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Preface 

A thorough knowledge of multivariable analysis is an essential prerequisite for 
graduate studies in mathematics. The subject is presented in this book in a man-
ner that would suit readers having a background of calculus in two and three 
variables, mathematical analysis in one variable, including compactness, and 
rudiments of matrices and determinants. The prerequisites with essential details 
are listed briefly in Chapter 1. 

In Chapter 2, after a brief discussion of the basic algebraic theory of func-
tions defined on subsets of Rn and having values in \m, the concepts of limit and 
continuity of these functions are defined. Also discussed is the invertibility of 
linear maps, which is a fundamental concern in the inverse and implicit function 
theorems at a subsequent stage. The chapter ends with a brief discussion of 
double sequences and series. Differentiation of functions from (subsets of) \n 
into Rm, their partial derivatives and equality of ‘mixed’ partial derivatives of 
second order are discussed in the next chapter. The approach to the inverse and 
implicit function theorems in Chapter 4 is via contraction mappings in Rn. Use 
of compactness of a closed ball has been avoided, as it does not lend itself to the 
situation when Rn is replaced by an infinite-dimensional space. In the final sec-
tion of the chapter, a second form of the implicit function theorem has been 
proved using the concept of connectedness, and also a two-dimensional version 
that is not a special case of the one in higher dimensions. The purpose of Chap-
ter 5, on extrema, is to discuss from a theoretical perspective the methods of 
optimisation (determining points of extremum), constrained as well as uncon-
strained, of functions of several real variables. The reader is presumed to be 
familiar with the (pre-analysis) calculus techniques of solving optimisation 
problems in several variables, including the method of Lagrange multipliers. 
Instances are given when the Lagrange method appears to ‘fail’. More impor-
tant, a sufficient condition for a constrained extremum is proved, which few 
other books seem to cover. The next two chapters are devoted to Riemann inte-
gration and the transformation (change of variables) formula in Rn. Fubini’s 
theorem for continuous functions is also included. The treatment in Chapters 6 
and 7 is more leisurely than elsewhere, and the details differ in some essential 
ways. Chapter 8 treats differential forms, chains and the general Stokes theorem 
in Rn without assuming the reader has a background in multilinear algebra. The 
formal introduction to the concepts involved is preceded by heuristic considera-
tions in terms of vector analysis, which the reader is presumed to have 
encountered in calculus. The final section discusses the connections of differen-
tial forms with vector analysis in greater detail than is customary. The book 
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closes with Chapter 9, in which solutions to most of the problems are presented, 
some in greater detail than others.  

The book contains very general and complete versions of a number of im-
portant theorems and constructions. In order to mitigate the difficulties faced by 
the reader in assimilating the sophisticated versions of these, we have considered 
it expedient to include appropriate motivation. Complete definitions, explana-
tions and proofs have been provided throughout. A large number of illustrative 
examples and problems for solution form an integral part of any book intended 
for self study or a course text. Accordingly, the book has a liberal sprinkling of 
both, with elaborate hints or solutions for most of the problems. 

The reader with previous experience of the subject who wishes to find 
something different in this book is invited to browse the following items:  

Problem 2-3.P14, Problem 2-3.P15, Examples 3-2.3, Problem 
3-3.P14, Remark 3-4.10, Problems 3-4.P22 and 3-4.P23, Prob-
lem 4-1.P10, Problem 4-1.P11, Remark 4-2.5, Examples 4-3.4, 
Theorem 4-4.1, Remark 4-4.3, Example 4-4.6, Problem 4-4.P3, 
Example 5-1.5(c), Theorem 5-2.9, Proposition 6-5.1, Problem 
6-5.P3, Proposition 7-1.1, Proposition 7-1.3, Example 7-
4.16(b), Examples 8-2.2(f) and (h), Problem 8-6.P7, parts of 
Section 8-7 and the problems therein. 

Chapter 8 was written by Harkrishan L. Vasudeva with help from Satish 
Shirali. 
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Preliminaries 

We shall find it convenient to use logical symbols such as ∀, ∃, ∋, ⇒ and ⇔. 
These are listed below with their meanings. A brief summary of set algebra, 
functions, elementary real analysis, matrices and determinants, which will be 
used throughout this book, is included in this chapter. Our purpose is descriptive 
and no attempt has been made to give proofs of the results stated. The reader is 
expected to be familiar with the material. 

The words ‘set’, ‘class’, ‘collection’ and ‘family’ are regarded as synony-
mous and no attempt has been made to define these terms.  

Throughout this book, the following commonly used symbols will be employed: 

∀ means ‘for all’ or ‘for every’ 
∃ means ‘there exists’ 
∋ means ‘such that’ 
⇒ means ‘implies that’ or simply ‘implies’ 
⇔ means ‘if and only if’. 

The concept of set plays an important role in every branch of modern mathemat-
ics. Although it is easy and natural to define a set as a collection of objects, it 
has been shown that this definition leads to a contradiction. The notion of set is 
therefore left undefined, and a set is described by simply listing its elements or 
by its properties. Thus {x1 ,x2 ,…,xn} is the set whose elements are x1 ,x2 ,…,xn ; 
and {x} is the set whose only element is x. If X is the set of all elements x such 
that some property P(x) is true, we shall write 

X = {x : P(x)}. 

The symbol ∅ denotes the empty set.  

We write x ∈ X if x is a member of the set X; otherwise x ∉ X. If Y is a subset 
of X, that is, if x ∈ Y implies x ∈ X, we write Y ⊆ X. If Y ⊆ X and X ⊆ Y, then X = 
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Y. If Y ⊆ X and Y ≠ X, then Y is proper subset of X. Observe that ∅ ⊆ X for 
every set X. 

We list below the standard notations for the most important sets of num-
bers: 

` the set of all natural numbers 

] the set of all integers 

_ the set of all rational numbers 

R the set of all real numbers 

^ the set of all complex numbers. 

Given two sets X and Y, we can form the following new sets from them: 

X∪Y = {x : x ∈ X or x ∈ Y} 

X∩Y = {x : x ∈ X and x ∈ Y}. 

X∪Y and X∩Y are the union and intersection respectively of X and Y. If {Xα} is 
a collection of sets, where α runs through some indexing set Λ, we write 

U
Λ∈α

αX  and I
Λ∈α

αX  

for the union and intersection, respectively, of Xα : 

U
Λ∈α

αX  = {x : x ∈ Xα for at least one α ∈ Λ} 

I
Λ∈α

αX  = {x : x ∈ Xα for every α ∈ Λ}. 

If Λ = N, the set of all natural numbers, the customary notations are 

U
∞

=1n
nX  and I

∞

=1n
nX . 

If no two members of {Xα} have any element in common, then {Xα} is said 
to be a pairwise disjoint collection of sets. 

If Y ⊆ X, the complement of Y in X is the set of elements that are in X but 
not in Y, that is 

X\Y = {x : x ∈ X, x ∉ Y}. 

The complement of Y is denoted by Y c whenever it is clear from the context 
with respect to which larger set the complement is taken. 
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If {Xα} is a collection of subsets of X, then the following De Morgan’s laws 
hold: 

( U
Λ∈α

αX )c = I
Λ∈α

α )( cX  and ( I
Λ∈α

αX )c = U
Λ∈α

α )( cX . 

The Cartesian product X1×X2×…×Xn of the sets X1 ,X2 ,…,Xn  is the set of 
all ordered n-tuples (x1 ,x2 ,…,xn ), where xi ∈ Xi for i = 1,2,…,n. 

The symbol 

f :X→Y 

means that f is a function (or mapping or map) from the set X into the set Y; that 
is, f assigns to each x ∈ X an element f(x) ∈ Y. The elements assigned to members 
of X by f are often called values of f. If A ⊆ X and B ⊆ Y, the image of A and 
inverse image of B are, respectively, 

f(A) = { f(x) : x ∈ A} 

f
_1(B) = {x : f(x) ∈ B}. 

Note that f
_1(B) may be empty even when B ≠ ∅. The assertion that C = f(A) is 

sometimes conveniently rephrased as ‘f  maps (the subset) A onto C’. 

The domain of f is X and the range is f(X ); the range space is Y. If f(X ) = Y, 
the function f is said to map X onto Y (or the function is said to be surjective). 
We write f

_1(y) instead of f
_1({y}) for every y ∈ Y. If f

_1(y) consists of at most 
one element for each y ∈ Y, f is said to be one-to-one (or injective). If f is one-to-
one, then f

_1 is a function with domain f(X ) and range X. A function which is 
both injective and surjective is said to be bijective. One also speaks of a bijec-
tion or one-to-one correspondence. In the case when f  is bijective, f

_1 is a 
function with domain Y  and range X, in which case, it is called the inverse of f . 
An inverse is unique if it exists and is referred to as the inverse of f . A map is 
said to be invertible if it has an inverse; thus being invertible is the same as be-
ing bijective. 

It is sometimes necessary to consider a function f  only on a subset S of its 
domain X. Technically, that makes it a different function and it is called the re-
striction of f  to S. Introducing a new symbol to denote a restriction can clutter 
the notation and we shall avoid it as far as possible. 

Let g:U→V and f :X→Y be maps, where X has a nonempty intersection with 
the range g(U ). Then the inverse image Z = g

_1(X∩g(U )) ⊆ U is nonempty and 
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the function f g:Z→Y such that ( f g)(z) = f(g(z)) is called the composition of f 
and g. For most theoretical purposes, it is sufficient to work with the case X ⊇ 
g(U ), because this ensures that X∩g(U ) = g(U ) and hence that Z = U. 

If {Xα : α ∈ Λ} is any family of subsets of X, then 

f( U
Λ∈α

αX ) = U
Λ∈α

α )(Xf  

and 

f( I
Λ∈α

αX ) ⊆ I
Λ∈α

α )(Xf . 

Also, if {Yα : α ∈ Λ} is a family of subsets of Y, then 

f
_1( U

Λ∈α
αY ) = U

Λ∈

−

α
α

1 )(Yf  

and 

f
_1( I

Λ∈α
αY ) = I

Λ∈

−

α
α

1 )(Yf . 

If Y1 and Y2 are subsets of Y, then 

f
_1(Y1\Y2) = f

_1(Y1)\  f
_1(Y2). 

Finally, if f :X→Y and g:Y→Z, the composite function g f :X→Z is defined by 

(g f )(x) = g( f(x)). 

1-2 The Real Number System 

In the present section, field axioms, linear ordering axioms and the least upper 
bound axiom of R are listed in detail. They fall naturally into three groups. 

A.  

For all real numbers x,y and z,  we have 
 (i) x + y = y + x; 
 (ii) (x + y) + z = x + (y + z);  
 (iii) there exists 0 ∈ R such that x + 0 = x;  
 (iv) there exists a w ∈ R such that x + w = 0;  
 (v) xy = yx;  
 (vi) (xy)z = x(yz);  
 (vii) there exists 1 ∈ R such that 1 ≠ 0 and x·1 = x;  
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 (viii) if x is different from 0;  there exists a w ∈ R such that xw = 1;  
 (ix) x(y + z) = xy + xz. 

The second group of properties possessed by the real numbers has to do 
with the fact that they are ordered. They can be phrased in terms of positivity of 
real numbers. When we do this, our second group of axioms takes the following 
form. 

B. 

The subset P of positive real numbers satisfies the following: 
 (i) P is closed with respect to addition and multiplication, that is, if x,y ∈ 

P,  then so are x + y and xy, 

 (ii) x ∈ P implies _x ∉ P, 

 (iii) x ∈ R implies x = 0 or x ∈ P or _x ∈ P. 

Any system satisfying the axioms of groups A and B is called an ordered field, 
for example, the ordered field of rational numbers. 

In an ordered field, we define the notion x < y to mean y _ x ∈ P. We write x 
≤ y to mean ‘x < y or x = y’. 

Absolute value is defined in any ordered field in the familiar manner: 

if  0
| |  

if 0.
x x

x
x x

≥⎧
= ⎨− <⎩

 

It can be shown on the basis of this definition that the ‘triangle inequality’ 

| |x y+  ≤ | | | |x y+  
or equivalently, 

| |x y−  ≤ | | | |x z z x− + −  
holds. 

From the two groups of axioms (A) and (B), it can be shown that R ⊇ Q ⊇ 
N. 

The third group contains only one axiom and it is this axiom that sets apart 
the real numbers from other ordered fields. Before stating this axiom, we need to 
define some terms. Let X be a nonempty subset of R. If there exists M such that 
x ≤ M for all x ∈ X, then X is said to be bounded above and M is said to be an 
upper bound of X. If there exists m such that x ≥ m for all x ∈ X, then X is said to 
be bounded below and m is said to be a lower bound of X. If X is bounded above 
as well as below, then it is said to be bounded. A number M' is called the least 
upper bound (or supremum) of X if it is an upper bound and M' ≤ M for each 
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upper bound M of X. The final axiom guarantees the existence of least upper 
bounds for nonempty subsets of R that are bounded above. 

C.  
Every nonempty subset of R that has an upper bound possesses a least up-

per bound. 

We shall denote the least upper bound of X by sup X or by sup {x : x ∈ X} or 
by sup

x X∈
x. 

The greatest lower bound or infimum can be defined similarly. It follows 
from C above that every nonempty subset of R that has a lower bound possesses 
a greatest lower bound. The greatest lower bound of X is denoted by inf X or by 
inf {x : x ∈ X} or by inf

x X∈
x. Note that inf

x X∈
x = _ sup

x X∈

_x. 

The following characterisation of supremum is used frequently. 

1-2.1. Proposition. Let X be a nonempty set of real numbers that is bounded 
above. Then M = sup X if and only if 

(i) x ≤ M for all x ∈ X, and 

(ii) given any ε > 0, there exists x ∈ X such that x > M _ ε . 

There is a similar characterisation of the infimum of a nonempty set of real 
numbers that is bounded below. 

Certain kinds of subsets of R have a special role. If a < b, both real num-
bers, then the subset {x ∈ R : a < x < b} is called an open interval and is denoted 
by (a,b). Subsets of the form {x ∈ R : x < b} and {x ∈ R : a < x } are also called 
open intervals and denoted respectively by (_∞,b) and (a,∞). The subsets {x ∈ R 
: a ≤ x ≤ b}, {x ∈ R : x ≤ b},{x ∈ R : a ≤ x} are closed intervals and are denoted 
by [a,b], (_∞,b], [a,∞), respectively. It is clear what [a,b) and (a,b] mean, and 
these intervals are neither open nor closed. 

1-3 Sequences of Real Numbers 

Functions that have the set N of natural numbers as domain play an important 
role in analysis. A function f :`→S, where S is any nonempty set, is called a 
sequence in S or a sequence of elements of S . 

A sequence of real numbers is a map x :N→R. Given such a map, we de-
note x(n) by xn , and this value is called the nth term of the sequence. The 
sequence itself is frequently denoted by {xn}n≥1 . It is important to distinguish 
between the sequence {xn}n≥1 and its range {xn : n ∈ N}, which is a subset of R. 
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A real number l is said to be a limit of the sequence {xn}n≥1  if for each ε > 0, 
there is a positive integer n0 such that for all n ≥ n0 , we have |xn

_ l | < ε . It is 
easy to verify that a sequence has at most one limit. When {xn}n≥1 does have a 
limit, we denote it by lim xn . In symbols, l = lim xn  if 

∀ ε > 0, ∃ n0 ∋ n ≥ n0 ⇒ |xn
_ l | < ε . 

A sequence that has a limit is said to converge (or to be convergent). 

If lim xn and lim yn both exist, then so do lim (xn + yn) and lim (xnyn); more-
over, lim (xn + yn) = lim xn + lim yn  and lim (xnyn) = (lim xn)(lim yn). If α is any 
real number, then lim (αxn) = α(lim xn). 

The sequence xn = (1+ 1
n )n has a limit denoted by e; this number is irrational 

and lies between 2 and 3.  
lim n1/n = 1. 

A sequence {xn}n≥1 of real numbers is said to be increasing if it satisfies the 
inequalities xn ≤ xn+1 ,  n = 1,2,…, and decreasing if it satisfies the inequalities xn 
≥ xn+1 ,  n = 1,2,…. We say that the sequence is monotone if it is either increas-
ing or it is decreasing. 

A sequence {xn}n≥1 of real numbers is said to be bounded if there exists a 
real number M > 0 such that |xn | ≤ M for all n ∈ N. The following simple crite-
rion for the convergence of a monotone sequence is very useful. 

1-3.1. Proposition. A monotone sequence of real numbers is convergent if and 
only if it is bounded. 

Let {sn}n≥1 be a sequence in any set and let n1 < n2 < … < nk < … be a 
strictly increasing sequence of natural numbers. Then {snk}k≥1 is called a subse-
quence of {sn}n≥1  

1-3.2. Bolzano–Weierstrass Theorem. A bounded sequence of real numbers 
has a convergent subsequence. 

The convergence criterion described in Proposition 1-3.1 is restricted to 
monotone sequences. It is important to have a condition implying the conver-
gence of a sequence of real numbers that is applicable to a larger class and 
preferably does not require knowledge of the value of the limit. The Cauchy 
criterion gives such a condition. 

A sequence {xn}n≥1 of real numbers is said to be a Cauchy sequence if, for 
every ε > 0, there exists an integer n0 such that |xn

_ xm | < ε  whenever n ≥ n0 and 
m ≥ n0 . In symbols, 

∀ ε > 0, ∃ n0 such that (n ≥ n0, m ≥ n0) ⇒ |xn
_ xm | < ε .  
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1-3.3. Cauchy Convergence Criterion: A sequence of real numbers converges 
if and only if it is a Cauchy sequence. 

When a sequence {sn}n≥1 is described in form sn = 
k
Σ
n

=1
ak , it is called a series 

and the number ak is called its kth term, rather than sk . The number sn is then 
called the nth partial sum of the series. The limit lim sn , if it exists, is called the 
sum of the series. The symbol 

k
Σ
∞

=1
ak  denotes the series as well as the sum, if any. 

The context determines which of the two is intended.  The series 
k
Σ
n

=1
k

_p is con-
vergent if and only if p > 1. 

1-4 Limits of Functions and Continuous Functions 

Mathematical analysis is primarily concerned with limit processes. We have 
already reviewed one of the basic limit processes, namely, convergence of a 
sequence of real numbers. In this section we shall recall the notion of the limit of 
a function, which is used in the study of continuity, differentiation and integra-
tion. The notion is parallel to that of the limit of a sequence. We shall also state 
the definition of continuity and its relation to limits. 

A point a ∈ R is said to be a limit point of a subset X ⊆ R if every open in-
terval (a _ ε,  a + ε) in R, where ε > 0, contains a point x ≠ a such that x ∈ X. 

Let f be a real-valued function defined on a subset X of R and a be a limit 

point of X. We say that f(x) tends to l as x tends to a if, for every ε > 0, there 
exists some δ > 0 such that 

| f(x) _ l | < ε ∀ x ∈ X satisfying 0 < |x _ a| < δ. 

The number l is said to be the limit of f(x) as x tends to a and we write 

lim
x a→

f(x) = l or f(x)→ l as x→a. 

Note that f(a) need not be defined for the above definition to make sense. More-
over, the value l of the limit is uniquely determined when it exists. 

If lim
x a→

f(x) and lim
x a→

g(x) both exist, then so do lim
x a→

( f(x) + g(x)) and 
lim
x a→

( f(x)g(x)); moreover, 

lim
x a→

( f(x) + g(x)) = lim
x a→

f(x) + lim
x a→

g(x) 
and 

lim
x a→

( f(x)g(x)) = ( lim
x a→

f(x))( lim
x a→

g(x)). 

If α is any real number, then lim
x a→

 (αf(x)) = α( lim
x a→

f(x)). 
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If f(x) ≤ h(x) ≤ g(x) whenever 0 < |x _ a| < δ and if lim
x a→

f(x) and lim
x a→

g(x) 
both exist and are equal, then lim

x a→
h(x) also exists and lim

x a→
h(x) = lim

x a→
f(x) 

= lim
x a→

g(x). 

The following important formulation of limit of a function is in terms of 
limits of sequences. 

1-4.1. Proposition. Let f :X→R and let a be a limit point of X. Then lim
x a→

f(x) = l 
if and only if, for every sequence {xn}n≥1 in X that converges to a and xn ≠ a for 
every n, the sequence {f (xn)}n≥1 converges to l. 

Let f be a real-valued function whose domain of definition is a set X of real 
numbers. We say that f is continuous at the point x ∈ X if, given ε > 0, there ex-
ists a δ > 0 such that for all y ∈ X with | y _ x| < δ, we have | f(y) _ f(x)| < ε . The 
function is said to be continuous on X if it is continuous at every point of X. If 
we merely say that a function is continuous, we mean that it is continuous on its 
domain. 

It may checked that f is continuous at a limit point a ∈ X if and only if f(a) is 
defined and lim

x a→
f(x) = f(a). The following criterion of continuity of f at a point a 

∈ X follows immediately from the preceding criterion and Proposition 1-4.1. 

1-4.2. Proposition. Let f be a real-valued function defined on a subset X of R 
and a ∈ X be a limit point of X. Then f is continuous at a if and only if, for every 
sequence {xn}n≥1 in X that converges to a and xn ≠ a for every n, lim f (xn) = 
f(lim xn) = f(a). 

This result shows that continuous functions are precisely those which send 
convergent sequences into convergent sequences; in other words, they ‘preserve’ 
convergence. 

The next result, which is known as the Bolzano intermediate value theorem, 
guarantees that a continuous function on an interval assumes (at least once) 
every value that lies between any two of its values. 

1-4.3. Intermediate Value Theorem: Let I be an interval and f : I→R be a con-
tinuous mapping on I. If a,b ∈ I and α ∈ R satisfy f(a) < α < f(b) or f(a) > α > 
f(b), then there exists a point c ∈ I between a and b such that f (c) = α. 

1-5 Compact Sets 

The notion of compactness, which is of enormous significance in analysis, is an 
abstraction of an important property possessed by certain subsets of real num-
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bers. The property in question asserts that every ‘open cover’ of a closed and 
bounded subset of R has a finite ‘subcover’. This simple property of closed and 
bounded subsets has far reaching implications in analysis; for example, a real-
valued continuous function defined on [0,1], say, is bounded and uniformly con-
tinuous. In what follows, we shall define the notion of compactness in R and list 
some of its characterisations. To begin with, we recall the definitions of open 
and closed subsets of R. 

A subset G of R is said to be open if for each x ∈ G, there is an open interval 
(x _ ε,  x + ε), ε > 0, which is contained in G. A subset of R is said to be closed if 
its complement is open. 

Let X be a subset of R. An open cover (covering) of X is a collection C = 
{Gα : α ∈ Λ} of open sets in R whose union contains X, that is, 

X ⊆ Gα
α
U . 

If C' is a subcollection of C such that the union of sets in C' also contains X, then 
C' is called a subcover (or subcovering) from C of X. If C' consists of finitely 
many sets, then we say that C' is a finite subcover (or finite subcovering). 

A subset X of R is said to be compact if every open cover of X contains a 
finite subcover. The following proposition characterises compact subsets of R. 

1-5.1. Heine–Borel Theorem: Let X be a set of real numbers. Then the follow-
ing statements are equivalent: 
(i) X is closed and bounded. 
(ii) X is compact. 

1-5.2. Proposition. Let f be a real-valued continuous function defined on the 
closed bounded interval I = [a,b]. Then f is bounded on I and assumes its maxi-
mum and minimum values on I, that is, there are points x1 and x2 in I such that 
f(x1) ≤ f(x) ≤ f(x2) for all x ∈ X. 

For our next proposition, we shall need the following definition. Let f be a 
real-valued continuous function defined on a set X. Then f is said to be uniformly 
continuous on X if, given ε > 0, there is a δ > 0 such that for all x,y ∈ X with 
|x _ y| < δ, we have | f(x) _ f(y)| < ε . 

1-5.3. Proposition. If a real-valued function f  is continuous on a closed and 
bounded interval I, then f  is uniformly continuous on I. 
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1-6 Derivatives and Riemann Integral 

Let S ⊆ R and x be a limit point of S. A function f :S→R is differentiable at x if 

0

( ) ( )lim
h

f x h f x
h→

+ −  

exists, in which case, the limit is called the derivative of f at x and is denoted by 
f '(x). It is often more convenient to write _

d
_d_
x
_ f(x) for f '(x). The derivative func-

tion f ' is the one that maps each point of differentiability into the derivative at 
that point and is called simply derivative of f . 

If f '(x) and g'(x) both exist, then so do ( f + g)'(x) and ( fg)' ; moreover, 
 ( f + g)'(x) = f '(x) + g'(x) and ( fg)'(x) = f '(x)g(x) + f(x)g'(x). 

If α is any real number, then (αf )'(x) = α( f '(x)). If x is a limit point of the set on 
which g ≠ 0 and also belongs to the set, then 

2
( ) ( ) ( ) ( )( )

( )
( ) f x g x f x g xf xg g x

′ ′−=′ . 

We assume that the reader is aware of trigonometric functions, the exponen-
tial and natural logarithm functions, and also of their limit and differentiation 
properties, such as 

d
dx sinx = cosx, d

dx tan
_1x = 2

1
1 x+

, d
dx lnx = 1

x  and so forth. 

The functions can be defined variously via limit processes and all their proper-
ties learned in calculus can be derived from there. The manner in which this is 
done will be of no consequence for the material in this book. 

1-6.1. Proposition. Chain Rule: Suppose f :S→R is differentiable at x ∈ S and g 
maps a set containing f(S ) into R. If g is differentiable at f(x) ∈ f(S), then the 
composition g f is differentiable at x and  

(g f )'(x) = g'( f(x)) ·  f '(x). 

Let I denote an interval. A function f : I→R is said to have a local maximum 
at c ∈ I if there exists δ > 0 such that x ∈ I, |x –  c| < δ ⇒ f(x) ≤ f(c). Similarly for 
a local minimum. 

A function f : I→R is said to be increasing if, for all x1 ,x2 ∈ I , 

x1 < x2 ⇒ f(x1) ≤ f(x2) 

1-6 Derivatives and Riemann Integral 
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and strictly increasing if 
x1 < x2 ⇒ f(x1) < f(x2). 

Correspondingly for decreasing and strictly decreasing. A monotone function on 
an interval is one which is either increasing or decreasing. 

1-6.2. Proposition. If f : [a,b]→R satisfies f '(x) ≥ 0 for every x ∈ [a,b], then f  is 
increasing. Similarly, if f : [a,b]→R satisfies f '(x) ≤ 0 for every x ∈ [a,b], then f  
is decreasing. 

1-6.3. Proposition. If f : [a,b]→R has a local maximum or a local minimum at c 
∈ (a,b) then f '(c) = 0. 

1-6.4. Proposition. Suppose f : [a,b]→R satisfies f '(c) = 0, where c ∈ (a,b). If 
f"(c) < 0 then f has a local maximum at c and if f"(c) > 0 then f has a local min-
imum at c. 

1-6.5. Mean Value Theorem: Suppose the continuous function f : [a,b]→R is 
differentiable on (a,b). Then there exists some ξ ∈ (a,b) such that 

f(b) _ f(a) = f '(ξ)(b _ a). 

1-6.6. Taylor’s Theorem: Suppose n ∈ N and f : [a,b]→R is a function such that 
f (n _ 1) is continuous on [a,b] and f (n) exists on (a,b). Then there exists some c ∈ 
(a,b) such that 

f(b) = 
( )1

0

( ) ( )!

kn
k

k

f a b ak
−

=
−∑ +

( ) ( ) ( )!

n
nf c b an − . 

1-6.7. Proposition. Suppose f : [a,b]→R has derivative zero at every point of its 
domain. Then the function is a constant. 

If the equation f(x) = y, where y is given and x is to be found, has a solution 
x = r, then the sequence {xp} generated by the scheme 

xp+1 = xp +  f '(xp)–1( y – f(xp)) 

converges to the solution r under appropriate but broad hypotheses. One such set 
of hypotheses is that on some interval containing r but not as an endpoint, | f '| 
has a positive lower bound m, the second derivative | f"| has an upper bound M 
and |x1 – r| < 2m

M . This way of approximating the solution is called Newton’s 
method. Although we shall not make direct use of this, we shall be drawing a 
parallel between it and something else that we shall encounter. 

By a partition P of an interval [a,b] we mean a finite sequence of points xk 
in the interval such that 
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P : a = x0 < x1 < … < xn = b. 

For a bounded function f : [a,b]→R and any partition, the nonempty set { f(x) : 
xk_1 ≤ x ≤ xk} is bounded above as well as below for each k. Consequently, it has 
supremum Mk and an infimum mk . The upper and lower sums of f  over the par-
tition P are, respectively, 

k
Σ
n

=1
Mk (xk – xk_1) and 

k
Σ
n

=1
mk (xk – xk_1). 

Their respective infimum and supremum are called the upper and lower inte-
grals respectively of f  and are denoted by 

_

∫a
b f  and _∫a

b f . 
Thus  

∫
_

a
b f  = inf{

 k
Σ
n

=1
Mk (xk – xk_1) : all partitions P} 

and 

_∫a
b f  = sup{

 k
Σ
n

=1
mk (xk – xk_1) : all partitions P}. 

It turns out that 
_

∫a
b f  ≥ _∫a

b f  for every bounded function f . If equality holds, then 
the function f  is said to be Riemann integrable, or simply integrable, and the 
integral of f  from a to b is the common value of the upper and lower integrals, 
denoted by 

∫a
b f . 

Sometimes it is convenient to speak of f  being integrable on [a,b]. 

The integral exists, for instance, if f is continuous or monotone. 

If the restriction of f  to [α,β] ⊆ [a,b] is integrable, we say that f  is inte-
grable on [α,β]. 

If f : [a,b]→R and g: [a,b]→R are both integrable on [a,b], then so are f + g, 
fg and αf  (α a real number); moreover, 

∫a
b ( f + g) = ∫a

b f + ∫a
b g  and ∫a

b (αf ) = α∫a
b f . 

Suppose f : [a,b]→R is bounded and a < c < b. If f  is integrable on [a,b], 
then it is integrable on [a,c] as well as [c,b], and the equality 

∫a
b f  = ∫a

c f + ∫c
b f  

holds. Conversely, if f  is integrable on [a,c] as well as [c,b], then it is integrable 
on [a,b] and the foregoing equality holds. The equality holds without the pro-
viso that a < c < b if we agree that 

∫a
b f  = –∫b

a f . 
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If f : [a,b]→R and g: [a,b]→R are both integrable and f(x) ≤ g(x) for each x 

∈ [a,b], then ∫a
b f  ≤ ∫a

b g . 

If f is integrable on [a,b], and [α,β] ⊆ [a,b],  then f is integrable on [α,β]. If 
also f  ≥ 0 on [a,b] then ∫α

β f  ≤ ∫a
b f . 

1-6.8. Proposition. Let f : [a,b]→R  be integrable . Then | f | : [a,b]→R  is  also 
integrable and 

|∫a
b f |  ≤ ∫a

b | f | .  

The following is known as the fundamental theorem of integral calculus. 

1-6.9. Proposition. Let f : [a,b]→R be integrable and let 

F(x) = ∫a
x f , a < x < b. 

Then F is continuous on [a,b]. Moreover, if f  is continuous at a point c ∈ [a,b], 
then F is differentiable at c and 

F'(c) = f(c). 

There are two versions of the substitution rule or change of variables for-
mula, and it is the first version that we shall generalise to higher dimensions in 
Chapter 7 as the transformation formula for integrals. 

1-6.10. Proposition. Version 1: Suppose ϕ:[α,β]→[a,b] is a bijection having a 
continuous derivative that vanishes nowhere. If ( f ϕ)|ϕ'| is integrable on [α,β] 
and f  is integrable on the image ϕ([α,β]) = [a,b], then 

∫a
b f  = ∫α

β ( f ϕ)|ϕ'|. 

The reason for the absolute value on the right side is that in case ϕ' < 0 eve-
rywhere, we have ϕ(α) = b and ϕ(β) = a. It is possible to deduce the integrability 
of ( f ϕ)|ϕ'| from the remaining hypotheses. See Pugh [21, pp. 170–171]. 

1-6.10. Proposition. Version 2: Let F :[a,b]→R and ϕ:[α,β]→[a,b] both be 
differentiable. If F' and (F' ϕ)ϕ' are both Riemann integrable, then 

∫ϕ

ϕ

(

(

α

β

)

)
F' = ∫α

β
(F' ϕ)ϕ'. 

It is not presumed in either version of the above proposition that ϕ(α) < 
ϕ(β). 

The next result is the formula of integration by parts. 

1-6.11. Proposition. Let f and g be differentiable functions on [a,b] having in-
tegrable derivatives f ' and g'. Then the products fg' and f 'g are integrable, and 
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∫a
b fg' = f(b)g(b) _ f(a)g(a) _ ∫a

b f 'g. 

1-6.12. Proposition. Suppose {fn}n≥1 is a sequence of Riemann integrable func-
tions on [a,b] with uniform limit f . Then f  is Riemann integrable on [a,b] and 

lim∫a
b fn  = ∫a

b f . 

If a function f : [a,∞]→R is integrable on [a,b] whenever a < b , the symbol 

∫a
∞ f  means lim

b→∞ ∫a
b f , even if the limit does not exist. If it does not, we say that 

∫a
∞ f  is divergent; otherwise convergent. In either case, ∫a

∞ f  is called the improper 

integral of f over [a,∞). If it is convergent, we speak of f  being integrable over 

[a,∞). 

1-6.13. Integral Test:.Suppose f : [1,∞)→R is nonnegative-valued and decreas-
ing. Then the series 

n
Σ
∞

=1
f(k) converges if and only if the improper integral ∫1

∞ f  
converges. 

1-7 Matrices 

We shall confine our attention to matrices whose entries are from the field R of 
real numbers, as these are the only matrices that will be used in subsequent dis-
cussions. 

An array of mn real numbers with m rows and n columns, 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

M M MO

L

 

is called a real m×n matrix. When m = n, the array is called a square matrix of 
order n or simply a matrix of order n×n. Its diagonal containing the entries 

11 22, , , nna a aK  is called the leading or main diagonal. 

In writing, a matrix is often denoted by a single letter A or X, or by any oth-
er symbol one cares to choose. For example, a common notation for the matrix 
of the definition is A = [aij], where aij denotes the entry in the ith row and jth 
column. The square bracket is a conventional symbol and is indicative of the 
fact that we are not considering a determinant. A matrix with a single row 

A = 1 2 na a a⎡ ⎤⎣ ⎦L , 
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where a1 ,a2 ,…,an ∈ R, is called a row matrix, and a matrix with a single col-
umn 

B = 

1

2

m

b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
, 

where b1 ,b2 ,…,bm ∈ R, is called a column matrix. Row vectors can be con-
verted into column vectors and vice versa by an operation that is called 
transposition. It is practical to define transposition for any matrix. The transpose 
of any m×n matrix A = [ai j] is the n×m matrix that has the first row of A as its 
first column, the second row of A as its second column, and so on. Thus the 
transpose of the matrix A = [ai j] is 

AT = 

11 21 1

12 22 2

1 2

m

m

n n mn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

M M MO

L

. 

 
The transpose of the row matrix A = 1 2 na a a⎡ ⎤⎣ ⎦L  is the column matrix 

AT = 

1

2

n

a
a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 

and the transpose of the column matrix 

B = 

1

2

m

b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 

is the row matrix BT = 1 2 mb b b⎡ ⎤⎣ ⎦L . 

The matrices A = [ai j] and B = [bi j] are equal if the number of rows (respec-
tively, columns) in A equals the number of rows (respectively, columns) in B 
and aij = bij for 1 ≤ i ≤ m, 1 ≤ j ≤ n. 

Two matrices A and B are said to be conformable for addition if each has 
the same number of rows and the same number of columns as the other. The 
sum of two matrices A = [ai j] and B = [bi j] is defined only when they are con-
formable for addition. Their sum is then defined as the matrix having ai j + bi j as 
the entry in the ith row and jth column. Thus, 
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A + B = [aij + bi j]. 

The matrix _A, where A = [aij], is that matrix whose entries are those of A 
multiplied by _1, that is, 

_A = [_aij]. 

The matrix having every entry 0 is called a null matrix and is written O. 
When α is a real number and A = [aij] is a matrix, αA is defined to be the 

matrix each of whose entries is α times the corresponding entry of A, that is, 

αA = [αaij]. 
By virtue of the definitions above, we are justified in writing 

2A instead of A + A 
3A instead of 5A _ 2A. 

Further, since the addition, subtraction and scalar multiplication of matrices is 
based on the addition, subtraction and scalar multiplication of corresponding 
entries, the laws that govern these operations also govern the analogous opera-
tions on matrices. More precisely, we have the following: 

Let A,B,C be matrices that are conformable for addition and α,β be real 
numbers. Then 
 (i) A + (B + C) = (A + B) + C (associative law) 
 (ii) A + B = B + A (commutative law) 
 (iii) A + O = A 
 (iv) A + (_A) = O 
 (v) α(A + B) = αA + αB 
 (vi) α(βA) = (αβ)A. 

Two matrices A and B (in that order) are conformable for multiplication if the 
number of columns in A is equal to the number of rows in B. The product AB is 
then defined to be the matrix whose entry in the ith row and jth column is 

k
Σ
n

=1
aik bkj . 

Thus AB = [
k
Σ
n

=1
aik bkj]. A numerical example will perhaps be helpful. Take 

A = 
1 1
0 2

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 and B = 
3 4 5
6 0 8
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

The number of columns of A is equal to the number of rows of B. The entry in 
the first row and second column of AB equals 

k
Σ
2

=1
a1 k bk 2 = (1)(4) + (_1)(0) = 4. 

The other entries of the product may be similarly computed. Upon doing so, we 
obtain 
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AB = 
3 4 3

12 0 16
− −⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

The reader may note that A and B may be conformable for the product AB but 
not for the product BA, in which case the latter product is undefined. 

In general, AB ≠ BA (even when both AB and BA are defined). 
The other properties of matrix multiplication are similar to those for num-

bers, that is, 
 (i) (αA)B = α(AB) = A(αB) when α is real; 
 (ii) A(BC) = (AB)C (associative law) 
 (iii) (A + B)C = AC + BC (right distributive law) 
 (iv) C(A + B) = CA + CB (left distributive law), 
provided the matrices A,B and C are such that the expressions on the left are 
defined. 

The square matrix of order n that has 1 in its leading diagonal places and 0 
elsewhere is called the identity matrix of order n. It is denoted by I. Let A be a 
square matrix of order n; then AI = IA = A. Also, I = I 2 = I 3 = ….  

For real numbers, xy = 0 implies that either x or y (or both, of course) must 
be zero. This law does not govern matrix products; that is, AB = O does not nec-
essarily imply that A = O or B = O. Indeed, for the matrices 

A = 
0 0
a b⎡ ⎤
⎢ ⎥
⎣ ⎦

 and B = 
2
2

b b
a a

⎡ ⎤
⎢ ⎥− −⎣ ⎦

, 

the product AB is O. Again, AB may be O but not BA. For example, if 

A = 
0 0
a b⎡ ⎤
⎢ ⎥
⎣ ⎦

 and B = 
0
0

b
a

⎡ ⎤
⎢ ⎥−⎣ ⎦

, 

then 

AB = 
0 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and BA = 
2

2

ab b

a ab

⎡ ⎤
⎢ ⎥
− −⎢ ⎥⎣ ⎦

. 

1-8 Determinants 

Let j1, j2,…, jn be an ordering of the positive integers 1,2,…,n. An inversion 
occurs in this ordering whenever a greater integer precedes a smaller one. The 
number of inversions occurring in j1, j2,…, jn is the sum 

k = 
s

n
Σ
=

_1

1
ks , 
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where ks is the number of integers greater than s that precede s in the given or-
dering j1, j2,…, jn . 

Let A = [ai j] be an n×n square matrix of real numbers. The determinant of A 
is the number 

| A | = 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a
a a a

a a a

L

L

M M O M

L

 = 
1 21 2( 1)

n

k
j j nja a a−∑ L , 

where in each term, the second (column) subscripts j1, j2,…, jn  are some order-
ing of 1,2,…,n and the sum is taken over all possible j1, j2,…, jn . For each term, 
the exponent k in (_1)k is the number of inversions occurring in j1, j2,…, jn . Be-
sides the notation | A | for the determinant of A = [ai j], we also write 

D = det A = 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a
a a a

a a a

L

L

M M O M

L

. 

It can be shown that 

D = 1 1 2 2j j j j jn jna C a C a C+ + +L , 1, 2, ,j n= K …………(3) 
and 

D = 1 1 2 2k k k k nk nka C a C a C+ + +L , 1, 2, ,k n= K ,………(4) 
where 

( 1) detj k
jk j kC M+= − , 

and Mj k is a matrix of order n _ 1 obtained by deleting the jth row and kth col-
umn of A. 

The following expansion of the third order determinant is instructive: 

D = 1 1 1 2 1 3
1 3 0

6 4 2 4 2 6
2 6 4 ( 1) 1 ( 1) 3 ( 1) 0

0 2 1 2 1 0
1 0 2

+ + += − ⋅ + − ⋅ + − ⋅
− −

−
 

= 12 3 8 0 6 12− ⋅ + ⋅ = − . 

This expansion has been implemented using the first row. The expansion using 
the third column gives 

D = 1 3 2 3 3 32 6 1 3 1 3
( 1) 0 ( 1) 4 ( 1) 2 12.

1 0 1 0 2 6
+ + +− ⋅ + − ⋅ + − ⋅ = −

− −
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We list below some properties of determinants: 

 (i) Interchange of two rows or columns multiplies the value of the determi-
nant by _1. 

 (ii) Addition of a multiple of one row or column to another does not alter the 
value of the determinant. 

 (iii) Multiplying one row or column by k multiplies the value of the determi-
nant by k. 

 (iv) Transposition leaves the value of the determinant unaltered. 

 (v) A zero row or zero column renders the value of the determinant zero. 

 (vi) Proportional rows or columns (i.e., ones which are multiples of each oth-
er) render the value of the determinant zero; in particular, if two rows or 
columns of a (square) matrix are identical, then the determinant of the 
matrix is zero. 

 (vii) If A and B are square matrices of order n, then 
det  (AB) = (det A)(det B). 

We next discuss elementary row and column operations for matrices: 

 (i) Interchanging two rows or two columns; 

 (ii) Multiplying a row or column by a nonzero real number; 

 (iii) Adding a multiple of a row or column to another; 

 (iv) Adding a row or column to another (special case of (iii)). 

A square matrix of order n is called an elementary matrix if it can be ob-
tained from the identity matrix of order n by a single elementary row or column 
operation of type (i), (ii) or (iii). Elementary operations can be represented by 
elementary matrices in the following manner. Let E be the elementary matrix 
obtained by performing an elementary row (respectively, column) operation on 
I. If the same elementary row (respectively, column) operation is performed on a 
square matrix A of order n, then the resulting matrix is the same as the product 
EA (respectively, AE).  

For instance, suppose A = [ai j], i,j = 1,2,3, and 

E12 = 
0 1 0
1 0 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

is the elementary matrix obtained by interchanging the first and second rows in 
I. Then 
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E12A = 
0 1 0
1 0 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
21 22 23

11 12 13

31 32 33

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Thus the resulting matrix is obtained from A by interchanging the first and 
second rows. 

We record the following observation here: If in the elementary row (or col-
umn) operation of type (iii) above, the multiplying factor is 0, then the resulting 
elementary matrix is the identity matrix; otherwise it is a product of two elemen-
tary matrices of type (ii) with an elementary matrix of type (iv), the latter 
appearing in the middle. An illustration is shown when 5 times the third row is 
added to the first row: 

1
5

1 0 5 1 0 0 1 0 1 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 0 0 5

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

A square matrix is said to be invertible or nonsingular if there exists a 
square matrix B of the same order such that AB = BA = I. 

Such a matrix B, which can be proved to be unique (if it exists), is called the 
inverse of A and is denoted by A

_1. The inverse of A can be obtained from what 
is called the adjoint of A, written as adj(A) whose (i, j)th entry is the cofactor of 
aj i , that is, ( 1) det( )j i

j iM+− , where Mj i is the submatrix of order n _ 1 obtained 
from A by deleting the jth row and the ith column. The relation between the in-
verse and the adjoint is that 

A
_1 = 1 adj( )det( ) AA . 

The following statements for a square matrix A of order n are equivalent: 
(a) A is invertible; 
(b) There exists a unique square matrix B of order n such that AB = BA 

= I; 
(c) A is a product of elementary matrices; 
(d) det(A) ≠ 0. 

See Artin [2, p. 16], Gopalkrishnan [12, p. 245], Singh [24, p. 40] or Hoffman 
and Kunze [14, p. 255]. 

We shall need the following simple consequence: In view of the observation 
recorded above, every invertible matrix is a product of elementary matrices of 
type (i), (ii) or (iv). 
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2-1 Background 

Solving equations of various sorts is one of the main concerns of mathematics. 
Equations in which there is more than one unknown or ‘variable’ naturally in-
volve functions of more than one variable. The phrase ‘several variables’ is to be 
understood in the sense ‘more than one variable but including the possibility of 
one variable as a special case’. 

The kind of equations that are of concern here are limited (e.g., differential 
and difference equations are excluded). Some equations may have no solution: 

x = x + 1 (no solution, obviously) 
(x + 1)2 – x2 = 2(x + 6) + 18 (no solution, almost as obviously). 

Some equations may have many solutions, such as sin x = 0. For others, the solu-
tion required may be a function: 

x2
 + y2 = 1, find x in terms of y. 

A system of equations (sometimes called simultaneous equations) may ask for 
some variables to be expressed in terms of the remaining variables: 

2x + 3y + 7z – 8w = 3 
4x + 6y + 8z – 7w = 4, 

where x and y are to be obtained in terms of z and w (can’t be done!). For linear 
systems the subject of linear algebra provides complete answers in terms of ma-
trices and determinants. In what follows, we shall be concerned more with 
nonlinear systems, in which the left hand sides have continuous partial deriva-
tives. 

The answers provided for questions about nonlinear equations are not as sa-
tisfactory as for linear systems in linear algebra. No general solution methods 
are available for nonlinear systems; the sufficient conditions for existence of a 
solution are not necessary conditions, and even the existence has a limitation 
that is rather too technical to describe at this stage. Because of the limitation, the 
solutions obtained are local solutions in mathematical parlance. 

A system of two equations such as 
f1 (x1 ,x2 ,y1 ,y2 ,y3) = 0 
f2 (x1 ,x2 ,y1 ,y2 ,y3) = 0 

2 
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can be regarded as a single equation for the single function f that maps the point 
(x1 ,x2 ,y1 ,y2 ,y3) of R×R×R×R×R = R5 into the point 

(f1 (x1 ,x2 ,y1 ,y2 ,y3),  f2 (x1 ,x2 ,y1 ,y2 ,y3)) of R×R = R2. 

