exhibits a dichotomy based on
the rationality of γ:
1. If γ ∈ Q, say γ = p/q in lowest terms, the sequence is peri-

odic with period q. The sequence visits exactly q distinct points:
⟨p/q⟩, ⟨2p/q⟩, . . . , ⟨(q − 1)p/q⟩, 0.

2. If γ /∈ Q, the elements ⟨nγ⟩ are distinct for all n. If ⟨n1γ⟩ = ⟨n2γ⟩,
then (n1 − n2)γ ∈ Z, which implies γ ∈ Q, a contradiction.

Leopold Kronecker proved that for irrational γ, the sequence is not
only distinct but dense in [0, 1). In 1916, Hermann Weyl significantly
strengthened this result by showing the sequence is not merely
dense, but perfectly uniform. To formalise this, we introduce the
concept of equidistribution.

Definition 7.3. Equidistributed Sequence.
A sequence of real numbers {ξn}∞

n=1 in [0, 1) is said to be equidistributed
if for every sub-interval (a, b) ⊂ [0, 1),

lim
N→∞

#{1 ≤ n ≤ N : ξn ∈ (a, b)}
N

= b − a.

定義

In other words, the proportion of terms falling into any interval con-
verges to the length of that interval. The sequence sweeps out the
interval evenly.

0 1

N = 10

N = 30

N = 80

Figure 7.2: The sequence ⟨n
√

2⟩
for n = 1, . . . , N. As N in-
creases, the points fill the in-
terval [0, 1) with remarkable
uniformity.

Weyl’s Criterion and Ergodicity

To analyse the counting condition in the definition of equidistribu-
tion, we rephrase it analytically. Let χ(a,b)(x) be the characteristic
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function of the interval (a, b), extended periodically to R with period
1. The number of terms in (a, b) is exactly the sum of the character-
istic function evaluated at the sequence points. Thus, the condition
becomes:

lim
N→∞

1
N

N

∑
n=1

χ(a,b)(nγ) =
∫ 1

0
χ(a,b)(x) dx. (7.8)

This equation states that the "time average" (the arithmetic mean
along the sequence) equals the "space average" (the integral over the
domain). This equivalence is the foundation of ergodic theory.
The strategy is to prove eq. (7.8) for the simplest periodic functions
(trigonometric polynomials) using Fourier series, extend it to contin-
uous functions via the Weierstrass Approximation Theorem (chap-
ter 4), and finally to characteristic functions via Riemann integrability.

Lemma 7.1. Ergodicity for Continuous Functions.
If f is continuous and periodic of period 1, and γ is irrational, then

lim
N→∞

1
N

N

∑
n=1

f (nγ) =
∫ 1

0
f (x) dx.

引理

We proceed in three steps. Note that since the period is 1, the funda-
mental exponentials are of the form e2πikx rather than einx.

Step 1: The Exponential Monomials.

Let f (x) = e2πikx for some k ∈ Z. If k = 0, f (x) = 1. The sum
is 1

N ∑N
n=1 1 = 1, and the integral is

∫ 1
0 1 dx = 1. The identity holds

trivially. If k ̸= 0, the integral is
∫ 1

0 e2πikx dx = 0. We must show the
sum vanishes. The sum is a geometric series with ratio r = e2πikγ.
Since γ is irrational and k ̸= 0, kγ is not an integer, so r ̸= 1.

1
N

N

∑
n=1

e2πiknγ =
1
N

e2πikγ 1 − e2πikNγ

1 − e2πikγ
.

The numerator of the fraction is bounded in modulus by 2. The
denominator is a non-zero constant independent of N. Therefore,
the entire expression is O(1/N) and converges to 0 as N → ∞.

証明終

Step 2: Trigonometric Polynomials.

By the linearity of the limit and the integral, the result holds for
any finite linear combination of the form P(x) = ∑M

k=−M cke2πikx.
証明終

Step 3: Continuous Functions.

Let f be continuous and periodic, and let ϵ > 0. By the Weierstrass
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Approximation Theorem, trigonometric polynomials are dense in
the space of continuous periodic functions. Hence, there exists a
trigonometric polynomial P(x) such that supx | f (x)− P(x)| < ϵ/3.
Using the triangle inequality, we bound the error:∣∣∣∣∣ 1

N

N

∑
n=1

f (nγ)−
∫ 1

0
f (x) dx

∣∣∣∣∣ ≤ 1
N

N

∑
n=1

| f (nγ)− P(nγ)|

+

∣∣∣∣∣ 1
N

N

∑
n=1

P(nγ)−
∫ 1

0
P(x) dx

∣∣∣∣∣
+
∫ 1

0
|P(x)− f (x)| dx.

The first and third terms are each strictly bounded by ϵ/3 due to
the uniform approximation. By Step 2, the middle term converges
to 0, so for sufficiently large N, it is also less than ϵ/3. Thus the
total difference is less than ϵ, establishing the limit.

証明終

The logic of Step 1 provides a complete characterisation of equidistri-
bution known as Weyl’s Criterion. A sequence ξn is equidistributed
if and only if for all non-zero integers k:

lim
N→∞

1
N

N

∑
n=1

e2πikξn = 0.

This transforms a counting problem in number theory into the es-
timation of "exponential sums", a cornerstone technique in modern
analytic number theory.

