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0
Geometry of Inner Product Spaces

The study of Fourier series relies fundamentally on decomposing
functions into superpositions of simpler "basis" functions (¢/*¥). To
formalise this, we must view functions not merely as maps from
domains to codomains, but as vectors in a space equipped with geo-
metric structure. Just as R? has lengths and angles defined by the dot
product, function spaces require a notion of inner product to define
orthogonality and convergence.

We begin by formalising the geometry of finite-dimensional vector
spaces over C. The transition from IR" to C necessitates careful han-
dling of linearity to preserve positivity.

We assume familiarity with the definition of a vector space V over

a field IF (where [F is R or C). To measure lengths and angles, we
require an additional structure.

Definition o.1. Euclidean Space.

Let V be a finite-dimensional vector space over R. An inner product
on Visamap (-,-) : V x V — R satisfying:

1. Bilinearity: For all u,v,w € Vand a, € R:

(au + v, w) = a(u, w) + (v, w),
(u, pv+w) = B(u,v) + (u,w).

2. Symmetry: For all v,w € V, (v, w) = (w,v).
3. Positive Definiteness: For allv € V, (v,v) > 0, with equality if
and only if v = Oy.
The pair (V, (-,-)) is called a Euclidean space.
T & ‘

Example o.1. R". The canonical example is R" with the dot product

(v,w) =ovTw = Y vjw;.
« /\&?ﬁﬂ
e x
Let u,v,w € R" and g, :B € R. We Verify the axioms directly using the Figure 1: The inner product

provides the geometric struc-
ture required to define pro-
jections and orthogonality in
R", derived from the algebraic
axioms.
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component-wise definition.
Symmetry.

Since multiplication in R is commutative (v;w; = w;v;):

n n
(v,w) = Zviwi = Zwivi = (w,v).
i=1 i=1

EXLES
Bilinearity.

Linearity in the first argument follows from the distributivity of
multiplication over addition in R:

n
(au+o,w) =Y (au;+o)w; =a Y wwi+ Y vjw; = a(u,w) + (v, w).

Linearity in the second argument is immediate by symmetry or by

an identical expansion.
BEES

Positive Definiteness.

The square of a real number is non-negative, implying;:

(v,0) = Y v? > 0.

M-

i=1

If (v,v) = 0, the sum of non-negative terms necessitates v? = 0 for
all i. Hence v; = 0 for all i, implying v = Ogr». Conversely, v = Or»
implies (v,v) = 0 trivially.

LB #

Fourier analysis inherently involves complex numbers via ¢*. Ex-
tending the definition of an inner product to a complex vector space
V requires modification. If we strictly demanded bilinearity over C,
the positivity condition would collapse.

Note

Suppose (-, -) were bilinear over C. Then for any v # 0:
(iv,iv) = i(v,iv) = i*(v,0) = —(v,0).

If (v,v) > 0, then (iv,iv) < 0, violating positive definiteness.

To maintain (v,v) > 0, the map must be conjugate linear in one
argument. We adopt the mathematical convention (anti-linear in the
second argument).

Definition o.2. Hermitian Inner Product.
Let V be a finite-dimensional vector space over C. A Hermitian inner

5
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product is a map (-,-) : V x V — C satisfying:
1. Sesquilinearity: It is linear in the first argument and anti-linear in
the second. For v1,v;,w € V and « € C:

(avy 4+ vy, w) = a(vy, W) + (v, W),

(v, 0wy + wo) = &{v, w1) + (v, wo).

2. Hermitian Symmetry: For allv,w € V,

(v,w) = (w, ).

3. Positive Definiteness: For allv € V, (v,v) > 0, with equality if
and only if v = Oy.
The pair (V, (-,-)) is called a Hermitian space.
& -
Remark.

Hermitian symmetry ensures (v,v) = (v,v), so (v,v) is always real,
making the positivity condition well-defined.

Example o.2. The Standard Hermitian Product. On C”, for column

vectors v = (vq,...,0,)T and w = (wy, ..., w,)T, we define: . .
(o1 n) (w1 ") Figure 2: In C", the inner prod-

noo + uct encodes both geometric
(v,w) =) YW =w'o, o .
= projection and relative phase.
where w' = (w”)* is the conjugate transpose.

.49

The inner product induces a natural notion of length (norm) and
proximity (metric).

Definition 0.3. Induced Norm.
Let (V, (-, -)) be an inner product space. The norm of a vector v is

[oll = 4/ (v, ).
The distance between vectors v and w is defined as d(v, w) = |jv —
A vector v is a unit vector if ||v|| = 1.

The Cauchy-Schwarz inequality governs the geometry of inner prod-
uct spaces, ensuring that the inner product cannot exceed the product
of the lengths of the vectors.



Theorem o.1. Cauchy-Schwarz Inequality.
Forallv,w € V:
[(o,w)| < [Jol[|wl]

Equality holds if and only if v and w are linearly dependent.

i
The case (v, w) = 0 is trivial. We assume (v, w) # 0.
Case 1: Real Inner Product
Assume (v,w) € R. Consider the function P(t) = |[tv + w]||? for

t € R. By positive definiteness, P(t) > 0 for all . Expanding using
bilinearity (or sesquilinearity with real coefficients):
P(t) = (tv+w, tv + w)
= t2(v,v) 4 t{v,w) + t{w,v) + (w, w)
= [[0]I*#* 4 2(0, w)t + ||w||*.

Since P(t) is a non-negative quadratic polynomial, its discriminant
A must be non-positive:

A = (2(0,w))* — 4]jv]?|lw]* < 0.

This implies 4(v, w)? < 4||v]|?||w]|?, yielding |(v,w)| < ||o]|||w]|.
LB 4
Case 2: Complex Inner Product

In the general case, (v,w) € C. We can reduce this to the real case

by rotating v. Let & = Ezzg‘ . This is a complex number of modulus
1. Define ¢ = av. Then:
) (0,w) {0, w) 2
(0,w) = a(v,w) = (0,w) = T—— = |(v,w)].
[{v, )] (v, )|
Since (7, w) is real (indeed (3, w) = |[(v,w)|), we apply Case 1 to ¥
and w:
(9, w)| < [[o[[[w]-
Substituting back, |(v, w)| < |a|||v||||w] = ||7|||w]].
EXLES

The properties of the induced norm follow from theorern o.1.

Proposition o.1. Properties of the Norm.
For all v,w € V and A in the base field (R or C):
1. |[v]| >0,and ||| =0 < v =0.

2. ||[Av]| = |A]||v|| (Homogeneity).
3. |[v+w]| < |v|| + ||w]| (Triangle Inequality).

%
]
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* o)) < ool
Figure 3: Cauchy-Schwarz
geometrically: the projection
[{v, w)|/||w|| cannot exceed ||v]|.
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Proof

The first two follow from the definition of the inner product. We
prove the Triangle Inequality.

\|v+w||2 =(v+w,v+w)
= [[o]|* + (v, w) + (w,v) + ||w|?
= ||o]|* + 2Re ({0, w)) + ||w||*.

Since Re(z) < |z|, we have 2Re((v,w)) < 2[(v,w)|. By Cauchy-
Schwarz:

lo+wl|? < [l +2[Joll|w] + [|w]?
= (loll + flwl)?.

Taking the square root yields the result.

Convergence in Normed Spaces

The definition of distance allows us to discuss limits and conver-
gence, a prerequisite for defining infinite sums such as Fourier series.

Definition 0.4. Convergence of a Sequence.

V is said to converge to a limit v € V if
lim v, — o[ =0.
n—o0

We write v, — v or lim v, = v.
n—oo

In finite-dimensional spaces such as C", convergence in norm is
equivalent to coordinate-wise convergence. However, in infinite-
dimensional function spaces (the setting of Fourier analysis), conver-
gence in norm (e.g., mean square convergence) does not necessarily
imply pointwise convergence. The geometry established here pro-
vides the robust framework required to navigate these subtleties.

Orthogonal and Orthonormal Families

The most distinct feature of inner product spaces is the ability to de-
fine perpendicularity, or orthogonality, which generalises the intuitive
geometric concept to arbitrary dimensions.

Definition o.5. Orthogonality.
Let (V, (-, -)) be an inner product space.

Let (V, || -||) be a normed vector space. A sequence of vectors {v,}°° | C

llo+wll < {loff + [|w]|

Figure 4: The Triangle Inequal-
ity: The length of the sum
vector is at most the sum of
the lengths of the constituent
vectors.



1. Two vectors v,w € V are orthogonal, denoted v L w, if (v, w) =
0.

vj for all i # j.

vector has unit norm: ||v;|| =1 for all .

Using the Kronecker delta symbol, defined as 6;; = 1ifi = jand 0
otherwise, the condition for a family {v;} to be orthonormal can be
written compactly as:

<’0i, ‘U]> = (51]

Remark (Normalization).

Any non-zero vector v can be normalised to a unit vector ¥ = ﬁ

Orthogonality simplifies the calculation of norms for sums of vectors,
leading to a generalisation of the Pythagorean theorem.

Proposition o.2. Pythagorean Identity.
Letu,ve V.Ifu 1 v, then:

e+ 0] = Jlu® + o]

Proof
Expanding the squared norm:
|u+0)? = (u+o,u+0)
= [|ul* + (u,v) + (0, u) + [[o]|?
= [lull* +2Re((u,v)) + [[o]|*.
Since u L v, (u,v) = 0, and the result follows.
[ |

Note

In complex vector spaces, the converse is false. The condition

lu+ o> = |ul|>+ |lv||> implies only that Re({x,v)) = 0, not
that the inner product itself vanishes. For example, in C?, let

u = (,00Tandv = (,0)T. Then ||u + v||> = |1 +i]*> = 2and
lul>+ [[o|> =1+1 =2, yet (u,0) =1-(—i) = —i # 0.

A crucial consequence of orthogonality is that it enforces linear inde-
pendence.

Theorem o.2. Independence of Orthogonal Families.

Let {vy,...,vp} be an orthogonal family of non-zero vectors in V. Then

2. A family of vectors F = {v,...,vp} is an orthogonal family if v; |

3. A family F is an orthonormal family if it is orthogonal and every

FOURIER SERIES ¢

[Zgl

[
u
[lul

Figure 5: The Pythagorean
identity: whenu L v, the
squared length of the hy-
potenuse equals the sum of

the squared lengths of the legs.
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the family is linearly independent.
il
Proof

Suppose Zle w;v; = 0 for some scalars «;. We must show all «; van-
ish. Take the inner product of the sum with a specific vector v;:

|4
<Z lXiT)Z‘,U]'> = <0,’U]'> =0.
i=1

Using linearity in the first argument:

p
Z 0(1'<?JZ', U]> =0.
i=1
By orthogonality, (v;,v;) = 0 whenever i # j. The sum collapses to
the single term i = j:

th<Z)]',Z)j> = DC]H'U]”z =0.

Since v; # 0, we have ||v;[|* # 0, implying a; = 0. This holds for all

jed{1,...,p}
u

Corollary o.1. Orthogonal Bases. 1f V has dimension n, any orthogo-
nal family of n non-zero vectors forms a basis for V, called an orthog-
onal basis. If the vectors are orthonormal, it is an orthonormal basis.

e

The primary utility of such bases is the ease of computing coordi-
nates. For a general basis, finding coefficients requires solving a lin-
ear system (often via Gaussian elimination). For an orthogonal basis,
coefficients are decoupled and given by simple inner products.

Theorem o0.3. Decomposition in Orthogonal Bases.
Let {uy,...,un} be an orthogonal basis for V. For any v € V:

(0, u;)

i=1 (i)

=

0= Ui.

If the basis is orthonormal, this simplifies to:

v="1) (v,u;)u;.

M-

i=1

il
Proof

Since {u;} is a basis, we may write v = Y7 aju;. Taking the inner
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product with u;:

n n
(v,u;) = <Z"‘j“j/”i> = Y aj(uju) = ajluj]?,
= =

where the sum vanishes for j # i due to orthogonality. Solving for
«; yields the result.

The decomposition formula above suggests a geometric interpre-

tation: the term ﬁiil”l"g u; represents the "shadow" or projection of v
onto the line spanned by u;. We generalise this to projections onto
subspaces.

Let S be a subspace of V spanned by an orthogonal family of non-
zero vectors F = {uy,...,uy}. We define the orthogonal projection
of a vector v onto S as:

3

(v, u;)
4]

Ps(v) =
=1

Uij.

This operator Ps : V — S has three fundamental geometric proper-
ties: idempotence, orthogonality of the residual, and distance minimi-
sation.

Theorem o.4. Properties of Orthogonal Projection.

Let S = Span{uy,...,u,} where {u;} is an orthogonal family of non-
zero vectors.

1. Identity on S: If s € S, then Ps(s) = s.

2. Orthogonality: The residual vector v — Ps(v) is orthogonal to the
subspace S. That is, for all s € S,

(v —Ps(v),s) =0.

3. Best Approximation: For all s € S,
o= Ps(0)|| < [lo—sl|,

with equality if and only if s = Ps(v).
L
1. Identity
Lets € S. Then s = }i’; aju;. Applying the decomposition formula
restricted to the basis of S yields Ps(s) = Laju; = s.

S B 4

2. Orthogonality

11
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We first check orthogonality against the basis vectors uy.

(v, uj) (v, ug)
||tll'|\l2 (uir ) = ||Lllk||2 il = (o, 20)-
1

=

(Ps(v),ur) =
1

Thus (v — Ps(v),uy) = (v,ur) — (Ps(v),ux) = 0. Since the residual
is orthogonal to every basis vector uy, it is orthogonal to any linear
combination s € S.

BLES
3. Minimisation
Lets € S. Wewritev —s = (v — Ps(v)) + (Ps(v) — s). Note that
Ps(v) — s lies in S. By Property 2, v — Ps(v) is orthogonal to S, and
hence to Ps(v) —s. Applying the Pythagorean identity:

lo =5 = lo = Ps(o)[|* + [|Ps(v) — s>

Since norms are non-negative, ||v —s||> > ||v — Ps(v)||?, with equal-
ity only when ||Ps(v) —s|| =0, i.e., s = Ps(v).

LB &
The utility of orthonormal bases prompts a natural question: does ev-

ery finite-dimensional inner product space possess one? The answer

is affirmative and constructive.

Theorem o.5. Gram-Schmidt Process.
Let {v1,...,vp} be a linearly independent family in V. There exists an
orthonormal family {uy,...,up} such that for all k < p:

Span{uy,...,ux} = Span{vy, ..., v}

%
We proceed inductively.
Base Step.
Set u; = Hz—il‘ Clearly Span{u;} = Span{v; }.
EXCES

Inductive Step.

Suppose we have constructed {1, ...,u;_1}. We project v onto the
subspace spanned by these vectors and subtract the projection to
obtain the orthogonal component. Let

k—1
Wy = U — Z(vk, upyu;.
j=1
By theorem 0.4, wy is orthogonal to uy, ..., u;_1. Since {v;} are lin-
early independent, v, ¢ Span{vi,...,vx_1} = Span{uq,...,ur_1},

v

1
1
1 v—Pg(v)
1
t

—5i
Ps(a5
Figure 6: The orthogonal pro-
jection Ps(v) is the unique point
in S closest to v. The error vec-
torv — Ps(v) is orthogonal to
the subspace.



0.2

so wi # 0. We normalise to obtain the next vector:

Wi

U = ——.
[k |

The span is preserved by construction.
SEB #

When working with an orthonormal basis {u1, ..., u,}, the inner

product structure is completely determined by the coefficients.

Theorem o0.6. Isometries of Coefficients.
Let {u;}" ; be an orthonormal basis for V. For any v, w € V:
1. Parseval’s Identity:

<U/ ZU> = <U/ ui)<w, ui> = <U, ui><ui/ ZU>

M-
M-

Il
A

i=1

2. Plancherel’s Identity:
2 _ v 2
[0l = 3 (o, ui)l*.
i=1

g
Proof

By the decomposition theorem, v = Y (v, u;)u; and w = Y (w, uj)u;.
Using sesquilinearity:

(v, w) = <Z<v,ui>ui,2<w/ ”j>”j>

i j
=Y (o,u;)(w, uj)(ui, uj).
0]
Since (u;,uj) = 0J;j, the double sum reduces to the single sum over
i = j. Plancherel’s identity follows by setting w = v.

Plancherel’s identity admits a physical interpretation: the total "en-
ergy" (||o||?) of a signal is the sum of the energies of its harmonic
components (| (v, u;)|?). This conservation law is central to Fourier
Analysis.

Linear Operators and Matrices

The matrix representation of these operators, particularly those
preserving the inner product, is fundamental to the application of
Fourier theory. We adopt the standard convention for representing
vectors and operators in finite-dimensional spaces.

FOURIER SERIES 13

2

)

\ \)
\ Tt
1 (vp,up)uq

Figure 7: Gram-Schmidt: v,

is decomposed into its projec-
tion onto #7 and an orthogonal
component w,. Normalising w;
yields u5.
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Notation o.1. Coordinate Vectors Let V be a vector space of dimension
n with a basis £ = (ey,...,e,). Any vector v € V admits a unique
expansion v = 27:1 cjej. The coordinate vector of v relative to £ is the
column vector:
€1
[vle=|:| €F"

EAES

Consider a linear map L : V — W, where dim(V) = n and dim(W) =
m. Let & = (ej)7:1 be a basis for V and F = (f;)", be a basis for W.
The action of L is completely determined by its action on the basis
vectors of V. We decompose the image of each ¢; in the basis F:

m
L(ej) = Zﬂijfi/ forj=1,...,n. (1)
i=1

Theorem o.7. Matrix Representation.
There exists a unique m x n matrix A = (a;;), called the representa-
tive matrix of L relative to bases £ and F, such that for all v € V:

[L(v)]F = Alvle.

We denote this matrix by A = A‘E"F.

Proof
Let v € V with [v]¢ = (cy,...,cn)T. By linearity and eq. (1):

L(Z)) =1L <i C]'€j> = ich(ej) = iC] ( 3 ﬂl]fl> .
j=1 j=1 j=1 1

i=

Interchanging the finite sums:

m n
L(ZJ) = Z (Z ﬂl']'Cj> fl

i=1 \j=1
The coefficient of f; corresponds exactly to the i-th row of the ma-
trix product A[v]¢. Thus [L(v)]r = Av]e.
To prove uniqueness, suppose another matrix B satisfies the condi-
tion. Then for all v, (A — B)[v]¢ = 0. Choosing v = ¢; (where [¢j]¢ is
the standard basis vector of I[F") implies the j-th column of A — B is

zero. Since this holds for all j, A = B.
[
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Definition 0.6. Endomorphisms.

An operator L : V — V is called an endomorphism. The set of all
endomorphisms on V forms a vector space, denoted End(V). In this
case, the representative matrix is square (n x n).

We often require the representation of a vector or operator in a
different basis to simplify calculations (e.g., diagonalisation). Let
&= (e]-);?zl and F = (f;)"_, be two bases of a vector space V.

We define the transition matrix P from £ to F as the representative
matrix of the identity operator idy, where the domain is equipped

with basis F and the codomain with basis £. That is, P = Ag’g.

Proposition 0.3. Properties of the Transition Matrix.

1. The columns of P are the coordinates of the "new" basis vectors F
expressed in the "old" basis £.

2. The matrix P transforms coordinates from F to &:
[v]e = P[v]£. (2)

3. Pis invertible. Its inverse Q = P~! satisfies [v] 7 = Q[v]s and rep-
resents the coordinates of £ expressed in F.

>

Proof
Property 2 follows directly from the definition P = Ai];’g and the
matrix representation theorem: [id(v)]¢ = P[v]|r. For Property 1,
choosev = f;. Then [fj| is the j-th canonical vector of IF". The
product P[f;] 7 yields the j-th column of P. By eq. (2), this equals
[file- Invertibility follows because id is a bijection.

|
Note

Confusion often arises regarding the direction of P. A mnemonic is
that P acts on the new coordinates to produce the old coordinates.
Explicitly, if F are the eigenvectors of an operator, P is the matrix
containing these eigenvectors as columns.

The transformation of vectors induces a transformation of operators.

Theorem 0.8. Similarity of Matrix Representations.

Let L € End(V). Let A be the matrix of L relative to basis £, and B

be the matrix of L relative to basis F. Let P be the transition matrix such
that [v]¢ = P[v]z. Then:

B=P 1AP.

15
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I i
Proof

We rely on the commutativity of the mapping diagram. For any v €
V:
[L(0))5 = Blo] 7.

Alternatively, we can map v through basis £:

P7YL(v)]e (converting output)
P~'(A[vlg) (applying L in &)
P YA(P[v]F) (converting input).

[L(0)lF

Thus B[v] 7 = (P~ AP)[v] 7 for all v, implying B = P~ AP.

Matrices A and B satisfying B = P~!AP are said to be similar.
Similar matrices represent the same linear operator under different
choices of basis. A primary goal in linear algebra, and essential for
Fourier analysis, is selecting a basis F such that B is diagonal.

Isometries and Unitary Operators

An operator that preserves the inner product preserves lengths and
angles, effectively acting as a rigid motion (possibly including reflec-
tion) in the vector space.

Definition o.7. Preservation of Inner Product.

is said to preserve the inner product if:

Yo,weV, (Lv Lw) = (v,w).

Such operators are characterised by their action on orthonormal

bases.

Theorem o0.9. Preservation of Bases.
Let V be finite-dimensional. An operator L preserves the inner prod-

mal basis of V.
il
(=)
Assume L preserves the inner product. Let {u;}} ; be an orthonor-
mal basis. Then:
(Luj, Luj) = (u;, u;j) = djj.

Thus, {Lu;}" , is an orthonormal family. Since the dimension is

Let (V, (-,-)) be an inner product space. An endomorphism L € End(V)

uct if and only if it maps every orthonormal basis of V to an orthonor-

1
[0l PP 0]

[L(v)]e — [L()]F

Figure 8: Commutative dia-
gram illustrating the similarity
transformation. The operator L
can be computed via A in the £
basis or B in the F basis.



preserved, it forms a basis.
SE B #
(=)

Assume L maps any orthonormal basis {u;} to an orthonormal
basis {Lu;}. Letv,w € V. By Parseval’s identity (established in the
previous chapter), the inner product is determined by coordinates:

(v,0) = 21< ) o, ).

By linearity, Lv = Y ;(v, u;)Lu;. Since {Lu;} is also an orthonor-
mal basis, we apply Parseval’s identity to the images:

(Lv, Lw) = i(v, u;) (w, u;).

Comparing the two sums yields (Lv, Lw) = (v, w).
BLES

It is immediate that if L preserves the inner product, it preserves the

norm: ||Lv||> = (Lv,Lv) = (v,0) = ||v||>. Such operators are often
called isometries. The converse holds due to the polarisation identity.

Proposition o0.4. Properties of Isometries.
Let L € End(V) preserve the inner product.

1. Norm Preservation: ||Lv|| = ||v|| forallv € V.
2. Injectivity: Ker(L) = {0}. Since V is finite-dimensional, L is in-
vertible.

3. Eigenvalues: If A is an eigenvalue of L, then |A| = 1.

=4
&=

Proof

We prove property 3. Let v be a non-zero eigenvector such that
Lv = Av. Since L is an isometry:

[oll = [ILo]| = [[A0]] = [A[[[o]].

Dividing by ||v|| # 0yields |A| = 1. Thus, in C, eigenvalues are of
the form /.

Matrix Representation: Unitary and Orthogonal

The algebraic characterisation of isometries depends on the base
field. Let U be the representative matrix of L relative to an orthonor-
mal basis.