The equation for f can be written as simply f(u) = 0, where u is the element 
(x1 ,x2 ,y1 ,y2 ,y3) in R5 and 0 on the right hand side denotes the element (0,0) of 
R2. If the intention is to solve for (x1 ,x2 ) in terms of (y1 ,y2 ,y3), then we natural-
ly think of R5 as R2×R3 and write the equation as 

f(x,y) = 0 ∈ R2, 

where x = (x1 ,x2 ) ∈ R2 and y = (y1 ,y2 ,y3) ∈ R3. The domain of f is then unders-
tood to be a subset of R2×R3. In order to carry over ideas of continuity and 
differentiability to such functions, we need to know more about Rn when n may 
be greater than 1. We discuss the relevant aspects of Rn in the next section. 

2-2 Euclidean Spaces 

We begin with a formal definition of what we mean by Rn and other relevant 
terminology. 

2-2.1. Definition. The Cartesian product R×R×…×R (n factors) consisting of 
all ordered n-tuples x = (x1 , x2 , … , xn), where xk ∈ R for 1 ≤ k ≤ n, is denoted by 
Rn. By the kth coordinate (or component) of x, we mean the number xk . The 
sum of x, y ∈ Rn is the ordered n-tuple x + y for which the kth component is giv-
en by (x + y)k = xk + yk for 1 ≤ k ≤ n. For α ∈ R, the product αx is the ordered n-
tuple for which the kth component is (αx)k = α·xk for 1 ≤ k ≤ n. That is to say, 

(x1 , x2 , … , xn) + (y1 , y2 , … , yn) = (x1 + y1 , x2 + y2 , … , xn +  yn) 

and α(x1 , x2 , … , xn) = (αx1 ,  αx2 , … ,  αxn). 

The set Rn with sum and product as defined above will be called Euclidean n-
space. 

We shall generally speak of ‘components’ when n > 3 and ‘coordinates’ 
when n ≤ 3, except in a context where established convention dictates otherwise. 

Elements of Euclidean n-space are often referred to as vectors or as points, 
or sometimes also as n-vectors if necessary. In the context of Euclidean spaces, 
real numbers are often called scalars. The reader who has encountered ‘plane 
vectors’ in an elementary context, will recognise that when (x1 , x2 ) is regarded 
as providing the coordinates of the ‘terminal point’ of a plane vector, then addi-
tion as described above corresponds to the parallelogram law. Similarly in three 
dimensions. Also, αx is the vector obtained from x by ‘scaling’ it by a factor α. 
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The vector in Rn with xk = 0 for every k is called the zero vector of Rn and 
is often denoted simply as 0, because usually there is no danger of confusion. It 
is trivial to see that the zero vector satisfies 0 + x = x for any vector x ∈ Rn. Also, 
given a vector x ∈ Rn, the associated vector _x such that (_x)k = _xk for 1 ≤ k ≤ n 
has the property that (_x) + x = 0. In fact, the same laws of addition hold as for 
real numbers. It follows that cancellation and other properties of addition in R 
continue to be valid in Rn and that terms in a finite sum of vectors can be rear-
ranged at will. 

When the symbol xp is employed for the pth term of a sequence {xp} (either 
finite or infinite) in Rn, it does not represent the pth component of any single 
vector called x. In such a situation, we shall denote the kth component (1 ≤ k ≤ 
n) of the vector xp by the symbol x( p)

k . In the next paragraph we deal with a spe-
cial finite sequence {ej}1≤j≤n of vectors, using subscripts to denote the order of 
the term in the sequence and not to indicate a component. 

The vectors 

e1 = (1,0,0,… ,0) , e2 = (0,1,… ,0) , …  , en = (0,0,0,… ,0,1) 

constitute what is called the standard basis of the Euclidean space Rn. By an 

easy computation based on Def. 2-2.1, x1e1 + x2e2 + … + xnen = (x1 , x2 , … , xn). 
Furthermore, the converse is also true, namely, that any x = (x1 , x2 , … , xn) ∈ Rn 

can be expressed as 
x = x1e1 + x2e2 + … + xnen . 

Such an expression for x is unique in the sense that, whenever ξ1 , ξ2 , … , ξn are 
real numbers for which the equality x = ξ1e1 + ξ2e2 + … + ξnen  holds, the ‘coeffi-
cients’ ξ1 , ξ2 , … , ξn must necessarily be the components of x; this is because 

x = x1e1 + x2e2 + … + xnen = (x1 , x2 , … , xn) 
and also 

x = ξ1e1 + ξ2e2 + … + ξnen  = (ξ1 , ξ2 , … , ξn), 
so that 

(ξ1 , ξ2 , … , ξn) = (x1 , x2 , … , xn). 

2-2.2. Definition. The inner product of x, y ∈ Rn is the real number 
k
Σ
n

=1
xkyk  and 

is denoted by x ·y. It is also known as dot product or scalar product. Since x·x 
is a sum of squares, it is always nonnegative and therefore has a unique nonneg-
ative square root. The nonnegative square root of  x·x is called the Euclidean 
norm of x and is denoted by ||x||2. Thus 

||x||2 = (
k
Σ
n

=1
xk

2 )
1/2. 
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The reason for the subscript 2 will become clear later. The function which 
maps each x ∈ Rn into ||x||2 is called the Euclidean norm on Rn and is denoted by 
|| ||2 . 

The reader is cautioned that some authors define a Euclidean space not as 
simply Rn but instead as Rn with the Euclidean norm; see Rudin [22, p. 16]. 
However, Apostol [1, p. 47] and Spivak [26, p. 1] define it as we do, while So-
hrab [25, pp.  28, 159] defines it both ways. 

The following properties are easy to establish; they hold whenever x, y are 
any n-vectors and α, β are any real numbers. (In (3), the symbol ‘1’ stands for 
the real number 1.) 

(1) α(x + y) = αx + αy ; 

(2) (α + β)x = αx + βx ; 

(3) 1x = x ; 

(4) α(βx) = (αβ)x = β (αx) . 

There are many more and they will be used as and when needed. 

2-2.3. Proposition. Suppose x, y, z ∈ Rn and α is any real number. Then 
(a) ||_x||2 = ||x||2 ≥ 0; also ||x||2 = 0 if and only if x = 0. 
(b) ||αx||2 = |α| ||x||2 . 
(c) |x·y| ≤ ||x||2||y||2 . If equality holds here and ||x||2 ≠ 0, then there exists some 

real number β such that y = βx. Similarly if  ||y||2 ≠ 0. This is the Cauchy–
Schwarz inequality. 

(d) ||x + y||2 ≤ ||x||2 + ||y||2 .  (triangle inequality) 
(e) ||x _ z ||2 ≤ ||x _ y ||2 + || y _ z ||2 . 
(f) |||x||2 _ ||y||2| ≤ ||x _ y ||2 . 

Proof. (a) Since ||x||2 is, by definition, the nonnegative square root of 
k
Σ
n

=1
xk

2 , we 
have ||_x||2 = ||x||2 ≥ 0. Also, ||x||2 = 0 if and only if ||x||22 = 0, which means 

k
Σ
n

=1
xk

2  
= 0. But each term in the sum 

k
Σ
n

=1
xk

2  is nonnegative. Therefore 
k
Σ
n

=1
xk

2  = 0 if and 
only if each xk = 0, or equivalently, x = 0. 
(b) ||αx||22 = 

k
Σ
n

=1
α2xk

2  = α2(
k
Σ
n

=1
xk

2 ) = α2||x||22 = (|α| ||x||2)2. 
(c) For 1 ≤ k ≤ n, we have (xk || y||2 _ yk ||x||2)2 ≥ 0. Therefore 

xk
2 || y||22 _ 2xkyk||x||2|| y||2 +  y k

2 ||x||22 ≥ 0.………………………(1) 

By taking the sum over k = 1, … , n , we obtain 

(
k
Σ
n

=1
xk

2 ) ||y||22 _ 2(
k
Σ
n

=1
xkyk ) ||x||2|| y||2 + (

 k
Σ
n

=1
yk

2 ) ||x||22  ≥ 0 . 

In view of the definition of norm, this inequality becomes 
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||x||22||y||22 _ 2(
k
Σ
n

=1
xkyk )||x||2|| y||2 + ||x||22||y||22 ≥ 0 ,  

from which it follows that 

||x||22||y||22 _ (
 k
Σ
n

=1
xkyk ) ||x||2|| y||2 ≥ 0 .………………………(2) 

If ||x||2 = 0, then x = 0 by (a), and hence 
k
Σ
n

=1
xkyk ,  i.e., x·y = 0, which guarantees 

that |x·y| ≤ ||x||2||y||2 . Similarly if || y||2 = 0. Suppose neither ||x||2 nor || y||2 is 0. 
Then (2) shows that ||x||2 ||y||2 ≥ 

k
Σ
n

=1
xkyk  = x·y . By virtue of (a), it further follows 

that ||x||2 ||y||2 = ||x||2 || _y||2 ≥ x·(_y) = _(x·y). Thus we see that the inequality in 
(c) is valid. For the other assertion in (c), consider the possibility that |x·y| = 
||x||2|| y||2 . When this is the case and x·y ≥ 0, equality must hold in (2) and there-
fore also in (1), 1 ≤ k ≤ n. Consequently, xk || y||2 _ yk ||x||2 = 0 for 1 ≤ k ≤ n. 
Hence the number β = || y|| 2 / ||x||2 must satisfy yk = βxk for 1 ≤ k ≤ n. If instead 
x·y ≤ 0, then we obtain the same conclusion upon replacing y by _y. 

(d) ||x + y||22 = 
k
Σ
n

=1
(xk + yk )2 = 

k
Σ
n

=1
xk

2 + 2
 k
Σ
n

=1
xkyk  + 

k
Σ
n

=1
yk

2 

= ||x||22 + 2(x·y) + ||y||22 

≤ ||x||22 + 2||x||2||y||2 + ||y||22 by part (c) 

= (||x||2 + ||y|| 2 )2. 

(e) ||x _ z ||2 = ||(x _ y) + (y _ z)||2 ≤ ||x _ y ||2 + ||y _ z ||2 by part (d). 

(f) ||x||2 = ||(x _ y) + y||2 ≤ ||x _ y ||2 + || y||2  by part (d). Therefore, 

||x||2 _ ||y||2 ≤ ||x _ y ||2 . 

By an analogous argument, ||y||2 _ ||x||2 ≤ ||y _ x||2 . But what has been proved in 
part (a) shows that ||y _ x ||2 = ||_(x _ y)||2 = ||x _ y ||2 . Therefore, 

||y||2 _ ||x||2 ≤ ||x _ y ||2 . 

The two inequalities displayed above together yield |||x||2 _ ||y||2| ≤ ||x _ y ||2 . , 

It is worth noting here that the proofs of (e) and (f) depend exclusively on 
(a) and (d) while the proofs of (a)–(d) invoke the definition of the Euclidean 
norm. 

2-2.4. Remark. Note that an element of R can be regarded as an ordered 1-
tuple. The Euclidean 1-space R1 is thus the set of real 1-tuples with sum and 
product as in Def. 2-2.1. The mapping φ from R1 to R such that x→x1 is clearly 
a bijection satisfying 

φ(x + y) = (x + y)1 = x1 + y1 = φ(x) + φ(y), x·y = x1y1 = φ(x)φ(y), 
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and φ(αx) = (αx)1 = αx1 = αφ(x) = φ
_1(α)·x for any real number α. 

This means that, for all intents and purposes, 
(i) the sum of x and y as elements of R1 has the same meaning as 

the sum of φ(x) and φ(y) in R; 
(ii) the scalar product of x and y as elements of R1 has the same 

meaning as the product of φ(x) and φ(y) in R; and 
(iii) the product of α ∈ R and x ∈ R1 has the same meaning as the 

product of α ∈ R and φ(x) ∈ R, which is essentially the same as 
the inner product of φ

_1(α) ∈ R1 and x ∈ R1. We may ignore the 
distinction between the real number φ(x) ∈ R and the vector x ∈ 
R1, as long as we keep in mind that both the products of R1 are 
actually the same as the ordinary product in R. 

Since ||x|| = [x1
2]1/2 = |x1| = |φ(x)| and we identify x with φ(x), we may write ||x|| 

= |x|. 
In working with the concepts of convergence, open set, continuity and so 

forth in R, the fact that the norm, i.e., absolute value, possesses properties (a), 
(b) and (d) of Proposition 2-2.3 is needed at every turn. Availability of these 
properties for the norm in Rn enables us to extend the concepts to Rn by having 
the norm take over the role of absolute value; this will become evident as the 
chapter proceeds. 

There are two other standard norms, || ||1 and || ||∞ on Rn defined as: 

||x ||1 = 
j
Σ
=

n

1
|xj | , ||x ||∞ = max{|xj | : 1 ≤ j ≤ n}. 

These two norms can be shown to satisfy the analogues of parts of (a), (b) and 
(d), but not (c) of Proposition 2-2.3. This is the reason for the common name 
‘norm’. Other norms are also possible, but we shall not need them. Since (e) and 
(f) of the proposition follow solely from (a) and (d), they are true of all norms. 
The proof that || ||1 is a norm is left as a problem [see 2-2.P1], but we shall prove 
it for || ||∞ in Proposition 2-2.5 below. 

Before proceeding, we point out that the inequalities |xj | ≤ ||x||1 , |xj | ≤ ||x||2 , 
|xj | ≤ ||x||∞ always hold for 1 ≤ j ≤ n. 

2-2.5. Proposition. Suppose x, y, z ∈ Rn and α is any real number. Then 
(a) ||_x||∞ = ||x||∞ ≥ 0; also ||x||∞ = 0 if and only if x = 0. 
(b) ||αx||∞ = |α| ||x||∞ . 
(c) ||x + y||∞ ≤ ||x||∞ + ||y||∞ .  (triangle inequality) 

Proof. (a) This is obvious from the fact that ||x ||∞ = max{|xj | : 1 ≤ j ≤ n} = 
max {|_xj | : 1 ≤ j ≤ n}. 
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(b) If α = 0, then αxj = 0 for 1 ≤ j ≤ n and hence ||αx ||∞ = max{|αxj | : 1 ≤ j ≤ n} 
= 0, while at the same time, |α| ||x||∞ = 0·||x||∞ = 0. If α ≠ 0, then |α| > 0 and |αxj | 
≤ |αxk | if and only if |xj | ≤ |xk |. Hence 

max{|αxj | : 1 ≤ j ≤ n} = |α|max{|xj | : 1 ≤ j ≤ n}, 

i.e., ||αx||∞ = |α| ||x||∞ . 
(c) By definition of || ||∞ , we have |xj | ≤ ||x||∞ and |yj | ≤ ||y||∞ for 1 ≤ j ≤ n. It fol-
lows that |xj + yj| ≤ |xj | + |yj | ≤ ||x||∞ + ||y||∞ for 1 ≤ j ≤ n. Appealing to the 
definition of || ||∞ once again, we conclude that ||x + y||∞ ≤ ||x||∞ + ||y||∞ . , 

What makes these norms useful is that they are simpler to compute than the 
Euclidean norm (no root is involved) and also have the following relation to the 
latter: 

2-2.6. Proposition. For any x ∈ Rn, we have 

(a) ||x ||∞ ≤ ||x ||2 ≤ ||x ||1  ≤ n·||x ||∞ . 
(b) ||x ||2 ≤ (√n)·||x ||∞ .  

Proof. (a) The first inequality follows from the fact that one of the terms in the 
sum 

j
Σ
=

n

1
|xj |2 = ||x||22  equals ||x||∞2 . 

For the second inequality, we use induction on n: If n = 1, then ||x||2 = ||x||1 
for any x. Suppose ||x||2 ≤ ||x||1 for any n-vector x. Then for any (n+1)-vector x, 

||x||22 = 
k

n
Σ
=

+1

1
xk

2 = 
k
Σ
n

=1
xk

2 + xn+
2

1 ≤ (
k
Σ
n

=1
|xk |)2 + xn+

2
1 ≤ (

k
Σ
n

=1
|xk |)2 + xn+

2
1 + 

2(
k
Σ
n

=1
|xk |) |xn+1| = (

k

n
Σ
=

+1

1
|xk | )2 = ||x||1

2 . 

Since |xk | ≤ ||x ||∞ for 1 ≤ k ≤ n, it follows that ||x ||1 = 
j
Σ
=

n

1
|xj | ≤ n·||x ||∞ , which 

proves the third inequality. 
(b) Since |xk | ≤ ||x ||∞ for 1 ≤ k ≤ n, we have ||x||22  = 

j
Σ
=

n

1
|xj |2 ≤ n· ||x||∞2 . , 

The inequalities (a) of Proposition 2-2.6 render the three norms equivalent 
in the sense that whatever we have to say in connection with convergence, con-
tinuity or differentiability will usually be true with reference to one norm if and 
only if it is true with reference to the other two norms. Thus, any one of the 
three norms in Rn can take over the role of absolute value in R. In view of the 
equivalence, we shall often not specify which norm is intended and denote the 
norm by || || , i.e., without any subscript. Whenever there is a need to work with a 
specific norm, we shall choose the one that seems convenient for the situation at 
hand. 

Here is the first instance of our not specifying a norm on account of reasons 
just explained: 
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2-2.7. Definition. A sequence {xp}p≥1 in Rn is said to converge to x ∈ Rn if for 
every ε > 0 there exists a natural number N such that 

||xp
_ x|| < ε whenever p ≥ N. 

The element x of Rn (which can easily be shown to be unique) is called the limit 
of the sequence. In symbols, xp→x or lim

p→∞
xp = x. A sequence is said to be 

convergent it converges to some limit. 

An alternative formulation would be that xp→x if and only if the associated 
real sequence ||xp

_ x|| converges to 0 in the usual sense of elementary analysis. 

Proofs of the properties that 

lim
p→∞

 (xp + yp) = lim
p→∞

xp + lim
p→∞

yp and lim
p→∞

(αpxp) = (lim
p→∞

αp)(limp→∞
xp) 

whenever the limits on the right sides exist are completely analogous to those 
for real sequences and will therefore not be taken up. A similar remark applies 
to the result that a convergent sequence {xp}p≥1 in Rn is bounded in the sense that 
there exists a real number M such that ||xp|| ≤ M for all p. 

2-2.8. Proposition. A sequence {xp}p≥1 in Rn converges to x ∈ Rn if and only if 
the real sequence {x( p)

j}p≥1 converges to the real number xj for each j. In other 
words, convergence in Rn is equivalent to componentwise convergence. 

Proof. Note that (xp
_ x)j = x( p)

j
_ xj  by Def. 2-2.1. Therefore |x( p)

j
_ xj | = 

| (xp
_ x)j | ≤ || (xp

_ x)||. This implies that if xp→x then x( p)
j → xj for each j. 

For the converse, suppose x( p)
j → xj for each j and consider any ε > 0. For 

each j there exists Nj such that | (xp
_ x)j | < ε whenever p ≥ Nj . Set N = max{Nj : 

1 ≤ j ≤ n}. Then, for every j, 1 ≤ j ≤ n, | (xp
_ x)j | < ε whenever p ≥ N. It follows 

that max{|(xp
_ x)j | : 1 ≤ j ≤ n} < ε whenever p ≥ N. But this means precisely 

that ||xp
_ x||∞ < ε whenever p ≥ N. By Proposition  2-2.6, such an N exists for the 

other two norms as well. , 

2-2.9. Definition. A sequence {xn}n≥1 in Rn is called a Cauchy sequence if for 
every ε > 0, there exists a natural number N such that 

||xp
_ xq || < ε whenever p ≥ N and q ≥ N. 

As in the case of R, it is easy to prove that a convergent sequence in Rn is 
Cauchy. The least upper bound property of R has the important consequence 
that a Cauchy sequence in R is always convergent. This carries over to Rn with 
very little effort, as we shall now see. Thus Rn is ‘(Cauchy) complete’. 

2-2.10. Theorem. Any Cauchy sequence in Rn converges to some limit. 
Proof. Let {xp}p≥1 be a Cauchy sequence in Rn. Now, (xp

_ xq)j = x( p)
j
_ x(q)

j by 
Def. 2-2.1, and we therefore have |x( p)

j
_ x(q)

j | = | (xp
_ xq)j | ≤ ||xp

_ xq||. It follows 
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that, for each j such that 1 ≤ j ≤ n, the real sequence {x( p)
j}p≥1 is Cauchy and 

hence converges to some limit in R; denote its limit by xj . Then the vector 

x = (x1,…, xn) ∈ Rn 

is seen to have the property that xp→x in view of Proposition 2-2.8. , 

2-2.11. Proposition. Suppose {xp}p≥1 is a sequence in Rn and x ∈ Rn. If for every 
ε > 0 and every N ∈ N, there exists some integer p ∈ N satisfying p ≥ N as well as 
||xp

_ x|| < ε, then {xp}p≥1 has a subsequence converging to x. 
Proof. Consider ε = 1 and N = 1. By hypothesis, some integer p1 ∈ N satisfies p1 
≥ 1 as well as ||xp1

_ x || < 1. Now consider ε = 1
2  and N = p1 + 1. Then by hypo-

thesis, some integer p2 ∈ N satisfies p2 > p1 as well as ||xp2
_ x || < 1

2 . Next, we 
consider ε = 1

3  and N = p2 + 1, and apply the hypothesis once again. Proceeding 
in this manner, we obtain a subsequence {xpq}q≥1 such that ||xpq

_ x || < 1
q . This 

inequality implies that {xpq}q≥1 converges to x. , 

Problem Set 2-2 

2-2.P1. Show that the analogues of Proposition 2-2.3 for all parts except (c) hold 
for || ||1 . 

2-2.P2. Show that ||x||1 ≤  n1/2||x||2 . 

2-2.P3. Show that if x ·y = 0, then ||x + y ||22 = ||x||22 + ||y ||22. 

2-2.P4. If a,b,c are positive real numbers, show that abc(a + b + c) ≤ a3b + b3c 
+ c3a. 

2-2.P5. If xp→x, show that ||xp||→||x||. 

2-2.P6. (a) Suppose 0 < p < q and 0 ≤ aj for 1 ≤ j ≤ n. Then prove that 

(
j
Σ
=

n

1
aj

q)1/q ≤ (
j
Σ
=

n

1
aj

p)1/p. 

(b) Show that lp→im∞ || x || p = || x ||∞ , where x = (x1 ,…,xn) ∈ Rn and || x || p = 
(

j
Σ
=

n

1
|xj |p)1/p, || x ||∞ = max{| xi | : 1 ≤ j ≤ n}. 



 

2-3 Simplest Functions Between Euclidean Spaces (Linear) 

A function (or ‘map’) will often be referred to as a transformation when the 
domain is a subset of Rn with n > 1. 

2-3.1. Definition. A map (or mapping) A:Rn→Rm is called linear if 

A(x1 + x2) = A(x1) + A(x2) and A(cx) = cA(x)  ∀ x1 ,x2 ,x ∈ Rn and c ∈ R. 

When a map A is linear, we shall delete the parentheses ‘( )’ in ‘A(x)’ whenever 
convenient. Thus the above conditions defining linearity can also be written as 

A(x1 + x2) = Ax1 + Ax2 and A(cx) = c(Ax)  ∀ x1 ,x2 ,x ∈ Rn and c ∈ R. 

A linear map is sometimes called a linear operator or a linear transformation. 

2-3.2. Examples. (a) n = m = 1. The map A:Rn→Rm defined by Ax = 5x is easily 
seen to be linear: 5(x1 + x2) = 5x1 + 5x2 and 5(cx) = c(5x). Instead of 5 any other 
number could have been taken of course; thus the map A such that A(x) = ax is 
linear, whatever the number a may be. 

In fact, these are the only linear maps when n = m = 1, because A(x) = 
A(x·1) = x·A(1) = ax, where a = A(1). This will also follow from more general 
considerations below. 
(b) n = 1 but m is any positive integer. Let b be any vector in Rm. Define the map 
A:Rn→Rm by Ax = xb (product of the scalar x with vector b). Since 

(x1 + x2)b = x1b + x2b and x(cb) = c(xb), 
which is to say, 

A(x1 + x2) = Ax1 + Ax2 and A(cb) = c(Ax), 
the map A is linear. The special vector b that plays a role in describing A can be 
expressed as b = 1b = A1.  

Conversely, any linear map A:Rn→Rm (where n = 1) is of this kind, because 
if we set b = A1, we have Ax = A(x·1) = x·A(1) = xb. 

Linear maps A:Rn→Rm with n = 1 will be referred to again and the reader 
would do well to keep this example in mind for ready retrieval when it is men-
tioned later on. 
(c) m = 1 but n is any positive integer. Let z ∈ Rn. Define a map Rn→R by 
x→ z ·x , the dot product of z and x in Rn. Then elementary properties of the dot 
product lead to 

z ·(x1 + x2) = z·x1 + z·x2 ,  z·(cx) = c(z·x) , 

which is the same as saying that the map x→ z ·x from Rn to R is linear. This 
example will also be needed in the sequel. 

Functions Between Euclidean Spaces  32
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(d) n = m = 2. Let a,b, c, d be real numbers. The map A:R2→R2 defined as 
A(x,y) = (ax + by, cx + dy) is linear. A part of verifying the linearity is to check 
that, for any (x, y) ∈ R2 and (x', y') ∈ R2, the vector (a(x + x') + b(y + y'), c(x + x') + 
d(y + y')) is the sum of (ax + by, cx + dy) and (ax' + by', cx' + dy'). This is easily 
checked. The other part is to check that, for any scalar λ and any (x, y) ∈ R2, the 
vector 

(a(λx) + b(λy), c(λx) + d(λy)) 

is the same as λ(ax + by, cx + dy). 
This too is easy to verify. 

To solve the linear equations 
ax + by = u 
cx + dy = v, 

where u and v are given, is to find (x, y) such that A(x, y) = (u, v). 
It is a consequence of the discussion below that the only linear maps of R2 

into R2 are of the kind described in the foregoing example. 

A linear map from a space Rn into itself is often called a linear map (or li-
near operator) in Rn. 

Any linear map A satisfies A0 = 0, because A0 = A(0 + 0) = A0 + A0 = 
2(A0). The fact that A0 = 0 for any linear map A will be used in future without 
explicit mention. 

Let e1 , e2 , … , en be the standard basis 

e1 = (1,0,0,… ,0) , e2 = (0,1,… ,0) , …  , en = (0,0,0,… ,0,1) 

of Rn, and A:Rn→Rm be linear. If the (vector) values of Ae1 , Ae2 ,… , Aen are 
given, then the value of Ax for any vector x = x1e1 + x2e2 + … + xnen ∈ Rn can be 
found easily, because 

Ax = x1 (Ae1 ) + x2 (Ae2 ) + … + xn (Aen ).……………………(1) 

Some readers may prefer to express this informally as follows: If the vector x 
has scalar components x1 , x2 , … , xn then Ax can be expressed in terms of 
Ae1 , Ae2 ,… , Aen with the very same scalar coefficients, namely, x1 , x2 , … , xn. 
(Caution: It may be possible to express Ax this way with other coefficients as 
well.)  

One very useful consequence of (1) is that if we know what A maps the n 
vectors e1 , e2 , … , en into, then we know what A maps all the infinitely many 
vectors of Rn into. Thus we can create a linear map by simply deciding what the 
vectors Ae1 , Ae2 ,… , Aen should be and then leaving the rest to linearity via (1). 

Now let f1 , f2 , … , fm be the standard basis of Rm. Consider any linear map 
A:Rn→Rm. For each j from 1 to n, the vector Aej ∈ Rm has m components, which 
we shall name as ai j : 
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ai j  = (Aej)i , 1 ≤ i ≤ m. 
Then 

Aej = a1 j  f1 + a2 j  f2 + … + am j  fm = 
1

m
i j i

i
a f

=
∑ , 1 ≤ j ≤ n. 

The coefficients ai j  (which are mn in number) form an m×n matrix in the usual 
way. Observe that the summation takes place over the first index i, i.e., the row 
index, of ai j . In view of (1), for any vector x = x1e1 + x2e2 + … + xnen ∈ Rn, the 
image Ax is 

Ax = x1 ( 1
1

m
i i

i
a f

=
∑ ) + x2 ( 2

1

m
i i

i
a f

=
∑ ) + … + xn (

1

m
i n i

i
a f

=
∑ ) 

= ( 1
1

n
j jj

a x
=
∑ ) f 1 + ( 2

1

n
j jj

a x
=
∑ ) f 2 + … + (

1

n
m j jj

a x
=
∑ ) fm.…………(2) 

This shows that, for any linear map A:Rn→Rm, there exist mn numbers ai j (1 ≤ 
i ≤ m, 1 ≤ j ≤ n) such that the image of any element (x1 ,x2 ,… ,xn) ∈ 
Rn is A(x1 ,x2 ,… ,xn) = (y1 , y2 ,… , ym) ∈ Rm, where 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

n n

n n

m m m mn n

y a x a x a x
y a x a x a x

y a x a x a x

= + + + ⎫
⎪= + + + ⎪
⎬
⎪
⎪= + + + ⎭

L

L

M

L

.…………………(3) 

In other words, if we represent x by the n×1 column matrix [X] with entries 
x1 ,x2 ,… ,xn , and represent Ax = y by the m×1 column matrix [Y ] with entries 
y1 , y2 ,… , ym , then [Y ] equals the matrix product [A][X ], where [A] is the m×n 
matrix [ai j]. We refer to the matrix [A] with entries ai j  arising from the linear 
transformation A as the matrix of A. In particular, when n = m = 1, A is of the 
form y = ax. Also, when n = m = 2, A is of the form described in Example 2-
3.2(d). 

In the reverse direction, any m×n matrix [ai j] gives rise to a linear transfor-
mation A:Rn→Rm, namely the one defined by (2). 

The correspondence described above between linear maps and their matric-
es is one-to-one and therefore a linear map can be completely specified through 
its matrix. 

As with a map of any kind of a set X into itself, the inverse of A is a map 
S:X→X such that the compositions A S and S A are both equal to the ‘identity 
map’ I:X→X given by I(x) = x for all x ∈ X. In this context, when X = Rn, the 
identity map is clearly linear; moreover, the inverse, if any, is also linear. It will 
be denoted by A

_1. Considerable interest attaches to the question when a given 
linear map has an inverse. The elementary fact that a composition A B of invert-
ible maps is invertible, with inverse B

_1 A
_1, will be used in Theorem 2-7.11. 
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If A and B are linear maps from Rn to Rm, then the map x→(Ax + Bx) is easi-
ly seen to be a linear map. It is called the sum of A and B, and is denoted by 
A + B. Thus 

(A + B)x = Ax + Bx   whenever x ∈ Rn. 

If λ ∈ R, then the map x→λ(Ax) is also seen to be a linear map; it is called the 
product of λ and A, and is denoted by λA. The map (_1)A will be denoted by 
the symbol _A. We shall have occasion to refer to the constant map x→0; this 
constant map will be denoted by O. Such properties as the following are easy to 
verify: 

A + B = B + A, A + (B + C) = (A + B) + C, A + O = A, 

A + (–A) = O, λ(A + B) = λA + λB, λ(μA) = (λμ)A, 

and so on. Thus, linear maps behave rather like vectors in Rk for some k with 
regard to addition and to multiplication by scalars. One can even argue that k 
should be the product mn, but this is a matter we do not pursue here. 

Linear maps, like other maps, can be composed whenever the range of one 
is a subset of the domain of the other. If A:Rn→Rm and B:Rm→Rp are linear, 
then the composition B A:Rn→Rp is a linear map, as is easy to check. It is de-
noted simply by BA, without the symbol  to indicate composition, and is called 
the product of the linear maps A and B. If n = m = p, then both the products AB 
and BA are defined, but they are not necessarily equal. In other words, multipli-
cation of linear maps is not commutative (unless n = 1). Such properties as 

A(B + C) = AB + AC, (B + C)A = BA + CA, (λA)(μB) = (λμ)(AB), 

and so on are easy to verify. 

2-3.3. Remarks. (a) Let A:Rn→Rm and B:Rm→Rp be linear maps with matrices 
[ai j] and [bk i] respectively. Then the matrix of the composed map BA:Rn→Rp is 
the matrix product [bk i][ai j] . 

Proof. Let {ej : 1 ≤ j ≤ n}, {fi : 1 ≤ i ≤ m} and {gk : 1 ≤ k ≤ p} be the stan-
dard bases of Rn, Rm and Rp, respectively. Then 

Aej = 
1

m

i=
∑ ai j fi , Bfi = 

1

p

k =
∑ bk i gk . 

Hence, (BA)ej = 
1

m

i=
∑ ai j Bfi = 

1

m

i=
∑ ai j (

1

p

k =
∑ bk i gk ) = 

1

p

k =
∑ (

1

m

i=
∑ bk i ai j )gk . 

But this says precisely that BA has matrix [ck j] with ck j = 
1

m

i=
∑ bk i ai j . By the defi-

nition of matrix product, the matrix of BA is therefore [bk i][ai j] . 
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We note a useful consequence of this result: The identity linear map I of Rn 
into itself has the matrix known by the familiar name of the identity matrix of 
order n×n; combined with the above result, this shows that a linear map 
A:Rn→Rn is invertible if and only if its matrix is invertible. 

(b) To solve the linear equations (3), where y = (y1 , y2 ,… , ym) is given, is to find 
x = (x1 ,x2 ,… ,xn) such that Ax = y. A unique solution x exists for every given y 
if and only if A is invertible; when this is the case, x = A

_1y. However, an inverse 
can exist only if m = n. We shall have no occasion to make use of this fact, but 
whenever we assume that some linear map A:Rn→Rm is invertible, we shall also 
assume that m = n. 

If A:Rn→Rn is injective, then the only solution of (3) with each yi = 0 is the 
one for which each xj = 0. It is known from linear algebra that this implies that 
for every  (y1 , y2 ,… , yn) ∈ Rn, (3) has a solution (x1 ,x2 ,… ,xn) ∈ Rn, which has 
the consequence that A is surjective. Thus an injective linear map A:Rn→Rn is 
surjective and hence invertible. We shall use this fact in the proof of the implicit 
function theorem (Theorem 4-3.2). It is also true that a surjective linear map 
A:Rn→Rn is injective and hence invertible. 

(c) Consider (3) above with m = n written in the form [Y] = [A][X]. If the inverse 
matrix [A]

_1 exists, then 

[A]
_1[Y] = [A]

_1([A][X]) 

= ([A]
_1[A])[X] using associativity 

= [X]. 

Thus (3) has a unique solution [X] = [A]
_1[Y] for every given [Y]. On the other 

hand, suppose we know that (3) has a unique solution [X] for every given [Y]. 
This is the same as saying that it has a unique solution x for every given y. As in 
(b) above, this implies that A is invertible, and hence by (a), [A] is an invertible 
matrix. Once again, the unique solution is given by [X] = [A]

_1[Y]. 

2-3.4 Remarks. If a linear map A of Rn into itself merely multiplies the kth 
component by some nonzero a, i.e., 

A(x1 , … , xn) = (y1 , … , yn), 
where 

yj = 
for 
for 

j

j

x j k
ax j k

≠⎧⎪
⎨ =⎪⎩ ,

 

then its matrix is the one obtained from the identity matrix by replacing the entry 
ak k by a. Thus it is an elementary matrix; moreover, its determinant is a. 

If A merely interchanges two components, i.e., A(x1 , … , xn) = (y1 , … , yn), 
where 
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yj = 
if  
if 
if 

l

k

j

x j k
x j l
x k j l

⎧ =
⎪ =⎨
⎪ ≠ ≠⎩

 

where k ≠ l, then its matrix is the one obtained from the identity matrix by inter-
changing the kth and lth rows. Thus it is an elementary matrix; moreover, its 
determinant is _1. 

If A merely adds one row to another row, i.e., there exist distinct indices k, l 
such that 

A(x1 , … , xn) = (y1 , … , yn), 
where 

yj = 
for 
for 

j

j l

x j k
x x j k

≠⎧⎪
⎨ + =⎪⎩ ,

 

(so that yk = xk + xA ), then its matrix is the one obtained from the identity matrix 
by adding the lth row to the kth row. Thus it is an elementary matrix; moreover, 
its determinant is 1. 

Since every invertible matrix is a product of elementary matrices of the 
above type (see last part of Chapter 1), it follows that every invertible linear map 
is a product of linear maps having elementary matrices of the type mentioned 
above. We shall make essential use of this fact in Proposition 7-4.1. 

Problem Set 2-3 

2-3.P1. Let A:\→\ satisfy A(cx) = cA(x) for any x and c ∈ \. Set a = A(1). Show 
that A(x) = ax whenever x ∈ \. Is it true that A(x + y) = A(x) + A(y) whenever x ∈ 
\ and y ∈ \? 

2-3.P2. Define A:\2→\2 by A(x1 ,x2) = ((x1
3 + x2

3)1/3, 0). Show that, for any x = 
(x1 , x2) ∈ \2

 and c ∈ \, we have A(cx) = cA(x). Is it true that 

A(x + y) = A(x) + A(y) whenever x and y ∈ \2 ?  

2-3.P3. Define A:R2→ R2 by A(x1 , x2) = (3x1 – 2x2 , 6x1 + x2). Show that 

A(x + y) = A(x) + A(y) and A(cx) = cA(x) ∀ x, y ∈ \2 and c ∈ \. 

2-3.P4. Find the range of the map f :U→\2, where U = {(x,y) ∈ \2 : (x,y) ≠ 
(0,0)} and 

f(x,y) = ( f1(x,y) , f2(x,y)) = 
2 2

2 2 2 2
,x y xy

x y x y

⎛ ⎞−⎜ ⎟
⎜ ⎟+ +⎝ ⎠

 ∈ \2. 

2-3.P5. Let f :\→\ have a continuous derivative everywhere and let φ:\2→\2 
be the transformation  

u = f(x) ,  v = –y + x f(x). 
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If f '(x0) ≠ 0, show that the transformation is invertible on a subset of the form 
I×\, where I is a open set in \ containing x0 and that the inverse has the form 

x = g(u) ,  y = –v + ug(u). 

2-3.P6. Let A:\n×\m→\k be a linear map. Show that the maps B:\n→\k and 
C:\m→\k defined by B(x) = A(x, 0) and C(y) = A(0,y) are also linear. 

2-3.P7. Let A:\n→\k and B:\m→\k be linear maps. Show that the map 
C:\n×\m→\k defined by C(x,y) = A(x) + B(y) is linear. 

2-3.P8. The Cartesian product \n×\m can be regarded as \n+m. Show that the 
map A:\n+m→\n+m defined by A(a,b) = (0,b) is linear, and find its matrix when 
m = 2, n = 3. 

2-3.P9. The equations x1 + x2 + x3 = 5, 2x1 – x2 + 4x3 = 8 can be expressed in 
terms of standard bases u1 ,u2 ,u3 of \3 and v1 ,v2 of \2 as a single equation f(x1u1 
+ x2 u2 + x3 u3) = 5v1 + 8v2 , where f :\3→\2 is the function such that 

f(x1u1 + x2 u2 + x3 u3) = (x1 + x2 + x3)v1 + (2x1 – x2 + 4x3)v2 . 
One can also use coordinate language and avoid bringing in the standard basis 
explicitly by writing f(x1 ,x2 ,x3) = (5, 8), where f(x1 ,x2 ,x3) is defined as (x1 + x2 
+ x3 ,2x1 – x2 + 4x3). Now express the equations p = ex cos y, q = ex sin y as a sin-
gle equation using a suitable function; also rewrite the single equation in 
coordinate language. 

2-3.P10. Eliminate the variable x1 from the second and third equations in the 
system by using the first equation 

x1 + 5x2 + 6x3 = 9 
2x1 + 11x2 + 13x3 = 38 
3x1 + 12x2 + 14x3 = 2027. 

(a) Now answer the following questions regarding the new system consisting of 
the two equations just obtained by eliminating x1 together with the first of the 
three given equations: Must every solution of the new system be a solution of 
the given system (Yes or No)? And vice versa (Yes or No)? 
(b) If a solution x2 = β, x3 = γ of the two equations that have been obtained by 
elimination is known, what formula for x1 can be derived from the first of the 
three given equations in terms of β and γ? 

2-3.P11. In \4, find a common perpendicular (not 0) to the three given vectors 

z1 = (1,3,2,–1) ,  z2 = (3,10,4,0) ,  z3 = (4,13,7,4). 

In other words find x ∈ \4 such that x ·z i = 0 for i = 1,2,3. 

2-3.P12. The range of the function f  defined on the subset 
D = {(x1 ,x2 ,x3) : x1

2 + x2
2 + (x3

_
2
1 )2 = 2

1 }\{(0,0,1)} 
of \3 by 
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y1 = 1

31
x

x−
, y2 = 2

31
x

x−
 

is the whole of \2. The map is called the stereographic projection. 

2-3.P13. Let D = {(x1 ,x2 ,x3) ∈ \3 : x1
2 + x2

2 + x3
2 ≥ 1} and R = {(y1 ,y2 ,y3) ∈ \3 : 

0 < y1
2 + y2

2 + y3
2 ≤ 1}. The function f  defined by 

y1 = 1
2

x
r

, y2 = 2
2

x
r

, y3 = 3
2

x
r

 

is called an inversion mapping of a part of \3 to another part. Show that the 
range of the mapping is R. 

2-3.P14. Given any δ > 0 and a ∈ \, show that the function F :\3→\ defined by 
F(x,y,z) = xyz(x + y + z _ 1) takes positive as well as negative values in the δ-
ball centred at (a, 0,0). 

2-3.P15. Given any δ > 0 and b,c ∈ \ such that b ≠ 0 ≠ c and b + c = 1, show 
that the function F :\3→\ defined by F(x,y,z) = xyz (x + y + z _ 1) takes positive 
as well as negative values in the δ-ball centred at (0,b,c). 

2-3.P16. Let A:\2→\2 be the linear map A(x1 , x2) = (x1 + x2 , 0). The vectors 
(1,0) , (0,1) , (3/5,4/5) , (12/13,5/13) and (1/√2,1/√2) all have norm 1. Compute 
the norms of their images under A, i.e., 

A(1,0) , A(0,1) , A(3/5,4/5) , A(12/13,5/13) , A(1/√2,1/√2). 

Which is the largest? 
Show that: ||x || ≤ 1 ⇒ ||Ax || ≤ √2, i.e., that x1

2 + x2
2 ≤ 1 ⇒ (x1 + x2)2 + 

02 ≤ 2. 

2-3.P17. Let A:\2→\2 be the linear map A(x1 , x2) = (x1 + x2 , 2x1 – x2). Compute 

||A(1,0)||2, ||A(0,1)||2, ||A(1/√2, 1/√2)||2, ||A(12/13, 5/13)||2. 

(a) Show that ||A(x1 , x2)||2 = 5x1
2 + 2x2

2 – 2x1x2 . 
(b) Using (a), show that ||x || ≤ 1 ⇒ ||Ax || ≤ √6 . 
(c) Using (b), what can be said about sup {||Ax || : ||x || ≤ 1}? 

2-3.P18. Let A:\2→\2 be the linear map A(x1 , x2) = (x1 + x2 , x1 – x2). Express 
A(x1 , x2)2 in terms of x1 and x2 ; hence find sup {||Ax || : ||x || ≤ 1}. 

2-3.P19. Let A:\n→\m be linear and let V a ball in \n centred at 0 with some 
radius a > 0. If Av = 0 ∀ v ∈ V, show that Ax = 0 ∀ x ∈ \n. 



 

2-4 Topology of Euclidean Spaces 

In elementary analytic geometry, \2 and \3 are regarded as the plane and three-
dimensional space, respectively, and the so called ‘distance formula’ says that 
the straight line distance between two points x and y is given by the Euclidean 
norm ||x _ y ||2 . So, for a given a ∈ \2 or \3, and a given r > 0, the subset of \2 or 
\3 described as {x : ||x _ a ||2 < r} is visualised as the disc or solid ball of diame-
ter 2r, centred at a and not including the periphery. The reader may check 
independently that {x ∈ \2 : ||x _ a ||∞ < r} represents the inside of the square with 
vertical and horizontal sides of length 2r, centred at a and not including the pe-
riphery. Similarly, {x ∈ \2 : ||x _ a ||1 < r} represents the inside of the square with 
vertical and horizontal diagonals of length 2r, centred at a and not including the 

periphery. See the figure. In general a subset of Rn of this 
kind is called a ball, regardless of what n is and what norm is 
used. 

2-4.1. Definition. The subset {x ∈ Rn : ||x _ a || < r} of Rn, 
where a ∈ Rn and r > 0, is called the r-ball about a (or cen-
tred at a). It is denoted by B(a,r). The point (vector) a is 
called the centre of the ball and the positive number r is 
called its radius. 

The assertion xp→x about a sequence {xp}p≥1 in Rn can now be reformulated 
as: For any ε > 0, the nth term xn belongs to the ε-ball about x for sufficiently 
large n. More succinctly, all terms eventually lie in any given ball about x. 

2-4.2. Definition. A subset U ⊆ Rn is said to be open if every u ∈ U has some 
ball about u that is contained in U; in symbols: 

∀ u ∈ U, ∃ δ > 0 such that ξ∈ Rn, ||ξ _ u || < δ ⇒ ξ∈ U. 

The entire space Rn is easily seen to be an open subset of itself. The empty 
subset is open ‘by default’ because there exists no element in it. The trivial ob-
servation that 0 < r < s ⇒ B(u, r) ⊆ B(u,s) leads to the conclusion that an 
intersection of two open subsets is again an open subset and hence so is the in-
tersection of any finite number of open subsets. Indeed, if U1 and U2 are open 
and u ∈ U1∩U2 , then there exist δ1 > 0 and δ2 > 0 such that B(u,δ1) ⊆ U1 and 
B(u,δ2) ⊆ U2 , which implies that B(u,min{δ1 ,δ2}) ⊆ B(u,δ1)∩B(u,δ2) ⊆ 
U1∩U2 . That the union of any number (even uncountable) of open subsets is 
again open hardly needs any argument. 

An open subset of R1 = R in the sense defined above is the same as an open 
set of real numbers. 

By Proposition 2-2.6, whether a subset is open or not does not depend on 
which norm is used: If a positive number that serves as the appropriate δ for one 

a 

2r 
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norm does not work with a different norm, then some other positive number 
will. 

Example. The subset (0,1)×(2,7) ⊆ R2 can be shown to be open. Any element u 
of it satisfies 0 < u1 < 1, 2 < u2 < 7. Let δ1 = min{u1 ,1_ u1} > 0. Then 

|ξ1
_ u1 | < δ1 ⇒ ξ1

_ u 1  <1_ u1 ⇒ ξ1 < 1 
and 

|ξ1
_ u1 | < δ1 ⇒ u1

_ ξ1  < u 1  ⇒ 0 < ξ1. 
Thus, 

|ξ1
_ u1 | < δ1 ⇒ 0 < ξ1 < 1.………………………(1) 

Similarly, δ2 = min{u2
_ 2,7 _ u2} > 0 has the property that 

|ξ2
_ u2 | < δ2 ⇒ 2 < ξ2 < 7.………………………(2) 

It follows from (1) and (2) that, for δ = min{δ1 ,δ2} > 0, we have 

||ξ _ u ||∞ = max{|ξ1
_ u1 | , |ξ2

_ u2 |} < δ ⇒ ξ∈ (0,1)×(2,7). 

