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0
Integrals with Parameters

We consider the general properties of integrals with parameters,
specifically focusing on proper integrals. We examine their analytical
properties (limits, continuity, differentiability, and integrability), and
demonstrate their utility in evaluating definite integrals.

0.1 Proper Integrals with Parameters

We begin by motivating the study with a geometric problem. Con-
sider the ellipse defined by the equation

x2

a2 +
y2

b2 = 1,

where b > a > 0. The arc length L of this ellipse is given by the
integral:

L = 4
∫ π/2

0

√
a2 sin2 t + b2 cos2 t dt.

By factoring out b2 and employing the trigonometric identity cos2 t =
1 − sin2 t, we may rewrite this as:

L = 4b
∫ π/2

0

√
1 − b2 − a2

b2 sin2 t dt.

Defining the eccentricity k =
√

b2−a2

b , the integral becomes:

I(k) =
∫ π/2

0

√
1 − k2 sin2 t dt

is the complete elliptic integral of the second kind. It cannot be expressed
in terms of elementary functions and serves as a prototypical exam-
ple of an integral with a parameter.

x

y

a

b

Figure 1: An ellipse with semi-
major axis b and semi-minor
axis a, where b > a > 0.

Definition 0.1. Proper Integral with Parameter.
Let D ⊂ R. Let f (x, t) be a function defined on [a, b] × D. If for ev-
ery t ∈ D, f (x, t) is integrable with respect to x on [a, b], then the func-
tion

φ(t) =
∫ b

a
f (x, t) dx
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is called a proper integral with a parameter defined on D.
定義

We state the fundamental analytic properties of these functions.

Proposition 0.1. Limit Property.
Let t0 be an accumulation point of D. If lim

t→t0
f (x, t) = ψ(x) and the

convergence is uniform for x ∈ [a, b], then ψ(x) is bounded and in-
tegrable on [a, b], and:

lim
t→t0

φ(t) = lim
t→t0

∫ b

a
f (x, t) dx =

∫ b

a
ψ(x) dx.

命題

Proposition 0.2. Continuity.
If f (x, t) is continuous on [a, b]× [c, d], then

φ(t) =
∫ b

a
f (x, t) dx

is continuous on [c, d].
命題

Proof

Since f is continuous on the compact set R, it is uniformly con-
tinuous. Let ϵ > 0. There exists δ > 0 such that for any
(x, t), (x′, t′) ∈ R:

|(x, t)− (x′, t′)| < δ =⇒ | f (x, t)− f (x′, t′)| < ϵ

b − a
.

Let t0 ∈ [c, d]. For any t ∈ [c, d] with |t − t0| < δ, we have:

|φ(t)− φ(t0)| =
∣∣∣∣∫ b

a
[ f (x, t)− f (x, t0)] dx

∣∣∣∣ ≤ ∫ b

a
| f (x, t)− f (x, t0)| dx.

Since |(x, t) − (x, t0)| = |t − t0| < δ, the integrand is bounded by
ϵ

b−a . Thus:

|φ(t)− φ(t0)| <
∫ b

a

ϵ

b − a
dx = ϵ.

■

Proposition 0.3. Interchanging Order of Integration.
If f (x, t) is continuous on [a, b]× [c, d], then∫ d

c
dt
∫ b

a
f (x, t) dx =

∫ b

a
dx
∫ d

c
f (x, t) dt.

命題
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Proof

Let φ(t) =
∫ b

a f (x, t) dx. Since f is continuous, φ is continuous and
thus integrable on [c, d]. The equality follows from Fubini’s Theo-
rem for continuous functions on compact rectangles. Alternatively,
it can be proven by showing that both iterated integrals are limits of
the same Riemann sums due to uniform continuity.

■

Proposition 0.4. Differentiability (Leibniz’s Rule).
If f (x, t) and the partial derivative ft(x, t) are continuous on [a, b] ×
[c, d], then φ(t) =

∫ b
a f (x, t) dx is differentiable on [c, d], and

φ′(t) =
∫ b

a
ft(x, t) dx.

命題

Proof

Let g(x, t) = ft(x, t). Since g is continuous on a compact set, it is
uniformly continuous. Let ϵ > 0. There exists δ > 0 such that
|∆t| < δ implies |g(x, t + ∆t) − g(x, t)| < ϵ/(b − a). Consider the
difference quotient:

φ(t + ∆t)− φ(t)
∆t

=
∫ b

a

f (x, t + ∆t)− f (x, t)
∆t

dx.

By the Mean Value Theorem, there exists θ ∈ (0, 1) such that the in-
tegrand equals ft(x, t + θ∆t). Thus:∣∣∣∣ φ(t + ∆t)− φ(t)

∆t
−
∫ b

a
ft(x, t) dx

∣∣∣∣ ≤ ∫ b

a
| ft(x, t + θ∆t)− ft(x, t)| dx.

The RHS is bounded by
∫ b

a
ϵ

b−a dx = ϵ. As ∆t → 0, the limit holds.
■

If the limits of integration also depend on the parameter, we have the
following generalisation.

Proposition 0.5. General Leibniz Rule.
Let f (x, t) be continuous on [a, b]× [c, d]. Let α(t) and β(t) be contin-
uous on [c, d] such that a ≤ α(t), β(t) ≤ b for all t ∈ [c, d]. Then

φ(t) =
∫ β(t)

α(t)
f (x, t) dx

is continuous on [c, d]. Furthermore, if ft(x, t) is continuous on [a, b]×
[c, d] and α(t), β(t) are differentiable on [c, d], then φ(t) is differentiable
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and:

φ′(t) = f (β(t), t)β′(t)− f (α(t), t)α′(t) +
∫ β(t)

α(t)
ft(x, t) dx.

命題

Proof

Let Φ(u, v, t) =
∫ v

u f (x, t) dx. Then φ(t) = Φ(α(t), β(t), t). By the
Chain Rule:

dφ

dt
=

∂Φ
∂u

α′(t) +
∂Φ
∂v

β′(t) +
∂Φ
∂t

.

By the Fundamental Theorem of Calculus, ∂Φ
∂v = f (v, t) and ∂Φ

∂u =

− f (u, t). By proposition 0.4, ∂Φ
∂t =

∫ v
u ft(x, t) dx. Substituting u =

α(t) and v = β(t) yields the result.
■

Example 0.1. Continuity Analysis. Let f (x) be continuous on [0, 1].
Investigate the continuity of

F(t) =
∫ 1

0

t
x2 + t2 f (x) dx.

範例

Solution

F(t) is defined on (−∞,+∞). For any t0 ̸= 0, the function
h(x, t) = t f (x)

x2+t2 is continuous on [0, 1]× [t0/2, 2t0]. By proposition 0.2,
F(t) is continuous at t0.
We examine the point t = 0. Consider the limit as t → 0+:

∫ 1

0

t
x2 + t2 f (x) dx =

∫ t1/3

0

t
x2 + t2 f (x) dx +

∫ 1

t1/3

t
x2 + t2 f (x) dx.

As t → 0+:

• For the first integral, by the Mean Value Theorem for integrals,
there exists ξ ∈ [0, t1/3] such that:

∫ t1/3

0

t
x2 + t2 f (x) dx = f (ξ) arctan

t1/3

t
→ f (0)

π

2
.

• For the second integral:∣∣∣∣∫ 1

t1/3

t
x2 + t2 f (x) dx

∣∣∣∣ ≤ max
x∈[0,1]

| f (x)| · t
t2/3 + t2 → 0.

Thus lim
t→0+

F(t) = f (0)π
2 . Similarly, lim

t→0−
F(t) = − f (0)π

2 . Since

F(0) = 0, F(t) is continuous at t = 0 if and only if f (0) = 0.
■
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Example 0.2. Differentiation with Variable Limits. Let F(t) =∫ t2

0 dx
∫ x+t

x−t sin(x2 + y2 − t2) dy. Find F′(t).

範例

Solution

Let g(x, t) =
∫ x+t

x−t sin(x2 + y2 − t2) dy. Using the differentiation for-
mula for integrals with parameters:

F′(t) = 2t · g(t2, t) +
∫ t2

0

∂

∂t
g(x, t) dx.

Note that g(t2, t) =
∫ t2+t

t2−t sin(t4 + y2 − t2) dy. For the partial
derivative inside the integral, we apply the General Leibniz Rule to
g(x, t):

∂

∂t

∫ x+t

x−t
sin(x2 + y2 − t2) dy = sin[x2 + (x + t)2 − t2] · (1)

− sin[x2 + (x − t)2 − t2] · (−1)

+
∫ x+t

x−t
(−2t) cos(x2 + y2 − t2) dy.