Approximation of Characteristic Functions

We now extend lemma 7.1 to prove the main theorem by approximat-
ing the discontinuous characteristic function χ(a,b) with continuous
functions.

Theorem 7.4. Weyl’s Equidistribution Theorem.
If γ is an irrational number, then the sequence of fractional parts ⟨nγ⟩
is equidistributed in [0, 1).

定理

Proof

Let (a, b) ⊂ [0, 1) be a fixed interval. We approximate χ(a,b) from
above and below by continuous functions f+ϵ and f−ϵ .
Choose ϵ > 0 small enough such that a + ϵ < b − ϵ. Define f−ϵ to
be 1 on [a + ϵ, b − ϵ], 0 outside (a, b), and linear on the boundary in-
tervals [a, a + ϵ] and [b − ϵ, b]. Similarly, define f+ϵ to be 1 on [a, b], 0

outside [a − ϵ, b + ϵ], and linear on the transition intervals.
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By construction:

f−ϵ (x) ≤ χ(a,b)(x) ≤ f+ϵ (x) for all x ∈ [0, 1).

Furthermore, calculating the areas of these trapezoidal functions:∫ 1

0
f−ϵ (x) dx = (b − a)− ϵ,

∫ 1

0
f+ϵ (x) dx = (b − a) + ϵ.

Let SN = 1
N ∑N

n=1 χ(a,b)(nγ). Due to the pointwise inequalities:

1
N

N

∑
n=1

f−ϵ (nγ) ≤ SN ≤ 1
N

N

∑
n=1

f+ϵ (nγ).

Since f±ϵ are continuous, lemma 7.1 applies. Taking the limit supe-
rior and limit inferior as N → ∞:

(b − a)− ϵ ≤ lim inf
N→∞

SN ≤ lim sup
N→∞

SN ≤ (b − a) + ϵ.

Since ϵ is arbitrary, the limits converge to b − a.
■

x

χ(a,b)

f−ϵ
f+ϵ

a b

Figure 7.3: Approximation of
the characteristic function χ(a,b)
from above ( f+ϵ ) and below ( f−ϵ )
by continuous trapezoidal func-
tions.

Corollary 7.1. Ergodicity for Riemann Integrable Functions. The conclu-
sion of lemma 7.1 holds for any function f that is Riemann integrable
on [0, 1] and periodic of period 1.

推論

Proof

A Riemann integrable function can be approximated from above
and below by step functions (Darboux sums). Since characteristic
functions of intervals satisfy the equidistribution property, linear
combinations of them (step functions) do as well. The result follows
by the same squeezing argument used in theorem 7.4.

■

Geometric Interpretation: Billiards in a Square

The equidistribution theorem possesses a natural geometric interpre-
tation in the theory of dynamical billiards. Consider a square table
with sides of length 1, acting as perfect reflecting mirrors. A ray of
light is emitted from an internal point at a trajectory with slope γ.
By "unfolding" the reflections, the trajectory of the light ray can be
represented as a straight line y = γx + c passing through a grid of
unit squares in the plane. The position of the ray modulo 1 corre-
sponds exactly to the sequence ⟨nγ⟩.
If the slope γ is rational, the line will eventually pass through equiv-
alent points on the grid, meaning the trajectory is periodic and forms
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a closed loop. If γ is irrational, Kronecker’s theorem ensures the
trajectory never closes and eventually passes arbitrarily close to ev-
ery point in the square. Weyl’s Equidistribution Theorem provides
a significantly deeper statement: the ray of light does not just visit
every region, it spends an amount of time in any region of the square
precisely proportional to the area of that region.

0 1

1

Unfolded ray y = γx + c

Figure 7.4: Reflection of a light
ray in a square. Unfolding the
reflections into a grid translates
the physical bouncing into the
sequence of fractional parts ⟨x⟩.
An irrational slope guarantees
the ray is ergodic.

7.5 A Continuous but Nowhere Differentiable Function

Riemann proposed the function R(x) = ∑∞
n=1

sin(n2x)
n2 as a can-

didate for a nowhere differentiable function, though he did not
provide a proof. Weierstrass subsequently provided the first rig-
orous counterexample in 1872, constructing the function W(x) =

∑∞
n=0 bn cos(anx) for parameters satisfying ab > 1 + 3π/2.

In this section, we construct a similar function using the complex
exponential, which simplifies the algebraic manipulations. We prove
that for a specific decay rate of coefficients, the function is continuous
everywhere but differentiable nowhere.

Theorem 7.5. Weierstrass-Type Function.
Let 0 < α < 1. The function

f (x) =
∞

∑
n=0

2−nαei2nx

is continuous on R but differentiable at no point.
定理

The continuity of f follows immediately from the Weierstrass M-test
(theorem 3.2), as the series is dominated by ∑(2−α)n, a convergent
geometric series. The lack of differentiability arises from the lacunary
nature of the series: the frequencies 2n increase rapidly, leaving large
gaps in the spectrum.
To analyse the differentiability, we introduce a summation method
tailored to these spectral gaps: the delayed means.
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Delayed Means

Recall the Cesàro means of a Fourier series, σN [g] = g ∗ FN , where FN

is the Fejér kernel. The coefficients of σN [g] are obtained by multiply-
ing the Fourier coefficients ĝ(k) by the weight (1 − |k|/N)+.

Definition 7.4. Delayed Means.
For a function g and integer N, the delayed mean ∆N [g] is defined as:

∆N [g](x) = 2σ2N [g](x)− σN [g](x).