The existence of such a positive number δ for every u ∈ (0,1)×(2,7) means by 
definition that (0,1)×(2,7) is open. 

2-4.3. Proposition. A ball is an open subset. 
Proof. Consider a ball B(a, r) ⊆ Rn and let u ∈ B(a,r). Then ||a _ u || < r. Let δ = 
r _ ||a _ u || > 0. This positive number has the property that 

||x _ u || < δ ⇒ ||x _ u || < r _ ||a _ u || ⇒ ||x _ u || + ||a _ u || < r. 

But ||x _ a || ≤ ||x _ u || + ||a _ u || by the triangle inequality. Therefore ||x _ u || < δ 
⇒ ||x _ a || < r. Thus B(u,δ) ⊆ B(a, r). The existence of such a positive δ for 
every u ∈ B(a,r) means by definition that B(a, r) is open. ,  

2-4.4. Definition. A subset F ⊆ Rn is said to be closed if its complement is open. 

2-4.5. Proposition. A subset F ⊆ Rn is closed if and only if whenever all terms 
of a convergent sequence {xp}p≥1 belong to F, its limit also belongs to F. 

Proof. First suppose F ⊆ Rn is closed and {xp}p≥1 is a convergent sequence such 
that xp ∈ F for every p ∈ N. We shall show that lim

p→∞
xp ∈ F. If not, then the limit, 

which we shall denote by x, belongs to the complement of F. But the comple-
ment is given to be open and therefore some ball centred at x is contained in the 
complement. This means that no terms of the sequence can ever belong to the 
ball, which contradicts the fact that xp→x. Therefore the limit of the sequence 
has to belong to F. 

For the converse, suppose F ⊆ Rn is not closed. We shall show that some 
convergent sequence with every term belonging to F has a limit that does not 
belong to F. Since F is not closed, the complement Fc is not open and therefore 
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some x ∈ Fc fails to have a ball centred at x and contained in Fc; this means every 
ball centred at x fails to be contained in Fc and thus has a nonempty intersection 
with F. In particular, for each p ∈ N, the 1

p -ball centred at x must contain some 
element xp ∈ F. Therefore the sequence {xp}p≥1 not only has each term in F but 
also satisfies ||xp

_ x || < 1
p  for each p ∈ N, so that x = lim

p→∞
xp . Thus {xp}p≥1 is a 

convergent sequence with every term belonging to F but having limit x that does 
not belong to F. , 

2-4.6. Examples. (a) Since Rn is an open subset of itself, its complement, the 
empty subset is closed. Similarly, since the empty set is an open subset of Rn, its 
complement Rn is closed. Thus each of the subsets ∅ and Rn is open as well as 
closed. 

(b) Given any a ∈ Rn and any r > 0, the set {x ∈ Rn : ||x _ a || ≤ r} is a closed sub-
set of Rn. To see why, consider any convergent sequence {xp}p≥1 with each xp 
belonging to {x ∈ Rn : ||x _ a || ≤ r}. That is to say, ||xp

_ a || ≤ r for each p ∈ N. In 
view of Proposition 2-4.5, we need only show that lim

p→∞
xp ∈ {x ∈ Rn : ||x _ a || ≤ 

r}, i.e., || lim
p→∞

xp
_ a || ≤ r. Consider any ε > 0. By definition of limit of a se-

quence, there exists q ∈ N such that || lim
p→∞

xp
_ xq || < ε. Now, 

|| lim
p→∞

xp
_ a || ≤ || lim

p→∞
xp

_ xq || + ||xq
_ a || < ε + r. 

Since this holds for any arbitrary ε > 0, we have || lim
p→∞

xp
_ a || ≤ r. 

The set {x ∈ Rn : ||x _ a || ≤ r} is often called the closed r-ball about a; a ball 
will be understood to be open unless mentioned otherwise. A subset X ⊆ Rn is 
said to be bounded if there exists some M > 0 such that ||x|| ≤ M for every x ∈ X. 
Since ||x _ a || < r ⇒ ||x _ a || ≤ r ⇒ ||x || ≤ ||a|| + r, we find that every ball is 
bounded. 

2-4.7. Definition. For a subset X ⊆ Rn, a point u ∈ Rn is called an interior point 
of X if some ball about u is a subset of X. The set of all interior points of X is 
called the interior of X and is denoted by X °. 

2-4.8. Examples. (a) The interior of the closed ball B1 = {x ∈ Rn : ||x _ a || ≤ r} is 
the open ball {x ∈ Rn : ||x _ a || < r}. Indeed, let u ∈ {x ∈ Rn : ||x _ a || < r}. By 
Proposition 2-4.3, this ball is open and hence there exists α > 0 such that B(u,α) 
⊆ B1 . So, u is an interior point of B1 . Also, no point u satisfying ||u _ a || = r is an 
interior point of B1 , because for any α > 0, the point z = u + 1

2 || ||
u a
u a

−
−

α  belongs to 
B(u,α) but not to B1 , as the following easy computation shows: 
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||z _ u || = ||1
2 || ||

u a
u a

−α −
|| = 2

α  < α 

but 

||z _ a || = ||u _ a + 1
2 || ||

u a
u a

−α −
|| = ||(1+ 1

2 || ||u a
α
−

)(u _ a)|| 

= (1+ 1
2 || ||u a

α
− )||u _ a || = ||u _ a || + 2

α  > r. 

(b) The interior of a set consisting of finitely many points is empty, because a 
ball always contains infinitely many points and cannot be a subset of any finite 
set. 

It is clear from Def. 2-4.7 that, an interior point of a set belongs to that set; 
but not all points in a set are interior points. Also, an open set is one for which 
every point of it is an interior point; in other words, X ⊆ Rn is open if and only if 
X = X °. This is immediate from Def. 2-4.2 and Def. 2-4.7. 

2-4.9. Proposition. The interior of any set is open. 
Proof. Let X ⊆ Rn. Proposition 2-4.3 shows that, if u ∈ X °, so that some ball B 
about u is contained in X, then for every y ∈ B, there is a ball about y that is con-
tained in B and hence in X, thus making every y ∈ B an interior point of X. This 
shows that, whenever u ∈ X °, some ball B about u is contained in X °. Thus X ° is 
an open set. , 

2-4.10. Definition. For a subset X ⊆ Rn, a point u ∈ Rn is called a closure point 
of X if every ball about u contains some point of X. The set of all closure points 
of X is called the closure of X and is denoted by X . 

Clearly, a point of a set must be a closure point of it (X ⊆ X ) but not con-
versely: In R2, the point u = (0,1) does not belong to the ball X = {x ∈ R2 : ||x || < 
1} because ||u || = 1. Now, any ball {x ∈ R2 : ||x _ u || < r} about u contains the 
point v = (0,1_ s), where 0 < s < min {1, r}, because ||v _ u || = ||(0, s)|| = |s| = s < 
r. But this point v also belongs to the set X, because ||v || = |1_ s | = 1_ s < 1. 
Thus any ball {x ∈ R2 : ||x _ u || < r} about u contains a point of X, whereby u is 
seen to be a closure point of X, though it does not belong to X. 

A closed set is one that contains each of its closure points. To see why, sup-
pose first that X ⊆ Rn contains each of its closure points. We shall demonstrate 
that the complement X c is open. With this in view, consider any v ∈ X c. Then v is 
not a closure point and hence there exists a ball about v containing no point of X, 
i.e., is a subset of X c. This means X c is open. Suppose next that X c is open and u 
is a closure point of X. We shall demonstrate that u ∈ X. If not, then some ball 
about u is contained in X c and therefore contains no point of X; this contradicts 
the hypothesis that u is a closure point of X. 
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As noted before, it is always true that X ⊆ X ; we have just proved that X is 
closed if and only if X ⊇ X . Therefore X ⊆ Rn is closed if and only if X = X . 

2-4.11. Proposition. The closure of a set is closed. 
Proof. Let X ⊆ Rn. We must show that the complement of the closure X  is open. 
Accordingly, consider any u ∈ (X )c. Then u is not a closure point and therefore 
some ball B about u contains no point of X, which means B is a subset of X c. 
Proposition 2-4.3 shows that, for every y ∈ B, there is a ball about y that is con-
tained in B and hence in X c, thus ensuring that no y ∈ B is a closure point of X, 
i.e., y ∈ B ⇒ y ∈ (X )c. This shows that, whenever u ∈ (X )c, some ball B about u is 
contained in (X )c. Thus (X )c is an open set. , 

2-4.12. Definition. The boundary ∂X of a subset X ⊆ Rn is the set X\X º of all 
points in the closure of X that do not belong to its interior. 

It is immediate from this definition that x ∈ ∂X if and only if every ball 
about x contains a point of X as well as a point of the complement X c. 

2-4.13. Example. As noted in Example, 2-4.6(b), X = {x ∈ R2 : ||x || ≤ 1} is 
closed and hence is its own closure X . It has also been recorded in Example 2-
4.8(a) that X º = {x ∈ R2 : ||x || < 1}. Therefore, the boundary is ∂X = {x ∈ R2 : ||x || 
= 1}. 

2-4.14. Proposition. The boundary of any set is closed. 
Proof. For any X ⊆ Rn, the closure X  is closed [Proposition 2-4.11] and the inte-
rior X º is open [Proposition 2-4.9]. By 2-4.P4, the difference ∂X = X \X º is 
closed. , 

It follows from this Proposition and Example 2-4.13 that {x ∈ R2 : ||x || = 1} 
is closed. A direct proof using Proposition 2-4.5 is left to the reader in 2-4.P7. 

Problem Set 2-4 

2-4.P1. Show that a union of two closed sets is closed and that the intersection 
of any family of closed sets is closed. 

2-4.P2. Show that a ball {x ∈ Rn : ||x _ a || < r} is not a closed subset of Rn. 

2-4.P3. Suppose X ⊆ Rn is a subset for which there exists some u ∈ Rn and some 
M > 0 satisfying ||x _ u|| ≤ M for every x ∈ X. Show that X is bounded. 

2-4.P4. Let U ⊆ Rn be open and F ⊆ Rn be closed. Show that the difference set 
U\F ⊆ Rn is open and the difference set F\U is closed. 
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2-4.P5. Show that the interior of a set is the union of all open sets contained in 
that set and that the closure is the intersection of all closed sets containing that 
set. 

2-4.P6. Show that x ∈ Rn is a closure point of a subset X ⊆ Rn if and only if some 
sequence in X converges to x. 

2-4.P7. Using Proposition 2-4.5, but not concepts of interior, closure or boun-
dary, show that {x ∈ R2 : ||x || = 1} is closed. 

2-4.P8. Show that (_1,0) is a boundary point of E = {(x1 ,x2) ∈ R2 : _1 ≤ x1 ≤ 2} 
and that (1,0) is an interior point of {(x1 ,x2) ∈ R2 : 0 ≤ x1 ≤ 2}. 

2-4.P9. For any F ⊆ Rn, show that F
_

 = F ∪∂F = F°∪∂F. 

2-5 Compact and Connected Subsets 

The notion of compactness, which plays a significant role in analysis, was 
introduced into mathematics by M. Fréchet. However, he was working in a 
much more general framework of ideas than of Euclidean spaces. 

One of the distinguishing characterisations of a bounded closed subset of R 
is that any sequence in it has a subsequence converging to a limit belonging to 
that subset. Another characterisation of such a subset is that any ‘open cover’ of 
it contains a finite subcover. In this section we shall prove the above characteri-
sations for any bounded closed subset of Rn. We begin with the following 
lemma. 

As in Proposition 2-2.8, we shall denote the jth component of the pth term 
xp of a sequence {xp}p≥1 by x( p)

j . 

2-5.1. Lemma. Let X ⊆ Rn be bounded and suppose all terms of the sequence 
{xp}p≥1 belong to X. Then the sequence has a subsequence which is convergent, 
though its limit may not belong to X. 
Proof. For each j, 1 ≤ j ≤ n, consider the real sequence formed by the jth compo-
nents of the terms xp , i.e., {x( p)

j}p≥1 . Since |x( p)
j | ≤ ||xp ||, we know that each of 

them is a bounded sequence in R. By the Bolzano–Weierstrass theorem (see 
Berberian [3; Proposition 3.5.9]), the first sequence, namely {x( p)

1}p≥1 , has a 
subsequence {x( pq)

1}q≥1  that converges to some limit in R. Now, considering 
only those points of the original sequence {xp} which are numbered by pq , we 
obtain a subsequence {xpq

} of the original sequence, in which {x( pq)
1}q≥1 is con-

vergent. Next, consider the sequence {x( pq)
2}q≥1 , that is, the sequence of second 

components of the latter sequence {xpq
}. We can find a subsequence of the sub-
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sequence {xpq
} for which the sequence formed by its second components con-

verges. Note that the sequence formed by its first components is a subsequence 
of {x( pq)

1}q≥1 and therefore converges; thus the sequences formed by its first 
components and by its second components both converge. Repeating this proce-
dure successively n times, we arrive at a subsequence of the given sequence {xp} 
for which all the sequences of the components of its points are convergent. Since 
convergence in Rn is equivalent to componentwise convergence [Proposition 2-
2.8], the last mentioned subsequence of {xp}p≥1 has a limit in Rn. , 

2-5.2. Theorem. For a subset K ⊆ Rn to be bounded as well as closed, it is ne-
cessary and sufficient that every sequence with all its terms belonging to K have 
a convergent subsequence, the limit of which also belongs to K. 

Proof. First suppose K ⊆ Rn to be bounded as well as closed, and consider any 
sequence with all its terms belonging to K. Since K is bounded, the sequence has 
a convergent subsequence [Lemma 2-5.1], and since K is closed, the limit be-
longs to K [Proposition 2-4.5]. 

Conversely, suppose K ⊆ Rn is either not bounded or not closed. In the lat-
ter case, there exists a convergent sequence with all terms belonging to K but the 
limit is not in K [Proposition 2-4.5]; in particular, there is a sequence with all 
terms belonging to K but having no convergent subsequence whose limit be-
longs to K. In the former case, for each p ∈ N, there exists some xp ∈ K such that 
||xp|| ≥ p. The sequence {xp}p≥1 then has all terms belonging to K, but no subse-
quence {xpq

}q≥1 can be convergent because it is not bounded; in fact, it satisfies 
||xpq

|| ≥ pq ≥ q. , 

2-5.3. Proposition. Let K ⊆ Rn be bounded and ε be any positive number what-
soever. Then there is a finite number of ε-balls centred at points of K such that 
their union contains K. 

Proof. Suppose this is not so. Then the union of a finite number of ε-balls cen-
tred at points of K can never contain K. So, take any vector x1 ∈ K. The ε-ball B1 
about x1 cannot contain K and so there exists x2 ∈ K such that x2 ∉ B1 , i.e., 
||x2

_ x1|| ≥ ε. Let B2 be the ε-ball about x2 . Then the union B1∪B2 of finitely 
many (two, of course) ε-balls cannot contain K. So, there exists x3 ∈ K such that 
x3 ∉ B1∪B2 , i.e., ||x3

_ x1|| ≥ ε , ||x3
_ x2|| ≥ ε . We can keep proceeding in this 

manner and obtain a sequence {xp}p≥1 of points in K having the property that 

p > q ⇒ ||xp
_ xq|| ≥ ε .  

But this property guarantees that no subsequence can be a Cauchy sequence and 
hence that no subsequence can converge. Since all terms of {xp}p≥1 belong to the 
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bounded set K, Lemma 2-5.1 is contradicted. Therefore we are led to the conclu-
sion that our supposition is false, i.e., there exists a finite number of ε-balls 
centred at points of K such that their union contains K. , 

The phenomenon of a family of sets, finite or otherwise, whose union con-
tains a given set needs to be studied further. Although the considerations we are 
about to enter into may seem outlandish at first, they are intimately connected 
with other ideas here and will be needed in Proposition 7-4.9. We introduce 
some terminology. 

2-5.4. Definition. For any subset X ⊆ Rn, a family U of subsets of Rn whose un-
ion contains X is called a cover of (or covering of) X. If every set in the family 
is open, then the cover is said to be an open cover (or open covering). A sub-
family of U whose union also contains X is called a subcover of U (or 
subcovering of U ). 

It is convenient to rephrase ‘U is a cover of X’ by saying ‘U covers X’. Also, 
the phrase ‘there is a subcover of U’ is usually recast as ‘U contains a subcover’. 

2-5.5. Examples. (a) Let X = Rn. Then the family U consisting of the sets 

{x ∈ Rn : ||x || ≤ p}, p ∈ N, 

is a cover of X. The subfamily {x ∈ Rn : ||x || ≤ 2p}, p ∈ N, also covers X and is 
therefore a subcover of U. The family {x ∈ Rn : ||x || < p}, p ∈ N is an open cover 
of X and its subfamilies 

{x ∈ Rn : ||x || < 7p}, p ∈ N, and {x ∈ Rn : ||x || < p2}, p ∈ N, 

are subcovers because they also cover X. 
(b) Let X = {x ∈ Rn : ||x || ≤ 1}. Then the family U consisting of the sets 

{x ∈ Rn : ||x || < 1_ 1
1p + }, p ∈ N, 

is not a cover of X because their union does not contain the points of X for which 
||x || = 1. If we enlarge the family by including the set 

{x ∈ Rn : 9
10 < ||x || < 101

100}, 

then the enlarged family is an open cover (union contains all elements of X and 
more). The open cover contains a finite subcover, for instance, the subfamily 
consisting of the two sets 

{x ∈ Rn : ||x || < 1_ 1
11 } and {x ∈ Rn : 9

10 < ||x || < 101
100}. 
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(c) Let X = {x ∈ Rn : ||x || < 1}. Then the family U consisting of the sets 

{x ∈ Rn : ||x || < 1_ 1
1p + }, p ∈ N, 

is an open cover of X. This open cover contains no finite subcover. The open 
covers in part (a) also contain no finite subcovers. 

2-5.6. Definition. A set K ⊆ Rn is said to be compact if every open cover of it 
contains a finite subcover. 

2-5.7. Theorem. Heine–Borel: A set K ⊆ Rn is compact if and only if it is 
bounded as well as closed. 

Proof. We prove the ‘only if’ part first. Let K ⊆ Rn be compact and {xp}p≥1 be a 
sequence with all its terms belonging to K. We shall show that it has a subse-
quence converging to a vector belonging to K. 

Suppose this is not so. Then no vector x ∈ K is the limit of a subsequence. 
By Proposition 2-2.11, given any x ∈ K, there exists ε > 0 and some N ∈ N (both 
depending on x) such that no integer p satisfies p ≥ N as well as ||xp

_ x|| < ε . In 
other words, the ε-ball about x can contain xp only if p < N; thus it contains xp 
only for finitely many p (perhaps none). The family of all such balls about x 
with x ∈ K is an open cover of K and, since K has been assumed compact, the 
cover must contain a finite subcover. This means the union of a finite family of 
the balls must contain K and hence contain xp for all p ∈ N. But this is a contra-
diction because each of the finitely many balls contains xp only for finitely many 
p. Therefore our supposition that {xp}p≥1 has no subsequence converging to a 
limit in K must be false. 

It follows by Theorem 2-5.2 that K is bounded as well as closed.  
We now prove the ‘if’ part by contradiction. Assume K to be bounded as 

well as closed and suppose that it has an open cover U containing no finite sub-
cover. By Proposition 2-5.3, there exists a finite family B1 of 2-balls centred at 
points of K that covers K. If the intersection with K of each of the finitely many 
2-balls in B1 can be covered by a finite subfamily of U , then all these finite sub-
families taken together make for a single finite subfamily of U that covers 
K∩(∪B1) = K, which is ruled out by what we have supposed. Therefore, the 
intersection with K of at least one of the 2-balls in B1 , call it B1 , cannot be cov-
ered by a finite subfamily of U. Being bounded, K∩B1 can be covered by a finite 
family B2 of 1

2 -balls centred at points of K∩B1 , according to Proposition 2-5.3. 
By the same argument again, if the intersection with K of each of the finitely 
many 1

2 -balls in B2 can be covered by a finite subfamily of U , then all these 
finite subfamilies taken together make for a single finite subfamily of U that 
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covers K∩(∪B2) ⊇ K∩(K∩B1) = K∩B1 , contrary to our choice of B1 . Therefore 
the intersection with K of at least one of the 1

2 -balls in B2 , call it B2 , cannot be 
covered by a finite subfamily of U. It follows that B2 cannot be covered by a 
finite subfamily of U. Being bounded, K∩B2 can be covered by a finite family of 

2
1
2

-balls centred at points of K∩B2 , according to Proposition 2-5.3. 
Continuing in this manner, we obtain a sequence of 1

1
2p− -balls Bp such that, 

for each p ∈ N, 

Bp cannot be covered by a finite subfamily of U……………(1) 
and 

Bp+1 is centred at a point of K∩Bp.………………………(2) 

Let {xp}p≥1 be the sequence of their centres. By (2), each xp belongs to K and 
||xp+1

_ xp|| < 1
1

2p− . Therefore, for p > q, we have 

||xp
_ xq|| ≤ 

1p

r q

−

=
∑ ||xr+1

_ xr || < 
1p

r q

−

=
∑ 1

1
2r −  < 2

1
2q− , 

which shows that {xp}p≥1 is a Cauchy sequence. By Theorem 2-2.10, it con-
verges and its limit x belongs to K, as K is closed. But U is an open cover of K 
and therefore x ∈ U for some U ∈ U. Since U is open, for some ε > 0, the ε-ball 
centred at x is a subset of U. Now select some p0 ∈ N such that 

||xp0
_ x|| < 2

ε  as well as 0

1
2 p  < 2

ε . 

This integer p0 has the property that 

|| y _ xp0 | | <  0 1
1

2 p −  ⇒ || y _ x|| ≤  || y _ xp0 | | + ||xp0
_ x|| < 2 2

ε ε+  = ε  ⇒ y ∈ U. 

Consequently, the ball Bp0 is covered by the subfamily {U } of U consisting of 
the single set U, which is not possible in view of (1). This contradiction proves 
the converse. , 

The following concept will be needed in Sections 3-3, 3-5 and 4-4. 
2-5.8. Definition. A subset E of Rn is called convex if, whenever a and b are in 
E and λ is any real number such that 0 ≤ λ ≤ 1, the vector b + λ(a _ b), or what 
is the same thing, λa + (1_ λ)b is also in E. 

It is an elementary argument in Rn that any ball is a convex set. 

The following proposition will be needed in Section 4-4. 

2-5.9. Proposition. If a convex set is a union of two disjoint open sets, then one 
of the open sets must be empty. 
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Proof. Let B ⊆ Rn be a convex set. Suppose, if possible, that there exist open 
sets U and V such that 

U∪V = B, U∩V = ∅, U ≠ ∅, V ≠ ∅.…………………(1) 

Since U and V are both nonempty, there exists some a ∈ U and some b ∈ V. By 
convexity of B, we have λa + (1_ λ)b ∈ B whenever 0 ≤ λ ≤ 1. When λ = 1, we 
have λa + (1_ λ)b = a ∈ U . Therefore, {λ ∈ [0,1] : λa + (1_ λ)b ∈ U} is 
nonempty and bounded below by 0. Let λ0  be the infimum of this set. Then 

0 ≤ λ < λ0 ⇒ λa + (1_ λ)b ∉ U.……………………(2) 

Also, λ 0  ∈ [0,1], so that c = λ0a + (1_ λ 0)b ∈ B. 
Suppose c ∈ U. Since b ∈ V and U∩V = ∅, it follows that c ≠ b, and hence 

λ0 > 0. Since U is open, there exists some δ > 0 such that 

||x _ c|| < δ ⇒ x ∈ U.……………………………(3) 

When λ = λ0
_ min{ 0

2
λ ,

2 a b
δ
−

}, we have 0 ≤ λ < λ0  ≤ 1 and 

||λa + (1_ λ)b _ c|| = || (λ _ λ 0)a _ (λ _ λ0 )b|| 

= || (λ _ λ 0)(a _ b)|| = |λ _ λ 0| · || a _ b || 

≤ 2
δ  < δ. 

Therefore by (3), we have λa + (1_ λ)b ∈ U. But by (2), this is not possible, 
because 0 ≤ λ < λ0. This contradiction shows that c ∉ U. 

Now suppose c ∈ V. Since a ∈ U and U∩V = ∅, it follows that c ≠ a, and 
hence λ0 < 1 . Since V is open, there exists some δ' > 0 such that 

||x _ c|| < δ' ⇒ x ∈ V.……………………………(4) 

By definition of infimum, there exists some λ such that 

λ0 ≤ λ < λ0 + 2 || ||a b
′δ
− , 0 ≤ λ ≤ 1 and λa + (1_ λ)b ∈ U.………(5) 

Arguing as before, we can show ||λa + (1_ λ)b _ c|| < δ'. Therefore by (4), we 
have λa + (1_ λ)b ∈ V. In conjunction with (5), this implies λa + (1_ λ)b ∈ 
U∩V, which is not possible, because U∩V = ∅. This contradiction shows that c 
∉ V. Since it was already shown that c ∈ B and c ∉ U, the equality U∪V = B 
stands violated, thereby establishing that (1) can never hold. , 
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The convex sets that come within the purview of the above proposition are 
necessarily open, because a union of open sets is open. However, the basic idea 
carries over to other kinds of sets. The formal definition is as follows: 

2-5.10. Definition. A subset E of Rn is called connected if, among any two 
intersections of open sets with E that are disjoint and have union equal to E, one 
must be empty. 

For an open set E, this is obviously equivalent to saying that among any two 
open sets that are disjoint with union equal to E, one must be empty. 

Problem Set 2-5 

2-5.P1. Show that the union of a finite number of compact subsets of Rn is com-
pact. 

2-5.P2. Show that any ball in Rn is a convex set. 

2-5.P3. Let K ⊆ Rn be compact and {xp}p≥1 be a sequence in K. If x ∈ Rn has the 
property that any subsequence of {xp}p≥1 either converges to x or does not con-
verge at all, show that {xp}p≥1 converges to x. Show also that the hypothesis that 
K is compact cannot be dropped. 

2-5.P4. Show that the set of all points in Rn for which every component is an 
integer is not compact. 

2-5.P5. Show that if a sequence {xp}p≥1 in Rn converges to x, then the set 
{x}∪{xp : p ∈ N} is compact. 

2-5.P6. Show that A = {(x,y) ∈ R2 : x2 _ y2 ≥ 1} ⊆ R2 is disconnected. 

2-6 Continuity 

So far we have seen how the concepts of convergence, open set and compact-
ness can be extended from R to Rn by replacing the absolute value by the norm. 
In this section we shall see that the same can be done with continuity and limits 
of functions defined on subsets of Rn with values in Rm. 

A precise description of continuity of a real-valued function f  at a point x of 
its domain S ⊆ R, with which the reader is undoubtedly familiar, is as follows: 

∀ ε > 0, ∃ δ > 0 such that ξ∈ S, |ξ _ x | < δ ⇒ | f(ξ) _ f(x)| < ε . 
The definition of continuity when S is a subset of Rn and the range is a subset of 
Rm is the same except that absolute value is replaced by norm: 
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2-6.1. Definition. For any subset S ⊆ Rn, a map f : S→Rm is continuous at a 
point x ∈ S if: 

∀ ε > 0, ∃ δ > 0 such that ξ∈ S, ||ξ _ x || < δ ⇒ || f(ξ) _ f(x)|| < ε . 

If we denote ξ _ x by h, so that ξ = x + h, then continuity of f at x can be re-
formulated as 

∀ ε > 0, ∃ δ > 0 such that x + h ∈ S, ||h|| < δ ⇒ || f(x + h) _ f(x)|| < ε . 

It is understood of course that the same symbol || || is being used for the norms 
in Rn and Rm. By Proposition 2-2.6, it makes no difference which norms we use. 
It is useful to reformulate continuity of f  at x in terms of balls as below: 

Given any ε-ball B2 about f(x), some δ-ball B1 about x satisfies f(S∩B1) ⊆ 
B2 . 

A map f : S→Rm which is continuous at each point of its domain S is said to 
be simply continuous, or for emphasis, continuous everywhere. 

Remark. If f  is continuous at a point x, so are || f || and α f, where α is any real 
number; if g is also continuous at x, then the sum f + g and inner product f·g are 
continuous at x. Also, if the composition g f  is defined, f  is continuous at x and 
g is continuous at f(x), then g f  is continuous at x. These easily proven facts are 
called ‘elementary properties’ of continuous functions and will be used freely 
without reference. 

2-6.2. Examples. (a) Perhaps the simplest example of a continuous map from Rn 
to R, other than a constant, is f(x) = xj , the jth component of x ∈ Rn. To prove its 
continuity formally at a point x ∈ Rn, consider any ε > 0. We must show that 
some δ > 0 has the property that 

||h|| < δ ⇒ |(x + h)j
_ xj | < ε, 

i.e., ||h|| < δ ⇒ |hj | < ε . 

One such δ is none other than δ = ε, which is to say that 

||h|| < ε ⇒ |hj | < ε.  

This is true in view of the fact that 

|hj | ≤ ||h||. 

(b) Consider the map from R2 to R defined by f(x,y) = xy. We shall use the 
norm || ||2 on R2, so that ||(h,k)|| = √(h2 + k2). Since |h|,|k| ≤ √(h2 + k2), we have 

| f(x + h,y + k) – f(x,y)| = | kx + hy + hk | ≤ (| x | + | y | + | k |)√(h2 + k2). 

For ||(h,k)|| = √(h2 + k2) ≤ 1, we have |h| ≤ 1 as well as |k | ≤ 1, and hence 

| f(x + h,y + k) – f(x,y)| ≤ (| x | + | y | + 1)√(h2 + k2). 

Therefore, the positive number 
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δ = min 1, | | | | 1x y
⎧ ⎫ε
⎨ ⎬+ +⎩ ⎭

 

has the property that ||(h,k)|| = √(h2 + k2) < δ ⇒ | f(x + h,y + k) – f(x,y)| < ε . 
Note that δ depends upon (x,y) and ε . 
(c) By (a), the functions from R2 to R that map (x,y) into x or into y are both 
continuous. It follows from ‘elementary properties’ of continuous functions that 
the function f discussed in (b) is continuous, as are functions described by poly-
nomials in x and y or by expressions such as ex sin (x + y2). 
(d) The function f on R2 defined by f(x,y) = xy/(x2 + y2) for (x,y) ≠ (0,0) and 
f(0,0) = a (any real number) is not continuous at (0,0). In other words, there 
exists some η > 0 such that no matter what positive δ we take, some (h,k) ∈ R2 
satisfies 

||(h,k) _ (0,0)|| < δ, but | f(h,k) _ f(0,0)| ≥ η . 

We shall use the norm || ||1 on R2, so that ||(h,k)|| = |h| + |k |. To begin with, let b 

be a real number such that b/(1 + b2) ≠ a and let 

2η = | 21
b ab −+ | > 0. 

For (h,k) = (h,bh), we have 

||(h,k) _ (0,0)|| = ||(h,k)|| = ||(h,bh)|| = (1 + |b |) |h| 
and 

| f(h,k) _ f(0,0)| =  | f(h,k) _ a| = | 2

2 2 2
bh a

h b h
−

+ | = | 21
b ab −+ | = 2η . 

This shows that, if (h,k) ∈ R2 is such that k = bh and 0 < |h| < δ/(1 + |b |), then it 
has the property claimed for it. 

2-6.3. Definition. A limit point of a nonempty subset A ⊆ Rn is an element x ∈ 
Rn (which may or may not belong to the subset) such that, for every δ > 0, the 
ball {t ∈ Rn : || t _ x || < δ} contains at least one element that belongs to the set A 
but is dif ferent from x ; in alternative formulation: for every δ > 0, there exists t 
∈ A for which 0 < || t _ x || < δ. 

An isolated point of a nonempty subset A ⊆ Rn is an element of  Rn which 
belongs to A but is not a limit point of  it. 

Examples of limit points when n = 1 are given in Shirali and Vasudeva [23, 
9-1.2]. Here we mention three examples when n > 1.  

2-6.4. Examples. (a) Let A contain the set obtained from a ball of radius r by 
deleting the centre x, i.e., A ⊇ {t ∈ Rn : 0 < || t _ x || < r}. Then x may or may not 
belong to A but is a limit point of A. This is so because the ball {t ∈ Rn : || t _ x || 
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< δ} contains the element t = x + sh, where h is any element of Rn with ||h|| = 1 
and s is any real number such that 0 < s < min{r,δ}. Here || t _ x || = ||sh|| = s.  
(b) Let A be either the ball {t ∈ Rn : || t|| < r} or the ball {t ∈ Rn : || t|| ≤ r}. Any x 
such that ||x || = r is a limit point. To see why, consider any δ > 0 and let 0 < s < 
min{1, r

δ }. Then the element t = (1 _ s)x satisfies || t|| < r while || t _ x || = ||sx || = 
sr so that 0 < || t _ x || < δ . 
(c) Let A = {(x,y) ∈ R2 : y ≠ 0}. Then for any a ∈ R, (a, 0) is always a limit point. 
In fact, the ball {(x,y) ∈ R2 : ||(x,y) _ (a, 0)|| < δ} contains the point (a, 2

δ ), which 
is different from (a, 0) and belongs to A. 

2-6.5. Definition. Let x be a limit point of  the domain A ⊆ Rn of  a function f  
with values in Rm. An element λ ∈ Rm is called a limit of f  at x if  and only if  for 
every ε > 0, there exists δ > 0 such that  

|| f(x + h) _ λ|| < ε  whenever 0 < ||h || < δ and x + h ∈ A. 

In symbols, 

∀ ε > 0 ∃ δ > 0 ∋ h ∈ Rn, 0 < ||h || < δ and x + h ∈ A ⇒ || f(x + h) _ λ|| < ε. 

The limit of f  at x is also called the limit of f (t) as t→x. 

As in the elementary case, there cannot be two distinct λ with this property, 
the reasons being analogous to why a sequence cannot have two different limits. 
Details are left to the reader, but we note here that the argument uses the fact 
that x is a limit point of A. Thus the limit, if it exists, is unique. Therefore we 
shall henceforth refer to it as the limit of f  at x, and shall denote it by lti→mx f (t). 

As is customary, we also write f (t)→λ as t→x, if it is convenient to do so.  

It is sometimes more convenient to express the above definition without ex-
plicit reference to h by introducing t = x + h: 

∀ ε > 0 ∃ δ > 0 ∋ ∀ t ∈ A, 0 < || t _ x|| < δ ⇒ || f(t) _ λ|| < ε . 

2-6.6. Examples. (a) Let f  be defined on the domain {(x,y) ∈ R2 : y ≠ 0} as 
f(x,y) = x sin (1/y). As seen in Example 2-6.4(c), (0,0) is a limit point of the do-
main. We shall show that the limit of f at (0,0) is 0. Indeed, 

|| f(x,y) _ 0|| = |x sin (1/y)| ≤ |x | ≤ ||(x,y) _  (0,0)||. 

Therefore, for any ε > 0, the positive number δ = 2
ε  has the property that 

||(x,y) _  (0,0)|| < δ ⇒ || f(x,y) _ 0|| ≤ 2
ε  < ε. So, the limit is 0, as claimed. 

(b) The real function f defined by f(x,y) = xy/(x2 + y2) for (x,y) ≠ (0,0) has no 
limit at (0,0). In other words, for any real number a, there exists some η > 0 
such that no matter what positive δ we take, some (h,k) ∈ R2 satisfies 
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||(h,k) _ (0,0)|| < δ but | f(h,k) _ a| ≥ η . 

The argument is exactly as in Example 2-6.2(d). 
Note however that for each y ≠ 0, l

x
i
→
m

0
f(x,y) = 0, so that the ‘repeated limit’ 

l
y
i
→
m

0
[l

x
i
→
m

0
f(x,y)] 

exists and is 0. The same is true of the other repeated limit in which the limit as 
y→0 is taken first. [Cf. 2-6.P2]. 

2-6.7. Proposition. Let x be a limit point of  the domain A ⊆ Rn of  a function f  
with values in Rm. Denote the component functions of f  by fj , 1 ≤ j ≤ m, which is 
to say, 

f(t1, t2 ,…, tn) = ( f1(t1, t2 ,…, tn), f2(t1, t2 ,…, tn),…, fm(t1, t2 ,…, tn)). 

Then lti→mx f(t) = λ ∈ Rm if and only if  lti→mx fj(t) = λj for each j.  

Proof. For any choice of norm in Rm, we have | fj(t) _ λj| ≤ || f(t) _ λ||. Therefore, 
if lti→mx f(t) = λ, it follows that lti→mx fj(t) = λj for each j. 

For the converse, suppose lti→mx fj(t) = λj for each j and consider any ε > 0. 
For each j, there exists δj such that 

0 < || t _ x|| < δj ⇒ | fj (t) _ lti→mx fj(t)| < ε . 

Set δ = min{δ1 ,…,δm} > 0. Then 

0 < || t _ x|| < δ ⇒ | fj (t) _ lti→mx fj(t)| < ε for each j 

⇒ max {| f j (t) – λj| : 1 ≤ j ≤ m} < ε 

⇒ || f(t) – λ||∞ < ε . 

By Proposition 2-2.6, such a δ exists for the other two norms as well. ,  

2-6.8. Examples. (a) Let f  map {(x,y) : y ≠ 0} into R2 as follows: 

f(x,y) = (x sin (1/y), 1 + y–3 exp(–1/y2)). 

Since x sin (1/y) and 1 + y–3 exp(–1/y2) have limits 0 and 1, respectively, at (0,0), 
it follows by the first part of Proposition 2-6.7 that f  has limit (0,1) at (0,0). In 
other words, f(x,y)→(0,1) as (x,y)→(0,0). 

(b) Let f  map {(x,y) : (x,y) ≠ (0,0)} into R2 as follows: 

f(x,y) = (xy/(x2 + y2),1). 
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Here xy/(x2 + y2) has no limit at (0,0), as seen in Example 2-6.6(b). Therefore it 
follows by the second (converse) part of Proposition 2-6.7 that f  has no limit at 
(0,0). 

2-6.9. Remark. Suppose f  is a function with domain A having a limit point x, 
and lti→mx f(t) = λ. Let fB denote the restriction of f  to a subset B of A, and sup-
pose x is a limit point of the subset B as well. Then it is clear that lti→mx fB (t) = λ. 
Indeed, for every ε > 0, there exists δ > 0 such that 

0 < ||h || < δ and x + h ∈ A ⇒ || f(x + h) – λ|| < ε. 

Since B ⊆ A, it is certainly true that 

0 < ||h || < δ and x + h ∈ B ⇒ || f(x + h) – λ|| < ε 
and hence that 

0 < ||h || < δ and x + h ∈ B ⇒ || fB (x + h) – λ|| < ε. 

Since x is a limit point of B, this means that lti→mx fB (t) = λ. In practice, it is too 
cumbersome to introduce the notation for the subset B and the restriction fB . 
These will be taken as understood and no explicit reference to the content of this 
remark will be made. 

2-6.10. Proposition. Suppose that x is a limit point of  the domain A ⊆ Rn of  an 
Rm valued function f  and that x ∈ A. Then f  is continuous at x if  and only if  
lti→mx f(t) exists and equals f(x). In case x is an isolated point of  A, every Rm val-
ued function f  with domain A is continuous at x. 

Proof. The first part is an immediate consequence of the definitions of continui-
ty and of limit. Suppose x is an isolated point of A. Then x ∈ A and there exists δ 
> 0 such that the ball {t ∈ Rn : || t _ x || < δ} contains no element of A that is dif-
ferent from x. Therefore ||h || < δ, x + h ∈ A ⇒ x + h = x ⇒ | f(x + h) – f(x)| = 0. 
Consequently, for any ε > 0, 

|| f(x + h) – f(x)|| < ε whenever ||h || < δ and x + h ∈ A. 

Thus, f  is continuous at x. , 

While working with the definition of limit, we can usually omit writing 
‘x + h ∈ A’, because the subsequent reference to f(x + h) makes it clear that x + h 
is intended to be in the domain of f . 

Remark. If lim
t x→

f(t) exists, then so do lim
t x→

|| f(t)|| and lim
t x→

(α f ), where α is any 
real number; moreover lim

t x→
|| f(t)|| = || lim

t x→
f(t)|| and lim

t x→
(α f ) = α lim

t x→
f(t). If 

lim
t x→

g(t) also exists, then lim
t x→

( f + g) and lim
t x→

( f ·g) exist as well; moreover, 

lim
t x→

( f + g) = lim
t x→

f(t) + lim
t x→

g(t) and lim
t x→

( f ·g) = ( lim
t x→

f(t))· ( lim
t x→

g(t)). 
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These results about limits of sums, products, dot products and so on, are proved 
just as easily as in the case of R. So also the results that (a) if lti→mx f(t) exists, 
then f  is bounded near x, and (b) if the lti→mx f(t) ≠ 0, then || f || is greater than 
some positive number near x except possibly at x. They will therefore be taken 
for granted and used without further ado. Proofs in the case of R may be found 
in Shirali and Vasudeva [23, Propositions 9-1.7 and 9-1.9]. 

A function f  defined on a subset S ⊆ Rn with values in Rm is continuous at x 
∈ S if for every ε > 0, there exists a δ > 0 such that || f(ξ) _ f(x)|| < ε  whenever 
||ξ _ x || < δ. In general, we cannot expect that for a fixed ε the same value of δ 
will serve equally well for every x in S. This might happen. If it does, the func-
tion is said to be uniformly continuous on S. More precisely, we have the 
following definition.  

2-6.11. Definition. For any subset S ⊆ Rn, a map f : S→Rm is uniformly conti-
nuous on S if: 

∀ ε > 0 ∃ δ > 0 ∋ ξ ∈ S, x ∈ S, ||ξ _ x || < δ ⇒ || f(ξ) _ f(x)|| < ε . 

2-6.12. Examples. (a) Any constant function is trivially uniformly continuous. It 
is just as trivial to argue that the identity map I such that I(x) = x for all x∈ Rn is 
uniformly continuous (take δ = ε). 

(b) The function f  on S = Rn given by f(x) = ||x || is uniformly continuous. This 
follows from the fact that |||x|| _ ||y||| ≤ ||x _ y || , whichever norm || || we may 
use. 
(c) Functions that are not uniformly continuous on Rn can be made up at will 
from the known instances in the single variable case by employing 2-6.P9. 

2-6.13. Theorem. A function continuous at each point of a compact subset of  Rn 
is bounded. If real-valued, it has a maximum value and a minimum value. 
Proof. Let K ⊆ Rn be compact and f :K→Rm be continuous at each point of K. If 
f  is not bounded, then for each p ∈ N, there exists xp ∈ K such that || f(xp)|| > p. 
The sequence {xp}p≥1 then satisfies 

xp ∈ K for each p ∈ N…………………………(1) 
and 

|| f(xp)|| > p for each p ∈ N.………………………(2) 

By (1), Theorems 2-5.2 and 2-5.7, the sequence {xp}p≥1 has a convergent subse-
quence {xpq

}q≥1 with limit x belonging to K. Since f is continuous, it follows that 
the sequence { f(xpq

)}q≥1 converges to f(x) [see 2-6.P7] and is therefore bounded. 
But this contradicts (2). Therefore f  must be bounded. 

Now let M = sup{ f(x) : x ∈ K}. If f(x) < M for all x ∈ K, then 1/(M _ f(x)) 
defines a continuous function on K that has no upper bound, in contradiction 
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with what has just been proved. Therefore f(x0) = M for some x0 ∈ K, so that f  
has a maximum value, namely, M. Similar considerations show that f also has a 
minimum value. , 

2-6.14. Theorem. A function continuous at each point of a compact subset of  Rn 
is uniformly continuous on it. 
Proof. Let K ⊆ Rn be compact and f :K→Rm be continuous at each point of K. If 
f  is not uniformly continuous, then 

∃ ε > 0 such that ∀ δ > 0, some ξ ∈ K, x ∈ K satisfy 

||ξ _ x || < δ and || f(ξ) _ f(x)|| ≥ ε . 

Taking δ = 1
p , where p ∈ N, we get sequences {xp}p≥1 and {ξp}p≥1 such that 

xp ∈ K for each p ∈ N,……………………………(1) 

ξp ∈ K for each p ∈ N,……………………………(2) 

||ξp
_ xp|| < 1

p  for each p ∈ N…………………………(3) 
and 

|| f(ξp) _ f(xp)|| ≥ ε  for each p ∈ N.………………………(4) 

By (1) and Theorems 2-5.2, 2-5.7, the sequence {xp}p≥1 has a convergent subse-
quence {xpq}q≥1 with limit x belonging to K. By (2) and Theorems 2-5.2, 2-5.7, 
the sequence {ξpq}q≥1 has a convergent subsequence {ξpqr

}r≥1 with limit ξ belong-
ing to K. The corresponding subsequence {xpqr

}r≥1 of {xpq}q≥1 then also converges 
to x. It follows from (3) that 

x = ξ………………………………………(5) 

and from the continuity of f that the sequences { f(ξpqr
)}r≥1 and { f(xpqr

)}r≥1 con-
verge to f(ξ) and f(x), respectively [see 2-6.P7]. In view of (4), we have 

|| f(ξpqr
) _ f(xpqr

)|| ≥ ε  for each r ∈ N 

and hence || f(ξ) _ f(x)|| ≥ ε , contradicting (5). Therefore f  must be uniformly 
continuous. , 
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Problem Set 2-6 

2-6.P1. Let x be a limit point of  the domain A ⊆ Rn of  a function f  with values 
in Rm. Suppose y ∈ Rm and δ, Kare positive numbers such that || f(t) _ y|| ≤ K 
whenever 0 < ||t _ x|| < δ and t ∈ A. If lti→mx f(t) exists, show that || lti→mx f(t) _ y|| ≤ K. 

2-6.P2(a). Suppose x = (a,b) is a limit point of the domain S ⊆ Rn×Rm of an Rk 
valued function f and that lti→mx f(t) exists. Since t ∈ Rn×Rm, it will be convenient 
to denote t by (u,v), where u ∈ Rn and v ∈ Rm. Assume there exists a positive 
number μ such that l

v
i
→
m

b
f (u,v) exists whenever ||u _ a|| < μ. Show that 

l
u
i
→
m

a
[l

v
i
→
m

b
f(u,v)] exists and is equal to lti→mx f(t). Is it true that if there also exists a 

positive number ν such that l
u
i
→
m

a
f(u,v) exists whenever ||v _ b|| < ν, then the 

‘repeated’ limits l
u
i
→
m

a
[l

v
i
→
m

b
f(u,v)] and l

v
i
→
m

b
[l

u
i
→
m

a
f(u,v)] both exist and are equal 

to lti→mx f(t)? 

(b) Verify the result of part (a) for 

f(x,y) = 
1 sin( ) 0, 0

0 0 or 0.

xy x yx

x y

≠ ≠

= =

⎧
⎪
⎨
⎪⎩

 

2-6.P3. For the function f  of Example 2-6.6(a), show that l
y
i
→
m

0
[l

x
i
→
m

0
f(x,y)] does 

not even make sense even though the other repeated limit exists and agrees with 
the limit as (x,y)→(0,0). 