Simplifying the boundary terms:

sin(2x2 + 2xt) + sin(2x2 − 2xt) = 2 sin(2x2) cos(2xt).

Thus:

F′(t) = 2t
∫ x+t

x−t
sin(t4 + y2 − t2) dy+ 2

∫ t2

0
sin(2x2) cos(2xt) dx− 2t

∫ t2

0
dx
∫ x+t

x−t
cos(x2 + y2 − t2) dy.

■

Methods for Evaluating Integrals

If computing
∫ b

a f (x, t) dx directly is difficult, two common methods
involve parameters:

Differentiation: Compute
∫ b

a ft(x, t) dx first, then integrate the result
with respect to t.

Integration: Express f (x, t) as an integral, then interchange the order
of integration.

Example 0.3. Differentiation under the Integral. Compute

I(x) =
∫ π/2

0
ln(sin2 θ + x2 cos2 θ) dθ

for 0 < x < +∞.

範例
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Solution

Let f (x, θ) = ln(sin2 θ + x2 cos2 θ). For any x0 ∈ (0, ∞), f and fx are
continuous on appropriate compact domains. Differentiation yields:

I′(x) =
∫ π/2

0

2x cos2 θ

sin2 θ + x2 cos2 θ
dθ = 2x

∫ π/2

0

dθ

x2 + tan2 θ
.

Let t = tan θ:

I′(x) = 2x
∫ +∞

0

1
x2 + t2 · 1

1 + t2 dt.

Using partial fractions for x ̸= 1:

I′(x) =
2x

x2 − 1

∫ +∞

0

(
1

1 + t2 − 1
x2 + t2

)
dt =

2x
x2 − 1

(
π

2
− 1

x
π

2

)
=

π

1 + x
.

Integrating gives I(x) = π ln(1 + x) + C. By continuity, this holds
for x = 1. At x = 1, I(1) =

∫ π/2
0 ln(1) dθ = 0, so C = −π ln 2.

I(x) = π ln
1 + x

2
.

■

Example 0.4. Interchanging Order of Integration. Find

I(α) =
∫ π/2

0
ln

1 + α cos x
1 − α cos x

· 1
cos x

dx

for |α| < 1.

範例

Solution

Observe that the integrand can be written as an integral:

ln(1 + α cos x)
cos x

− ln(1 − α cos x)
cos x

=
∫ α

−α

dy
1 + y cos x

.

Let f (x, y) = 1
1+y cos x . For α ∈ (−1, 1), we can interchange the or-

der:

I(α) =
∫ α

−α
dy
∫ π/2

0

dx
1 + y cos x

.

The inner integral evaluates to:

∫ π/2

0

dx
1 + y cos x

=
2√

1 − y2
arctan

(√
1 − y
1 + y

)
.

Thus:

I(α) =
∫ α

−α

2√
1 − y2

arctan

√
1 − y
1 + y

dy.
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Using the symmetry of the arctan arguments (summing to π/2
roughly), or direct evaluation:

I(α) = π
∫ α

0

dy√
1 − y2

= π arcsin α.

■

Example 0.5. Proof of Constant Integral. Prove∫ 2π

0
et cos θ cos(t sin θ) dθ = 2π.

範例

Proof

Let f (t) be the integral. We show f (t) ≡ f (0) = 2π by showing
f ′(t) ≡ 0.

f ′(t) =
∫ 2π

0
et cos θ cos(t sin θ + θ) dθ.

By induction, f (n)(t) =
∫ 2π

0 et cos θ cos(t sin θ + nθ) dθ. Thus

f (n)(0) =
∫ 2π

0 cos(nθ) dθ = 0 for n ≥ 1. By Taylor’s Theorem:

f (t) = f (0) +
n

∑
k=1

tk

k!
f (k)(0) + Rn = 2π + Rn.

Using the estimate | f (n)(ξ)| ≤ 2πe|t|, the remainder term vanishes
as n → ∞. Thus f (t) = 2π.

■

We can also prove it using Green’s theorem We will properly introduce this in the
upcoming notes.Proof

f ′(t) =
∮

x2+y2=1
etx[cos(ty) dy + sin(ty) dx].

Using Green’s formula on the unit disk D:

f ′(t) =
∫∫

D

(
∂

∂x
[etx cos(ty)]− ∂

∂y
[etx sin(ty)]

)
dxdy.

Since ∂
∂x [e

tx cos(ty)] = tetx cos(ty) and ∂
∂y [e

tx sin(ty)] = tetx cos(ty),
the integrand is 0. Thus f ′(t) = 0.

■

Example 0.6. Embedding Method. Find

I =
∫ 1

0

ln(1 + x)
1 + x2 dx.

範例
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Solution

Introduce a parameter α and define I(α) =
∫ 1

0
ln(1+αx)

1+x2 dx. Then
I(1) = I and I(0) = 0. Differentiating:

I′(α) =
∫ 1

0

x
(1 + x2)(1 + αx)

dx =
1

1 + α2

∫ 1

0

(
α + x
1 + x2 − α

1 + αx

)
dx.

Evaluating the integral:

I′(α) =
1

1 + α2

[
απ

4
+

1
2

ln 2 − ln(1 + α)

]
.

Integrating back from 0 to 1:

I(1) =
∫ 1

0

απ
4 + 1

2 ln 2
1 + α2 dα −

∫ 1

0

ln(1 + α)

1 + α2 dα.

The last term is exactly I(1). Thus:

2I(1) =
π

4

∫ 1

0

α

1 + α2 dα +
1
2

ln 2
∫ 1

0

dα

1 + α2 =
π

4
ln 2,

which yields I(1) = π
8 ln 2.

■

0.2 Improper Integrals with Parameters

The transition from proper to improper integrals mirrors the tran-
sition from finite sums to infinite series. Just as a series of functions
∑ fn(x) may be viewed as a discrete summation dependent on a
parameter, an improper integral with a parameter

∫ ∞
a f (x, t) dx repre-

sents a continuous summation. Consequently, the analytic properties
of these integrals are governed by a concept analogous to the uni-
form convergence of series.

Uniform Convergence

Let T be a subset of R (typically an interval) and let f : [a,+∞) ×
T → R. We assume that for every fixed t ∈ T, the improper integral∫ ∞

a f (x, t) dx converges. We denote the value of the integral by φ(t).

Definition 0.2. Uniform Convergence.
The integral

∫ ∞
a f (x, t) dx is said to converge uniformly with respect

to t on T if for every ϵ > 0, there exists A0 = A0(ϵ) > a such that
for all A > A0 and for all t ∈ T:∣∣∣∣∫ ∞

a
f (x, t) dx −

∫ A

a
f (x, t) dx

∣∣∣∣ = ∣∣∣∣∫ ∞

A
f (x, t) dx

∣∣∣∣ < ϵ.
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定義

The crucial distinction between pointwise and uniform convergence
is that A0 depends only on ϵ and not on the parameter t.

x

|rA(t)|

ϵ

A0

t1
t2
t3

Figure 2: Uniform conver-
gence: the tail remainder
rA(t) =

∫ ∞
A f (x, t) dx falls

below ϵ for all t once A > A0.

Tests for Uniform Convergence

We establish several criteria to determine uniform convergence,
which are direct analogues of tests for series of functions.

Theorem 0.1. Cauchy’s Criterion.
The integral

∫ ∞
a f (x, t) dx converges uniformly on T if and only if for

every ϵ > 0, there exists A0 > a such that for all A1, A2 > A0 and
for all t ∈ T: ∣∣∣∣∫ A2

A1

f (x, t) dx
∣∣∣∣ < ϵ.

定理

Theorem 0.2. Weierstrass M-Test.
Let f (x, t) be defined on [a,+∞)×T. Suppose there exists a non-negative
function F(x) defined on [a,+∞) such that:
1. | f (x, t)| ≤ F(x) for all x ≥ a and t ∈ T.

2. The improper integral
∫ ∞

a F(x) dx converges.
Then

∫ ∞
a f (x, t) dx converges uniformly (and absolutely) on T.

定理

For integrals that are conditionally convergent, the M-test fails. In
such cases, we employ the tests of Abel and Dirichlet, which rely
on the interplay between a monotonic term and an oscillatory or
bounded term.

Theorem 0.3. Abel’s Test.
The integral

∫ ∞
a f (x, t)g(x, t) dx converges uniformly on T if:

1.
∫ ∞

a f (x, t) dx converges uniformly on T.