FOURIER SERIES 17

N

B A =1

Figure 9: The eigenvalues of
an isometry lie on the unit cir-
cle in the complex plane. The
operator acts as a rotation or
reflection.
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Definition 0.8. Unitary Matrices.
A complex matrix U € M, (C) is unitary if its inverse is its conjugate
transpose (adjoint):

ult=u=@".

Equivalently, UTU = I.

e
S

Definition 0.9. Orthogonal Matrices.
A real matrix O € M, (R) is orthogonal if its inverse is its transpose:

o 1=0T.

Equivalently, OTO = I.

These definitions precisely capture the preservation of the standard
Euclidean (or Hermitian) inner product.

Theorem o.10. Equivalence of Definitions.
Let U € M;(C) (resp. O € M, (R)). The following are equivalent:
1. The matrix preserves the standard inner product: (Ux, Uy) = (x,y).

2. The matrix is an isometry: ||Ux| = [|x]|.
3. The matrix is Unitary (resp. Orthogonal).

4. The columns (and rows) form an orthonormal basis of C" (resp. IR").
&

Diagonalisation and Spectral Theory

Diagonalisation is the process of finding a basis in which the action
of an operator is a simple scaling of coordinates.

Definition o.10. Diagonalisability.

An endomorphism L is diagonalisable if there exists a basis of V con-
sisting of eigenvectors of L. Equivalently, its representative matrix A
is similar to a diagonal matrix D, i.e., A = PDP~!.

While not all operators are diagonalisable, those interacting "nicely"
with the inner product often are. A central class of such operators are
those that are self-adjoint.

Definition o.11. Hermitian Operators.
An endomorphism L is Hermitian (or self-adjoint) if for all v, w € V:

(Lv,w) = (v, Lw).
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: % &
In terms of matrices, this corresponds to A = A" (Hermitian matrix)
in the complex case, or A = AT (Symmetric matrix) in the real case.
The Spectral Theorem is a cornerstone of linear algebra, guarantee-
ing that Hermitian operators can be decomposed into independent
modes (eigenvectors) that are orthogonal to each other.

Theorem o.11. Spectral Theorem for Hermitian Operators.

Let L be a Hermitian endomorphism on a finite-dimensional inner prod-
uct space V. Then:

1. All eigenvalues of L are real.

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. V admits an orthonormal basis consisting of eigenvectors of L.
Consequently, the representative matrix A can be diagonalised by a uni-
tary matrix P:

A = PDP',

where D is a real diagonal matrix and P is unitary.

/riiﬂ v =cquq +cpup

Lo = Aqequg +Agcpuy

This theorem provides the algebraic justification for the decompo- Figure 10: Spectral decompo-

sition of signals into orthogonal modes, a principle we will exploit sition: a Hermitian operator

extensively in the construction of Fourier series. acts by scaling along orthogonal
eigenspaces E, , each by its real

eigenvalue A;.



1.1

1
Introduction

The theory of Fourier series relies fundamentally on decomposing
complex functions into superpositions of elementary basis func-
tions, as introduced in chapter o. This approach originates from the
analysis of partial differential equations governing physical phenom-
ena, specifically the heat and wave equations. Although physically
motivated, the resulting theory of trigonometric series necessitates
rigorous definitions of convergence, integration, and function spaces.

The Vibrating String

Consider an ideal elastic string of length I, fixed at endpoints x = 0
and x = . At time t = 0, the string is displaced from its equilibrium
and released. The vertical displacement u(x, t) evolves according to
the one-dimensional wave equation:
aZ—u = zaz—u, (1.1)
a2 dx2
where c? is a physical constant relating tension and mass density. The
system is subject to Dirichlet boundary conditions:

u(0,t) =0, wu(l,t)=0 forallt>0. (1.2)
The state of the system is uniquely determined by the initial configu-
ration f(x) and the initial velocity g(x):
ou
u(x,0) = f(x),  =:(x,0) = g(x). (1.3)
Note
To maintain the fixed-endpoint conditions for all t, we assume the

compatibility conditions f(0) = f(I) = 0and g(0) = g(I) = 0.
d’Alembert (1747) provided the first solution using the method of
travelling waves. Observing that any function of the form ¢(x =+ ct)
satisfies eq. (1.1), he derived:

uet) = lfret) 4 fa—el+ o [ gtdy. (g

—ct

Figure 1.1: Fundamental modes
of a vibrating string. The dis-
placement vanishes at the
boundaries x = 0 and x = [.
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This is the Cauchy solution on the whole line. For a string fixed
atx = Oand x = /, one extends f and g to R by odd 2/-periodic
reflection.

Bernoulli’s Separation of Variables

Daniel Bernoulli (1753) proposed a distinct method based on the
physical observation that strings vibrate in fundamental modes. Sep-
arating the solution into spatial and temporal components u(x,t) =
F(x)G(t) yields:

F'(x)  1G"(t)
Fix) G

F(x)G"(t) = 2F'(x)G(t) =

Since the left side depends solely on x and the right solely on ¢, both
must equal a common separation constant k. This decouples the PDE
into two ordinary differential equations:

F'(x) —kF(x) =0, (1.1)
G"(t) — k®G(t) = 0. (1.2)
The boundary conditions (eq. (1.2)) imply F(0)G(t) = 0 and F(I)G(t) =

0. For non-trivial solutions (G(t) # 0), we require F(0) = F(I) =0
We now analyse the eigenvalues k.

Proposition 1.1. Eigenvalues of the Fixed String.
The spatial boundary value problem given by eq. (1.1) with F(0) = F(I) =

0 admits non-trivial solutions if and only if k = —(n7/1)? forn €
z".

We consider the three possible cases for the real constant k:

Case k=0

The equation reduces to F”(x) = 0, with general solution F(x) =
Ax+B.F(0)=0 = B=0.F(l)=0 = Al=0 = A=0.

This yields only the trivial solution.
SEBA #

Case k = u*> > 0
The equation is F”(x) — #>F(x) = 0. The general solution is F(x) =
Ae'* +Be ™. F(0) =0 = A+B=0.F1)=0 = A(eM -
e #) = 2Asinh(ul) = 0. Since  # 0 and [ > 0, sinh(ul) # 0, forc-
ing A=0and B =0.

SE ] #5

| Casek = —A2 <0

21
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The equation is F”(x) 4+ A2F(x) = 0. The general solution is:
F(x) = Acos(Ax) + Bsin(Ax).

F(0)=0 = A=0.F(l)=0 = Bsin(Al) = 0. For a non-trivial
solution (B # 0), we require sin(Al) = 0. This implies Al = n for
n € Z. Since sin(—x) = —sin(x), we may restrict n to the positive
integers Z*. Thus A, = .

EXLES
Corresponding to each spatial eigenvalue A, = nm/I, the temporal
equation (eq. (1.2)) becomes:

Gl (t) + *A2Gu(t) =0
This is the equation of a simple harmonic oscillator, with solution:
Gn(t) = Cpcos(cAnt) + Dy sin(cAnt).

By the principle of superposition for linear differential equations,
Bernoulli asserted that the general solution is the sum of these nor-

i (1’17‘[3() {Cv, cos (mlrct) + D, sin (m;ctﬂ . (1.5)

Evaluating this at t = 0 against the initial conditions (eq. (1.3)):

mal modes:

[e9)

u(x,0) = i C, sin (nl£> = f(x),0:u(x,0) Z (cAnDy) Sm(mlrx) = g(x).
n=1 n=1
(1.1)

Bernoulli’s solution implied that a1y arbitrary function f(x) describ-
ing the initial displacement of a string could be represented as a
series of sines. This claim contradicted the prevailing intuition that
discontinuous plucks could not be constructed from smooth analytic
functions, a debate resolved by Joseph Fourier’s 1807 work on heat
conduction. Fourier considered the heat equation:
2

Z—L; = KgTLZl' (1.6)
subject to fixed temperatures at the ends u(0,t) = u(l,t) = 0 and
initial temperature distribution u(x,0) = f(x).
Applying separation of variables yields the same spatial eigenfunc-
tions sin(A,x). However, the temporal equation is first-order:

G/(t) = —kA2G(t) = Gy(t) = Ape ™Mt

Superposing these solutions leads to the series:

x,t) = i Ay sin <Lm> et (1.7)
n=1 !
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Setting t = 0, we recover the same fundamental problem encountered

by Bernoulli:
ad . /NTTX
f(x) =) Ausin (—)
n=1 !
Fourier provided explicit formulas for the coefficients A, asserting

that for any function f:

Ay = ?/Olf(x) sin (”lﬂ) dx.

The validity of the expansion at t = 0 requires a rigorous theory
of integration and convergence. Throughout this chapter, we work
with functions defined on intervals, such as [0, ] for the string or
[—7, ] for the general theory. We briefly recall the relevant notions
of integrability.

Definition 1.1. Continuous Functions.
A complex-valued function f on [0, L] is continuous if it is continuous
at every point of [0, L] in the usual sense.

Definition 1.2. Piecewise Continuous Functions.
A function f : [0, L] — C is piecewise continuous if:
- f is bounded on [0, L], and

- there are only finitely many points in [0, L] where f is discontinuous,
and at each such point the one-sided limits exist and are finite.

Piecewise continuous functions are sufficient for many examples (e.g.
step functions, simple waves), but for a clean theory of Fourier coef-
ficients we adopt the more general framework of Riemann integrable
functions.

Definition 1.3. Riemann Integrable Function.
Let f : [0,L] — R be bounded. For a subdivision

O=x<x <---<ay_1<xy=1L

define the upper sum and lower sum:

u= i (x‘ s1<1xp<x‘f(x)) (xj —xj-1),
]; JoI=t =

L=}, (, inf_ () (= xj0)
j= jm1=A=t)

We say f is (Riemann) integrable on [0, L] if for every € > 0 there ex-

ists a subdivision such that U — L < e. For a complex-valued func-

23



24 GUDFIT

tion f : [0,L] — C, we say f is integrable if its real and imaginary
parts are both integrable.
Note

It is a standard result that a bounded function is Riemann inte-
grable if and only if its set of discontinuities has measure zero.
From now on, unless explicitly stated otherwise, all functions are
assumed to be (Riemann) integrable.

1.2 Introduction to Fourier Series

The analysis of periodic phenomena is ubiquitous in the physical
sciences, appearing in contexts ranging from celestial mechanics to
the theory of sound and heat. Such phenomena are characterised by
the property that the state of the system repeats after a fixed duration
T, the period. Mathematically, this motivates the study of periodic
functions and their decomposition into elementary oscillatory com-
ponents.

The simplest periodic function is the harmonic wave:

x(t) = asin(wt + @),

where 7 is the amplitude, w = 271/T is the angular frequency, and

@ is the initial phase. Linearity governs the superposition of such
waves. While the sum of two harmonics with identical frequency
remains a simple harmonic, the superposition of differing frequencies
yields complex waveforms.

Example 1.1. Superposition of Harmonics. Consider the waves

xi(t) = sintandxy(t) = 1sin3t The superposition x(t) = sum
x1(#) 4+ x2(t) exhibits a more intricate structure than its constituents, .

yet retains periodicity. \/\/ ;

$o19]

This observation suggests an inverse hypothesis: can an arbitrary Figure 1.2: The superposition of

periodic function f be decomposed into a series of simple harmonics? fundamental and third harmon-

) ics approximates a square wave
f(t) =Y Aysin(nwt + @,). (1.8) PP a

structure.
n=0

By rescaling the variable x = (271/T)t, we may restrict our attention
to functions of period 27t (angular frequency w = 1). Expanding the
sine term via the addition formula sin(nx + ¢,) = sinnxcos ¢, +
cos nx sin ¢, we rewrite eq. (1.8) as:

[1e

fx) = %0 + Y (aycosnx+ by sinnx), (1.9)

n=1
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where ay = 2A¢sin ¢o, a, = Ay singy, and b, = A, cos ¢,,. The con-
stant term is conventionally written as a¢/2 to unify the coefficient
formulas derived below.

The Orthogonality of the Trigonometric System

To determine the coefficients a,, and b, we exploit the geometric

properties of the trigonometric system 7 = {1, cos x, sin x, cos 2x, sin 2x, . .. }.
In the language of chapter o, we consider these functions as vectors

in an infinite-dimensional space equipped with the inner product

(f.g) = [T f(x)g(x)dx.

Proposition 1.2. Orthogonality of Real Trigonometric Functions.
The system 7 is orthogonal on [—7t, 7T]. Specifically, for non-negative
integers m, n:

0 m#n
s
/cosmxcosnxdx: T m=n#0 (1.1)
—7T
2 m=n=0
0 m#n
T
/ sinmxsinnxdx=qm m=n#0 (1.2)
-7
0 m=n=0
T
/ cosmxsinnxdx =0 for all m, n. (1.3)
-7

Proof

We employ the product-to-sum identities:

1
COS MX COS NX = E[cos(m —n)x + cos(m + n)x].

. T
If m # n, integration yields terms of the form {%} withk €
T

{m — n,m + n}, which vanish since sin(k7t) = 0. Iif m = n # 0, the
s

identity becomes (1 + cos2nx]. The integral is §[x + SIB25X|T = 7,
The case m = n = 0is simply [ 1dx = 2.

Similarly for sine:

. . 1
sinmxsinnx = E[cos(m —n)x — cos(m + n)x|.

Integration follows the same logic, yielding 719, for n > 1.
Finally, cos mx sinnx = % [sin(m + n)x — sin(m — n)x]. Since the inte-
grand is an odd function (assuming m, n integers) over a symmetric

interval, the integral vanishes identically.

25
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Assuming the series eq. (1.9) converges uniformly to f(x), we may
integrate term-by-term. Multiplying by cos kx and integrating over
[—7t, 7T):

7T

T
sinnxcoskxdx | .
—7T —7T

s T [}
/ f(x)coskxdx = %O/ coskxdx+ ) (an/ cosnxcoskxdx—f—bn/
- - n=1

By orthogonality, all terms in the sum vanish except when n = k.
Thus, for k > 1:

/jtf(x) coskx dx = a (7).

A similar process isolates by. This yields the Euler-Fourier formulas:

1 (7 1/
a, = —/ f(x)cosnxdx, by, = —/ f(x)sinnxdx. (1.10)
7T J—71 7T J—7

Formal Fourier Series

To streamline the theory, we work on the interval [—7, 71] and employ
the complex exponential ¢/**. This transition highlights the connec-
tion between Fourier analysis and the geometry of inner product
spaces established in chapter o.

Definition 1.4. Periodic Function.
Let f : R — C. We say that f is periodic if there exists T # 0 such
that forall 0 € R,

f(0+T) = £(6).

We say that T is a period of f. If f admits a smallest period T > 0,
this is called the fundamental period.

Remark.

If T is a period for f, then kT is also a period forallk € Z\ {0}.

Common examples include 8 +— etnt (period 27t /n) and 0 — tanf
(period ).

There is a natural identification between 27r-periodic functions on R
and functions on the unit circle T = {z € C : |z| = 1}. Every point
on T can be written as z = ¢’ for some real 6, unique up to integer
multiples of 2.

Definition 1.5. From the Circle to the Line.

Given a function F : T — C, define f : R — C by f(8) = F(e'?).

Then f is 27r-periodic. We may freely identify functions on T, 27r-periodic
functions on R, and functions on any interval of length 27t (e.g. [—, 7T])
with matching endpoint values.




We can always reduce a general T-periodic function to a 27r-periodic
one via a simple change of variables.

Proposition 1.3. Rescaling.
LetT > 0. A function¢ : R — C is T-periodic if and only if the
function f(0) = ¢ (%) is 27t-periodic.

Proof
If ¢ is T-periodic, then f(0 + 27) = ¢ (W) = ¢ (% + T) =
¢ (T9> = f(0). The converse is analogous.

21

Consequently, we restrict our attention to 27r-periodic functions with-
out loss of generality.

Trigonometric Polynomials and Series

The central idea of Fourier analysis is to decompose a periodic signal
into a sum of simple building blocks:

en(0) =", nez (1.11)

The set of finite linear combinations of these functions forms the
space of trigonometric polynomials.

Definition 1.6. Trigonometric Polynomial.
A function P is a trigonometric polynomial if it is of the form

N .
P(O)= Y cue™,
n=—N

where ¢, € C are constants and N € IN. Using Euler’s formula, this
can equivalently be written in terms of sines and cosines:

P(6) = %0 + %(an cos(118) + by sin(nh)).
n=1

To determine the coefficients c, for a general function f, we exploit
the orthogonality of the basis functions {¢?} with respect to the
standard inner product on the circle. This corresponds to the Her-
mitian inner product defined in definition 0.2, scaled by a factor of
27T,

Proposition 1.4. Orthogonality.

FOURIER SERIES
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For any integers n, m,

1 [ . . 1 ifn=m,
7/ emﬁe—sz 40 = 6, =
21w J-n 0 ifn 7& m.
e
Proof
If n = m, the integrand is ¢ = 1, and the integral is 27r. Thus the

value is 1. If n # m, let k = n — m # 0. The integral is:

T ko™ ikm _ ,—ikm 1k 1Yk
/ elked(,:[e] I G Yl G VAN
—7T

- ik ik ik

This orthogonality property suggests that if f can be written as a
uniformly convergent series f(6) = Y_c,e?, then the coefficients c,
must be given by projecting f onto ej,.

Definition 1.7. Fourier Coefficients.
Let f be an integrable 27t-periodic function. The n-th Fourier coeffi-
cient of f is defined as:

. n ,
f(n) = %/ f(@)e ™Mds, nez.
—7T

Definition 1.8. Fourier Series.
The Fourier series of f is the formal series formed by these coefficients:

SO ~ Y Fme.

In real form, using the relations e = cosnf +isinnb, this corresponds
to the series eq. (1.9) with:

an = f(n) + f(=n), by =i(f(n) — f(-n)).

Notation 1.1. The notation ~ indicates that the series is associated with
f, but implies nothing about equality or convergence.

Wik
The fundamental questions of the theory are:

Convergence. In what sense does the partial sum Sy[f](8) = YN f(n)e™?
converge to f(6) as N — co?
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- Pointwise? (V6)
- Uniformly? (supy |Sy — f| = 0)
- In the mean? ([ [Sy — f|*> — 0)
Uniqueness. If f(n) = 0 for all n, is f identically zero?

These questions depend heavily on the regularity of f (continuity,
differentiability) and form the core of the subsequent analysis.

The Geometry of Periodic Functions

The orthogonality of the exponentials {¢?**} observed previously
hints at a deeper geometric structure. By viewing functions as vectors
in an infinite-dimensional space, Fourier coefficients behave like co-
ordinates with respect to an orthonormal basis. To make this precise,
we introduce a Hermitian inner product structure, referencing the
definitions established in chapter o.

Inner Product Spaces

We consider the space of "sufficiently regular” 27t-periodic functions,
denoted Ry. For our purposes, this space consists of Riemann inte-
grable functions on [—7t, 7] extended periodically to R.

Definition 1.9. Inner Product and Norm.
For two functions f,g € Ry, we define the inner product:

(f.8) = %/jrf(@)g(i(%)de.

This induces the L2-norm (or root-mean-square norm) as per definition 0.3:

1£1l2 = m: (zln /jr |f(6)|2d6>1/2.

Remark.
Strictly speaking, || f||2 = 0implies f = 0 only if f is continuous.
For general integrable functions, || f|[2 = O0implies f(f) = 0 al-

most everywhere. Identifying functions that differ only on a set of
measure zero renders this a true inner product space.

The shift-invariance of the integral for periodic functions is a crucial
property for calculations.

Proposition 1.5. Shift Invariance.

29
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Let f be a 27t-periodic integrable function. For any « € IR:

/amnf(e) d6 = /j;f(e) do.

¥

)
Proof
Let I(a) = f"‘“”f(e) d6. By periodicity, we may replace a by a —

o
27tk and assume « € [—77, 71]. We split the integral at 7t

/a T ) do = /a " F(0)do+ /n 0 do.

Using the substitution ¢ = 6 — 27 in the second integral and ob-
serving f(¢ +27) = f(¢), we obtain:

[ r@vde=[" sg)ap.

=27

Thus the sum recombines to [ £(6) do.

Using this notation, the Fourier coefficient definition becomes simply
the projection of f onto the basis vector e, (8) = ¢:

P

f(n) = (f, en).

The orthogonality relation derived in section 1.2 can be restated as
(e, em) = Sum. Thus, the Fourier series f ~ Y f(1)ey is formally the
expansion of f in the orthonormal system {ey, },cz.

Real and Complex Representations

While the complex exponential basis is algebraically superior, phys-
ical applications often require the decomposition into sines and
cosines. Recall the real Fourier coefficients:

1 (= 1 (=
iy = — / £(6) cos(n6)d6, by = — / £(6) sin(n6) de.
7T J—7m T J—m
The transition between these forms is given by Euler’s formula.

Proposition 1.6. Coefficient Relations.
For n > 1, the coefficients are related by:

flon =2, flom = 22,
an = f(n) + f(—n), by = i(f(n) — f(~n)).

The constant term is f(0) = ag/2.
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Proof

Using e~ = cos(nf) — isin(nd), for n > 1 we have:

.17 i , 4, by
fn) = 5 Lnf(e) cos(10) o — 5 /ﬂf(()) sin(n0) do = 2 — 2.
Similarly, e’ = cos(n) + isin(nf) implies f(—n) = % + le” Solv-

ing this linear system yields the stated relations.
|

These relations reveal symmetries based on the range of the function

f.

Proposition 1.7. Symmetry Properties.

Let f be a 27t-periodic function.

1. Real-Valued: If f(R) C R, then f(—n) = f(n). Consequently, a,
and b,, are real numbers.

2. Evenness: If f is even (f(—6) = f(0)), then b, = 0 for all n. The
series consists only of cosines.

3. Oddness: If f is odd (f(—0) = —f(@)), then a, = 0 for all n. The

series consists only of sines.

A

Proof
For 1, since f is real,% = (fen) = (f,&n) = (f,e_u) = f(—n).

For 2 and 3, consider the integral of odd functions over symmetric
intervals. If f is even, f(0)sin(n6) is odd, so b, = 0. If f is odd,
f(0) cos(nb) is odd, so a, = 0.

Example 1.2. The Sawtooth Wave. Consider the function f(x) = x
forx € (—m, 7, extended periodically. This function is odd, so
a, = 0 for all n > 0. We compute by,:

1 2 (7
b, = —/ xsin(nx) dx = —/ x sin(nx) dx.
T J—7m 7T JO

Integrating by parts:
T T _ n
by = 2 ([_xm(nx)} +/ ws(imdx> _2 <_ﬂf<1>> _ (2
s n o Jo n T n n

Thus, the Fourier series is:

x~ Y (—1)”“% sin(nx).
n=1

E X
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Figure 1.3: The periodic ex-
tension of f(x) = «x creates a
sawtooth wave with discon-
tinuities at odd multiples of

TT.

P

1.5 Regularity and Decay

A fundamental principle in Fourier analysis is that the smoothness
of a function f dictates the rate at which its Fourier coefficients f (1)
decay as |n| — oo. Conversely, the decay rate of the coefficients
determines the smoothness of the function constructed from the
series.

We begin with the Riemann-Lebesgue Lemma, which asserts that
high-frequency oscillations "cancel out" when integrated against an
integrable function.

Theorem 1.1. Riemann-Lebesgue Lemma.
If f is Riemann integrable on [—7, 7], then

lim f(n) = 0.

[n]|—o0
T
Proof
Let € > 0. Since f is Riemann integrable, there exists a step function
gsuch that [|[f —glly = J”_|f(6) — g(0)|d6 < 2me. By the triangle
inequality:
Fm] < 1f =g(m)]+18(n)].
The first term is bounded by the L! norm:

gl <5 [ 170 g(@)lle | do <.

