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0.1

0
Integrals with Parameters

We consider the general properties of integrals with parameters,
specifically focusing on proper integrals. We examine their analytical
properties (limits, continuity, differentiability, and integrability), and
demonstrate their utility in evaluating definite integrals.

Proper Integrals with Parameters

We begin by motivating the study with a geometric problem. Con-
sider the ellipse defined by the equation

2 2
S
a b2

where b > a > 0. The arc length L of this ellipse is given by the
integral:

/2
L:4/ Va2 sin? t + b2 cos? t dt.
0

By factoring out b? and employing the trigonometric identity cos? t =
1 — sin? t, we may rewrite this as:

/2 2 42
L:4b/ \/1—Msin2tdt.
0 b2

Vi2—a2

Defining the eccentricity k = ¥*;=*, the integral becomes:

/2
I(k):/ V1 — k2sin? tdt
0

is the complete elliptic integral of the second kind. It cannot be expressed

in terms of elementary functions and serves as a prototypical exam-
ple of an integral with a parameter.

Definition o.1. Proper Integral with Parameter.
Let D C R. Let f(x,t) be a function defined on [a,b] x D. If for ev-

tion

o) = [ fle

ery t € D, f(x,t) is integrable with respect to x on [a, b], then the func-

Figure 1: An ellipse with semi-
major axis b and semi-minor
axis a, where b > a > 0.
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is called a proper integral with a parameter defined on D.

We state the fundamental analytic properties of these functions.

Proposition o.1. Limit Property.

Let g be an accumulation point of D. If thrrt1 f(x,t) = p(x) and the
—to

convergence is uniform for x € [a,b], then ¢(x) is bounded and in-
tegrable on [a,b], and:

b b
lim p(t) = Jim [ f(x,1)dx = [ p(x)dx,
Proposition o.2. Continuity.
If f(x,t) is continuous on [a,b] X [c,d], then
b
o(t) = [ flxt)dx
is continuous on [c, d].

Proof
Since f is continuous on the compact set R, it is uniformly con-

tinuous. Lete > 0. Thereexistsé > 0 such that for any
(x,t), (¥, t') € R:

€
b—a’

(1) = (X, )] <6 = |f(x,t) = f(x, 1) <

Let tp € [c,d]. For any t € [c,d] with |t — ty| < J, we have:

b b
()= p(t0)| = | [ [F(x,8) = Flx o)l dx| < [T 1F(x, )= £, o) d.
Since |(x,t) — (x,tg)| = |t —to] < 4, the integrand is bounded by
57+ Thus:

o)~ glio)| < [ ;S dr=e

|
Proposition 0.3. Interchanging Order of Integration.
If f(x,t) is continuous on [a,b] X [c,d], then
d b b d
/ dt/ Fla, ) dx = / dx/ Flx,t) dt.
Cc a a [
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Proof

Let ¢(t) = [ ab f(x,t)dx. Since f is continuous, ¢ is continuous and
thus integrable on [c, d]. The equality follows from Fubini’s Theo-
rem for continuous functions on compact rectangles. Alternatively,
it can be proven by showing that both iterated integrals are limits of
the same Riemann sums due to uniform continuity.

|

Proposition o0.4. Differentiability (Leibniz’s Rule).
If f(x,t) and the partial derivative f;(x, t) are continuous on [a,b] X
[c,d], then ¢(t) = fub f(x,t) dx is differentiable on [c,d], and

o) = [ et

Proof
Let g(x,t) = fi(x,t). Since g is continuous on a compact set, it is

uniformly continuous. Lete > 0. There exists § > 0 such that
|At| < 0§ implies [g(x,t + At) — g(x,t)| < €/(b — a). Consider the
difference quotient:

X.

p(t+AE) —@(t) [P f(x, b+ At) — f(x,t)
At _/a At d

By the Mean Value Theorem, there exists 6 € (0,1) such that the in-
tegrand equals f;(x, t + 6At). Thus:

G +AAt1 —olt) _ /abft(x, t) dx

b
g/ fi(x,t+ 6AL) — fi(x, 1) dx.

The RHS is bounded by [ : 5 dx = e. As At — 0, the limit holds.
|

If the limits of integration also depend on the parameter, we have the
following generalisation.

Proposition o.5. General Leibniz Rule.
Let f(x,t) be continuous on [a,b] x [c,d]. Let a(t) and B(t) be contin-
uous on [¢,d] such that a < «a(t), B(t) < b for all t € [c,d]. Then

®)
o) = [0 sty dx

is continuous on [c, d]. Furthermore, if f;(x,t) is continuous on [a, b] x
[c,d] and a(t), B(t) are differentiable on [c,d], then ¢(t) is differentiable
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and:
(t)
(0 = FBO,DB0) ~ e, 000 + [ il

P

%

Proof

Let ®(u,0,t) = [ f(x,t)dx. Then ¢(t) = ®(a(t),B(t),t). By the
Chain Rule:
dp 0,  od . 0d

By the Fundamental Theorem of Calculus, 22 = f(v,t) and 92
—f(u,t). By proposition 0.4, %2 = [? fi(x,t) dx. Substituting u =
a(t) and v = B(t) yields the result.

Example o.1. Continuity Analysis. Let f(x) be continuous on [0, 1].
Investigate the continuity of

F(t) = /0 : %4—152 F(x) dx.
E
Solution
F(t) is defined on (—o0, +00). For any ¢ # 0, the function
h(x,t) = () is continuous on [0,1] x [to/2,2tg]. By proposition 0.2,

x2 442
F(t) is continuous at fg.

We examine the point t = 0. Consider the limit as t — 07

b wafeos= |

Ast — 07

#1/3 t 1 t
Py tzf(x) dx + /t1/3 P tzf(x) dx.

e For the first integral, by the Mean Value Theorem for integrals,
there exists ¢ € [0,#!/%] such that:

an 1/ N
/0 mf(x) dx = f({) arctanT — f(())a‘

* For the second integral:

1 t t
/t ep/ 08| < max 1] G 0

113 32 + 12 xel01 NZEEy

Thus 1i1(1)1+ F(t) = f(0)%. Similarly, liI(I)l F(t) = —f(0)%. Since
t— =0~
F(0) = 0, F(t) is continuous at t = 0 if and only if f(0) = 0.




Example o.2. Differentiation with Variable Limits. Let F(t) =
fo dx fort sin(x? + y? — t2) dy. Find F'(t).
Fb)
Solution
Let g(x,t) = |, ;Cjtt sin(x? 4+ y? — t2) dy. Using the differentiation for-
mula for integrals with parameters:
F/(t) = 2t g(2,1) /
() =2t-g(t5 )+ | .8(xt)dx

Note that g(t2,t) = fttzzjtt sin(t* + y?> — t?)dy. For the partial
derivative inside the integral, we apply the General Leibniz Rule to
g(x, t):

o [x+t

= sin(x2 + y2 — ) dy = sin[x® + (x + 1) — 2] - (1)
x—t

— sin[x2 +(x =12 =] (-1
—i—/ —2t) cos(x? + y* — t%) dy.
Simplifying the boundary terms:
sin(2x? + 2xt) + sin(2x? — 2xt) = 2sin(2x?) cos(2xt).