In terms of convolution, ∆N [g] = g ∗ (2F2N − FN).
定義

We determine the spectral weights of ∆N . Let the Fourier series of g
be ∑ ckeikx. The operator ∆N multiplies ck by a weight λk:

λk = 2
(

1 − |k|
2N

)+

−
(

1 − |k|
N

)+

.

This piecewise linear function takes the following shape:

λk =


1 |k| ≤ N,

2(1 − |k|
2N ) N < |k| ≤ 2N,

0 |k| > 2N.

This forms a trapezoidal filter in the frequency domain.

k

Weight

N 2N−N−2N

σN ∆N

Figure 7.5: The spectral weights
of the delayed mean ∆N . It acts
as the identity on frequencies
up to N, then decays linearly to
0 at 2N.

Crucially, if the Fourier series of g has gaps (is lacunary), the partial
sums SN and the delayed means ∆N may coincide.

Lemma 7.2. Lacunary Identity.
Let f be the function defined in theorem 7.5. For any integer k ≥ 0, let
N = 2k. Then:

∆N [ f ](x) = SN [ f ](x) =
k

∑
j=0

2−jαei2jx.

引理

Proof

The frequencies present in f are powers of 2: 1, 2, 4, . . . , 2k, 2k+1, . . . .
The weight function of ∆N (where N = 2k) is 1 for frequencies up
to 2k. The decay region of the weight function is (2k, 2k+1). The next
frequency in the series is 2k+1, which lies exactly at the point where
the weight becomes 0. Thus, ∆N preserves all terms up to 2k with
weight 1, and suppresses all terms 2k+1 and higher with weight 0.

■
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Proof of Nowhere Differentiability

The proof relies on establishing a bound for the derivative of the
delayed means of any differentiable function, and then showing that
our specific function f violates this bound.

Lemma 7.3. Logarithmic Derivative Bound.
Let g be a continuous function. If g is differentiable at a point x0, then

d
dx

σN [g](x0) = O(log N) as N → ∞.

Consequently, d
dx ∆N [g](x0) = O(log N).

引理

Proof

Differentiation of the convolution integral yields:

d
dx

σN [g](x0) =
∫ π

−π
g(x0 − t)F′

N(t) dt.

Since
∫

F′
N(t) dt = 0 (integral of a derivative of a periodic function),

we may subtract g(x0)
∫

F′
N = 0:

d
dx

σN [g](x0) =
∫ π

−π
[g(x0 − t)− g(x0)]F′

N(t) dt.

Since g is differentiable at x0, there exists C > 0 such that |g(x0 −
t)− g(x0)| ≤ C|t| for all t. Thus:∣∣∣∣ d

dx
σN [g](x0)

∣∣∣∣ ≤ C
∫ π

−π
|t||F′

N(t)| dt.

We require estimates for the derivative of the Fejér kernel FN(t) =
1
N

sin2(Nt/2)
sin2(t/2)

.

Polynomial Bound: FN is a trigonometric polynomial of degree N
bounded by N. By Bernstein’s inequality (or direct differentia-
tion of coefficients), |F′

N(t)| ≤ 2N2.

Decay Bound: For t ̸= 0, differentiation of the explicit formula
yields |F′

N(t)| ≤
A
t2 for some constant A.
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We split the integral at 1/N:∫ π

−π
|t||F′

N(t)| dt =
∫
|t|≤1/N

|t||F′
N(t)| dt +

∫
1/N≤|t|≤π

|t||F′
N(t)| dt

≤
∫
|t|≤1/N

|t|(2N2) dt +
∫

1/N≤|t|≤π
|t| A

t2 dt

≤ 2N2
[

t2

2

]1/N

−1/N
+ A

∫ π

1/N

1
t

dt

= 2N2 1
N2 + A(log π − log(1/N))

= 2 + A log π + A log N = O(log N).

The result for ∆N follows by linearity: ∆′
N = 2σ′

2N − σ′
N =

O(log 2N) + O(log N) = O(log N).
■

We now complete the proof of theorem 7.5.
Proof of theorem 7.5

Suppose, for the sake of contradiction, that f is differentiable at
some point x0. By lemma 7.2, for N = 2k, the difference between
consecutive delayed means isolates a single term of the series:

∆2N [ f ](x)− ∆N [ f ](x) = S2N [ f ](x)− SN [ f ](x) = 2−(k+1)αei2k+1x.

Let us differentiate this identity at x0. On the left side, using the
hypothesis that f is differentiable at x0 and lemma 7.3:∣∣∣∣ d

dx
∆2N [ f ](x0)−

d
dx

∆N [ f ](x0)

∣∣∣∣ ≤ C log N.

On the right side, direct differentiation yields:

d
dx

(
2−(k+1)αei2k+1x

)
= i2k+12−(k+1)αei2k+1x.

Taking the modulus of this derivative:∣∣∣i2(k+1)(1−α)ei2k+1x0
∣∣∣ = 2(k+1)(1−α).

Since N = 2k, we have 2k+1 = 2N. The term grows as (2N)1−α.
Combining these estimates, we arrive at the inequality:

(2N)1−α ≤ C log N.

Since 0 < α < 1, the exponent 1 − α is positive. A power function
N1−α grows strictly faster than log N as N → ∞. This yields a con-
tradiction for sufficiently large N. Thus, f is not differentiable at x0.