2. For each t, g(x, t) is monotonic with respect to x, and g(x, t) is uni-
formly bounded on [a,+∞)× T.

定理

Theorem 0.4. Dirichlet’s Test.
The integral

∫ ∞
a f (x, t)g(x, t) dx converges uniformly on T if:

1. The partial integrals F(A, t) =
∫ A

a f (x, t) dx are uniformly bounded;

i.e., there exists M > 0 such that |
∫ A

a f (x, t) dx| ≤ M for all A ≥
a and t ∈ T.

2. For each t, g(x, t) is monotonic with respect to x, and g(x, t) → 0
as x → ∞ uniformly with respect to t.

定理
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Finally, for monotonic integrands, convergence to a continuous limit
implies uniformity.

Theorem 0.5. Dini’s Theorem for Integrals.
Let f (x, t) be continuous and non-negative on [a,+∞)× [α, β]. If φ(t) =∫ ∞

a f (x, t) dx is continuous on [α, β], then the integral converges uni-
formly on [α, β].

定理

Note

While the definitions above focus on infinite limits (Type I), the
theory applies identically to improper integrals with finite singular
points (Type II). For an integral

∫ b
a f (x, t) dx with a singularity at b,

uniform convergence requires |
∫ b

b−δ f (x, t) dx| < ϵ for sufficiently
small δ, independent of t.

Disproving Uniform Convergence

To show that an integral does not converge uniformly, one typically
employs one of the following strategies:

Negation of Cauchy Criterion: Show that there exists ϵ0 > 0 such
that for any A0, one can find A1, A2 > A0 and a specific parameter
t ∈ T where |

∫ A2
A1

f (x, t) dx| ≥ ϵ0.

Limit Point Divergence: If t0 is an accumulation point of T, and the
integral converges for all t ∈ T \ {t0} but diverges at t0, then
convergence cannot be uniform on T.

Discontinuity: If f is continuous but the resulting integral function
φ(t) is discontinuous, convergence is not uniform (this is the con-
trapositive of the property that uniform convergence preserves
continuity).

We illustrate these tests with examples where the integrand often
changes sign.

Example 0.7. Abel and Dirichlet Applications. Investigate the
uniform convergence of

I(y) =
∫ ∞

0

sin x2

1 + xy dx

for y ∈ [0,+∞).

範例

Method 1 (Abel’s Test).

Consider the factorisation f (x, y) = sin x2 and g(x, y) = 1
1+xy . First,
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observe that
∫ ∞

0 sin x2 dx converges (the Fresnel integral). Since this
integral is independent of y, it converges uniformly with respect to
y. For any fixed y ≥ 0, the function g(x, y) = 1

1+xy is monotonic de-
creasing in x (for x > 0). Furthermore, |g(x, y)| ≤ 1 for all x, y ≥ 0.
Thus, by Abel’s Test, the integral converges uniformly on [0,+∞).

■

Method 2 (Dirichlet’s Test).

Rewrite the integrand as:

sin x2

1 + xy =
(

x sin x2
)
·
(

1
x(1 + xy)

)
.

Let f (x) = x sin x2. The partial integral is:∣∣∣∣∫ A

0
x sin x2 dx

∣∣∣∣ =
∣∣∣∣∣
[
−1

2
cos x2

]A

0

∣∣∣∣∣ = 1
2
|1 − cos A2| ≤ 1.

Thus, the partial integrals are uniformly bounded. Let h(x, y) =
1

x(1+xy)
. For fixed y, this is monotonic in x. Moreover:∣∣∣∣ 1

x(1 + xy)

∣∣∣∣ ≤ 1
x

.

Since 1
x → 0 as x → ∞ independently of y, h(x, y) → 0 uniformly.

By Dirichlet’s Test, the integral converges uniformly.
■

Example 0.8. Convergence on Domains. Discuss the uniform con-
vergence of

I(α) =
∫ ∞

1

sin x
xα

dx

on (1) [α0,+∞) with α0 > 0, and (2) (0,+∞).

On [α0,+∞). The partial integrals of sin x are uniformly bounded
by 2. The function g(x, α) = 1

xα is monotonic in x. Furthermore,
for α ≥ α0: ∣∣∣∣ 1

xα

∣∣∣∣ ≤ 1
xα0

.

Since x−α0 → 0 as x → ∞, the convergence of g to 0 is uniform.
By Dirichlet’s Test, I(α) converges uniformly.

On (0,+∞). The integrand is continuous on [1, ∞) × (0, ∞). How-
ever, consider the limit as α → 0+. The pointwise limit is∫ ∞

1 sin x dx, which diverges. Since α = 0 is an accumulation
point of the domain where the integral diverges, I(α) cannot
converge uniformly on (0,+∞).

範例
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Example 0.9. Improper Integral of Type II. Discuss the uniform
convergence of I(p) =

∫ 1
0 xp−1 ln2 x dx for (1) p ≥ p0 > 0 and (2)

p > 0. The singularity is at x = 0.

On [p0,+∞). For x ∈ (0, 1) and p ≥ p0, we have |xp−1 ln2 x| =

xp−1 ln2 x ≤ xp0−1 ln2 x. The integral
∫ 1

0 xp0−1 ln2 x dx converges
(one may verify this by substitution x = e−t). By the M-Test, con-
vergence is uniform.

On (0,+∞). We suspect non-uniformity because
∫ 1

0 x−1 ln2 x dx
diverges. We verify this using the negation of the definition.
Consider the integral on a small interval [0, ξ]:∣∣∣∣∫ ξ

0
xp−1 ln2 x dx

∣∣∣∣ = ∫ ξ

0
xp−1 ln2 x dx.

Using the substitution u = x/ξ (so x = ξu) is essentially scaling,
but we can estimate directly. Since ln2 x is decreasing near 0, for
x ∈ (0, ξ):

∫ ξ

0
xp−1 ln2 x dx ≥ ln2 ξ

∫ ξ

0
xp−1 dx = ln2 ξ

[
xp

p

]ξ

0
=

ξ p ln2 ξ

p
.

We choose parameters to make this large. Let p = ξ and consider
ξ → 0+.

lim
ξ→0+

ξξ ln2 ξ

ξ
= lim

ξ→0+
ξξ · ln2 ξ

ξ
= 1 · (+∞) = +∞.

Thus, for any ξ0, we can choose ξ < ξ0 and p = ξ such that the
tail integral is arbitrarily large (specifically ≥ 1). This violates the
definition of uniform convergence.

範例

Example 0.10. Proof by Contradiction. Prove that

I(t) =
∫ ∞

1

x sin tx
a2 + x2 dx

does not converge uniformly on (0,+∞).

範例

Proof

Suppose for the sake of contradiction that I(t) converges uniformly
on (0,+∞). We may write:

sin tx
x

=
x sin tx
a2 + x2 · a2 + x2

x2 .
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Let
f (x, t) =

x sin tx
a2 + x2

and

g(x) = 1 +
a2

x2 .

The function g(x) is monotonic decreasing for x ≥ 1 and bounded
by 1 + a2. If

∫
f (x, t) dx converges uniformly, then by Abel’s Test,

the product integral
∫ ∞

1
sin tx

x dx must also converge uniformly
on (0,+∞). However, it is a known result (demonstrable via the
Cauchy criterion with t = 1/A) that

∫ ∞
1

sin tx
x dx does not con-

verge uniformly near t = 0. This contradiction implies I(t) is not
uniformly convergent.

■

0.3 Analytic Properties of Improper Integrals

Similar to series of functions, improper integrals with parameters
possess key analytic properties such as continuity, differentiability,
and integrability. These properties hold provided the convergence is
uniform.
We state the fundamental propositions for improper integrals of the
form φ(t) =

∫ ∞
a f (x, t) dx, where f is defined on [a,+∞)× [α, β].

Proposition 0.6. Continuity of Improper Integrals.
Let f (x, t) be continuous on [a,+∞)× [α, β]. If the integral

∫ ∞
a f (x, t) dx

converges uniformly to φ(t) on [α, β], then φ(t) is continuous on [α, β].
That is, for any t0 ∈ [α, β]:

lim
t→t0

∫ ∞

a
f (x, t) dx =

∫ ∞

a
lim
t→t0

f (x, t) dx.

命題

Proposition 0.7. Differentiability Under the Integral Sign.
Let f (x, t) and its partial derivative ft(x, t) be continuous on [a,+∞)×
[α, β]. Suppose:
1. The integral

∫ ∞
a f (x, t) dx converges to φ(t) for t ∈ [α, β].

2. The integral of the derivative
∫ ∞

a ft(x, t) dx converges uniformly on
[α, β].

Then φ(t) is differentiable on [α, β] and:

φ′(t) =
d
dt

∫ ∞

a
f (x, t) dx =

∫ ∞

a

∂ f
∂t

(x, t) dx.