Thus:

Methods for Evaluating Integrals

If computing | ab f(x, t) dx directly is difficult, two common methods
involve parameters:

Differentiation: Compute | ah fi(x, t) dx first, then integrate the result
with respect to .

Integration: Express f(x,t) as an integral, then interchange the order
of integration.

Example o.3. Differentiation under the Integral. Compute
/2
I(x) = / In(sin? 6 + x* cos? §) d6
0

for 0 < x < 4o0.

PARAMETRIC INTEGRALS

, HO s 2,2
F'(t) :Zt/ t sin(t* +y~ — dy+2/ sin(2x?) cos(2xt) dx — Zt/ dx/ t cos(x“+y~—t7) dy.
X— X—
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Solution

Let f(x,0) = In(sin? @ + x2 cos? 0). For any xq € (0,0), f and f, are
continuous on appropriate compact domains. Differentiation yields:

n/2 2x cos? 0 n/2 de
(x) = / 46 =2 / v
(%) 0 sin?0+ x2cos?6 * 0 x2+tan?6

Let t = tan6:

I’(x)—2x/+oo; R
T X242 14827

Using partial fractions for x # 1:

1/<x>—27x/*°° NS S P N A
T x2—1Jo 1412 x24142 Tx2—-1\2 «x2/)

Integrating gives I(x) = mln(1 + x) + C. By continuity, this holds
forx=1 Atx=1,1(1) = [/*In(1)d6 = 0,50 C = —7In2.

0
1
I(x) = mln * a
2
|
Example o.4. Interchanging Order of Integration. Find
/2
I(a :/ 1n1—|—¢xcosx_ 1 dx
0 1—acosx cosx
for |a| < 1.
E
Solution
Observe that the integrand can be written as an integral:
In(1+acosx) In(l—acosx) [* dy
cos x Cos x ~Jal+ycosx’
Let f(x,y) = W For« € (—1,1), we can interchange the or-

der:

N 7T/ 2 dx
I(DC)_./—ady./o 14+ ycosx’

The inner integral evaluates to:

/”/2 dx 2 1—y
= arctan — .
0 1+ycosx 1—12 1+y

I(a) :/a #arctan 1;ydy.
—a /1 —y? 1+y

Thus:




Using the symmetry of the arctan arguments (summing to 77 /2
roughly), or direct evaluation:

x) = 7(/ d7y2 = frarcsina.

Example o.5. Proof of Constant Integral. Prove
27
/ et0s% cos(tsin ) d6 = 27.
0

#a )
Proof
Let f(t) be the integral. We show f(t) = f(0) = 2m by showing
F(t) =o0.
27
f(t) = / et <9 cos(tsin 6 + 0) do.
0

By induction, (") (t) = fozn etosf cos(tsin® + nb)do. Thus
£ (0) = fozn cos(n6) df = 0 for n > 1. By Taylor’s Theorem:

£t = F0)+ ) gﬂk) (0) + Ry = 27+ Ry,
k=1""

Using the estimate |f(")(¢)| < 2rel!l, the remainder term vanishes
as n — co. Thus f(t) = 27.
]

We can also prove it using Green’s theorem
Proof

f(t) = ?{(zwz:l e!*[cos(ty) dy + sin(ty) dx].

Using Green’s formula on the unit disk D:

//( [e"* cos(ty)] - a?y[E”sin(ty)]) dxdy.
9
[ef

Since 2 [e"* cos(ty)] = te'* cos(ty) and a%[etx sin(ty)] = te' cos(ty),
the integrand is o. Thus f’(t) =0
]

Example 0.6. Embedding Method. Find

Ln(1+ x)
I= ———~dx.
/o 1+

E Xl

PARAMETRIC INTEGRALS

We will properly introduce this in the
upcoming notes.

9
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Solution

Introduce a parameter « and define I(a) = fol lngi%x) dx. Then
I(1) = I and I(0) = 0. Differentiating:

1 x 1 1/ a+x «
/ _ _ _
I(a)_/o (1+x2)(1+txx)dx_1+tx2/o (1+x2 1+txx) ax.

Evaluating the integral:

I'()

_ 1 ar
1442 4

+ %an —In(1 —i—zx)} :
Integrating back from o to 1:

1er 4 12 TIn(1+a)
)=/ £271< 7/ nidra)
o /0 112 ™7 )y 1t ™

The last term is exactly I(1). Thus:

1 1 1 4
n Laloc—O—fan & T

21(1) = = 2=
W=7) 752 2 %o 1+a2 4

In2,

which yields I(1) = g In2.

0.2 Improper Integrals with Parameters

The transition from proper to improper integrals mirrors the tran-
sition from finite sums to infinite series. Just as a series of functions
Y fn(x) may be viewed as a discrete summation dependent on a

. . . oo
parameter, an improper integral with a parameter f . S (x,t) dx repre-
sents a continuous summation. Consequently, the analytic properties
of these integrals are governed by a concept analogous to the uni-
form convergence of series.

Uniform Convergence

Let T be a subset of R (typically an interval) and let f : [, 40c0) x
T — R. We assume that for every fixed t € T, the improper integral
/ aoo f(x,t) dx converges. We denote the value of the integral by ¢(f).

Definition o.2. Uniform Convergence.
The integral | aoo f(x,t)dx is said to converge uniformly with respect
to t on T if for every € > 0, there exists Ag = Ap(e) > a such that
forall A > Agand forallt € T:
) A
/ f(x,t)dx — / f(x,t)dx
a a

< €.

_ ‘/;f(x,t)dx




: % &
The crucial distinction between pointwise and uniform convergence
is that Ay depends only on € and not on the parameter ¢.

Tests for Uniform Convergence

We establish several criteria to determine uniform convergence,
which are direct analogues of tests for series of functions.

Theorem o.1. Cauchy’s Criterion.
The integral | aoo f(x,t) dx converges uniformly on T if and only if for
every € > 0, there exists Ay > a such that for all A;, A, > Ap and

forallt e T:

Ap
f(x,t)dx| <e.
Aq

Theorem o0.2. Weierstrass M-Test.

function F(x) defined on [a, +0o0) such that:
1. |f(x,t)] < F(x)forallx >aandt e T.

2. The improper integral [ F(x) dx converges.
Then | aoo f(x,t) dx converges uniformly (and absolutely) on T.

T

For integrals that are conditionally convergent, the M-test fails. In
such cases, we employ the tests of Abel and Dirichlet, which rely
on the interplay between a monotonic term and an oscillatory or
bounded term.

Theorem o0.3. Abel’s Test.
The integral [ f(x,t)g(x,t) dx converges uniformly on T if:
1. [ f(x,t)dx converges uniformly on T.

formly bounded on [a, +-0) x T.
i

Theorem o0.4. Dirichlet’s Test.
The integral [~ f(x,t)g(x,t) dx converges uniformly on T if:

i.e., there exists M > 0 such that | fﬂA f(x,t)dx] < M forall A >
aandt € T.