2-6.P4. Show that any function f : R2→R such that 

f(x,y) = 
6 4 2 2 4 6

2 2 3
9 9

( )
x x y x y y

x y
+ − −

+
 when (x,y) ≠ (0,0) 

cannot be continuous at (0,0), whatever the value of f(0,0) may be. 

2-6.P5. For the function f :R2→R defined by f(x,y) = x2y, prove continuity at 
(x,y) by showing how to find δ > 0 for a given ε > 0 so as to ensure that ||(h,k)|| 
= √(h2 + k2) < δ ⇒ | f(x + h,y + k) _ f(x,y)| < ε . 

2-6.P6. Let f :R2→R be defined as follows: 
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f(x,y) = 

3

2 2 ( , ) (0,0)

0 ( , ) (0,0).

x x y
x y

x y

≠
+

=

⎧
⎪
⎨
⎪
⎩

 

Show that f  is continuous. 

2-6.P7. Show that a map f :S→Rm, where S ⊆ Rn, is continuous at a point x ∈ S if 
and only if for any sequence {sp}p≥1 in S converging to x, the ‘image’ sequence 
{ f(sp)}p≥1 converges to f( lp→im∞ sp). 

2-6.P8. (a) Show that the map f :R2→R2 given by f(x1,x2) = (|x1|,x2) is conti-
nuous. 
(b) For the (continuous) map f :R2→R2 given by f(x1,x2) = (|x1|,x2), give an ex-
ample of a boundary point u of E = {(x1 ,x2) ∈ R2 : _1 ≤ x1 ≤ 2} such that f(u) is 
an interior point of f(E ). 
(c) Let E ⊆ U ⊆ Rn, where U is open, and let f :U→Rm be continuous. If f  is 
injective, show that u ∈ U∩∂E ⇒ f(u) ∈ ∂( f(E)), i.e., f(U∩∂E) ⊆ ∂( f(E)). 

2-6.P9. Show that a map f :S→Rm, where S ⊆ Rn, is uniformly continuous on S 
if and only if each component function fj is uniformly continuous on S. 

2-6.P10. Let g:R→ R not be uniformly continuous. Show that the function 
f :Rn→Rm defined by f(x1 ,…,xn) = (g(x1),0,…,0) is also not uniformly conti-
nuous. 

2-6.P11. Show that a map f :S→Rm, where S ⊆ Rn, is continuous everywhere if 
and only if for any open set V ⊆ Rm, the inverse image 

f
_1(V ) = {x ∈ S : f(x) ∈ V} (by definition) 

is the intersection of S with some open set U ⊆ Rn. 

2-6.P12. Let K ⊆ Rn be compact and f :K→Rm be continuous at each point of K. 
Show that f(K ) ⊆ Rm is compact. (This is usually paraphrased as: A continuous 
image of a compact set is compact.) 

2-6.P13. Let X ⊆ Rn be bounded and f :X→Rm be uniformly continuous on X. 
Show that f  is bounded. 

The result of the next problem can be obtained as a consequence of the follow-
ing two results: (1) A continuous image of a connected set is connected (2) A 
connected subset of R is an interval. But here we ask for a direct proof. The re-
sult will be needed for 6-4.P7. 

2-6.P14. Let X ⊆ Rn be connected and f :X→R be continuous. Show that f(X ) is 
an interval. 

2-6.P15. If the function f : [a,b]×[c,d]→R is continuous and g:[a,b]→R is Rie-
mann integrable, then 
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F(y) = b
a∫ g(x) f(x,y) dx 

is defined for every y ∈ [c,d] and the function F thus defined is continuous on 
[c,d]. 

2-6.P16. Let x be a limit point of  the domain A ⊆ Rn of  a function f  with values 
in Rm. Show that f  cannot have two distinct limits at x. 

2-6.P17. [Needed in Proposition 7-4.13] The distance of a point x ∈ Rn from a 
nonempty subset S ⊆ Rn is defined as d(x,S) = inf{||x _ s|| : s ∈ S}. Show that it 
is a continuous function of x. 

2-6.P18. [Needed in 3-4.P23] Let 0 < α < 1 and Φ:[0,1]×[0,1]→R3 be defined as 

Φ1(u,v) = (1 (2 1)sin ) cos 2u v v− α − π π , Φ2(u,v) = (1 (2 1)sin )sin 2u v v− α − π π , 
Φ3(u,v) = (2 1)cosu vα − π . 

The range of Φ is known as the ‘Möbius band’. Show that 
(a) Φ(u,1) = Φ(1_ u, 0) for all u ∈ [0,1]; 
(b) if (u,v) ≠ (u',v') but Φ(u,v) = Φ(u',v'), then u = 1_ u' and one among v,v' is 

0 while the other is 1. 

2-7 Norm and Invertibility of a Linear Map 

So far, we have discussed limits and continuity in Rn on the basis of the norm, 
which played a role analogous to that of absolute value in R. In this section we 
introduce a similar concept in the set L(Rn,Rm) of all linear maps from Rn to Rm. 
Although it is defined in a manner that bears little resemblance to the definition 
of norm in Rn, it is denoted by the same symbol and plays a similar role. In par-
ticular, we can speak of convergence, open set, continuity and the like in the set 
of all linear maps. What is more, the norm in L(Rn,Rm) has a relation to compo-
sition of linear maps, because of which its usefulness extends beyond being a 
mere analogue of the norm in Rn. 

We shall obtain a few facts about the set L(Rn,Rm); for example, that each 
element of it is bounded on the set {x ∈ Rn : ||x|| ≤ 1}. As discussed earlier, an 
element of L(Rn,Rn) can have an inverse in the same set. We shall show, among 
other things, that the subset consisting of elements having inverses is open. One 
of the results below is that, not only does the identity have an inverse (namely, 
itself) but also elements ‘close to’ the identity have inverses. We shall also prove 
that inversion is continuous. 

2-7.1. Theorem. For any linear map A:Rn→Rm, sup {||Ax|| : ||x|| ≤ 1} is finite 
and does not exceed 

j
Σ
=

n

1
||Aej || , where e1 , e2 , … , en is the standard basis of Rn. 
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Proof. For any x = x1e1 + x2e2 + … + xnen ∈ Rn (where x1 ,x2 ,… ,xn ∈ R, of 
course), we have |xj| ≤ ||x|| for 1 ≤ j ≤ n regardless of which of the three equiva-
lent norms is used. It follows that 

||Ax|| ≤ ||
 j
Σ
=

n

1
xj (Aej)|| ≤ 

j
Σ
=

n

1
|xj | ||Aej || ≤ 

j
Σ
=

n

1
||x|| ||Aej ||  = ||x|| (

 j
Σ
=

n

1
||Aej ||). 

Therefore, ||x|| ≤ 1 ⇒ ||Ax|| ≤ 
j
Σ
=

n

1
||Aej ||. It follows that 

sup {||Ax|| : ||x|| ≤ 1} ≤ 
j
Σ
=

n

1
||Aej || . , 

2-7.2. Definition. The norm of a linear map A:Rn→Rm is 

sup{||Ax|| : ||x|| ≤ 1} 

and is denoted by ||A||. 

Since x/||x || has norm 1 when x ≠ 0, it follows from the above definition that 

( )x
xA A≤  and hence that ||Ax || ≤ ||A || ||x || for x ≠ 0. However, this inequality 

holds trivially when x = 0. Therefore, we conclude that 

||Ax || ≤ ||A || ||x || whenever x ∈ Rn. 

This inequality will be used without quoting any reference. 

One can now reformulate Theorem 2-7.1 as saying that the norm of a linear 
map A is always a finite real number, which is nonnegative of course, and that it 
does not exceed 

j
Σ
=

n

1
||Aej || , where e1 , e2 , … , en is the standard basis of Rn. 

Note that ||A || = 0 if and only if A = O. 

2-7.3. Examples. (a) Recall the example of a linear map A:Rn→Rm with n = m = 
1 given in Example 2-3.2(a), which was x→ax, where a ∈ R is fixed. Since ||ax || 
= |ax | = |a||x| = |a| ||x||, the norm of this linear map, which by definition, is 

sup {||ax || : ||x|| ≤ 1}, 
works out to be |a|. 
(b) For the linear map of R into Rm given by x→ xb, where b ∈ Rm is fixed (Ex-
ample 2-3.2(b)), the norm is ||b || . This can be seen from the equality ||xb|| = 
|x | ||b || = ||x || ||b || , which has the immediate consequence that sup{||xb|| : ||x || ≤ 
1} = ||b || . 

(c) For the linear map from Rn to R given in Example 2-3.2(c), which was 
x→ z ·x (dot product), where z ∈ Rn is fixed, the norm is ||z ||2  provided that we 
use the norm || ||2 in Rn. To see why, note that ||z·x|| ≤ ||z ||2 ||x ||2 , by the Cauchy–
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Schwarz inequality, and that when x = z/||z ||2 , assuming z ≠ 0, we have ||x ||2  = 1 
while ||z·x|| = ||z || 2 . In case z = 0, it is clear that the norm of the linear map 
x→ z ·x is 0, while ||z ||2  is also 0. 

(d) Let A:R2→R2 be the linear map A(x1 , x2) = (x1 + x2 , 0). Suppose that in R2 
we use the norm ||(x1,x2)|| = |x1| + |x2|. Then ||A(x1,x2)|| = |x1 + x2 | + 0 ≤ |x1| + 
|x2| = ||(x1,x2)||. Therefore ||A|| = sup{||Ax|| : ||x|| ≤ 1} ≤ 1. But since ||A(1,0)|| = 
|1 + 0| + 0 = 1 = ||(1,0)||, we actually have ||A|| = 1. Next, suppose instead that we 
use the norm ||(x1,x2)|| = max{|x1|, |x2|}. Then ||A(x1,x2)|| = max{|x1 + x2 |, 0} = 
|x1 + x2 | ≤ 2max{|x1|, |x2|} = 2||(x1,x2)||. Therefore ||A|| = sup{||Ax|| : ||x|| ≤ 1} ≤ 
2. But since ||A(1,1)|| = max{|1 + 1|,0} = 2 = 2||(1,1)||, we actually have ||A|| = 2. 
This illustrates how the norm of A can depend on which norm is being used in 
the domain and which in the range space. 

(e) Let A:R2→R2 be the linear map A(x1 , x2) = (x1 + x2 , x1
_ x2 ). In the domain 

R2 we shall use the norm ||(x1,x2)|| = max{|x1|, |x2|}, but in the range space R2, 
we shall take ||(y1,y2)|| to be √(y1

2 + y2
2). Then ||A(x1,x2)||2 = (x1 + x2)2 + 

(x1
_ x2 )2 = 2(x1

2 + x2
2) ≤ 4(max{|x1|, |x2|})2. Therefore ||A|| = sup{||Ax|| : ||x|| ≤ 

1} ≤ 2. But since ||A(1,1)|| = √[(1 + 1)2 + 0] = 2 = 2||(1,1)||, we actually have ||A|| 
= 2. 

2-7.4. Theorem. A linear map A:Rn→Rm is uniformly continuous. 

Proof. If ||A|| = 0, then A = O and is therefore uniformly continuous. So, suppose 
||A|| > 0 and consider any two points ξ and x of Rn. By linearity of A, 

||A(ξ) _ A(x)|| = ||A(ξ _ x)|| ≤ ||A|| ||ξ _ x||. 

For any given ε > 0, choose δ = ε/||A||. Then  

||ξ _ x|| < δ ⇒ ||A(ξ) _ A(x)|| < ||A||ε/||A|| = ε. 

Thus A is uniformly continuous. , 

We have noted before that, with regard to addition and multiplication by 
scalars, linear transformations behave like vectors. The next theorem shows that 
they behave like vectors even with regard to the norm. 

2-7.5. Theorem. Suppose A and B are linear maps from Rn to Rm and that λ ∈ 
R. Then 

||A || = 0 ⇔ A = O ; ||A + B|| ≤ ||A || + ||B|| ; ||λA|| = |λ| ||A || . 

Proof. That ||A || = 0 ⇔ A = O  has been noted before and is trivial to prove. 
For any x ∈ Rn with ||x || ≤ 1, 
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|| (A + B)x|| = ||Ax + Bx|| ≤ ||Ax|| + ||Bx || ≤ ||A || + ||B||. 

Therefore ||A || + ||B|| is an upper bound of the set {||(A + B)x || : ||x || ≤ 1}. Thus 
||A + B|| ≤ ||A || + ||B|| . 

Since ||(λA)x || = |λ| ||Ax ||, then the set {||(λA)x | | : ||x || ≤ 1} is obtained from 
{||Ax || : ||x || ≤ 1} by multiplying each number in the latter by |λ | . It follows that 
the sup of the former set is |λ | times that of the latter set (this is an elementary 
consequence of the definition of sup and should have been encountered by the 
reader while studying the concepts of sup and inf). But the two sups are, respec-
tively, ||λA || and |λ | ||A ||, by definition of the norm of a linear map. Therefore 
||λA || = |λ | ||A || . , 

As mentioned in the opening paragraph of this section, the set of all linear 
maps from Rn to Rm will be denoted by the symbol L(Rn,Rm). 

For a sequence {Ap}p≥1 of linear maps, convergence to a limit and the 
Cauchy property are defined analogously to Def. 2-2.7 and Def. 2-2.9. The ele-
mentary properties mentioned for vectors just after Def. 2-2.7 carry over to 
linear maps exactly as they do for vectors. In particular, a convergent sequence 
of linear maps is ‘bounded’. The analogue of Theorem 2-2.10 (Cauchy com-
pleteness) can be obtained without going through anything similar to Proposition 
2-2.8. The following result can be phrased as ‘L(Rn,Rm) is Cauchy complete’. 

2-7.6. Theorem. Any Cauchy sequence of linear maps converges to some linear 
map. 
Proof. Let {Ap}p≥1 be a Cauchy sequence of linear maps Ap:Rn→Rm. We shall 
define a map A:Rn→Rm and argue that it is linear and that lim

p→∞
Ap = A, which is 

to say, for any ε > 0, there exists a natural number N such that 
p ≥ N ⇒ ||Ap

_ A|| < ε. 

In order to define A, consider any x ∈ Rn. The sequence {Ap(x)}p≥1 in Rm is 
Cauchy because ||Ap(x) _ Aq(x)|| = ||(Ap

_ Aq)(x)|| ≤ ||Ap
_ Aq|| ||x ||. But Rm is 

Cauchy complete by Theorem 2-2.10. Therefore {Ap(x)}p≥1 converges to some 
limit in Rm. We define A(x) to be this limit. We have A(x + y) = A(x) + A(y), be-
cause 

A(x + y) = lim
p→∞

Ap(x + y) = lim
p→∞

(Ap(x) + Ap(y)) 

= lim
p→∞

Ap(x) + lim
p→∞

Ap(y) = A(x) + A(y). 

A similar argument shows that A(cx) = cA(x). Thus, A is linear. It remains to 
show that lim

p→∞
Ap = A. 

For any ε > 0, there exists a natural number N such that 
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p ≥ N, q ≥ N ⇒ ||Ap
_ Aq|| < _ε2

_  ⇒ ||(Ap
_ Aq)(x)|| < _ε2

_  for ||x|| ≤ 1 

⇒ ||Ap(x) _ Aq(x)|| < _ε2
_  for ||x|| ≤ 1, 

whence, by taking the limit as q→∞, we find that 

p ≥ N ⇒ ||Ap(x) _ A(x)|| ≤ _ε2
_  for ||x|| ≤ 1 

⇒ ||Ap
_ A|| ≤ _ε2

_  by Def. 2-7.2. 

Thus, lim
p→∞

Ap = A. , 

Since it follows by the usual argument from Theorem 2-7.5 that 
| ||Ap|| _ ||A|| | ≤ ||Ap

_ A||, we can further obtain that lim
p→∞

Ap = A ⇒ lim
p→∞

||Ap|| = 
||A||.  

2-7.7. Theorem. Suppose A:Rn→Rm and B:Rm→Rp are linear maps. Then 

||BA || ≤ ||B || ||A || . 

Proof. Consider any x ∈ Rn with ||x || ≤ 1. If Ax = 0, then (BA)x  = B(Ax) = B0 = 
0 and ||(BA)x || = 0 ≤ ||B|| ||A || . If Ax ≠ 0, then ||Ax || > 0 and the vector Ax / ||Ax || 
has norm equal to 1. Therefore, 

||B(Ax / ||Ax ||)|| ≤ ||B || , 
so that, from the linearity of B, it follows that ||B(Ax)|| ≤ ||B || ||Ax || . But (BA)x = 
B(Ax) and ||Ax || ≤ ||A || (because ||x || ≤ 1). Therefore, 

||(BA)x || ≤ ||B|| ||A || . 
This shows that ||B|| ||A ||  is an upper bound for {||(BA)x || : ||x || ≤ 1}. It follows 
from here that ||BA || ≤ ||B|| ||A || . , 

The preceding theorem is used frequently and it is customary to use it with-
out quoting it or giving any reference. 

2-7.8. Theorem. If {Ap}p≥1 and {Bp}p≥1 are convergent sequences of linear 
maps, then lim

p→∞
(ApBp) = ( lim

p→∞
Ap)( lim

p→∞
Bp). 

Proof. This is proved exactly as in the real case by using the fact that a conver-
gent sequence of linear maps is bounded, together with the following 
consequence of Theorem 2-7.7: 

||ApBp
_ AB|| ≤ ||Ap || ||Bp

_ B|| + ||B|| ||Ap
_ A||. , 

2-7.9. Remarks. (a) Suppose the linear map A ∈ L(Rn,Rm) has matrix [ai j]. As 
noted after the definition of the norm of a linear map, ||A|| ≤ Σj ||Aej|| , where 
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e1 , e2 , … , en is the standard basis of Rn.  In terms of the matrix [ai j] and stan-
dard basis f1 ,  …, fm of Rm, we therefore have 

||A|| ≤ Σj Σi |ai j | || fi ||  =  Σj Σi |ai j | . 

Moreover, by definition of matrix of a linear map, we have ai j = (Aej)i  for any 
i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n). Therefore, 

|ai j | = |(Aej)i | ≤ ||Aej|| ≤ ||A|| ||ei ||  = ||A||.  

The two inequalities displayed above have the following consequence: Suppose 
that A is a mapping from a subset E of Rn into L(Rn,Rm), not necessarily linear, 
and that A(x) has matrix [ai j (x)]. Then A is continuous at a point of E if and only 
if all the mn R-valued functions ai j  are continuous there. Indeed, the hypothesis 
that A maps into L(Rn,Rm) implies that A(x) _ A(y) ∈ L(Rn,Rm) and has matrix 
[ai j(x) _ ai j(y)]; therefore, for any x,y ∈ E, 

||A(x) _ A(y)|| ≤ Σj Σi |ai j (x) _ ai j(y) | 
and 

|ai j (x) _ ai j(y) | ≤ ||A(x) _ A(y)||. 

This is so, irrespective of which norm is used in Rn and Rm. (The norm ||A|| of a 
linear map A is defined in terms of the norms in Rn and Rm and its value there-
fore depends upon the norms chosen in the latter.) 

(b) Now suppose A:E→L(Rn,Rm) is continuous and B ∈ L(Rm,Rp). Then there is 
a map C:E→L(Rn,Rp) given by C(x) = B (A(x)). Since the linearity of B and 
A(x) implies  

||C(x) _ C(y)|| ≤ ||B|| ||A(x) _ A(y)|| for any x,y ∈ E, 

the map C is seen to be continuous. The reader is cautioned that C is not a com-
position of the continuous map A with B, because such a composition is not even 
possible, considering that the domain of B is Rm while the range of A is a subset 
of L(Rn,Rm). Therefore the reason for the continuity of C is not that a composi-
tion of continuous maps is continuous. 

The following proposition shows that linear maps which are ‘close to’ the 
identity map have inverses. 

2-7.10. Proposition. Suppose A ∈ L(Rn,Rn) satisfies ||A|| < 1. Then the map I –
A, where I denotes the identity map given by I(x) = x for all x ∈ Rn, has an in-
verse. Moreover, its norm satisfies ||(I _ A)

_1|| ≤ 1/(1 – ||A|| ). 

Proof. Consider the sequence {Bp}p≥1 in L (Rn,Rn) given by 

Bp = I + A + … + Ap_1.……………………………(1) 
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It satisfies Bp(I _ A) = (I _ A)Bp = I _ Ap. By Theorem 2-7.7, ||Ap|| ≤ ||A||p and we 
know from elementary analysis that ||A||p→0 as p→∞, because ||A|| < 1. It fol-
lows that lim

p→∞
Ap = O. Therefore, if {Bp}p≥1 converges, then its limit B must be 

the inverse of I _ A . In order to show that {Bp}p≥1 converges, it is sufficient, in 
view of Theorem 2-7.6, to argue that it is a Cauchy sequence. But this is a con-
sequence of the following computation for p > q, in which we use both (1) and 
Theorem 2-7.7: 

||Bp
_ Bq|| = ||Aq + … + Ap_1|| ≤ ||Aq|| + … + ||Ap_1|| 

≤ ||A||q + … + ||A||p
_1 ≤ ||A||q/(1 – ||A|| ). 

A similar computation yields ||Bp|| ≤ 1/(1 – ||A|| ). Therefore 

||(I _ A)
_1|| = || lim

p→∞
Bp|| = lim

p→∞
||Bp|| ≤ 1/(1 – ||A|| ). , 

The theorem below, which shows that the collection of invertible maps in 
L(Rn,Rn) is open, will be required later for proving the inverse function theorem 
(Theorem 4-2.1). 

2-7.11. Theorem. Let Ω be the subset of L(Rn,Rn) consisting of invertible maps. 
If A ∈ Ω and ||B – A || < 1/ ||A

_1|| , then B ∈ Ω and 

||B
_1|| ≤ 

1

1

|| ||
(1 || || || || )

A
A A B

−

−− −
.………………………(A) 

Moreover, the map A→A
_1 of Ω into itself is a continuous map. 

Proof. First of all, 
B = (B _ A) + A = A(A

_1(B _ A) + I ).……………………(1) 
Moreover, 

||A
_1(B _ A)|| ≤ ||A

_1|| ||B _ A || < 1, by hypothesis. 

Since ||_A
_1(B _ A)|| = ||A

_1(B _ A)||, it follows by Proposition 2-7.10 and from 
the inequality above that A

_1(B _ A) + I  is invertible, and hence by (1), B is also 
invertible. 

Once again by Proposition 2-7.10, we have 

||(A
_1(B _ A) + I )

_1|| ≤ 1/(1 – ||A
_1(B _ A)||).…………………(2) 

But 1 – ||A
_1(B _ A)|| ≥ 1 – ||A

_1|| ||B _ A || > 0 and hence by (1) and (2), we have 

||B
_1|| ≤ ||A

_1|| ||(A
_1(B _ A) + I )

_1|| ≤ ||A
_1||/(1 – ||A

_1|| ||B _ A ||), 

thus establishing (A).  
It remains to prove that the map A→A

_1 of Ω into itself is continuous.  
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Consider any A ∈ Ω and let ||B – A || < 1/2 ||A
_1||. Then on the one hand, we 

have ||B – A || ||A
_1|| < 1

2  and hence 1 – ||A
_1|| ||B _ A || > 1

2 , so that 

1
1

(1 || || || || )A A B−− −
 < 2.……………………………(3) 

On the other hand, we have ||B – A || < 1/ ||A
_1|| , so that (A) holds. Now, 

||B
_1 – A

_1|| = ||B
_1(A – B)A

_1|| ≤ ||B
_1|| ||B – A || ||A

_1|| 

≤ 
1

1

|| ||
(1 || || || || )

A
A A B

−

−− −
||B – A || ||A

_1|| because (A) holds 

≤ 2||B – A || ||A
_1||2 by (3). 

This implies the desired continuity. In fact, for a given ε > 0, the number 

δ = min{1/2||A
_1|| ,ε /2||A

_1||2} > 0 

is now seen to satisfy ||B – A || < δ ⇒ ||B
_1 – A

_1|| < ε . , 

For certain purposes, it is necessary to know the relation between the norm 
||A||2 when the norm of an element x of Rn or Rm is taken as ||x ||2 and the norm 
||A||∞ when the norm of an element x of Rn or Rm is taken as ||x ||∞ . In this direc-
tion, we have the following result: 

2-7.12. Proposition. Let A:Rn→Rm be a linear map and 

||A||2 = sup{||Ax||2 : ||x||2 ≤ 1}, ||A||∞ = sup{||Ax||∞ : ||x||∞ ≤ 1}. 
Then 

||A||2 ≤ m1/2||A||∞ and ||A||∞ ≤ n1/2||A||2 . 

 Proof. From Proposition 2-2.6, it follows that  

||Ax||2 ≤ m1/2||Ax||∞ and ||x ||∞ ≤ ||x ||2 ..………………(1) 

Let ||x ||2 ≤ 1. Using both inequalities in (1), we get 

||Ax||2 ≤ m1/2||Ax||∞ ≤ m1/2||A||∞||x ||∞ ≤ m1/2||A||∞||x ||2 ≤ m1/2||A||∞ , 

which implies that ||A||2 ≤ m1/2||A||∞ . The other inequality follows by a similar 
argument. , 

Problem Set 2-7 

In the first four problems here, take the norm to be || ||2 . 
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2-7.P1. For the linear map A:R2→R2 defined by A(x1 ,x2) = (x1 + x2 ,x1 – x2), find 
||A || . 

2-7.P2. For the linear maps A:R2→R2 and B:R2→R2, defined by 

A(x1,x2) = (x1 + x2 , x1 – x2) and B(x1 , x2) = (x1 + x2 , 0), 
verify (by finding the norms involved) that ||BA || ≤ ||B|| ||A || . 

2-7.P3. For the linear maps A:R2→R2 and B:R2→R2, defined by 

A(x1 , x2) = (x1 , –x1) and B(x1 , x2) = (x1 + x2 , 0), 

verify (by finding the norms involved) that ||BA || < ||B|| ||A || . 

2-7.P4. Find the norm of the linear map of 2-3.P8. 

2-7.P5. Let A be an invertible map in Rn and ||A
_1(B _ A)|| < 1. Prove that B is 

invertible and that ||B
_1|| ≤ ||A

_1|| / (1 – ||A
_1(B _ A)||). 

2-7.P6. If A and B are invertible linear operators in Rn such that || (B – A)A
_1|| < 

1, prove that ||B
_1|| ≤ ||BA

_1B
_1|| / (1 – ||(B _ A)A

_1||). 

2-7.P7. Prove that, to every A ∈ L(Rn,R) there corresponds a unique y ∈ Rn such 
that Ax = x ·y  ∀ x ∈ Rn. Note that, in view of Example 2-7.3(c), when we use the 
norm || ||2 in Rn, we have ||A || = ||y||. 

2-8 Double Sequences and Series 

Given two series Σmam and Σnbn , one can set up the ‘double series’ Σm, n f(m,n), 
where f(m,n) = ambn . Since the ordered pairs (m,n) can be arranged in a se-
quence in a variety of ways, each of them provides a way of converting the 
double series into an ordinary series. The convergence and sum of the resulting 
series generally depend on the manner in which the ordered pairs have been ar-
ranged in a sequence. 

In this section we propose considering double series Σm, n f(m,n) that are not 
necessarily derived from separate series Σmam and Σnbn , and the question of 
their ‘repeated’ limits. The material will not be used in the sequel and can there-
fore be omitted without loss of continuity.  

2-8.1. Definition. By a double sequence we mean a function f  defined on N×N 
to some set X. If f(m,n) = am, n ,  (m ,n )  ∈ N×N, it is customary to denote the se-
quence f  by {am, n}m≥1, n≥1 . The values of f ,  that is, the elements am, n are called 
the terms of the sequence. 

We shall be interested only in real or complex-valued double sequences. 
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2-8.2. Definition. If l ∈ C, we write limm, n f (m,n) = l and say that the double 
sequence converges to l if the following condition holds: For every ε > 0, there 
exists an integer n0 such that 

| f(m,n) _ l | < ε whenever both m ≥ n0 and n ≥ n0 . 

It may be verified as usual that l is unique if it exists; it is called the double 
limit of f(m,n). 

In addition to the notion of double limit, there is the notion of repeated limit 
(or iterated limit) as described below: 

For each fixed m, assume that limn f (m,n) exists; then the limit 
limm (limn f(m,n)), if its exists, is called a repeated (or iterated) limit. In like 
manner, one can consider the other repeated limit limn (limm f(m,n)).  

2-8.3. Example. Let f(m,n) = 2 2
mn

m n+ ,  m,n ≥ 1. Then limm f(m,n) = 0 and hence 
limn (limm f(m,n)) = 0. Also, limm (limn f(m,n)) = 0. But f(m,n) = 1

2  if m = n and 
f(m,n) = 2

5  if m = 2n. So, limm, n f(m,n) does not exist. 

2-8.4. Proposition. If limm, n f(m,n) = l and the limit limn f(m,n) exists for each 
m, then the repeated limit limm (limn f(m,n)) also exists and has the value l. 
Proof. Let l(m) = limn f(m,n). For every ε > 0, there exists n0 such that 

 | f(m,n) _ l | < _ε2
_  whenever both m ≥ n0 and n ≥ n0 .……………(1) 

For each m, choose n(m) such that 
|l(m) _ f(m,n)| < _ε2

_  for n ≥ n(m).………………………(2) 

Consider an m ≥ n0 and the corresponding n(m) as in (2) and choose n > 
max {n0 ,n(m)}. Then the two inequalities (1) and (2) hold and hence 

|l(m) _ l | ≤ |l(m) _ f(m,n)| + | f(m,n) _ l | < ε, provided m ≥ n0 . 

Thus, limm l(m) = l. , 

2-8.5. Remarks. (a) A similar result holds if we interchange the roles of m and 
n. 

(b) The existence of the double limit limm, n f(m,n) and of limn f(m,n) for every 
m implies the existence of the repeated limit limm (limn f(m,n)). Example 2-8.3 
shows that the converse is not true. 

We list below examples to illustrate various situations where the double 
limit and the two repeated limits may not all be equal or where some of the lim-
its exist while others do not. 
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2-8.6. Examples. (a) Let f(m,n) = 
1 if 

0 if .

n m

n m

≥

<
⎧
⎨
⎩

 

Here limm f(m,n) = 0 and therefore limn (limm f(m,n)) = 0. But limn f(m,n) = 1 
and therefore limm (limn f(m,n)) = 1. So, the double limit cannot exist in view of 
Proposition 2-8.4. 

(b) Let f(m,n) = 
1 ( 1)n

m
− −

 = 
2 if  is odd

0 if  is even.

nm
n

⎧
⎪
⎨
⎪⎩

 

Then limm f(m,n) = 0 and therefore limn (limm f(m,n)) = 0. On the other hand, 
limn f(m,n) does not exist. So, the double limit cannot exist in view of Proposi-
tion 2-8.4. 

(c) Let f(m,n) = 
0 if | |  is odd

1 if | |  is even.min{ , }

m n

m nm n

−⎧
⎪
⎨ −⎪⎩

 

Then limm, n f (m,n) = 0. But limn f(m,n) does not exist and hence 
limm (limn f(m,n)) cannot exist. Also, limm f(m,n) does not exist and hence 
limn (limm f(m,n)) cannot exist. 

2-8.7. Definition. Let f  be a double sequence and let s be the double sequence 
defined by 

s(p ,q) = 
m
Σ
p

=1  n
Σ
q

=1
f(m,n). 

The double sequence {s(p,q)}p≥1, q≥1 of partial sums is denoted by Σm, n f(m,n) 
and is called a double series. If it has limit l, that is, if limp, q s(p,q) = l, then the 
double series Σm, n f(m,n) is said to be convergent; l is called the sum of the 
series and we write l = Σm, n f(m,n). Each number f(m,n) is called a term of the 
series. The double series Σm, n f(m,n) is said to converge absolutely if 
Σm, n | f(m,n)| converges. 

It may be noted that the symbol Σm, n f(m,n) may denote either the double 
series or its sum, depending on context. 

2-8.8. Examples. (a) Consider the double series Σm, n f(m,n), where f(m,n) is 
described by the array, or ‘infinite matrix’ 

1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0

− − −
−
−

L

L

L

K

M
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All the terms are zero except in the first two rows and first two columns. Here 
s(p,q) = 2, p,q > 1, and so the double series has sum 2. 
(b) The partial sum s(p,q) of the double series Σm, n m

_αn
_β can be represented as 

the product (
m
Σ
p

=1
m

_α)(
n
Σ
q

=1
n

_β). Since the series 
m
Σ
∞

=1
m

_α and 
n
Σ
∞

=1
n

_β are convergent 
when α,β > 1, the double series has sum equal to the product of the sums of the 
aforementioned series. 

Since f(p,q) = s(p ,q) _ s(p _ 1,q) _ s(p,q _ 1) + s(p _ 1,q _ 1), it follows 
that when {s(p ,q)}p≥1, q≥1 converges, we can find μ so that | f(p,q)| < ε for p > μ,  
q > μ. In fact, if μ is so chosen that |s(p ,q) _ l | < ε/4 when p and q are both lar-
ger than μ, then 

| f(p,q)| ≤ |s(p ,q) _ l | + |s(p _ 1,q) _ l  

+ |s(p ,q _ 1) _ l | + |s(p _ 1,q _ 1) _ l | < 4 4
⎛ ⎞ε
⎜ ⎟
⎝ ⎠

 = ε. 

This does not imply that limp, q f(p,q) will necessarily be zero when the repeated 
limits limq (limp s (p,q)) and limp (limq s (p,q)) both exist. For instance, consider 
the series Σm, n f(m,n), where 

f(m,n) = 
1 if 1, 1, 2,

1 if 1, 2,3,

0 otherwise.

m n n

m n n

= + =

− = − =
⎧
⎪
⎨
⎪⎩

K

K  

Then limp (limq s (p,q)) = _1,
 
limq (limp s (p,q)) = 1 and f(m,n) does not have 

double limit zero. The reader may list the elements as an infinite matrix to see 
the validity of the above assertions. 

2-8.9. Proposition. A necessary and sufficient condition for the convergence of 
the double series Σm, n f(m,n) is that for every ε > 0, there exists an integer μ 
such that 

|s(p ,q) _ s(m ,n)| < ε for p ≥ m ≥ μ and q ≥ n ≥ μ . 
Proof. The condition is obviously necessary. We need only show that it is suffi-
cient. Denote by σn the value of s(m ,n) when m = n. Then our condition yields 

|σq
_ σm| < ε if q ≥ n ≥ μ. 

Hence σn approaches a limit s, and so we can find μ1 such that 
|s _ σn| < _ε2

_  if n ≥ μ1 . 
Now the general condition also gives an integer μ2 such that 

|s(p ,q) _ σn| < _ε2
_  if p,q ≥ n ≥ μ2 . 

Let μ3 = max {μ1 , μ2}. Then 
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|s(p ,q) _ s| < ε if p,q ≥ μ3 . , 

It is now easy to show that a double series is convergent if it is absolutely 
convergent. 

We end this section with the following results on double series with non-
negative terms. 

2-8.10. Proposition. Suppose {s(p,q)}}p≥1, q≥1  is the double sequence of partial 
sums of a double series with nonnegative terms. Then limp, q s(p,q) = s if and 
only if limp s(p,p) = s.  
Proof. That limp, q s(p,q) = s implies limp s(p,p) = s is obvious. Assume that 
limp s(p,p) = s and consider an arbitrary ε > 0. There exists an integer μ such 
that 

s ≥ s(p,p) > s _ ε whenever p ≥ μ. 

Since the terms of the double series are positive, it follows that 

s ≥ s(p + q,p + q) ≥ s(p,q) ≥ s _ ε provided that p,q ≥ μ. 

Thus limp, q s(p,q) = s. , 

2-8.11. Proposition. (a) If the double series Σm, n f(m,n) with nonnegative terms 
converges, then for each m (respectively, n) the series Σn f(m,n) (respectively, 
Σm f(m,n)) converges and the following equality holds: 

m
Σ
∞

=1 n
Σ
∞

=1
f(m,n) = Σm, n f(m,n) = 

n
Σ
∞

=1  m
Σ
∞

=1
f(m,n). 

(b) Suppose that f(m,n) ≥ 0,  m,n = 1,2,…. If either of repeated limits 

limm (limn s (m,n)),  limn (limm s(m,n)) 
exists, so does the double limit and all three are equal. 

Proof. (a) If Σm, n f(m,n) = s, then it is clear that s(m,n) ≤ s; and consequently for 
any fixed value of m, the sum of any number of terms is less than or equal to s, 
which in turn, implies that the limit limn s(m,n), for any fixed m, is less than or 
equal to s. Now there exists an integer μ such that s(m,n) > s _ ε if m,n > μ. 
Consequently, 

s ≥ limn s(m,n) > s _ ε if m ≥ μ . 
Hence 

limm (limn s (m,n)) = s 
or 

m
Σ
∞

=1 n
Σ
∞

=1
f(m,n) = s. 

In a similar way, we see that 
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n
Σ
∞

=1  m
Σ
∞

=1
f(m,n) = s. 

(b) Suppose that limm (limn s (m,n)) = s. Then 

s(m,m) ≤ s(m,n) if n > m 
and so, 

s(m,m) ≤ limn s (m,n) ≤ s. 

Hence the sequence {s(m,m)} converges to a limit σ, say. It now follows from 
Proposition 2-8.10 and (a) above that s = σ and that limn (limm s (m,n)) = σ. , 

The restriction in the above proposition that the terms of the series be posi-
tive cannot be dropped. See 2-8.P2. 

2-8.12. Example. Σm, n (m + n)
_α is convergent if α > 2. One way to obtain this is 

to use the integral test (see Shirali and Vasudeva [23, Theorem 12-2.4]) twice. 

For each m, the function on [1,∞] given by (m + x)
_α is nonnegative and de-

creasing; moreover, its (improper) integral over [1,∞] is 
1( 1)
1

m −α+
α− . Therefore, 

Σn (m + n)
_α ≤ (m + 1)

_α + 
1( 1)
1

m −α+
α− . Now, (x + 1)

_α + 
1( 1)
1

x −α+
α−  is nonnegative and 

decreasing on [1,∞], with integral equal to 
12

1
−α

α− +
22

( 1)( 2)
−α

α− α− . It follows that 

Σm (Σn (m + n)
_α) is convergent. By Proposition 2-8.11, Σm, n (m + n)

_α is conver-

gent. 

A second way to arrive at the same conclusion is via Proposition 2-8.10. In 
the finite sum s(p,p), we can rearrange terms to get 

s(p,p) = 
2 2

1
1

( )
m n qq p

m p
n p

m n −α

+ =≤ ≤
≤ ≤
≤ ≤

+∑ ∑ . 

In the inner summation, there can be at most q terms because of the restriction 
that m + n = q. Therefore the sum is no greater than q1_α. Hence 

s(p,p) ≤ 1

2 2q p
q −α

≤ ≤
∑ . 

Since 1_ α < _1, the series Σq q1_α is convergent and the above inequality im-
plies that s(p,p) ≤ Σq q1_α. Thus the increasing sequence s(p,p) is bounded above 
and hence converges. Now Proposition 2-8.10 shows that that the double series 
Σm, n (m + n)

_α is convergent. 
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Problem Set 2-8 

2-8.P1. Consider the double series Σm, n f(m,n), in which f(m,n) is described by 
the array (or ‘infinite matrix’) below: 

1
2

 
1
4

−  
1
4

 
1
8

−  
1
8

 
1

16
−  

1
16

 K  

2
1
2

 2
3
4

−  2
3
4

 2
7
8

−  2
7
8

 2
15
16

−  2
15
16

 K  

3
1
2

 
2

3
3
4

−  
2

3
3
4

 
2

3
7
8

−  
2

3
7
8

 
2

3
15
16

−  
2

3
15
16

 K  

4
1
2

 
2

4
3
4

−  
2

4
3
4

 
3

4
7
8

−  
3

4
7
8

 
3

4
15
16

−  
3

4
15
16

 K  

M  M  M  M  M  M  M  M  

Show that the double series is not convergent, but 
m
Σ
∞

=1
(

n
Σ
∞

=1
f(m,n)) = 1 while 

n
Σ
∞

=1
(

m
Σ
∞

=1
f(m,n)) is undefined. 

2-8.P2. For the convergent double series of Example 2-8.8(a), show that the 
‘repeated series’ 

m
Σ
∞

=1
(

n
Σ
∞

=1
f(m,n)) and 

n
Σ
∞

=1
(

m
Σ
∞

=1
f(m,n)) are undefined. 

2-8.P3. Show that the series Σm, n (m2 + n2)
_α/2 converges if α > 2. 





 

 

Differentiation 

3-1 Background 

In the calculus of a function f  of two real variables, i.e., of a two-dimensional 
vector variable (x, y), one usually works with the two partial derivatives ∂f /∂x 
and ∂f /∂y (to be formally defined in 3-4.1 below). The first of these is the limit 
of a certain quotient with numerator f(x + t, y) _ f(x, y). In the terminology of 
vectors, this numerator may be written as f((x, y) + t(1,0)) _ f(x, y). If we now 
write simply x for (x, y) ∈ R2 and simply h for (1,0) ∈ R2, then the numerator can 
be expressed quite compactly as f(x + th) _ f(x). With this notation, it becomes 
clearer that the partial derivative 

f
x

∂
∂ = l

t
i
→
m

0
( ) ( )f x th f x

t
+ − , 

is the rate of change of f in the direction of h, where we have taken h as (1,0). If 
we change h to (0,1) instead, then the limit is the rate of change in the direction 
of h = (0,1), and this rate of change is usually denoted by ∂f /∂y. 

Now, what about the same limit with some other (nonzero) h, the so called 
directional derivative in the direction h? There are infinitely many other possi-
bilities for h, but one works only with h = (1,0) and h = (0,1), which lead to the 
two familiar partial derivatives. This is because, in most situations (but by no 
means all!), the derivative in a general direction h = (α,β) works out to be 

f f
x y

∂ ∂α + β∂ ∂ .…………………………………(1) 

Thus, although each partial derivative is the rate of change in one coordinate 
direction only, the two partial derivatives when taken in combination reveal eve-
rything about the rate of change in all possible directions. This is what makes 
the vector with components equal to the respective partial derivatives, known as 
the gradient in Calculus, such a useful tool. Being a single object that tells all 
about the rate of change in any direction whatsoever, it is the natural two varia-
ble analogue of the elementary one variable derivative. 

Since the gradient allows us to start with a direction h = (α,β) and, in most 
situations, compute the rate of change in that direction via (1), it maps (α,β) into 
a number. In other words, it is a map from R2 to R. Besides, it is a linear map 
from R2 to R.  

3 

S. Shirali, H.L. Vasudeva, Multivariable Analysis,  
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Differentiation 78

In the n variable case, the analogue of the single variable derivative is a li-
near map from Rn to R. One therefore expects that for a function f with values in 
Rm, the analogue is a linear map from Rn to Rm. We shall soon define the deriva-
tive of such a map f  to be a linear map from Rn to Rm related to f  in a certain 
way. However, the relation will not be that it maps each direction h into the de-
rivative in that direction, because the existence of such a linear map does not 
imply continuity, as we shall see later in 3-2.P3. We shall instead define the de-
rivative to be a linear map that generalises another aspect of the derivative in the 
one variable case, one that does imply continuity. We discuss this aspect and 
present the definition in the next section. 

3-2 Derivatives of Functions Between Euclidean Spaces 

Suppose f is a real-valued function of a single real variable x. The familiar defi-
nition of the derivative at some x in the interior of the domain of f is that it is the 
limit as h→0 of the quotient [ f(x + h) _ f(x)]/h. Since there is no division by 
vectors, such a quotient makes no sense when h is a vector. So we rephrase the 
definition without denominators in the following manner. 

For h ≠ 0, let ω(h) = [ f(x + h) _ f(x)]/h – a, where a is some number, and let 
ω(0) be any number. Then a is the derivative if and only if ω(h)→0 as h→0. 
Since it is immaterial what value ω(0) has, we shall say nothing about it. The 
description of ω can be rearranged without denominators as 

f(x + h) _ f(x) = ah + hω(h). 

Thus the number a is the derivative f '(x) if and only if there exists a function ω 
defined on a sufficiently small ball centred at 0 such that 

f(x + h) _ f(x) = ah + hω(h) and ω(h)→0 as h→0.………(1) 

This equivalent description of f '(x) as being such a number a has no reference to 
any division by h; however, there is a reference to the product hω(h). So we now 
set u(h) = (h/|h|)ω(h) for h ≠ 0, so that (1) can be rephrased as 

f(x + h) _ f(x) = ah + |h|u(h) and u(h)→0 as h→0. 

Stated in this form, we can carry it over to the situation when f maps a subset of 
Rn to Rm. 

For reasons discussed in Section 3-1, the derivative in this general setting is 
a linear map A from Rn to Rm, and the above term ah appears as the A-image of 
h, i.e., as Ah. 

3-2.1. Definition. Let x be an interior point of the domain U ⊆ Rn of a function 
f :U→Rm. If there exists a linear map A:Rn→Rm and an Rm-valued function u on 
a ball H centred at 0 ∈ Rn such that 
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f(x + h) _ f(x) = Ah + ||h ||u(h) for h ∈ H and u(h)→0 as h→0, 

then A is the linear (or Fréchet) derivative of f at x; it is denoted by f '(x). When 
f '(x) exists, we say that f  is (Fréchet) differentiable at x. 

It should be noted that f '(x) ∈ L(Rn,Rm). We shall often refer to the Fréchet 
derivative as simply the derivative. The name distinguishes it from the Gateaux 
derivative [see 3-3.P1], which will play only a minor role. 

Observe that altering the value of u(0) makes no difference. In a proof of 
differentiability, it is therefore sufficient to define u for nonzero h and establish 
that u(h)→0 as h→0. 

3-2.2. Remarks. (a) There cannot be two distinct linear maps satisfying the 
conditions of Def. 3-2.1. To see why, suppose A and B are both linear maps of 
this kind with associated balls H and J and functions u and v. Then  

Ah + ||h ||u(h) = Bh + ||h ||v(h) 

for all h in H∩J, which is again a ball centred at 0. Then 

(A _ B)h = ||h ||(v(h) _ u(h)). 

Let h be any nonzero vector in H∩J. Then, for t ∈ R, 0 < | t | ≤ 1, we have 

(A _ B)(th) = | t | ||h ||(v(th) _ u(th)), so that || (A _ B)(h)||  = ||h || || (v(th) _ u(th))|| . 

Taking the limit as t→0, we find that (A _ B)(h) = 0. But this holds for every h 
in the ball H∩J centred at 0. Therefore A _ B = O [2-3.P19], and hence A = B. 
(b) If f  is a constant, then the equality displayed in Def. 3-2.1 holds for any x 
with A = O and u(h) = 0 for all h ∈ H. Therefore, f  is differentiable with deriva-
tive O. 
(c) When n = 1, the linear map A = f '(x) must be of the form described in Exam-
ple 2-3.2(b); that is, there must exist b ∈ Rm such that Ah = hb (product of the 
scalar h with vector b). Upon dividing by the scalar h in the equality displayed in 
Def. 3-2.1 and then taking the limit as h→0, we find that 

b = 
0

lim
h→

( ) ( )f x h f x
h

+ − .  