命題
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Proposition 0.8. Interchanging Order of Integration.
There are two primary cases for interchanging improper integrals:

Case 1 (Finite Interval): Under the conditions of the Continuity Propo-
sition, φ(t) is integrable on [α, β], and:∫ β

α
dt
∫ ∞

a
f (x, t) dx =

∫ ∞

a
dx
∫ β

α
f (x, t) dt.

Case 2 (Infinite Interval): Let f (x, t) be continuous for x ≥ a, t ≥ c.
Suppose:

1.
∫ ∞

a f (x, t) dx converges uniformly with respect to t on any finite
interval.

2.
∫ ∞

c f (x, t) dt converges uniformly with respect to x on any finite
interval.

3. At least one of the iterated integrals of the absolute value exists:∫ ∞

c
dt
∫ ∞

a
| f (x, t)| dx or

∫ ∞

a
dx
∫ ∞

c
| f (x, t)| dt.

Then both iterated integrals of f (x, t) exist and are equal:∫ ∞

c
dt
∫ ∞

a
f (x, t) dx =

∫ ∞

a
dx
∫ ∞

c
f (x, t) dt.

命題

Note

If f (x, t) ≥ 0, Dini’s Theorem ensures that the existence of one it-
erated integral implies the existence of the other, without requiring
the explicit absolute convergence check.

We apply these properties to evaluate improper integrals, often using
standard results like the Dirichlet integral

∫ ∞
0

sin x
x dx = π

2 or the

Gaussian integral
∫ ∞

0 e−x2
dx =

√
π

2 .

Example 0.11. Integration by Parts with Parameters. Find

I =
∫ +∞

0

1
x2 (e

−αx2 − 1) dx

for α > 0.

範例

Solution

The integrand has a removable singularity at x = 0 since the
limit is −α. We use integration by parts to reduce the power of
1/x2. Let u = e−αx2 − 1 and dv = x−2dx. Then v = −1/x and
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du = −2αxe−αx2
dx.

I =
[
− 1

x
(e−αx2 − 1)

]+∞

0
+
∫ +∞

0

1
x
(−2αxe−αx2

) dx.

The boundary term vanishes at +∞. At 0, using L’Hôpital’s rule,
the limit is 0.

I = −2α
∫ +∞

0
e−αx2

dx.

Using the substitution u =
√

αx, we have
∫ ∞

0 e−αx2
dx = 1√

α

√
π

2 .

I = −2α

( √
π

2
√

α

)
= −

√
πα.

■

Example 0.12. Continuity via Uniform Convergence. Prove that

F(α) =
∫ +∞

0

x
2 + xα

dx

is continuous on (2,+∞).

範例

Proof

We establish continuity on any ray [2 + ϵ,+∞) where ϵ > 0. For
α ≥ 2 + ϵ and x ≥ 1:∣∣∣∣ x

2 + xα

∣∣∣∣ ≤ x
xα

=
1

xα−1 ≤ 1
x1+ϵ

.

Since
∫ ∞

1 x−(1+ϵ) dx converges, the M-Test implies that
∫ +∞

1
x

2+xα dx
converges uniformly for α ∈ [2 + ϵ,+∞). The integral on [0, 1] is
proper and thus continuous. Since uniform convergence preserves
continuity, F(α) is continuous on [2 + ϵ,+∞). Since ϵ is arbitrary, F
is continuous on (2,+∞).

■

Example 0.13. Continuity and Differentiability. Let b ̸= 0. Prove
that F(a) =

∫ +∞
0

1
t (1 − e−at) cos bt dt is continuous on [0,+∞) and

differentiable on (0,+∞).

範例

Proof of Continuity.

Define f (t, a) = 1
t (1 − e−at) cos bt for t > 0 and f (0, a) = a. This

function is continuous. We split the integral at t = 1. The part
∫ 1

0 is
a proper parameter integral and is thus continuous.
For

∫ +∞
1 , we apply Abel’s Test. The integral

∫ ∞
1

cos bt
t dt converges
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uniformly with respect to a (it is independent of a and convergent).
The factor (1 − e−at) is monotonic in t for fixed a and bounded by
2. Thus, the improper integral converges uniformly for a ∈ [0,+∞),
implying continuity.

証明終

Differentiability.

The partial derivative is fa(t, a) = e−at cos bt. For any ϵ > 0, if a ≥ ϵ,
then |e−at cos bt| ≤ e−ϵt. Since

∫ ∞
0 e−ϵt dt converges, the integral of

the derivative converges uniformly on [ϵ,+∞) by the M-Test. Thus
F(a) is differentiable on [ϵ,+∞), and by extension on (0,+∞), with:

F′(a) =
∫ +∞

0
e−at cos bt dt.

証明終

Example 0.14. Evaluating the Integral. Find the value of

F(a) =
∫ +∞

0

1
t
(1 − e−at) cos bt dt.

範例

Solution

We can evaluate this in two ways.

Integration of Derivative From the previous example, for a > 0:

F′(a) =
∫ +∞

0
e−at cos bt dt =

a
a2 + b2 .

Integrating with respect to a:

F(a) =
1
2

ln(a2 + b2) + C.

Since F(a) is continuous at a = 0 and F(0) = 0:

0 =
1
2

ln(b2) + C =⇒ C = −1
2

ln(b2).

F(a) =
1
2

ln
(

a2 + b2

b2

)
.

Embedding / Fubini’s Theorem We rewrite the term 1
t (1 − e−at) as

an integral:
1 − e−at

t
=
∫ a

0
e−yt dy.

Thus F(a) =
∫ +∞

0

(∫ a
0 e−yt dy

)
cos bt dt. We interchange

the order of integration. This is justified for a > 0 because
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∫ ∞
0 |e−yt cos bt| dt converges for y > 0, and the convergence is

uniform on intervals bounded away from y = 0.

F(a) =
∫ a

0

(∫ +∞

0
e−yt cos bt dt

)
dy =

∫ a

0

y
y2 + b2 dy.

F(a) =
[

1
2

ln(y2 + b2)

]a

0
=

1
2

ln(a2 + b2)− 1
2

ln(b2).

■

0.4 Exercises

1. Evaluate the Parameter Integral. Compute the function F(θ) =∫ π
0 ln(1 + θ cos x) dx for |θ| < 1.

Remark.

Differentiate with respect to θ and evaluate the resulting integral
using the substitution t = tan(x/2) or standard residues.

2. Differentiation with Variable Limits. Let f (s, t) be a differen-
tiable function. Find the derivative F′(x) of the function:

F(x) =
∫ x

0
dt
∫ x2

t2
f (t, s) ds.

Remark.

Apply the General Leibniz Rule carefully, noting that x appears
in the outer limit and the inner limit.

3. Continuity of Parameter Integrals. Let f (x, y) be continuous and
bounded on the rectangle (a, b)× (c, d). Prove that the function

I(x) =
∫ d

c
f (x, y) dy

is continuous on the interval (a, b).

4. Derivative of a Logarithmic Potential. Let R > 0. Consider the
integral:

I(a) =
∫ 2π

0
ln(R2 + a2 − 2aR cos θ) dθ for |a| < R.

Prove that I′(a) = 0. What is the value of I(a)?

5. Interchanging Integration Order. For a, b > 0, evaluate the inte-
gral: ∫ 1

0

xb − xa

ln x
sin
(

ln
1
x

)
dx.
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Remark.

Express the fraction as an integral with respect to a parameter,
interchange the order, and evaluate.

6. Second Derivative Identity. Let f be a continuous function. De-
fine

F(t) =
∫ a

0
dx
∫ x

0
f (x + y + t) dy.

Prove that the second derivative satisfies:

F′′(t) = f (t + 2a)− 2 f (t + a) + f (t).

7. The Gaussian Integral via Parameters. Define the functions:

f (t) =
(∫ t

0
e−x2

dx
)2

, g(t) =
∫ 1

0

e−t2(1+x2)

1 + x2 dx.

(a) Prove that f ′(t) + g′(t) = 0 for all t.

(b) Deduce that f (t) + g(t) = π
4 .

(c) By taking the limit as t → ∞, compute the value of the Gaus-
sian integral

∫ +∞
0 e−x2

dx.

8. Testing Uniform Convergence. Investigate the uniform conver-
gence of the following integrals on the specified domains. Justify
your answers using the M-test, Abel’s test, Dirichlet’s test, or by
disproving uniform convergence.

(1)
∫ +∞

0
e−(1+a2)t sin t dt, a ∈ (−∞,+∞).