■
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Remark.

While we used the complex exponential form for simplicity, the
real part of this function, ∑ 2−nα cos(2nx), is also nowhere differen-
tiable. The proof requires a modification of lemma 7.3 to bound the
derivative at x0 + h and a strategic choice of h to maximize the co-
sine term, but the underlying mechanism—the spectral gap allows
the high frequencies to dominate the local geometry—remains the
same.

7.6 The Heat Equation on the Circle

We conclude this chapter by returning to the physical problem that
motivated Fourier’s original work: the diffusion of heat. While
Fourier initially considered propagation in solid bodies, we anal-
yse the simplest periodic case: heat distribution on a thin circular
ring.
The ring is modelled as the unit interval [0, 1] with endpoints iden-
tified (or equivalently, the real line modulo 1). Let u(x, t) denote the
temperature at position x ∈ [0, 1) and time t ≥ 0. The evolution of the
temperature is governed by the heat equation:

∂u
∂t

=
∂2u
∂x2 . (7.9)

(We have normalized the thermal diffusivity constant to 1 by rescal-
ing time). We are given an initial temperature distribution u(x, 0) =

f (x), where f is a periodic function of period 1.
Using the method of separation of variables (as introduced in chap-
ter 1), we seek solutions of the form u(x, t) = A(x)B(t). This leads to
the coupled equations:

B′(t)
B(t)

=
A′′(x)
A(x)

= λ.

The periodicity of A(x) restricts the separation constant λ to the
values −4π2n2 for n ∈ Z, with eigenfunctions e2πinx. Solving for B(t)
yields e−4π2n2t. By linearity, the general formal solution is:

u(x, t) =
∞

∑
n=−∞

cne−4π2n2te2πinx. (7.10)

Setting t = 0, we identify cn as the Fourier coefficients of the initial
data f :

cn = f̂ (n) =
∫ 1

0
f (y)e−2πiny dy.
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The Heat Kernel

Just as the solution to the Dirichlet problem on the disc was ex-
pressed as the convolution of the boundary data with the Poisson
kernel, the solution to the heat equation is the convolution of the
initial data with the Heat kernel.
We can rewrite eq. (7.10) by interchanging the sum and the integral
(justified for t > 0 by the rapid decay of the Gaussian factor):

u(x, t) =
∞

∑
n=−∞

(∫ 1

0
f (y)e−2πiny dy

)
e−4π2n2te2πinx

=
∫ 1

0
f (y)

(
∞

∑
n=−∞

e−4π2n2te2πin(x−y)

)
dy

= ( f ∗ Ht)(x).

Definition 7.5. Heat Kernel.
The periodic heat kernel Ht(x) for t > 0 is defined by the series:

Ht(x) =
∞

∑
n=−∞

e−4π2n2te2πinx.

定義

This kernel shares the fundamental "smoothing" properties of the
Poisson kernel, but with a stronger decay rate.

Proposition 7.3. Properties of the Heat Solution.

1. Smoothness: For any t > 0, the function u(x, t) is C∞ in x and t,
even if the initial data f is discontinuous.

2. Convergence: If f is continuous, lim
t→0+

u(x, t) = f (x) uniformly.

3. Mean-Square: If f is merely square-integrable, the convergence holds
in the L2 norm.

命題

Proof

(1) The term nke−4π2n2t tends to 0 as |n| → ∞ for any k. Thus, the
series of derivatives converges uniformly.
(2) This follows if {Ht}t>0 forms a family of good kernels as
t → 0+. While the normalization (

∫
Ht = Ĥt(0) = 1) is imme-

diate, the positivity and concentration properties are non-trivial to
prove from the Fourier series definition alone. We will rigorously
establish these properties in the next chapter using the Poisson
Summation Formula.
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(3) By Parseval’s identity:

∥u(·, t)− f ∥2
2 =

∞

∑
n=−∞

| f̂ (n)|2|e−4π2n2t − 1|2.

Since each term vanishes as t → 0 and is dominated by 4| f̂ (n)|2, the
result follows from the Dominated Convergence Theorem for series.

■

Remark.

The positivity of Ht(x) is physically intuitive. Heat flows from hot
to cold. If we start with a non-negative temperature distribution
f ≥ 0, the temperature u(x, t) should remain non-negative for all
time. Since u = f ∗ Ht, if Ht were negative in some region, one
could construct an initial f concentrated in that region that pro-
duces a negative temperature, violating physical principles. This
heuristic is confirmed mathematically: Ht(x) is strictly positive
everywhere.

7.7 Exercises

1. Calculating Bernoulli Polynomials. Using the recursive defini-
tion, compute the explicit form of the Bernoulli polynomials B3(x)
and B4(x). Verify that

∫ 1
0 Bn(x) dx = 0 for these cases.

2. Sums of Reciprocals. Use the formula for ζ(2m) to evaluate the
following series:

(a) ∑∞
n=1

1
n6 .

(b) ∑∞
n=1

(−1)n+1

n2 .

3. Product Expansions.

(a) By integrating the cotangent series, derive the product for-
mula for cos(πx):

cos(πx) =
∞

∏
n=1

(
1 − 4x2

(2n − 1)2

)
.

(b) Use this product to calculate ∏∞
n=1

(
1 − 1

(2n−1)2

)
.