For the step function g = Z,I(Vi 1 k1[a, ), we compute ¢(n) explicitly:

1 M b inf 1 M e
¢(n) = — c e "do = — c
8(n) 2nk_zlk/ﬂk 7 L

—inby __ e~ inag

—in
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Thus [¢(n)| < ﬁ2|0k| — 0Oas|n| — oo It follows that
lim supy,,|_, | f(n)| < e. Since € was arbitrary, the limit is zero.
u

From the Riemann-Lebesgue Lemma, we immediately obtain that
the real coefficients a, and b, also tend to zero as n — oo. If the
function admits derivatives, we can obtain stronger decay bounds
using integration by parts.

Theorem 1.2. Decay of Coefficients for Differentiable Functions.
Let f be differentiable on [—7t, 71| such that f’ is integrable. If f satis-
fies the periodicity condition f(—7m) = f(7), then:

ap=o0(=), b,=0|~= as n — oo.
n n

Proof

Let a), and b), denote the Fourier coefficients of the derivative f’.
We integrate the expression for a, by parts:

a, = %/jrf(x)cos(nx) dx
— 2 [

- - % /jrf’(x) sin(nx) dx.

—7T

The boundary term vanishes because sin(n7) = sin(—nm) = 0. The
remaining integral is proportional to the sine coefficient of f”:

(LT s 1,
n = — (n./_nf (x)sm(nx)dx> = nb”'
Similarly for by:
1 7T
b, = —/ f(x)sin(nx) dx
T J—m

_1 {—f(x) ]in + % /j;f’(x) cos(nx) dx.

7T

cos(nx)
n

Using the periodicity f(7r) = f(—7m) and cos(nm) = cos(—nr), the
boundary term vanishes. Thus:

b, = % <71r /jtf’(x) cos(nx) dx> = %a;.

Since f’ is integrable, the Riemann-Lebesgue Lemma implies a;, —
0 and b}, — 0 as n — oo. Therefore, a, = 0(1/n) and b, = o(1/n).
]

We can generalise this result to functions with higher-order deriva-

33



34 GUDFIT

tives.

Theorem 1.3. Decay for C¥ Functions.

Let f have derivatives up to order k on [, 77] such that f(*) is inte-
grable. Assume f and its first k — 1 derivatives satisfy periodic bound-
ary conditions:

fO(m) = fO(=m) forj=0,... k-1

Then:

Proof

Let ag ) and b,(lj ) denote the Fourier coefficients of the j-th deriva-
tive (). Applying the relations derived in the previous theorem

iteratively:
_ L 1/1 @) _ +1p0 § odd
ap = —=b,’ = —= | —a, = = n 0
nAn :I:%an k even
and
by = ~all) = 1 (_117(2)) =R koad
n - - - - .
nn n n " i#brgk) k even

Since f) is integrable, its Fourier coefficients a,(f) and b,gk) are o(1).

Consequently, a,, and b, are o(1/n*).
[ ]

This provides a rapid test for the smoothness of a function based on

its spectrum:

- Discontinuous functions (e.g., Sawtooth, figure 1.3) typically have
coefficients decaying as O(1/n).

- Continuous functions with discontinuous derivatives (e.g., triangle
wave) decay as O(1/n?).

- Smooth (C*) functions decay faster than any polynomial.

1.6 Exercises

1. Consistency of the Definition. Let Ty (x) be a trigonometric poly-
nomial of degree N:
X0

TN(X) = ? +

™=

(ag cos kx + By sinkx).

k=1
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Prove that the Fourier coefficients of Ty are exactly the coefficients
defining it. That is, show that a,(Ty) = a, for 0 < n < N (and 0
otherwise), and b, (Ty) = By for 1 < n < N (and 0 otherwise).

Remark.

This confirms that the operation of taking Fourier coefficients
acts as the identity map on the space of trigonometric polynomi-
als.

. Symmetry and Periodicity. Let f be a Riemann integrable func-
tion with period 27t.

(a) Period Halving. Suppose f satisfies the condition f(x + ) =
f(x) for all x. Prove that the odd-indexed Fourier coefficients
vanish:

ary—1 =br,_1 =0 foralln>1.

(b) Anti-periodicity. Suppose f satisfies f(x + ) = —f(x) for all
x. Prove that the even-indexed Fourier coefficients vanish:

Ay, = by, =0 foralln > 0.
(c) Translation. Let /1 € R. Express the Fourier coefficients d,, by,
of the translated function g(x) = f(x + h) in terms of a,, by, of
the original function f. Show that:

in = ay cosnh + b, sinnh, b, = b, cosnh — a, sinnh.

. Absolute Convergence. Prove the converse to the definition of
Fourier coefficients in the following sense: If a sequence of coeffi-

cients satisfies
lao|

[ee)
+ ) (lag] + [be]) < +o0,
2 k=1

then the trigonometric series
ap d
= + Y (ar coskx + by sin kx)
2 k=1

converges uniformly to a continuous function f(x), and {ay, by }
are precisely the Fourier coefficients of f.

. Spectral Positivity and Decay. Let f be a 27t-periodic function
that is monotonic on the interval (0,27).

(a) If f is decreasing on (0,27), prove that the sine coefficients
satisfy b, > 0 forall n > 1. Conversely, if f is increasing,
show that b,, < 0.
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Remark.

Hint: Use the Second Mean Value Theorem for integrals.

(b) Prove that for such monotonic functions, the coefficients
decay as O(1/n). That is, there exists a constant C such that:

C C
lan| < —, bl < —.
n n

5. Asymptotic Mean Values. The Riemann-Lebesgue Lemma asserts
that [ f(x)sinnxdx — 0. Here we investigate the limit when
the absolute value is taken. Let f be Riemann integrable on [a, b].
Prove that:

n—oo

lim /Hbf(x)|sinnx\dx = %/abf(x)dx.

Show that the same result holds if | sin nx| is replaced by | cos nx|.
Remark.

Consider |sinnx| as a periodic function itself. What is the mean

value of |sinx|? You may find it helpful to expand |sin x| as a
Fourier series and integrate term-by-term, or approximate f by

step functions.

6. Improper Integrals and Riemann-Lebesgue.

(a) Let f be absolutely integrable on (—oo, o). Generalise the
result of the previous exercise to show:

+oco 2 +o00
lim f(x)|sinnx|dx = ;/ f(x)dx.

n—oo | _eo

(b) Calculate the following limit explicitly:

1
lim/ log x cos? (Ax) dx.
A—00 J0

Remark.

Hint: Linearise the squared cosine term and check if the
Riemann-Lebesgue lemma applies to the improper integral
of log x.

7. A Singular Integral Limit. Let f be a continuously differentiable
function on [—a, a].

(a) Show that the function g(x) = w is bounded on
[—a,a] (defining ¢(0) = 2f'(0)).

(b) Consider the parity of the kernel K(x) = 1729542 Show that
ffa K(x) feven(x) dx = 0.
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(c) Using the Riemann-Lebesgue lemma on the function ¢(x),
g g 8
prove that:

lim ! ﬂf(x)dx:/oawdx.

A—+4o00 J—qg X X



2.1

2
Partial Sums and Convolution

Having defined Fourier coefficients and their decay properties in
chapter 1, we address the inverse problem: recovering f from the
sequence {f(n)}. This necessitates the study of the partial sums.

Partial Sums and Examples

The central object of study is the sequence of trigonometric polyno-
mials formed by truncating the Fourier series.

Definition 2.1. Partial Sums.
Let f be an integrable function on [—7, 7t]. For any N € N, the N-
th partial sum is defined as:

N N .
Snlfl(x) = ;Nf(ﬂ)emx-

In terms of the real coefficients a4, and b, defined in eq. (1.10), this is
equivalent to:

N
Snifl(x) = > + Y (an cos(nx) + by sin(nx)) .

n=1

We examine the behaviour of these sums through specific examples.
These computations illustrate the correlation between the regular-
ity of a function and the rate of decay of its coefficients derived in
theorem 1.1 and subsequent theorems.

Example 2.1. The Square Wave. Let H be the 27r-periodic function
defined on (—rt, 7T] by:

-1 x€(—m0),
H(x)=491 x€(0,m),

0 x =0,
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Since H is odd, H(0) = 0 and the expansion consists solely of sine
terms (a, = 0). We compute the complex coefficients for n # 0:

A(n) = €1 /7r H(x)e ™ dx
27 —7T

= % </_On(—1)e_i”x dx + /Oﬂ(l)e_i”x dx) .

Evaluating the second integral:

/neﬂ'nx Jr — {ei.nx]” _ (_1)"1 -1 _1- (_1>n.
° 0

—in —in mn

By the symmetry of the integrand, the integral from —7r to 0 con-
tributes an identical value. Thus:

R —(=1)"
i) = 212D
T in
If nis even, H(n) = 0.1If nisodd, H(n) = ;2.. Converting to the
sine coefficients via b, = 2iH(n)yieldsb, = .= forodd n. The
Fourier series is:
4 i in((2k +1)x)
T = 2k +1

The coefficients decay as O(1/n), consistent with the jump disconti-

nuities in H.

#o )

Example 2.2. The Triangular Wave. Let T be the 27r-periodic func- 1;1gure 2'; :' The squf\re wave

tion defined on [0, 7] by T(x) = 2 — x, extended as an even func- (¥) and its partljal 51.1m
S3[H](x). The oscillation near

the discontinuity is the Gibbs

phenomenon.

tion to [—7t,0].
Since T is even, b, = 0. The mean valueisay = 0. Forn > 1, we

s
ay = E/ (2 — x> cos(nx) dx.
o \m

Integrating by parts with u = % —-x:

. T T
un_2{<2_x> sm(m)} +i/ sin(nx) dx
7T 7T n 0 7T Jo

—o 2 [Ze] T 2

compute ay,:

If niseven,a, =0.If nis odd, a, = %. The series is:

éi 2k+1))
T (2k +1)2
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The decay O(1/n?) reflects the continuity of T. Note that

T'(x) = —H(x) almost everywhere (except at x = 0, 1). By defi-
nition 1.7 (implied), differentiation corresponds to multiplication by
in, transforming the O(1/1?) decay of T into the O(1/n) decay of
H.

E
Example 2.3. The Parabolic Wave. Let f(x) = x%*on|[-m, 7l
This function is even and continuous on the circle (since f(—m) =
f=m
The mean value is f(0) = Z%-. Forn # 0, two integrations by parts
yield:

The expansion is:

2 0o (_ 1\n
x% ~ % +4n§1 ( nlz) cos(nx).
Fubl
Example 2.4. Shifted Poles. We consider a case where the coeffi-
cients are rational functions of n. Let « € R\ Z. Define f on [0, 27]
by:
f(x) _ 43 ei(nfx)zx‘

 sin(ma)

Computing the coefficients directly:

2 1 2 T i(m—x)a ,—inx
- d
f(m) 27 /0 sin(mx)e ¢ *

27 .
/ e—l(n+a)x dx
0

21

el
B 2sin(ma)
eima l e—i(n+a)x
—i(n+a) 0

2 sin(7ta)
Using e 27 = 1, the bracketed term simplifies to (1 —
e~27) /(i(n + «)). Algebraic manipulation confirms:

A 1
f(n):n—l—tx'

El

General Intervals

While the canonical theory is developed on [—7, 7], physical ap-
plications often dictate the geometry of the domain. Adapting the
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machinery to an arbitrary interval [a,b] of length L = b —aisa
straightforward rescaling.

Definition 2.2. Fourier Coefficients on General Intervals.
Let f : [a,b] — C be an integrable function. The Fourier coefficients
adapted to this interval are defined by:

R 1 b .
f(n) = Z/ f(x)e 2/l gy, neZ.
a
The corresponding formal Fourier series is:
i N .
ORI MO
n=-—0c0

Remark.

In the context of the vibrating string discussed in chapter 1, we set
a =0 and b = I. The basis functions become exp(27inx/1).

2.2 The Dirichlet Kernel and Convolution

To analyse the convergence of Sy[f](x) to f(x), we seek an integral
representation of the partial sum. Substituting the definition of the
coefficients into the partial sum yields:

Snlfl(x) = ﬁ;N (217r /jtf(t)eintdt> i

_ 1 3 in(x—t)) p
5 ./—nf(t) <n_ZNe t.

Let u = x — t. By the shift invariance of the integral for periodic func-
tions (proposition 1.5), we may integrate over any interval of length

Dy

27r. The summation term depends only on the difference x — t and

acts as a kernel function.
Dy

&

Definition 2.3. Dirichlet Kernel.
For N > 0, the Dirichlet kernel is the trigonometric polynomial:

De

Using the geometric series summation formula, we derive a closed
Dg

form for Dy.

2N IR

Figure 2.2: Dirichlet kernels
Dy(x) for N = 2,4,6,8. As
N increases, the central peak
sharpens while oscillations per-
sist.
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Proposition 2.1. Closed Form of the Dirichlet Kernel.

For x & 2ntZ: (N 2 1/2
=
For x € 2nZ, Dy(x) =2N + 1.
Proof
The sum is a geometric progression with ratio w = e'*.
2N 1 — pl@N+1)x  ,—iNx _ ,i(N+1)x

D _ ,—iNx ix\k _ ,—iNx ' — '

To symmetrise the expression, we multiply the numerator and

denominator by e~*¥/2:

e {INF1/2)x _ oi(N+1/2)x _djgin((N +1/2)x) _ sin((N +1/2)x)

D = : ‘ = =
n(x) eix/2 _ ¢ix/2 —2isin(x/2) sin(x/2)
The value at x = 0 follows from L’'Hopital’s rule or direct summa-
tion of 2N + 1 ones.

[

The partial sum can now be expressed as the convolution of f with
Dy.

SIfI() = (F D)) = 5 [ fr=nDuB L @)

For the specific purpose of proving convergence theorems, it is often
useful to exploit the symmetry of Dy. Since Dy is an even function,
we can fold the integral onto [0, 7]. Substituting u = x —t (so t =

x — u) into eq. (2.1) and shifting the bounds to [—7, 77]:

SNIfI0) = 5 [ fx = DN (1) dt
= % (/;Onf(x — t)DN(t)dt+/O7Tf(x— t)DN(t)dt> .
In the first integral, let t = —s. Using Dy (—s) = Dy(s):

0 0 T
/_nf(x—t)DN(t)dt:/n F(x +5)Dy(s)(—ds) :/0 F(x+5)Dn(s) ds.

Combining terms leads to the Dirichlet Integral:

SnIf](x) = %/07? flxt) ;f(x_t) Dy (t) dt. (2.2)

Or explicitly:

= L [ (Rt N 120,




The convergence problem of Fourier series is thus reduced to de-
termining whether the limit of this integral exists as N — oo. The
oscillatory nature of the kernel means that convergence depends on
the local behaviour of f. This formulation underpins the convergence
proofs in chapter 3.

The Poisson Kernel and the Dirichlet Problem

While the Dirichlet kernel arises from truncation, the Poisson ker-
nel arises from solving Laplace’s equation on the unit disc D =

{z = re® : r < 1}. The Dirichlet Problem asks: given a continuous
function f on the boundary dD (the circle), find a function u(r,6)
harmonic in D such that u(1,6) = £(0).

In polar coordinates, Au = 0 is:
rzurr + ruy +ugg = 0.

Separation of variables yields solutions of the form r/"/¢®. To match
the boundary condition f(8) = Y f(n)e™?, we propose the solution:

u(r,0) = i F(n)rinlene.

n=—oo

This series converges absolutely for r < 1 because |r!"l| decays geo-
metrically. Substituting the formula for f(1) and swapping sum and
integral yields:

u(r,0) = % /jtf(t)Pr(B —hdt,

where P;(0) is the Poisson kernel.

Proposition 2.2. Poisson Kernel.
For 0 < r < 1, the Poisson kernel is:
ad . 1—12
P.(0) = [n| ,inf _ )
r(6) nzz_wr ¢ 1—2rcosf +r?
Proof
We split the sum into non-negative and negative powers. Let
z = re'?. Note that |z| < 1.
Yy 2= ;Y A=y e T
n=0 -z n=-1 k=1 -z
Summing these:
1 z 1-z24+z(1-2 1— |z?
T B (1-2) _ i
1-z 1-z 1 —z| 1—2Re(z) + |z|
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r=0.9

—7T

Figure 2.3: Poisson kernel P, (6)
forr = 0.3,0.6,09. Asr — 17,
the kernel concentrates at 0 = 0,
approximating a delta function.
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Substituting z = re’? gives the result.
[ |

Unlike the Dirichlet kernel, the Poisson kernel is strictly positive.
This property is crucial for proving that u(r,0) — f(6) uniformly as
r—1".

Returning to Fourier’s original problem, the heat equation u; = uyy
on the circle with initial data u(x,0) = f(x) yields the solution:

u(x, t) = i f(n)e*”%ei”".

n=—oo

This can be expressed as a convolution with the Heat Kernel:

Unlike the Dirichlet and Poisson kernels, H;(x) (a Jacobi theta func-
tion) does not possess a simple closed form in terms of elementary
functions, though it is intimately related to the Gaussian distribution
via the Poisson Summation Formula.

Convergence of Fourier Series

The oscillatory nature of the kernel suggests that the behaviour of the
integral is dominated by the singularity at £ = 0. This observation
leads to the fundamental principle of localization, which asserts that
the convergence of the Fourier series at a point depends solely on the
behaviour of the function in the immediate neighbourhood of that
point.

To analyse the contribution of different intervals to the integral, we
fix 6 € (0,71) and partition the domain of integration into [0, ] and
[, 7T]. We rewrite eq. (2.3) as:

5= 1 [ [ IO i (1))
(2.4)

Consider the second term. The function

_flx+t) + flx—1t)
e (T

is integrable on [4, 7t] because sin(t/2) is bounded away from zero on
this interval. Applying the Riemann-Lebesgue Lemma (t/icorem 1.1),
this integral vanishes as N — coc.

Consequently, the convergence properties are entirely determined by
the integral over the arbitrarily small neighbourhood [0, J].
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Theorem 2.1. Riemann’s Localization Principle.

Let f be an integrable periodic function of period 27r. The convergence
of the Fourier series Sy[f](x) at a specific point x depends only on the
values of f in an arbitrarily small neighbourhood (x —J,x +6). Specif-
ically, if two functions f and g coincide on an interval (x — 4, x + ),

then:
dim (S [f](x) = Snlg](x)) = 0.

This result is somewhat counter-intuitive, as the Fourier coefficients
an, by, depend on the values of f over the entire domain [—7, 77].
Changes to f far from x will alter every coefficient, yet these changes
cancel out perfectly in the sum at x.

Pointwise Convergence Criteria

We now establish sufficient conditions for the Fourier series to con-
verge to a specific value s. Usually, s = f(x), but at points of dis-
continuity, we expect convergence to the average of the left and right
limits.

Let s be a candidate for the limit. Since % fon Dy(t)dt = 1 (integrat-
ing over half the symmetric interval of the total mass 277), we have

2 fon Dy () dt = 1. We can write the error as:

swiflw —s =+ [ LTEHEIE=Dp i a— 2 [Ty ar

_ %/Oﬂ (f(”t%;;ﬂ(t’;z_) d _25> sin (N +3)t) .

Define the difference function ¢, (t) = f(x+1t) + f(x —t) — 2s. By

the Riemann-Lebesgue Lemma, the integral on the right converges to

zero provided that the factor multiplying the sine term is integrable.
Since sin(t/2) ~ t/2ast — 0, integrability hinges on the ratio
Px (t)/t.

Theorem 2.2. Dini’s Criterion.

T3

Let f be integrable on [—7z, 7t]. If for some s € C there exists § > 0

such that s
/ flx+t)+f(x—1t)—2s dt < oo,
0 t
then lim Sy[f](x) =s.
N—oo

T

Proof

A f(x=D) =25 i 1 . . -~
Let g(t) = S Fem(ijz - Since }gr& ssn(72) — L the integrability

Figure 2.4: The Localization
Principle: If f and g agree on

(x — 6,x + ), their Fourier
series exhibit identical conver-
gence behaviour at x.
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of ¢x(t)/t on [0, 4] implies the integrability of g(¢) on [0, J]. Outside
this neighbourhood, g(t) is integrable because sin(f/2) is bounded
away from zero. Thus g is integrable on [0, 7r]. We have:

SnIf](x) —s = %/Ong(t) sin ((N—i— %)t) dt.

By theorem 1.1, this integral tends to zero as N — co.
u

While Dini’s condition is precise, it is often difficult to check directly.
A more practical condition involves the smoothness of the function.

Definition 2.4. Lipschitz Continuity.
A function f satisfies a Lipschitz condition of order « at x if there ex-
ist constants L, > 0 such that for all || < é:

[flx+h) = f(x)| < L|n["

#
v

Proposition 2.3. Convergence for Lipschitz Functions.
If f satisfies a Lipschitz condition of order a > 0 at x, then the Fourier

series converges to f(x).

A

I

Proof
Takes = f(x). Then |f(x +t) + f(x —t) —2f(x)| < [f(x+1¢) —
f(x)| 4+ |f(x —t) — f(x)] < 2Lt*. The integrand in Dini’s criterion is
bounded by 2Lt*~!. This is integrable near o for any a > 0.

|

Piecewise Smooth Functions

In physical applications, functions often possess jump discontinuities.
We define a class of functions covering most practical cases.

Definition 2.5. Piecewise Differentiable.

A function f on [a,b] is piecewise differentiable if there exists a par-
titiona = tg < t; < -+ < t; = b such that f is differentiable on
each open interval (#;_1,t;), and the one-sided limits of f and f’ exist

at the endpoints ¢;.

Such functions satisfy a Lipschitz condition of order 1 everywhere
(one-sided at discontinuities). This leads to the classic convergence
theorem often attributed to Dirichlet.
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Theorem 2.3. Dirichlet’s Convergence Theorem.
Let f be a 27t-periodic function that is piecewise differentiable on [—7t, 7].
Then for every x € IR, the Fourier series converges to the average of
the one-sided limits:
. xt) 4+ f(x

N—co
where f(x*) = hlir(r)hr f(x % h). In particular, at points of continuity,
the series converges to f(x).

i
Proof

Set s = M The numerator in Dini’s integrand becomes:

ox(t) = (fx+1) = f(x7)) + (flx =) = f(x7)).

Since f has finite one-sided derivatives at x, the Mean Value
Theorem (or the definition of the derivative) implies that

|f(x £ t) — f(xF)| < Kt for small t. Thus |@x(t)|/t < 2K, which is
bounded and hence integrable. The result follows by Dini’s Crite-

rion.
[ |

The convergence theorems allow us to evaluate the sums of numeri-
cal series by substituting specific values of x into Fourier expansions.

Example 2.5. The Parabolic Wave and {(2). Consider f(x) = x? on
[—7t, 7t], extended periodically. Since f is continuous and piecewise
smooth, the Fourier series converges to x? for all x € [, 71].

Recall the expansion derived in the previous chapter:

2 ®© (1)
x2 = % +41§1 ( nz) cos(nx).

Evaluating at x = 7

2 [eS) n 2 [eS) n n
2 _ T (-1 7 (=D"(=1)
7T —?+4n;1 n2 COS(T’”T)—?+41/§1T.

Simplifying yields 43 ;7 4 nl—z =% - %2 = % Thus we recover the

Basel problem solution:

i 1
26
n=1m 6

. - . o (1)1 g2
Evaluating at x = 0 gives } ;" ~— 57— = 5.