(2)
∫ +∞

0

cos xy√
x + y

dx, y ∈ [y0,+∞), where y0 > 0.

(3)
∫ +∞

0
e−tx2

dx, t ∈ (0,+∞).

(4)
∫ +∞

1
e−αx cos x√

x
dx, α ∈ [0,+∞).

(5)
∫ +∞

0
e−(x−y)2

dx, y ∈ (−∞,+∞).

(6)
∫ +∞

0
x ln xe−t

√
x dx, (i) t ∈ [t0,+∞), t0 > 0; (ii) t ∈ (0,+∞).

(7)
∫ +∞

1

1 − e−ut

t
cos t dt, u ∈ [0, 1].

(8)
∫ +∞

0

αt
1 + α2t2 e−α2t2

cos(α2t2) dt, α ∈ (0,+∞).

(9)
∫ +∞

0
e−x2(1+y2) sin y dy, x ∈ (0,+∞).

(10)
∫ +∞

0

α dx
1 + α2x2 , α ∈ (0, 1).
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(11)
∫ 2

0

xt√
(x − 1)(x − 2)

dx, |t| < 1
2

.

(12)
∫ 1

0
(1 − x)u−1 dx, (i) u ∈ [a,+∞), a > 0; (ii) u ∈ (0,+∞).

9. Convexity of Convergence Domain. Suppose the integral
∫ +∞

0 xλ f (x) dx
converges for λ = a and λ = b with a < b. Prove that the integral
converges uniformly for λ ∈ [a, b].

10. Non-Uniform Convergence. Prove that the integral
∫ +∞

0 xe−xy dy
does not converge uniformly with respect to x on the interval
(0,+∞). Note that the variable of integration is y.

11. Leibniz Rule for Improper Integrals. Let
∫ ∞

a f (x, y) dy converge
for x in a neighborhood U(x0). Suppose the partial derivative
fx(x, y) exists and converges to fx(x0, y) uniformly in y on any
finite interval as x → x0. If

∫ ∞
a fx(x, y) dy converges uniformly on

U(x0), prove that:

d
dx

(∫ ∞

a
f (x, y) dy

) ∣∣∣∣
x=x0

=
∫ ∞

a
fx(x0, y) dy.

12. Continuity Analysis. Let F(α) =
∫ ∞

0
sin((1−α2)x)

x dx. Determine
the domain of continuity of F(α) and identifying any points of
discontinuity. Specifically, examine α = ±1.

13. Continuity without Uniform Convergence. Prove that the Fresnel-

type integral F(α) =
∫ ∞

0
sin(αx2)

x dx is continuous on (0,+∞), even
though the convergence is not uniform on this domain.

14. Differentiability Analysis. Consider the function F(x) =
∫ ∞

1
xe−yx

y dy.

(a) Prove that F(x) is continuous on [0,+∞).

(b) Prove that F(x) is differentiable on (0,+∞) and justify the
formula:

F′(x) =
∫ ∞

1

∂

∂x

(
xe−yx

y

)
dy.

15. Parameter in the Denominator. Let F(α) =
∫ ∞

0
sin x

x(π−x)2−α
dx.

Prove that F(α) is continuous for α ∈ (0, 2).

16. Limit Calculation. Let

F(y) =
∫ ∞

0
ye−x2y2

cos(x(1 − y)) dx.

Compute the limit lim
y→1−

F(y).

17. Standard Integral Evaluations. Use known results (Dirichlet,
Gaussian) to evaluate:

(a)
∫ ∞

−∞

(
sin x

x

)2
dx.
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(b)
∫ ∞

0

sin3 x
x

dx.

(c)
∫ ∞

0
x2e−αx2

dx for α > 0.

(d)
∫ ∞

−∞
e−(ax2+bx+c) dx for a > 0.

18. Evaluation via Differentiation. Use differentiation under the
integral sign to evaluate:

(a) I(a) =
∫ ∞

0
e−ax sin x

x
dx for a ≥ 0.

(b) I(α) =
∫ ∞

0

arctan(αx)
x(1 + x2)

dx for α ≥ 0.

(c) f (x) =
∫ ∞

1

1
y

xe−xy dy for x ≥ 0.

19. Evaluation via Integration. Use integration with respect to a
parameter to evaluate:

(a) I(α) =
∫ +∞

0

arctan(αx)
x(1 + x2)

dx for α > 0.

Remark.

Use the identity
arctan αx

x
=
∫ 1

0

dy
1 + y2x2 .

(b)
∫ +∞

0

cos βx
x2 + α2 dx.

Remark.

Use the identity
1

x2 + α2 = lim
ε→0+

∫ +∞

ε
e−t(x2+α2) dt.

20. Evaluation of Parameter Integrals. Compute:

I(α) =
∫ 1

0

ln(1 − α2x2)√
1 − x2

dx for |α| ≤ 1.

21. Fourier Cosine Transform. Compute the integral:

I(y) =
∫ +∞

0
e−x2

cos(2yαx) dx for − ∞ < y < +∞.
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The Beta and Gamma Functions

In the analysis of integrals and differential equations, one frequently
encounters solutions that cannot be expressed in terms of elemen-
tary functions. To address this, we introduce special functions, often
defined via improper integrals dependent on parameters. This chap-
ter focuses on two of the most significant special functions: the Beta
function (B-function) and the Gamma function (Γ-function). These
functions allow for the evaluation of a wide class of definite integrals
and serve as the continuous analogues of binomial coefficients and
factorials.

1.1 The Beta Function

The Beta function, also known as the Euler integral of the first kind,
is a function of two variables defined by a definite integral.

Definition 1.1. Beta Function.
For p > 0 and q > 0, the Beta function is defined by the integral:

B(p, q) =
∫ 1

0
xp−1(1 − x)q−1 dx.

定義
x

y

1

p=2, q=2

p=q= 1
2

p=2, q=5

Figure 1.1: The Beta integrand
xp−1(1 − x)q−1 for various (p, q)
values on [0, 1].

While defined on the unit interval, the Beta function admits several
equivalent integral representations that are often more suitable for
specific calculations.

Proposition 1.1. Integral Representations.
For p, q > 0, the following representations hold:
1. Trigonometric Form:

B(p, q) = 2
∫ π/2

0
sin2p−1 θ cos2q−1 θ dθ.
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2. Infinite Interval Form:

B(p, q) =
∫ ∞

0

yp−1

(1 + y)p+q dy =
∫ ∞

0

yq−1

(1 + y)p+q dy.

命題

Trigonometric Form.

Let x = sin2 θ. Then dx = 2 sin θ cos θ dθ. As x ranges from 0 to 1, θ

ranges from 0 to π/2. Substituting into the definition:

B(p, q) =
∫ π/2

0
(sin2 θ)p−1(1 − sin2 θ)q−1 · 2 sin θ cos θ dθ

= 2
∫ π/2

0
sin2p−2 θ cos2q−2 θ sin θ cos θ dθ

= 2
∫ π/2

0
sin2p−1 θ cos2q−1 θ dθ.

証明終

Infinite Interval Form.

Let x = y
1+y . Then 1 − x = 1

1+y and dx = 1
(1+y)2 dy. The limits 0 → 1

transform to 0 → ∞.

B(p, q) =
∫ ∞

0

(
y

1 + y

)p−1 ( 1
1 + y

)q−1 1
(1 + y)2 dy

=
∫ ∞

0

yp−1

(1 + y)p−1+q−1+2 dy

=
∫ ∞

0

yp−1

(1 + y)p+q dy.

The second equality follows from the symmetry property B(p, q) =

B(q, p), or by the substitution z = 1/y.
証明終

We now establish the fundamental algebraic and analytic properties
of the Beta function.

Proposition 1.2. Properties of the Beta Function.

1. Symmetry: B(p, q) = B(q, p).

2. Regularity: B(p, q) is continuous and possesses continuous partial
derivatives of all orders on its domain.

3. Recurrence Relations:

B(p, q + 1) =
q

p + q
B(p, q), B(p + 1, q) =

p
p + q

B(p, q).
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4. Integer Values: If m, n ∈ Z+, then

B(m, n) =
(m − 1)!(n − 1)!
(m + n − 1)!

.

命題

Symmetry.

Let u = 1 − x in the definition. Then du = −dx, and the limits
swap:

B(p, q) =
∫ 0

1
(1−u)p−1uq−1(−du) =

∫ 1

0
uq−1(1−u)p−1 du = B(q, p).

証明終

Recurrence.

We apply integration by parts to B(p, q + 1) =
∫ 1

0 xp−1(1 − x)q dx.
Let u = (1 − x)q and dv = xp−1dx. Then du = −q(1 − x)q−1dx and
v = xp

p .