2. For each t, g(x,t) is monotonic with respect to x, and g(x,f) — 0
as x — oo uniformly with respect to ¢.

T

2. For each t, g(x,t) is monotonic with respect to x, and g(x, t) is uni-

1. The partial integrals F(A,t) = | aA f(x,t) dx are uniformly bounded;

PARAMETRIC INTEGRALS 11

Figure 2: Uniform conver-
gence: the tail remainder

ra(t) = [} f(x,t)dx falls
below e for all t once A > Ay.

Let f(x,t) be defined on [a, +00) x T. Suppose there exists a non-negative
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Finally, for monotonic integrands, convergence to a continuous limit
implies uniformity.

Theorem o.5. Dini’s Theorem for Integrals.
Let f(x,t) be continuous and non-negative on [a, +00) X [, B]. If ¢(t) =
[ f(x,t)dx is continuous on [, B], then the integral converges uni-
formly on [«, .

g
Note
While the definitions above focus on infinite limits (Type I), the
theory applies identically to improper integrals with finite singular
points (Type II). For an integral | uh f(x,t) dx with a singularity at b,
uniform convergence requires | fbh_ sf(x,t)dx| < e for sufficiently
small J, independent of t.

Disproving Uniform Convergence

To show that an integral does not converge uniformly, one typically
employs one of the following strategies:

Negation of Cauchy Criterion: Show that there exists ¢y > 0 such
that for any Ag, one can find Ay, A, > Ap and a specific parameter
t € T where |f:‘12 f(x, t)dx| > €.

Limit Point Divergence: If t; is an accumulation point of T, and the
integral converges for all t € T\ {to} but diverges at ty, then
convergence cannot be uniform on T.

Discontinuity: If f is continuous but the resulting integral function
¢(t) is discontinuous, convergence is not uniform (this is the con-
trapositive of the property that uniform convergence preserves
continuity).

We illustrate these tests with examples where the integrand often
changes sign.

Example o0.7. Abel and Dirichlet Applications. Investigate the
uniform convergence of

' gin x2

o 1+x¥

I(y) =

for y € [0, 400).
X
Method 1 (Abel’s Test).

Consider the factorisation f(x,y) = sinx? and g(x,y) = 1757 First,
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observe that fooc sin x? dx converges (the Fresnel integral). Since this
integral is independent of y, it converges uniformly with respect to
y. For any fixed y > 0, the function g(x,y) = 13 is monotonic de-
creasing in x (for x > 0). Furthermore, |g(x,y)| < 1for all x,y > 0.
Thus, by Abel’s Test, the integral converges uniformly on [0, +0).

|
Method 2 (Dirichlet’s Test).

Rewrite the integrand as:

sin x2

Tra (xsinx2> . (M)

Let f(x) = xsinx?. The partial integral is:

1 A
=||—=cosx?
3=,

Thus, the partial integrals are uniformly bounded. Let h(x,y) =

A 1
/ xsinx? dx :§|1—cosA2|§1.
Jo

m. For fixed y, this is monotonic in x. Moreover:
1 1
- <z
x(1+x¥)| — x
Since 1 — 0asx — oo independently of y, h(x,y) — 0 uniformly.

By Dirichlet’s Test, the integral converges uniformly.
n

Example 0.8. Convergence on Domains. Discuss the uniform con-

I(zx):/ sinx
1

xlX
on (1) [, +00) with ay > 0, and (2) (0, +0).

vergence of

On [ag, +0c0). The partial integrals of sin x are uniformly bounded

1

by 2. The function g(x,&) = & is monotonic in x. Furthermore,

for o > wyg:
1

xlX

1

x%o

Since x™* — 0asx — oo, the convergence of g to o is uniform.
By Dirichlet’s Test, I(«) converges uniformly.

On (0, +o0). The integrand is continuous on [1,00) x (0, 0). How-
ever, consider the limit as « — 0t. The pointwise limit is
Ji sinxdx, which diverges. Sincea = 0 is an accumulation
point of the domain where the integral diverges, I(«) cannot
converge uniformly on (0, +o0).

.41

13



14 GUDFIT

Example 0.9. Improper Integral of Type II. Discuss the uniform
convergence of I(p) = fol xP~1In? x dx for (1) p > po > Oand (2)
p > 0. The singularity is at x = 0.

On [po, +o0). Forx € (0,1)and p > po, we have [x*1In’x| =
xP~1In?x < xPo~1In?x. The integral fol xPo~1In? x dx converges
(one may verify this by substitution x = e~!). By the M-Test, con-
vergence is uniform.

On (0,40o0). We suspect non-uniformity because fol x1In? x dx
diverges. We verify this using the negation of the definition.
Consider the integral on a small interval [0, {]:

¢ ¢
/ xP 1 In? x dx :/ xP1In? x dx.
0 0

Using the substitution u = x/¢ (so x = Cu) is essentially scaling,
but we can estimate directly. Since In® x is decreasing near o, for

x € (0,8):

4 4 p
/ xP1In? xdx > lnzg/ P ldy = 1n2§ [J;}
0 0

¢ @r’e
0 p .

We choose parameters to make this large. Let p = ¢ and consider
E—0".

F1n2 2
hmm: lim gé.M:l.

i, 7 i 7 (00) = +o0.

Thus, for any &y, we can choose { < §pand p = ¢ such that the
tail integral is arbitrarily large (specifically > 1). This violates the
definition of uniform convergence.

#bl
Example o.10. Proof by Contradiction. Prove that
® xsintx
I(t) = ———=d
®) /1 22
does not converge uniformly on (0, +c0).
£

Proof
Suppose for the sake of contradiction that I(t) converges uniformly

on (0, +00). We may write:

sintx _ xsintx a*+x?
x a? 4+ x2 x2
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Let sin
sin
A= 5——
Flat) = 0%
and

22

=1+ —.

g(x) =1+

The function g(x) is monotonic decreasing for x > 1 and bounded
by 1 + a? If [ f(x,t)dx converges uniformly, then by Abel’s Test,
the product integral ||~ SINEX Jx must also converge uniformly

on (0, 4o0). However, it is a known result (demonstrable via the
Cauchy criterion witht = 1/A) that floo % dx does not con-
verge uniformly near t = 0. This contradiction implies I(t) is not
uniformly convergent.

0.3 Analytic Properties of Improper Integrals

Similar to series of functions, improper integrals with parameters
possess key analytic properties such as continuity, differentiability,
and integrability. These properties hold provided the convergence is
uniform.

We state the fundamental propositions for improper integrals of the
form @(t) = [ f(x,t) dx, where f is defined on [a, +-c0) x [«, B].

Proposition 0.6. Continuity of Improper Integrals.

Let f(x,t) be continuous on [, +00) x [w, B]. If the integral [~ f(x,t) dx
converges uniformly to ¢(t) on [, B], then ¢(t) is continuous on [, B].
That is, for any ty € [, B]:

lim /aoof(x,t)dx = /aoc> lim f(x,t)dx.

t—to t—tp

»
&

Proposition o.7. Differentiability Under the Integral Sign.
Let f(x,t) and its partial derivative f;(x,t) be continuous on [a, +00) X

[«, B]. Suppose:
1. The integral [ f(x,t) dx converges to ¢(t) for t € [a, B].