4. Geometric Optimisation.

(a) Use the isoperimetric inequality to prove that among all rect-
angles of a fixed perimeter P, the square has the maximum
area.

(b) Can you use Wirtinger’s inequality to prove that if f (0) =

f (π) = 0 and
∫ π

0 ( f ′)2 dx = 1, then
∫ π

0 f 2 dx ≤ 1?
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5. Weyl’s Criterion Practice.

(a) Prove that if α is rational, say p/q, the sequence {nα} is not
equidistributed in [0, 1).

(b) Let α be irrational. Prove that the sequence of points ({nα}, {n2α})
is equidistributed in the unit square [0, 1)2.

Remark.

This requires the multidimensional version of Weyl’s crite-
rion involving exponentials e2πi(k1x+k2y).

6. Spectral Gaps. Let f (x) = ∑∞
k=1 ak sin(3kx) with ∑ |ak| < ∞. Show

that the Fourier series of f has large gaps. Can you determine if f
is differentiable at x = 0 if ak = 2−k?

7. Heat Evolution. Let the initial temperature distribution on the
circle be f (x) = cos(2πx).

(a) Write down the solution u(x, t) to the heat equation.

(b) At what time t > 0 does the maximum temperature drop to
1/e of its initial value?



8
The Fourier Integral

We established that if a function f satisfies specific regularity condi-
tions (such as differentiability or the Dini criterion), it can be repre-
sented as a discrete superposition of sinusoids:

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

nπ

l
x + bn sin

nπ

l
x
)

. (8.1)

If f is defined on the entire real line R and is absolutely integrable,
we may attempt to apply this theory by restricting f to [−l, l]. How-
ever, as l → ∞, the frequency spacing π/l tends to zero, suggesting a
transition from a discrete summation to a continuous integral.
To obtain a unified representation for non-periodic functions on
(−∞, ∞), we introduce the Fourier Integral. This transition effectively
replaces the integer index n with a continuous frequency parameter
u, and the coefficients an, bn with continuous functions a(u), b(u).

8.1 Integral Representation

Let f be a function defined on R that is absolutely integrable, i.e.,
f ∈ L1(R). Motivated by the coefficients of the Fourier series, we
define the following integral transforms for any real number u:

a(u) =
1
π

∫ +∞

−∞
f (t) cos(ut) dt, b(u) =

1
π

∫ +∞

−∞
f (t) sin(ut) dt. (8.2)

Since f is absolutely integrable and | cos(ut)| ≤ 1, these integrals are
absolutely convergent. Analogous to the Fourier series, we form the
Fourier integral of f :

f (x) ∼
∫ +∞

0
(a(u) cos(ux) + b(u) sin(ux)) du. (8.3)

The convergence of this integral to f (x) is not guaranteed by the
definition alone. To establish rigorous convergence criteria, we first
analyse the analytic properties of the coefficient functions a(u) and
b(u).
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Theorem 8.1. Uniform Continuity of Coefficients.
Let f be absolutely integrable on (−∞,+∞). Then the functions a(u)
and b(u) defined in eq. (8.2) are uniformly continuous on R.

定理

Proof

We provide the proof for a(u); the proof for b(u) is identical. Let
ϵ > 0. Since f ∈ L1(R), there exists a sufficiently large A > 0 such
that the tails of the integral are negligible:∫ −A

−∞
| f (t)| dt +

∫ +∞

A
| f (t)| dt <

πϵ

4
.

We now consider the integral over the compact interval [−A, A].
The function cos(x) is uniformly continuous on R. Therefore, there
exists η > 0 such that |z1 − z2| < η implies | cos z1 − cos z2| < δ′,
where δ′ satisfies:

δ′
(

1
π

∫ A

−A
| f (t)| dt

)
<

ϵ

2
.

Let δ = η/A. For any u′, u′′ ∈ R with |u′ − u′′| < δ, and for any t ∈
[−A, A], we have:

|u′t − u′′t| = |t||u′ − u′′| ≤ Aδ = η.

Consequently, | cos(u′t)− cos(u′′t)| < δ′.
We estimate the difference |a(u′)− a(u′′)| by splitting the domain of
integration:

|a(u′)− a(u′′)| =
∣∣∣∣ 1
π

∫ +∞

−∞
f (t)(cos(u′t)− cos(u′′t)) dt

∣∣∣∣
≤ 1

π

∫ −A

−∞
| f (t)| · 2 dt +

1
π

∫ +∞

A
| f (t)| · 2 dt

+
1
π

∫ A

−A
| f (t)|| cos(u′t)− cos(u′′t)| dt.

Using our bounds, the tail contributions sum to less than 2
π (

πϵ
4 ) =

ϵ
2 . The central integral is bounded by ϵ

2 . Thus, |a(u′) − a(u′′)| < ϵ,
proving uniform continuity.

■
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8.2 Convergence of the Fourier Integral

To study the pointwise convergence, we consider the partial integral
over frequencies [0, λ]:

S(λ, x) =
∫ λ

0
(a(u) cos(ux) + b(u) sin(ux)) du. (8.4)

Substituting the definitions of a(u) and b(u) and utilizing the identity
cos(ut) cos(ux) + sin(ut) sin(ux) = cos(u(x − t)), we obtain:

S(λ, x) =
1
π

∫ λ

0

{∫ +∞

−∞
f (t) cos(u(x − t)) dt

}
du. (8.5)

We aim to express this in a form similar to the Dirichlet integral for
Fourier series. This requires interchanging the order of integration.