B(p, q + 1) =
[

xp

p
(1 − x)q

]1

0
+

q
p

∫ 1

0
xp(1 − x)q−1 dx

= 0 +
q
p

B(p + 1, q).

Using the identity

B(p, q+ 1)+B(p+ 1, q) =
∫ 1

0
xp−1(1− x)q−1[(1− x)+ x] dx = B(p, q),

we solve the system:

B(p + 1, q) =
p
q

B(p, q + 1) =⇒ B(p, q + 1) +
p
q

B(p, q + 1) = B(p, q).

Thus B(p, q + 1)
(

1 + p
q

)
= B(p, q), which implies

B(p, q + 1) =
q

p + q
B(p, q).

証明終

1.2 The Gamma Function

The Gamma function, or Euler integral of the second kind, extends
the factorial function to real and complex arguments.

Definition 1.2. Gamma Function.
For x > 0, the Gamma function is defined by the improper integral:
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Γ(x) =
∫ ∞

0
tx−1e−t dt.

定義
An equivalent definition, derived from the infinite product expan-
sion, is the Euler-Gauss formula.

Theorem 1.1. Euler-Gauss Formula.
For x > 0:

Γ(x) = lim
n→∞

n!nx

x(x + 1) · · · (x + n)
.

定理

The Gamma function satisfies several critical analytic identities.

Proposition 1.3. Properties of the Gamma Function.

Relation to Beta Function:

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

, p, q > 0.

Recurrence Formula:

Γ(x + 1) = xΓ(x), x > 0.

Since Γ(1) =
∫ ∞

0 e−t dt = 1, this implies Γ(n + 1) = n! for n ∈ N.

Differentiability and Convexity: Γ(x) is infinitely differentiable on (0, ∞)

with
Γ(n)(x) =

∫ ∞

0
tx−1(ln t)ne−t dt.

The function Γ(x) is positive and log-convex, and ln Γ(x) is strictly
convex on (0, ∞).

Legendre Duplication Formula:

Γ(2x) =
22x−1
√

π
Γ(x)Γ

(
x +

1
2

)
.

Reflection Formula: For 0 < x < 1:

Γ(x)Γ(1 − x) =
π

sin πx
.

命題

Recurrence Formula.

We apply integration by parts to Γ(x + 1) =
∫ ∞

0 txe−t dt. Let u = tx

and dv = e−tdt. Then du = xtx−1dt and v = −e−t.

Γ(x + 1) =
[
−txe−t]∞

0 + x
∫ ∞

0
tx−1e−t dt.
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The boundary term vanishes at both limits for x > 0. Thus Γ(x +

1) = xΓ(x).
証明終

Convexity of ln Γ(x).

We must show that d2

dx2 ln Γ(x) > 0. Computing the derivatives:

(ln Γ(x))′ =
Γ′(x)
Γ(x)

, (ln Γ(x))′′ =
Γ(x)Γ′′(x)− (Γ′(x))2

Γ(x)2 .

We require Γ(x)Γ′′(x)− (Γ′(x))2 > 0. From the integral definitions:

Γ(x) =
∫ ∞

0
tx−1e−t dt, Γ′(x) =

∫ ∞

0
tx−1(ln t)e−t dt, Γ′′(x) =

∫ ∞

0
tx−1(ln t)2e−t dt.

Let f (t) = t(x−1)/2e−t/2 and g(t) = t(x−1)/2e−t/2 ln t. Then:

Γ(x) =
∫

f 2, Γ′′(x) =
∫

g2, Γ′(x) =
∫

f g.

By the Cauchy-Schwarz inequality, (
∫

f g)2 ≤ (
∫

f 2)(
∫

g2). Equal-
ity holds only if g(t) = c f (t), i.e., ln t = c, which is impossible on
(0, ∞). Thus the inequality is strict, and ln Γ(x) is strictly convex.

証明終

Remark (Analytic Continuation).

The domain of Γ(x) may be extended beyond x > 0 using the recur-
rence relation rewritten as:

Γ(x) =
Γ(x + 1)

x
.

For x ∈ (−1, 0), the right-hand side is well-defined. Iterating this
process allows Γ(x) to be defined for all x ∈ R \ {0,−1,−2, . . . }.
The points 0,−1,−2, . . . are simple poles.

x

y

1 2 3−1−2−3

1

Γ(x)

Figure 1.2: The analytically con-
tinued Gamma function with
poles at 0,−1,−2, . . .

1.3 Applications and Further Properties

We apply the theory of Beta and Gamma functions to evaluate com-
plex definite integrals and establish the remaining properties stated
in the previous chapter.

Example 1.1. Dirichlet Integral on a Tetrahedron. Let V be the re-
gion in the first octant bounded by the coordinate planes and the
plane x + y + z = 1. Evaluate

I =
∫∫∫

V
xa−1yb−1zc−1 dx dy dz, (a, b, c > 0).

範例
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Solution

We evaluate the integral iteratively. The region V is defined by 0 ≤
x ≤ 1, 0 ≤ y ≤ 1 − x, and 0 ≤ z ≤ 1 − x − y.

I =
∫ 1

0
xa−1 dx

∫ 1−x

0
yb−1 dy

∫ 1−x−y

0
zc−1 dz.

The innermost integral is 1
c (1 − x − y)c. Substituting this back:

I =
1
c

∫ 1

0
xa−1 dx

∫ 1−x

0
yb−1(1 − x − y)c dy.

Let y = (1 − x)t. Then dy = (1 − x)dt, and the limits for t are 0 to 1.∫ 1−x

0
yb−1(1 − x − y)c dy =

∫ 1

0
(1 − x)b−1tb−1(1 − x)c(1 − t)c(1 − x) dt

= (1 − x)b+c
∫ 1

0
tb−1(1 − t)c dt

= (1 − x)b+cB(b, c + 1).

Thus:

I =
1
c

B(b, c + 1)
∫ 1

0
xa−1(1 − x)b+c dx =

1
c

B(b, c + 1)B(a, b + c + 1).

Expressing B(p, q) in terms of Gamma functions:

I =
1
c

Γ(b)Γ(c + 1)
Γ(b + c + 1)

Γ(a)Γ(b + c + 1)
Γ(a + b + c + 1)

.

Using Γ(z + 1) = zΓ(z), we obtain:

I =
Γ(a)Γ(b)Γ(c)

Γ(a + b + c + 1)
.

■

Example 1.2. Generalised Spherical Integral. Determine the values
of α, β, γ for which the integral

I =
∫∫∫

D

dx dy dz
1 + xα + yβ + zγ

converges, and evaluate it. Here D = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0}.

範例

Solution

We require α, β, γ > 0. Let x = u2/α, y = v2/β, and z = w2/γ. The
integral transforms to:
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I =
8

αβγ

∫∫∫
Ω

u
2
α −1v

2
β −1w

2
γ −1

1 + u2 + v2 + w2 du dv dw,

where Ω is the first octant. Switching to spherical coordinates
(ρ, θ, ϕ):

I =
8

αβγ

∫ π/2

0
cos

2
α −1 θ sin

2
β −1

θ dθ
∫ π/2

0
sin2

(
1
α +

1
β

)
−1

ϕ cos
2
γ −1

ϕ dϕ
∫ ∞

0

ρ
2
(

1
α +

1
β +

1
γ

)
−1

1 + ρ2 dρ.

The angular integrals reduce to Beta functions:∫ π/2

0
cos

2
α −1 θ sin

2
β −1

θ dθ =
1
2

B
(

1
α

,
1
β

)
.

∫ π/2

0
sin2( 1

α +
1
β )−1

ϕ cos
2
γ −1

ϕ dϕ =
1
2

B
(

1
α
+

1
β

,
1
γ

)
.

The radial integral converges if and only if 1
α + 1

β + 1
γ < 1. Its value

is 1
2 B(Σ, 1 − Σ) where Σ = 1

α + 1
β + 1

γ . Combining these:

I =
1

αβγ
Γ
(

1
α

)
Γ
(

1
β

)
Γ
(

1
γ

)
Γ
(

1 −
(

1
α
+

1
β
+

1
γ

))
.

■

Example 1.3. Gaussian Integral with Parameter. Evaluate
I(t) =

∫ ∞
0 e−(x2+t2/x2) dx for t > 0.

範例

Solution

We solve this two ways.

Differentiation. Fix t0 > 0 and consider t in a compact neighbor-
hood of t0. Split the domain at x = 1.

On [1, ∞),
e−(x2+t2/x2) ≤ e−x2/2.