2. The integral of the derivative | aoo ft(x,t) dx converges uniformly on

[, Bl-
Then ¢(t) is differentiable on [«, f] and:

¢'(t) = %/awf(x,t)dx = /aw%(x,t)dx.

=4
&=

15
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Proposition 0.8. Interchanging Order of Integration.
There are two primary cases for interchanging improper integrals:

Case 1 (Finite Interval): Under the conditions of the Continuity Propo-
sition, ¢(t) is integrable on [«, B], and:

/aﬁdt/aoof(x,t)dx:/awdx/aﬁf(x,t)dt

Case 2 (Infinite Interval): Let f(x,t) be continuous for x > a,t > c.
Suppose:

1. [ :O f(x,t) dx converges uniformly with respect to ¢ on any finite
interval.

2. [ Coo f(x,t) dt converges uniformly with respect to x on any finite
interval.

3. At least one of the iterated integrals of the absolute value exists:

/dt/ f(x,t)|dx or /dx/ f(x, t)]dt.

Then both iterated integrals of f(x,t) exist and are equal:

/Coodt/aoof(x,t)dx: /aoodx/:of(x,t)dt

Note

If f(x,t) > 0, Dini’s Theorem ensures that the existence of one it-
erated integral implies the existence of the other, without requiring

the explicit absolute convergence check.

We apply these properties to evaluate improper integrals, often using
standard results like the Dirichlet integral [~ SINX gy = Z or the
N

N 2
Gaussian integral foooe Ydx = Y.

Example o.11. Integration by Parts with Parameters. Find

400
I= / l(«e_"sz —1)dx
Jo

x2
for o > 0.
Fbl
Solution
The integrand has a removable singularity at x = 0 since the

limit is —«. We use integration by parts to reduce the power of
1/x% Letu = ¢’ —landdo = x 2dx. Theno = —1/xand




PARAMETRIC INTEGRALS

du = —2axe " dx.

1 B |
= [—(e_""‘2 — 1)] +/ f(—Zvcxe_‘”z) dx.
x 0 0o X
The boundary term vanishes at 4-co. At 0, using L'Hopital’s rule,
the limit is o.
+o0 )
I= —Za/ e " dx.
0

Using the substitution u = /ax, we have [;° e~ dx = VA

N
I=—2a (2\{/7;) = —/ma.

u
Example o0.12. Continuity via Uniform Convergence. Prove that
+00 X
F prm—
®) /0 2+ x~ ax
is continuous on (2, +-0).
£

Proof

We establish continuity on any ray [2 + €, +c0) wheree > 0. For
a>2+eand x > 1:

x 1 1

= < .
- X% xzx—l — x1+e

x
2+ x%

Since [;° x~(1*€) dx converges, the M-Test implies that [, 5 e dx
converges uniformly fora € [2 + €,+00). The integral on [0, 1] is
proper and thus continuous. Since uniform convergence preserves

continuity, F(«) is continuous on [2 + €, +o0). Since € is arbitrary, F

is continuous on (2, +o0).

[ |

Example o0.13. Continuity and Differentiability. Letb # 0. Prove

that F(a) = O+°° 1(1 — e=) cos bt dt is continuous on [0, +-0) and
differentiable on (0, +c0).

E

Proof of Continuity.

Define f(t,a) = 1(1—e *)cosbtfort > 0and f(0,a) = a. This
function is continuous. We split the integral at t = 1. The part fol is
a proper parameter integral and is thus continuous.

For [;"™, we apply Abel’s Test. The integral [, < dt converges

17
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uniformly with respect to a (it is independent of 4 and convergent).
The factor (1 — e“) is monotonic in ¢ for fixed a and bounded by
2. Thus, the improper integral converges uniformly for a € [0, 4c0),
implying continuity.

FEER #
Differentiability.
The partial derivative is f,(t,a) = e~ cos bt. For any € > 0,ifa > ¢,
cosbt| < e7¢. Since [ e ¢ dt converges, the integral of
the derivative converges uniformly on [€, +-c0) by the M-Test. Thus

then |e~ %

F(a) is differentiable on [e, +-c0), and by extension on (0, +o0), with:
+o0
F(a) = / e~ cos bt dt.
0
Bk
Example 0.14. Evaluating the Integral. Find the value of

Tl —at
F(a) :/0 ?(1—e ) cos bt dt.

Solution

We can evaluate this in two ways.

Integration of Derivative From the previous example, for a > 0:

F'(a) = /+°° e cosbtdt = 2.
0 a% 4 b2

Integrating with respect to a:
1
F(a) = 2 In(a® + b?) + C.
Since F(a) is continuous at 4 = 0 and F(0) = 0:

0= %m(bz) +C = C= —%ln(bz).

1 a? + b?

Embedding | Fubini’s Theorem We rewrite the term 1(1 — ™) as
an integral:
1—e a
= [ e Vdy.
A
Thus F(a) = o7 (fs e ¥ dy) cos bt dt. We interchange

the order of integration. This is justified for a > 0 because
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Jo_ le7¥ cos bt| dt converges fory > 0, and the convergence is
uniform on intervals bounded away from y = 0.

a o0 a
_ - _ Y

F(a) = B In(y? + 172)}0 _ %In(aZ +b?) — %m(bz).

0.4 Exercises

1.

Evaluate the Parameter Integral. Compute the function F(6) =
Jo In(1 + 6 cos x) dx for 6] < 1.

Remark.

Differentiate with respect to 6 and evaluate the resulting integral
using the substitution t = tan(x/2) or standard residues.

Differentiation with Variable Limits. Let f(s, t) be a differen-
tiable function. Find the derivative F’'(x) of the function:

F(x) = /Ox dt /tzxzf(t,s) ds.

Remark.

Apply the General Leibniz Rule carefully, noting that x appears
in the outer limit and the inner limit.

Continuity of Parameter Integrals. Let f(x,y) be continuous and
bounded on the rectangle (a,b) x (c,d). Prove that the function

109 = [ fopay

is continuous on the interval (g, b).

Derivative of a Logarithmic Potential. Let R > 0. Consider the
integral:

27
I(a) = / In(R% 4 4> —2aRcos ) dd for |a| < R.
Jo

Prove that I'(a) = 0. What is the value of I(a)?

Interchanging Integration Order. For a,b > 0, evaluate the inte-

14b__ va
/ A sin <ln 1) dx.
0o Inx X

gral:

19
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Remark.

Express the fraction as an integral with respect to a parameter,
interchange the order, and evaluate.

. Second Derivative Identity. Let f be a continuous function. De-

F t):/()adx/(]xf(x+y+t)dy

Prove that the second derivative satisfies:

F'(t) = f(t+2a) —2f(t +a) + f(t).

fine

. The Gaussian Integral via Parameters. Define the functions:

to, 2 1 p— (1427
_ —x —
f(t) = (/0 e dx) , gt —/0 T2 dx.

(a) Prove that f'(t) + ¢’(t) = 0 for all ¢.
(b) Deduce that f(t) 4 g(t) = J.