Thus f '(x) can be described as the linear map h→hb, where b is given by the 
above limit. 
(d) When f  is a linear map, the requirement of Def. 3-2.1 holds with A = f, u(h) = 
0 and H any ball whatsoever. Therefore the derivative at any point x is none 
other than the map f  itself, which is to say, f '(x) = f  for every x. In case f  is of 
the form f(x) = Ax + b, where b is a fixed vector in Rm, then again f '(x) = A. In 
particular, when A = O, which is to say, f  is a constant map f(x) = b, the deriva-
tive is f '(x) = O for every x.  
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(e) If f is differentiable at x, then it is also continuous at x. This follows from 
Def. 3-2.1 above, because 

||Ah + ||h ||u(h)|| ≤ ||h ||(||A || + ||u(h)||), 

and ||A || + ||u(h)|| remains bounded as h→0. The converse is not true. For exam-
ple, the function f :R2→R given by f(x,y) = |x | is clearly continuous at (0,0); 
however, it is not differentiable there, as will be shown in Example 3-2.3(c). 
(f) If f and g are both differentiable at x, then f + g and f ·g  are both differentia-
ble at x and 

( f + g)'(x) = f '(x) + g'(x), 
( f ·g)'(x) = f '(x) ·g(x) + f(x) ·g'(x), 

where the right hand side in the second equality is the real-valued map 

h→[ f '(x)(h)] ·g(x) + f(x) ·[g'(x)(h)]. 

In conjunction with Remark 3-2.2(d), this shows that, if g(x) = Ax + b _ f(x), 
where A is a linear map and f is differentiable, then g'(x) = A _ f '(x). 

We now present two illustrations of how to compute the derivative as a ma-
trix directly from the definition (i.e., from ‘first principles’) and one example 
when the linear derivative does not exist. In Def. 3-2.1, the linear map A and the 
function u are specific to the x in question; therefore, they are functions of x as 
well, although our notation there may seem to suggest otherwise. The computa-
tions below will clarify this. 

3-2.3. Examples. (a) Suppose we wish to find the derivative of the function f 
whose value at (x, y) ∈ R2 is x2 + y2. Denote the ‘increment’ vector by (h,k). 
Then 

f(x + h,y + k) _ f(x,y) = (x + h)2 + ( y + k)2 _ (x2 + y2) 
= 2xh + 2yk + h2 + k2 = A(h,k) + ||(h,k)||u(h,k) , 

where A:R2→R is the map for which 

A(h,k) = 2xh + 2yk and u(h,k) = ||(h,k)|| = √(h2 + k2). 

Since A is linear and u(h,k)→0 as (h,k)→0, the map A is the linear derivative of 
f at (x,y). It has the 1×2 matrix [2x 2y]. 
(b) Now suppose we wish to find the derivative of the function f whose value at 
(x, y) ∈ R2 is x2y. Denoting the increment vector by (h,k) we have 

f(x + h,y + k) _ f(x,y) = (x + h)2(y + k) _ x2y 

= 2xyh + x2k + 2xhk + h2y + h2k 

= A(h,k) + ||(h,k)||u(h,k) , 

where A:R2→R is the map for which 
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A(h,k) = 2xyh + x2k and u(h,k) = 
2 2

2 2

2xhk yh kh

h k

+ +

+
 when (h, k) ≠ (0, 0). 

Since A is linear and u(h,k)→0 as (h,k)→0, the map A is the linear derivative of 
f at (x,y) despite the fact that we have not defined u(h,k) for (h,k) = (0, 0). The 
linear derivative has the 1×2 matrix [2xy x2]. 
(c) Consider the map f :R2→R defined as f(x,y) = |x |. Suppose f  were differenti-
able at (0,0) with derivative A, say. Taking (h, 0) as the increment vector (where 
h ∈ R), we would then have 

|h | = f(h, 0) _ f(0,0) = A(h, 0) + |h | ·u(h, 0) 

for sufficiently small h, positive as well as negative, and u(h, 0)→0 as h→0. 
Since |_h| = |h |, this implies 

|h | = f(_h, 0) _ f(0,0) = A(_h, 0) + |h | ·u(_h, 0). 
Adding the above equalities and using the linearity of A, we get 

2|h | = |h | · [u(h, 0) + u(_h, 0)]. 

In particular, for nonzero h, we would have u(h, 0) + u(_h, 0) = 2, contradicting 
the requirement that u(h, 0)→0 as h→0. 
(d) This example is relevant to Theorem 3-4.4; see Example 3-4.6(b). Let φ and 
ψ be real-valued functions defined on open intervals, which are differentiable at 
points α and β in their respective domains. Consider the real-valued map f  de-
fined on the Cartesian product of the intervals as f(x,y) = φ(x) + ψ(y). 
Differentiability of φ and ψ at the respective points α and β means 

φ(α + h) _ φ(α) = φ'(α)h + |h| ·u(h) where u(h)→0 as h→0 
and 

ψ(β + k) _ ψ(β) = ψ'(β)k + |k| ·v(k) where v(k)→0 as k→0. 

It follows that 

f(α + h,β + k) _ f(α,β) = φ'(α)h + ψ'(β)k + [ |h| ·u(h) +  |k| ·v(k)] 

= φ'(α)h + ψ'(β)k + 2 2h k+  w(h,k),…………………(1) 
where 

w(h,k) = 
2 2 2 2

( ) ( )
h k

u h v k
h k h k

⎡ ⎤
+⎢ ⎥

⎢ ⎥+ +⎣ ⎦
. 

Since |w(h,k)| ≤ |u(h)| + |v(k)|, we see that w(h,k)→0 as (h,k)→0. Therefore by 
(1), f  is differentiable at (α,β), the derivative being the linear map A given by 
A(h,k) = φ'(α)h + ψ'(β)k. Thus, it has the matrix [φ'(α) ψ'(β)]. 
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We now formally define a concept that has been mentioned informally ear-
lier in this chapter. 

3-2.4. Definition. Let x be an interior point of the domain U ⊆ Rn of a function 
f :U→Rm. When 0 ≠ h ∈ Rn, the directional derivative at x in the direction h is 
defined to be 

Dh f(x) = l
t
i
→
m

0
( ) ( )f x th f x

t
+ − . 

3-2.5. Remarks. (a) The directional derivatives at x in the n ‘coordinate direc-
tions’ h = ej , 1 ≤ j ≤ n,  are known as the partial derivatives (Dj f )(x). They will 
be studied in a later section with m = 1. 
(b) If f  is differentiable at x, then its directional derivative at x in any direction h 
≠ 0 exists and is given by f '(x)h. This is because, for sufficiently small nonzero t 
∈ R, we have 

f(x + th) – f(x) = f '(x)(th) + || th ||u(th) = t f '(x)(h) + | t | · ||h ||u(th) 

where u(k)→0 as k→0, which implies that 

( ) ( )f x th f x
t

+ −
= f '(x)(h) + | t | · ||h ||u(th)/t , 

where the second term on the right is easily seen to have limit 0 as t→0. 

(c) The reader may note the consequence of part (b) above that, in the event of  f  
being differentiable, the derivative in the direction h is linear in h. 

3-2.6. Example. Part (c) of the foregoing remark can sometimes be used for 
establishing the nonexistence of a linear derivative. For example, let the function 
f :R2→R be defined as 

f(0, 0) = 0 and f(x, y) = x3 /(x2 + y2) when (x, y) ≠ (0,0). 

Then [ f(th, tk) – f(0,0)]/t = h3/(h2 + k2) and therefore the derivative in any direc-
tion (h,k) is h3/(h2 + k2). Since this is not linear in (h,k), the function cannot be 
differentiable at (0,0) by Remark 3-2.5(c). It may be noted that, since |x3| ≤ 
|x |(x2 + y2), we have | f(x,y)| ≤ |x |, which shows that f  is continuous at (0,0). In 
this connection, see 3-2.P3. 

3-2.7. Proposition. (a) Suppose f :E→\m is differentiable at x ∈ E ⊆ \n and B: 
\m→\p is linear. Then the composition B f :E→\p is differentiable at x with 
derivative B ( f '(x)), i.e., the composition of the linear maps B and f '(x). 
(b) Suppose B:\n→\m is linear and g:E→\p is differentiable at Bx ∈ E ⊆ \m. 
Then the composition g B is differentiable at x with derivative g'(Bx) B, i.e., the 
composition of the linear maps g'(Bx) and B. 
Proof. (a) Since f  is differentiable at x,  there exists some ball H centred at 0 ∈ \n 
such that 
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f(x + h) _ f(x) = Ah + ||h ||u(h) for h ∈ H and u(h)→0 as h→0, 

where A = f '(x) by definition. Applying B to both sides and using the linearity of 
B, we get 

(B f )(x + h) _ (B f )(x) = (B A)h + ||h ||B(u(h)) for h ∈ H. 
Since ||B(u(h))|| ≤ ||B|| ||u(h)||, the function v(h) = B(u(h)) has the property that 
v(h)→0 as h→0. Therefore, in view of the foregoing equality, B A = B ( f '(x)) 
must be the derivative of B f  at x. 

(b) If B = O, there is nothing to prove. So, assume ||B|| > 0. 
Since g is differentiable at Bx, there exists some ball K centred at 0 ∈ \m 

such that,  

g(Bx + k) _ g(Bx) = Ak + ||k ||u(k) for k ∈ K and u(k)→0 as k→0, 

where A = g'(Bx) by definition. Denote the radius of K by r. If H is the ball cen-
tred at 0 ∈ \n with radius r/||B||, then h ∈ H ⇒ Bh ∈ K. In particular, h ∈ H implies 
that Bx + Bh = B(x + h) belongs to the domain of g and thus x + h belongs to the 
domain of g B. Therefore, x is an interior point of the domain of g B. Further-
more, we may substitute k = Bh with h ∈ H in the above equality. Using the 
linearity of B, the substitution leads to 

(g B)(x + h) _ (g B)(x) = A(Bh) + ||B(h)||u(Bh) for h ∈ H. 

Setting v(h) = || ||
|| || ( )Bh
h u Bh  for h ≠ 0, we have 

(g B)(x + h) _ (g B)(x) = A(Bh) + ||h||v(h). 

Also, v has the two properties 

||v(h)|| ≤ ||B|| ||u(Bh)|| and v(h) = 0 if Bh = 0. 

Together with the fact that u(k)→0 as k→0, the above two properties imply that 
v(h)→0 as h→0. Consequently, A B = g'(Bx) B must be the derivative of g B at 
x. , 

3-2.8. Proposition. Let x be an interior point of the domain U ⊆ \n of a function 
f :U→\m. Denote the standard basis of \m by e1 , e2 , … , em ,  so that 

f(u) = 
j
Σ
m

=1
fj(u)ej for all u ∈ U,……………………(A) 

where the m real-valued functions fj are the components of f . Then f  is differen-
tiable at x if and only if  each fj is differentiable at x. 
Proof. First suppose that f  is differentiable at x. For any j, 1 ≤ j ≤ m,  let 
Pj :\m→\ be the ‘projection map’ given by 

Pj(a1e1 + … + amem) = aj . 
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Then by (A), fj(u) = (Pj f )(u) for all u ∈ U. Since Pj is linear, Proposition 3-2.7 
implies that fj is differentiable at x. 

Now suppose that each fj is differentiable at x. For any j, 1 ≤ j ≤ m,  let 
Qj :\→\m be the ‘insertion map’ given by 

Qj(λ) = λej . 

Then the composition Qj fj satisfies (Qj fj)(u) = Qj(fj(u)) = fj(u)ej . Therefore by 
(A), f = 

j
Σ
m

=1
(Qj fj). But each Qj fj is differentiable at x by Proposition 3-2.7, and 

hence so is f , by Remark 3-2.2(f). , 

Problem Set 3-2 

3-2.P1. Find the 1×2 matrix representation of the derivative of x3 + y directly 
from the definition (i.e., from first principles).  

3-2.P2. Suppose x is an interior point of the domains of both the functions f  and 
g. Let A and B be linear maps such that the directional derivative of f in any di-
rection h is Ah while that of g is Bh. Show that f + g has a directional derivative 
at x in any direction h and that it is given by (A + B)h.  

3-2.P3. Let φ(x,y) = y3/x when x ≠ 0 and φ(0,y) = 0. Show that φ has directional 
derivative 0 in every direction at (0,0) but is not continuous there (and hence, by 
Remark 3-2.2(e), not differentiable either). 

3-2.P4. Let f :\n→\, n > 1, be defined as f(x) = ||x || . Prove that f  is continuous 
but not differentiable at 0. 

3-2.P5. Show directly from the definition, i.e., from first principles, that the map 
f :\2→\3  defined by f(x, y) = (x2, xy, y) is differentiable at every (x, y) ∈ \2  with 
derivative given by the matrix 

2 0

0 1

x
y x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

3-2.P6. Find the 1×2 matrix representation of the derivative of f(x,y) = (x2 + y)10 
directly from the definition (i.e., from first principles). 

3-2.P7. Use the result of Example 3-2.3(b) and the fact that 

(z + s)10 – z10 = 10z9s + |s |·v(s), where v(s)→0 as s→0 

to find the derivative of x20y10. 

3-2.P8. Prove that there can be no real-valued function f  with Dh f(c) > 0 for 
every direction h at a given point c, but there does exist one having Dh f(c) > 0 
at every point c in a given direction h. 
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3-2.P9. Let f1 ,…, fn be real-valued functions on R, each differentiable in an 
open interval (a,b) and let E = {(x1 ,…,xn) ∈ Rn : a < xk < b,  1 ≤ k ≤ n}. Define 
f :Rn→R by f(x1 ,…,xn) = 

k
Σ
n

=1
fk (xk). Prove that f  is differentiable at each x ∈ E 

and that 
f '(x)(h) = 

k
Σ
n

=1
fk'(xk)hk  whenever h = (h1 ,…,hn) ∈ Rn. 

3-2.P10. Let f1 ,…, fn be real-valued functions each differentiable in an open set 
S ⊆ Rn. For each x ∈ S, define f(x) = 

k
Σ
n

=1
fk(x). Assume that for each k (1 ≤ k ≤ n), 

the limit 

ak(x) = lim
k k
y x

y x
→
≠

( ) ( )k k
k k

f y f x
y x

−
−  

exists. Prove that f  is differentiable at x and that f '(x)(h) = 
k
Σ
n

=1
ak(x)hk for h = 

(h1 ,…,hn) ∈ Rn. 

3-2.P11. Suppose f,g are mappings from Rn to Rm such that g is continuous at c,  
f is differentiable at c and f(c) = 0. Let F(x) = g(x)·f(x), the scalar product of g(x) 
with f(x). Prove that F is differentiable at c and that F'(c)(h) = g(c)·{ f '(c)(h)}. 

3-2.P12. Show that the function f :R2→R defined by 

f(x,y) = 
if 0

1 otherwise
x y xy+ =⎧

⎨
⎩

 

has partial derivatives at (0,0). However, the directional derivative in any other 
direction does not exist. Conclude that the function is not differentiable at (0,0). 
The fact that f  is not differentiable at (0,0) can also be concluded from the ob-
servation that it is not even continuous there. Indeed, lim(x, y)→(0,0) f(x,y)does not 
exist. 

3-3 The Chain Rule and a Corollary 

The reader probably remembers the chain rule from a course in calculus as a rule 
for computing the derivative of a composite function in terms of derivatives of 
its constituents. It is also employed for computing partial derivatives for real 
valued functions defined in Rn. The version of it that we state below is also a 
rule for computing the derivative of a composite function in terms of derivatives 
of its constituents, and its connection with partial derivatives will be clarified in 
the next section after Theorem 3-4.2. 

If the proof seems rather heavy going then it may be helpful to solve 3-2.P7 
before proceeding. 
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3-3.1. Theorem. Chain Rule: Suppose E ⊆ Rn and f maps E into Rm. Let g map 
a subset of Rm into Rp. If f is differentiable at x ∈ E and g is differentiable at f(x) 
∈ f(E), then the composition g f  is differentiable at x and  

(g f )'(x) = g'( f(x)) f '(x). 
Proof. By definition of differentiability, x is an interior point of E and f(x) is an 
interior point of the domain of g. Therefore, continuity of f at x [Remark 3-
2.2(e)] ensures that x is an interior point of the domain of g f. 

For h belonging to some ball H centred at 0 ∈ Rn, 

f(x + h) – f(x) = f '(x)h + || h ||u(h), where u(h)→0 as h→0.………(1) 

Again, for k belonging to some ball K centred at 0 ∈ Rm, 

g( f(x) + k)) – g( f(x)) = g'( f(x))k + || k ||v(k), (2) 

where v(k)→0 as k→0. Since f must be continuous at x, the ball H may be re-
placed by a smaller one if necessary so as to ensure that h ∈ H ⇒ f(x + h) _ f(x) 
∈ K. Then we may take k = f(x + h) _ f(x) in (2). But if we choose k in this 
manner, then we have f(x) + k = f(x + h) and also k = f '(x)h + ||h|| u(h) by (1). 
Therefore by (2), 

g( f(x + h)) – g( f(x)) = g'( f(x))( f '(x)h + || h ||u(h) ) + || k ||v(k) 
= (g'( f(x)) f '(x))h + || h ||g'( f(x))u(h) + || k ||v(k).……………(3) 

By (1), || k || ≤ || h||( || f '(x)|| + || u(h)|| ) , so that 

|| k ||/|| h||  is bounded as h→0.…………………………(4) 

Since k→0 as h→0 (by continuity of f at x), it follows from (4) that 
(|| k ||/|| h||)v(k)→0 as h→0. Therefore, if for h ∈ H we take 

w(h) = [g'( f(x))u(h) +  (|| k ||/|| h||)v(k)] when h ≠ 0, 

then w(h)→0 as h→0. Besides, it follows by using this definition of w in (3) that 

g( f(x + h)) – g( f(x)) = (g'( f(x)) f '(x)) h + || h ||w(h) whenever h ∈ H. , 

Since it is customary to omit the composition symbol  between linear 
maps, it is not necessary to write it between g'( f(x)) and f '(x) on the right side of 
the equality in the chain rule. Accordingly, we shall often omit it in future. 

3-3.2. Examples. (a) Let f :R2→R2 and g:R2→R be given respectively by f(x,y) 
= (x2,y2) and g(x,y) = x + y. Then 

f(x + h,y + k) _ f(x,y) = ((x + h)2,(y + h)2) _ (x2,y2) 
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= (2xh, 2yk) + (h2,k2) 
= A(h,k) + ||(h,k)||u(h,k) , 

where A is the linear map with matrix 
2 0
0 2
x

y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and u(h,k) = (h2,k2)/||(h,k)|| . 

Recalling that ||(h,k)|| = (h2 + k2)1/2, we have u(h,k)→0 as ||(h,k)||→0. Therefore 
f '(x,y) = A. Thus, 

[ f '(x,y)](h,k) = (2xh, 2yk).……………………………(1) 
Also, 

g(x + h,y + k) _ g(x,y) = (x + h) + (y + k) _ (x + y) 

= h + k = B(h,k) + ||(h,k)||v(h,k) , 

where B is the linear map with matrix [1 1] and v(h,k) = 0. Therefore g'(x,y) = 
B. Hence 

[g'(x,y)](h,k) = h + k.………………………………(2) 

According to the chain rule, the composition g f , which is the map given by 

(g f )(x,y) = (x2 + y2), 

must have derivative (g f )'(x,y):R2→R given by the composition 

(g f )'(x,y) = g'( f(x,y)) f '(x,y), 
which means 

[(g f )'(x,y)](h,k) = [g'( f(x,y))][ f '(x,y)(h,k)]. 

In view of (1), the right side here can be written as 
[g'( f(x,y))][ f '(x,y)(h,k)] = [g'( f(x,y))](2xh, 2yk) 

= 2xh + 2yk by (2). 

Thus (g f )'(x,y) has the matrix [2x 2y]. Alternatively, we can use Remark 2-
3.3 to compute the matrix of (g f )'(x,y) as the product of matrices of g'( f(x,y)) 
and f '(x,y), i.e., 

 [1 1] ,
2 0
0 2
x

y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

which works out to be [2x 2y]. 

(b) [Cf. 3-2.P6.] Let f :R2→R and g:R→R be given respectively by f(x,y) = 
x2 + y and g(u) = u10. Then 

f(x + h,y + k) _ f(x,y) = 2xh + k + h2 = A(h,k) + ||(h,k)||h2/||(h,k)||, 

where A(h,k) = 2xh + k, i.e., A is the linear map from R2 to R with matrix 
[2x 1]. Since h2/||(h,k)||→0 as ||(h,k)||→0, the derivative of f  at (x,y) is the linear 
map A. Thus 

[ f '(x,y)](h,k) = 2xh + k.……………………………(1) 

Also, the linear map g'(u):R→R is the one for which 
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[g'(u)](t) = 10u9t.………………………………(2) 
According to the chain rule, the composition g f , which is the map given by 

(g f )(x,y) = (x2 + y)10,……………………………(3) 

must have derivative (g f )'(x,y):R2→R given by the composition 

(g f )'(x,y) = g'( f(x,y)) f '(x,y), 
which means 

[(g f )'(x,y)](h,k) = [g'( f(x,y))][ f '(x,y)(h,k)]. 

In view of (1), the right side here can be written as 
[g'( f(x,y))][ f '(x,y)(h,k)] = [g'( f(x,y))](2xh + k) 

= 10f(x,y)9(2xh + k) by (2) 

= 10(x2 + y)9(2xh + k) 

= 20x(x2 + y)9h + 10(x2 + y)9k. 
Thus (g f )'(x,y) has the matrix [20x(x2 + y)9 10(x2 + y)9]. Alternatively, we 
can use Remark 2-3.3 to compute the matrix of (g f )'(x,y) as the product of 
matrices of g'( f(x,y)) and f '(x,y), i.e., 

 10(x2 + y)9[2x 1], 
which works out to be [20x(x2 + y)9 10(x2 + y)9]. 

The reader may recall that this agrees with the solution of 3-2.P6, in which 
the matrix had to be computed directly without the chain rule for the function 
given by the right side of (3). 

(c) [Cf. 3-2.P4.] Let f :Rn→R and g:R→R be given respectively by f(x) = ||x ||2 
and g(u) = u1/2. Then, in terms of the dot product, we have 

f(x + h) _ f(x) = (x + h)·(x + h) _ x ·x  = 2x·h +  h ·h= 2x ·h + ||h||v(h), 

where v(h) = ||h|| . Therefore 
f '(x)(h) = 2x ·h.………………………………(1) 

Also, for u ≠ 0, we have g'(u) = 1
2 u

_1/2, which means that, the linear map 
g'(u):R→R is the one for which 

[g'(u)](t) = 1
2 u

_1/2t.………………………………(2) 

According to the chain rule, when f(x) ≠ 0, the composition g f , which is the 
map given by 

(g f )(x) = ||x ||, 

must have derivative (g f )'(x):R2→R given by the composition 

(g f )'(x) = g'( f(x)) f '(x); 
in other words, 

[(g f )'(x)](h) = [g'( f(x))][ f '(x)(h)]. 
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In view of (1), the right side here can be written as 

[g'( f(x))][ f '(x)(h)] = [g'( f(x))](2x ·h) 

= 1
2 f(x)

_1/2(2x ·h) by (2), provided f(x) ≠ 0 

= ( )
|| ||
x h
h
⋅ . 

Thus (g f )'(x) is the linear map for which [(g f )'(x)](h) = (x ·h)/||x || when f(x) 
≠ 0, i.e., when ||x || ≠ 0. Alternatively, f '(x) has matrix [2x1 2x2

… 2xn] and 
g'( f(x)) has the 1×1 matrix with entry _1

2
_ f(x)

_1/2 and therefore (g f )'(x,y) has 
matrix given by the product 

_1
2
_ f(x)

_1/2[2x1 2x2
… 2xn] = [x1 x2

… xn]/||x ||.  

The reader will note that the next result was proved independently as Prop-
osition 3-2.7. We now derive it from the chain rule. 

3-3.3. Corollary. (a) Suppose E ⊆ Rn,  f maps E into Rm and g:Rm→Rp is linear. 
If f  is differentiable at x ∈ E, then the composition g f is differentiable at x and 
(g f )'(x) = g ( f '(x)). 
(b) Suppose E ⊆ Rm,  g maps E into Rp and f :Rn→Rm is linear. If g is differenti-
able at f(x) ∈ E, then the composition g f is differentiable at x and (g f )'(x) = 
g'( f(x)) f. 
Proof. (a) By the chain rule, (g f )'(x) = g'( f(x)) f '(x). Since g is assumed li-
near, it follows by Remark 3-2.2(d) that g'( f(x)) = g regardless of what f(x) is. 
Consequently, (g f )'(x) = g ( f '(x)), as claimed. 

(b) This argument is similar to that of part (a). , 

Before presenting the next result, we elaborate a step that will be used with-
out detailed explanation later in the course of the forthcoming proof. It concerns 
the linear maps in Example 2-3.2(b) and 2-3.2(c). 

In this paragraph, the norm is understood to be || ||2 . Let A:R→Rn be the li-
near map given by Ax = xb, where b is a fixed vector in Rn and C:Rm→R be the 
linear map given in terms of the dot product as Cx = z ·x, where z is a fixed vec-
tor in Rm. Then, as discussed in Examples 2-7.3(b), 2-7.3(c), the norms of these 
maps are ||A|| = ||b|| and ||C || = || z ||.  It follows by Theorem 2-7.7 that, when n = 
m, CA:R→R satisfies ||CA|| ≤ ||C || ||A|| = ||b|| || z || . In other words, the number a ∈ 
R such that (CA)x = ax for every x ∈ R satisfies |a| ≤ ||b|| ||z|| . Furthermore, if 
B:Rn→Rm is linear, then the number α for which 
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(CBA)x = αx for every x ∈ R 
satisfies 

|α| ≤ ||b|| ||B || ||z|| . 

Recall from Def. 2-5.8 that a subset E of Rn is called convex if, whenever a 
and b are in E and t is any real number such that 0 ≤ t ≤ 1, the vector a + t(b _ a), 
or what is the same thing, tb + (1_ t)a, is also in E. Any ball is convex according 
to 2-5.P2. 

The next few results are corollaries to the chain rule, all of which use the 
mean value theorem for functions of one variable. The exact form of the inequa-
lity asserted in any one of them depends on the norms used, but the essential 
substance is the same. However, we shall take cognisance of whether the norm 
used is || ||2 or || ||∞ .  

3-3.4. Corollary. Let E be a convex subset of F ⊆ Rn and f :F→Rm be differen-
tiable at each x ∈ E, with f ' bounded above by M > 0; i.e., || f '(x)||2 ≤ M for each 
x ∈ E. Then for any a, b ∈ E, we have 

|| f(b) _ f(a)||2 ≤ M ||b _ a||2 and 
|| f(b) _ f(a)||∞ ≤ n1/2M ||b _ a||∞ . 

Proof. We need prove only the first inequality because the second follows from 
it upon using the inequalities ||x||∞  ≤ ||x||2 and ||x||2 ≤ n1/2||x||∞ of Proposition 2-
2.6. Since the argument for the first inequality involves working exclusively 
with the norm || ||2 , the subscript will be omitted. 

Denote f(b) _ f(a) by c, and let φ:[0,1]→R be defined by 

φ(t) = c · f(a + t(b _ a)). 

Since E is convex, therefore a + t(b _ a) ∈ E when t ∈ [0,1] and φ is defined on 
[0,1] , as claimed. Also, φ is the composition of the maps 

t→ a + t(b _ a), x→f(x) and x→ c·x, 

in that order. Consequently, φ is continuous. Moreover, the first map is differen-
tiable on (0,1), with derivative 

h→ h(b _ a) for h∈ R 

by Remark 3-2.2(c), and the third has derivative 

h→ c·h for h ∈ Rm 

by Remark 3-2.2(d). Their norms are, respectively, ||b _ a ||  and ||c || [see Exam-
ples 2-7.3(b)and 2-7.3(c)]. By the chain Rule, the derivative φ'(t) exists for 0 < t 
< 1 and equals the composition of the linear maps 
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h→ h(b _ a) for h∈ R, 

 h→ [ f '(a + t(b _ a))](h) for h ∈ Rn  
and 

h→ c ·h for h ∈ Rm, 

in that order. Using the property that ||ST || ≤ ||S || ||T || for any linear maps S and 
T for which the product ST is defined, we find that 

||φ'(t)|| ≤ ||b _ a || ||c || M ∀ t ∈ (0,1). 

However by the mean value theorem, 

|φ(1) _ φ(0)| = |φ'(t)|(1_ 0) for some t ∈ (0,1) 

= |φ'(t)| = ||φ'(t)|| . 

Moreover, φ(1) = c · f(b) and φ(0) = c · f(a). Hence 

|c · ( f(b) _ f(a))| ≤ ||b _ a || ||c || M, 

i.e., ||c ||2 ≤ ||b _ a || ||c|| M (because c = f(b) – f(a)). 
So, 

||c || ≤ ||b _ a || M. 

Since c = f(b) _ f(a), this is the same as || f(b) _ f(a)|| ≤ M ||b _ a || . Therefore the 
first inequality is established and thus also the second. , 

3-3.5. Corollary. Let E be a convex subset of F ⊆ Rn and f :F→Rm be differen-
tiable at each x ∈ E, with f '(x) = O for each x ∈ E. Then f  is constant on E. 

Proof. This follows immediately for Corollary 3-3.4 with M = 0. , 

3-3.6. Example. Let E be a convex subset of F ⊆ Rn, A:Rn→Rm a linear map 
and f :F→Rm be differentiable at each x ∈ E with f '(x) = A. In other words, the 
derivative of f  is constant. One can then show that there is a constant b ∈ Rm 
such that f(x) = Ax + b for all x ∈ E. To see why, consider the map g:F→Rm 
given by g(x) = Ax. It has the property that g'(x) = A for all x ∈ E. Therefore f _ g 
has derivative O on E. Apply Corollary 3-3.5. 

For the next Corollary (which we need only in Proposition 7-2.5), it is 
worth bearing in mind that, in view of Proposition 2-7.12, a subset of L(Rn,Rm) 
is bounded in the sense of || ||2 if and only if it is bounded in the sense of || ||∞ .  

3-3.7. Corollary. Let E be a convex subset of F ⊆ Rn and f :F→Rm be differen-
tiable at each x ∈ E, with f ' bounded above; let a ∈ E and 

|| f '(x) _ f '(a)||2 ≤ M for every x ∈ E. 
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Then for any b ∈ E, we have 

|| f(b) _ f(a) _ f '(a)(b _ a)||2 ≤ M ||b _ a ||2  
and 

|| f(b) _ f(a) _ f '(a)(b _ a)||∞ ≤ n1/2M ||b _ a ||∞ . 

Moreover, if 
|| f '(x) _ f '(a)||∞ ≤ M∞ for every x ∈ E, 

then  
|| f(b) _ f(a) _ f '(a)(b _ a)||∞ ≤ n1/2m1/2M∞||b _ a ||∞ . 

Proof. We need prove only the first inequality because the second follows from 
it upon using the inequalities ||x||∞  ≤ ||x||2 and ||x||2 ≤ n1/2 ||x||∞  of Proposition 2-
2.6, and the third follows upon using Proposition 2-7.12. 

Denote f(b) _ f(a) _ f '(a)(b _ a) by c, and let φ:[0,1]→R be defined by 

φ(t) = c · [ [ f(a + t(b _ a)) _ f(a)] _ f '(a)(b _ a)]. 

Since E is convex, then a + t(b _ a) ∈ E when t ∈ [0,1] and φ is defined on [0,1] , 
as claimed. Also, φ is the composition of the maps 

t→ a + t(b _ a), x→f(x) _ f(a) _ f '(a)(b _ a) and x→ c·x, 

in that order. Consequently, φ is continuous. Moreover, the first map is differen-
tiable on (0,1) with derivative 

h→ h(b _ a) for h∈ R 

by Remark 3-2.2(c), and the third has derivative 

h→ c·h for h ∈ Rm 

by Remark 3-2.2(d). Their norms are respectively ||b _ a || and ||c || [see Exam-
ples 2-7.3(b) and 2-7.3(c)]. By the chain rule, the derivative φ'(t) exists for 0 < t 
< 1 and equals the composition of the linear maps 

h→ h(b _ a) for h∈ R, 

 h→ [ f '(a + t(b _ a))](h) for h ∈ Rn  
and 

h→ c ·h for h ∈ Rm, 

in that order. Thus, for any h ∈ R, 

φ'(t)(h) = c · [ f '(a + t(b _ a))](h(b _ a)) 
= hc ·[ f '(a + t(b _ a))](b _ a), 

which means that 
φ'(t) = c · [ f '(a + t(b _ a))](b _ a). 

By the mean value theorem, 
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φ(1) _ φ(0) = φ'(t) (1 _ 0) = φ'(t) for some t ∈ (0,1). 

But φ(1) = c · [ [ f(b) _ f(a)] _ f '(a)(b _ a)] and φ(0) = c · [ _ f '(a)(b _ a)]. 
Therefore 

c · [ f(b) _ f(a)] = c · [ f '(a + t(b _ a))](b _ a) for some t ∈ (0,1). 

Adding c · [ _ f '(a)(b _ a)] to both sides and recalling that 

c = f(b) _ f(a) _ f '(a)(b _ a), 
we get 

||c ||22 = c ·[ f '(a + t(b _ a)) _ f '(a)](b _ a). 
This leads to 

||c ||22 ≤ ||c||2 M ||b _ a||2 , 

from where it follows that ||c ||2 ≤ M ||b _ a||2 . In view of our definition of c, this 
is the same as || f(b) _ f(a) _ f '(a)(b _ a)||2 ≤ M ||b _ a|| 2 . Therefore, the first 
inequality is established and thus also the second and third. , 

3-3.8. Remark. The following consequence of the chain rule will be used in the 
sequel while proving the inverse function theorem (Theorem 4-2.1). Suppose a 
function φ is a composition of the form φ(x) = B(Ax + b _ f(x)), where A and B 
are linear maps and f is differentiable. By Remark 3-2.2(f) the function g(x) = Ax 
+ b _ f(x) has derivative g'(x) = A _ f '(x), while by Remark 3-2.2(d), the func-
tion x→Bx has derivative B. Now it is a consequence of the chain rule that the 
composition φ has derivative φ'(x) = B(A _ f '(x)). 

Problem Set 3-3 

3-3.P1. By Gateaux derivative of a function at an interior point of its domain, 
we mean a linear map A such that the directional derivative at that point in every 
direction h exists and equals Ah. Thus, when the derivative exists, it is also the 
Gateaux derivative. 
(a) Let φ(x,y) = y3/x when x ≠ 0 and φ(0,y) = 0. Show that φ has a Gateaux de-
rivative at (0,0). (We have seen in 3-2.P3 that this function is not even 
continuous at (0,0).) 
(b) Suppose E ⊆ Rn and f maps E into Rm. Let g map an open subset of Rm con-
taining f(E) into Rp. If f is continuous and has Gateaux derivative A at x ∈ E and 
if g is differentiable at f(x), show that the composition g f  has Gateaux deriva-
tive g'( f(x)) A at x. 

3-3.P2. Suppose E ⊆ Rn and f :E→Rm is of the form f(x) = Ax + b, where A is a 
linear map and b ∈ Rm is fixed. If x is an interior point of E, g maps an open set 
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containing f(x) into Rp and has Gateaux derivative G (defined in 3-3.P1) at f(x), 
then show that g f  has Gateaux derivative G A at x. 

3-3.P3. Let E be a convex subset of F ⊆ Rn and f :F→Rn have a Gateaux deriva-
tive G(x), in the sense defined in 3-3.P1, at each x ∈ E. Let G(x) be bounded 
above by M > 0; i.e., ||G(x)|| ≤ M whenever x ∈ E. Prove 

|| f(b) – f(a)|| ≤ M ||b – a||  ∀a,b ∈ E. 

3-3.P4. Let f :Rn→R (n > 1) have Gateaux derivative G ≠ 0 at c ∈ Rn in the sense 
defined in 3-3.P1. Then G is a linear map from Rn to R and therefore has a norm 
||G ||, which depends upon the norm used in Rn. 

(a) Suppose the norm used in Rn is ||x ||2 = √j
Σ
=

n

1
xj

2. Show that there are precisely 

two elements h of norm 1 in Rn such that ||G || = |G(h)|. 

(b) Show that if the norm used in Rn is ||x ||1 = 
j
Σ
=

n

1
|xj |, then there must be at least 

two elements h of norm 1 in Rn such that ||G || = |G(h)|, but there can be 

more than two. 

3-3.P5. If F is a continuous mapping of [a,b] into Rk and is differentiable in 
(a,b), then show that there exists c ∈ (a,b) such that ||F(b) _ F(a)||  ≤ 
(b _ a)||F'(c)|| . (Note: This is to be proved not by using Corollary 3-3.4, but by 
modifying its proof.) 

3-3.P6. Let aj ,bj ,  where 1 ≤ j ≤ n, be 2n numbers with aj  < bj  . The set 

{x = 
j
Σ
=

n

1
xj ej  ∈ Rn: aj  ≤ xj  ≤ bj  for 1 ≤ j ≤ n} 

where e1 , e2 , … , en is the standard basis of Rn, is called a cuboid. 

(a) Show that a cuboid is a convex set. 
(b) If x and x + h both belong to a cuboid, where h = h1e1 + … + hn en , show that 

x + h1e1 + …+ h j – 1 e j – 1  + th j e j , where 0 ≤ t ≤ 1 and 1 < j ≤ n , 
also belongs to the cuboid. 
(c) Does (b) hold if ‘cuboid’ is replaced by ‘ball centred at x’? 

3-3.P7. Let x, e ∈ Rn,  μ ∈ R,  and f  be a real-valued function defined on an open 
subset of Rn containing {x + t(μe) : 0 ≤ t ≤ 1}. Let φ:[0, 1]→R be the function 
φ(t) = f(x + t(μe)). The derivative of φ at t ∈ (0, 1) is the limit of a quotient and 
the derivative of f  at x + t(μe) in the direction of e is the limit of some other quo-
tient. Find the two quotients and relate them with each other in order to 

(i) show that, when μ ≠ 0, one of the derivatives exists if and only if the 
other one does; 

(ii) find a relation between the derivatives that is valid even if μ = 0 but as-
suming that the directional derivative exists; 
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(iii) express f(x + μe) – f(x) in terms of the derivative of f  in the direction of 
e at some x + θ(μe), 0 < θ < 1, by applying the mean value theorem to φ. 

3-3.P8. Suppose that f1 :E→R is differentiable at x0 ∈ E ⊆ Rn, and u1 , u2 , … , um 
is the standard basis of Rm. Show that the map x→ f1(x)u1 from E to Rm has de-
rivative at x0 given by h→ [ f1'(x0)(h)]u1 . If f2 :E→R is also differentiable at x0 ∈ 
E, then show that the map φ:E→Rm such that φ(x) = f1(x)u1 + f2(x)u2 is differen-
tiable at x0 , and find φ'(x0)(h) in terms of h, f1'(x0), f2'(x0), u1 and u2. 

3-3.P9. (a) Let f :R→R2 be defined by f(t) = (cos t, sin t). Show that there is no θ 
∈ (0,2π) such that f(2π) _ f(0) = 2π f '(θ). 
(b) Prove the following mean value theorem: Let E be a convex open subset of 
Rn and f :E→Rm have a derivative in every direction at each x ∈ E. Then for any 
c ∈ Rm and any a, b ∈ E, we have 

( f(b) _ f(a))·c = [(Db_a f )(a + θ(b _ a)]·c for some θ ∈ (0,1). 

(c) For a general nonzero c = (c1 ,c2) ∈ R2 and a = 0, b = 2π, find the ‘θ’ of part 
(b) in terms of c for the function f  of part (a). 
(d) For the function f :R→R2 defined by f(t) = (t _ t2, t _ t3), show that there is no 
θ ∈ (0,1) such that f(1) _ f(0) = f '(θ). With a = 0 and b = 1, determine the nonze-
ro c = (c1 ,c2) ∈ R2 for which the ‘θ’ referred to in (b) fails to be unique.  

3-3.P10. (a) Let B be an open ball in Rn and f :B→Rm have the property that the 
directional derivative Du f(x) exists and is 0 for every x ∈ B and every nonzero u 
∈ Rn. Show that f  is constant on B. 
(b) What can you conclude about f  if Du f(x) exists and is 0 for every x ∈ B but 
for a fixed (nonzero) u ∈ Rn ? 

3-3.P11. Let S be an open connected subset of Rn and f :S→Rm be differentiable 
at each point of S. If f '(s) = O ∀ s ∈ S, then prove that f  is constant on S. 

3-3.P12. Let f(x, t) be a continuously differentiable function on R2 such that 
f
x

∂
∂ = f

t
∂
∂ . Suppose that f(x, 0) > 0 for all x. Prove that f(x, t) > 0 for all (x, t). 

3-3.P13. Let f :  Rn→R have the following properties: 

 (i) f  is differentiable except perhaps at 0 ∈ Rn; 

 (ii) f  is continuous at 0; 

 (iii) 
i

f
x

∂
∂

(p)→0 as p→0, 1 ≤ i ≤ n. 

Prove that f  is differentiable at 0. 

3-3.P14. Show that each of the functions 
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φ(x,y) = y
4 2 2 4

2 2 2
4

( )
x x y y

x y
+ −

+
 when (x,y) ≠ (0,0) and φ(0,0) = 0 

and ψ(x,y) = x
4 2 2 4

2 2 2
4

( )
x x y y

x y
− −

+
 when (x,y) ≠ (0,0) and ψ(0,0) = 0 

is continuous on R2, has a directional derivative in every direction at (0,0), but is 
not differentiable there. Does it have a Gateaux derivative at (0,0) in the sense 
of 3-3.P1? 

3-3.P15. Show that the function f :R2→R defined by 

f(x,y) = 
2

2 4
if 0

0 if 0

xy x
x y

x

≠
+

=

⎧
⎪
⎨
⎪⎩

 

has a finite derivative in every direction h = (a1 ,a2) ≠ (0,0) but is not continuous 
at (0,0). Does f  have a Gateaux derivative at (0,0) in the sense of 3-3.P1? 

3-4 Partial Derivatives 

The reader who has solved 3-2.P1 and 3-2.P5 may have noticed that the entries 
in the matrix representing the derivative of a function are precisely the partial 
derivatives of the components of the function. So, one may ask whether a short-
cut to finding the matrix of the derivative is to calculate partial derivatives. This 
turns out to be true if the function is independently known to be differentiable. 
In case the function is not differentiable, it can happen that the matrix of partial 
derivatives can nevertheless be formed, although the matrix formed in this man-
ner obviously cannot represent a nonexistent derivative. Examples of such 
functions are given in 3-2.P3 and 3-4.P2.  

Here we clarify the relationship between the matrix of partial derivatives 
and the matrix representing the derivative. The relationship between the chain 
rule and partial derivatives is also investigated. 

Partial derivatives are directional derivatives of real-valued functions in the 
coordinate directions. 

3-4.1. Definition. The partial derivative Dj f , if it exists, of a real valued func-
tion f  is its directional derivative in the jth coordinate direction: 

(Dj f )(x) = l
t
i
→
m

0

( ) ( )f x te f xj
t

+ −
 

where e1 , e2 , … , en is the standard basis of Rn. 
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When n = 2 or 3, it is more convenient to denote an element of Rn without 
subscripts, for instance as (x,y) or (x,y, z); correspondingly, x + te1 will be de-
noted by (x + t,y) or (x + t,y, z). When this notation is used, partial 
differentiation is often indicated by x

∂
∂  or by a subscript, as in fx . Thus p

z
∂
∂ , pz 

and Dz p all mean the same thing. We shall use the alternative notation whenever 
convenient, especially for discussion of concrete examples. 

Examples. (a) Let f :R2→R be given by f(x,y) = |xy|1/2. Then 
( ,0) (0,0)f t f

t
−  = 0 = (0, ) (0,0)f t f

t
−  

and consequently, 
f
x

∂
∂ (0,0) = 

f
y

∂
∂ (0,0) = 0. 

(b) Let f :R2→R be given by 

f(x,y) = 

3 3

2 2 if ( , ) (0,0)

0 if ( , ) (0,0).

x y x y
x y

x y

⎧ − ≠⎪
+⎨

⎪ =⎩

 

Then ( ,0) (0,0)f t f
t
−  = 

3

2
1 0

0
t

t t
−
+ = 1 and (0, ) (0,0)f t f

t
−  = 

3

2
1 0

0
t

t t
−
+  = _1. 

Therefore 
f
x

∂
∂ (0,0) = 1 and 

f
y

∂
∂ (0,0) = _1. 

If f  takes values in Rm, then the m components of f(x) provide real (i.e., 
scalar)-valued functions f1, f2 , … , fm . One can therefore speak of mn partial 
derivatives Dj fi (x) (1 ≤ i ≤ m, 1 ≤ j ≤ n). Their relation to the derivative f '(x) is 
the focus of the next result. 

3-4.2. Theorem. Let the subset E ⊆ Rn be open and f :E→Rm be differentiable at 
x ∈ E. Then the mn partial derivatives Dj fi (x) (1 ≤ i ≤ m, 1 ≤ j ≤ n) all exist. If 
e1 , e2 , … , en is the standard basis of Rn and u1 , u2 , … , um is the standard basis 
of Rm, then 

f '(x)ej  = 
i
Σ
m

=1
(Dj fi )(x) ui , 1 ≤ j ≤ n. 

That is to say, the matrix of f '(x) is the matrix whose (i, j)th entry is the partial 
derivative (Dj fi )(x). 
Proof. Consider any j, 1 ≤ j ≤ n. Since f is differentiable at x, therefore 

f(x + tej ) – f(x) = f '(x)(tej ) + | t |u(tej ), 

where u(tej )→0 as t→0. It follows from this and the linearity of f '(x)  that 
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f(x + tej ) – f(x) lim ____________________  =  f '(x)ej . t → 0 t 
Since 

f(z) = 
i
Σ
m

=1
 fi (z) ui  for any z ∈ E, 

the above equality can be written as 
m

  ( f i (x + tej ) – f i(x))u i  lim Σ ___________________________  = f '(x) ej . t → 0 i =1 t 
 
This implies that  

0

( ) ( )
lim i j i

t

f x te f x
t→

+ −
 

exists and equals the ith component of f '(x)ej  . Thus (Dj fi )(x)  exists and 

i
Σ
m

=1
(Dj fi )(x) ui = f '(x) ej . 

This has been shown to be true for any j from 1 to n. , 

The preceding theorem justifies computing partial derivatives and present-
ing the matrix formed by them as the derivative, provided the existence of the 
derivative can be ascertained independently. It also justifies computing the ma-
trix of the derivative directly and then presenting its entries as the partial 
derivatives. The matter of ascertaining the existence of the linear derivative in 
addition to computing partial derivatives will be taken up in Theorem 3-4.4. 