On (0, 1],
e−(x2+t2/x2) ≤ e−c/x2

with c = 1
2 t2

0, and

t
x2 e−(x2+t2/x2) ≤ 2t0

x2 e−c/x2

.

Both e−x2/2 and 1
x2 e−c/x2

are integrable, giving an L1 dominator
independent of t in that neighborhood. Dominated convergence
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then permits differentiation under the integral:

I′(t) =
∫ ∞

0
e−(x2+t2/x2)

(
− 2t

x2

)
dx.

Substitute x = t/y, so dx = −t/y2 dy.

I′(t) =
∫ 0

∞
e−(t2/y2+y2)

(
− 2t
(t/y)2

)(
− t

y2

)
dy = −2

∫ ∞

0
e−(y2+t2/y2) dy = −2I(t).

Thus I(t) = Ce−2t. Since I(0) =
√

π
2 , we have I(t) =

√
π

2 e−2t.

Substitution. Let y = t/x. Then

I(t) =
∫ ∞

0
e−(t2/y2+y2) t

y2 dy.

Summing the two expressions:

2I(t) =
∫ ∞

0
e−(x2+t2/x2)

(
1 +

t
x2

)
dx = e−2t

∫ ∞

0
e−(x−t/x)2

d
(

x − t
x

)
.

The integral becomes
∫ ∞
−∞ e−u2

du =
√

π, yielding the same re-
sult.

■

Example 1.4. Integral Representation of Riemann Zeta Function.
Prove that for s > 1, ζ(s) = ∑∞

n=1 n−s satisfies

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx.

範例

Proof

We expand the term (ex − 1)−1 as a geometric series e−x(1 −
e−x)−1 = ∑∞

n=1 e−nx for x > 0.

∫ ∞

0

xs−1

ex − 1
dx =

∫ ∞

0
xs−1

∞

∑
n=1

e−nx dx.

Since the series of functions fn(x) = xs−1e−nx is positive, we may
interchange summation and integration (by the Monotone Conver-
gence Theorem):

∞

∑
n=1

∫ ∞

0
xs−1e−nx dx.

Let u = nx, so dx = du/n. Then∫ ∞

0
xs−1e−nx dx =

1
ns

∫ ∞

0
us−1e−u du =

Γ(s)
ns .
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Summing over n yields Γ(s)ζ(s).
■

Example 1.5. A Logarithmic Integral. Evaluate∫ 1

0

ln x
1 − x

dx.

範例

Solution

Let x = e−t. Then dx = −e−tdt and the range [0, 1] maps to [∞, 0].∫ 1

0

ln x
1 − x

dx =
∫ 0

∞

−t
1 − e−t (−e−t) dt = −

∫ ∞

0

t
et − 1

dt.

Using the representation of ζ(s) from the previous example with
s = 2: ∫ ∞

0

t2−1

et − 1
dt = Γ(2)ζ(2) = 1! · π2

6
.

Thus the integral is −π2

6 .
■

Example 1.6. Volume of the Generalized Viviani Body. Let Ω be
the region bounded by the sphere x2 + y2 + z2 ≤ a2 and the cylin-
der x2 + y2 ≤ ay (where a > 0). Evaluate

I =
∫∫∫

Ω
(
√

a2 − x2 − y2)p dx dy dz, p ≥ 0.

範例

Solution

We employ cylindrical coordinates (r, θ, z). The cylinder equation
r2 ≤ ar sin θ implies r ≤ a sin θ. Since r ≥ 0, we require sin θ ≥ 0,
so θ ∈ [0, π]. The bounds are 0 ≤ θ ≤ π, 0 ≤ r ≤ a sin θ, and
|z| ≤

√
a2 − r2.

I =
∫ π

0
dθ
∫ a sin θ

0
r dr

∫ √
a2−r2

−
√

a2−r2
(a2 − r2)p/2 dz

=
∫ π

0
dθ
∫ a sin θ

0
2r(a2 − r2)

p+1
2 dr.

Let u = a2 − r2. Then du = −2rdr. When r = 0, u = a2; when r =

a sin θ, u = a2 cos2 θ.∫ a sin θ

0
2r(a2 − r2)

p+1
2 dr =

∫ a2

a2 cos2 θ
u

p+1
2 du =

2
p + 3

ap+3(1−| cos θ|p+3).

Integrating over θ ∈ [0, π]:

I =
2ap+3

p + 3

∫ π

0
(1 − | cos θ|p+3) dθ =

4ap+3

p + 3

(
π

2
−
∫ π/2

0
cosp+3 θ dθ

)
.



32 gudfit

The remaining integral is 1
2 B( p+4

2 , 1
2 ).

■

x

y

a
2

a

sphere

cylinder

Figure 1.3: Cross-section of Vi-
viani’s body at z = 0. The red
disk is the cylinder x2 + y2 ≤ ay
(centered at y = a/2), internally
tangent to the blue sphere at
the origin.

Characterization of the Gamma Function

We now state and prove the theorem that uniquely characterizes
the Gamma function based on the properties listed in the previous
chapter.

Theorem 1.2. Bohr-Mollerup Theorem.
If f : (0, ∞) → (0, ∞) satisfies:
1. f (1) = 1,

2. f (x + 1) = x f (x),

3. ln f (x) is convex,
then f (x) ≡ Γ(x).

定理

Proof

Let ϕ(x) = ln f (x). Then ϕ(x + 1) = ϕ(x) + ln x. Convexity implies
that for x ∈ (0, 1) and n ∈ N:

ϕ(n + 1)− ϕ(n) ≤ ϕ(n + 1 + x)− ϕ(n + 1)
x

≤ ϕ(n + 2)− ϕ(n + 1).

Since ϕ(n) = ln((n − 1)!), this reduces to:

ln n ≤ ϕ(n + 1 + x)− ln n!
x

≤ ln(n + 1).

Using the recurrence, ϕ(n + 1 + x) = ϕ(x) + ln(x(x + 1) · · · (x + n)).
Substituting this:

ln n ≤
ϕ(x) + ln ∏n

k=0(x + k)− ln n!
x

≤ ln(n + 1).

Rearranging for ϕ(x):

ln n!− ln
n

∏
k=0

(x+ k)+ x ln n ≤ ϕ(x) ≤ ln n!− ln
n

∏
k=0

(x+ k)+ x ln(n+ 1).

Exponentiating, we find that f (x) is squeezed between two se-
quences that both converge to the Euler-Gauss limit of Γ(x). Thus
f (x) = Γ(x).

■
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Fundamental Gamma Identities

The Bohr-Mollerup theorem provides a powerful method for proving
identities: one simply verifies the three conditions for a candidate
function.

Proposition 1.4. Legendre Duplication Formula.
For x > 0:

Γ(2x) =
22x−1
√

π
Γ(x)Γ

(
x +

1
2

)
.

命題

Proof of the Legendre Duplication Formula

Define

g(x) =
2x−1
√

π
Γ
( x

2

)
Γ
(

x + 1
2

)
.

We verify the Bohr-Mollerup conditions for g.

1. g(1) = 1√
π

Γ(1/2)Γ(1) = 1.

2. g(x + 1) = 2x
√

π
Γ( x+1

2 )Γ( x
2 + 1) = 2x

√
π

Γ( x+1
2 ) x

2 Γ( x
2 ) = xg(x).

3. Since ln Γ(y) is convex, ln g(x) = (x − 1) ln 2 − 1
2 ln π +

ln Γ(x/2) + ln Γ((x + 1)/2) is a sum of convex functions, hence
convex.

Thus g(x) = Γ(x). Replacing x with 2x and rearranging yields the
formula.

■

Proposition 1.5. Euler’s Reflection Formula.
For 0 < x < 1:

Γ(x)Γ(1 − x) =
π

sin πx
.

命題

Proof of the Reflection Formula

Using the relation between Beta and Gamma functions:

Γ(x)Γ(1 − x) = B(x, 1 − x) =
∫ 1

0
yx−1(1 − y)−x dy.

Substituting u = y
1−y (so y = u

1+u ), the integral becomes:∫ ∞

0

ux−1

1 + u
du.

Let u = tan2 θ, θ ∈ (0, π/2). Then du = 2 tan θ sec2 θ dθ and 1 + u =

sec2 θ, so∫ ∞

0

ux−1

1 + u
du = 2

∫ π/2

0
tan2x−1 θ dθ = 2

∫ π/2

0
sin2x−1 θ cos2(1−x)−1 θ dθ.
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The last integral is the classical Wallis sine integral, which evalu-
ates to π

2 sin πx ; hence the original integral equals π
sin πx , proving the

reflection formula.
■

Theorem 1.3. Stirling’s Approximation.
As x → +∞:

Γ(x + 1) ∼
√

2πx
( x

e

)x
.