(c) By taking the limit as t — oo, compute the value of the Gaus-
. . 400 42
sian integral [;" e~ dx.

. Testing Uniform Convergence. Investigate the uniform conver-
gence of the following integrals on the specified domains. Justify
your answers using the M-test, Abel’s test, Dirichlet’s test, or by
disproving uniform convergence.

(1)/ ~(+@)igintdt, e (—co,+o0).

+o00
(2 / — xy ;4% Y € [yo, Fo0), where yo > 0.

(3)/0 e dx, € (0, 400).

+00
(4)/l e*“%dx, & € [0, +00).

+00 P
(5) /0 eV dx, y € (—o0,+o0).

—+00
©) /0 xlnxe ™V¥dx, (i)t € [ty +00), to > 0; (i) t € (0, +o00).

+oo 1 efut
?) / [ costdt, ue[0,1].
1

+o0 t
(8) ‘/0 ﬁe—azﬂ CoS((xth) dt, wa € (0,+0c0).

+o00
(9)/ eI sinydy, x € (0,+c).
0

T wdx
(10)/0 1T 2 a e (0,1).



9.

10.

11.

12.

13.

14.

15.

16.

17.
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’ al dx, |t < L
(11) / \/m X, 5
(12) / Y ldy, ()ue[a,+oo),a>0; (i) ue (0,+00).

Convexity of Convergence Domain. Suppose the integral f0+°° XM f(x) dx
converges for A = a and A = b with a < b. Prove that the integral
converges uniformly for A € [a, b].

Non-Uniform Convergence. Prove that the integral f0+°° xe Y dy
does not converge uniformly with respect to x on the interval
(0, +00). Note that the variable of integration is y.

Leibniz Rule for Improper Integrals. Let | :o f(x,y) dy converge
for x in a neighborhood U(xg). Suppose the partial derivative
fx(x,y) exists and converges to fy(xo,y) uniformly in y on any
finite interval as x — xo. If | ;o fx(x,y) dy converges uniformly on

U(xp), prove that:
d e} [e ]
Ix (/ fly) dy) =/ fa(xo,y) dy
a X=X a
o sin((1—

2
Continuity Analysis. Let F(x) = |, sin((1-27)%) g, Determine

X
the domain of continuity of F(«) and identifying any points of

discontinuity. Specifically, examine & = +1.

Continuity without Uniform Convergence. Prove that the Fresnel-

type integral F(a) = [~ M dx is continuous on (0, +0), even
though the convergence is not uniform on this domain.
Differentiability Analysis. Consider the function F(x) = [;° xey;yx dy.

(a) Prove that F(x) is continuous on [0, +c0).

(b) Prove that F(x) is differentiable on (0, +o0) and justify the

formula: 5 o
, . b J xe~
F(x) = /1 ax( ; > d

Parameter in the Denominator. Let F(x) = [;° = ;”;;‘2_“ dx.

Prove that F(a) is continuous for a € (0, 2)

Limit Calculation. Let
= / yefxzyz cos(x(1—y))dx.

Compute the limit lim F(y).

y—=1"
Standard Integral Evaluations. Use known results (Dirichlet,
Gaussian) to evaluate:

@ [ (Sm")

21
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18.

19.

(c) / X2~ dx for a > 0.
0

(d) / e~ (@ +bx+) gy for g > 0.

Evaluation via Differentiation. Use differentiation under the
integral sign to evaluate:
e sin x
(@) I(a) = / e~ ——dx fora > 0.
0 X
® arctan(ax)

f > 0.
(1 + 22 dx fora >0

® 1) = |

(0 f(x) = /100 ;xe"y dy for x > 0.

Evaluation via Integration. Use integration with respect to a
parameter to evaluate:

o arctan(ax)
(a) I(W)ZA mdxforﬂé>0.

Remark.
tan ax L4
Use the identity b Y 55
0o 1+yx
T cos Bx
b / COSPY .
®) 0 x2+4a2
Remark.
1 +o0
Use the identity ——— = lim et +e?) gy
x4+ e—0t Je

20. Evaluation of Parameter Integrals. Compute:

Ln(1 — a?x?)
I(a) :/o ﬁdx for |a| < 1.

21. Fourier Cosine Transform. Compute the integral:

—+o00
I(y) = / e cos(2yax)dx for —oo <y < +oo.
0



1.1

1
The Beta and Gamma Functions

In the analysis of integrals and differential equations, one frequently
encounters solutions that cannot be expressed in terms of elemen-
tary functions. To address this, we introduce special functions, often
defined via improper integrals dependent on parameters. This chap-
ter focuses on two of the most significant special functions: the Beta
function (B-function) and the Gamma function (I'-function). These
functions allow for the evaluation of a wide class of definite integrals
and serve as the continuous analogues of binomial coefficients and
factorials.

The Beta Function

The Beta function, also known as the Euler integral of the first kind,
is a function of two variables defined by a definite integral.

Definition 1.1. Beta Function.
For p > 0 and q > 0, the Beta function is defined by the integral:

1
B(p,q) :/0 P11 — x)7 L dx.,

While defined on the unit interval, the Beta function admits several
equivalent integral representations that are often more suitable for
specific calculations.

Proposition 1.1. Integral Representations.
For p,q > 0, the following representations hold:
1. Trigonometric Form:

/2
B(p,q) = 2/0 sin?? 10 cos®11 0 de.

Figure 1.1: The Beta integrand
xP~1(1 — x)7! for various (p, q)
values on [0, 1].
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2. Infinite Interval Form:

oo ypl yql

¥

A

Trigonometric Form.

Let x = sin? 6. Then dx = 2sinfcos#df. As x ranges from 0 to 1, 6
ranges from 0 to 77/2. Substituting into the definition:

/2
B(p,q) = / (sin? 0)P~1(1 — sin? )11 - 25in 6 cos 0 dO
0
/2
=2 / sin?? =20 cos*12 9 sin 6 cos 0 dO
0
/2
= 2/ sin?? 19 cos?1 0 de.
0

EXLES

Infinite Interval Form.

Le’cx—1+ Then 1 — leljyanddx (H)dy The limits 0 — 1
transform to 0 — oo.

- [ () () s

yr!
_/ 1_|_ypl+q1+2y

=) yp 1 P
_/O Ty

The second equality follows from the symmetry property B(p,q) =
B(q, p), or by the substitution z = 1/y.

EXLES
We now establish the fundamental algebraic and analytic properties

of the Beta function.

Proposition 1.2. Properties of the Beta Function.

1. Symmetry: B(p,q) = B(q, p).
2. Regularity: B(p,q) is continuous and possesses continuous partial
derivatives of all orders on its domain.

3. Recurrence Relations:

_q9
B(p,g+1 B(p,q9), B(p+1,9) = B(p,q).
(pg+1)= PR (p.q) (p q) PR (r.q)
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4. Integer Values: If m,n € Z*, then

(m—1)!(n—1)!
B(m,n) = ———~——~
(m, ) = =)
Symmetry.
Letu = 1 — xin the definition. Then du = —dx, and the limits
swap:

Bp.a) = [ (1wt () = [t (1w du = Blg,p).