The matrix of partial derivatives [Dj fi (x) ] is called the Jacobian matrix of 
f at the point x. When it is a square matrix, its determinant is called the Jacobian 
of f at x. By Theorem 3-4.2, for a function known to be differentiable the Jaco-
bian matrix represents the derivative. 

For instance, the function f :R2→R2 given by f(x,y) = (x2,y2) has been 

shown in Example 3-3.2(a) to have derivative with matrix 
2 0
0 2
x

y
⎡ ⎤
⎢ ⎥
⎣ ⎦

. It follows 

that this is the Jacobian matrix, i.e. 

x
∂
∂ (x2) = 2x,  y

∂
∂ (x2) = 0,  x

∂
∂ (y2) = 0 and y

∂
∂ (y2) = 2y. 

Of course, this does not mean that the partial derivatives are to be computed by 
following the procedure of Example 3-3.2! 

Theorem 3-4.2 also enables us to clarify the relation between the chain rule 
(Theorem 3-3.1) and partial derivatives, of which there is no explicit mention in 
the latter. Suppose f and g are as in the chain rule. Then by Theorem 3-4.2, 

(g f )'(x) has a p×n matrix whose (k, j) th entry is (Dj (g f )k )(x); 
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f '(x) has an m×n matrix whose (i, j) th entry is (Dj fi )(x); 

g'( f(x)) has a p×m matrix whose (k, i) th entry is (Digk )(f(x)). 

The chain rule, when taken with Remark 2-3.3 as was done in Example 3-3.2(b), 
states that the first of the three matrices described above is the product of the 
latter two in the appropriate order. By the definition of matrix product, this 
amounts to 

(Dj (g f )k )(x) = 
i
Σ
m

=1
(Digk )( f(x))(Dj fi )(x). 

This equality is nothing but the usual version of the chain rule for computing 
partial derivatives, which the reader must have encountered in a course on the 
calculus of two or more variables. By Theorem 3-4.2 and the chain rule, the 
above procedure for computing partial derivatives is applicable when the func-
tions concerned are differentiable. 

The next theorem makes it possible to ascertain the existence of the deriva-
tive by examining partial derivatives. But it works only when the derivative 
exists in an open set and is continuous as well. On the other hand, this is most 
often so, hence the theorem turns out to be adequate in most situations. See Ex-
ample 3-4.6(b) for a situation when it is not adequate. 

In the notation of Theorem 3-4.2, f '(x) is a linear map from Rn to Rm. If 
f '(x) exists for each x∈E , then f ' is a map from E to the space of linear maps 
from Rn to Rm. Since E ⊆ Rn, it is clear what ||ξ _ x || means when ξ ∈ E, x ∈ E. 
Moreover, since f '(ξ) _ f '(x) is a linear map from Rn to Rm, || f '(ξ) _ f '(x)|| denotes 
its norm in accordance with Def. 2-7.2. Thus it makes sense to speak of f ' being 
continuous.  

3-4.3. Definition. A function f with values in Rm and domain E ⊆ Rn is said to 
be continuously differentiable (or belong to class C 1) at an interior point x of 
E if the derivative f '(z) exists at every z in some open set containing x and the 
resulting map from that open set into the space L(Rn,Rm) of linear maps from 
Rn to Rm is continuous at x. One also speaks of f being a C 1 function (or a C 1 
map). 

3-4.4. Theorem. Suppose E ⊆ Rn is open and f  is a map from E to Rm. Then f  is 
continuously differentiable on E (i.e., at each point of E) if and only if  each of 
the mn partial derivatives Dj fi  (1 ≤ i ≤ m, 1 ≤ j ≤ n) exists on E and is conti-
nuous there. 

Proof. Assume f ' to be continuous on E. By Theorem 3-4.2, Dj f i exist on E 
and f ' has matrix with Dj fi as its (i, j)th entry. Therefore for any x and x + h in E, 
the matrix of f '(x + h) _  f '(x) has (Dj f i)(x + h) _ (Dj f i)(x) as its (i, j)th entry. By 
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Remark 2-7.9(a), |(Dj f i)(x + h) _ (Dj f i)(x)| ≤ || f '(x + h) _ f '(x)||. This immediate-
ly leads to the continuity of each partial derivative Dj f i . 

To prove the converse, assume that each Dj fi  is continuous on E. Consider 
any i, 1 ≤ i ≤ m and any x ∈ E. For ease of notation, we denote fi  by g. We shall 
prove first that g:E→R is continuously differentiable, that is to say, the map 
g':E→L(Rn,R) is continuous. 

Let e1 , e2 , … , en be the standard basis of Rn. 
For h = h1e1 + … + hn en ∈ Rn sufficiently small to ensure that x + h ∈ E, let 

u(h) = [g(x + h) _ g(x) – 
j
Σ
=

n

1
(Dj g)(x)hj ]/||h||  if h ≠ 0 . 

We shall show that u(h)→0 as h→0, so that g has derivative with matrix 

[(D1 g)(x) (D2 g)(x) … (Dn g)(x)]. 

Consider any ε > 0. By the continuity of Dj g for 1 ≤ j ≤ n, there exists δ > 0 such 
that the ball B of radius δ centred at x is contained in E and every y ∈ B satisfies 

|(Dj g)(x) _ (Dj g)(y)| < 
n

ε  for 1 ≤ j ≤ n.………………(1) 

Let h = h1e1 + … + hn en  satisfy ||h|| < δ. Set z0  = 0 and zj  = h1e1 + … + hj ej  for 1 
≤ j ≤ n. Then zn = h. Also, for any t∈[0, 1], 

|| z0 + th1e1|| = | th1| ≤ |h1| ≤ ||h|| < δ 
and, when j > 1,  

|| zj _ 1 + thj ej || = (h1
2 + … + hj _ 1

2 + t2 hj
2)1/2 ≤ ||h|| < δ. 

Therefore x + zj _ 1 + thj ej  belongs to the ball B (including j = 1). It follows firstly 
that the map 

t→g(x + zj _ 1 + thj ej ) 

is defined on [0, 1], and secondly that (1) is applicable with y = x + zj _ 1 + thj ej . 
Therefore, the mean value theorem applied to the function 

G(t)  = g(x + zj _ 1 + thj ej ), t ∈ [0,1], 
yields 

g(x + zj ) _ g(x + zj _ 1 ) = G(1) _ G(0) = G'(θj) , where 0 < θj  < 1. 
But by definition of Dj g , we have, 

G'(θj)  = hj (Dj g)(x + zj – 1 + θj hj ej ). 
Therefore 

g(x + zj ) _ g(x + zj _ 1 ) = hj (Dj g)(x + zj _ 1 + θj hj ej ), where 0 < θj  < 1. 
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Now, 
g(x + h) _ g(x) = g(x + zn ) _ g(x + z0 ) = 

j
Σ
=

n

1
(g(x + zj ) _ g(x + zj _ 1 )) 

= 
j
Σ
=

n

1
hj (Dj g)(x + zj _ 1 + θj hj ej ). 

Therefore 
| ||h||u(h) | = |g(x + h) _ g(x) _

 j
Σ
=

n

1
(Dj g)(x)hj | 

= |
 j
Σ
=

n

1
[(Dj g)(x + zj _ 1 + θj hj ej ) _ (Dj g)(x)]hj | 

≤ 
 j
Σ
=

n

1 n
ε |hj | by (1) 

≤ ||h||(n(
2

n
ε ))1/2 (Cauchy-Schwarz) 

≤ ||h||ε. 

This shows that |u(h) | < ε when 0 < || h|| < δ. Thus u(h)→0 as h→0, and g' has 
the matrix 

[(D1 g)(x) (D2 g)(x) … (Dn g)(x)]. 

Since each Dj g is continuous on E, so is the map g':E→L(Rn,R) [Remark 2-
7.9(a)]. Since g can be any fi , we conclude that every fi  is continuously diffe-
rentiable. 

Finally, we argue that f  is itself continuously differentiable. Since each fi 
has been shown to be differentiable, it follows by Proposition 3-2.8 that f  is dif-
ferentiable. It further follows by Theorem 3-4.2 that f '(x) has matrix with (i, j)th 
entry given by the partial derivative (Dj fi )(x). Now by Remark 2-7.9(a), 

|| f '(x + h) _ f '(x)|| ≤ Σj Σi |(Dj f i)(x + h) _ (Dj f i)(x)| 

when x and x + h both belong to E. Since the partial derivatives have been as-
sumed continuous, it is immediate from this inequality that f ' is continuous. , 

3-4.5. Remarks. (a) The assumption of continuity of D1 g could have been 
avoided in proving the existence of g'. The existence result, without continuity 
of fi', therefore remains valid if continuity is assumed for all the other partial 
derivatives. By rearranging the variables if necessary, we can work with the 
hypothesis that all partial derivatives with at most one exception are continuous. 
(b) Since the equality 

g(x + h) – g(x) = 
j
Σ
=

n

1
hj (Dj g)(x + zj _ 1 + θj hj ej ) 

was derived in the proof of the theorem by using only the existence of partial 
derivatives, it can be used for establishing that (i) if the partial derivatives are 
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bounded on E, then f  is continuous on E [see 3-4.P7] and (ii) if the partial deriv-
atives are continuous at x, then f is differentiable at x. 

3-4.6. Examples. (a) We shall now show that the map of R2 to R2 given by 

p = ex cos y, q = ex sin y 
is differentiable by using Theorem 3-4.4 and find its Jacobian matrix. 

(Although we shall avoid introducing the standard basis e1, e2 for R2, it 
should be understood that the given map f can be expressed in terms of the stan-
dard basis as 

f(xe1 + ye2) = (ex cos y)e1 + (ex sin y)e2 .) 

Here f1(x,y) = p = ex cos y and f2(x,y) = q = ex sin y. Therefore, the partial 
derivatives are D1 f1 = ex cos y, D2 f1 = _ex sin y, D1 f2 = ex sin y, D2 f2 = ex cos y. 
These are all continuous and therefore the given map is differentiable by Theo-
rem 3-4.4. The Jacobian matrix is 

cos sin

sin cos

x x

x x

e y e y

e y e y

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

We note for later purposes that the determinant of this matrix, the Jacobian, is 
never zero. It follows that the Jacobian matrix is invertible at every x and hence 
by Theorem 3-4.2, so is the derivative. 
(b) In Example 3-2.3(d), take φ and ψ to be differentiable with derivatives dis-
continuous at α and/or β. For example, φ(t) = ψ(t) = t2sin 1

t  for nonzero t and 
φ(0) = ψ(0) = 0. As discussed there, f  is then differentiable at (0,0). However, 
the partial derivatives are (D1 f )(x,y) = φ'(x) and (D2 f )(x,y) = ψ'(y), both of 
which are discontinuous at 0. So, the differentiability of f , which was proved in 
Example 3-2.3(d) cannot be deduced on the basis of Theorem 3-4.4. 

We now turn our attention to an application of partial derivatives for testing 
whether a function, if differentiable, satisfies a certain condition that is purely 
‘algebraic’ in the sense that the condition does not explicitly involve even limits, 
let alone differentiation. 

Functions described by such expressions as x2 + xy _ 2y2 or √(x2y _ y3), as 
opposed to x + y2, are ‘homogeneous’ in an intuitively obvious sense. A precise 
definition would be as follows. 

3-4.7. Definition. A function f :S→R with an open domain S ⊆ Rn is said to be 
homogeneous of degree p (where p is a real number) if 

f(λx) = λpf(x) whenever x ∈ S, λ > 0, λx ∈ S. 

The restriction of a homogeneous function to any open subset of its domain 
is homogeneous of the same degree. Moreover, sums and constant multiples of 
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homogeneous functions of common degree are again homogeneous of that de-
gree. Therefore the examples below can be used to generate several others. 

3-4.8. Examples. (a) The functions given by x,y,x ± y, √(x2 + y2), |x |, |y | on R2 
are homogeneous of degree 1. It may be noted that the last three among these 
would not be considered homogeneous if the definition were amended to include 
(as some authors prefer) all real λ. 
(b) The function defined by √(xy) on {(x,y) ∈ R2 : xy > 0} is homogeneous of 
degree 1. 
(c) The functions x2,xy,x|y | are homogeneous of degree 2 on R2. 
(d) √(xyz) describes a homogeneous function of degree 2

3  on {(x,y, z) ∈ R3 : xyz 
> 0} 
(e) The function defined on R2 by x2 + y is not homogeneous of any degree. Oth-
erwise we would have λ2x2 + λy = λp(x2 + y) for all (x,y) ∈ R and all λ > 0. 
Choosing (x, y) = (1,0), we get λ2 = λp for all λ > 0; choosing (x,y) = (0,1), we 
get λ = λp for all λ > 0. This is a contradiction. 
(f) The relevance of this example to Theorem 3-4.9(b) below is mentioned in the 
remark that follows it. Let S be the union S1∪S2 , where 

S1 = {(x,y) ∈ R2 : x2 + y2 < 1} 
and 

S2 = {(x,y) ∈ R2 : x2 + y2 > 1}. 

Define f  to be x + y on S1 and x _ y on S2 . Note that, given (x,y) ∈ S2 , there exists 
λ > 0 such that (λx,λy) ∈ S1  and therefore f  is not homogeneous. However, its 
restrictions to S1 and S2 are. 

The next proof uses the chain rule for computing partial derivatives as ex-
plained above after Theorem 3-4.2. 

3-4.9. (a) Euler’s Theorem. If S ⊆ Rn is open and the differentiable function 
f :S→R is homogeneous of degree p,  then the following identity (called Euler’s 
relation) holds: 

j
Σ
=

n

1
xj · (Dj f )(x) = p· f(x) for all x ∈ S.……………………(A) 

(b) Let the open subset S of Rn satisfy the condition 

λx ∈ S whenever x ∈ S and λ > 0. 
If the differentiable function f :S→R satisfies (A), then it is homogeneous of de-

gree p. 
Proof. Consider any x ∈ Rn and λ > 0 such that λx ∈ S. Since S is open, λ can 
‘vary within a small neighbourhood of itself’. To put it precisely, μx ∈ S as long 
as μ ∈ (λ _ δ,λ + δ); but we avoid bringing in μ and δ explicitly so as to keep the 
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notation simple. Now let f  be any differentiable function on S. Upon applying 
the chain rule to the composition φ(λ) = f(λx), we get 

φ'(λ) = 
j
Σ
=

n

1
xj · (Dj f )(λx).…………………………(1) 

Note that this holds regardless of whether f  is homogeneous (or x ∈ S for that 
matter). 

In order to prove (a), consider any x ∈ S. Then λx ∈ S for λ = 1. Therefore φ 
is defined on an open set containing 1. By the assumed homogeneity of f, we 
have φ(λ) = λpf(x). Hence it follows from (1) that 

j
Σ
=

n

1
xj · (Dj f )(λx) = p·λp_1f(x). 

Upon substituting λ = 1 in this, we get (A). 
In order to prove (b), consider any x ∈ S and λ > 0. According to the hypo-

thesis on the domain S, we must have λx ∈ S. Thus, φ is defined on (0,∞) and 
satisfies (1). Since (A) is assumed to hold everywhere on S, we have 

j
Σ
=

n

1
λxj · (Dj f )(λx) = p· f(λx) for all λ > 0. 

But by (1), this states that λφ'(λ) = p·φ(λ). It follows that 

( )
p

d
d

φ λ⎛ ⎞
⎜ ⎟λ λ⎝ ⎠

 = φ'(λ)/λp – p·φ(λ)/λp+1 = [ p·φ(λ)/λ]/λp – p·φ(λ)/λp+1 = 0. 

Therefore, φ(λ)/λp is constant on (0,∞) and hence φ(λ)/λp = φ(1) = f(x) for all λ 
∈ (0,∞). This means f  is homogeneous of degree p. , 

3-4.10. Remark. The condition on the domain in part (b) of the above theorem 
cannot be omitted. The function of Example 3-4.8(f) satisfies (A) on S1 as well 
as S2 and hence on its entire domain, but it is not homogeneous. 

Problem Set 3-4 

3-4.P1. Solve 3-2.P5, not from first principles this time but by using Theorems 
3-4.2 and 3-4.4. 

3-4.P2. Show that the function defined on R2 by f(x,y) = xy/(x2 + y2) for (x,y) ≠ 
(0,0) and f(0,0) = 0 is not continuous at (0,0) but both partial derivatives exist 
there. Also, show that no directional derivative exists in any direction (h, k) for 
which h ≠ 0 ≠ k. 

3-4.P3. Given: f(x, y) = xy/(x2 + y2)1/2 for (x, y) ≠ (0, 0) and f(0, 0) = 0. Show that 
f  is continuous, possesses partial derivatives but is not differentiable at (0, 0). 

3-4.P4. Show that the map of R2 into itself given by 
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x = p cos q, y = p sin q 
is differentiable and that its Jacobian never vanishes except when p = 0. 

3-4.P5. Find all points (p, q) where the Jacobian of the following map of R2 into 
itself vanishes: 

x = cos p cosh q, y = sin p sinh q. 

3-4.P6. Suppose E ⊆ Rn (n ≥ 2) is open and all partial derivatives of g :E→R 
exist on E. If D2 g, … , Dn g are continuous at some point x ∈ E, show that g is 
differentiable at x. 
(Remark. Referenced just before Remark 4-3.1. The result remains true if we 
assume that, with any one exception, all the remaining partial derivatives are 
continuous at x. All we have to do is to rename the components x1 , … , xn  so as 
to have the exceptional component appear as the first one after renaming. The 
question is now reduced to the case considered in the problem above, and there 
is no need to work through the argument all over again. This practice of reduc-
ing a case to one that has already been handled has given rise to the following 
joke: A mathematician and a physicist are each given a lighted stove with a bowl 
of water to the stove's left and asked to heat the water. Both of them pick up the 
bowl and place it on the stove. Then they are each given a lighted stove with a 
bowl of water to the stove's right side and asked to heat the water. The physicist 
picks up the bowl and places it on the stove; the mathematician picks up the 
bowl, places it on the left of the stove and declares, ‘I have reduced it to the pre-
vious case!’) 
3-4.P7. Suppose E ⊆ Rn is open and all partial derivatives of g :E→R exist on E. 
If D1 g, … , Dn g are bounded on E, then show that f  is continuous on E.  

3-4.P8. Let f :R2→R3 be defined by 

f(x,y) = (sin x cos y , x + y, x2 _ y). 

Find the Jacobian matrix. 

3-4.P9. Show that the function f :R2→R of Example 3-2.6, which was defined 
as f(0, 0) = 0 and 

f(x, y) = x3 /(x2 + y2 ) when (x, y) ≠ (0,0), 

has bounded partial derivatives everywhere but no Gateaux derivative at (0,0). 

3-4.P10. Compute the Gateaux derivative where it exists for the function f, 
where f(0, 0) = 0 and  

f(x, y) = x2y2 ln (x2 + y2) when (x, y) ≠ (0,0). 

3-4.P11. (a) Find a linear function of x and y which is a ‘good’ approximation 

for ( , ) arctan 1
x yF x y xy

−⎛ ⎞= ⎜ ⎟+⎝ ⎠
 when x and y are ‘small’. 
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(b) Find a linear function of x _ 3 and y _ 1
2  which is a ‘good’ approximation for 

( , ) arctan 1
x yF x y xy

−⎛ ⎞= ⎜ ⎟+⎝ ⎠
 when x and y are ‘near’ 3 and 1

2 , respectively.  

3-4.P12. Let f be a real-valued function differentiable on an open ball centred at 
(x1 ,x2) ∈ R2 and let y = (y1 ,y2) be in the ball. By considering the function 

g(t) = f(ty1 + (1 _ t)x1 , y2) + f(x1 , ty2 + (1 _ t)x2), 
prove that 

f(y1 ,y2) _ f(x1 ,x2) = 1 1 1 1 2 2 2 2 1 2( ) ( , ) ( ) ( , )y x D f z y y x D f x z− + − , 

where zi is a point on the segment {tyi + (1 _ t)xi : 0 ≤ t ≤ 1}. 

3-4.P13. Suppose that F :S→R is differentiable on the open set S 
and 

j
Σ
=

n

1
xj · (Dj F )(x) = p·F (x) for all x ∈ S. If x is a point of S for which there is an 

interval (t0 , t1) such that tx ∈ S ∀ t ∈ (t0 , t1) and also 1 ∈ (t0 , t1), show that the rela-
tion F(tx) = t pF(x) holds for t ∈ (t0 , t1). 

3-4.P14. Let x,y, z be differentiable functions of (u,v) on some open set in R2 
and J(x,y), J(y, z), J (z,x) be the Jacobians of (x,y), (y, z), (z,x), respectively. Pro-
ve that 

xuJ(y, z) + yuJ(z,x) + zuJ(x,y) = 0 and xvJ(y, z) + yvJ(z,x) + zvJ(x,y) = 0. 

3-4.P15. For any n×n matrix A = [ai j ], denote the cofactor of the (i, j)th entry by 
Ai j . Then detA = Σ j ai j Ai j  for each i. When B is also an n×n matrix, denote by 
AB

i the matrix obtained by replacing the ith row of A by that of B. Then Ai j  = 
(AB

i)i j . 

(a) detA is a function of the n2 variables ai j ; prove that 
i ja

∂
∂ Ai k  = 0 for any 

i , j , k  and hence that 
i ja

∂
∂ detA = Ai j  for any i, j .  

(b) Let each ai j  be a differentiable function on some common interval I in \ and 

denote by B the matrix of derivatives [ai j'(x)]. Prove by using the chain rule that 
d
dx detA = Σ i detAB

i . 

(c) If furthermore A has an inverse A–1 = [ci j (x0)] at some x0 ∈ I, show that d
dx de-

tA = detA Σi j ai j' cj i  at x0 . What does this say about d
dx (ln (detA))? 

3-4.P16. Find x z
x

∂
∂ + y z

y
∂
∂

 at points of differentiability of  
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z = 
5 4 3 2 5 2 2 5/2

2 2 5/2
7 86 9 ( )ln ln

( )
x x y x y y x y

x y

⎛ ⎞⎛ ⎞+ + + + +
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

. 

3-4.P17. [Needed in 3-4.P18–21] If the function f : [a,b]×[c,d]→\ has a con-
tinuous partial derivative with respect to y at each point of [a,b]×[c,d], then the 
function F defined on [c,d] by 

F(y) = b
a∫ f(x,y) dx 

has a continuous derivative given by 

F'(y) = 
b

a∫ ( , )f
y

x y∂
∂

dx (Leibnitz’s formula). 

Determine whether this extends to the case when [c,d] is replaced by (c,∞) or \. 

3-4.P18. Use the Leibnitz Formula [see 3-4.P17] to show that 
/ 2

0
π
∫ ln (α2 _ sin2 φ) dφ = π ln [ 1

2 (α + √(α2 _ 1))] for α > 1. 

3-4.P19. Show that the function u(x) = 0
π
∫ cos (nφ _ xsin φ) dφ , x ∈ \, satisfies 

Bessel’s equation, namely: x2u" + xu' + (x2 _ n2)u = 0. 

3-4.P20. Suppose that f  is a continuous function with continuous partial deriva-
tive D2 f on the rectangle I = [a,b]×[c,d]. Further, suppose that the functions α 
and β on [c,d] have values in [a,b] and are continuously differentiable. Then the 
integral 

F(y) = ( )
( )

y
y

β
α∫ f(x,y) dx 

is defined for every y ∈ [c,d] and F is continuously differentiable with derivative 
given by 

F'(y) = f (β(y),y)β'(y) _ f (α(y),y)α'(y) + ( )
( )

y
y

β
α∫ (D2 f )(x,y) dx . 

Here the intervals [a,b],  [c,d] may be replaced by any other intervals containing 
more than one point. 

3-4.P21. Let f  be a continuous function on an interval containing 0. Consider the 
sequence of functions defined on that interval by 

Fn(x) = 
1

( 1)!n − 0
x
∫ (x _ t)n _ 1 f(t) dt, n ∈ ̀ . 

Show that Fn
(n)(x) = f(x) for each n ∈ ̀ . 

3-4.P22. (The boundary of the unit disc in the x1x3-plane of \3 is the entire disc 
and not just its circumference. Intuition suggests that a curve that reaches a point 
of the circumference orthogonally from within the disc and has a nonzero tan-
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gent at the point must exit the disc there. The next problem formulates the idea 
analytically.) 

Let D = {(x1 ,x2 ,x3) ∈ \3 : x1
2 + x2

2 ≤ 1, x3 = 0} and γ:[0,2π]→\3 be defined by 

γ1(θ) = cos θ, γ2(θ) = sin θ, γ3(θ) = 0. 

Suppose Γ:[_1,1]→\3 is differentiable at 0 and 
 (i) Γ(t) ∈ D whenever _1 ≤ t ≤ 0; 
 (ii) Γ1(0) = cos θ0 ,  Γ2(0) = sin θ0 ,  Γ3(0) = 0 where 0 ≤ θ0 ≤ 2π; 
 (iii) Γ1'(0)2 + Γ2'(0)2 > 0; 
 (iv) (Γ1'(0),Γ2'(0),Γ3'(0)) · (γ1'(θ0),γ2'(θ0),γ3'(θ0)) = 0. 
Show that some δ > 0 has the property that 0 < t < δ ⇒ Γ(t) ∉ D. 

3-4.P23. Let Φ:[0,1]×[0,1]→R3 
be as in 2-6.P18. Fix any u0 ∈ 
[0,1]. Consider the maps 

Γ:[0,1]→[0,1]×[0,1] 
and 

γ:[_1,1]→[0,1]×[0,1] 
given by 

Γ(s) = (s,0) 
and 

0

0

( , ) if 1 0
( )

(1 ,1 ) if 0 1.
u t t

t
u t t
− − ≤ ≤⎧

γ = ⎨ − − < ≤⎩
 

Then Γ has a continuous deriva-
tive everywhere but γ is 
manifestly discontinuous at 0. 
Show that 
(a) Φ(Γ(u0)) = Φ(γ(0)). 
(b) (Φ Γ)'(s) = (0,0,2α) for all s 

∈ [0,1]. 
(c) Φ γ is continuously differentiable on [0,1]. 
(d) Neither (Φ Γ)'(u0) nor (Φ γ)'(0) vanishes but their inner product does. 
In terms of the graph of the range M of Φ (the Möbius band) and the curve Φ Γ 
lying in it, this can be interpreted as saying that, at every point Φ(Γ(u0)) of the 
curve other than Φ(Γ( 1

2 )), it is crossed orthogonally by another curve, also lying 
in M, namely, Φ γ. How would you interpret this about the graph of Φ Γ lying 
on the ‘edge’ of M? 

u0    1 

1_ u0 

γ(t), 0 < t ≤ 1 

γ(t), _1≤ t ≤ 0 

1

Γ(s), 0 ≤ s ≤ 1 



 

3-5 Second Partial Derivatives 

The partial derivatives Dj f , j = 1,2,…,n, of a real-valued function f  defined on 
a subset of \n are themselves real-valued functions defined on a subset of \n 
and therefore can have partial derivatives. When they do, their partial deriva-
tives Di ( Dj f ) are called ‘second partial derivatives’ of f . Example 3-5.2 below 
shows that Di ( Dj f ) need not always be equal to Dj ( Di f ). We shall prove theo-
rems, one due to Schwarz and another due to Young, which assure the equality 
of Di ( Dj f ) and Dj ( Di f ) under different hypotheses. 

We shall also prove a simple case of Taylor’s theorem needed in the sequel. 

We begin with a formal definition of second partial derivatives. 

3-5.1. Definition. If a partial derivative Dj f  of a function f :S→\,  where S ⊆ 
\n, has a partial derivative Di ( Dj f ) at some point x ∈ S, then it is called a 
second partial derivative of f  at x and is denoted by (Di j f )(x) or Di j f (x).  

In contrast, a partial derivative Dj f  is called a first partial derivative. 

When i ≠ j, the second partial derivatives Di j f  and Dj i f  need not be equal 
everywhere even if the function f is differentiable everywhere. We present an 
instance of this before proving two sets of sufficient conditions for equality to 
hold. 

3-5.2. Example. Define the function f on \2 as 

f(x,y) = 

2 2

2 2
( ) if ( , ) (0,0)

0 if ( , ) (0,0).

xy x y x y
x y

x y

⎧ − ≠⎪ +⎨
⎪ =⎩

 

A routine computation shows that its partial derivatives are given by 

(D1 f )(x,y) = 
4 2 2 4

2 2 2
4

( )
x x y yy

x y
+ −

+
 when (x,y) ≠ (0,0) and (D1 f )(0,0) = 0 

and (D2 f )(x,y) = 
4 2 2 4

2 2 2
4

( )
x x y yx

x y
−

+
 when (x,y) ≠ (0,0) and (D2 f )(0,0) = 0. 

Continuity of these partial derivatives follows from 3-3.P14. Thus f  is differen-
tiable everywhere. Furthermore, (D1 f )(0,y) = _y when y ≠ 0 and (D2 f )(x, 0) = x 
when x ≠ 0. Hence (D2 1 f )(0,0) = _1 while (D1 2 f )(0,0) = 1. 

For later purposes, we note that  
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(D2 1 f )(x,y) = 
6 4 2 2 4 6

2 2 3
9 9

( )
x x y x y y

x y
+ − −

+
 when (x,y) ≠ (0, 0). 

The hypotheses of the next theorem do not imply that f is differentiable; so 
we cannot use the chain rule proved in Theorem 3-3.1. 

3-5.3. Schwarz’s Theorem. Let x be a point in the domain S ⊆ \n of a real-
valued function f  such that, in some ball centred at x, the derivatives Dj f , Di f  
and Di j f  exist and Di j f  is continuous at x. Then Dj i f(x) exists and equals 
Di j f(x). 

Proof. For convenience of notation, we take n = 2, i = 1 and j = 2. Also, we de-
note x by (a,b), where a,b ∈ \. Thus D1 2 f is assumed continuous at (a,b) and 
we must prove that D2 1 f(a,b) exists and equals D1 2 f(a,b). 

Consider any ε > 0. Since D1 2 f  has been assumed continuous at (a,b), there 
exists a positive δ (less than the radius of the ball mentioned in the hypothesis) 
such that for any θ,θ' ∈ (0,1), we have 

|h | < δ, |k | < δ ⇒ |D1 2 f(a + θ'h,  b + θk) – D1 2 f(a,b)| < _ε2
_ .……(1) 

Let φ be the function with domain [b,b + k], defined by 

φ(y) = f(a + h, y) _ f(a, y). 

Then by the mean value theorem, φ(b + k) _ φ(b) = k ·φ'(b + θk), where θ ∈ (0,1). 
Now, φ'(y) = D2 f(a + h, y) _ D2 f(a, y) by definition of partial derivative. There-
fore, 

φ(b + k) – φ(b) = k · [D2 f(a + h,b + θk) _ D2 f(a,b + θk)], where θ ∈ (0,1). 

By a similar use of the mean value theorem again, we further have 

φ(b + k) – φ(b) = k · [h ·D1 2 f(a + θ'h,b + θk)] ,  where θ' ∈ (0,1).……(2) 

However, φ(b + k) _ φ(b) = f(a + h,b + k) _ f(a + h,b) _ f(a,b + k) + f(a,b). It 
therefore follows from (2) that when h ≠ 0 ≠ k, 

1
k [ ( , ) ( , ) ( , ) ( , )f a h b k f a b k f a h b f a b

h h
+ + − + + −− ] = D1 2 f(a + θ'h,b + θk). 

In view of (1), this has the consequence that whenever 0 < |h | < δ, 0 < |k | < δ,  
we have 

| 1k [ ( , ) ( , ) ( , ) ( , )f a h b k f a b k f a h b f a b
h h

+ + − + + −− ] – D1 2 f(a,b) | < _ε2
_ . 

By hypothesis, the two quotients here have respective limits D1 f(a,b + k) and 
D1 f(a,b) as h→0. Therefore 
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0 < |k | < δ ⇒ | 1 1( , ) ( , )D f a b k D f a b
k

+ −
 – D1 2 f(a,b) | ≤ _ε

2
_  < ε . 

Since such a positive δ has been shown to exist for an arbitrary positive ε, the 
second partial derivative D2 1 f(a,b) exists and equals D1 2 f(a,b). , 

Remark. The hypotheses of continuity in Schwarz’s theorem cannot be 

dropped. For the function f of Example 3-5.2, the second partial derivative 

(D2 1 f )(x,y) was computed there and is seen to satisfy l
x
i
→
m

0
(D2 1 f )(x, 0) = 1 = 

_l
y
i
→
m

0
(D2 1 f )(0,y), which means it is not continuous at (0,0); recall that its mixed 

partial derivatives D2 1 f(0,0) and D1 2 f(0,0) were shown to be unequal. The 

same example shows that the hypothesis of differentiability in the next theorem 

cannot be dropped: D1 f  is not differentiable, as can be deduced from 3-3.P14, 

and the mixed partial derivatives D2 1 f(0,0) and D1 2 f(0,0) are not equal. 

3-5.4. Young’s Theorem. Let x be a point in the domain S ⊆ \n of a real-valued 
function f  such that, in some ball centred at x, the derivatives Dj f , Di f  exist and 
are differentiable at x. Then Dj i f(x) = Di j f(x). 

Proof. As in the preceding proof, we take n = 2, i = 1, j = 2 and denote x by 
(a,b), where a,b ∈ \. Since the partial derivatives D1 f  and D2 f  are assumed 
differentiable at (a,b), there exist u1 and u2 such that, for p = 1,2,  we have 

( )( , ) ( )( , )p pD f a h b k D f a b+ + −  
1
22 2

1 2( )( , ) ( )( , ) ( ) ( , ),p p ph D f a b k D f a b h k u h k= + + + …(1) 
where 

up(h,k)→0 as (h,k)→0.……………………………(2) 

It is understood of course that (h,k) lies within a sufficiently small ball centred 
at (0,0). 

In what follows, we work with h = k ≠ 0. For each sufficiently small h, con-
sider the functions 

ψ(x) = f(x,b + h) _ f(x,b) and φ(y) = f(a + h,y) _ f(a,y). 

By the mean value theorem and by definition of partial derivative (applied to f ), 
we have 
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ψ(a + h) _ ψ(a) = h ·ψ'(a + θh) for some θ ∈ (0,1) 

= h · [(D1 f )(a + θh,b + h) – (D1 f )(a + θh,b)] 

= h · [θh · (D1 1 f )(a,b) + h · (D2 1 f )(a,b) 
+ |h |· (1 + θ2)1/2 ·u1(θh,h) 
– θh · (D1 1 f )(a,b) – |h |θ · u1(θh, 0)] by (1) 

= h · [h · (D2 1 f )(a,b) + |h |· (1 + θ2)1/2 ·u1(θh,h) 
– |h |θ · u1(θh, 0)]. (3) 

A similar argument applied to φ leads to, 

φ(b+h)–φ(b)  = h · [h · (D1 2 f )(a,b)  

+ |h |· (1+θ' 2)1/2 ·u2(h,θ'h) – |h |θ' · u2(0,θ'h)].  (4) 

But 
ψ(a+h) – ψ(a) = f(a+h,b+h) _ f(a+h,b) _ f(a,b+h) + f(a,b) = φ(b+h) – φ(b). 

Therefore, it follows from (3) and (4) that 

(D2 1 f )(a,b) + 
| |h
h (1 + θ2)1/2 ·u1(θh,h) – 

| |h
h θ · u1(θh, 0) 

= (D1 2 f )(a,b) + 
| |h
h  (1 + θ' 2)1/2 ·u2(h,θ'h) – 

| |h
h θ' · u2(0,θ'h). 

Since this holds for all sufficiently small nonzero h, we may take the limit as 
h→0, which yields the desired equality in view of (2). , 

A function f  is said to be twice continuously differentiable on an open set 
if all the second partial derivatives Di j f p  of every component function fp are 
continuous on the set. It is a consequence of either one of the preceding two 
theorems that Dj i fp = Di j fp . 

We now prove a simple case of Taylor’s theorem, which will be adequate 
for our purposes. It will be used in the proof of Theorem 5-2.1. 

3-5.5. Proposition. Let x be a point in the domain S ⊆ \n of a real- valued func-
tion f  such that the derivatives Dj f  (1 ≤ j ≤ n) exist and are differentiable 
everywhere in some open convex subset B ⊆ S that contains x. Then for any h 
such that x + h ∈ B, there exists θ ∈ (0,1) such that 

f(x + h) = f(x) +
j
Σ
=

n

1
hj · Dj f(x) +  1

2 j
Σ
=

n

1
hj [ i

Σ
=

n

1
hiDi j f(x + θh)]. 

Proof. Since Dj f  are differentiable, they are continuous and hence f is also dif-
ferentiable in B. Consider any h ∈ \n with x + h ∈ B. By convexity of B, we have 
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x + th ∈ B for all t ∈ [0,1]. Therefore, there is a function φ:[0,1]→\ defined by 
φ(t) = f(x + th). It follows by the chain rule that it satisfies 

φ'(t) = 
j
Σ
=

n

1
hj · Dj f(x + th) and φ"(t) = 

j
Σ
=

n

1
hj [ i

Σ
=

n

1
hiDi j f(x + th)].……(1) 

By making use of Taylor’s theorem for functions on an interval, we can assert 
that φ(1) = φ(0) + φ' (0) + 1

2 φ" (θ) for some θ ∈ (0,1). In view of (1), this is pre-
cisely the conclusion that was to be obtained. , 

We now derive the consequence that, if second partial derivatives of all 
component functions are bounded in a ball about a point x, then in Def. 3-2.1 of 
linear derivative, u satisfies the stronger condition that ||u(h)|| ≤ M ||h ||, where M 
is some constant. We shall appeal to it only in Remark 4-2.5. 

3-5.6. Corollary. Let x be a point in the domain S ⊆ \n of a function f :S→\m 
such that, in some open convex set B ⊆ S that contains x, the mn derivatives 
Dj fk  (1 ≤ j ≤ n, 1 ≤ k ≤ m) exist and are differentiable everywhere in the entire 
ball. Suppose also that there exists K > 0 such that the n2m second partial deriv-
atives satisfy |Di j fk| ≤ K on B (1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m). Then for any h such 
that x + h ∈ B, 

|| f(x + h) _ f(x) _ f '(x)h ||2 ≤ 1
2 Knm

 _1
2 ||h ||22.  

If either of the other two standard norms is used, then a similar inequality holds 
with some other constant on the right side. 
Proof. By Proposition 3-5.5, there exist θk ∈ (0,1), 1 ≤ k ≤ m,  such that 

f k (x + h) = f k (x) +
j
Σ
=

n

1
hj · Dj f k (x) + 1

2 j
Σ
=

n

1
hj[ i

Σ
=

n

1
hiDi j f k (x + θkh)], 1 ≤ k ≤ m. 

The equality may be written as 

| f k (x + h) _ f k (x) _
j
Σ
=

n

1
hj · Dj f k(x) | = | 1

2 j
Σ
=

n

1
hj[ i

Σ
=

n

1
hiDi j f k (x + θkh)] |. 

From the inequality fulfilled by second partial derivatives and the Cauchy–
Schwarz inequality, we now get 

| f k (x + h) _ f k(x) _
j
Σ
=

n

1
hj · Dj f k(x) | ≤ 1

2 K(
j
Σ
=

n

1
|hj | )( i

Σ
=

n

1
|hi | ) ≤ 1

2 Kn||h ||22, 1 ≤ k ≤ m. 

In conjunction with Theorem 3-4.2, this leads to the desired inequality. The last 
part is an immediate consequence of Proposition 2-2.6. ,  

Problem Set 3-5 

3-5.P1. In the proof of Schwarz’s theorem, can one infer the existence of the 
limit as h→0 of D1 2 f(a + θ'h,  b + θk) from the continuity of D1 2 f ? 
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3-5.P2. Show that it is possible to have (D1 2 f )(a,b) = (D2 1 f )(a,b) even when 
D1 2 f  and D2 1 f  are not continuous at (a,b) by considering the function 

f(x,y) = 
⎩
⎨
⎧

=
≠+

.)0,0(),( if0
)0,0(),( if)(/ 2222

yx
yxyxyx  

3-5.P3. Show that it is possible to have (D1 2 f )(a,b) = (D2 1 f )(a,b) even when 
D1 f  is not differentiable at (a,b) by considering the function 

f(x,y) = 
⎩
⎨
⎧

=
≠+

.)0,0(),( if0
)0,0(),( if)(/ 2222

yx
yxyxyx  

3-5.P4. Let f and g be real-valued functions defined on \, possessing continuous 
second derivatives f" and g". Define 

F(x,y) = f(x + g(y)), (x,y ) ∈ \2. 

Determine D1 F, D2 F, D1 2 F and D1 1 F  and show that (D1 F)(D1 2 F ) = 
(D2 F)(D1 1 F ). 

3-5.P5. If F is homogeneous of degree p and its partial derivatives are differen-
tiable, then show that the equation 

x2 (D1 1F ) + 2xy (D1 2 F ) + y2(D2 2 F ) = p( p _ 1)F 

is valid. 

3-5.P6. A weaker version of Schwarz’s Theorem 3-5.3 is the following: Let x be 
a point in the domain S ⊆ \n of a real-valued function f  such that, in some ball 
centred at x, the derivatives Di j f  and Dj i f  both exist and are continuous at x. 
Then Dj i f(x) = Di j f(x). Prove this weaker version directly without using 
Schwarz’s Theorem. 

3-5.P7. Prove that D2 1 f(0,0) ≠ D1 2 f(0,0) for the function on \2 such that f(0,0) 

= 0 and f(x,y) = x2 arctan y
x

_ y2 arctan x
y  for (x,y) ≠ (0,0). Here u2 arctan v

u  is 

understood to mean 0 when u = 0 ≠ v. 

3-5.P8. Let f  be a homogeneous function of degree n with continuous second 
partial derivatives on an open subset of \3 and suppose (x,y, z) is a point where z 
≠ 0 and the determinants H and A of the respective matrices 
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11 12 13

21 22 23

31 32 33

D f D f D f
D f D f D f
D f D f D f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
11 12 1

21 22 2

1 2 1
n

n

D f D f D f
D f D f D f
D f D f f−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

are also nonzero. Show that H = 
2

2
( 1)n

z
− A. 

3-5.P9. Let B be the determinant of the matrix 

11 12 1

21 22 2

31 32 3

D f D f D f
D f D f D f
D f D f D f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 , 

where f  is a homogeneous function with continuous second partial derivatives 
on an open subset of \3 and let H and A be the determinants as in 3-5.P8. Show 
that B2 = AH (although nothing is guaranteed to be nonzero!). 

3-5.P10. Suppose the functions x,y, z of 3-4.P14 have continuous second partial 
derivatives. Then show that 

J(x,J(y, z)) + J(y,J(z,x)) + J(z,J(x,y)) = 0. 

3-5.P11. Let y = y(x) be a twice continuously differentiable function satisfying 
F(x,y) = 0, where F has continuous second partial derivatives. Prove that, if Fy ≠ 
0, then 

Fy
3y" = det

0

xx xy x

xy yy y

x y

F F F
F F F
F F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

3-5.P12. Let f  be a continuous function on the cuboid [a,b]×[c,d] in \2. For 
each interior point (x,y) of the cuboid, define 

F(x,y) = x
a∫ ( y

c∫ f(s, t) dt) ds. 

Show that D1 2 F(x,y) = D2 1 F(x,y) = f(x,y). 

3-5.P13. Let x be a point in the domain S ⊆ \n of a function f :S→\m such that, 
in some open convex subset B ⊆ S that contains x, the mn derivatives Dj fk  (1 ≤ j 
≤ n, 1 ≤ k ≤ m) exist and satisfy the following Lipschitz condition: 

|Dj fk (x + h) _  Dj fk (x)| ≤ L||h ||2 whenever x + h ∈ B. 

Then show that 

|| f(x + h) _ f(x) _ f '(x)h ||2 ≤ Ln1/2m1/2||h ||22 whenever x + h ∈ B. 





 

 

Inverse and Implicit Function Theorems 

4-1 Contraction Mapping Theorem 

So far we have been concerned with maps from an open subset of \n into \m. 
Soon we shall be considering maps from a set that is a subset of \n into that 
very set, what are often called self maps of a set. For example, the map 
T:[0, 1]→[0, 1] given by Tx = 1 – x is a self map. A trivial example would be the 
identity map T given by Tx = x on any set X whatsoever. What we shall need is a 
property of a special kind of self maps called contractions or contraction maps 
of a closed subset of Rn (Theorem 4-1.6 below). Before proceeding to the theo-
rem, we illustrate the ideas involved. 

To begin with, we give some examples of self maps. 

4-1.1. Examples. (a) X = [0, 1], Tx = 1 – xp, p some positive integer. 
(b) X = {x ∈ \ : x ≠ 0}, Tx = x + (1/x). 
(c) X = {x ∈ \ : x > 1}, Tx = x + (1/x). 
(d) X = [3, 5], Tx = integer part of x. 
(e) X = [1, 2], Tx = x – (x3 – 2)/16. 

It is a simple matter to verify that the maps described in (a)–(d) above are 
self maps. That (e) also describes a self map can be checked as follows: T'(x) = 

23
161 x−  is positive for x ∈ [1, 2] and so T(x) is an increasing function of x. There-

fore, 17
16  ≤ T(x) ≤ 13

8 . 

4-1.2. Definition. A fixed point of a map T :X→Y is an element x ∈ X such that 
Tx = x. (Obviously, any such x, if it exists, must also belong to Y.) 

4-1.3. Examples. For the identity map Tx = x, obviously every x in the domain 
is a fixed point. For the examples in 4-1.1, taken in reverse order, it is easily 
checked that fixed points are respectively 21/3, {3,4,5}, none, none, and any root 
of the equation xp + x – 1 = 0 that may belong to [0,1]. Such a root exists; in-
deed, with f(x) = xp + x _ 1, we have f(0) = _1, f(1) = 1, so that an application of 
the intermediate value theorem yields the conclusion. 

4-1.4. Definition. When X ⊆ \n, a map T :X→X is called a contraction (or con-
traction mapping, contraction map, shrinking map) in X if there exists some 
c ∈ [0,1) such that 

4 
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||Tx _ Ty|| ≤ c ||x _ y || x, y ∈ X. 

Although the constant c cannot be unique, it is convenient to refer to it as 
the contraction constant. The same map can be a contraction in the sense of one 
norm in Rn but not another [see Example (c) below].  

As the reader can easily see, every contraction is uniformly continuous. 

Examples. (a) A constant self map is clearly a contraction, with any number c 
between 0 and 1 serving as the contraction constant. 
(b) Let b ∈ \n and T :\n→\n be defined by Tx = 1

2 x + b. Then T is a contraction 

with any number between 1
2  and 1 serving as the contraction constant. 

(c) A linear map T :\n→\n is a contraction if and only if for some c ∈ [0,1) we 
have ||Tx|| ≤ c ||x|| for all x ∈ \n, because Tx _ Ty = T(x _ y). Take n = 2 and con-
sider the map T :\2→\2 defined by 

Tx = T(x1 ,x2) = ( 1
2 x1+ 1

4 x2 ,  2
3 x1+ 1

6 x2). 