Theorem 8.2. Dirichlet Form of the Fourier Integral.
Let f be absolutely integrable on (−∞,+∞). For any λ > 0:

S(λ, x) =
1
π

∫ +∞

0
( f (x + t) + f (x − t))

sin(λt)
t

dt.

定理

Proof

The crucial step is to justify the exchange of integration order in
eq. (8.5). We must show:∫ λ

0

∫ +∞

−∞
f (t) cos(u(x − t)) dt du =

∫ +∞

−∞

∫ λ

0
f (t) cos(u(x − t)) du dt.

(8.6)
Let A > 0. On the compact rectangle [0, λ]× [−A, A], Fubini’s theo-
rem (or standard calculus of double integrals) guarantees:∫ λ

0

∫ A

−A
f (t) cos(u(x − t)) dt du =

∫ A

−A

∫ λ

0
f (t) cos(u(x − t)) du dt.

Since f ∈ L1(R), for any ϵ > 0 there exists A0 such that for A > A0,
the tails

∫
|t|>A | f (t)| dt < ϵ/λ. The difference between the inte-

gral over (−∞, ∞) and [−A, A] for the left-hand side of eq. (8.6) is
bounded by:∫ λ

0

∫
|t|>A

| f (t)|| cos(u(x − t))| dt du ≤
∫ λ

0

ϵ

λ
du = ϵ.

Thus, as A → ∞, the integrals converge uniformly. This justifies
eq. (8.6).
Evaluating the inner integral with respect to u:∫ λ

0
cos(u(x − t)) du =

sin(λ(x − t))
x − t

.
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Substituting this back:

S(λ, x) =
1
π

∫ +∞

−∞
f (t)

sin(λ(x − t))
x − t

dt.

Making the substitution v = t − x (and exploiting the symmetry of
the kernel):

S(λ, x) =
1
π

∫ +∞

−∞
f (x + v)

sin(λv)
−v

dv =
1
π

∫ +∞

−∞
f (x + v)

sin(λv)
v

dv.

Splitting the integral into (−∞, 0) and (0, ∞) and combining terms
yields the result.

■

We are now in a position to state the Localization Principle for the
entire real line, which mirrors ??.

Theorem 8.3. Localization Theorem.
Let f be absolutely integrable on R. The convergence of the Fourier in-
tegral at a point x and its limit depend solely on the values of f in an
arbitrarily small neighbourhood of x.

定理

Proof

Consider the expression for S(λ, x) derived above. For any A0 > 0,
we split the integration domain into [0, A0] and [A0, ∞). For the
tail integral, we observe that for t > A0, the kernel is bounded:
| sin λt

t | ≤ 1
A0

. Since f ∈ L1, the function g(t) = f (x+t)+ f (x−t)
t is

absolutely integrable on [A0, ∞). By the Riemann-Lebesgue Lemma
(theorem 1.1), as λ → ∞:∫ +∞

A0

( f (x + t) + f (x − t))
sin λt

t
dt → 0.

Thus, the limit of S(λ, x) depends entirely on the behaviour of the
integral over [0, A0].

■

This localization allows us to transplant Dini’s convergence test di-
rectly from the theory of Fourier series (theorem 2.2).

Theorem 8.4. Convergence of the Fourier Integral.
Let f ∈ L1(R). If f is differentiable at x, or more generally satisfies
the Dini condition at x, then the Fourier integral converges to the value
of f at x:

f (x) =
1
π

∫ +∞

0
du
∫ +∞

−∞
f (t) cos(u(x − t)) dt.

If f has a jump discontinuity at x but satisfies the one-sided Dini con-
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ditions, the integral converges to f (x+)+ f (x−)
2 .

定理

8.3 Sine and Cosine Transforms

The general Fourier integral formula simplifies significantly if f
possesses symmetry. From eq. (8.2):
1. If f is an even function, b(u) = 0 and a(u) = 2

π

∫ ∞
0 f (t) cos(ut) dt.

The integral representation becomes the Fourier Cosine Formula:

f (x) =
2
π

∫ +∞

0
cos(ux)

(∫ +∞

0
f (t) cos(ut) dt

)
du. (8.7)

2. If f is an odd function, a(u) = 0 and b(u) = 2
π

∫ ∞
0 f (t) sin(ut) dt.

This yields the Fourier Sine Formula:

f (x) =
2
π

∫ +∞

0
sin(ux)

(∫ +∞

0
f (t) sin(ut) dt

)
du. (8.8)

These formulas allow us to define the Fourier transform for functions
defined only on [0, ∞) by extending them evenly or oddly to the
whole line.

Example 8.1. The Dirichlet Integral. Consider the box function (or
rectangular pulse) defined by:

f (x) =

1, |x| ≤ 1,

0, |x| > 1.

This function is even and absolutely integrable. We compute its
cosine coefficient a(u):

a(u) =
2
π

∫ +∞

0
f (t) cos(ut) dt =

2
π

∫ 1

0
cos(ut) dt =

2
π

sin u
u

.

The coefficient b(u) is identically zero. For any point x where f is
continuous (i.e., |x| ̸= 1), the convergence theorem implies:

f (x) =
∫ +∞

0

2
π

sin u
u

cos(ux) du.