47
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Example 2.6. Expansion of Cosine. Let f(x) = cos(ax)forx €
[—m, ] with a ¢ Z. The periodic extension is continuous. The coef-
ficients are:

., 2asin(ar)

ay = %/Oﬂcos(ax) cos(nx)dx = (—1) @ =)

The series is:

sin(ar) |1 = & 2a
= | - —1 n__—
cos(ax) p- la + 7;( ) R cos(nx)
Setting x = 0, we obtain a partial fraction decomposition for the
cosecant:
T 1 & 2a
— == -1 .
sin(atr) a * n;( ) a? — n?

This formula is instrumental in complex analysis for evaluating
residues and infinite sums.

$o19]

2.4 Half-Range Expansions

Often, a function f is defined only on an interval [0, L]. To apply
Fourier theory, we can extend f to [—L, L] and then periodically to R.
The choice of extension determines the nature of the series.

Let f: [0, 1] = R.

Even Extension. Define f.(x) = f(|x|) for x € [—m, 7] Since f, is
even, b, = 0. The series contains only cosine terms:

fx) ~ %O + éan cos(nx), a, = %/Onf(x) cos(nx) dx.

Odd Extension. Define f,(x) = sgn(x)f(|x|) for x € [—, 7t]. Since f, TN e
is odd, a, = 0. The series contains only sine terms: RN .
" b b 2" d o
- . _ < : .-+ 0dd
f(x) ,; nsin(nx), by - /0 f(x)sin(nx) dx.
Example 2.7. Expansions of f(x) = x. Consider f(x) = x on (0, 7). Figure 2.5: A function on [0, 7]

(black) can be extended evenly
(blue dashed) or oddly (red
dotted), resulting in purely co-

Sine Series. We extend f oddly. This matches the example of the
sawtooth wave, yielding:

(o)
xzzz
n=1

Note that at x = 7, the series sums to o, while f(7r) = . The

(-1

n

. sine or sine series respectively.
sin(nx), x€[0,m).
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odd extension is discontinuous at 7.

Cosine Series. We extend f evenly to |x| on [—7t, 7t]. The coeffi-
cients are:

—/ x cos(nx)dx = 2 ((=1)"—=1).

T n?
This is non-zero only for odd n. Thus:

w4 & cos((2k+1)x)
=5 - ;;—Zk—kl) , x€[0,m].

Here, the extension is continuous at x = 7, and the series con-

verges uniformly. Setting x = 0 yields } ;7 2k+1)2 = lz.

et
For a function defined on an interval [0, L], the same principles apply
by rescaling to [0, 7r] via the transformation t = 7*. The sine series
becomes:

:ﬁbnsin (%), bn:%/oLf(x)sin (?) dx.

This form is ubiquitous in the solution of boundary value problems
where the physical domain length is L, such as the vibrating string
discussed in chapter 1.

2.5 Exercises
1. Step Function Series. Expand the signum function

-1 —mTt<x<0
1 0<x<m

flx) =

into a Fourier series on (—7t, 7). Use this series to evaluate the
sum:

2. Basic Expansions. Compute the Fourier series for the following
functions on the interval (—7, 77):

@ f(x) = |
(b) f(x) = sin(ax) where a is not an integer.
(c) f(x)=xsinx.
3. Fractional Part. Expand the periodic function f(x) = x — |x] into

a Fourier series. Note that the fundamental interval here is [0, 1],
not [—7t, 7T].
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4. General Intervals. Expand the following functions into Fourier
series on the interval (—/,1):

@ f(x)=x
(b) f(x) = x+|[x].

5. Piecewise Linear Function. Expand the following function, de-
fined on [0, 3], into a Fourier series:

X 0<x<1
flx)=<1 1l<x<2
3—x 2<x<3

Assume the function is extended to an odd function on [—3, 3]
(sine series) or generally on [0, 3] with period 3.

6. Rectified Waves. Prove the following expansions for the absolute
values of sine and cosine:
2 4 & (—1)rtd
|cosx| = p + p ngl %cos(%x) forx € R,

1

4 o0
|sinx| = = — —~ r; T cos(2nx) for x € R.

SR

7. Exponential Expansion. For x € (0,27) and a non-zero constant
a # 0, prove:

2a71 0 .
=111 acoskx — ksinkx
T <2a py k2 + a2 '

k=1

8. Log-Trigonometric Series. Establish the following identities by
integrating known Fourier series:

(@) T q(—1)n1esit — Jog (2cos ) for — < x < 7.
(b) Yoq SS™ = —Jog (2sink) for0 < x <27
9. Mean Values of Modulated Functions. Let f be Riemann inte-

grable on [a, b]. Using the expansions for | cos x| and | sin x| from
Exercise 6, prove:

b b
tim [ £()] cos Axldx = 2 [ s,

]

lim /abf(x)|sin)\x|dx = i/abf(x)dx.

A—+oo
10. The Dirichlet Integral. Let 0 < x < 271.

(a) By integrating the Dirichlet kernel identity % + Y i jcoskt =
sin(n+1/2)t

2sin(t/2) - PTOVe that:

f sinkx  x n /x sin((n + 1)t) i
k=1 2 Jo

_= —
251n§
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(b) Use the fact that the Fourier series of the sawtooth wave
(7t — x)/2 converges to the function on (0,27) to deduce the
value of the improper integral:

+% sinx T
dx = —.
0 X 2

11. Localisation for Monotonic Functions. Let ¢ be an increasing
function on the interval [0, h] with i > 0. Prove:
b sinAt

li t
/\ﬁn}’i-loo 0 g<)

_ T oo+
dt = 2g(O ).

Remark.

Hint: Use the Second Mean Value Theorem for integrals.

12. Partial Fractions via Fourier Series. Using the Fourier expansion
of cos(ax) on [—m, 7t] derived in the text, prove the following
partial fraction decompositions valid for x ¢ ntZ:

1 2
(@) cotx =3+ a5

(b) cscx = % + Y (=1)"

P
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3
Uniqueness and Uniform Convergence

In chapter 2, we analysed pointwise convergence, establishing Dini’s
criterion (theorem 2.2) and Dirichlet’s theorem. We now address two
fundamental questions: does the set of Fourier coefficients uniquely
determine an integrable function, and under what conditions does
the series converge uniformly?

Uniqueness of Fourier Coefficients

If two integrable functions f and g have identical Fourier coefficients,
are they necessarily equal? By linearity, this is equivalent to deter-
mining whether a function with vanishing Fourier coefficients must
itself vanish.

f(n)=0 VneZ = f=0?

For Riemann integrable functions, the function can be altered on a
finite set of points without changing the integrals defining the coeffi-
cients. Thus, we cannot expect strict equality everywhere. However,
we can assert equality at all points of continuity.

Theorem 3.1. Uniqueness Theorem.
Let f be a 27r-periodic integrable function such that f(1) = 0 for all
n € Z. If f is continuous at 6y, then f(6y) = 0.

T3

Proof

We first consider the case where f is real-valued and proceed by
contradiction. Suppose there exists a point of continuity 6y such
that f(6y) # 0. Without loss of generality: we assume p = 0
and f(0) > 0. Since f is continuous at the origin, we can choose
6 € (0,7t/2] such that f(8) > f(0)/2 whenever |0] < é.

The proof relies on constructing a family of trigonometric polyno-
mials that "peak" at the origin while remaining small elsewhere
(figure 3.1). Let p(§) = € + cos@, wheree > 0 is chosen small




enough so that [p(0)| < 1 —e/2forallf € [—m, 7|\ (—J,0). Since
cos 0 is strictly increasing as & — 0 on the interval [, J], we can
find n € (0,9) such that p(6) > 1+e€/2 forall |6 < 5.

Define pi(8) = [p(0)]F fork € . Since the Fourier coefficients
of f vanish, and py is a finite linear combination of terms ¢, the
orthogonality of the exponentials implies:

/” F(0)pe(0)d6 =0 forall k € IN.

We estimate this integral by partitioning the domain into three
regions. Let B = sup |f(0)].

Case 1: |0] > 4. On this region, |pr(8)| < (1 —e/2)k. The contribu-
tion to the integral is bounded by:

| _ k
A§9|§nf(9)r7k(9)d9’<2n3(1 €/2)F — 0ask — oo.

Case 2: 17 < |f]| < J. In this intermediate region, f(6) > f(0)/2 > 0
and p(0) > p(d) > 0 (since € > 0 and ¢ < 71/2). Thus, the integrand
is non-negative:

/11§\9|<5f(9)79k(9) do > 0.

Case 3: || < 7. In this neighbourhood of the peak, f(6) > f(0)/2
and p(6) > 1+ €/2. The integral is bounded below by:

£(60)pi(0) do > 297

|‘ T(1+€/2)k%ooask%oo
0|<n

Combining these estimates, we conclude that [ fn fpkdd — ooas
k — oo, which contradicts the assumption that the integrals vanish
for all k. Thus f(0) = 0.

For a general complex-valued function f = u + iv, the condition
f(n) = Oimplies f(n) = f(-n) = 0. By linearity, the
Fourier coefficients of the real-valued functions u = (f + f)/2 and

v = (f — f)/(2i) also vanish. Applying the previous result to u and
v independently yields f(6p) = 0.

An immediate consequence is the injectivity of the Fourier transform
on the space of continuous functions.

Corollary 3.1. Injectivity on Continuous Functions. Let f and g be con-
tinuous 27-periodic functions. If f(1n) = ¢(n) for all n € Z, then f =

g everywhere.

e
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Figure 3.1: The peaking poly-
nomials pp(8) = (e + cosf)k
concentrate mass at the origin
as k increases, acting as an ap-
proximate identity.



54 GUDFIT

Proof
Defineh = f — g. By linearity, i(n) = f(n) — §(n) = 0 for
all n. Since h is continuous, thieorem 3.1 implies h(6) = 0 for all 6, so

£(6) = g(0).
n

This corollary provides a powerful method for verifying identities. If
we can verify that two continuous functions share the same Fourier
series, they must be identical. This logic was implicit in the solution
to the Basel problem in chapter 2, where we equated the function x?
with its series sum.

Uniform Convergence

While the Uniqueness Theorem links the function to its coefficients, it
does not guarantee that the Fourier series converges to the function.
It merely states that if the series converges to some continuous g, and
that series is the Fourier series of f, then f = g.

We now identify a condition on the coefficients that guarantees the
Fourier series converges uniformly to f.

Theorem 3.2. Absolute Convergence Implies Uniform Convergence.
Let f be a continuous 27r-periodic function. If the Fourier coefficients

satisfy

[e)

Y fm)] <o

n=-—oo

then the partial sums Sy[f](0) converge uniformly to f(f) as N — oo.

A
Proof
Consider the infinite series Y5, f(n)e™. Since [¢"?| = 1, we
have:

|fme| = | m)].

By the Weierstrass M-test, the condition Y |f(n)| < oo implies
that the series converges absolutely and uniformly to some limit

function g(6):

0
gO) = Y f(m)e™.
n—=-—oo
Since each term ¢ is continuous and convergence is uniform, the
limit g is a continuous function.
It remains to show that ¢ = f. We compute the Fourier coefficients
of g. Due to uniform convergence, we may interchange the sum




FOURIER SERIES

and the integral:

g(k) = %/n ( i ]?(n)eiw) o—ik0 49

T \n=-—o0

= n;wf(n) <217[ /j; el ik0 d()) .
By the orthogonality of the exponentials, the inner integral is J,.
Thus the sum collapses to f (k). Since ¢ and f are continuous func-
tions with identical Fourier coefficients (¢(k) =  f(k)), theorem 3.1
implies f = g.

[ |

This theorem reduces the problem of uniform convergence to the
problem of estimating the decay rate of the coefficients. If f(n) de-
cays sulfficiently fast (e.g., faster than 1/|n|), the series converges uni-
formly. Recall from chapter 1 that the smoothness of f dictates this
decay. Specifically, we established that if f is C¥, then f(n) = o(n~).

Corollary 3.2. Uniform Convergence for C> Functions. If f is a 27t-periodic
function of class C? (twice continuously differentiable), then its Fourier
series converges absolutely and uniformly to f.

El)
Proof
Since f € C?, we can apply integration by parts twice to relate the
coefficients of f to those of f”. As derived in the previous chapters:

f(n) = %fﬁ(n) = —%j/m(rz) for n # 0.

in)

—~

Since f" is continuous, it is bounded, and thus its coefficients J/‘ﬁ(n)
are bounded (in fact they tend to zero). Let C = sup |f”(n)|. Then:

)< S

n?’
The series Y |f ()| is dominated by CY nl—z, which converges (p-
series with p = 2). By theorem 3.2, the result follows.

Remark (Stronger Results).

The C? condition is sufficient but not necessary. A more precise
analysis shows that f € C! is sufficient for absolute convergence.
Even weaker, if f satisfies a Holder condition of order & > 1/2
(e, [f(x) = f(y)] < C|x — y|*), the series converges absolutely.

For continuous functions that are merely piecewise smooth (like
the triangle wave), the decay is O(1/n?), ensuring uniform con-
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vergence. However, for functions with jump discontinuities (like
the square wave), the decay is only O(1/n); the series does not
converge absolutely, nor uniformly (due to the Gibbs phenomenon).

The Convolution Product

In chapter 2, we observed that the partial sum Sy/[f] is an integral
transform of f against the Dirichlet kernel Dy. This is a specific
instance of convolution, which generalises the partial sum representa-
tion and is central to the theory of approximation.

Definition 3.1. Convolution.
Let f and g be 27t-periodic integrable functions. The convolution of
f and g, denoted f * g, is the function defined by:

(F8)) = o [ Fgtx—y)dy. G

The integral is well-defined for every x because the product of Rie-
mann integrable functions is integrable. Due to the shift-invariance of
the integral over a period (proposition 1.5), the variable of integration
can be shifted, yielding the symmetric form:

s
(Fe9)x) = 5= [ flx=w)gw) 6:2)
Geometric intuition suggests that if g is a localised "bump" function e i)
with unit area (such as the peaking polynomials constructed in the - Ly
proof of theorem 3.1), then (f * ¢)(x) represents an average of f in the
neighbourhood of x, weighted by the profile of g. Figure 3.2: Convolution at a
Recall that the partial sum of the Fourier series is given by: point x: the value (f * g)(x) is
the integral of the product of f
Sn[fl(x) = (f * Dn)(x). and the reversed, shifted kernel

Thus, the convergence of Fourier series is essentially a question of 8
how the convolution with the sequence of Dirichlet kernels {Dy }
behaves as N — oo.

Algebraic and Analytic Properties

The convolution operation endows the space of integrable functions
with a multiplicative structure that interacts gracefully with Fourier
coefficients.

Proposition 3.1. Properties of Convolution.
Let f,g, h be 27t-periodic integrable functions and ¢ € C.

1. Linearity: f*(g+h) = f*g+ f+xhand (cf)xg=c(f*g).



2. Commutativity: f x g = g * f.
3. Associativity: (f*g)xh = fx*(gxh).
4. Regularity: The function f * g is continuous on IR.

5. Convolution Theorem: For all n € Z,

—

fg(n) = f(n)§(n).

A

2

While the Fourier coefficient of a product fg is not simply fg, the
Fourier coefficient of a convolution is the product of the coefficients.
This transforms convolution into multiplication in the frequency
domain.

Proof

Properties 1 (Linearity) follow immediately from the linearity of the
integral.

Commutativity. Using the substitutionz = x —y (soy = x — z and
dy = —dz):

(F+8)x) =5 [ " flx-2)g() (~d2)

1 x+7 J
=5 | s@f -2
By periodicity, the interval [x — 77, x + 7] is equivalent to [—7t, 71].

Thus (f * g)(x) = (8 * f)(x)-

Associativity. This follows by writing out the double integral and
interchanging the order of integration (Fubini’s theorem), which
is justified for bounded Riemann integrable functions.

(F8) (@) = 7 [ [ f0s—phx—2) dydz.
The substitution u = z — y allows one to regroup terms to obtain
fx(gxh).

Regularity. We first prove this for continuous functions. If g is con-
tinuous on the circle, it is uniformly continuous. Givene > 0,
there exists § > Osuch that [s —t < 6§ = |g(s) —g(t)|] < e.
Then for any x1, xp with [x; — xp| < &:

<o /_ f W)l -edy = el 1.

Thus f * g is continuous.

(Fr)) = (Fr)0)l = |5 [ FW)lgtn —y) — g2 —y)dy

FOURIER SERIES

57



58 GUDFIT

Note

For the general case where f and g are merely integrable, we re-
quire a density argument. We cite the following standard result
from measure theory (adapted for Riemann integration).

Claim 3.1. Approximation Lemma. Let f be Riemann integrable on [—7, 77]
and bounded by B. There exists a sequence of continuous functions { fi }
bounded by B such that [|f — fill1 = 5 [ |f — x| = 0 as k — oo.

ERI3
Proof of Approximation Lemma

Let {f;} and {gx} be continuous approximations of f and g. Then:

frg—fix& = (f = fi) g+ fi * (& — &k)-

Estimating the first term:

((f = ) =8 (0] < o [ 1F0) )| suplgldy = £ ~ fullsup gl

This tends to o uniformly in x. Similarly for the second term. Thus
fx * gk converges uniformly to f * g. Since the uniform limit of

continuous functions is continuous, f * g is continuous.
FE B 4

Proof Continuation

Convolution Theorem. Assume f, g are continuous. We define the
coefficients:

Fesn =5 [ (5 [ Wt =y ) e

1 7T . 1 s .
- —iny (1 _y)ein(x—y)
o= /fﬂf(ﬁe (27[ lng(x y)e dx) dy.

The inner integral (substitutingz = x — y)is exactly ¢(n).
The remaining outer integral yields f(n). For integrable func-
tions, we again use the approximation sequence f, gx. Since

fe * & — f * g uniformly, the Fourier coefficients converge:

frxgk(n)  —  f*g(n). Simultaneously, fk( ) — f( ) and
Sx(n) — &(n). The identity holds in the limit.

u
Remark.
The smoothing property of convolution (Regularity) is crucial. Con-

volving an integrable function (which may be discontinuous) with
another integrable function yields a continuous function. If g is
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differentiable, f * g inherits that differentiability.

3.4 Good Kernels and Approximation

In the proof of the Uniqueness Theorem (f/eorem 3.1), we constructed
a sequence of trigonometric polynomials {py} that peaked at the ori-
gin. This behaviour allowed us to isolate the value of f at a specific
point. We now generalise this idea by introducing the concept of a
good kernel, often referred to as an approximation to the identity. These
kernels provide a systematic mechanism for recovering a function

from its convolutions.

Definition 3.2. Good Kernels.
A sequence of kernels {K,}?° ; on the circle is called a family of good
kernels if it satisfies the following properties:

1. Normalisation: For alln > 1,

1 /7 J
gy ./_nKn(x) x=1

2. Boundedness: There exists a constant M > 0 such that for all n >
1:
T
/ Ko (x)| dx < M.
-7

3. Concentration: For every § > 0, the mass outside the neighbour-
hood (—4,6) vanishes as n — oo:

/ Ky (x)] dx — 0.
o<|x|<m

In many practical cases, we encounter kernels where K, (x) > 0. In
such instances, the boundedness property follows automatically from
the normalisation condition (with M = 27r). We may interpret such
kernels as weight distributions that concentrate their mass near the
origin as n increases.

The importance of these kernels lies in their ability to approximate
continuous functions via convolution.

Theorem 3.3. Convergence of Convolutions.

Let {K,} be a family of good kernels and let f be an integrable func-
tion on the circle.

1. If f is continuous at a point x, then

lim (f * Ky)(x) = f(x).

n—00
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2. If f is continuous everywhere on the circle, then the convergence
is uniform:
lim sup |(f * K,)(x) — f(x)| = 0.
n—oo X

i

Proof

Let e > 0. If f is continuous at x, there exists 6 > 0 such that |y| <
0 implies |f(x —y) — f(x)| < e. By the normalisation property, we
may write:

(FKn)(x) — f(0) = 5= [ Kal)lfx—y) — F)]dy.

—7T

We split the integral into the region near the origin (|y| < J) and the
region away from the origin (8 < |y| < 7).

(K = FO1 < o [ IKal) 12— 9) = £l dy

lyl<o
1

3 oy I I =) = )y

In the first integral, the difference term is bounded by €. Using the
boundedness property of the kernel:

1 e 7 M
- < € M
27T /|y‘<§|Kn(y)|€dy_ o /77T|K”(y)|d}/_ 271_—6

In the second integral, since f is integrable and therefore bounded
by some B, we have |f(x —y) — f(x)| < 2B. Thus:

1 B
2 K, (y)[2Bd <7/ K, ()| du.
- /KMSJ slBay< = [ Kyl dy

By the concentration property, this integral tends tooasn — oo.
Thus, for sufficiently large n, this term is negligible. Combining
these estimates, the difference can be made arbitrarily small, prov-
ing pointwise convergence.

If f is continuous everywhere, it is uniformly continuous on the
compact domain [—7t, 77]. Thus ¢ can be chosen independent of x,
ensuring uniform convergence.

The Dirichlet Kernel Revisited

Recall that the partial sums of a Fourier series can be expressed as a
convolution with the Dirichlet kernel: Sy[f] = f * Dy. It is natural
to ask whether {Dy} constitutes a family of good kernels. If so,
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theorem 3.3 would imply that the Fourier series of any continuous
function converges to the function.
We verify the properties for Dy:
Normalisation. 1 m
— Dyn(x)dx =1.
o /_ _Dn(x)

This holds.

Boundedness. We examine the integral of the absolute value.

s
/ |IDn(x)|dx > clogN as N — oo.
-7

Since the integral of | Dy| grows logarithmically with N, {Dy} is not
a family of good kernels. The signed integral is 1 while the integral

of the absolute value diverges due to rapid oscillations (see figure 3.3). %AVVAW%DWL) ;

This failure necessitates alternative summation methods, such as

Cesaro means, employing kernels with bounded L! norm (chapter 4).

Rapid oscillation and negative lobes cause [ |Dy| to diverge.

3.5 Exercises
Figure 3.3: The Dirichlet ker-

1. Identity from Uniqueness. Let f and g be continuous 27t-periodic nel takes significant negative
functions. Suppose that f(1n) = e §(n) for all n € Z. Prove that values. These negative lobes
f(0) =g(6+1) for all 6. accumulate area, violating the

Remark. boundedness condition of good

. . .. . kernels.
Hint: Calculate the Fourier coefficients of the function

h(0) = (6 +1).

2. Checking Uniform Convergence. Let f(x) be the 27r-periodic
function defined by f(x) = |x| for x € [—m, 71].

(a) Does the Fourier series of f converge uniformly to f? Justify
your answer using the decay of the coefficients computed in
the previous chapter.

(b) Does the Fourier series of the derivative f’ (where it exists)
converge uniformly?

3. Convolution Properties. Let f(x) = cos x. Compute the convolu-
tion (f * f)(x). Verify the Convolution Theorem by comparing the
Fourier coefficients of the result with the square of the coefficients
of f.

4. Testing a Kernel. Consider the sequence of kernels K, (x) =
ng(nx), where ¢p(x) = e~*l for x € R (and periodised for the cir-
cle, or considered locally). Check whether this sequence satisfies
the three conditions for a family of good kernels: normalisation
(after appropriate scaling), boundedness, and concentration.
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4
Cesaro Summation

chapter 3 established that the Fourier series of a continuous func-
tion is unique but not necessarily pointwise convergent. Du Bois-
Reymond (1876) constructed continuous functions with divergent
Fourier series. Since convergence requires additional regularity (e.g.,
theorem 2.2), we introduce Cesaro summation, which recovers the
function by averaging partial sums to dampen oscillations.