We shall show that ||Tx||∞ ≤ 5
6 ||x||∞ but there exists x ∈ \2 such that ||Tx||1 > ||x||1 . 

The former inequality follows from the observation that 

| 1
2 x1+ 1

4 x2 | ≤ 1
2 |x1| + 1

4 |x2| ≤ 1
2 ||x||∞ + 1

4 ||x||∞ = 3
4 ||x||∞ 

and 
| 2
3 x1+ 1

6 x2| ≤ 2
3 |x1| + 1

6 |x2| ≤ 2
3 ||x||∞ + 1

6 ||x||∞ = 5
6 ||x||∞. 

For the other inequality, choose x = (x1 ,x2) = (1,0); then ||x||1 = 1 and ||Tx||1 = 
1
2 + 2

3  = 7
6  > 1 = ||x||1 . 

(d) Among the self maps illustrated in Examples 4-1.1, the last one is a con-
traction. This follows by applying the mean value theorem and noting that 0 < 
1 – 3x2/16 ≤ 13/16 when x ∈ [1, 2]; so we may take c = 13/16. In fact, the follow-
ing general result holds. 

4-1.5. Proposition. Let I be an interval and f :I→I be differentiable. Assume that 
there exists a constant K < 1 such that | f '(z)| ≤ K for all z ∈ I. Then f  is a con-
traction. 
Proof. If x,y ∈ I,  x < y,  then ( f(x) _ f(y))/(x _ y) = f '(c), where x < c < y. Since 
| f '(z)| ≤ K for all z ∈ I, it follows that | f(x) _ f(y)| ≤ K |x _ y|. , 

As another illustration of this result, we consider Tx = 1
2 (x + _2

x
_ ), x ∈ [1,∞). 

Since x + _2
x
_  ≥ x + _1

x
_  ≥ 2, we see that T is a self map. Moreover, |T'(x)| = 

| 1
2

_ 1/x2| ≤ 1
2 . So, by the above proposition, T is a contraction. 
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The first four self maps listed in Examples 4-1.1 are not contractions: in (a), 
we have |T0 _ T1| = 1 = |0 _ 1|, while in (b), we have |T(_1) _ T(1)| = |(_2) _ (2)| 
= 4 whereas |(_1) _ (1)| = 2. In (c), 

x > y > 1 ⇒ |Tx – Ty | = |(x – y) + (1/x – 1/y)| = (x – y)(1 – 1/xy) 

and therefore |Tx – Ty | / (x – y) can be as close to 1 as desired. In (d), the map T 
is not even continuous. 

We now come to the main theorem in \n about contraction mappings. In a 
more general context than \n, the result is variously known as contraction 
mapping theorem, shrinking lemma, Banach–Cacciopoli principle, contrac-
tion principle and so forth. We shall refer to it as the contraction principle, 
although we restrict attention to Rn. 

4-1.6. Contraction Principle (in \n). If T is a contraction map in a closed sub-
set X ⊆ Rn, then T has a unique fixed point. 
Proof. Since T is a contraction map, there exists c ∈ [0,1) such that 

||Tx _ Ty|| ≤ c ||x _ y || whenever x, y ∈ X.………………(1) 

Now |c| = c < 1, and hence cp→0 as p→ ∞. 
Uniqueness is easily seen as follows. If Tx0 = x0 and also Ty0 = y0, then by 

(1), ||x0
_ y0||  ≤ c ||x0

_ y0|| . But c < 1. Hence ||x0
_ y0||  = 0 and x0  = y0 . 

 To prove existence, take any element x1 ∈ X. Define a sequence in X induc-
tively by setting xp + 1 = Txp . For p = 1, it is trivial that 

||xp + 1
_ xp || ≤ cp – 1||x2

_ x1|| .…………………………(2) 

because the two sides are equal. Assume (2) holds for some p ∈ N. Then 

||xp + 2
_ xp + 1||  = ||Txp + 1

_ Txp ||  ≤ c||xp + 1
_ xp ||  ≤ c(cp – 1||x2

_ x1|| ) = cp||x2
_ x1|| . 

Therefore (2) holds for all p ∈ N. 

Now, for q > p, we have 

||xq
_ xp ||  ≤ ||xq

_ xq – 1|| + ||xq – 1
_ xq – 2 || + … + ||xp + 1

_ xp || 

≤ (cq – 2 + cq – 3 + … + cp – 1)||x2
_ x1|| by (2) 

≤ (cp – 1 + cp + cp + 1 + … )||x2
_ x1|| 

= [cp – 1 /(1_ c)] ||x2
_ x1||.  

Since cp – 1 /(1_ c) tends to 0 as p tends to infinity, it follows that {xp } is a 
Cauchy sequence. By Theorem 2-2.10, the sequence must converge to some 
limit, say x0 , and by Proposition 2-4.5, x0 ∈ X. Then for any p ∈ ̀ , we have 
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||x0
_ Tx0|| ≤ ||x0

_ xp || + ||xp
_ Txp || + ||Txp

_ Tx0|| 

≤ ||x0
_ xp || + ||xp

_ xp + 1|| + c ||xp
_ x0|| 

≤ ||x0
_ xp || + cp _ 1 ||x2

_ x1|| + c ||xp
_ x0|| by (2). 

Since ||x0
_ xp ||→0 and cp – 1→0 as p tends to infinity, it follows that ||x0

_ Tx0|| = 
0. Therefore Tx0  = x0 . , 

The proof of the theorem not only guarantees the existence of a fixed point 
but also provides a procedure for approximating it, because the sequence {xp} 
can be explicitly computed in terms of T and a chosen x0 . In the case of the con-
traction map T in [1, 2] given by Tx = x _ (x3 _ 2)/16, which was mentioned 
above, the sequence would be 

1, 1 – (13 – 2)/16 = 17/16, (17/16) + [(17/16)3 – 2]/16 = 66353/65536, … . 

The first term could have been taken as any element of [1, 2] instead of 1; the 
resulting sequence would still converge to the unique fixed point, which is 21/3, 
as already observed. 

Similarly, the self map of [1,∞) given by Tx = 1
2 (x + _2

x
_ ), which has already 

been shown to be a contraction, is now seen to have a unique fixed point. It is 
easy to verify by an independent computation that the fixed point is √2. 

The following corollary gives an estimate of the distance between xp and x0 . 

4-1.7. Corollary. Let T :X→X be a contraction map in a closed subset X ⊆ \n 
and 

||Tx _ Ty|| ≤ c ||x _ y || x, y ∈ X, where c ∈ [0,1). 

If x1 ∈ X and {xp}p≥1 is the sequence defined inductively by xp + 1  = Txp , then 

||x0
_ xp || ≤ [cp _ 1/(1 – c)] ||x2

_ x1||, where x0 is the fixed point of T. 

Proof. In the proof of Contraction Principle 4-1.6, it was shown for q > p that 
||xq

_ xp ||  ≤ [cp – 1 /(1_ c)] ||x2
_ x1||. The inequality in question follows upon tak-

ing the limit as q→∞. , 

Examples. (a) In the case of the contraction map T in [1, 2] given by Tx = x –
(x3 – 2)/16, we have 0 < T'(x) = 1 – 3x2/16 ≤ 13/16; so we may take c = 13/16. 
Then with x1 = 1, we have 
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||x0
_ xp || ≤ [cp _ 1/(1 – c)] ||x2

_ x1|| ≤ [( 13
16 )p _ 1/(1 – 13

16 )] ||x2
_ x1|| 

= 16
3 ( 13

16 )p _ 1( 17 116 − ) = 1
3 ( 13

16 )p _ 1. 

(b) For the contraction map T in [1,∞) given by Tx = 1
2 (x + _2

x
_ ), we have |T'(x)| = 

| 1
2

_ 1/x2| ≤ 1
2 ; so we may take c = 1

2 . Then with x1 = 1, we have 

||x0
_ xp || ≤

1

1
pc

c
−

− ||x2
_ x1|| ≤ 

11
2

1
2

( )
1

p−

−
||x2

_ x1|| 

= 2
1

1 3 12 2

p−
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = 
1

1
2

p−
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 For the purpose of the inverse function theorem however, what matters is 
only the existence of a unique fixed point for every contraction map in a closed 
subset of \n. 

We now present a generalisation of the contraction principle, which is use-
ful in some situations; however, we shall have no occasion to use it later in this 
book and the reader may wish to omit it. 

4-1.8. Corollary. Let X be a closed subset X ⊆ \n and T:X→X be a self map 
such that T k is a contraction in X for some positive integer k. Then T has a 
unique fixed point. (Note that T is not even assumed continuous!) 
Proof. By the contraction principle, T k has a unique fixed point; denote it by x0 . 
Then T kx0 = x0 and hence T k(Tx0) = T(T kx0) = Tx0 , which means that Tx0 is also 
a fixed point of T k. But T k has a unique fixed point and therefore Tx0 = x0 . Thus 
x0 is also a fixed point of T. Since any fixed point of T is also a fixed point of T k, 
then T cannot have another fixed point. , 

Example. Under the hypotheses of the above corollary it can happen that T is 
not continuous. Indeed, let T:\→ \ be defined by Tx = 0 or 1 according as x is 
rational or irrational. Then T 2(x) = 0 for all x ∈ \, which ensures that T 2 is a 
contraction. But T is discontinuous everywhere. 

Problem Set 4-1 

4-1.P1. Show that Contraction Principle 4-1.6 is not valid if the subset X of Rn is 
not closed. Determine the fixed points, if any, of the following maps: 

 (i)  T :\→\ defined by T(x) = x2; 
 (ii)  T :\→\ defined by T(x) = x + α; 
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 (iii)  T :\2→\ defined by T(x, y) = x.  

4-1.P2. Show that if a self map T :X→X has the property that T 3 has a unique 
fixed point, then T has the same property. 

4-1.P3. (a) Show that if a self map T :X→X ⊆ Rn satisfies the condition that 

||Tx _ Ty|| < ||x _ y || whenever x ≠ y, 

then it has at most one fixed point. 

(b) If the self map T :X→X ⊆ \n satisfies 

||Tx _ Ty|| ≤ 1
2 ||x _ y || for all x,y ∈ X, 

show that it has at most one fixed point. 

4-1.P4. (a) Show that the map T : [1, ∞)→[1, ∞) such that Tx = x + 1/x satisfies 

||Tx _ Ty|| < ||x _ y || whenever x ≠ y, 

but has no fixed point. 
(b) Show that the map f :\→\ such that f(x) = x + (1 + ex)

_1 satisfies 0 < | f '(x)| 
< 1 everywhere but has no fixed point. 

4-1.P5. Let T:X→X be a self map of a set X ⊆ \n and suppose 
||Tx _ Ty|| < ||x _ y || whenever x ≠ y. 

If X is compact, show that T has exactly one fixed point. 

4-1.P6. Show that the map T : [1, 2]→ \ such that Tx = x _ (x7 _ 6)/500 is a con-
traction map in [1,2]. What is the limit of the sequence 

1, T(1), T(T(1)), T(T(T(1))), … ? 

4-1.P7. Define T:[0,3]→[0,3] as Tx = 1 if 0 ≤ x ≤ 2 and Tx = 2 if 2 < x ≤ 3. Find 
T 2. (This provides an example of a discontinuous self map with a unique fixed 
point.) 

4-1.P8. Let X ⊆ \n be closed and T :X→X be a self map. Assume that there is a 
real sequence {αn} and a positive integer N such that 
 (i) ||Tnx _ Tny|| ≤ αn ||x _ y || for all x,y ∈ X and all n ≥ N; and 
 (ii) {αn} has a subsequence converging to a limit < 1. 
Show that T has a unique fixed point. 

4-1.P9. For the self map f :\→\ given by f(x) = 1
3(1 + x3), show that 

(a) there are three fixed points u < v < w; 
(b) f  maps the open interval (u,w) onto itself; 
(c) for any x ∈ (u,w), the sequence f n(x) converges to v; 
(d) f  is not a contraction map in (u,w). 
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4-1.P10. For the self map f :\→\ given by f(x) = 1/(x4 + 1), it can be shown by 
direct computation that (i) f 2( 3

4 ) = f( f( 3
4 ) ) > 3

4 ; (ii) f( 3
4 ) = 256

337  < 16
21 ; and 

(iii) |  f '( 16
21 )| < 1. Show that 

(a) f  has a unique fixed point α ∈ \ and that α ∈ [ 3
4 ,1]; 

(b) 0 < x < α < y ⇒ 0 < f(y) < α < f(x); 
(c) 3

4  < f( 3
4 ) and f  is a contraction in the interval [ 3

4 , f( 3
4 )]. 

4-1.P11. Let S be a compact subset of \n such that 0 < r < 1, x ∈ S ⇒ rx ∈ S. If 
T :S→S satisfies ||Tx _ Ty|| ≤ ||x _ y || ∀ x,y ∈ S, show that T has a fixed point. 
Give an example to show that the fixed point need not be unique. 

4-1.P12. Let T be a contraction map in a closed subset X of \n. For the case 
when X is also bounded, use Theorem 2-5.7 and Theorem 2-6.13 to show that T 
has a fixed point. Then extend to the case when X is unbounded. Finally, use the 
existence of a fixed point x0 to show for any element x1 ∈ X that the sequence in 
X defined inductively by setting xp + 1 = Txp  converges to x0 . This proof due to 
Drager and Foote [9]. 

4-2 Inverse Function Theorem 

Consider the question of expressing x in terms of y from y = x2 + 1. This is ask-
ing for the inverse of the function f :x→x2 + 1. Since f  is not injective, there is 
no inverse and one has to make do with either x = g(y) = 

1
2( 1)y −  or x = g(y) = 

_ 1
2( 1)y − , depending on whether one wants x ≥ 0 or x ≤ 0. In other words, with x 

restricted to either one of two suitable subsets of the domain of f , one can get a 
continuous inverse for the restricted function. Unless a restriction is imposed on 
x, there can be no inverse, since f  is not injective. 

One thing that the inverse function theorem does is to provide a sufficient 
condition for such a restriction to be possible when the domain and range of f 
are both subsets of \n, which is to say x,y ∈ \n. Since we shall consider func-
tions that are differentiable in the sense of Def. 3-2.1, the subset to which x is 
restricted must be open. 

It may be noted in passing that discontinuous inverses are also possible: 
Take g(y) = 

1
2( 1)y −  for rational y and g(y) = _

1
2( 1)y −  for irrational y, the re-

striction on x being that it should belong to the range of this discontinuous 
function, whatever it may be! 
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A familiar two-dimensional situation occurs when one wants to express the 
polar coordinates (r,θ) of a point in \2, other than the origin, in terms of its rec-
tangular coordinates (x,y): 

x = f1(r,θ) = r cosθ , y = f2(r,θ) = r sinθ , r ≠ 0. 

One cannot blithely take θ = tan
_1 (y/x), because this will restrict θ to lying be-

tween _π/2 and π/2. If one takes r > 0 and _π < θ ≤ π, then f  becomes injective 
and an inverse g for the restricted f can be obtained, albeit a discontinuous one. 
Details are left to the reader in 4-2.P16. With a further restriction on (r,θ), such 
as _π < θ < π, the inverse described therein can be shown to be continuous. Of 
course, any stronger restriction will also do, because if a function is injective on 
a subset of its domain, then it is injective on any nonempty subset of that subset. 

For the function f(x) = x2 + 1 discussed above, both instances of the restric-
tion imposed on x in order to make the function injective were special for that 
function. If such a restriction were wanted for the function f :\2→\2 given by 

y1  = f1 (x1 ,x2) = x1
2 + cos x2 ,  y2  = f2 (x1 ,x2) = x1 x2 , 

it would not be easy to find one, or even to check whether it is possible in the 
first place. 

Returning to the function f(x) = x2 + 1, recall that there can be two different 
open subsets to which x can be restricted. When one restricts x to the open set x 
> 0, the inverse g(y) = 

1
2( 1)y −  ‘accommodates’ the value x = 2 and also any 

other value x = a > 0. Similarly, when one restricts x to the open set x < 0, the 
inverse accommodates any a <  0. 

Thus the theorem is about a given a in the domain, which is to be accom-
modated in an open set U on which f  is to be injective. 

4-2.1. Inverse Function Theorem. Let E be a subset of \n and f :E→\n be con-
tinuously differentiable on E. Let a ∈ E and f '(a) be invertible. Then there exist 
subsets U ⊆ E, V ⊆ \n such that  
(a) U and V are open, a ∈ U,  f(U ) = V,  f is injective on U and f '(x) is invertible 

whenever x ∈ U ;  moreover, 
(b) the inverse map g:V→U is continuously differentiable and satisfies 

g'(y) = f '(g(y))
_1 whenever y ∈ V 

or equivalently, 
g'( f(x)) = f '(x)

_1 whenever x ∈ U. 

Proof. (a) Denote the linear map f '(a) by A. Since f ' is continuous at a, there 
exists an open ball U ⊆ E centred at a such that 
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x ∈ U  ⇒ || f '(x) _ A||  < 
1

1
2 || ||A−

 ⇒ ||A
_1|| · || f '(x) _ A||  < 1

2 .………(1) 

Then f '(x) is invertible whenever x ∈ U (by Theorem 2-7.11). 

For any y ∈ Rn and x ∈ U , define 

φy (x) = x + A
_1( y _ f(x))……………………………(2a) 

= A
_1(Ax + y _ f(x)).…………………………(2b) 

Then by (2a), 
x is a fixed point of φy  ⇔ y = f(x).………………………(3) 

By (2b) and Remark 3-3.8,  φy '(x) = A
_1(A _ f '(x)). Together with (1), this equali-

ty implies that ||φy'(x)|| < 1
2   for x ∈ U . It follows by Corollary 3-3.4 that 

||φy (x1 ) _ φy (x2 )||  ≤ 1
2 ||x1

_ x2 ||  ∀ x1 , x2  ∈ U ………………(4). 
(Caution: This is not enough to guarantee that we have a contraction map, be-
cause we do not yet have a set that it maps into itself! We shall arrange for that 
later.) The inequality (4) shows that φy can have at most one fixed point, so that 
by (3), f(x) = y for at most one x ∈ U. This further implies that f  is injective on 
U . Let V = f(U ). Then f maps U injectively onto V, and a ∈ U . Therefore, there 
exists an inverse map g:V→U, as illustrated in the accompanying figure. In or-
der to complete the proof of part (a), it now remains only to show that V is open. 

 
Consider an arbitrary y0 ∈ V . Then y0 = f(x0)  for some x0 ∈ U . Let ε > 0 be 

arbitrary but small enough to ensure that ||x _ x0 || ≤ ε ⇒ x ∈ U, so that the closed 
ball B of radius ε centred at x0  is a subset of U; i.e., 

B = {x ∈ \n : ||x _ x0 ||  ≤ ε} ⊆ U. 

f 
E 

f (E) 

a 

U 
V = f (U) 

f (a) 

g 
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We claim that the open ball of radius ε/2||A
_1||  centred at y0 is contained in V ; in 

other words, 

y ∈ \n, ||y _ y0 || < 
12 || ||A−

ε  ⇒ y ∈ f(U ). 

In order to prove this, let ||y – y0 ||  < ε/2||A
_1|| . Then for x ∈ B, we have 

||φy (x) _ x0||  ≤ ||φy (x) _ φy (x0)||  + ||φy (x0) _ x0||  

≤ 1
2 ||x _ x0 ||  + ||A

_1( y _ f(x0)) || , by (4) and (2a) 

≤ 2
ε + ||A

_1|| ||y _ y0 ||  

≤ 2
ε + ||A

_1||
12 || ||A−

ε  

≤ ε , 
so that φy (x) ∈ B. Consequently, φy  maps B into itself. Now by (4), φy  is a con-
traction in B, which is a closed subset of \n. By the contraction principle in \n, 
φy  has a fixed point in B ⊆ U. Therefore by (3), y ∈ f(B) ⊆ f(U ). This completes 
the argument that V is open, and (a) is established. Observe that a little more has 
actually been proved, namely, that for any ε > 0, 

||y _ y0 || < 
12 || ||A−

ε ,  y ∈ V ⇒ y ∈ f(B) ⇒ y = f(x) for some x ∈ B ⇒ g(y) ∈ B 

⇒  ||g(y) _ x0 ||  ≤ ε, 

and therefore, continuity of the inverse map g has also been established. 

(b) We know 
f(g(y) + h) _ f(g(y)) = f '(g(y))(h) + ||h||u(h) for sufficiently small h (5) 

and u(h)→0 as ||h||→0. Observe that f '(g(y)) is invertible because g(y) ∈ U. Now 
g has been proved continuous and we can therefore take k small enough to en-
sure that (5) holds for h = g(y + k) _ g(y). Then for every such k, we have 
f(g(y + k)) _ f(g(y)) = f '(g(y))(h) + ||h||u(h). But the left side of this equality is 
just k; so k = f '(g(y))(h) + ||h||u(h). Applying f '(g(y))

_1 to both sides, we obtain 

h = f '(g(y))
_1k _ ||h|| f '(g(y))

_1(u(h)), (6) 
which is the same as 

g(y + k) _ g(y) = f '(g(y))
_1k _ ||h|| f '(g(y))

_1(u(h)). 
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Therefore, in order to arrive at the existence of g'(y) and the equality g'(y) = 
f '(g(y))

_1, we need only show that || ||
|| ||
h
k f '(g(y))

_1(u(h))→0 as ||k||→0. By continui-
ty of g, we have ||h||→0 as  ||k||→0. So it is sufficient to prove that || ||

|| ||
h
k  remains 

bounded. Now (6) implies 

||h|| ≤ || f '(g(y))
_1|| ||k|| + ||h|| || f '(g(y))

_1|| ||u(h)||, 

which further implies 
||h||(1 _ || f '(g(y))

_1|| ||u(h)||) ≤ || f '(g(y))
_1|| ||k||. 

Since u(h)→0 as ||h||→0, it follows that || ||
|| ||
h
k  remains bounded. We have thus 

proved, for all y ∈ V, the existence of g'(y) and the equality g'(y) = f '(g(y))
_1. 

Now, the equality shows that g' is the composition of g, f ', and inversion of 
linear maps. All these are continuous maps (inversion is continuous by Theorem 
2-7.11) and therefore g' is continuous. This establishes (b). , 

The conclusion of the above theorem is often summarised as ‘f is locally in-
vertible at a with a continuously differentiable local inverse’ or ‘f has a 
continuously differentiable local inverse at a’. The term ‘local inverse’ here 
refers to the function g. 

It is possible to prove the inverse function theorem without using the con-
traction principle. Such proofs usually use the compactness of a closed ball in \n 
(see Apostol [1]). However, proofs using compactness of a closed ball cannot be 
extended to the situation when \n is replaced by an infinite-dimensional space, 
but the above proof can be (see Lang [17] or Brown and Page [4]). The treat-
ment given above most closely resembles that of Rudin [22]. 

We shall now apply the above theorem to the examples discussed at the be-
ginning of this section. 

4-2.2. Examples. (a) For the function f  defined on \ by f(x) = x2 + 1, the deriva-
tive is f '(x) = 2x, which is nonzero when x ≠ 0. Therefore, by the inverse 
function theorem, every a ≠ 0 lies in some open set U on which f  is injective. 
Besides, f maps U onto an open set V and the inverse g:V→U is differentiable. 
Also, g'(y) = ( f '(g(y))–1 = 1/2g(y) ∀ y ∈ V. Thus f is locally invertible at every 
nonzero a ∈ \ with a continuously differentiable local inverse. 

(b) For the function f  defined on P  = {(x1, x2) ∈ \2: x1  ≠ 0} by 

y1  = f1 (x1, x2) = x1 cos x2 ,  y2  = f2 (x1, x2) = x1 sin x2 , x1  ≠ 0, 

the Jacobian matrix is 
2 1 2

2 1 2

cos sin
sin cos

x x x
x x x

−⎡ ⎤
⎢ ⎥
⎣ ⎦

.  
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This is invertible when its determinant, which equals x1 , is nonzero. Therefore, 
by the inverse function theorem, every point of P  lies in an open subset U of P , 
on which f is injective. Besides, f  maps U onto an open set V and the inverse 
map g :V→U is differentiable. Thus f  has a continuously differentiable local 
inverse at every point of P . 
(c) For the function f defined on \2 by 

f1 (x1, x2) = x1
2 + cos x2 , f2 (x1, x2) = x1 x2  ∀ (x1, x2) ∈ \2, 

the Jacobian matrix is 
1 2

2 1

2 sinx x
x x

−⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

This is invertible when its determinant, which is equal to 2x1
2 + x2 sin x2 , is non-

zero. Therefore, by the inverse function theorem, every point (a1, a2) of \2 for 
which 2a1

2 + a2 sin a2 ≠ 0 lies in an open subset U of \2 on which f is injective. 
Besides, f maps U onto V and the inverse function g:V→U is differentiable. 
Thus, f is locally invertible at every point (a1, a2) of \2 for which 2a1

2 + a2 sin a2 
≠ 0 and the local inverse is continuously differentiable.  

(d) For the function f defined on \2 by 

p = ex cos y, q = ex sin y , 
the Jacobian matrix is 

cos sin

sin cos

x x

x x

e y e y

e y e y

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

This is invertible when the determinant, which is equal to ex , is nonzero. But 
this is so for all x. Therefore, by the inverse function theorem, every (a, b) in \2 
lies in an open subset U of \2 on which f is injective. Besides, the inverse func-
tion g:V→U is differentiable. Thus, f has a continuously differentiable local 
inverse at every point of \2. Nonetheless, f is not invertible on \2 [see 4-2.P3]. 

4-2.3. Remark. In the proof of Theorem 4-2.1, we used the continuity of f ' at a 
right at the outset. One may well ask whether the requirement of continuity at a 
could have been avoided in the simple case when the dimension n is 1. The an-
swer is that it cannot be avoided even in this simple case: The function f defined 
as 

f(x) = x + 2x2 sin (1/x) for x ≠ 0 and f(0) = 0 
can be shown to have the properties that f ' is bounded on (–1, 1), f '(0) = 1, but f 
is not injective on any open interval containing 0 [see 4-2.P8]. Of course, the 
trouble is that f ' is not continuous at 0 and Theorem 4-2.1 is therefore not appli-
cable. 

4-2.4. Example. During the proof of Inverse Function Theorem 4-2.1, it was 
asserted in (3) that x = g(y) is the fixed point of the contraction described in (2a) 
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or (2b). As emphasised in Section 4-1, the contraction principle not only guaran-
tees the existence of a fixed point but also provides an explicit sequence 
converging to it. Therefore, the proof also enables us to generate an explicit se-
quence converging to the required x, but valid in some sufficiently small ball 
about the ‘accommodated’ point (which has been designated as a in the state-
ment of the theorem). We compute the first three terms of such a sequence for 
the simple example f(x) = x2 + 1, a = 2, which was mentioned earlier and for 
which the inverse map can be written down explicitly as 

x = g(y) = 
1
2( 1)y − . 

Here f '(a) = 4 and hence φy (x) = x + 1
4 ( y – f(x)) = x + 1

4 ( y – (x2 + 1)). By apply-
ing the argument of the theorem with a = 2 and f(a) = a2 + 1 = 5, we find that 
g(y) is the fixed point of φy , and that φy is a contraction as long as y is in a suita-
ble ball (interval) centred at f(a) = 5. For the approximating sequence that 
begins with the constant x1(y) = 2 as the initial term, the next three terms are 

x2(y) = x1(y) +  1
4 ( y – (x1(y) 2 + 1)) = 2 +  1

4 (y _ 5), 

x3(y) = x2(y) +  1
4 ( y – (x2(y) 2 + 1)) = 2 + 1

4 (y _ 5) _ 1
64(y _ 5)2, 

x4(y) = x3(y) +  1
4 ( y – (x3(y) 2 + 1)) 

= 2 + 1
4 (y _ 5) _ 1

64(y _ 5)2 + 1
512(y _ 5)3 _ 1

16384 (y _ 5)4. 

The reader may note that the fourth degree term in x4(y) does not agree with the 
Taylor expansion of g at y = 5, but the other terms do. 

4-2.5. Remark. In the proof of Theorem 4-2.1, the value f
_1(y) is obtained as 

the fixed point of the contraction φy given by φy (x) = x + A
_1 ( y – f(x)), where A 

= f '(a). In other words, as the limit of the sequence {xp}p≥1 generated by 

xp+1(y) = xp(y) + f '(a)
_1( y – f(xp(y))). 

A modification of this way of generating the approximating sequence is to re-
place f '(a)–1  by f '(xp(y))–1 , which means we take 

xp+1(y) = xp(y) + f '(xp(y))
 _1( y – f(xp(y))). 

Since we shall work with a fixed y, we shall keep the notation uncluttered by 
writing xp(y) as simply xp from now on. Then the above equation becomes 

xp+1 = xp + f '(xp)
 _1( y – f(xp)).………………………(1) 

The one-dimensional version of this is easily recognised as Newton’s method 
for solving f(x) _ y = 0. In fact the multidimensional version is also known by 
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the same name. We enter into an informal discussion of the following features it 
shares with the one-dimensional version: 

(a) It converges if all the xp lie in some open ball about f
_1(y) on which all the 

second partial derivatives of the components of f  as well as || f
_1|| are bounded. 

(b) When it converges, it does so much faster than the sequence generated by the 
contraction. This explains why the convergence in 4-1.P10 is slower than that of 
Newton’s method. 

We work with the norm || ||2 in \n. Applying Corollary 3-5.6 to the function 
f(x) _ y with the ball mentioned in (a), we find that there is some constant β > 0 
such that 

||( f(x) _ y) _ ( f(xp) _ y) _ f '(xp)(x _ xp)|| ≤ β||x _ xp||2 

as long as x lies in the ball. Choose x = f
_1(y), so that f(x) _ y = 0. Then the 

above inequality becomes 

|| _( f(xp) _ y) _ f '(xp)(x _ xp)|| ≤ β||x _ xp||2. 

By (a) above, there exists some α > 0 such that || f '(xp)–1 || ≤ α for all p. There-
fore, 

|| _ f '(xp)–1 ( f(xp) _ y) _ (x _ xp)|| = || f '(xp)–1(_( f(xp) _ y) _ f '((xp)(x _ xp))|| 

≤ αβ||x _ xp||2. 

But _ f '(xp)–1 ( f(xp) _ y) = xp+1
_ xp in view of (1). Therefore, 

||(xp+1
_ xp) _ (x _ xp)|| ≤ αβ||x _ xp||2, 

which simplifies to 
||x _ xp+1|| ≤ αβ||x _ xp||2. 

This inequality shows that, if ||x _ xp|| ever becomes less than 1/αβ, then the se-
quence converges to x = f

_1(y), because 

||x _ xp+q|| ≤ (αβ)
_1(αβ||x _ xp||)2q

. 

Contrast this with the estimate ||x _ xp+q|| ≤ cq||x _ xp|| in the case of a contraction 
with contraction constant c. 

The kind of ball we have assumed above can be shown to exist; the interest-
ed reader is referred to more advanced texts such as Chaudhary and Nanda [7], 
Kantorovich and Akilov [15] or Loomis and Sternberg [19]. 
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Problem Set 4-2 

4-2.P1. The point (2, 4) in the plane lies on the graph of y = f(x) = x2. Find an 
open set containing y = 4 such that the function g(y) = y1/2 
is defined on that open set, and show that 

x = g(y) ⇒  y = x2; g(4) = 2. 

The point (–2,4) also lies on the same graph. Find an open 
set containing y = 4 and a function g1 defined on that open 
set such that  

x = g1(y) ⇒  y = x2; g1(4) = _2. 

The point (0,0) also lies on the same graph. Is there an 
open set containing y = 0 with a function g2 defined on it such that x = 
g2(y) ⇒  y = x2 and g2(0) = 0? 

4-2.P2. The point (1,e) lies on the graph of y = xex . Find an open set containing 
y = e such that there is a continuous function x = g(y) defined on it, for which x 
= g(y) ⇒ y = xex  and g(e) = 1. Formulate the corresponding question for the 
point (_2, _2/e2) and answer it. 

4-2.P3. Let f :\2→\2 be defined as f(x, y) = (ex cos y, ex sin y). Show that every 
point in \2 belongs to an open set on which f  is one-to-one and that f  is not in-
jective on \2. 

4-2.P4. Show that the Jacobian of the transformation 

u = ex cos y,  v = ex sin y 

from \2 to \2 is never 0. Does the inverse function theorem say that this trans-
formation is invertible? Support your answer. 

4-2.P5. [Needed in Proposition 7-2.4] If f  is a continuously differentiable map-
ping of an open set E ⊆ \n into \n and if f '(x) is invertible for every x ∈ E, then 
prove that f  is an open mapping of E into \n. (Note: The phrase ‘f  is an open 
mapping of E into \n’ means that f  maps every open subset of E into an open 
subset of \n.) 

4-2.P6. Let U and V be open subsets of \n and let f :U→V be continuously diffe-
rentiable and bijective (i.e., injective as well as surjective), so that the inverse 
map g:V→U exists. Suppose f '(x) is invertible for every x ∈ U. Show that g' ex-
ists on the entire given set V. 

4-2.P7. Let U be an open subset of \n and f :U→\n be a continuously differenti-
able map such that f '(x) is invertible for every x ∈ U. Suppose V is an open 
subset of U such that its closure V– is bounded (hence compact) and contained in 
U, and f is injective on the closure. Show that the image f(V–) is the closure of an 

4

2 
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open set. The result of this problem is useful in the study of integration of diffe-
rential forms; see Rudin [22, p. 270]. 

4-2.P8. Show that the function f  defined on (_1, 1) by 

f(x) = x + 2x2 sin (1/x) for x ≠ 0 and f(0) = 0 

has the property that f '(0) = 1 and that f  is not injective on any open interval 
containing 0. 

4-2.P9. Let X be any nonempty set and φ:\n→\n, ψ :X→\n be any maps. De-
fine the map Φ:\n×X→\n×X by Φ(s,x) = (φ(s) + ψ(x), x). Prove (a) if φ is 
injective, then so is Φ; and (b) if φ is surjective, then so is Φ. 

4-2.P10. Let f :\3→\3 be defined by 

y1 = 4
1 3 2 1 32 cosx x x x x+ − , 

y2 = 2
1 3 2( ) 4 sinx x x+ − , 

y3 = 2 1 3ln( 1) 5 cos 1x x x+ + + − . 

Show that the Jacobian matrix has rows 

[ 3
1 3 3 2 2 18 sin cosx x x x x x− − − ] , [ 1 3 2 1 32( ) 4cos 2( )x x x x x+ − + ] 

and [
2

1
315 sinx x+ − ] , 

and that f  has a continuous local inverse at (0,0,0). 

4-2.P11. State conditions on f  and g under which the equations x = f(u,v),  y = 
g(u,v) can be solved for u,v in an open set containing (x0 ,y0). If the solution is u 
= F(x,y),  v = G(x,y) and if J is the determinant of the Jacobian matrix of the 
map (u,v)→( f(u,v),g(u,v)), show that 

F
x

∂
∂  = 1

J
g
v

∂
∂ ,  F

y
∂
∂  = – 1

J
f
v

∂
∂ ,  G

x
∂
∂  = – 1

J
g
u

∂
∂ ,  G

y
∂
∂  = 1

J
f
u

∂
∂ . 

4-2.P12. Show that the mapping f :\2→\2 defined by f(x,y) = (x2 _ y2, 2xy) 
maps the open set U = {(x,y) ∈ \2 : (x,y) ≠ (0,0)} ‘two-to-one’ onto itself and is 
hence not invertible. Verify that every point of U belongs to an open set on 
which the mapping has a differentiable (local) inverse. 

4-2.P13. Let f :U→\2 be the map described in 2-3.P4. Using the range of the 
map derived there and the fact that x2 + y2,  x2 _ y2 and xy describe continuously 
differentiable functions, but without computing the linear derivative f ', show 
that f ' is not invertible at any point of U. 

4-2.P14. Suppose f1 , f1 ,…, fn and h are continuously differentiable real-valued 
homogeneous functions of the same degree on an open set U ⊆ \n. Suppose also 



4-2 Inverse Function Theorem 133 

that h vanishes nowhere on U. Show that the Jacobian of ( )( )1
( ) ( ), , f xf x n

h x h xK  with 
respect to (x1 ,…,xn) is zero everywhere. Deduce the result of 4-2.P13. 

4-2.P15. For x > 0,  y > 0,  z > 0, let 

u = 2 2 2 1/ 2( )
x y z

x y z
+ +

+ +
,  v = 

2 2

2 2 22 65
x yz z

x y z
− +

+ +
 and z = 

3 2 3

2 2 3/ 2
6 7

( )
x x y y

x y
+ −

+
. 

Show that the Jacobian ( , , )
( , , )
u v w
x y z

∂
∂

 is zero everywhere. Formulate a result that in-

cludes this problem as well as 4-2.P14 special cases. 

4-2.P16. Consider the map g of {(x, y) ∈ \2 : (x, y) ≠ (0, 0)} into itself given by 
g(x,y) = (r,θ), where 

r = (x2 + y2)1/2 ,  θ = cos
_1 (x/(x2 + y2)1/2)  if y ≥ 0 

and θ = _cos
_1 (x/(x2 + y2)1/2) if y < 0. 

Show that 
(a) (r, θ) ∈ (0,∞)×(_π,π]; 
(b) x = r cosθ, y = r sinθ;  
(c) if (r, θ) ∈ (0,∞)×(_ π,π] and x = r cosθ, y = r sinθ, then g(x,y) = (r,θ);  
(d) g is not continuous at (_1, 0). 

4-2.P17. The map f(x) = xex of E = (_1,∞) into \ has a positive derivative eve-
rywhere on its domain and therefore has an inverse. Choosing a = 1 in Theorem 
4-2.1, describe the map φy . For the approximating sequence for f

_1(y) starting 
with x1(y) = a as the first term, compute the next two terms. Which of them, if 
any, are partial sums of the Taylor series of f

_1 at y = e? According to the theo-
rem, the sequence converges to f

_1(y) for all y in a suitable ball centered at some 
point; what is that point? 

4-2.P18. Show that the map (u,v) = f(x,y) = (x + y2, x3 + y) of \2 into itself has a 
local inverse at (0,0) and find the second and third terms of an approximating 
sequence for the local inverse, valid in some ball centred at (0,0). 

4-3 Implicit Function Theorem 

We now return to the type of question discussed in Section 2-1, which is to ex-
press (i.e., solve for) some variables in terms of the remaining from a system of 
equations, e.g., 

p2 + q2 – rp + sin (s + p) = 0,  p3q + cos (p + 2q + r – s) – q – 1 = 0. 
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In this example, we have two equations in four variables. From past experience, 
the reader will surely recognise that one can at best expect to solve for two va-
riables in terms of the rest, because there are two equations. In general, if there 
are n equations in n + m variables, one hopes to solve for n variables in terms of 
the other m. Of course, this is not always possible (see the linear example in 
Section 2-1). To ignore such exceptions and proceed until one is forced to take 
them into account may be entirely appropriate for some other intellectual pur-
suit, but in mathematics the tradition is that one makes as sure as possible before 
proceeding. 

In the same spirit as the inverse function theorem, one can address the ques-
tion of the existence and uniqueness of a local solution, and its differentiability 
and try to obtain an answer with a degree of certainty and precision. 

For an equation f(x,y) = 0, where x ∈ \p,  y ∈ \q, a solution for x in terms 
of y is a function g on some domain in \q (usually consisting of more than one 
point!) such that f(g(y),y) = 0 for every y in that domain. Often one seeks a solu-
tion satisfying some additional requirement such as continuity and/or g(b) = a, 
where a and b are given. The latter kind of requirement is often expressed as 
x(b) = a when one wishes to avoid introducing a letter to denote the solution 
function.  

The distinction between a solution in the genuine mathematical sense of a 
function that fulfills a prestated requirement as opposed to an ‘expression’ ob-
tained by skillful use of established computational procedures is illustrated by 
the following example: Solve the equation x = xt for x as a continuous function 
of t such that x(0) = 0 and state the largest possible interval on which a solution 
is possible. According to received wisdom, one reacts to the given equation x = 
xt by saying that t = 1 or x = 0. Therefore the demand for a solution for x in 
terms of t may seem perverse at first sight; nevertheless, the demand is perfectly 
legitimate and it takes one step from the observation that t = 1 or x = 0 to arrive 
at the solution x(t) = 0, t ∈ \. This final step requires some imagination, not 
computational skill. For a generalisation of this example, see 4-3.P8. 

The implicit function theorem(Theorem 4-3.2) below will provide a suffi-
cient condition in order that a continuous solution g of f(x,y) = 0 for x in terms 
of y satisfying the requirement that g(b) = a should exist and be unique. How-
ever, our formulation of the theorem does not explicitly mention the word 
‘solution’. 

With the notation introduced in the opening paragraph of this section, when 
n = 2 and m = 1, we have a system of two equations in three variables: 

f1 (x1 , x2 , y) = 0, f2 (x1 , x2 , y) = 0. 

Expressing x1 , x2  in terms of y from here is the same as expressing x1 , x2 , y in 
terms of z1 , z2 , z3 from 

f1 (x1 , x2 , y) = z1 ,  f2 (x1 , x2 , y) = z2 , y = z3 
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and then substituting z1 = 0 and z2 = 0. It may seem as though this makes the 
question more complicated, but this seemingly more complicated question calls 
for the inverse of the mapping (x1 , x2 , y)→(z1 , z2 , z3) just described. Since the 
vectors (x1 , x2 , y) and (z1 , z2 , z3) are of the same dimension, the question of the 
inverse of such a mapping has been tackled already in the inverse function theo-
rem, and one can therefore reasonably expect to answer the present question in 
terms of that theorem. 

For general n and m, we can think of the system of equations in vector form 
as the single equation f(x, y) = 0 ∈ \n, where x ∈ \n and y ∈ \m. For a given y in 
an open subset of \m, we seek to find some x such that f(x, y) = 0. Now, 

f(x, y) = 0 ⇔ ( f(x, y), y) = (0, y). 

This can be expressed in terms of the map F : (x, y)→( f(x, y), y) as 

f(x, y) = 0 ⇔ F(x, y) = (0 , y) 

or as f(x, y) = 0 ⇔ (x, y) = F–1(0 , y), but provided that F–1 exists. 

If this inverse exists (perhaps only a local inverse), then the x that we seek to 
find is the first component (n-dimensional) of (x, y) = F–1(0 , y). Since (x, y) and 
( f(x, y), y) both lie in \n×\m = \n+m, the existence of F–1 can be handled 
through the inverse function theorem. Another instance of ‘reducing a case to 
one that has been already handled’ (see the Remark after 3-4.P6). 

4-3.1. Remark. Let the map φ from an open subset E of \n to \m be differentia-
ble at some point x0 ∈ E, and let A be a linear map from \n to \k. Then the map 
Φ:E→\m×\k defined by Φ(x) = (φ(x), Ax) can be shown to be differentiable at 
x0 with derivative given by 

Φ'(x0)(h) = (φ'(x0)(h), Ah), h ∈ \n. 

This is usually regarded as obvious, but a proof is given here: 
Φ is the sum of the two mappings x→(φ(x), 0) and x→(0, Ax). The second 

of these is a linear map while the first one is the composition of φ with the linear 
map y→(y, 0). Using the chain rule and the fact that the derivative of a linear 
map is itself [Remark 3-2.2(d)], we find that the two mappings have the respec-
tive derivatives 

h→(φ'(x0)(h), 0) and h→(0, Ah). 

Since the derivative of a sum of two functions is the sum of their derivatives 
[Remark 3-2.2(f)], therefore 

Φ'(x0)(h) = (φ'(x0)(h), 0) + (0, Ah) = (φ'(x0)(h), Ah). 

The proof given above involves only a straightforward use of the chain rule 
and what are called ‘elementary properties of the derivative’, i.e., Remarks 3-
2.2(b)–(d),(f). Details are therefore not normally expected to be given, and it 
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suffices to say instead ‘by elementary properties of the derivative and the chain 
rule’. 

4-3.2. Implicit Function Theorem. Let f :E→\n be a continuously differentia-
ble map from an open subset E ⊆ \n×\m into \n such that f(a, b) = 0 for some 
(a, b) ∈ E. Let A1 and A2 be linear maps of \n and \m respectively into \n defined 
by A1 h = f '(a, b)(h, 0) and A2 k = f '(a, b)(0, k), so that f '(a, b)(h, k) = A1h + 
A2k ∀ h ∈ \n, k ∈ \m. Suppose A1 is invertible. Then 
(a) there exist open sets U ⊆ E, W ⊆ \m  with (a, b) ∈ U , b ∈ W and a unique 
map g :W→\n such that 

(g(y), y) ∈ U ,  f(g(y), y) = 0 ∀ y ∈ W ; 

(b) for every (x, y) ∈ U such that f (x, y) = 0, we have y ∈ W and x = g(y); 
(c) moreover, g is continuously differentiable and  

g(b) = a, g'(b) = _A1
_1A2 . 

Proof. (a) Define F :E→\n×\m by setting F(x, y) = ( f(x, y), y). Then by elemen-
tary properties of the derivative and the chain rule, F is differentiable on E and 
F'(x, y) at any (x, y) is given by 

F'(x, y)(h, k) = ( f '(x, y)(h, k), k) ∀ (h, k) ∈ \n×\m. 

It follows from this that F is continuously differentiable. (In fact, ||F'(x1 , y1 ) – 
F'(x2 , y2 )|| ≤ || f '(x1 , y1 ) _ f '(x2 , y2 )||.) It also follows that 

F'(a, b)(h, k) = (A1 h + A2 k, k) ∀ (h, k) ∈ \n×\m. 

Hence F'(a, b)(h, k) = 0 ⇒ (A1 h + A2 k, k) = 0 ⇒ A1 h + A2 k = 0, k = 0 
⇒ A1 h = 0, k = 0 
⇒ h = 0, k = 0 because A1 is invertible.  

Therefore, F'(a, b) is injective and thus invertible (by Remark 2-3.3(b); surjec-
tivity can also be proved directly, i.e., without using Remark 2-3.3(b) but instead 
using the simple idea in 4-2.P9.) By the inverse function theorem, ∃ open sets U 
⊆ E, V ⊆ \n×\m such that (a, b) ∈ U, F maps U injectively onto V and the in-
verse map F

_1:V→U is continuously differentiable. Now F(a, b) = ( f(a, b), b) = 
(0 , b). So (0 , b) ∈ V. Let W = {y ∈ \m : (0, y) ∈ V}. Then b ∈ W and W is open. 
For any y ∈ W, we have (0, y) ∈ V and hence ∃ (x, z) ∈ U such that F(x, z) = (0, y). 
But F(x, z) = ( f(x, z), z). Therefore ( f(x, z), z) = (0, y), so that y = z and f(x, y) = 
0. If f(x', y) = 0 with (x', y) ∈ U, then ( f(x', y), y) = (0 , y), i.e., F(x', y) = (0 , y) = 
F(x, y). But F is injective on U. So x' = x. Hence, there exists a unique x for 
which f(x, y) = 0 and (x, y) ∈ U. Call this x as g(y). Then (a) is established.  