Rearranging this, we obtain the value of the integral:

∫ +∞

0

sin u cos(ux)
u

du =
π

2
f (x) =

π
2 , |x| < 1,

0, |x| > 1.
(8.9)

At the points of discontinuity x = ±1, the integral converges to the
average 1

2 ( f (1+) + f (1−)) = 1
2 . Thus:∫ +∞

0

sin u cos u
u

du =
π

4
.
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Setting x = 0, we recover the classical Dirichlet integral:∫ +∞

0

sin u
u

du =
π

2
.

範例

u

a(u)

sin u
u

The transform of the box function.

Figure 8.1: The coefficient func-
tion a(u) for the box function
decays as 1/u, illustrating the
duality between spatial confine-
ment and spectral decay.

Remark (Symmetric Form).

Frequently, the factors of π are redistributed to obtain a symmetric

form. If we define the transform g(u) =
√

2
π

∫ ∞
0 f (t) cos(ut) dt,

then the inversion formula becomes f (x) =
√

2
π

∫ ∞
0 g(u) cos(ux) du.

8.4 Reciprocity of the Sine and Cosine Transforms

The formulas derived in eq. (8.7) and eq. (8.8) exhibit a striking struc-
tural symmetry. If we distribute the normalization factor 2/π sym-
metrically as

√
2/π, we obtain a pair of reciprocal transformations.

Definition 8.1. Fourier Cosine and Sine Transforms.
Let f be an integrable function on [0, ∞). The Fourier Cosine Trans-
form, denoted Fc[ f ] or g(u), is defined by:

g(u) =

√
2
π

∫ +∞

0
f (t) cos(ut) dt.

The Fourier Sine Transform, denoted Fs[ f ] or h(u), is defined by:

h(u) =

√
2
π

∫ +∞

0
f (t) sin(ut) dt.

定義

From the integral representations established in the previous section,
the inversion formulas are identical to the forward transforms:

f (x) =

√
2
π

∫ +∞

0
g(u) cos(xu) du, (8.1)

f (x) =

√
2
π

∫ +∞

0
h(u) sin(xu) du. (8.2)

This duality implies that applying the transformation twice (with the
appropriate variable substitution) recovers the original function.

Example 8.2. Transforms of the Exponential Decay. Consider the
function f (x) = e−βx for x > 0, where β > 0. We compute the
cosine transform g(u):

g(u) =

√
2
π

∫ +∞

0
e−βt cos(ut) dt.

Using integration by parts or the real part of
∫

e(−β+iu)t dt, we
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obtain: ∫ +∞

0
e−βt cos(ut) dt =

β

β2 + u2 .

Thus:

Fc[e−βx](u) =

√
2
π

β

β2 + u2 .

Similarly, the sine transform h(u) is:

h(u) =

√
2
π

∫ +∞

0
e−βt sin(ut) dt =

√
2
π

u
β2 + u2 .

Applying the inverse formulas yields two fundamental definite
integrals (Laplace integrals):∫ +∞

0

cos(xu)
β2 + u2 du =

π

2β
e−βx,

∫ +∞

0

u sin(xu)
β2 + u2 du =

π

2
e−βx.

These identities are valid for x > 0, β > 0.

範例

Example 8.3. Solution of an Integral Equation. Consider the prob-
lem of finding a function g(u) that satisfies the integral equation:∫ +∞

0
g(u) sin(xu) du = f (x),

where f (x) is defined by:

f (x) =

π
2 sin x 0 ≤ x ≤ π,

0 x > π.

We observe that the integral equation can be rewritten as a Fourier
sine inversion: √

2
π

∫ +∞

0
g(u) sin(xu) du =

√
2
π

f (x).

Thus,
√

2/π f (x) is the sine transform of g(u). By the reciprocity of
the sine transform, g(u) is the sine transform of

√
2/π f (x):

g(u) =

√
2
π

∫ +∞

0

(√
2
π

f (t)

)
sin(ut) dt =

2
π

∫ π

0

π

2
sin t sin(ut) dt.

Calculating the integral using the identity 2 sin A sin B = cos(A −
B)− cos(A + B):

g(u) =
∫ π

0
sin t sin(ut) dt

=
1
2

∫ π

0
(cos(t(1 − u))− cos(t(1 + u))) dt

=
1
2

[
sin(π(1 − u))

1 − u
− sin(π(1 + u))

1 + u

]
.
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Using sin(π − πu) = sin(πu) and sin(π + πu) = − sin(πu):

g(u) =
sin(πu)

2

(
1

1 − u
+

1
1 + u

)
=

sin(πu)
1 − u2 .

範例

8.5 The Complex Fourier Transform

The separation into sine and cosine transforms is natural for func-
tions with definite parity, but for general functions on R, a unified
complex notation is more efficient.
Recall the Fourier Integral Formula derived in theorem 8.4:

f (x) =
1
π

∫ +∞

0
du
∫ +∞

−∞
f (t) cos(u(x − t)) dt. (8.10)

The inner integral ϕ(u) =
∫ +∞
−∞ f (t) cos(u(x − t)) dt is an even

function of u. Consequently, we may extend the outer integral to
(−∞,+∞) by dividing by 2:

f (x) =
1

2π

∫ +∞

−∞
du
∫ +∞

−∞
f (t) cos(u(x − t)) dt. (8.11)

Similarly, consider the integral involving the sine term:

ψ(u) =
∫ +∞

−∞
f (t) sin(u(x − t)) dt.