Cesaro Summability

The concept of convergence for infinite series ) a;, is rigid: the se-
quence of partial sums Sy = YN 4, must tend to a limit. Many
natural series fail this condition despite oscillating around a clearly
defined "centre".

Definition 4.1. Cesaro Summation.

Let {S,}5, be the sequence of partial sums of a series }_a;. The se-
ries is said to be Cesaro summable to ¢ if the arithmetic means of the
partial sums converge to ¢:

So+S1+---+Sn-
lim oy =0, where on = 0t o1H N L
N—o0 N

In this case, we write Y ;7 ya = ¢ (C).

It is a standard result in analysis that Cesaro summation extends the

usual definition of convergence. If Sy — s, then oy — s. However,

oy may converge even when Sy diverges.

Example 4.1. Grandi’s Series. Consider the series Y00 ;(—1)""1 =

1-14+1-1+....

The partial sums are So = 1,51 = 0,5, = 1,53 = 0, and so on. The

sequence {5, } diverges. However, the means behave as follows:
k-1+k-0 1 (k+1)-1+k-0

1
e e T S ¥
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Thus, 1 -1+1—---=1(C).

4.2 The Fejér Kernel

We apply this summation method to the Fourier series of a 27-
periodic integrable function f. Let Si[f] denote the k-th partial sum.
The N-th Cesaro mean of the Fourier series is:

Wl =5 T s

Recall from chapter 2 that Si[f] = f * Dy. By the linearity of convo-
lution (section 3.3), the Cesaro mean is the convolution of f with the

average of the Dirichlet kernels.

Definition 4.2. Fejér Kernel.
The N-th Fejér kernel Fy is defined as:

7T

Consequently, on[f](x) = (f * Fn)(x) = 5= [7_f(x — t)Fx(t) dt.

Unlike the Dirichlet kernel, the Fejér kernel possesses a closed form
that is strictly non-negative.

Proposition 4.1. Closed Form of Fejér Kernel.

For t & 2ntZ.: )
1 sin“(Nt/2
Fn(t) = - ( )

N sinz(t/Z) '
For t € 2rtZ, Fy(t) = N.

v

Proof

Recall the identity Di(t) = sin((k+1/2)t)

. We sum these terms using

- sin(t/2)
the identity 2sin(A) sin(B) = cos(A — B) — cos(A + B).
N-1 N-1
2sin(t/2) Y sin((k+1/2)t) = Y (cos(kt) — cos((k +1)t)).
k=0 k=0

This is a telescoping sum. The terms cancel, leaving:
1 — cos(Nt) = 2sin?(Nt/2).

Dividing by 2sin(t/2) recovers the sum of the numerators. Di-
viding further by N (from the definition of the mean) and the
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remaining sin(t/2) yields the result.
|

The positivity of Fy is the decisive factor. We verify that { Fy} consti-
tutes a family of good kernels as defined in section 3.4:

Normalization. > J7_Ku(t)dt = 1. This follows because the in-
tegral of Dy is 1 and the integral of Dy for k > 1is also 1 (as
established in chapter 2).

Positivity. K, (t) > 0 for all t. This is immediate from the squared
form.

Concentration. For any 6 € (0, ), the integral of the kernel away
from the origin vanishes as n — oo:

lim K, () dt = 0.

n—oo (5§|t|§7‘[

Fejér’s Convergence Theorem

Because {F,} constitutes a family of good kernels, we can apply
the general theory of approximations. We first establish pointwise
convergence at points of continuity or jump discontinuities.

Theorem 4.1. Fejér’s Theorem.

to the average of these limits:

lim o [f](x) = LG ESGT),

n—oo 2
In particular, if f is continuous at x, then o, [f](x) — f(x).

Proof

malisation property, we can write the difference as an integral over
[0, 7t]:

ol —s = [T (LTI g

Let ¢(t) = f(x+1t) + f(x — t) — 2s. Note that ¢(t) = 0ast — 0F.

alfx) =5 = o ["p0F (0.

We split the integral into I; (over [0,4]) and I, (over [4, 7t]).

Let f be a 27t-periodic integrable function. If the one-sided limits f(x™)
and f(x~) exist at a point x, then the Fourier series of f is Cesaro summable

Lets = w By the symmetry F, () = F,(—t) and the nor-

Given € > 0, there exists § > 0 such that |¢(f)] < e for0 < t < 4.

Ey(t) 20

Figure 4.1: The Fejér kernel
Fx(t). Unlike Dy, it is non-
negative. As N increases, the
area concentrates at f = 0.
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For I, using the positivity of Fy:

L] < i/(s| (1) |Ea(t) dt < i/(sF (t)dt < i/nP (H)dt =<
U= Jo 19 2 Jo M = 0g Jy MY E T
For ), let A = fon |@(t)| dt. Since f is integrable, A is finite. Using
the concentration estimate F; (f) < nsin+(5/2) for t € [4, rt]:
1 Tt A
I<—math/ Hldt < —————.
L] < 27T te[s,n] n(t) s lp()ldt < 2 sin?(5/2)

For fixed 0, this term vanishes as n — oo. Thus, for sufficiently large
n, |on[f](x) —s| <e.

This theorem provides a powerful consistency result for Fourier
series: the series cannot converge to an arbitrary value.

Corollary g4.1. Consistency of Fourier Limits. Let f be integrable. If the
Fourier series S, [f](x) converges at a point x where the one-sided lim-

+ -
its of f exist, it must converge to M

ek
Proof
If a sequence S, converges to L, its arithmetic means ¢;, must also
converge to L. By theorem 4.1, the limit of oy, is M By the

uniqueness of limits, L must equal this value.
[ ]

We now consider the case where f is continuous everywhere. Since
F, is a good kernel, we can appeal to the general approximation

property established in f/icoremn 3.3.

Theorem 4.2. Uniform Cesaro Convergence.
If f is a continuous 27t-periodic function, then the Cesaro means oy, [f]

converge uniformly to f on IR.

gkl
Proof
Since {F,} is a family of good kernels (verified in chapter 4), and
f is continuous (and thus uniformly continuous on [—, 77]), the
result follows immediately from theorem 3.3.

Weierstrass Approximation Theorem

An important consequence of Fejér’s theorem is the density of
trigonometric polynomials in the space of continuous periodic func-

tions.
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Theorem 4.3. Weierstrass Approximation Theorem (Trigonometric).
Let f be a continuous 27r-periodic function. For any € > 0, there ex-
ists a trigonometric polynomial P such that:

sup |f(x) — P(x)| <e.

xe€R
i
Proof

The Cesaro mean on[f](x) is the arithmetic average of partial sums
Sk[f](x). Since each Sy is a trigonometric polynomial of degree at
most k, the average oy is a trigonometric polynomial of degree at
most N — 1. By the uniform convergence part of ticoren 4.1, there
exists N sufficiently large such that ||oy — f|lc < €. We simply take

P(x) = on[f](x).

This constructive proof not only asserts the existence of such poly-
nomials but provides an explicit formula for them via the Fourier
coefficients.

Note

This density result is crucial for the spectral theory of operators. It
implies that the trigonometric system {¢"*} is a complete basis for
the space of continuous functions; no non-zero continuous function

is orthogonal to every ¢/"*, reaffirming the result of t/icoren 3.1.

4.3 Abel Summability and the Dirichlet Problem

While Cesaro summation provides a robust method for reconstruct-
ing a function from its Fourier series using the arithmetic means of
partial sums, it is not the only summation method available. Abel
developed a method based on power series, originally motivated by
the study of boundary value problems.

Abel Means

We first define the concept for numerical series.

Definition 4.3. Abel Summability.
A series of complex numbers ) 7 ¢ is said to be Abel summable to
s if the power series

Ar) =Y o
k=0

converges for all 0 < r < 1, and the limit as ¥ — 1~ exists and equals
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lim A(r) =s.

r—1-
Abel summability is a strictly stronger condition than Cesaro summa-
bility. It is a standard result (Abel’s Theorem) that if a series con-
verges to s, it is Abel summable to s. Furthermore, if a series is
Cesaro summable, it is also Abel summable to the same value. The
converse, however, does not hold.
Example 4.2. A Divergent Alternating Series. Consider the series

[ee]
Y (-Dfk+1)=1-2+3—-4+....
k=0
The partial sums oscillate with increasing amplitude, and the
Cesaro means do not converge. However, we consider the asso-
ciated power series for |r| < 1:

= d & d r
_ 1)k k_ 4 xqykkl 4
A = T+ 1 = 4 T ()
Calculating the derivative:
A(r):(1+r)—r: 1

(1+47r)? (147)%
Asr — 17, A(r) — 1/4. Thus, the series is Abel summable to 1/4.

Xl

We adapt this definition to Fourier series. Given a function f ~
Y. f(n)e™?, we introduce the radial factor /" to dampen the coeffi-
cients.

Definition 4.4. Abel Means of Fourier Series.
For an integrable function f and 0 < r < 1, the Abel mean A,[f] is
defined by:

AlfO) = Y M fm)e.

n=—oo

Since |f(1)] is bounded, this series converges absolutely and uni-

formly for any fixed r < 1, yielding a continuous function of 6.

Substituting the definition of the Fourier coefficients f(n) = .- [ f(¢)e~ "¢ d¢
and interchanging the sum and integral (justified by uniform conver-

gence), we obtain a convolution structure:
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Ar[f1(0) = i il (217_[ /jtf(gb)e—imp dgb) o0

n=-—oo

L s £ e o
= (f * Pr)(e)/

where P,(8) is the Poisson kernel introduced in chapter 1.

Convergence via the Poisson Kernel
Recall the explicit formula for the Poisson kernel derived in figure 2.3:

1—#2

PO)= —mMm .
+(0) 1 —2rcosf + r?

To prove that A,[f] — f, we must verify that {P, }o<,<1 acts as an
approximation to the identity as r — 17. Although our definition of
"good kernels" in section 3.4 used a discrete index 7, the properties
translate directly to the continuous parameter r.

Lemma 4.1. The Poisson Kernel is a Good Kernel.
The family {P, }o<,<1 satisfies the following properties as r — 17:
1. Normalisation: 5= [ P(6)d6 = 1.

2. Positivity: P(6) > 0 for all 6.

3. Concentration: For any ¢ > 0, lir{1 SUp;s<|g|<x Pr(6) = 0.
r—1- -

312
Positivity.
Sincer < 1,1 —12 > 0. The denominator is |1 — re’®|?, which is
strictly positive. Thus P, > 0.
SEBA #
Normalisation.
Integrating the series expansion term-by-term:
o [T X e = Y sy =1
2r T n=—o0 n=-—oo0
SEEA #

Concentration.

We estimate the denominator for § < |0] < 7.

1—2rcos®+1* = (1—r)242r(1 — cos¥).

For |#] > 6,1 —cosf > 1—cosé > 0. Letcs = 1 — cosd. Then the
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denominator is bounded below by 2rc;. Consequently:

1—12
P.(0) < .
r(0) < 2rc;

As r — 17, the numerator vanishes while the denominator remains
bounded away from zero. Thus the kernel converges uniformly to o
outside the interval (-4, ).

EES
With these properties established, the convergence theorem for Abel
means follows the same logic as Fejér’s theorem.

Theorem 4.4. Abel Summability of Fourier Series.

Let f be an integrable function on the circle.

1. At every point 6§ where f is continuous, lil’{l AL [f](8) = f(0).
r—1-

2. If f is continuous everywhere, the convergence is uniform.
%2
Proof

The proof is identical to that of tieorem 3.3, replacing the sequence
index n — co with the parameter r — 1.

Solution to the Dirichlet Problem

The convergence of Abel means provides the rigorous solution to the
Dirichlet problem on the unit disc ID, a motivating example discussed
in chapter 1. The problem asks for a function u(r,0) continuous on
the closed disc D and harmonic in the interior, such that u(1,60) =
£6).

We propose the solution u(r,0) = A,[f](0) = (f * P,)(6).

Theorem 4.5. Solution to the Dirichlet Problem.
Let f be a continuous function on the unit circle. The function u(r,6)
defined by the Poisson integral

Figure 4.2: The Dirichlet prob-
lem: extending boundary data
f to a harmonic function u in
the interior.

u(r,0) = % /_if(ﬁb)Pr(e —¢)do

satisfies the following:
1. Harmonicity: u € C2(ID) and Au = 0 for r < 1.

2. Boundary Continuity: lir? u(r,0) = f(0) uniformly in 6.
r—1-

3. Uniqueness: u is the unique solution to the Dirichlet problem.
g
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(i) Harmonicity.

Recall the series representation u(r,0) = Y _ f(n)rl"lei?, For
any fixed p < 1, the series converges uniformly on the disc r < p.
Since term-by-term differentiation is valid for power series inside
the radius of convergence, u is smooth. In polar coordinates, the

Laplacianis A = 97 + 79, + %285. Applying this to a single term

Up = rlnleind.

o = (] = 12 - =t ) 0 T (2 ] - 2) 0 o
On = I r r r2 4 - rz n = u.

By linearity, Au = 0.
FER #

(ii) Boundary Continuity.

This is precisely the statement that the Fourier series of f is uni-
formly Abel summable to f, which follows from the previous

theorem since f is continuous.
FER #

(iii) Uniqueness.

Suppose v(r,0) is another solution. Letr € (0,1) be fixed. Since
v is continuous in 6, we can compute its Fourier coefficients with
respect to 6:

— i & 0 —inf 4o
cn(r) = 7o _nv(r, Je .

Since Av = 0, substituting the Fourier series into the Laplacian
equation (justified by smoothness) implies that ¢, () satisfies the
ordinary differential equation:

" 1, n?
c(r) + ;cn(r) - r—zcn(r) =0.

This is an Euler-Cauchy equation. The general solution is of the
form A"l + Byr="l forn # 0(and Ay + Bylnrforn = 0).
Boundedness of v at the origin requires B, = 0 (and By = 0). Thus
en(r) = Aprlnl,
As r — 17, the uniform convergence v(r,6) — f(0) implies ¢, (r) —
f(n). Therefore, A, = f(n), and c,(r) = f(n)r/"l. This uniquely de-
termines the Fourier series of v(r, ) for every r, and hence v itself.
BLES

Remark.

The uniqueness result implies that a harmonic function on the disc
is completely determined by its boundary values. Conversely, if a
harmonic function vanishes on the boundary, it must vanish ev-

erywhere (a consequence of the Maximum Principle, which this
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Fourier-based proof recovers).

4.4 Exercises

1.

Calculating Cesaro Sums. Determine the Cesaro sum of the fol-
lowing divergent series.

(a) The sequence of terms 1,0,—1,1,0, —1,... repeated periodi-
cally.

(b) The cosine series % + Y cosnx for x € (0,27).
(c) The sine series Y ; sinnx for x € (0,271).

Cosine Approximation. Prove that any continuous function on

the interval [0, 77| can be uniformly approximated by polynomials

involving only cosines, i.e., of the form P(x) = YN a; coskx.
Remark.

Hint: Consider the even extension of the function to [—7, 7] and
apply Weierstrass’s theorem.

Necessary Condition for Cesaro. Prove that if a series ) a, is
Cesaro summable, then the terms must satisfy the growth condi-
tion a, = o(n) as n — oo.
Abel Summability Basics.

(a) Verify that the series Y, ;(—1)" is Abel summable to 1/2.

(b) Prove generally that if ) ;> ;a, converges to s in the standard
sense, then it is Abel summable to s.

Hierarchy of Summability.

(a) Prove thatif } ;> ;ay, is Cesaro summable to s, then it is Abel
summable to s.

(b) Prove that the series ), (—1)"(n + 1) is Abel summable to
1/4, but is not Cesaro summable.

Remark.

This establishes the strict inclusion: Convergence C Cesaro C
Abel.

6. Logarithmic Series. Prove that the series } ;. ,(—1)" logn is

Cesaro summable to % log Z.

Remark.

Consider the derivative of the Dirichlet eta function or appropri-
ate Fourier expansions involving log(sin x).
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7. Product of Series. Let ) a, = A and } b, = B be convergent
series. Let ¢, = Y }_, axb,_i be their Cauchy product. Prove that
Y. cn is Abel summable to AB, even if it does not converge.

8. Polynomial Approximation. Derive the classical Weierstrass Ap-
proximation Theorem for algebraic polynomials on [a, b] (every

continuous function can be uniformly approximated by polynomi-
als) from the trigonometric version proven in the text.

Remark.

Map the interval [g, b] to [0, r] and approximate f(cos @) using
cosine polynomials.



5
Mean-Square Convergence

Continuous periodic functions admit uniform approximation by
trigonometric polynomials (t/icorem 4.2). However, for general inte-
grable functions, uniform convergence is too restrictive. We instead
seek to approximate f "on average" using the mean-square norm.

Inner Products and Mean-Square Error

We restrict our attention to the set of square-integrable functions

on an interval [a, b], denoted by R|a, b]. For bounded functions, we
assume Riemann integrability (implying f2 is integrable). For un-
bounded functions, we assume f? is improperly integrable. From the
inequality |f| < (1 + f2), such functions are absolutely integrable.

Definition 5.1. Mean-Square Convergence.
Let f € R[—m, 7t]. A sequence of trigonometric polynomials {T}} is
said to converge to f in the mean-square sense if:

lim [ |f(x) — Tu(x)[*dx = 0.

n—oo J

To formalise this, we utilise the inner product structure on R[g, b]
introduced in chapter o.

Definition 5.2. Inner Product and Norm on R.
The space of square-integrable functions R[g, b] inherits an inner prod-
uct structure from the axioms established in chapter o. For f, g € Ra, b]:

)= [ Fo)go)

The induced norm is || = /{7, 71 = (J/' f2(x) dx) .
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Orthogonal Systems

The geometric notion of orthogonality generalises to this infinite-
dimensional space. Two functions f, g are orthogonal if (f, g) = 0.

Definition 5.3. Orthonormal Systems.
Let {0, ¢1,... } be a system of functions in R{a, b]. It is an orthogo-

0 k#£1,
(Pr, @1) = { *

nal system if:

M >0 k=1

If Ay = 1 for all k, the system is said to be orthonormal.

Example 5.1. Trigonometric Systems. The system

{1,cos x,sinx,...,cosnx,sinnx,...} is an orthogonal system on
[—7t, ]. Normalising these functions yields the orthonormal sys-
tem:

{ 1 cosx sinx cosnx sinnx }

$o19]

Given an orthonormal system { ¢} and a function f € Rla, b], we
define the Fourier coefficients of f with respect to {¢} as:

b
o= {f,90) = [ Fx)pu(x)dx. -1

The associated series f(x) ~ Y7, ck@i(x) is the Generalised Fourier
Series.

The Extremal Property of Partial Sums

We now address the central question of approximation: given a func-
tion f and a fixed degree 1, which linear combination of the basis
functions {¢o, ..., ¢, } provides the best approximation to f in the
mean-square sense?

Let S, (x) = Y{_ock@k(x) be the partial sum of the Fourier series
using the coefficients defined above. Let T,,(x) be an arbitrary poly-
nomial of degree n formed by the system:

To(x) = i wppr(x),
k=0

where «; are arbitrary real numbers. We seek to minimise the error

1f = Tall.

Theorem 5.1. Extremal Property.
Let { ¢} be an orthonormal system. For any f € R[a, b] and any co-



efficients g, ..., a,:

n
||f— Y crgr
k=0

where ¢, = (f, ¢¢). Equality holds if and only if a; = ci for all k.
T

Proof

We compute the squared norm of the difference using the proper-
ties of the inner product and the orthonormality of {¢y}.

If = Tull®* = (f = Tu, f — T)
= <f— Y agn, f — i‘xk(Pk>-
=0 =0

Expanding the inner product by linearity:

n n
If = Tull®> = (f. f) — <f Z“k¢k>+<2“k(l’k12“l¢l>'
k=0 1=0
Using (f, px) = cx and @y, ;) = y:
5 5 n n n
If=Tall* = 111" =2 ) ax(fr 0u) + ) Y axidu
k=0 k=01=0
2 4 S
= IfIIP =2 ) apcr + Y aj.
k=0 k=0
We complete the square with respect to ay:
2 2 V2 v . =
1f = Tall®> = 117 = ) ek + ch—zzakaJr Y i
k=0 k=0 k=0 k=0
2 v o2 -
= | IfI1P =) ek Z cx — a)?
k=0 =
Since (cy — a;)?> > 0, the expression is minimised if and only if
each term in the final summation vanishes, i.e., oy = cj. In this case,

T, = Sy.
]

The minimum error is given explicitly by the remaining terms:

If = Sull? = 11£17 = }_ - (5-2)
k=0

FOURIER SERIES
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Bessel’s Inequality and Parseval’s Identity

From the identity derived in eq. (5.2), we observe that || f — S,[|*> >
0. This immediately implies a bound on the sum of the squared
coefficients.

Theorem 5.2. Bessel’s Inequality.
Let {ci} be the Fourier coefficients of f with respect to an orthonor-
mal system { ¢ }. Then for any n:

- 2 2
Y ek < IIfII%
k=0
Since the right-hand side is independent of 7, letting n — oo yields:

o 2 2
Y < lIfII%
k=0

il

This inequality ensures that the series Zci converges. A necessary
consequence is that klim cx = 0, recovering the Riemann-Lebesgue
—00

lemma in this general context.

The question of mean-square convergence reduces to determining
when the inequality becomes an equality. If || f — S,,|| — 0 as n — oo,
then eq. (5.2) implies:

Theorem 5.3. Parseval’s Identity.
The Fourier series of f converges to f in the mean-square sense if and
only if:

o 2 2
Y = lIfII%
k=0

F i

Geometrically, this is the infinite-dimensional analogue of the Pythagorean
theorem. If we view { ¢y} as a basis, Parseval’s identity asserts that

the squared length of the vector f equals the sum of the squared

lengths of its components. This occurs precisely when the orthogonal
system is complete (or closed) in Rla, b].

Completeness of the Space

While the vector spaces RY and C? are complete (every Cauchy se-
quence converges to a limit within the space), the space of Riemann
integrable functions R equipped with the mean-square norm is not.
A sequence {f,} in R may satisfy || fy — fm|| — Oasn,m — oo (a
Cauchy sequence), yet there may be no function f € R such that

1 fn = £l = 0.
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Example 5.2. Incompleteness of R. Consider the function f on
[0, 277] defined by:

0 0=0,

10 = log(1/6) 0< <27

This function is unbounded, so it does not belong to the space of
bounded Riemann integrable functions. However, consider the
sequence of truncations { fy }:

0 0<0<1/n,

Jn®) = £(0) 1/n<6<2m

Each f,, is bounded and integrable. It can be shown that { f,,} forms
a Cauchy sequence in the mean-square norm. However, this se-
quence cannot converge to an element in R. Any such limit would
have to equal f almost everywhere, but f is not square-integrable in
the Riemann sense (it requires improper integration).

.41

This difficulty motivates the completion of the space R to the Lebesgue
space, where such limits exist. Within the context of Riemann inte-
gration, however, we can prove that Parseval’s identity holds (and

thus mean-square convergence is achieved) for all f where the inte-
gral is defined. We first formalise the condition for completeness.

Definition 5.4. Completeness of an Orthonormal System.
Let { ¢, } be an orthonormal system in R{a, b]. The system is said to be
complete if for any f € Rla, b], Parseval’s identity holds:

v |2 2
Y lekl* = NI£I%
k=0

From the Extremal Property (theorem 5.1), we immediately obtain the
following equivalence.