定理

Proof

Substitute t = x(1 + u) in Γ(x + 1) =
∫ ∞

0 txe−t dt:

Γ(x + 1) = xx+1e−x
∫ ∞

−1
((1 + u)e−u)x du.

Let h(u) = u − ln(1 + u). Then (1 + u)e−u = e−h(u). Substitute u =

s
√

2/x. The integral becomes:√
2
x

∫ ∞

−∞
e−xh(s

√
2/x) ds.

For large x, xh(s
√

2/x) ≈ x 1
2 (s

√
2/x)2 = s2. The integral converges

to
√

π. Thus Γ(x + 1) ∼ xxe−x
√

2x
√

π.
■

1.4 Exercises

1. Evaluate via Gamma and Beta Functions. Compute the values of
the following integrals:

(a)
∫ 1

0

dx√
x ln 1

x

.

(b)
∫ +∞

0

√
x

(1 + x)2 dx.

2. Express in Terms of Special Functions. Represent the following
integrals using the Γ or B functions:

(a)
∫ π/2

0
tanα x dx for |α| < 1.

(b)
∫ 1

−1
(1 + x)a(1 − x)b dx for a, b > −1.

3. Integer Beta Identity. Let n be a positive integer and p > 0. Prove
that:

B(p, n) =
(n − 1)!

p(p + 1) · · · (p + n − 1)
.
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4. Convexity of Log-Gamma. Provide a detailed proof that ln Γ(x)
is a convex function on (0, ∞) by computing its second deriva-
tive and applying the Cauchy-Schwarz inequality to the integral
representation.

5. Proof of the Beta-Gamma Relation. Prove the identity

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

by following these steps:

(a) Show that

Γ(p) = 2
∫ +∞

0
u2p−1e−u2

du.

(b) Write the product Γ(p)Γ(q) as a double integral over the first
quadrant:

Γ(p)Γ(q) = 4
∫ ∞

0

∫ ∞

0
u2p−1v2q−1e−(u2+v2) du dv.

(c) Let D(R) = {(r, θ) | 0 ≤ r ≤ R, 0 ≤ θ ≤ π
2 } and G(A) =

[0, A]× [0, A]. Show that:∫∫
D(R)

f (u, v) du dv ≤
∫∫

G(R)
f (u, v) du dv ≤

∫∫
D(R

√
2)

f (u, v) du dv.

(d) Transform the integral over D(R) to polar coordinates and
show that its limit as R → ∞ equals Γ(p + q)B(p, q).



2
Further Exercises

1. Duhamel’s Principle. Let f (x, t) and fx(x, t) be continuous func-
tions. Define

u(x, t) =
1
2a

∫ t

0
dτ
∫ x+a(t−τ)

x−a(t−τ)
f (ξ, τ) dξ,

where a > 0 is the wave speed. Prove that u(x, t) is the solution to
the inhomogeneous wave equation:

∂2u
∂t2 = a2 ∂2u

∂x2 + f (x, t), with u(x, 0) = 0, ut(x, 0) = 0.

2. Bessel’s Equation. Let n be a positive integer. Consider the Bessel
function of the first kind:

Jn(x) =
1
π

∫ π

0
cos(nϕ − x sin ϕ) dϕ.

Show by direct differentiation that Jn(x) satisfies the differential
equation:

x2y′′ + xy′ + (x2 − n2)y = 0.

3. Abel’s Integral Equation. Let f (x) be continuously differentiable
on [0, 1] with f (0) = 0. Define the fractional integral:

φ(x) =
∫ x

0

f (t)√
x − t

dt, x ∈ (0, 1].

(a) Prove that φ is continuously differentiable on [0, 1] and justify
the formula:

φ′(x) =
∫ x

0

f ′(t)√
x − t

dt.

Remark.

The assumption f (0) = 0 removes the boundary term
f (x)√
x−t

∣∣
t=x when differentiating under the integral sign.
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(b) Prove the inversion formula:

f (x) =
1
π

∫ x

0

φ′(t)√
x − t

dt.

4. Localisation of the Dirichlet Integral. Let f (x) be monotonic on
[0, A] for some A > 0, of bounded variation on [0, A], and assume
f ∈ L1([A, ∞)) (for example, f (x) = O(1/x) as x → ∞). Prove
that:

lim
α→+∞

∫ α

0
f (x)

sin αx
x

dx =
π

2
f (0+).

5. Tauberian-Type Limit. Let F(t) = t
∫ +∞

0 e−tx f (x) dx, where f (x)
is bounded and integrable on every finite interval. If lim

x→+∞
f (x) =

L, prove that:
lim

t→0+
F(t) = L.

6. Autocorrelation and Smoothing. Let f ∈ L2(R) be a continuous
function.

(a) Prove that the autocorrelation g(t) =
∫ +∞
−∞ f (t + u) f (u) du

is continuous, bounded, and in fact uniformly continuous
(translations are continuous in L2 and Cauchy–Schwarz gives
the bounds).

(b) Show that for α > 0,√
α

π

∫ +∞

−∞
e−αt2

g(t) dt =
∫ +∞

−∞
| f̂ (ξ)|2e−ξ2/(4α) dξ,

and deduce that

lim
α→+∞

√
α

π

∫ +∞

−∞
e−αt2

g(t) dt =
∫ +∞

−∞
f 2(x) dx.

Remark.

This is the Plancherel/heat-kernel identity; the limit re-
moves the Gaussian factor in the Fourier side.

7. Continuity of Singular Parameter Integrals. Investigate the conti-
nuity of the following functions on the interval (0, 1):

(a) f (α) =
∫ +∞

0
e−t

| sin t|α dt (the integral converges only for 0 < α <

1, since near kπ the integrand behaves like |t − kπ|−α).

(b) g(α) =
∫ 1

0
f (t)√
|t−α|

dt, where f is bounded and integrable.

8. Volume of a Generalized Body. Find the volume of the solid
region defined by (x2 + y2)2 + z4 ≤ y.
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Remark.

The body is rotationally symmetric about the z-axis; in cylin-
drical coordinates x = r cos θ, y = r sin θ the constraint is
r4 + z4 ≤ r sin θ with θ ∈ [0, π].

9. Centroid of a Lamé Solid. Find the x-coordinate of the centroid of
the solid defined by:( x

a

) 1
n
+
(y

b

) 1
n
+
( z

c

) 1
n ≤ 1, x, y, z ≥ 0.

Express the result using Gamma functions.

10. Moment of Inertia. Compute the moment of inertia about the
x-axis for the area enclosed by the astroid x2/3 + y2/3 = R2/3.

11. Gaussian Concentration. Let f be continuous on [0, 1]. Prove:

lim
t→+∞

∫ 1

0
te−t2x2

f (x) dx =

√
π

2
f (0).

12. Abel Continuity for Integrals. Let
∫ +∞

0 f (x) dx be convergent.
Prove that:

lim
y→0+

∫ +∞

0
e−xy f (x) dx =

∫ +∞

0
f (x) dx.

13. Fresnel Generalisation. Evaluate the integral
∫ +∞

0 cos(xp) dx for
p > 1.

Remark.

Use the substitution u = xp and express the result in terms of
the Gamma function.

14. Raabe’s Integral. Evaluate
∫ 1

0 ln Γ(x) dx.

Remark.

Use the reflection formula Γ(x)Γ(1 − x) = π/ sin(πx) and sym-
metry.

15. Laplace Integrals. Evaluate the following integrals for a, b > 0 and
k ∈ Z+:

Ik =
∫ +∞

0

cos bx
(a2 + x2)k dx, Jk =

∫ +∞

0

x sin bx
(a2 + x2)k dx.

Remark.

Start with k = 1 where I1 = π
2a e−ab; when differentiating with

respect to a, boundary terms vanish because the e−ab factor (or
the algebraic decay of the integrand) kills the endpoints.
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16. Euler-Mascheroni Constant. Using the infinite product expansion
for the Gamma function, prove that:

γ = lim
n→∞

(
n

∑
k=1

1
k
− ln n

)
= −Γ′(1).

17. Euler’s Reflection Formula Proof.

(a) Using the roots of unity, prove the polynomial identity:

n−1

∑
k=0

xk =
n−1

∏
k=1

(
x − e2πik/n

)
.

(b) Deduce the trigonometric identity: ∏n−1
k=1 sin kπ

n = n
2n−1 .

(c) Prove the multiplication formula for the Gamma function:

n−1

∏
k=1

Γ
(

k
n

)
=

(2π)
n−1

2
√

n
.
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