This is an odd function of u. Therefore, its integral over the symmet-
ric domain (−∞,+∞) vanishes:

0 =
1

2π

∫ +∞

−∞
du
∫ +∞

−∞
f (t) sin(u(x − t)) dt. (8.12)

Multiplying eq. (8.12) by the imaginary unit i and adding it to eq. (8.11),
we utilise Euler’s formula eiθ = cos θ + i sin θ to obtain the Complex
Form of the Fourier Integral:

f (x) =
1

2π

∫ +∞

−∞
du
∫ +∞

−∞
f (t)eiu(x−t) dt. (8.13)

Rearranging the exponentials as eiu(x−t) = eiuxe−iut, we can split this
double integral into a transformation pair. We adopt the symmetric
normalization 1/

√
2π.

Definition 8.2. The Fourier Transform.
Let f be absolutely integrable on R. The Fourier Transform of f , de-
noted by f̂ or F [ f ], is the complex-valued function:

f̂ (u) =
1√
2π

∫ +∞

−∞
f (t)e−iut dt. (8.14)
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The Inverse Fourier Transform recovers the function:

f (x) =
1√
2π

∫ +∞

−∞
f̂ (u)eiux du. (8.15)

定義

Remark.

Here u represents the frequency variable (often denoted by ξ, ω, or
k in physics). Note that f̂ (u) is complex-valued even if f (t) is real.

Analogy with Fourier Series

The definition of the Fourier transform is the natural limit of the
Fourier series coefficients as the period tends to infinity. Recall the
complex form of the Fourier series for a function on [−π, π]:

f (x) =
∞

∑
n=−∞

cneinx, where cn =
1

2π

∫ π

−π
f (x)e−inx dx.

Comparing the discrete pair (cn, f (x)) with the continuous pair
( f̂ (u), f (x)):
· The discrete coefficient cn corresponds to the spectral density f̂ (u).

· The sum ∑n is replaced by the integral
∫

du.

· The harmonic frequencies n become the continuous variable u.
This analogy suggests that the Fourier transform decomposes a non-
periodic signal into a continuous spectrum of exponential waves, just
as the series decomposes a periodic signal into a discrete spectrum.

8.6 Operational Properties

The power of the Fourier transform lies in its ability to convert ana-
lytic operations (differentiation, integration) into algebraic operations
(multiplication, division).

Theorem 8.5. Derivative Property.
Let f be continuous and absolutely integrable on R, and suppose lim

t→±∞
f (t) =

0. If f ′ is absolutely integrable, then:

f̂ ′(u) = iu f̂ (u).

定理

Proof

We apply the definition of the transform and integrate by parts:
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f̂ ′(u) =
1√
2π

∫ +∞

−∞
f ′(t)e−iut dt

=
1√
2π

([
f (t)e−iut

]+∞

−∞
−
∫ +∞

−∞
f (t)(−iu)e−iut dt

)
.

By the decay assumption lim
t→±∞

f (t) = 0, the boundary terms van-

ish. The remaining integral is exactly iu f̂ (u).
■

By induction, if f and its derivatives up to order n − 1 vanish at
infinity and are absolutely integrable, we obtain the general formula:

f̂ (n)(u) = (iu)n f̂ (u). (8.16)

This property makes the Fourier transform an indispensable tool
for solving linear differential equations with constant coefficients.
Consider the differential equation:

an f (n)(t) + · · ·+ a1 f ′(t) + a0 f (t) = g(t).

Applying the Fourier transform to both sides transforms the differen-
tial operator into a polynomial in iu:

(an(iu)n + · · ·+ a1(iu) + a0) f̂ (u) = ĝ(u).

The solution f̂ (u) is found by algebraic division:

f̂ (u) =
ĝ(u)
P(iu)

,

where P(z) = ∑ akzk is the characteristic polynomial. The solution
f (t) is then recovered via the inverse transform.

8.7 Exercises

1. Calculating Fourier Integrals. Express the following functions as
Fourier integrals (either real form or complex form):

(a) The signed pulse function:

f (x) =

sgn x |x| ≤ 1

0 |x| > 1

(b) The truncated sine wave:

f (x) =

sin x |x| ≤ π

0 |x| > π
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(c) The symmetric exponential decay:

f (x) = e−a|x|, a > 0.

2. Solving Integral Equations. Determine the function f (t) defined
on (0, ∞) that satisfies the following integral equations:

(a) A sine transform equation:∫ +∞

0
f (t) sin(xt) dt = e−x, x > 0.

(b) A cosine transform equation:∫ +∞

0
f (t) cos(xt) dt =

1
1 + x2 .

3. Verification of Integral Identities. Evaluate the following integral
to prove the equality:

2
π

∫ +∞

0

sin2 t
t2 cos(2xt) dt =

1 − x 0 ≤ x ≤ 1

0 x > 1

Remark.

Hint: Consider the Fourier cosine transform of the triangular
function on the right-hand side.

4. Inverse Fourier Transforms. Compute the inverse Fourier trans-
form f (x) = 1√

2π

∫ ∞
−∞ F(u)eiux du for the following spectral func-

tions:

(a) F(u) = ue−β|u| with β > 0.

(b) The Gaussian spectrum F(u) = e−u2/2.

Remark.

For part (b), use the result
∫ ∞
−∞ e−ax2

dx =
√

π/a.
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