Corollary 5.1. Approximation Equivalence. A necessary and sufficient con-
dition for the orthonormal system { ¢y} to be complete is that for any

f € Rla, b]:
2

lim =0.
n—oo

n
f=) ckgr
k=0

That is, f can be approximated in the mean square by the partial sums
of its Fourier series.

i
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Proof

From the identity derived in eq. (5.2), we have:

n
If = Sall® = £ 17 = 3 -
k=0

Taking the limit as n — oo, the left-hand side vanishes if and only if
the right-hand side becomes ||f||> — 1> ,cZ = 0, which is exactly
Parseval’s identity.

|

We now prove that the trigonometric system is indeed complete.

Theorem 5.4. Completeness of the Trigonometric System.
Let f € R[—m, 7], and let a,, b, be its Fourier coefficients. Then Par-
seval’s identity holds:

[e9)

2 T
%‘F Z(ai+bﬁ):%/_nf2(x)dx.

n=1

i

The proof proceeds in three steps, extending the class of functions
from continuous to Riemann integrable, and finally to improperly
integrable.

Step 1: Continuous Functions.

Let f be a continuous function on [—7, r] with f(—mt) = f(m). By
the property of uniform approximation (t/corem 4.2), for any e > 0,
there exists a trigonometric polynomial Ty, (x) of degree 1y such
that |f(x) — Ty, (x)| < Ve/2m for all x. Consequently:

IF = Tnll? = [ 1£3) = Ty () Pz < e

By the Extremal Property (t/eorem 5.1), the Fourier partial sum S,
provides an even better approximation:

If = Sull? < IIf = TugI* < .

Since || f — Sy||? is non-increasing with n, for all n > ny, ||f — Su||> <
€. Thus, lim ||f —S,| = 0.
n—o0
ELES

Step 2: Riemann Integrable Functions.

Let f be Riemann integrable on [—7, 77]. For any € > 0, there exists
a partition —71 = x9 < - -+ < X = 77 such that the lower and upper
Darboux sums satisfy ) w;Ax; < €/(4Q2), where w; is the oscillation

on [x;_1,%;] and Q) is the total oscillation.
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We construct a continuous polygonal approximation g(x) by con-
necting the points (x;, f(x;)) linearly, ensuring g(—m) = g(m). On
each subinterval, |f(x) — g(x)| < w;. Thus:

m X; m €
If=gl2= Y [ (F) —g(x)Pdr < Y wlhn <OV wiw < 3.
i=1"%i-1 i=1

By Step 1, there exists a trigonometric polynomial T(x) such that
llg — T||? < /4. Using the inequality ||A + B||? < 2(||A||? + ||B||?):

€ €
If = TI* <20 f - gl*+2lg - TII* < sty =e

2
As before, this implies || f — S,|| — 0.
LIRS .
Step 3: Improperly Integrable Functions. Figure 5.1: A continuous func-
Assume f2 is integrable. Suppose 7 is the only singular point. For tion (blue) approximated by a
e > 0,choose > Osuchthat [ . f2(x)dx < e/4. decompose polygonal chain (red).
f into f1 (bounded on [—7r, T — 7|, zero elsewhere) and f, (zero

on [—7, 1 — 7], f elsewhere). Since f; is Riemann integrable, there
exists a polynomial T such that || f; — T||? < /4. Then:

_TI? < _ T2 2 _ € Y e
If =TI <2lfi-TIP+216IP <5 +2(3) =€

S 4
This concludes the proof.

Example 5.3. Evaluation of {(2). Consider the expansion of f(x) =
x/2 on (-7, ), which has coefficients b, = (—1)"~!/n and a,, = 0.

o) (_1 n—1

~ 2 ————sinnx.
— n
n=1

N &

Applying Parseval’s identity:

1 7™ x\2 > (1)?

— =) dx= - .

T /771 (2) * ;;:1 (n)
Evaluating the integral:

3

i3 6

i 317 B 12713_7'(2
4 n

. . 2
Thus, we recover the famous identity ) ;> ; ”1—2 =%

#h)
From Parseval’s identity, two fundamental corollaries follow immedi-
ately.
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Corollary 5.2. Completeness and Zero Function. If a continuous function
f on [—, 7] is orthogonal to every function in the trigonometric sys-
tem {1,cosx,sinx, ...}, then f =0.

e
Proof
By assumption, all Fourier coefficients a,, and b, are zero. Parse-
val’s identity implies [”_f2(x)dx = 0. Since f is continuous and f>

is non-negative, f must be identically zero.
[ |

Corollary 5.3. Unigueness Theorem. If two continuous functions have the
same Fourier series, they must be identically equal.

ik
Proof
Let f and g be continuous functions with identical Fourier series.
By linearity, the Fourier coefficients of h = f — g are all zero. By
corollary 5.2, h =0,s0 f = g.
|

5.3 Generalised Parseval Identity

The isometric nature of the Fourier transform established in t/ico-
rem 5.3 extends beyond the norm to the inner product itself. By con-
sidering the interaction between two different functions, we obtain
the Generalised Parseval Identity.

Theorem 5.5. Generalised Parseval Identity.
Let f,g € R be 2m-periodic integrable functions with Fourier coef-
ficients {c,, } and {d,} respectively. Then:

%/_if(x)@dx: Y. cudn.

In terms of the real coefficients (where f ~ % +3_ a, cos nx + by sin nx
and g ~ 3 + Y ay, cosnx + B, sinnx), this reads:

T g dx = "0 4 e+ ),

n=1

Proof

We employ the polarisation identity, which reconstructs the inner
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product from the norm. For any complex inner product space:

4(f.8) = If +8l3 = IIf —gllz +illf+igld —ill f - igll3.

Applying Parseval’s Identity (t/icorem 5.3) to each norm term on the
right-hand side, we substitute terms like ||f + g[5 = Y |cn + du|?
By the linearity of the coefficients, the algebraic expansion of the
sums mirrors the expansion of the norms, yielding 4 Y. cudy.
Alternatively, for real-valued functions, we may simply consider:

If + 12 = I1£1Z + lIgll3 +2(f. 8)-

Substituting the series sums for the squared norms yields the result
immediately.

This theorem reinforces the geometric perspective: the Fourier trans-
form preserves the angle between vectors as well as their lengths.

Integration of Fourier Series

One of the most powerful features of Fourier series is their robust-
ness under integration. While term-by-term differentiation of a Fourier
series requires strict conditions on the smoothness of the function (to
ensure the coefficients decay fast enough to counteract the n factor),
integration improves convergence (introducing a 1/n factor). Conse-
quently, term-by-term integration is valid for a1y integrable function,
regardless of whether the original Fourier series converges pointwise.

Theorem 5.6. Term-by-Term Integration.
Let f be a 27t-periodic integrable function with Fourier coefficients c;.
For any interval [a,b] C [, 7T]:

/ fx)dx="Y cu / e dx.
Ja n——oo Ja
Explicitly:

b Co s inn

/ fx)dx =co(b—a)+ ) =("" — ™).
a n£0 m
i

Proof
We apply the Generalised Parseval Identity. Let g be the character-
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istic function of the interval [a, b], extended periodically:

(x) = 1 x€lab],
g 0 xel[-mm)\[a,bl

The Fourier coefficients d,, of g are:
dn = L /” g(x)e ¥ dx = L /b eI gy
" 27 —7T 27 a )
By theorem 5.5:
1 /7 — g —
2—/ fx)g(x)dx =Y cudy.
TJ-m

n=-—oo

The left-hand side evaluates to:

1 b J
7 /a f(x)dx.
The right-hand side becomes:

- 1 b —inx 1 - b inx
Y e E/a e~inx gy :En;mcn/a e dx.

n=—oo

Cancelling the factor of 1/27 from both sides yields the result.

This theorem allows us to integrate series that may diverge. For
instance, the Fourier series of the Dirac delta function (conceptually
Y €"¥) does not converge, but its integral yields the step function,
whose Fourier series () %e"”" ) is well-behaved.

Parseval’s identity is particularly effective for evaluating the sums of
numerical series.

Example 5.4. Evaluation of {(4). Consider the function f(x) = x
on [—m, 7).

Its Fourier coefficients were found in chapter 2 to be ¢y = 7%/3 and

Cp = 2(;21 " for n # 0. We compute the square of the norm of f:

1 7 1 7 1 251" =«
2 _ L 224y — gy — — |2 _
I£1l2 2n[n|x| * ZNLnx * 21 [5}71 5°

Applying Parseval’s identity:

113 = leo* + }_ leal®
n#0

2

Substituting the coefficients:

7-(5) -z

n#0

2 4 4

7T
?+Z—.

2(=1)"
2
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Rearranging the terms:
DR A BT W
nZ0 n*  4\5 9 4 \45 45
Since the sum over n # 0 is twice the sum over positive integers:

4

= 1 T

X

5.5 Exercises

1. Autocorrelation and Parseval. Let f be a continuous 27t-periodic
function. Define its autocorrelation function F(x) by:

/ f(t)f(x+t)dt.

Let {ay, by} and {A,, B, } denote the Fourier coefficients of f and
F respectively.

(a) Prove that Ag = a%.
(b) Prove that A, = a% + b% and B, =0 forn > 1.

(c) Use the convergence of the Fourier series of F at x = 0 to
deduce Parseval’s identity for f.

2. Wirtinger’s Inequality. Let f be a continuously differentiable
2m-periodic function with zero mean:

T
| flxyax =
-7
Prove the inequality:

[ @raz [0 fw i

Show that equality holds if and only if f(x) = acosx + bsin x.

Remark.

Hint: Use Parseval’s identity on f and f’. Recall the relationship
between their coefficients.

3. Poincaré Inequality on an Interval. Let f be continuously differ-
entiable on [0, 1] satisfying the boundary conditions f(0) = f(1) =
0 and the symmetry condition f(3 — x) = —f(4 + x). Prove that:

[ Pwixs 5 [(era

Determine the class of functions for which equality holds.

33
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Remark.

Hint: Extend f to a periodic function and analyse which Fourier
modes are permitted by the symmetry.

Completeness via Fejér. Provide an alternative proof of the Com-
pleteness Corollary using Fejér’s Theorem. Specifically, prove that
if a continuous 27r-periodic function f is orthogonal to all trigono-
metric polynomials, then f = 0.

Remark.

Consider the integral of |f|? and approximate one factor by a
trigonometric polynomial.

Rademacher Functions. Define the system of functions { ¢} ;
on [0,1] by:
@n(t) = sgn(sin(2"7tt)).
Prove that this system is orthonormal on [0, 1].
Remark.

Consider the binary expansion of ¢. Is this system complete?



6.1

6
Pointwise Convergence and Divergence

This chapter establishes the conditions for pointwise convergence.
While local differentiability guarantees convergence, reinforcing
the Localisation Principle, continuity alone is insufficient. This is
demonstrated via an explicit counterexample relying on "symmetry
breaking” within the partial sums.

A Local Convergence Result

The relationship between smoothness and convergence is strength-
ened here. While Dini’s Criterion (thcorem 2.2) offers a sufficient con-
dition, the following proof demonstrates directly that differentiability
ensures convergence.

Theorem 6.1. Convergence for Differentiable Functions.
Let f be an integrable function on the circle. If f is differentiable at a
point xp, then

Jim S[f](x0) = f(xo).
Proof

The Dirichlet integral representation of the partial sum is:

Snlfl(0) = 5 [ fxo—HDn (1) dr.

Since % ffn Dy (t) dt =1, we can express the error as:

Sn[fl(x0) — f(x0) = %/ﬂ (f(xo —t) — f(x0)) Dn(t) dt.

—7T

Define the difference quotient function g(f):
f(xU_tl_f(XO) t 75 0 te [_7-[ n—]
t — 4 7
SRR (TP R

Since f is differentiable at x, g is bounded in a neighbourhood of
0. Away from the origin (|| > ), t is bounded away from zero,
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so the integrability of f implies the integrability of g. Thus g is
integrable on [—7t, 7].

Substituting the explicit form of the Dirichlet kernel Dy (#) =
sin((N+1/2)t) .
sin(t/2) -

Snlf](x0) — f(x0) = % /_7; g(t)t W dt

= /_7; g() (sm(ff/Z)) sin((N +1/2)t) dt.

The function h(t) = g(t) m is the product of the integrable
function ¢ and the continuous (and bounded) function ¢/ sin(¢/2).
Therefore, & is integrable. By the Riemann-Lebesgue Lemma
(theorem 1.1), the integral of h(t) against the oscillatory term

sin((N +1/2)t) tends to zero as N — oo.

Remark.

The proof relies only on the boundedness of the difference quo-
tient. Consequently, t/icorem 6.1 holds under the weaker assumption
that f satisfies a Lipschitz condition at xo, i.e., |f(x) — f(xo)] <
M|x — xo]-

This result provides a rigorous justification for Riemann’s Localisa-
tion Principle.

Corollary 6.1. Localisation Principle. Let f and g be two integrable func-
tions. If f(x) = g(x) for all x in an open interval I containing xo, then

lim (Sy[f](x0) — Snlgl(x0)) = 0.

N—oo
s
Proof
The difference h = f — g is identically zero on I. Consequently, & is
differentiable at x( (with derivative o). By theorem 6.1, Sy[h](x0) —

h(xg) = 0. By the linearity of the partial sum operator, Sy/|[f](xo) —
Sn(gl(x0) — 0.

This confirms that the convergence of a Fourier series at a point

is entirely determined by the local behaviour of the function. The
"global" information contained in the Fourier coefficients cancels out
perfectly via interference at points where the functions agree.
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6.2 Symmetry Breaking and Divergence

Does continuity imply convergence? The partial sum Sy[f](x) = ~ "
YN\ f(n)e™ truncates the spectrum symmetrically. However,
"breaking" this symmetry by summing over only positive or negative
indices reveals unbounded behaviour. Figure 6.1: The sawtooth func-
Consider the sawtooth function f (similar to figure 1.3), which is odd tion f(x) = i(m — x). The

and defined by f(x) = i(7m — x) for x € (0,27). Its Fourier series is: imaginary part decreases lin-
early from 7 to —7, with jump
flx) ~ Z leinx ) discontinuities at multiples of
n
n#0 271,
While f is bounded, the "half-series" } 7> ; % behaves like the har-
monic series at x = 0, which diverges logarithmically. This is for-

malised by defining truncated blocks.

Definition 6.1. Sawtooth Blocks.
For N > 1, define the trigonometric polynomials:

fN(x) _ 2 elnxl fN(x) _ 2 einx

1<jnj<n "

The polynomial fy represents the symmetric partial sum of the
bounded sawtooth function. The polynomial fy represents the asym-
metric "negative half". Two properties are crucial:

1. At the origin, the asymmetric sum grows logarithmically: | fN(0)| >

clog N. Hyl
2. The symmetric sums fy(x) are uniformly bounded in N and x. ~logN
The first property follows directly from the definition: fn(0) =
ZnNzl %n = —Hy, where Hy is the harmonic number. Thus |fy(0)| ~ T N
log N.

Figure 6.2: The harmonic sum
Hy = 22721 % grows like log N.
This unbounded growth drives

The second property requires a more refined estimate. We prove it
using a comparison with Abel means.

Lemma 6.1. Uniform Boundedness of fy. the divergence.
There exists a constant C such that |fy(x)| < C for all N and all x €
[—7, 7).
g
Proof

A Tauberian-style argument suffices. Let Sy(x) be the partial sums
of a series Y_c,e™*, and let A, (x) be its Abel means. Suppose the
coefficients satisfy ¢, = O(1/n) and the Abel means are uniformly
bounded, i.e., [A;(x)] < M. Estimating the difference |Sy — A/|
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wherer=1—1/N:

|SN - AT| = Z Cn(]. - 7‘n|)€inx — Z Cnr‘n‘einx

[n|<N [n|>N
< Y el =y 4 Y el
[n|<N [n|>N

Using1 — "l < |n|(1 = r)and |c,| < K/|n|, the first sum is
bounded by

Slke

1
2K
"N

N
)y
n=1

The second sum is bounded by

K & K yN+1
N LTSy

n=N+1

" Nl-r =K

Thus, Sy is bounded if A, is bounded. _

For the sawtooth function f(x) ~ ¥,z %, the coefficients are
O(1/n). The Abel means are A,[f] = f * P, (proposition 2.2). Since f
is bounded and P; has unit mass, ||Ar[f]|lc < ||f|lc- Therefore, the
partial sums fy(x) are uniformly bounded.

6.3 Counterexample Construction

We define a continuous function whose Fourier series diverges at

x = 0 by summing scaled and shifted versions of fy. Shifting the
spectrum of fy allows specific partial sums to isolate the logarithmic
growth of fy.

Definition 6.2. Shifted Polynomials.
Let Py(x) be the polynomial obtained by shifting the frequencies of fy
by 2N:

PN(X) — ei(ZN)XfN(x) — Z lei(ZN-&-n)x'
1<jn]<N "

The frequencies of fy lie in [-N, —1] U [1, N]. The frequencies of Py
liein 2N —N,2N —-1JU[2N+1,2N+ N] = [N,2N —1]U[2N +1,3N].
Crucially, the "centre" of Py is at the frequency 2N.

If we compute the partial sum Spn of Py, we sum all frequencies up
to 2N. This captures exactly the lower block [N,2N — 1] and discards
the upper block [2N + 1,3N]. Note that the lower block corresponds



fN:

-N -1 1 N
n
PN: N 2N7;N+L n
Son cutoff
to the negative indices of the original fy shifted by 2N.
2N-1 ‘ -1 7 ‘ ~
Sin[Pu](x) = ) Py(k)e™ = J7 —elCNHIX = oGV (x).

k=N n=—N

At x = 0, we have |Syn[Pn](0)| = |fn(0)| > clog N. Conversely, if we
take Spr[Py| for M > 3N, we capture the entire polynomial Py. Since

|Pn(x)| = |fn(x)], this is uniformly bounded by lenima 6.1.

These blocks are now assembled into a single series.

Proof

Define:

[Ni, 3Ni] and Ni 4
partial sum operator is linear.

Fx) = 3w (x).
k=1

m—1

San, [F1(0) = Y aSang, [Pr ) (0) + S, [P,
k=1

Analysing the terms:

Theorem 6.2. Existence of a Divergent Continuous Function.
There exists a continuous 27t-periodic function f such that the sequence

of partial sums {S[f](0)}{2, is unbounded.
i

Choose a sequence of integers N increasing rapidly enough to
separate the spectra of the shifted polynomials, and a sequence of
scaling factors a to ensure continuity. Let Ny = 3% and ap = 1/k%.

1. Continuity. Since |Py, (x)| = |fn,(x)| < C (lemma 6.1), the series
is dominated by C Y"1/k?, which converges. By the Weierstrass
M-test, the series defines a continuous function f.

2. Divergence. Consider the partial sum of the Fourier series of f at
index My, = 2Ny, Because the spectra of Py, are supported on
> 3N, the spectral blocks are disjoint. The

k=m+1

* For k < m, 2Ny > 3Nj. The partial sum captures the entire poly-
nomial Py, . The value is a;Py, (0) = 0 (since fy(0) = 0). Even if
non-zero, it is bounded.
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Figure 6.3: Spectral shifting. fy
is symmetric around o. Py is
shifted to be symmetric around
2N. A partial sum Syy cuts Py
in half, isolating the logarithmi-
cally divergent part.

Figure 6.4: Disjoint spectral
blocks. Each Py, occupies

[Nk, 3Nk]. Since Ny, 1 > 3N,
blocks don’t overlap. The cutoff
Sy, splits only Py, .

[0+ Y aSan, [Pr](0).



90 GUDFIT

* Fork > m, 2N;; < Nj. The partial sum captures none of Py,. The
value is o.

¢ For k = m, the partial sum cuts Py, exactly in the middle.
|2, [P, (0)| = [ f,, (0)| = clog N
Thus, the total sum is dominated by the m-th term:
|San,, [f](0)| = ca log Ny — O(1).

Substituting our choices for a;;, and Ny;:

2" log3

1 m
&y log Ny = = log(3%") -

As m — oo, this quantity tends to infinity. Therefore, the Fourier se-
ries of f diverges at x = 0.

n
Remark.
To construct a function diverging at an arbitrary point x, one sim-
ply considers f(x — xp). Using the Baire Category Theorem (a topic
for a course on Functional Analysis), one can show that the set of
continuous functions with divergent Fourier series is, in a topo-
logical sense, "generic" or typical, while those that converge are

rare.

6.4 Exercises

1. Lipschitz Convergence. Prove that if a function f satisfies a Lip-
schitz condition of order « € (0,1) at a point x, then its Fourier
series converges to f(xg). Specifically, check that the integral con-
dition in Dini’s Criterion is satisfied.

2. Symmetry Breaking. Calculate the value of the asymmetric sum
fn(0) = E;i_ N & explicitly. Compare it with the symmetric sum
fn(0). Why does the symmetric sum vanish while the asymmetric
sum diverges?
3. Constructing Boundedness. Let g(x) = ¥ ; X, Prove that Use the integral representation [ 2t dt
or summation by parts with the Dirich-

the partial sums of this series are uniformly bounded, i.e., there
let kernel.

exists M such that | YN, sinnx| < M for all N, x.

4. Failure of Convergence. Consider the function constructed in
the proof of divergence. Is this function differentiable at x = 0?
Why or why not? Reconcile this with the convergence theorem for
differentiable functions.
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Applications of Fourier Series

While the theory of pointwise convergence reveals certain subtleties
(as seen in chapter 6), the robustness of the L? theory allows us to
solve significant problems in geometry, number theory, and analysis.

The Riemann Zeta Function and Bernoulli Polynomials

In chapter 5, we utilized Parseval’s identity to evaluate Y_n~2 and
Y. n~*. To generalize this to all even positive integers, we introduce a
recursive family of functions known as Bernoulli polynomials.

Definition 7.1. Bernoulli Polynomials.

The Bernoulli polynomials B, (x) for n > 0 are defined recursively
by the conditions:

1. Bp(x) =1.

2. Forn > 1, Bj,(x) = nB,_1(x).

3. Forn >1, fol By (x)dx = 0.
The Bernoulli numbers B, are the values at the origin: B, = B,(0).

We compute the first few polynomials explicitly. Since By(x) = 1,
condition (2) implies B (x) = 1, so B;(x) = x + ¢. Condition (3) fixes
the constant:

/1(x+c)dx:1+c:0 = c= —1.
0 2 2

Thus By (x) = x —1/2. Continuing this process, one obtains By (x) =
x> —x+1/6, yielding the Bernoulli numbers By =1,B; = —1/2,B, =
1/6.

We restrict our attention to the interval [0, 1]. Since these polynomials
are not periodic, we consider their periodic extensions (which may
have discontinuities at the endpoints) to apply Fourier analysis.
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Proposition 7.1. Fourier Series of Bernoulli Polynomials.
For n > 1, the Fourier coefficients of the 1-periodic extension of B, (x)
are given by:

N n!

By (k) = —W fork #£0,

and B, (0) = 0. Consequently, for x € (0,1):
27tikx

By(x)=-my S
() " k§o (2mtik)"

3

T

Proof

We proceed by induction on n. Forn = 1, Bj(x) = x — 1/2. The
constant term is zero by definition. For k # 0:

D _ ! 1 —2mikx
Bl(k)—/0 (x—2>e dx.

Integrating by parts with u = x — 1/2 and dv = e~ 2"¥dx:

_ —27tikx 1 1 ,—2mikx
By (k) = [(x 1/2)e ] —/0 ¢ dx.