ZiEBR #%
Recurrence.

We apply integration by parts to B(p,q +1) = f01 xPH(1 — x)dx.
Letu = (1 —x)%and dv = xP~'dx. Then du = —q(1 — x)7'dx and

_ xF
v="

xP ! q (1 -1

B(p,q—l—l):[(l—x)q] —i——/ 2P (1—x)1 " dx
p o PJo
=0+ 1B(p+1,9).
p

Using the identity

1
B(p,q+1)+B(p+1,4) = /O (1= 2)17H(1—2) +x] dx = B(p,q),
we solve the system:

B(P+1rﬁl):§B(P/l1+1) - B(p,q+1)+§B(P/q+l>:B(M)~

Thus B(p,q +1) (1 + %) = B(p,q), which implies

q
B P, + 1 - 73 P, .

SE

1.2 The Gamma Function

The Gamma function, or Euler integral of the second kind, extends
the factorial function to real and complex arguments.

Definition 1.2. Gamma Function.
For x > 0, the Gamma function is defined by the improper integral:



26 GUDFIT

I'(x) :/ -l t dt.
0

An equivalent definition, derived from the infinite product expan-
sion, is the Euler-Gauss formula.

Theorem 1.1. Euler-Gauss Formula.

For x > 0: -

nn
T'(x)=1 .
(%) nglgox(x—l—l)---(x—l—n)
i

The Gamma function satisfies several critical analytic identities.

Proposition 1.3. Properties of the Gamma Function.

Relation to Beta Function:

Recurrence Formula:
I'(x+1)=xl(x), x>0.
Since I'(1) = [, e~'dt = 1, this implies I'(n + 1) = n! for n € N.

Differentiability and Convexity: T'(x) is infinitely differentiable on (0, )
with

r(x) = /;o 1 (Int)"e ™" dt.

The function I'(x) is positive and log-convex, and InT'(x) is strictly
convex on (0, c0).
Legendre Duplication Formula:

22x71

I'(2x) = NG I'(x)l <x+ ;) :

Reflection Formula: For 0 < x < 1:

T(0)T(1—x) = Sm”nx.

¥

]
Recurrence Formula.

We apply integration by parts to I'(x + 1) = [;* t*e~"dt. Let u = t*
and dv = e~ tdt. Then du = xt* 'dt and v = —e 1.

T(x+1) = [—te ']y +x/ - letdt.
0
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The boundary term vanishes at both limits for x > 0. Thus I'(x +
1) = xI'(x).
A
Convexity of InT (x).
We must show that % InT'(x) > 0. Computing the derivatives:
’ F’(x)
- T(x)’

)T () — ()
I'(x)2

(InT(x)) (InT(x))
We require I'(x)T”(x) — (I'(x))? > 0. From the integral definitions:
I(x) = /O Trletar, T(x) = /O T infetdr, T(x) = /0 ¥ ()2t dt.
Let f(t) = t=1/2=t/2 and ¢(t) = t(*~1/2¢=t/2Int. Then:

M= [ Tw=[¢ Tw=[rs
By the Cauchy-Schwarz inequality, ([ fg)* < ([ f*)([g%). Equal-

ity holds only if g(t) = cf(t),ie., Int = ¢, which is impossible on
(0,00). Thus the inequality is strict, and InT'(x) is strictly convex.

S B 4
Remark (Analytic Continuation).
The domain of I'(x) may be extended beyond x > 0 using the recur- y
rence relation rewritten as: il
r 1 : I'(x
rx) = D, |
X [
|
Forx € (—1,0), the right-hand side is well-defined. Iterating this 1 %

process allows I'(x) to be defined forallx € R\ {0,—1,-2,...}.
The points 0, —1, -2, ... are simple poles.

1.3 Applications and Further Properties /\

We apply the theory of Beta and Gamma functions to evaluate com-

plex definite integrals and establish the remaining properties stated Figure 1.2: The analytically con-

. . tinued Gamma function with
in the previous chapter.

les at 0, -1, -2,...
Example 1.1. Dirichlet Integral on a Tetrahedron. Let V be the re- polesa
gion in the first octant bounded by the coordinate planes and the

plane x 4+ y +z = 1. Evaluate

I = //Vx”_lyb_lzc_l dxdydz, (a,b,c>0).

.49
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Solution

We evaluate the integral iteratively. The region V is defined by 0 <
¥x<1,0<y<l—-x,and0<z<1—x—y.

1 1-x 1-x—y
I= / x1 dx/ b-1yg / 2 1dz.
0 0 Y Y 0

The innermost integral is 1(1 — x — y)¢. Substituting this back:

I= 1/1Jc“*1¢ix/17xyh*1(1—x—y)cdy.
cJo 0

Let y = (1 — x)t. Then dy = (1 — x)dt, and the limits for ¢ are 0 to 1.

1= b— c _ ! _xbf b— — )1 = (1 — x
| sy = [0t 1 -0 - - at
_ o b+c 1 b—1 _1\C
~q x)+/0t (1— £ dt
= (1—x)"B(b,c+1).

Thus:

1

1= %B(b,c +1) / 11— x)tedx = %B(b,c +1)B(a,b+c+1).
0
Expressing B(p,q) in terms of Gamma functions:

AT+ ) T@T(b+c+1)
S cT(b+c+1) T(a+b+c+1)°

Using I'(z 4+ 1) = zI'(z), we obtain:

T (@)L (b)T'(c)
Fla+b+c+1)

Example 1.2. Generalised Spherical Integral. Determine the values
of a, B,y for which the integral

[— // dxdydz
Wb 1+ xr 4 yP 4z
converges, and evaluate it. Here D = {(x,y,z) | x > 0,y > 0,z > 0}.

E X

Solution

We require a, 8,7 > 0. Letx = u?/%,y = v*/F,and z = w?/7. The
integral transforms to:
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2_
wr 1

_ucﬁ'y//01+u2+vz+ 2

where () is the first octant. Switching to spherical coordinates

dudvdw,

(0,6, ¢):
/2 2 /2 1.1) o 2(1+3+1)—1
= i/ Cosgflf)sinﬁfl()d()/ sin2<“+ﬁ> 1<pcos%_1<pdcp/ pizdp.
apy Jo 0 0 1+p

The angular integrals reduce to Beta functions:

/2
/ cos%_19sin/S 0de = 1B (1 1) .
0 2 B

T2 p(dgly 24 1 (1 1 1)
sin™\* "B cos” dp==-B|l-+=,— ).
I peosi ™ pdp = 3B ( L+ 5
The radial integral converges if and only if % + % + % < 1. Its value
is B(%,1—X) whereZ = 1 + % + % Combining these:

= (W) G- Graes)

Example 1.3. Gaussian Integral with Parameter. Evaluate
I(t) = [° e~ (PH+2/3%) g for ¢ > 0.

.45
Solution

We solve this two ways.

Differentiation. Fixty > 0 and consider t in a compact neighbor-
hood of tj. Split the domain at x = 1.