—2mik —2mik
The boundary term evaluates to 1/ 2)(1)7;7(;](1 /2)1) _ 72171 =~ The inte-
gral term vanishes. Thus the formula holds for n = 1.
Assume the formula holds for n — 1. For B,(x), we have B, (x) =
nB,_1(x). We relate the coefficients using integration by parts:

, 1
R 1 o B (x)€72mkx 1 1 o
27ikx n ! 27ikx
B, (k) 7/0 Bu(x)e dx = [ ik 0+2 z'k/o B, (x)e dx.

Forn > 2, B,(1) = B,(0), so the boundary term vanishes. Substi-
tuting B, = nB,_1:

N n
Bu(k) = mBn—l(k)-

Using the inductive hypothesis:

. _on (n—1)\ n!
Balk) = 5 ((Zm’k)"l) T (mik)r

This explicit expansion allows us to relate the Bernoulli numbers to
the values of the Riemann zeta function, {(s) =Y o, m™°.
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Theorem 7.1. Values of {(2m).
For any integer m > 1:

(71)m+1 (27.[)2111

¢(2m) = WBM-
i
Proof
Consider the Fourier series of By, (x) evaluated atx = 0. Since
By (x) is continuous on the circle for 2m > 2, the series converges
pointwise.
1
By (0) = —(2m)! )y ————.
Zm( ) ( m) Z (271’17()2'”

k#0

Using i?™ = (—1)", we simplify the summand:

(2m)! 1
B =~ -1y g

The sum over non-zero integers is twice the sum over positive
integers: Yo k2" = 2(2m).

(2m)!
(27-[)2m

B2m _ (_1)m+1

(20 (2m)).

Rearranging for {(2m) yields the result.

Example 7.1. Calculation of {(2) and {(4). We previously com-
puted B, = 1/6. Applying the theorem with m = 1:

_(-1)2(2n)? (1 4rn*  n?
0= 5 (5)

6

24 6
To find ((4), we compute By. By recursion:

3 1
B3(X) :x3—§x2—|—§x — B3 =0.

By(x) =x* 2> + x>+ C.

Using [y Bs = 0, we find 1/5 —2/4+1/3+C = 0,50 C = —1/30.
Thus By, = —1/30.

(1)3(2n)4< 1) 16m*

o) = 2(24) \ 30) 1440 90

o451

93
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7.2 Infinite Products and Wallis” Formula

Fourier series can also be used to derive infinite product expansions
for elementary functions. We return to the interval [—7, 7] and con-
sider the function f(x) = cos(px), where p € R\ Z.

The Fourier coefficients are given by:

Fd 1 T —inx
f(n) = ﬂlﬁcos(px)e dx

— ﬁ /T[ (ei(P*”)x +e—i(p+n)x) dx.
-

Evaluating the integrals yields:

. 1 |eilp—m)m _ p—i(p—n)m e—ilptm)m _ oi(p+n)m
f(n)=— . + .
47 i(p—n) —i(p+n)

Using ¢ = (—1)", this simplifies to:

2 (—=1)"sin(pm) 1 1 1 _ (=1)"psin(pm)
fln) = T <pn+p+n)2_7f(i72—”2)'

Since Y |f(n)| < oo (decay is O(n~2)), the Fourier series converges
uniformly to cos(px) on [—7, 7t]:

sin(pr) [1 iy <—1>P] |

cos(pr) = = L4 T
n

Grouping positive and negative n, we obtain the cosine series:
e}

Setting x = 77 in eq. (7.1), and noting cos(n7m) = (—1)™

2psin(pm 1 > 1
cos(pr) = pT(p) lzpz +) pz_nz] :
n=1

2psin(pm)
T

cos(px) =

5 COS nx)] (7.1)

Dividing by sin(pr) (valid since p ¢ Z), we derive the partial frac-
tion decomposition of the cotangent:

1 0 1 1
7T cot(pr) 7+ -+ + . (7.2)

This identity holds for all p € R\ Z. To obtain the product formula
for the sine function, we integrate eq. (7.2) with respect to p from 0
to x. For small p, mcot(prt) —1/p ~ n(1/(np) — np/3) —1/p =
— 72 p/3, which is bounded. Thus we integrate:

/0 (ncot(np —> p—Z/ ; —n2 dp.
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The left side is [In(sin(7rp)) — Inp]§ = In (M) (taking the limit

X
at 0). The right sideis )} ;- ; In (1 — z—i) Exponentiating both sides
yields Euler’s infinite product formula:

n=1
Theorem 7.2. Wallis” Product Formula.
T_fpm wm _224466
2 4%2n—1 2141 1 3 3 55 7
i
Proof
Set x = 1/2 in Euler’s product formula.
sin(7r/2) 1 o 1 * 4n? —1
= = 1 _— = _—
e — w05 -1
Inverting the expression:
T 1°—°[ 4n? ﬁ (2n)?
2 SSdn?2-1 oS (2n—-1)2n+1)
This matches the stated product.
|

The Isoperimetric Inequality

We now turn to a classical problem in geometry: among all simple
closed curves of a fixed length L, which one encloses the maximal
area? Intuition suggests the circle is the unique solution. We prove
this using the orthogonality of the trigonometric system.

Geometric Preliminaries

We define a parameterised curve o as a C! map 7 : [a,b] — R?, de-
noted y(t) = (x(t),y(t)). The curve is simple if it does not intersect
itself (except at the endpoints) and closed if y(a) = y(b).

The length L of the curve is given by:

L= /ab S (02 v (1)2 dt.

We may always reparameterise the curve by its arc length s. If we
scale the domain such that s € [0,27], the constant speed condition
implies:

2
X (s)*+y(s)* = (;) : (7.3)

95
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The area A enclosed by 7 is determined by Green’s Theorem. A
convenient symmetric form is:

A= [TV 6 -y e) ds 74

Theorem 7.3. The Isoperimetric Inequality.
Let T be a simple closed C! curve of length L enclosing an area A. Then:

LZ
< —.
As 4r
Equality holds if and only if I is a circle.
%2
Proof
1. Rescaling. Let us define a scaling factor A = 27m/L. The map

(x,y) + (Ax,Ay) scales length by A and area by A2. If we prove
the inequality for a curve of length 271 (where A’ < 1), the gen-
eral case follows:

A< = AL —.

2 2
NA< 7T — (2”) L
47T

Thus, without loss of generality, assume L = 2.

2. Fourier Representation. Let 7(s) = (x(s),y(s)) be param-
eterised by arc length on [0,27]. The arc length condition
x'(s)2 +y/(s)* = 1 implies:

27T
%/O (x'(5)* +y/(5)%) ds = 1. (7.5)

We expand x(s) and y(s) in Fourier series:
x(s) ~ Zanems, y(s) ~ aneins.

Since x,y arereal, a_, = ayandb_, = b,,. The derivatives
have coefficients ina, and inb,. Applying Parseval’s Identity

(theorem 5.3) to eq. (7.5):

[e9)

Z |n[*(|an|* + [ba]*) = 1. (7.6)

n=—oo

3. Area Estimation. Using the Generalised Parseval Identity (chap-
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ter 5) on the area formula eq. (7.4):

A_l/zn’( ;o ’)d
=5 ), (¥ —yx)ds

= ) (an(inbn) - bn(inan))
n=-—oo
= Y (—inayb, + inb,ay)
n=—oo
= Y ni(buly — anby).
n=—co
Observe that bya, — ayby is purely imaginary (itisz — 2 =
2ilm(z)). Thus the sum yields a real value, as expected. We
apply the algebraic inequality |z — z| < 2|z| and 2|a,b,| <
|anl® + [ba |
|ni(buty — anbn)| < 2|n||an|[bu] < [n](|an|? + [bal?)-
Therefore: -
A ), [nl(anl® +[ba]?). 7.7)

n—=—oo

4. The Inequality. We compare the series for the length constraint
(eq. (7.6)) and the area bound (eq. (7.7)).

L? ©
i —A=n—-A>n Y (n*—|n])(|an]*+ |ba]?).

n=—oo

Since n? — |n| = |n|(|n| — 1) > 0 for all integers n, the right-hand
side is non-negative. Thus 1 — A >0, or A < 7.

5. Equality Case. For A = 7, we require the term (1% — |n|)(|a,|? +
|by|?) to vanish for all .

e For |n| > 2, n? — |n| > 0, so we must have a,, = b, = 0.
¢ For n = 0, the term vanishes automatically.

e For |n| =1, the term vanishes.

Thus, x(s) and y(s) must be trigonometric polynomials of degree
1:

x(s) = ag+are +a_1e7", y(s) = by + by +b_je "
Since x,y are real, a_1 = a7. This implies:

x(s) = ag 4 2Re(a1e™®) = ag + a cos(s) + Bsin(s).
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Similarly for y(s). From the constraint eq. (7.6), only n = =1
terms contribute (since a, = b, = 0 for |n| > 2):

Plar P+ 012) + (=D (la—1 P+ [0-1]) =1 = 2(|a [+ |0 ]?) = 1.

Using the area equality condition 2|aq||b1| = |a1|* + |b1]? (from oA yen

the arithmetic-geometric mean inequality used in step 3), we find ,', TS0\

|a1| = |b1| = 1/2. The geometric constraints imply x(s) and y(s) et Y

define a circle parameterised by arc length. ‘\\ Ry
- s

This proof relies entirely on the fact that the Fourier coefficients diag- fed =2

onalize the derivative operator (% — in), allowing algebraic compari- Figure 7.1: The Isoperimetric

son of the "energy" of the derivative (Length) and the "correlation" of Inequality: For a fixed perime-

coordinates (Area). ter L, the circle maximizes the

enclosed area A.
Wirtinger’s Inequality

The core analytic engine driving the isoperimetric proof is the spec-
tral gap between the constant function (n = 0) and the first harmonic
(n = 1). This principle is encapsulated independently as Wirtinger’s
Inequality.

Proposition 7.2. Wirtinger’s Inequality.
Let f be a 27t-periodic C! function with mean zero, i.e., [7_f(x)dx =
0. Then:

/n |f(x)Pdx < /jr | (x)]? dx.

Equality holds if and only if f(x) = Acosx + Bsinx.

Proof
Since f has mean zero, the Fourier coefficient f(0) = 0. By Parse-

val’s identity:

115 =27 ) [f ()]
n#0

The Fourier series of the derivative f’ has coefficients inf(1). Thus:
If'1I3 =27 ) linf(m)* =27 ) n?| f(n)]2.
n#0 n#0
Since 7 is a non-zero integer, n? > 1. It follows immediately that:
Y Ifm)P <} n?lf ()
n#0 n#0
Equality holds if and only if coefficients for || > 1 are zero, mean-

ing f contains only frequencies n = +1.
[
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7.4 Weyl’s Equidistribution Theorem

Consider the sequence formed by the multiples of a real number 7:
Y,27,3, . ... We are interested in the behaviour of this sequence
modulo the integers.

Definition 7.2. Fractional Part.

For any x € R, we define the integer part of x, denoted [x], as the great-
est integer less than or equal to x. The fractional part of x is defined

as:

(x) = x — [x].
By definition, (x) € [0,1) for all x € R.

Reducing a sequence modulo Z isolates its fractional parts. If we

define the equivalence relation x = y (mod Z) if x —y € Z, then

every real number is congruent to a unique number in [0,1).

The sequence of fractional parts (n7) exhibits a dichotomy based on

the rationality of 7:

1. If v € Q,say v = p/q in lowest terms, the sequence is peri-
odic with period g. The sequence visits exactly g distinct points:

(p/9),(2p/q),...,((q—1)p/q),0.

2. If v ¢ Q, the elements (n7y) are distinct for all n. If (n17y) = (n27),

then (17 — np)y € Z, which implies 7y € Q, a contradiction.
Leopold Kronecker proved that for irrational vy, the sequence is not
only distinct but dense in [0,1). In 1916, Hermann Weyl significantly
strengthened this result by showing the sequence is not merely
dense, but perfectly uniform. To formalise this, we introduce the
concept of equidistribution.

Definition 7.3. Equidistributed Sequence.
A sequence of real numbers {,}5°; in [0,1) is said to be equidistributed
if for every sub-interval (a,b) C [0,1),

#H1<n<N:& €(ab)}

lim =b—a.
N—roo N
~ 2 N =80
/ﬂ{%‘ N = 3() ®ee eeceececomes 0o 000 o0 cce o oo
N=10 e e oo oo oo oo
In other words, the proportion of terms falling into any interval con- 0

verges to the length of that interval. The sequence sweeps out the
interval evenly.

99

Figure 7.2: The sequence (1/2)

for n = 1,...,N. As N in-

Weyl’s Criterion and Ergodicity

To analyse the counting condition in the definition of equidistribu- uniformity.
tion, we rephrase it analytically. Let x(,;)(x) be the characteristic

creases, the points fill the in-
terval [0,1) with remarkable
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function of the interval (a,b), extended periodically to R with period
1. The number of terms in (a,b) is exactly the sum of the character-
istic function evaluated at the sequence points. Thus, the condition
becomes:

1 ¥ 1
A}ILHWNEX(,;,I;)(”V) =/0 X(a,p) (x) dx. (7.8)

This equation states that the "time average" (the arithmetic mean
along the sequence) equals the "space average" (the integral over the
domain). This equivalence is the foundation of ergodic theory.

The strategy is to prove eq. (7.8) for the simplest periodic functions
(trigonometric polynomials) using Fourier series, extend it to contin-
uous functions via the Weierstrass Approximation Theorem (chap-
ter 4), and finally to characteristic functions via Riemann integrability.

Lemma 7.1. Ergodicity for Continuous Functions.
If f is continuous and periodic of period 1, and v is irrational, then

N—o0

1Y !
lim Nr;f(n'y):/o f(x)dx.

5|32

We proceed in three steps. Note that since the period is 1, the funda-

mental exponentials are of the form e>* rather than ¢/"*.

Step 1: The Exponential Monomials.

Let f(x) = ™ forsomek € Z.Ifk = 0, f(x) = 1. The sum
is % YN |1 = 1, and the integral is fol 1dx = 1. The identity holds
trivially. If k # 0, the integral is fol e?kx dx = 0. We must show the
sum vanishes. The sum is a geometric series with ratio r = 277,
Since 1 is irrational and k # 0, k7 is not an integer, so r # 1.

N 27tikN
l Z eZniknv — leZm'k'y 1—e 7
N = N 1 — e2miky *

The numerator of the fraction is bounded in modulus by 2. The
denominator is a non-zero constant independent of N. Therefore,
the entire expression is O(1/N) and converges to 0 as N — oo.

BEES
Step 2: Trigonometric Polynomials.

By the linearity of the limit and the integral, the result holds for

any finite linear combination of the form P(x) = YM , ¢;e?kx.
ELES

Step 3: Continuous Functions.

Let f be continuous and periodic, and let e > 0. By the Weierstrass
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Approximation Theorem, trigonometric polynomials are dense in
the space of continuous periodic functions. Hence, there exists a
trigonometric polynomial P(x) such that sup, |f(x) — P(x)| < e/3.
Using the triangle inequality, we bound the error:

The first and third terms are each strictly bounded by €/3 due to
the uniform approximation. By Step 2, the middle term converges
to o, so for sufficiently large N, it is also less than €/3. Thus the
total difference is less than €, establishing the limit.

EXLES
The logic of Step 1 provides a complete characterisation of equidistri-
bution known as Weyl’s Criterion. A sequence ¢, is equidistributed
if and only if for all non-zero integers k:

1 Y ik
lim — ) 7™ = 0.
N—oo N Z

n=1
This transforms a counting problem in number theory into the es-
timation of "exponential sums", a cornerstone technique in modern
analytic number theory.

Approximation of Characteristic Functions

We now extend lenima 7.1 to prove the main theorem by approximat-
ing the discontinuous characteristic function x, ;) with continuous
functions.

Theorem 7.4. Weyl’s Equidistribution Theorem.
If y is an irrational number, then the sequence of fractional parts (n7y)
is equidistributed in [0,1).

%5

Proof

Let (a,b) C [0,1) be a fixed interval. We approximate x, ;) from
above and below by continuous functions f" and f; .

Choose € > 0 small enough such thata + € < b — €. Define f. to
be 1 on [a+¢€,b — €], 0 outside (a,b), and linear on the boundary in-
tervals [a,a + €] and [b — €, b]. Similarly, define f; to be 1 on [a,b], 0
outside [a — €,b + €], and linear on the transition intervals.

101
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By construction:

fe ( )<Xah ( )<fe ( ) forall x € [Orl)'
Furthermore, calculating the areas of these trapezoidal functions:
/fe x)dx = (b—a)—e¢, /f€ x)dx = (b—a)+e.
Let Sy = 4 X0, X(ap)(n7). Due to the pointwise inequalities:

1

N
N fe (n’)’ ;

i MZ

Since f& are continuous, lermma 7.1 applies. Taking the limit supe-
rior and limit inferior as N — oo:

(b—a)—e< hrnmeN <limsup Sy < (b—a) +e.

N—eo N—oo

Since € is arbitrary, the limits converge to b — a.
[ |

Corollary 7.1. Ergodicity for Riemann Integrable Functions. The conclu-
sion of lemma 7.1 holds for any function f that is Riemann integrable
on [0,1] and periodic of period 1.

Hodh
Proof

A Riemann integrable function can be approximated from above
and below by step functions (Darboux sums). Since characteristic
functions of intervals satisfy the equidistribution property, linear
combinations of them (step functions) do as well. The result follows
by the same squeezing argument used in t/icoren 7.4.

|

Geometric Interpretation: Billiards in a Square

The equidistribution theorem possesses a natural geometric interpre-
tation in the theory of dynamical billiards. Consider a square table
with sides of length 1, acting as perfect reflecting mirrors. A ray of
light is emitted from an internal point at a trajectory with slope +.
By "unfolding" the reflections, the trajectory of the light ray can be
represented as a straight line y = x + c passing through a grid of
unit squares in the plane. The position of the ray modulo 1 corre-
sponds exactly to the sequence (n+).

If the slope v is rational, the line will eventually pass through equiv-
alent points on the grid, meaning the trajectory is periodic and forms

Figure 7.3: Approximation of
the characteristic function x4 )
from above (f;") and below (f;)
by continuous trapezoidal func-
tions.
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a closed loop. If v is irrational, Kronecker’s theorem ensures the
trajectory never closes and eventually passes arbitrarily close to ev-
ery point in the square. Weyl’s Equidistribution Theorem provides

a significantly deeper statement: the ray of light does not just visit
every region, it spends an amount of time in any region of the square
precisely proportional to the area of that region.

Figure 7.4: Reflection of a light
ray in a square. Unfolding the

reflections into a grid translates
the physical bouncing into the
sequence of fractional parts (x).

An irrational slope guarantees
the ray is ergodic.

7.5 A Continuous but Nowhere Differentiable Function

Riemann proposed the function R(x) = Y77 Sm;ﬁ

didate for a nowhere differentiable function, though he did not

as a can-

provide a proof. Weierstrass subsequently provided the first rig-
orous counterexample in 1872, constructing the function W(x) =
Yoo b" cos(a"x) for parameters satisfying ab > 1+ 37/2.

In this section, we construct a similar function using the complex
exponential, which simplifies the algebraic manipulations. We prove
that for a specific decay rate of coefficients, the function is continuous
everywhere but differentiable nowhere.

Theorem 7.5. Weierstrass-Type Function.
Let 0 < « < 1. The function

f(x) _ Z zfnuzeﬁ"x
n=0

is continuous on R but differentiable at no point.

il

The continuity of f follows immediately from the Weierstrass M-test
(theorem 3.2), as the series is dominated by } (27%)", a convergent
geometric series. The lack of differentiability arises from the lacunary
nature of the series: the frequencies 2" increase rapidly, leaving large
gaps in the spectrum.

To analyse the differentiability, we introduce a summation method
tailored to these spectral gaps: the delayed means.
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Delayed Means

Recall the Cesaro means of a Fourier series, on[g] = g * Fn, where Fy
is the Fejér kernel. The coefficients of o [g] are obtained by multiply-
ing the Fourier coefficients ¢(k) by the weight (1 — |k|/N)™.

Definition 7.4. Delayed Means.

An[gl(x) = 20n(g](x) — on[8](x).

In terms of convolution, Ay|[g] = g * (2Fn — FN).-

We determine the spectral weights of Ay. Let the Fourier series of g
be Y cre’**. The operator Ay multiplies c; by a weight A:

B _M +_ _m +
Ak_z(l o -5 -

This piecewise linear function takes the following shape:

Me=1201—My N <k <2n,
0 |k| > 2N.

This forms a trapezoidal filter in the frequency domain.
Crucially, if the Fourier series of g has gaps (is lacunary), the partial
sums Sy and the delayed means Ay may coincide.

Lemma 7.2. Lacunary Identity.
Let f be the function defined in t/icorem 7.5. For any integer k > 0, let
N = 2k, Then:

k .
AN[f](x) = Snlfl(x) = Z(;)Z*J“el”".
=

k4
Proof
The frequencies present in f are powers of 2: 1,2,4, ... ok ok+1
The weight function of Ay (where N = 2F) is 1 for frequencies up

to 2F. The decay region of the weight function is (2¥,25+1). The next
frequency in the series is 251, which lies exactly at the point where
the weight becomes o. Thus, Ay preserves all terms up to 2F with

weight 1, and suppresses all terms 251 and higher with weight o.
[

For a function ¢ and integer N, the delayed mean Ay[g] is defined as:

Weight

—
—2N -N N 2N

Figure 7.5: The spectral weights
of the delayed mean Ay. It acts
as the identity on frequencies
up to N, then decays linearly to
o at 2N.
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Proof of Nowhere Differentiability

The proof relies on establishing a bound for the derivative of the
delayed means of any differentiable function, and then showing that
our specific function f violates this bound.

Lemma 7.3. Logarithmic Derivative Bound.
Let g be a continuous function. If g is differentiable at a point x(, then

%(TN[g](xo) — O(logN) as N — co.

Consequently, £Ay(g](x) = O(log N).
1

Proof

Differentiation of the convolution integral yields:

Tonlsln) = [ glxo— DF(0)

Since [ F{,(t)dt = 0 (integral of a derivative of a periodic function),
we may subtract g(xo) [ Fi, = 0:

L onlglxo) = [ lgto0 1) — glxo) E(0) .

—7T

Since g is differentiable at x, there exists C > 0 such that |g(xo —
t) — g(xp)| < C|t| for all ¢. Thus:

onlsl)| <€ [ i)

We require estimates for the derivative of the Fejér kernel Fy(t) =

1 sin?(Nt/2)

N sin?(t/2) °

Polynomial Bound: Fy is a trigonometric polynomial of degree N
bounded by N. By Bernstein’s inequality (or direct differentia-
tion of coefficients), |F{(t)| < 2N2.

Decay Bound: Fort # 0, differentiation of the explicit formula
yields |F{(t)] < téz for some constant A.

105
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We split the integral at 1/N:

7T
tP’tdt:/ tF’tdt+/ HIEL (1)) dt
L HEwlde= [ IO [ E @)

A
g/ |t|(2N?) dt + |55 dt
[t|<1/N 1/N<|t|<m ¢t
1/N
t2 o1
< 2N? H A Zdt
2] N 1Nt

= 2N2$ + A(log T —log(1/N))

=2+ Alogm+ AlogN = O(log N).

The result for Ay follows by linearity: Ay, = 209y — oy =
O(log2N) + O(logN) = O(log N).
[ ]
We now complete the proof of theorem 7.5.
Proof of theorem 7.5
Suppose, for the sake of contradiction, that f is differentiable at
some point xg. By lemma 7.2, for N = 2K, the difference between

consecutive delayed means isolates a single term of the series:

Mon[f](x) — An[f](x) = San[f](x) — Sn[f](x) = 2~ (k+ D2 x,

Let us differentiate this identity at xg. On the left side, using the
hypothesis that f is differentiable at xg and lemima 7.3:

xdan(fl(n) — onlf)(x)| < Clog.