On [1, ),
o~ (FPH2/2%) < e /2

On (0,1],
ef(x2+t2/x2) < efc/x2

with ¢ = %t%, and

by o 2o oy

x2 - x?

Both ¢=*"/2 and %e’c/ * are integrable, giving an L' dominator
independent of ¢ in that neighborhood. Dominated convergence

29
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then permits differentiation under the integral:

® (2122 2t
v = [Tet )(_xz) dx.

Substitute x = t/y, so dx = —t/y*dy.

I'(t) = ﬁe—(fz/yzﬂz) ( (t/ZL) ) ( ) dy = fz/ ~WHER) gy = —21(p).

Thus I(t) = Ce=?. Since 1(0) = @, we have I(t) = @e_ﬂ.

Substitution. Lety =t/x. Then

® t
I(4) = / ~rp+) Lt g
(t) L€ 2

Summing the two expressions:

2I(t) = /oo e~ (P H2/%) (1 + tz) dx = e~ /oo e~ (x-t/x) g (x - t) .
0 X 0 X

The integral becomes [ e Wdu = /7, yielding the same re-
sult.

Example 1.4. Integral Representation of Riemann Zeta Function.
Prove that for s > 1, {(s) = Y., n~° satisfies

1 ] xsfl
g(s)—m/o r_ldx.
#u.45)
Proof

We expand the term (¢¥ — 1)~! as a geometric series e *(1 —
e ¥)"l=y% e ™ forx > 0.

) xs—l IS 1 0
/ N dx = / Y e dx
0o e*—1 0 n=1

s—1

Since the series of functions f,(x) = x° ‘e ™ is positive, we may
interchange summation and integration (by the Monotone Conver-

gence Theorem):
o 00
Z/ xS le™"¥ dx.
n=1"0

Let u = nx, so dx = du/n. Then

o 1 [ I'(s
/ xsflefnx dy = — usflefu du = ( )
0 ns Jo ns
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Summing over n yields I'(s)Z(s).

[ |
Example 1.5. A Logarithmic Integral. Evaluate
I Inx
/0 T dx.
Fa )
Solution
Let x = e !. Then dx = —e~!dt and the range [0, 1] maps to [o0,0].
1 lnx 0 ¢ » ©
| = [ e == [
Using the representation of {(s) from the previous example with
s=2 2-1 2
e T
= =11. =
/0 A=) =1 T
. . 2
Thus the integral is —%-.
[

Example 1.6. Volume of the Generalized Viviani Body. Let () be
the region bounded by the sphere x> + y? + z2 < a2

der x2 + y? < ay (where a > 0). Evaluate

1:%,/2—2—2%“1@1, >0.
GWat -t —yt)Pdedydz, p >

and the cylin-

$15)
Solution

We employ cylindrical coordinates (7,6, z). The cylinder equation
r2 < arsin6 implies r < asinf. Since r > 0, we require sinf > 0,
sof € [0,7]. Theboundsare0 < 6 < 7,0 < r < asinf, and

2l < V& =72
asin @ Vaz—r?
I—/ d@/ rdr (az—rz)p/zdz
a —7‘
asinf 1
—/dG/ a—r)ﬁdr
Letu = a?2 — 2. Then du = —2rdr. Whenr = 0, u = a; whenr =
asin®, u = a2 cos? 0.
asinf 1 a2 1 2
/ 2r(a? —rz)p; dr = / u'T du = ———aP3(1—|cosh|PT3).
0 a2 cos? 0 p+3

Integrating over 6 € [0, 7t|:

p+3 ,m p+3 /2
_ 2 (1—|cosB|PF3)do = da T —/ cosP™20de | .
p+3.Jo p+31\2 0
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¥
The remaining integral is %B(pTH, D.
u cylixdér
z
Characterization of the Gamma Function x
We now state and prove the theorem that uniquely characterizes ore
the Gamma function based on the properties listed in the previous
chapter.
Figure 1.3: Cross-section of Vi-

Theorem 1.2. Bohr-Moll'er?tp Theorem. viani’s body atz = 0. The red

If f:(0,00) — (0, 0) satisfies: disk is the cylinder x? + y? < ay

L f(1)=1, (centered at y = a/2), internally

2. f(x+1)=xf(x), tangent to the blue sphere at

3. In f(x) is convex, the origin.

then f(x) = I'(x).

i

Proof
Let ¢(x) = In f(x). Then ¢(x + 1) = ¢(x) + Inx. Convexity implies
that for x € (0,1) and n € N:

p(n+1+x)—¢p(n+1)

) < g(n+2) — p(n+1).

¢n+1) —¢(n) <
Since ¢(n) = In((n — 1)!), this reduces to:

$p(n+1+x)—Inn!
x

Inn < <In(n+1).

Using the recurrence, ¢(n+1+x) = ¢(x) +In(x(x +1) - - - (x +n)).
Substituting this:

¢(x) +InTT_y(x +k) —Inn!

Inn < " <In(n+1).
Rearranging for ¢(x):
n n
Inn!—In] [(x+k)+xlnn < ¢(x) <Inn!—In] [(x+k) +xIn(n+1).
k=0 k=0

Exponentiating, we find that f(x) is squeezed between two se-
quences that both converge to the Euler-Gauss limit of I'(x). Thus

f(x) =T(x).
]




Fundamental Gamma Identities

The Bohr-Mollerup theorem provides a powerful method for proving
identities: one simply verifies the three conditions for a candidate
function.

Proposition 1.4. Legendre Duplication Formula.

For x > 0:
22x—1 1
r(2x) = Vi I'(x)T (x + 2) :
Proof of the Legendre Duplication Formula
Define L
2% X x+1
=2 _r(z)r(==).
§(x) \/Er(z) ( 2 )
We verify the Bohr-Mollerup conditions for g.
1. g(1) = ﬁr(l/z)r(l) =1
2 g+ 1) = ZT(NNGE +1) = ZT(53T(3) = x3(x).
3. Since InT(y) is convex, Ing(x) = (x — 1)In2 — {Inm +

InT(x/2) + InT((x + 1)/2) is a sum of convex functions, hence
convex.

Thus g(x) = T'(x). Replacing x with 2x and rearranging yields the

formula.
|
Proposition 1.5. Euler’s Reflection Formula.
For0<x <1 -
Ix)I'(l—x) = .
()T (1 —x) sin 7rx

Proof of the Reflection Formula

Using the relation between Beta and Gamma functions:

T(x)T(1—x) = B(x,1—x) = /01 VUL — ) dy.

Substituting u = % (soy = ), the integral becomes:

_u_
1+u
o ,x—1
/ " du.
0o 1+u
Let u = tan?0, 0 € (0,77/2). Then du = 2tanfsec’df and 1 +u =
sec? 0, so

14+ u

co ;,x—1 /2 /2
/ “ du = 2/ tan® 1040 = 2/ sin?* 19 cos?1-)-1g4p.
0 0 0

PARAMETRIC INTEGRALS
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The last integral is the classical Wallis sine integral which evalu-

ates to ;57— ; hence the original integral equals 4 —, proving the

S].l’l TT.
reflection formula.

|
Theorem 1.3. Stirling’s Approximation.
As x — +o0:
X\ X
I'(x+1)~V2mrx (E) .
il
Proof

Substitute t = x(14u) in T(x+1) = [ t*e " dt:
T(x+1) =x"Tle ™ / (14 u)e™™)* du.
-1

Let h(u) = u —In(1 4 u). Then (14 u)e " = e "(#), Substitute u =
sv/2/x. The integral becomes:

\F [ emshevarm gg
X J—c0

For large x, xh(sv/2/x) ~ x3(sv/2/x)? = s2. The integral converges

to /7. Thus T'(x + 1) ~ x¥e™*v/2x/7.