On the right side, direct differentiation yields:

d (2—(k+1)1xei2k“x) _ i2k+12—(k+1)4xei2k“x
dx ’
Taking the modulus of this derivative:

‘iz(k—&-l)(l—a)eiZk“xo — plk+1)(1-a)

Since N = 2k, we have 2k*1 = 2N. The term grows as (2N)'~%.
Combining these estimates, we arrive at the inequality:

(2N)17* < ClogN.

Since 0 < a < 1, the exponent 1 — « is positive. A power function
N!=% grows strictly faster than log N as N — oo. This yields a con-
tradiction for sufficiently large N. Thus, f is not differentiable at xj.

[
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Remark.

While we used the complex exponential form for simplicity, the

real part of this function, ) 27"* cos(2"x), is also nowhere differen-
tiable. The proof requires a modification of /enma 7.3 to bound the
derivative at xo + h and a strategic choice of & to maximize the co-
sine term, but the underlying mechanism—the spectral gap allows
the high frequencies to dominate the local geometry—remains the

same.

7.6 The Heat Equation on the Circle

We conclude this chapter by returning to the physical problem that
motivated Fourier’s original work: the diffusion of heat. While
Fourier initially considered propagation in solid bodies, we anal-

yse the simplest periodic case: heat distribution on a thin circular
ring.

The ring is modelled as the unit interval [0, 1] with endpoints iden-
tified (or equivalently, the real line modulo 1). Let u(x, t) denote the
temperature at position x € [0,1) and time t > 0. The evolution of the
temperature is governed by the heat equation:

ou  d*u
o = 32 (7.9)

(We have normalized the thermal diffusivity constant to 1 by rescal-
ing time). We are given an initial temperature distribution u(x,0) =
f(x), where f is a periodic function of period 1.

Using the method of separation of variables (as introduced in chap-
ter 1), we seek solutions of the form u(x,t) = A(x)B(t). This leads to
the coupled equations:

B(t) _ A"(x)

B~ AW)

The periodicity of A(x) restricts the separation constant A to the
values —472n? for n € Z, with eigenfunctions ¢>™"*. Solving for B(t)
yields emdint, By linearity, the general formal solution is:

[e)
2,2 ;
u(x, t) =) cpe YTt 2tinx, (7.10)
n=—oo

Setting t = 0, we identify c, as the Fourier coefficients of the initial
data f:

cn = fn) = /Olf (y)e 2™ dy.
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The Heat Kernel

Just as the solution to the Dirichlet problem on the disc was ex-
pressed as the convolution of the boundary data with the Poisson
kernel, the solution to the heat equation is the convolution of the
initial data with the Heat kernel.

We can rewrite eq. (7.10) by interchanging the sum and the integral
(justified for t > 0 by the rapid decay of the Gaussian factor):

u(x, )=y </0 f(y)e2miny dy> o 4PNt 2minx

n=-—oo

1 ad 2,2 ;
:/0 f(]/)( Z p—4mn t627nn(xy)> dy

n=-—oo

= (f * Hi)(x)-

Definition 7.5. Heat Kernel.
The periodic heat kernel H;(x) for t > 0 is defined by the series:

Ht(x): i e—4n2n2t62ninx'

This kernel shares the fundamental "smoothing" properties of the
Poisson kernel, but with a stronger decay rate.
Proposition 7.3. Properties of the Heat Solution.

1. Smoothness: For any t > 0, the function u(x, t) is C* in x and ¢,
even if the initial data f is discontinuous.

2. Convergence: If f is continuous, lim+ u(x,t) = f(x) uniformly.
t—0

3. Mean-Square: If f is merely square-integrable, the convergence holds
in the L? norm.

¥

P

Proof

(1) The term nke=4"* tends to o as |n| — oo for any k. Thus, the
series of derivatives converges uniformly.

(2) This follows if { H; }4~o forms a family of good kernels as

t — 0T. While the normalization ([ H; = H;(0) = 1)isimme-
diate, the positivity and concentration properties are non-trivial to
prove from the Fourier series definition alone. We will rigorously
establish these properties in the next chapter using the Poisson

Summation Formula.
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(3) By Parseval’s identity:

ad A _A72,2
luC, )= fIE =} [f(m)Ple= " 1]
n=—oo
Since each term vanishes as t — 0 and is dominated by 4|f(n)|?, the

result follows from the Dominated Convergence Theorem for series.
|

Remark.

The positivity of H;(x) is physically intuitive. Heat flows from hot
to cold. If we start with a non-negative temperature distribution

f > 0, the temperature u(x, t) should remain non-negative for all
time. Sinceu = f x H;, if H; were negative in some region, one
could construct an initial f concentrated in that region that pro-
duces a negative temperature, violating physical principles. This
heuristic is confirmed mathematically: H;(x) is strictly positive
everywhere.

7.7 Exercises

1. Calculating Bernoulli Polynomials. Using the recursive defini-
tion, compute the explicit form of the Bernoulli polynomials B3(x)
and By(x). Verify that f01 By (x) dx = 0 for these cases.

2. Sums of Reciprocals. Use the formula for {(2m) to evaluate the
following series:

@ Lol 76
(b) 220:1 (_1)n+1

3. Product Expansions.

n?z

(a) By integrating the cotangent series, derive the product for-
mula for cos(7tx):

cos(mx) = f—o[ (1 - (27;%21)2> .

n=1

(b) Use this product to calculate [T;_; (1 - ﬁ)

4. Geometric Optimisation.

(a) Use the isoperimetric inequality to prove that among all rect-
angles of a fixed perimeter P, the square has the maximum
area.

(b) Can you use Wirtinger’s inequality to prove that if f(0) =
f(m)=0and [;"(f)?dx =1, then [, f2dx <1?

109



110 GUDFIT

5. Weyl’s Criterion Practice.
(a) Prove that if « is rational, say p/q, the sequence {na} is not
equidistributed in [0, 1).
(b) Let a be irrational. Prove that the sequence of points ({na}, {n?a})
is equidistributed in the unit square [0,1).
Remark.
This requires the multidimensional version of Weyl’s crite-

rion involving exponentials 2/ (k1x+kzy),

6. Spectral Gaps. Let f(x) = Y2 ; ax sin(3%x) with Y |a;| < co. Show
that the Fourier series of f has large gaps. Can you determine if f
is differentiable at x = 0 if a; = 27%?
7. Heat Evolution. Let the initial temperature distribution on the
circle be f(x) = cos(27x).
(a) Write down the solution u(x, t) to the heat equation.

(b) At what time t > 0 does the maximum temperature drop to
1/e of its initial value?



8.1

8
The Fourier Integral

We established that if a function f satisfies specific regularity condi-
tions (such as differentiability or the Dini criterion), it can be repre-
sented as a discrete superposition of sinusoids:

o
flx) = 4 Z (an cos Eanbn sin Ex). (8.1)
2~ I l
If f is defined on the entire real line R and is absolutely integrable,
we may attempt to apply this theory by restricting f to [—1,1]. How-
ever, as | — oo, the frequency spacing 7t/I tends to zero, suggesting a
transition from a discrete summation to a continuous integral.
To obtain a unified representation for non-periodic functions on
(—00,0), we introduce the Fourier Integral. This transition effectively
replaces the integer index n with a continuous frequency parameter
u, and the coefficients a,, b, with continuous functions a(u), b(u).

Integral Representation

Let f be a function defined on R that is absolutely integrable, i.e.,
f € LY(R). Motivated by the coefficients of the Fourier series, we
define the following integral transforms for any real number u:

1 [t 1 [t
a(u) = p f(t)cos(ut)dt, b(u)= p f(t)sin(ut) dt. (8.2)
Since f is absolutely integrable and | cos(ut)| < 1, these integrals are
absolutely convergent. Analogous to the Fourier series, we form the

Fourier integral of f:

F(x) ~ /0 (a(u) cos(ux) + b(u) sin(ux)) du. 8.3)

The convergence of this integral to f(x) is not guaranteed by the
definition alone. To establish rigorous convergence criteria, we first
analyse the analytic properties of the coefficient functions a(u) and

b(u).
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Theorem 8.1. Uniform Continuity of Coefficients.
Let f be absolutely integrable on (—oo,4-00). Then the functions a(u)
and b(u) defined in eq. (8.2) are uniformly continuous on R.

i
Proof

We provide the proof for a(u); the proof for b(u) is identical. Let
€ > 0. Since f € L'(R), there exists a sufficiently large A > 0 such
that the tails of the integral are negligible:

TTE
)| dt )| dt <
[ wonaes [ ipona <

We now consider the integral over the compact interval [—A, A].
The function cos(x) is uniformly continuous on R. Therefore, there
exists 7 > 0 such that |z; — zp| < 7 implies |cosz; — coszy| < &,

where ¢’ satisfies:
r (1 /A €
6 ( » |f(t)]dt | < 5

Let 6 = n/A. For any u’,u” € R with |1’ —u"| < §, and for any t €
[—A, A], we have:

|u't —u"t] = |t||u' —u"| < As = 1.

Consequently, | cos(u't) — cos(u''t)| < &'
We estimate the difference |a(u') —a(u")| by splitting the domain of

integration:
la(u") —a(u")| = ‘i joof(t)(cos(u’t) — cos(u'"t)) dt‘
g L (0] - 24t + — / (1) - 24t
—/ (t)|| cos(u't) — cos(u”t)| dt.

Using our bounds, the tail contributions sum to less than 2 (%) =

§. The central integral is bounded by §. Thus, |a(u') —a(u”)| < e,
proving uniform continuity.
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8.2 Convergence of the Fourier Integral

To study the pointwise convergence, we consider the partial integral
over frequencies [0, A]:

A
S(A,x) = /0 (a(u)cos(ux) + b(u) sin(ux)) du. (8.4)

Substituting the definitions of a(u) and b(u) and utilizing the identity
cos(ut) cos(ux) + sin(ut) sin(ux) = cos(u(x — t)), we obtain:

S(A,x) = 1 /0/\ { J:o f(t) cos(u(x — t))dt} du. (8.5)

7T

We aim to express this in a form similar to the Dirichlet integral for
Fourier series. This requires interchanging the order of integration.

Theorem 8.2. Dirichlet Form of the Fourier Integral.
Let f be absolutely integrable on (—oo, +00). For any A > 0:

1

+o0
S(A,x) = ;/0 (Fx+ 1)+ f(x — 1) dt.

sin(At)
t

Proof

The crucial step is to justify the exchange of integration order in
eq. (8.5). We must show:

A +o00 +oo  fA
[ st costux—tatdu= [ " f(t)cos(u(x — 1) dudt
0 J-—co —o0 JO
(8.6)
Let A > 0. On the compact rectangle [0, A] x [—A, A], Fubini’s theo-
rem (or standard calculus of double integrals) guarantees:

/OA /jqf(t) cos(u(x —t)) dtdu = /j; /()Af(t)cos(u(x_t))dudt_

Since f € L'(R), for any € > 0 there exists Ag such that for A > Ay,
the tails f‘ H>A |f(t)|dt < €/A. The difference between the inte-
gral over (—oo,00) and [—A, A] for the left-hand side of eq. (8.6) is
bounded by:

'/0.A /‘;|>A [f(t)]] cos(u(x — 1)) dt du < /()Aidu .

Thus,as A — oo, the integrals converge uniformly. This justifies
eq. (8.6).
Evaluating the inner integral with respect to u:

sin(A(x 1))
x—t

A
/O cos(u(x — t)) du =
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Substituting this back:

S(Ax) = /+°°f(t)w dt.

L

7T J—00 x—t

Making the substitution v = ¢ — x (and exploiting the symmetry of
the kernel):

1 [+e
S(/\,x):; oof(JH—v)

sin(Av) 1
_7‘0 dv-

d -
= flx+0)

sin(Av)
v

Splitting the integral into (—o0,0) and (0, o) and combining terms
yields the result.

We are now in a position to state the Localization Principle for the
entire real line, which mirrors ??.

Theorem 8.3. Localization Theorem.
Let f be absolutely integrable on R. The convergence of the Fourier in-
tegral at a point x and its limit depend solely on the values of f in an
arbitrarily small neighbourhood of x.

il
Proof
Consider the expression for S(A, x) derived above. For any Ay > 0,
we split the integration domain into [0, Ag] and [Ap, o0). For the
tail integral, we observe that fort > Ay, the kernel is bounded:
|snAL) < ALO' Since f € L!, the function g(t) = w is
absolutely integrable on [A, o). By the Riemann-Lebesgue Lemma
(theorem 1.1), as A — co:

SInAL g o,

[+ fx )

Thus, the limit of S(A, x) depends entirely on the behaviour of the
integral over [0, Ag].
[ |

This localization allows us to transplant Dini’s convergence test di-
rectly from the theory of Fourier series (t/icorem 2.2).

Theorem 8.4. Convergence of the Fourier Integral.

Let f € LY(R). If f is differentiable at x, or more generally satisfies
the Dini condition at x, then the Fourier integral converges to the value
of f at x:

fx) = %/Om du :Of(t) cos(iu(x — £)) dt.

If f has a jump discontinuity at x but satisfies the one-sided Dini con-



FOURIER SERIES 115

fGN)+f(T)
5 .

ditions, the integral converges to

8.3 Sine and Cosine Transforms

The general Fourier integral formula simplifies significantly if f

possesses symmetry. From eq. (8.2):

1. If f is an even function, b(u) = 0 and a(u) = 2 [;° f(t) cos(ut) dt.
The integral representation becomes the Fourier Cosine Formula:

f(x) = 2 /0+oo cos(ux) < 0+oo f(£) cos(ut) dt> du. (8.7)

s
2. If f is an odd function, a(u) = 0 and b(u) = %fooof(t) sin(ut) dt.
This yields the Fourier Sine Formula:

Flx) = %/O ™ sin(ux) ( :w (1) sin(ut) dt) Q. (89)

These formulas allow us to define the Fourier transform for functions
defined only on [0, ) by extending them evenly or oddly to the

whole line.
Example 8.1. The Dirichlet Integral. Consider the box function (or

rectangular pulse) defined by:

) {1, <1,

0, |x|>1.

This function is even and absolutely integrable. We compute its
cosine coefficient a(u):
2 _ 2sinu

a(w) = = O+°° F(F) cos(ut) dt = % /O " cos(ut) dt =

T U

The coefficient b(u) is identically zero. For any point x where f is
continuous (i.e., |x| # 1), the convergence theorem implies:

Rearranging this, we obtain the value of the integral:

tosinucos(ux) , 7 )5 k<,
7 omeosi) gy - ) = {0 9

u , x> 1
At the points of discontinuity x = =1, the integral converges to the
average (f(1*) + f(17)) = 1. Thus:

/+°° sinu cos u
0

T
du = —.
u " 4




116 GUDFIT

a(u)

Setting x = 0, we recover the classical Dirichlet integral: m
o sinu T —
du= =. \
0 u 2
The transform of the box function.
E

‘ Figure 8.1: The coefficient func-
Remark (Symmetric Form). . .
tion a(u) for the box function

Frequently, the factors of 7t are redistributed to obtain a symmetric decays as 1/u, illustrating the

form. If we define the transform g(u \/7 fo ) cos(ut)dt, duality between spatial confine-

then the inversion formula becomes f \/7 o~ g(u) cos(ux) du. ment and spectral decay.

8.4 Reciprocity of the Sine and Cosine Transforms

The formulas derived in eq. (8.7) and eq. (8.8) exhibit a striking struc-
tural symmetry. If we distribute the normalization factor 2/ 7t sym-
metrically as v/2/ 7, we obtain a pair of reciprocal transformations.

Definition 8.1. Fourier Cosine and Sine Transforms.
Let f be an integrable function on [0, c0). The Fourier Cosine Trans-
form, denoted F;[f] or g(u), is defined by:

= \/z/om f(t) cos(ut) dt

The Fourier Sine Transform, denoted F;[f] or h(u), is defined by:
2 [t . J
w=1/= /0 F(t) sin(ut) dt

From the integral representations established in the previous section,

the inversion formulas are identical to the forward transforms:

\/7/+oo ) cos(xu) du, (8.1)
\/7/+oo ) sin(xu) du. (8.2)

This duality implies that applying the transformation twice (with the
appropriate variable substitution) recovers the original function.
Example 8.2. Transforms of the Exponential Decay. Consider the
function f(x) = e P forx > 0,where p > 0. We compute the
cosine transform g(u):

—+o00
=1/ E/ e~ Pt cos(ut) dt.
T Jo

Using integration by parts or the real part of [ e(=B+i)t dt, we
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obtain:

—+o00
—pt __B
/0 e Pt cos(ut)dt = o

Y

Similarly, the sine transform h(u) is:

2 [t 2 u
S —Bt g —, /=
”71/0 e Ptsin(ut) dt ”7‘[,824—112'

Applying the inverse formulas yields two fundamental definite

Thus:

integrals (Laplace integrals):

+oo cos(xu) s +oo g sin(xu) o
=\ g e Px, / 2Py = S P,
/0 B ruz T 2" 0o Prur 1T 2°

These identities are valid for x > 0, > 0.
R

Example 8.3. Solution of an Integral Equation. Consider the prob-
lem of finding a function g(u) that satisfies the integral equation:

+o0
/0 g(u)sin(xu)du = f(x),
where f(x) is defined by:
% sinx 0<x<m,
X =
=) {O x> 7T

We observe that the integral equation can be rewritten as a Fourier

\/7/%o ) sin(xu) du—\/>f

Thus, V2/7tf(x) is the sine transform of ¢(u). By the reciprocity of
the sine transform, g(u) is the sine transform of v/2/7tf(x

\/7/“’" (\/71( ) sin(ut) d / gsintsin(ut) dt.

Calculating the integral using the identity 2sin AsinB = cos(A —
B) — cos(A + B):

g(u) = /nsintsin(ut) dt
0

/ cos(t(1—u)) —cos(t(1+u)))dt

sin(rr(1 —u)) sin(7(1+u))
1—u 1+u

sine inversion:

I\)M—‘ N\

117
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Using sin (7t — 7tu) = sin(7tu) and sin(7r + 7tu) = — sin(7tu):
_sin(7u) 1 1 _ sin(7tu)
8() = — <1—u+1+u> T
E

8.5 The Complex Fourier Transform

The separation into sine and cosine transforms is natural for func-
tions with definite parity, but for general functions on RR, a unified
complex notation is more efficient.

Recall the Fourier Integral Formula derived in theoren 8.4:

f) =2 [

The inner integral ¢(u) = fj;o f(t) cos(u(x — t))dt is an even
function of u. Consequently, we may extend the outer integral to

—+o00
. f(t) cos(u(x —t))dt. (8.10)

(—o0, +00) by dividing by 2:

flx) = % / :” du ;w F(t)cos(u(x — ) dt.  (8.11)

Similarly, consider the integral involving the sine term:

() = '+: F(t) sin(u(x — 1)) dt.

This is an odd function of u. Therefore, its integral over the symmet-
ric domain (—oo, +00) vanishes:

1 +oo +o0 .
0= E/;oo du . f(t)sin(u(x —t))dt. (8.12)

Multiplying eq. (8.12) by the imaginary unit i and adding it to eq. (8.11),
we utilise Euler’s formula ¢ = cos 6 4 isin 6 to obtain the Complex
Form of the Fourier Integral:

flx) = % /jo:o du /_t:of(t)eiu(x_t) dt. (8.13)

Rearranging the exponentials as e (*~*) = ¢Xe=" we can split this

double integral into a transformation pair. We adopt the symmetric
normalization 1/+v/27t.

Definition 8.2. The Fourier Transform.
Let f be absolutely integrable on R. The Fourier Transform of f, de-
noted by f or F[f], is the complex-valued function:

~

1 oo —iu
fu) == [ rme (8.14)
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The Inverse Fourier Transform recovers the function:

1 Bl iux
flx) = o= [ Faeau. (8.15)

Remark.

Here u represents the frequency variable (often denoted by ¢, w, or

k in physics). Note that f (1) is complex-valued even if f(t) is real.

Analogy with Fourier Series

The definition of the Fourier transform is the natural limit of the
Fourier series coefficients as the period tends to infinity. Recall the
complex form of the Fourier series for a function on [, 7t|:

SN 1 y
flx) = Z cpe™, where ¢, = E/_nf(x)e inx gy

n=-—oo

Comparing the discrete pair (c,, f(x)) with the continuous pair

(fw), f(x)):

- The discrete coefficient ¢, corresponds to the spectral density f(u).
- The sum Y, is replaced by the integral [ du.

- The harmonic frequencies n become the continuous variable u.
This analogy suggests that the Fourier transform decomposes a non-
periodic signal into a continuous spectrum of exponential waves, just
as the series decomposes a periodic signal into a discrete spectrum.

Operational Properties

The power of the Fourier transform lies in its ability to convert ana-
lytic operations (differentiation, integration) into algebraic operations
(multiplication, division).

Theorem 8.5. Derivative Property.
Let f be continuous and absolutely integrable on R, and suppose tlirj? f(t) =
—> 00

0. If f/ is absolutely integrable, then:

Proof
We apply the definition of the transform and integrate by parts:

119
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~

/ _ 1 teo / —iut
f(u)—E/m £ (He i dt

_ \/12? ([f(t)e—fuf} e /:j f(t)(iu)e—fufdt> .

By the decay assumption thlf f(t) = 0, the boundary terms van-
— 00

ish. The remaining integral is exactly iuf (u).

By induction, if f and its derivatives up to order n — 1 vanish at
infinity and are absolutely integrable, we obtain the general formula:

£ (u) = (i) F (). (8.16)

This property makes the Fourier transform an indispensable tool
for solving linear differential equations with constant coefficients.
Consider the differential equation:

anfU (1) -+ f (1) +aof (1) = g(8).

Applying the Fourier transform to both sides transforms the differen-
tial operator into a polynomial in iu:

(an ()" + - + @y (i) + ag) f(u) = §(w).

The solution f(u) is found by algebraic division:

()
HOES )

where P(z) = Y a;z" is the characteristic polynomial. The solution
f(t) is then recovered via the inverse transform.

8.7 Exercises

1. Calculating Fourier Integrals. Express the following functions as
Fourier integrals (either real form or complex form):

(a) The signed pulse function:

) = {sgnx x| <1

0 |x] >1

(b) The truncated sine wave:

) = {sinx x| <=

0 |x| > 7
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(c) The symmetric exponential decay:

flx) = e, a>o.

2. Solving Integral Equations. Determine the function f(t) defined
on (0,00) that satisfies the following integral equations:

(a) A sine transform equation:

+o0
f(t)sin(xt)dt =e*, x>0.
0

(b) A cosine transform equation:

+oo ; 1
; f(t) cos(xt)dt = 5

3. Verification of Integral Identities. Evaluate the following integral
to prove the equality:

2 e
=)

1—x 0<x<1
0 x>1

2
t
51?2 cos(2xt) dt =

Remark.
Hint: Consider the Fourier cosine transform of the triangular
function on the right-hand side.

4. Inverse Fourier Transforms. Compute the inverse Fourier trans-
form f(x) = \/% [, F(u)e™* du for the following spectral func-
tions:

(@) F(u) = ue Pl*l with g > 0.

(b) The Gaussian spectrum F(u) = e /2,

Remark.
For part (b), use the result fjooo e~ dx = vV t/a.
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