1.4 Exercises

1. Evaluate via Gamma and Beta Functions. Compute the values of
the following integrals:

(a)/\/ﬁ

VR
o i

2. Express in Terms of Special Functions. Represent the following

integrals using the I' or B functions:

/2
(a) / tan” x dx for |a| < 1.
0

(b) /11(1 +x)"(1— %)t dx for a,b > —1.

3. Integer Beta Identity. Let n be a positive integer and p > 0. Prove

that:
(n—1)!

p(p+1)--(p+n—1)

B(p,n) =
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4. Convexity of Log-Gamma. Provide a detailed proof that InT'(x)
is a convex function on (0, o) by computing its second deriva-
tive and applying the Cauchy-Schwarz inequality to the integral
representation.

5. Proof of the Beta-Gamma Relation. Prove the identity

_ I'(p)T(q)
B(p,q) = W

by following these steps:

(a) Show that
+oo

I'(p) = 2/ 2P le gy,
0

(b) Write the product I'(p)I'(g) as a double integral over the first
quadrant:

T(p)T(q) =4 /0 ” /0 ¥ 2P 120 1,=(242) gy, gy,

(c) Let D(R) = {(r,0) |0 <r <R, 0<60< Z}and G(A) =
[0, A] x [0, A]. Show that:

dudo < dudo < du do.
/D(R)f(u,v) u U_/G(R)f(u,v) u v_/D(R\/E)f(u,v) udv

(d) Transform the integral over D(R) to polar coordinates and
show that its limit as R — oo equals I'(p + q)B(p, 9)-



2
Further Exercises

1. Duhamel’s Principle. Let f(x,t) and fy(x, t) be continuous func-
tions. Define

1 t x+a(t—1) p
ux,tz—/df/ ,T)dc,
=g [ [ e
where a > 0 is the wave speed. Prove that u(x, t) is the solution to
the inhomogeneous wave equation:

P P
S =05+ fxt), withu(x,0) =0, u(x,0) = 0.

2. Bessel’s Equation. Let 1 be a positive integer. Consider the Bessel
function of the first kind:

Jn(x) = %/On cos(ng — xsin¢) de.

Show by direct differentiation that ], (x) satisfies the differential
equation:
2y 4wy 4+ (2 —n?)y =0.
3. Abel’s Integral Equation. Let f(x) be continuously differentiable
on [0,1] with f(0) = 0. Define the fractional integral:

cp(x)—/ox\/f%dt, x e (0,1],

(a) Prove that ¢ is continuously differentiable on [0, 1] and justify

the formula: ,
X
0 x—t

Remark.

The assumption f(0) = 0 removes the boundary term

\f;% |t:x when differentiating under the integral sign.
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(b) Prove the inversion formula:

_ 1 9(t)
O 1

4. Localisation of the Dirichlet Integral. Let f(x) be monotonic on
[0, A] for some A > 0, of bounded variation on [0, A], and assume
f € LY([A, )) (for example, f(x) = O(1/x) as x — o0). Prove
that:

a—r+00 X

lim /()“f(x)sjn“x dx = 2 f(0°).

5. Tauberian-Type Limit. Let F(t) = ¢ 0+°° e~ f(x) dx, where f(x)
is bounded and integrable on every finite interval. If grﬂ f(x) =
X 0

L, prove that:
lim F(t) = L.

t—0t

6. Autocorrelation and Smoothing. Let f € L?(R) be a continuous
function.

(a) Prove that the autocorrelation g(t) = oo flt+u)f(u)du

—0o0
is continuous, bounded, and in fact uniformly continuous

(translations are continuous in L? and Cauchy-Schwarz gives
the bounds).

(b) Show that for & > 0,

\/Z / ettty = / " If(@) e g,

and deduce that

—+o00 400
NETOO \/ZLw e_atzg(t) dt - /—00 fZ(X) dx'

Remark.

This is the Plancherel/heat-kernel identity; the limit re-
moves the Gaussian factor in the Fourier side.

7. Continuity of Singular Parameter Integrals. Investigate the conti-
nuity of the following functions on the interval (0,1):

(@ f(a) = 0+°° £ dt (the integral converges only for 0 < a <

| sint[*
1, since near k7 the integrand behaves like |t — kmt|™%).

(b) g(a) = fol \/f% dt, where f is bounded and integrable.

8. Volume of a Generalized Body. Find the volume of the solid
region defined by (x* + y?)? +z* <.
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10.

11.

12.

13.

14.

15.

Remark.

The body is rotationally symmetric about the z-axis; in cylin-
drical coordinates x = rcosf, y = rsinf the constraint is
r* + 24 <rsinf with 0 € [0, 7).

Centroid of a Lamé Solid. Find the x-coordinate of the centroid of
the solid defined by:

B+ () (@) 1 ez
Express the result using Gamma functions.

Moment of Inertia. Compute the moment of inertia about the
x-axis for the area enclosed by the astroid x2/3 + y?/3 = R?/3,

Gaussian Concentration. Let f be continuous on [0, 1]. Prove:

lim : te*tzxzf(x) dx \/Ef(O)

t——+o0 Jo )

Abel Continuity for Integrals. Let f0+°° f(x) dx be convergent.
Prove that:

+c0 +o00
li - dx = dx.
Jim [T ep e = [T fd

Fresnel Generalisation. Evaluate the integral f0+°° cos(x?) dx for
p>1

Remark.

Use the substitution u = x? and express the result in terms of
the Gamma function.

Raabe’s Integral. Evaluate fol InT(x) dx.

Remark.

Use the reflection formula I'(x)I'(1 — x) = 7/ sin(7rx) and sym-
metry.

Laplace Integrals. Evaluate the following integrals for 4,b > 0 and

kezt:
I _/+°° cos bx dx, | _/+°° x sin bx .
o @R KT e (@4 a2kt

Remark.
Start with k = 1where [; = %e‘ab ; when differentiating with

respect to a, boundary terms vanish because the e~ factor (or
the algebraic decay of the integrand) kills the endpoints.



16. Euler-Mascheroni Constant. Using the infinite product expansion
for the Gamma function, prove that:

n—o0 =1

v = lim (f}(—lmn) =-T'(1).

17. Euler’s Reflection Formula Proof.

(a) Using the roots of unity, prove the polynomial identity:

n—1 n—1 .
2 ¥k — H (x _ eka/n) _
k=0 k=1

kmr . n
n ~ on-1-

(b) Deduce the trigonometric identity: H’kl;ll sin

(c) Prove the multiplication formula for the Gamma function:

IHORS S
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