4-3 Implicit Function Theorem 137 

(b) Let (x, y) ∈ U and f(x, y) = 0. Then F(x, y) ∈ V. But F(x, y) = ( f(x, y), y) and 
f(x, y) = 0. This means (0 , y) ∈ V, so that y ∈ W. By definition of g above, g(y) is 
the unique ξ such that f(ξ, y) = 0 and (ξ, y) ∈ U. Therefore x = ξ = g(y). 

(c) Since f(a, b) = 0, (a, b) ∈ U and b ∈ W, therefore g(b) = a. Now, for any y ∈ W, 
we have f(g(y), y) = 0 by (a), so that F(g(y), y) = (0 , y), from which it follows 
that (g(y), y) = F

_1(0, y). Thus g is the composition of the maps 

y→(0 , y), (x, y)→F–1(x, y), (x, y)→x. 

The first and third are linear while the second is continuously differentiable. It 
follows that g is continuously differentiable. Since f(g(y), y) = 0 ∀ y ∈ W, the 
mapping y→f(g(y), y) must have derivative 0 everywhere. On the other hand, 
using elementary properties of the derivative and the chain rule once again, we 
find that the derivative of the mapping y→f(g(y), y) at b maps k ∈ \m into 

f '(g(b), b)(g'(b)k, k) = f '(a, b)(g'(b)k, k) (because g(b) = a) 
= A1 g'(b)k + A2 k (by hypothesis). 

Since this must be equal to 0 for all k ∈ \m, then g'(b) k = _A1
_1A2 k for all k ∈ \m. 

This completes the proof of (c). , 

The conclusion of the above theorem is often summarised as ‘the equation 
f(x, y) = 0 is locally solvable uniquely at (a, b) with a continuously differentiable 
local solution’ or ‘f has a continuously differentiable unique local solution at a ’. 
The term ‘local solution’ here refers to the function g. 

4-3.3. Remark. For application to concrete cases it is necessary to know how to 
compute the maps A1  and A2  from f. By Theorem 3-4.2, the linear map f '(a, b) 
from \n×\m into \n is represented by the n×(m + n) matrix of partial deriva-
tives Dj fi (a, b), 1 ≤ i ≤ n, 1 ≤ j ≤ m + n. Consider any linear map A from \n×\m 
into \n with matrix [αi j], and its associated linear maps A1  and A2  as described 
in the above theorem. The matrix of A1  consists of the n2 entries αi j with 1 ≤ i ≤ 
n, 1 ≤ j ≤ n, while the matrix of A2  consists of the remaining entries αi j . There-
fore, when A = f '(a, b), the matrix of A1  has entries Dj fi (a, b), 1 ≤ i ≤ n, 1 ≤ j ≤ n. 
The invertibility of A1  is equivalent to its determinant being nonzero. The matrix 
is called the Jacobian matrix of f with respect to x (or with respect to x1 ,… , xn), 
and its determinant is known as the Jacobian of f (or of its component functions 
f1 ,… , fn ) with respect to x (or with respect to x1 ,… , xn). When component no-
tation is being used, it is standard practice to denote it by 

∂( f1 ,… , fn)/∂(x1 ,… , xn). 
Thus 
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     | ∂f1 /∂x1    ∂f1 /∂x2    …   ∂f1 /∂xn  | 
  ∂( f1 , … , fn )  |    | 
  ________________ = |    O    | . 
  ∂(x1 , … , xn)  |    | 
     | ∂fn /∂x1    ∂fn /∂x2    …   ∂fn /∂xn  | 
Some authors express the hypothesis of invertibility of A1  by saying that this 
determinant should be nonzero, e.g., Apostol [1]. (The theorem stated in [1, p. 
374] differs from Theorem 4-3.2 and is a variant of Theorem 4-4.1 below.) Al-
though there is no standard name or notation for the linear map A1 , a symbol 
such as ∂f /∂x or fx  could be used. The latter is found in Graves [13], where 
Theorem 2 on p.138 is essentially the same as Theorem 4-3.2 above. Since f is a 
function of two vector variables, the symbol D1 f can also be used, but prefera-
bly with explanation. This is the notation used in Burkill and Burkill [5], where 
the theorem stated on p. 216 is a variant of Theorem 4-3.2 above.]  

In particular, if n = m = 1, so that f '(a, b) has the 1×2 matrix 

[(∂f /∂x)(a, b) (∂f /∂y)(a, b)], 

then A1  has the 1×1 matrix with entry (∂f /∂x)(a, b) and A2  has the 1×1 matrix 
with entry (∂f /∂y)(a, b). Therefore A1  is invertible if and only if (∂f /∂x)(a, b) ≠ 0. 
Besides, 

A1
_1A2  = 

),)(/(
),)(/(

baxf
bayf

∂∂
∂∂ . 

This makes it possible to state the implicit function theorem in this case without 
explicit reference to linear maps. Also, it is possible to give a simple proof with-
out using the inverse function theorem or the contraction principle. See Theorem 
4-4.4 below. The reader will also find the article by Kumaresan [16] very useful. 

These facts regarding A1 and A2 may be taken for granted in presenting any 
discussion of concrete examples, and no explanation is required as to why A1  
and A2  are represented by matrices formed by partial derivatives in the manner 
described above. 

4-3.4. Examples. In order to gain a better understanding of the implicit function 
theorem and appreciate the rather complicated nature of its hypotheses and con-
clusion, it is useful for one to consider applications to a few simple concrete 
examples. However, it should not be inferred that applications to these kinds of 
examples constitute the only raison d’être of the theorem. The result is needed 
for validating a computational procedure, known as ‘method of Lagrange mul-
tipliers’ to be discussed in another chapter. 

Consider the problem of solving for one variable in terms of the other in 
each of the following cases:  
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(a) x2 + y2 + 1 = 0 
(b) x2 + y2 – 1 = 0 
(c) x2 + y2 – 1 = 0, x(1) = 0 
(d) x2 – y2 = 0, x(0) = 0 
(e) x2 + y2 – 1 = 0, x(0) = 1    
(f) x3 – y3 – 3xy – y = 0, y = g(x) near (2, 1)  
(g) sin (x + y) – ex y  + 1 = 0, x(0) = 0 
(h) x3 – y3 = 0, x(0) = 0. 
These examples serve to highlight various aspects of the implicit function theo-
rem and we shall take them up one by one. 

(a) Since no pair of real values of x and y can satisfy this equation, the need to 
solve it should not arise in practice. If it ever does, one would conclude that 
something went wrong before one arrived at it! This illustrates why the require-
ment that the equation be satisfied at some point is needed. 

(b) No pair of values of x and y satisfying the equation has been specified. Here 
are some solutions for x in terms of y: 

g(y) = (1 – y2)1/2 for 0 ≤ y ≤ 1; g(y) = –(1 – y2)1/2 for 0 ≤ y ≤ 1; 
g(y) = (1 – y2)1/2 for 0 ≤ y ≤ 1/2 and –(1 – y2)1/2 for 1/2 < y ≤ 1; 
g(y) = (1 – y2)1/2 for 0 ≤ y < 1/47, –(1 – y2)1/2 for 1/47 ≤ y ≤ 1/21 

and (1 – y2)1/2 for 1/21 < y ≤ 1; 
g(y) = (1 – y2)1/2 for rational y and –(1 – y2)1/2 for irrational y. 

The first two are continuous and the rest are discontinuous. The reader is invited 
to add to this mélange of solutions. If no specific point (a,b) satisfying the equa-
tion is required to be ‘accommodated’, then the solution may not be unique.  

(c) The given values (a = 0, b = 1) do satisfy the given equation. Since they are 
stated in the form x(1) = 0, the solution required is for x as a function of y. The 
first two solutions listed above under (b) both satisfy the requirement that x(0) = 
1, and both are continuous. Neither is differentiable when y = 1 and neither is 
defined on an open set containing 1. Thus the conclusion of the implicit function 
theorem that there exists a unique solution in an open set containing b does not 
hold. But the theorem is not contradicted, because the hypothesis about the li-
near map A1 represented (as discussed above in Remark 4-3.3) by the partial 
derivative of x2 + y2 _ 1 with respect to x when x = 0, y = 1 being invertible is not 
fulfilled, as the value of this partial derivative when x = 0, y = 1 is found to be 0. 

(d) The given values (a = 0, b = 0) satisfy the given equation. Here are two con-
tinuous solutions: 

g(y) = |y |  and g(y) = –|y |  both for all real y. 
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Neither is differentiable when y = 0, but — in contrast to (c) — both are defined 
on an open set containing 0. Thus the conclusion of the implicit function theo-
rem that there exists a unique solution in an open set containing b does not hold. 
But the theorem is not contradicted, because the hypothesis about the linear map 
A1 represented (as discussed above in Remark 4-3.3) by the partial derivative of 
x2 _ y2 with respect to x when x = 0, y = 0 being invertible is not fulfilled, as the 
value of this partial derivative when x = 0, y = 0 is found to be 0. 

(e) The implicit function theorem is applicable. The function of (x, y) given by 
the left hand side of the equation, i.e., f(x, y) = x2 + y2 _ 1, is differentiable and 
its partial derivative with respect to x (the variable for which we have to solve) 
is found to be 2x, which is nonzero for the given values x = 1, y = 0. Also, the 
given values x = 1, y = 0 satisfy the equation. Therefore, by the implicit function 
theorem, there is an open subset of \2 containing (1, 0) and an open interval 
containing 0, on which there is a unique function g such that (g(y), y) lies in the 
aforementioned open subset of \2 and g(y)2 + y2 – 1 = 0; moreover, this g is con-
tinuously differentiable and satisfies g(0) = 1. Its derivative when y = 0 is (see 
Remark 4-3.3 for explanation of the quotient) 

( / )(1,0)
( / )(1,0)

f y
f x

∂ ∂
∂ ∂

= 0. 

In this simple case, g can be explicitly computed as g(y) = (1_ y2)1/2. 

(f) The implicit function theorem is applicable. The function of (x, y) given by 
the left hand side of the equation, i.e., f(x, y) = x3 _ y3 _ 3xy _ y, is differentiable 
and its partial derivative with respect to y (the variable for which we have to 
solve) is found to be 

_3y2 _ 3x _ 1, 

which is nonzero for the given values x = 2, y = 1. (As explained in Remark 4-
3.3, this means that the linear map denoted by A1  in the implicit function theo-
rem is invertible.) Also, the given values x = 2, y = 1 satisfy the equation. 
Therefore by the implicit function theorem, there is an open subset of \2 con-
taining (2, 1) and an open interval containing 2, on which there is a unique 
function g such that (x,g(x)) lies in the aforementioned open subset of \2 and 
x3 _ g(x)3 _ 3xg(x) _ g(x) = 0; moreover, this g is continuously differentiable and 
satisfies g(2) = 1. Its derivative when x = 2 is (see Remark 4-3.3 for explanation 
of the quotient) 

( / )(2,1)
( / )(2,1)

f x
f y

∂ ∂
∂ ∂

 = 9
10− . 

(g) In this case, computing x in terms of y explicitly, as one tries to do in ele-
mentary calculus, is no joke. In fact, it is a hopeless undertaking. It is not even 
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clear from computational procedures whether the required function for x in 
terms of y exists, let alone calculating an expression for it in the elementary 
sense. However, the given values x = 0, y = 0 do satisfy the equation and the x-
partial derivative of f(x, y) = sin (x + y) – ex y  + 1 when x = 0 and y = 0 has the 
nonzero value 1. (As explained in Remark 4-3.3, this means that the linear map 
denoted by A1  in the implicit function theorem is invertible.) Therefore, by the 
implicit function theorem, there exists an open subset of \2 containing (0,0) and 
an open interval containing 0, on which there is a unique function g such that 
(g(y), y) lies in the aforementioned open subset of \2 and x = g(y) is a solution 
of the given equation; moreover, this g is continuously differentiable and satis-
fies g(0) = 0. Its derivative when y = 0 is (see 4-3.3 for explanation of the 
quotient)  

( / )(0,0)
( / )(0,0)

f y
f x

∂ ∂
∂ ∂

 = 1. 

(h) When f(x, y) = x3 – y3, the partial derivative ∂f /∂x vanishes at (0,0) and the 
implicit function theorem does not apply. However, there is a unique solution 
given by g( y) = y, and it is differentiable. [Cf. 4-4.P3.] 

For another discussion of concrete examples that help gain a better under-
standing of the implicit function theorem see the article by Kumaresan [16] 
quoted above. 

4-3.5. Remark. In (e), (f) and (g), the value of dx/dy = g'(y) that has been com-
puted is, of course, the same as what one would have obtained by ‘implicit 
differentiation’ in elementary calculus. However, implicit differentiation simply 
assumes that a differentiable solution for x in terms of y exists; the new element 
introduced by the implicit function theorem is that the existence of a differentia-
ble solution is assured before one rushes in to compute. As already mentioned in 
the first two paragraphs of Section 4-3, such caution is the stuff that mathemat-
ics is made of. 

4-3.6. Examples. (a) We now take up the question stated at the beginning of this 
section: 

p2 + q2 – rp + sin (s + p) = 0, p3q + cos (p + 2q + r – s) – q – 1 = 0. 
These equations hold when each of the four variables is 0. Can we solve for p 
and q in terms of r and s ‘near’ (0, 0, 0, 0)? Setting 

f1(p, q, r, s) = p2 + q2 – rp + sin (s + p), 
f2 (p, q, r, s) = p3q + cos (p + 2q + r – s) – q – 1, 

we find that ∂( f1 , f2)/∂(p, q) has the value _1 when (p,q,r, s) = (0,0,0,0). Since 
this value is nonzero, it follows by the implicit function theorem that there exists 
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a local solution for p and q in terms of r and s. We can also find the matrix form 
of the linear derivative at (0,0) for the solution. In the notation of the theorem, 
the required linear derivative is _A1

_1A2 , where 

A1 = 1 1

2 2

/ /
/ /

f p f q
f p f q

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 and A2 = 1 1

2 2

/ /
/ /

f r f s
f r f s

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

. 

Upon computing the partial derivatives and substituting (p,q, r, s) = (0,0,0,0), we 
obtain  

A1
_1 = A1 = 

1 0
0 1
⎡ ⎤
⎢ ⎥−⎣ ⎦

 and A2 = 
0 1
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

so that the required value of the linear derivative at (0,0,0,0) is 

_A1
_1A2 = 

0 1

0 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

(b) The following equations hold when (x,y, t) = (0,0,0): 
x cos (x + y) _ t = 0, xex + yey _ sin t  = 0 .  

The question is whether there exists a (local) differentiable solution for x,y in 
terms of t near t = 0 such that x = y = 0 when t = 0 and, if so, what the values of 
x'(0) and y'(0) are. 

To find A1 ,  we compute 

x
∂
∂

(x cos (x + y) _ t) = cos (x + y) _ x sin (x + y) = 1 when x = y = t = 0 

y
∂
∂

(x cos (x + y) _ t) = _x sin (x + y) = 0 when x = y = t = 0 

x
∂
∂

(xex + yey _ sin t) = (1 + x)ex = 1 when x = y = t = 0 

y
∂
∂

(xex + yey _ sin t) = (1 + y)ey = 1 when x = y = t = 0. 

Consequently, A1 = 
1 0
1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and hence A1
_1 = 

1 0
1 1

⎡ ⎤
⎢ ⎥−⎣ ⎦

. Therefore the local solu-

tion in question exists and is unique. Also, 

t
∂
∂ (x cos (x + y) _ t) = _1 and t

∂
∂ (xex + yey _ sin t) = _cos t = _1 when x = y = t = 0. 

Consequently, A2 = 
1
1

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 and _A1
_1A2 = 

1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

. This means x'(0) = 1 and y'(0) = 0. 
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The open set W of Theorem 4-3.2 is by no means the largest open set on 
which a function g of the required kind is defined, and one can seek to extend 
the domain of g to see if one can obtain a maximal domain. Such matters are 
discussed by Graves in [13]. 

Problem Set 4-3 

4-3.P1. Determine whether the solvability near (0, 0, 0, 0) of the equations dis-
cussed in Example 4-3.6 for q and r follows from the implicit function theorem. 

4-3.P2. Show that the system of equations: 

3x + y _ z _ u3 = 0 
x _ y + 2z + u = 0 
2x + 2y _ 3z + 2u = 0 

can be solved for x, y, u in terms of z but not for x, y, z in terms of u. 

4-3.P3. Let f :\2×\2→\2 be defined by 

f(x,y) = (x1y 2 + x2y1
_ 1 , x1x2

_ y1y2) , 

where x = (x1 , x2) and y = (y1 , y2). Show that f(1,0,0,1) = (0,0). Verify that the 

linear derivative (Dy f )(1,0,0,1) is represented by the matrix 
0 1
1 0

⎡ ⎤
⎢ ⎥−⎣ ⎦

. Use this and 

the implicit function theorem to show that y is a function of x near (1,0). Com-

pute the (matrix of the) linear derivative of this function at (1,0). 

4-3.P4. Suppose the equation f(x,y, z) = 0, where f is differentiable, can be 
solved for each of the three variables x,y, z as a differentiable function of the 
other two. Show that at any point where f(x,y, z) = 0 and at least one of the par-
tial derivatives f

x
∂
∂ , f

y
∂
∂ , f

z
∂
∂  is nonzero, the other two are also nonzero, and we 

have 
x y z
y z x

∂ ∂ ∂
∂ ∂ ∂

 = _1. 

4-3.P5. The function f(x,y, z,u) = x2 + y2 + z2 + u2 _ 1 satisfies f(½,½,½,½) = 0. 
Solve for each of the variables in terms of the other three in an open set contain-
ing (½,½,½) and check whether the four solutions satisfy x y z u

y z xu
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 = _1 at 
(½,½,½,½). 
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4-3.P6. Let JF (x) denote the Jacobian of a map F at x. Suppose the maps 
f :\n→\n and gi :\→\ are all continuously differentiable. Define h :\n→\n by 

hi (x) = fi (g1(x1) ,g2(x2) ,…,gn(xn)) for x = (x1 ,…,xn) ∈ \n, 1 ≤ i ≤ n, 

where f1 ,…, fn are the components of f . Show that 

Jh(x) = [Jf (g1(x1) ,g2(x2) ,…,gn(xn))]· g1'(x1) ·g2'(x2) · … · gn'(xn). 

4-3.P7. Let f(x,y1 ,y2) = x2y1 + ex + y2 on \3. Show that there exists a differenti-
able function g on some open set containing (1,_1) in \2 such that g(1,_1) = 0 
and f(g(y1 ,y2),y1 ,y2) = 0 on that open set. Find the partial derivatives 
(D1 g)(1,_1) and (D2 g)(1,_1). 

4-3.P8. Let f  and g be functions on \ with continuous derivatives, f(0) = 0 and 
f '(0) ≠ 0. Consider the equation f(x) = tg(x),  t ∈ \. Show that in a suitable inter-
val | t | < δ, there is a unique continuous function x = x(t) that solves the equation 
and satisfies x(0) = 0. Find the derivative x'(0). When g(0) = 0, what is the larg-
est possible interval on which a solution is defined? 

4-4 Implicit Function Theorem in Another Form 

In applying the implicit function theorem in examples like (e), (f) and (g) in Ex-
ample 4-3.4, the reference to an open set containing the given point is 
cumbersome and appears to complicate the matter rather than clarify it. Howev-
er, it is unavoidable if the version given in Theorem 4-3.2 is to be used, because 
the uniqueness of the solution g is contingent upon (g(y), y) belonging to that 
open set (denoted by U in the statement). 

What one can do in order to avoid the reference to the open set is to estab-
lish another form of the theorem, in which the uniqueness of the solution g is 
contingent upon its being continuous and satisfying g(b) = a. 

Establishing this version of the theorem requires Proposition 2-5.9. 

4-4.1. Implicit Function Theorem. Let f :E→\n be a continuously differentia-
ble map from an open subset E ⊆ \n×\m into \n such that f(a, b) = 0 for some 
(a, b) ∈ E. Let A1 and A2 be linear maps of \n and \m, respectively, into \n de-
fined by A1h = f '(a, b)(h, 0) and A2 k = f '(a, b)(0,k), so that f '(a, b)(h, k) = A1h + 
A2k ∀ h ∈ \n, k ∈ \m. Suppose A1 is invertible. Then 
(a) there exists an open ball B ⊆ \m centred at b and a unique continuous map 

G :B→\n such that 

G(b) = a and f(G(y), y) = 0 ∀ y ∈ B ; 

(b) moreover, G is continuously differentiable and G'(b) = _A1
_1A2 . 
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Proof. By Theorem 4-3.2, there exist open sets U ⊆ \n×\m and W ⊆ \m with b 
∈ W and (a, b) ∈ U and such that there exists a unique map g:W→\n for which 

(g(y), y) ∈ U, f(g(y), y) = 0 ∀ y ∈ W . 

Moreover, g(b) = a, g is continuously differentiable on W and g'(b) = _A1
_1A2 . 

Since W is open and b ∈ W, therefore there exists an open ball B ⊆ W centred at 
b. Let G be the restriction of g to B. Then, except possibly for the uniqueness 
part, all other statements in (a) and (b) are true.  

To prove uniqueness, suppose G1 is any continuous map from B to \n for 
which G1(b) = a and f(G1(y), y) = 0 ∀ y ∈ B. Consider the subsets Y and N of B 
defined as 

Y = {y ∈ B : G1(y) = G(y)} and N = {y ∈ B : G1(y) ≠ G(y)}. 

It is sufficient to show that N is empty. Since G1(b) = a = G(b), we have b ∈ Y, so 
that Y is not empty. Also, Y∪N = B and Y∩N is empty. Since G1 and G are both 
continuous, the set N is open. It will now be shown that Y is also open. 

Consider any y0 ∈ Y. Then G1(y0) = G(y0). But (G(y0), y0) = (g(y0), y0) ∈ U. 
Therefore, (G1(y0), y0) ∈ U. By continuity of G1 , there exists an open ball B1 ⊆ B 
⊆ W centred at y0 such that y ∈ B1 ⇒ (G1(y), y) ∈ U. Now define G2:W→\n to 
agree with G1 on B1 and to agree with g on the rest of W. (It does not matter that 
this function could be discontinuous.) Then (G2(y), y) ∈ U and f(G2(y), y) = 0 
∀ y ∈ W. By the uniqueness in (a) of the statement of Theorem 4-3.2, G2 must 
agree with g on the whole of W. Hence, G1 must agree with g on the set B1 (G2 
was defined as agreeing with G1 on B1). But g agrees with G on B (G was de-
fined as the restriction of g to B) and B1 ⊆ B. Thus, g agrees with G as well as 
G1 on the set B1. Therefore, G agrees with G1 on B1, so that B1 ⊆ Y. It has been 
shown that any y0 ∈ Y is the centre of an open ball contained in Y. In other words, 
Y is open. 

This shows that the open ball B is the union of the disjoint open sets Y and 
N. By Proposition 2-5.9, it follows that one among the sets Y and N must be 
empty. However, Y is not empty (recall that b ∈ Y ). Therefore, N must be empty. 
As observed earlier, this completes the proof. , 

4-4.2. Remark. If the examples such as  (f) or (g) of Section 4-3 are discussed 
in the light of Theorem 4-4.1, then the conclusion obtained is that on a ball 
about the given point there is a unique continuous solution g of the given equa-
tion which takes the given value at the given point; the solution is also 
continuously differentiable. 

4-4.3. Remark. It is not possible to replace the ball B in Theorem 4-4.1 by a 
more general open set W that may not have the ‘connectedness’ property of a 
ball assured by Proposition 2-5.9. Consider f(x, y) = x2 + y2 _ 1, E = \2, (a, b) = 
(1, 0).  

On the open set 



Inverse and Implicit Function Theorems 146 

W = (_ 1
3 , 1

3 )∪( 2
3 , 1), 

(shown along the vertical axis in the figure below) which contains b, there are 
two continuous solutions x = G(y) of the equation f(x, y) = 0 (shown along the 
circle), both satisfying the requirement that G(b) = a, namely, 

G(y) = 

2

2

1 11 if ( , )3 3
21 if ( ,1).3

y y

y y

⎧ − ∈ −⎪⎪
⎨
⎪± − ∈
⎪⎩

 

Note that (_ 1
3 , 1

3 )∪( 2
3 , 1) is the union of disjoint open sets (_ 1

3 , 1
3 ) and ( 2

3 , 1) 
and neither of these open sets is empty. 

However, if we consider this example in the light of the previous version of 
the implicit function theorem (Theorem 4-3.2), the open sets U = {(x, y) : x > 0} 
and W = (_1,1) together have the property that the only solution x = g(y) of the 
equation f(x, y) = 0 which is defined for y ∈ W and satisfies the requirement that 
(g(y), y) ∈ U (i.e., that g(y) > 0) is given by g(y) = √(1 – y2). Moreover, it is con-
tinuously differentiable and satisfies g(0) = 1. 

We now present the implicit function theorem in two dimensions. 

4-4.4. Theorem. Let E ⊆ \2 be open and F :E→\ be continuous with a partial 
derivative D2F that is positive (or negative) everywhere. Suppose (a,b) ∈ E and 
F(a,b) = 0. Then there exist intervals (a _ δ,a + δ),(b _ η,b + η) with a unique 
function f : (a _ δ,a + δ)→(b _ η,b + η) such that 

F(x, f(x)) = 0 for all x ∈ (a _ δ,a + δ) and b = f(a).…………(1) 
This function f  is continuous everywhere. Moreover, if c belongs to (a _ δ,a + δ) 
and F is differentiable at (c, f(c)), then f  is differentiable at c and 

(0, 2
3 ) 

(0, 1
3 ) (0, 1

3 ) 

(0, 2
3 ) 

(0, 1
3− ) (0, 1

3− ) 
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(D1F )(c, f(c)) + (D2F )(c, f(c)) · f '(c) = 0.……………………(2) 

Proof. We shall work with the case when D2F is positive because the contrary 
case is similar. 

 Since (a,b) ∈ E, an open subset of \2, there exists η > 0 such that 

|x _ a| < η , |y _ b| ≤ η ⇒ (x,y) ∈ E, 

so that, for each x ∈ (a _ η, a + η), the function y→F(x,y) is defined on the inter-
val [b _ η,b + η]. Now, this function has derivative (D2F)(x,y) and therefore it 
has a positive derivative on its entire domain [b _ η,b + η]. When x = a, it va-
nishes at b and it follows that it is negative at b _ η and positive at b + η: 

F(a,b _ η) < 0 < F(a,b + η). 

By continuity of F on E, there must exist a positive δ < η such that 

F(x,b _ η) < 0 < F(x,b + η) for a _ δ < x < a + δ. 

In other words, for each x ∈ (a _ δ,a + δ), the function y→F(x,y) is negative at 
b _ η and positive at b + η. But this function is continuous and so, the interme-
diate value theorem yields at least one y ∈ (b _ η,b + η) where the function 
vanishes: F(x,y) = 0. However, there can be at most one y ∈ \ satisfying F(x,y) 
= 0, because the derivative of the function y→F(x,y), namely (D2F)(x,y) is posi-
tive everywhere. Define f(x) to be the unique such y and we have a function f on 
(a _ δ,a + δ) that fulfills (1). Since, the element y ∈ \ where F(x,y) = 0 is 
unique, the function f is also unique. 

Observe that, in view of the fact that the aforementioned y obtained by us-
ing the intermediate value theorem lies in (b _ η,b + η), we have 

b _ η < f(x) < b + η for a _ δ < x < a + δ.………………(3) 

To prove the continuity of f, consider any α ∈ (a _ δ,a + δ) and any ε > 0. 
We need to show that there exists a δ1 > 0 such that 

f(α) _ ε < f(x) < f(α) + ε for α _ δ1 < x < α + δ1 . 

Since α ∈ (a _ δ,a + δ), we have b _ η < f(α) < b + η by (3). We may therefore 
assume that 

ε < min{ f(α) _ (b _ η), (b + η) _ f(α)} 
Then we have 

b _ η < f(α) _ ε < f(α) + ε < b + η, 

so that the function y→F(α,y) is defined at f(α) _ ε and at f(α) + ε . Since 
F(α, f(α)) = 0, the function vanishes at y = f(α) and has a positive derivative 
everywhere on its domain. Therefore it is negative at f(α) _ ε and positive at 
f(α) + ε, i.e., F(α, f(α) _ ε)  <  0  <  F(α, f(α) + ε). As before, it follows by con-
tinuity of F that there exists a positive δ1 such that (α _ δ1,α + δ1) ⊆ 
(a _ δ,a + δ) and 
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F(x, f(α) _ ε)  <  0  <  F(x, f(α) + ε) for α _ δ1 < x < α + δ1 . 

In other words, for each x ∈ (α _ δ1,α + δ1), the function y→F(x,y) is negative at 
f(α) _ ε and positive at f(α) + ε . Therefore, the unique y where the function 
vanishes must lie between f(α) _ ε and f(α) + ε, i.e., 

f(α) _ ε < f(x) < f(α) + ε for α _ δ1 < x < α + δ1 . 

Continuity of f at α is thus established. 
We proceed to prove (2). For any sufficiently small h ≠ 0, the number c + h 

belongs to (a _ δ,a + δ). Denoting f(c + h) _ f(c) by k, we have 

0 = F(c + h, f(c + h)) _ F(c, f(c)) = F(c + h, f(c) + k)) _ F(c, f(c)) 

= h[(D1F)(c, f(c))] + k[(D2F)(c, f(c))] + u(h,k)(|h | + |k |), 

where u(h,k)→0 as (h,k)→(0,0). Dividing by h and regrouping terms, we have 

0 = (D1F )(c, f(c)) + k
h [(D2F )(c, f(c)) + u(h,k) | |k

k ] + u(h,k) | |h
h ,……(4) 

where 
k
k ||  can be taken to be any real number in the event that k = 0. By the 

continuity of f at c, we have
0

lim
h→

k = 0. It follows from this that the first and third 

terms in (4) each have a limit as h→0 and therefore so does the second term. But 

in the second term, the factor that is multiplied to 
h
k  has limit (D2F )(c, f(c)), 

which is nonzero. This implies that 
h
k  has a limit, so that f '(c) exists. The exis-

tence of f '(c), together with (4), leads to (2). , 

The following consequence is known by the same name as the foregoing 
theorem. 

4-4.5. Corollary. Let E ⊆ \2 be open and F :E→\ be differentiable with a posi-
tive (or negative) partial derivative D2F everywhere. Suppose F(a,b) = 0, where 
(a,b) ∈ E. Then there exists an interval (a _ δ,a + δ) with a unique rea- valued 
function f defined on it such that 

F(x, f(x)) = 0 for all x ∈ (a _ δ,a + δ) and b = f(a).…………(1) 
This function f is differentiable with derivative f '(x) satisfying 

(D1F )(x, f(x)) + (D2F )(x, f(x)) · f '(x) = 0………………..…(2) 

everywhere on its domain. 

4-4.6. Example. Let E = \2,  F(x,y) = yey _ |x|
 _1
2  and (a,b) = (0,0). Since F is not 

differentiable at (a,b), none among Theorem 4-3.2, Theorem 4-4.1 and Corol-
lary 4-4.5 is applicable. However, Theorem 4-4.4 does show that a unique 
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continuous solution y = f(x) such that b = f(a) must be valid on some interval 
containing 0. 

Problem Set 4-4 

4-4.P1. Given the equation x2 + y2 = 1 and the point (1, 0), find three open sub-
sets W of \, each containing 0, and satisfying the respective conditions: 
(i) there exists a unique solution x = g(y) of the given equation having domain 

W and satisfying the condition that g(y) > 1/√2; 
(ii) there exist several solutions x = g(y) of the given equation having domain W 

and satisfying the condition that g(y) > –1/√2; do they satisfy g(0) = 1? 
(iii) there exists a unique solution x = g(y) of the given equation having domain 

W and satisfying the condition that g(y) > 0, but four continuous solutions 
having domain W and satisfying the condition that g(0) = 1. 

4-4.P2. State a theorem that includes Theorem 4-3.2 as well as Theorem 4-4.1, 
and then prove it, starting from the inverse function theorem. 

4-4.P3. (a) The implicit function theorem 4-4.4 gives only a sufficient condition 
for solvability. Example 4-4-4 (h) shows that nonvanishing of the partial deriva-
tive is not necessary. Give an example of a function f on \2 such that f

y
∂
∂ (0,0) = 

0, f  is not differentiable at (0,0), but the equation f(x,y) = 0 has a unique solu-
tion y = g(x) near 0 such that g(0) = 0. 

(b) Give an example of a function f on \2 such that f
y

∂
∂ (0,0) = 0 and the equation 

f(x,y) = 0 has two (not more) differentiable solutions y = g(x) near 0 such that 
g(0) = 0. 

(c) Give an example of a function f  on \2 such that f
y

∂
∂ (0,0) = 0 and the equa-

tion f(x,y) = 0 has at least four differentiable solutions y = g(x) near 0 such that 
g(0) = 0. 

4-4.P4. Prove the following variant of Theorem 4-4.4: Let E ⊆ \2 be open and 
F :E→\ be continuous with a positive partial derivative D2F at (a,b) ∈ E, and let 
F(a,b) = 0. Then there exists an interval (a _ δ,a + δ) with at least one real va-
lued function f defined on it such that 

F(x, f(x)) = 0 for all x ∈ (a _ δ,a + δ) and b = f(a).…………(1) 
If f is continuous at c ∈ (a _ δ,a + δ) and F is differentiable at (c, f(c)) with 
(D2F )(c, f(c)) ≠ 0 , then f is differentiable at c and 

(D1F )(c, f(c)) + (D2F )(c, f(c)) · f '(c) = 0.…………………(2) 
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4-4.P5. Prove the version of Theorem 4-4.1, in which (1) is altered as follows: 
∃ an open set W ⊆ \m containing b and such that, on any open subset B of W 
that contains b and is not a union of two nonempty disjoint open sets, there ex-
ists a unique continuous map G :B→\n for which G(b) = a and f(G(y), y) = 0 ∀ 
y ∈ B. 



 

 

Extrema 

5-1 Necessary Conditions 

In an optimisation problem, the objective is to locate a maximum or minimum 
(or extremum) of some function, often called the objective function. The tech-
niques of solving problems where the objective function depends only on one 
variable are introduced in an elementary calculus course soon after the concept 
of derivative of a function of one variable is discussed. The optimisation of 
functions of several variables is discussed after the concept of partial derivatives 
of such functions has been introduced. Sometimes, the chosen variables may 
have one or more quantitative relations between them in the form of equations, 
usually referred to as constraints. The method of Lagrange multipliers, which is 
used to deal with such problems, is also discussed in multivariable calculus. The 
reader is presumed to be adept at implementing the method in specific instances. 

The purpose of this chapter is to discuss from a theoretical perspective the 
methods of optimisation, constrained as well as unconstrained, of functions of 
several variables. We shall begin with a formal definition of local maximum and 
minimum. 

5-1.1. Definition. A real valued function f on a domain S ⊆ \n is said to have a 
local maximum at a point x ∈ S if there is some δ > 0 such that 

||y _ x|| < δ ⇒ y ∈ S,  f(y) ≤  f(x). 
If the stronger condition that 

y ∈ S ⇒ f(y) ≤  f(x) 

holds, then f  is said to have an absolute maximum at x. Similarly for local and 
absolute minimum. As is customary, the word extremum will be understood to 
mean maximum or minimum. 

In case the stricter condition that 0 < ||y _ x|| < δ ⇒ y ∈ S,  f(y) < f(x) holds, 
we speak of a local strict maximum at x. Similarly for local strict minimum. 

Suppose f  has a local extremum at x and h is any nonzero element of \n, 
which we wish to take as a direction vector. The function φ:(_δ/||h|| ,δ/||h||)→\ 
defined by φ(ξ) = f(x + ξh) then has an extremum at ξ = 0. Now suppose further 
that f has a derivative at x in the direction h, which we shall denote by (Dh f )(x). 
Since 
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( ) (0)t
t

φ − φ  = ( ) ( )f x th f x
t

+ −  for 0 < | t | < δ/||h|| , 

φ'(0) exists and equals (Dh f )(x). By an elementary result about functions on 
intervals (see, e.g., Shirali and Vasudeva [23, Proposition 9-5.2] or Berberian [3, 
Theorem 8.4.4]), φ'(0) must be 0; therefore (Dh f )(x) must also be 0. 

In summary, if a function has a directional derivative at a point where it has 
a local extremum, then that derivative must be 0. In particular, a partial deriva-
tive that exists at a point of local extremum is always 0. The same is then true 
regarding the linear derivative. 

Vanishing of partial derivatives is thus a necessary condition for a local ex-
tremum; however, it is far from being sufficient, as is illustrated by the function 
f(x,y) = xy, which has no local extremum at (0,0) although its partial derivatives 
vanish there. Sufficient conditions are discussed in the next section. 

We go on to consider what are called ‘constrained extrema’. 
Suppose it is required to find a point of extremum of a real valued function 

φ on some open set S ⊆ \k subject to n ‘constraints’ 

f1(x1 ,…,xk) = 0 ,  f2(x1 ,…,xk) = 0 ,…,  fn(x1 ,…,xk) = 0.  
What this means is that a point of extremum is to be found for the function ob-
tained by restricting φ to the subset of S described by the n equations called 
constraints. The number of constraints n is taken to be less than the number of 
variables k, so that the subset described by them does not reduce to a single 
point or the empty set. Thus n < k. 

As an example with k = 2 and n = 1, 
we consider minimising φ(x,y) = x2 + y2 
subject to the single constraint f1(x,y) = 
x2 _ y2 _ 1 = 0. In terms of analytic ge-
ometry, this asks for the point on the 
hyperbola x2 _ y2 _ 1 = 0 that is nearest 
to the origin. From the adjoining graph, 
the reader can see that the nearest points 
are (±1,0). Note that the set described by 

the constraint, to which φ is restricted, has no interior points and therefore one 
cannot speak of a local maximum or minimum of φ in the sense discussed so far. 
A modified definition is as below. 

5-1.2.Definition. Let φ:S→\ and f :S→\n be functions on a subset S ⊆ \k and 
T = {x ∈ S : f(x) = 0}. Then φ is said to have a constrained local maximum at a 
∈ T if there is some δ > 0 such that 

||x _ a|| < δ,  x ∈ T ⇒ φ(a) ≥ φ(x). 
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Similarly for constrained local minimum. As is customary, the word extremum 
will be understood to mean maximum or minimum. 

When we speak of a constrained local extremum, some constraint f(x) = 0 is 
taken as understood from the context even when none may be stated explicitly.  

A glance at the graph of the hyperbola in the example above will convince 
the reader that a number δ as in Def. 5-1.2 indeed exists for each of the points 
(1,0) and (_1,0). 

Presumably, the reader is aware of the method of Lagrange multipliers for 
solving such constrained extremum problems in calculus, e.g., as in Thomas and 
Finney [27], and can independently verify that a straightforward use of the 
method yields both the solutions of the above problem. 

Our purpose here is to give a theoretical justification why the Lagrange 
multiplier equations constitute a necessary condition. Some observations would 
be in order before we proceed. 

The constraint in the foregoing example requires that x2 = y2 + 1, which 
leads to φ(x,y) = 2y2 + 1 = Φ(y), say. Since the equality x2 = y2 + 1 puts no re-
striction on y, the function Φ is to be minimised on the domain \. Therefore, if a 
minimum exists, it must be a local minimum and we can find it by setting Φ'(y) 
equal to 0, whereby we obtain y = 0. The constraint then shows that x = ±1. 

At first sight, it may seem that we could just as well have rephrased the 
constraint as y2 = x2 _ 1, which leads to φ(x,y) = 2x2 _ 1 = Φ(x), say. The equal-
ity y2 = x2 _ 1 restricts x2 to be greater than or equal to 1 and Φ is therefore to be 
minimised on the domain {x ∈ \ : x2 ≥ 1}; the minimum occurs when x = ±1, 
which is not an interior point of the domain. Thus, we do not have a local mini-
mum, and mindlessly setting the derivative equal to 0 results in the disaster that 
x = 0 is the critical value. The present rephrasing of the constraint has brought 
about a situation in which the first derivative test for a local extremum is not 
applicable. 

Although the Lagrange multiplier avoids solving the constraint equations 
and obtaining the function Φ, its theoretical justification will nevertheless be in 
terms of this function. In order to ensure that we do not have the situation illus-
trated in the preceding paragraph, care has to be taken that the constrained local 
extremum of φ corresponds to a local extremum of Φ. In the next two para-
graphs, we indicate how this is going to be done. 

Suppose that from the n constraints 

f1(x1 ,…,xk) = 0 ,  f2(x1 ,…,xk) = 0 ,…,  fn(x1 ,…,xk) = 0,  

one can express n variables, the first n say, in terms of the remaining k _ n vari-
ables as 
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x1 = g1(xn+1 ,…,xk),  x2 = g2(xn+1 ,…,xk),…,  xn = gn(xn+1 ,…,xk). 
What this means is that the point 

(g1(xn+1 ,…,xk),g2(xn+1 ,…,xk),…,gn(xn+1 ,…,xk),xn+1 ,…,xk) 

always belongs to the set T defined by the constraints. As was seen in connec-
tion with the implicit function theorem, one can at best expect such a thing to be 
valid in some open set W ⊆ \k_n containing (an+1 ,…,ak), where (a1 ,…,ak) is a 
given point of T. If g = (g1 ,…,gn) is continuous, then so is the map 

(xn+1 ,…,xk)→(g1(xn+1 ,…,xk),g2(xn+1 ,…,xk),…,gn(xn+1 ,…,xk),xn+1 ,…,xk). 
This continuity has the consequence that for any open ball B centred at 
(a1 ,…,ak), a sufficiently small open subset of W that contains (an+1 ,…,ak) is 
mapped into B∩T. Hence, if B has the property that φ(x1 ,…,xk) ≥ φ(a1 ,…,ak) 
for every (x1 ,…,xk) ∈ B∩T, then the function Φ defined on W by 

Φ(xn+1 ,…,xk) = φ(g1(xn+1 ,…,xk),g2(xn+1 ,…,xk),…,gn(xn+1 ,…,xk),xn+1 ,…,xk) 

has a local minimum at (an+1 ,…,ak). This will play a role in the proof below. 

Now suppose further that the ball B can be so chosen that every (x1 ,…,xk) ∈ 
B∩T is of the form 

(g1(xn+1 ,…,xk),g2(xn+1 ,…,xk),…,gn(xn+1 ,…,xk),xn+1 ,…,xk). 

Part (b) of Theorem 4-3.2 assures us that B can indeed be chosen in this manner. 
Then the converse of the conclusion of the previous paragraph holds: if Φ has a 
local minimum at (an+1 ,…,ak), it follows that φ(x1 ,…,xk) ≥ φ(a1 ,…,ak) for 
every (x1 ,…,xk) ∈ B∩T, which means φ has a constrained local minimum at 
(a1 ,…,ak). This will play a role in a subsequent proof [see Theorem 5-2.9]. 

It should be noted that corresponding features are true for a local strict 
minimum. Moreover, similar statements are true about Φ having a local (strict) 
maximum when the inequalities above are reversed. 

The function g is going to be obtained by an application of the implicit 
function theorem and it will therefore be convenient to switch to the notation we 
have already used there. Accordingly, we denote (x1 ,…,xn) ∈ \n by x and 
(xn+1 ,…,xk) ∈ \k_n by y. Also, m will denote k _ n and we are free to use the 
symbol k to mean something else. 

Before proceeding further, the reader would do well to review the statement 
of Implicit Function Theorem 4-3.2 and check out what A1 and A2 denote there, 
especially the relation between them. Remarks 4-3.1 and 4-3.3 are crucial to 
what follows. 

5-1.3. Theorem. Let φ:S→\ and f :S→\n be continuously differentiable func-
tions on an open subset S ⊆ \n×\m and T = {(x,y) ∈ S : f(x,y) = 0}. Suppose φ 
has a constrained local extremum at (a,b) ∈ T, the constraint being that f(x,y) = 
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0. Assume the linear derivative A1 of f  with respect to x at (a,b), i.e., the map 
A1:\n→\n such that A1 h = f '(a, b)(h, 0), to be invertible. Then there exist n real 
numbers λ1 ,…,λn such that 

(Dj φ)(a,b) +
p
Σ
n

=1
λp(Dj fp)(a,b) = 0 for 1 ≤ j ≤ n + m.…………(1) 

Proof. We shall need not only the linear map A1:\n→\n but also the associated 
map A2:\m→\n defined as A2 k = f '(a, b)(0,k), and the corresponding maps 
B1:\n→\ and B2:\m→\ with φ in place of f . Besides, we shall need the fol-
lowing property of B1 and B2 : 

[φ'(a,b)](h,k) = [φ'(a,b)][(h, 0) + (0,k)] 

= B1h + B2 k for (h,k) ∈ \n×\m.……(2) 

Since A1 is invertible, the implicit function theorem provides a continuously 
differentiable function g on some open set W containing b such that 

g(b) = a, y ∈ W ⇒ (g(y),y) ∈ T……………………(3) 
and 

g'(b) = _A1
_1A2 .…………………………………(4) 

By the chain rule, the map Φ:W→\ given by 

Φ(y) = φ(g(y),y) 

has linear derivative at b given by Φ'(b) = φ'(g(b),b)P, where P is the linear de-
rivative at b of the map y→(g(y),y). By Remark 4-3.1, P is given by 

P(k) = (g'(b)k,k) for k ∈ \m, 
and hence Φ'(b) is given by 

Φ'(b)(k) = φ'(g(b),b)(g'(b)k,k) 

= φ'(a,b)(g'(b)k,k) 

= B1(g'(b)k) + B2 k, in view of (2). 

Thus, Φ'(b) = B1 g'(b) + B2 and it follows from (4) that 

Φ'(b) = _(B1A1
_1)A2 + B2 .……………………………(5) 

Now, it is a consequence of (3), the continuity of g and the hypothesis of a 
constrained local extremum at (a,b) that Φ has a local extremum at b, so that 
Φ'(b) = 0. By (5), this means 

_(B1A1
_1)A2 + B2 = 0.……………………………(6) 

If we set λ = _B1A1
_1, we have 

λA1 + B1 = 0…………………………………(7) 

by the very definition of λ, and from (6), we also have 
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λA2 + B2 = 0.…………………………………(8) 

Since λ is a linear map from \n to \, it is represented by a 1×n matrix 
[λ1 ,…,λn]. Also, A1 and A2 are represented by the respective matrices [see Re-
mark 4-3.3] 

1 1 1

1 2 2

1

n

n

n n n

D f D f
D f D f

D f D f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

L

O

K

 and 

1 1 1

1 2 2

1

n n m

n n m

n n n m n

D f D f
D f D f

D f D f

+ +

+ +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

L

O

K

, 

while  

1 nD Dφ φ⎡ ⎤⎣ ⎦L  and [ ]φφ ++ mnn DD L1 , 

respectively represent B1 and B2 , all partial derivatives being understood as 
taken at (a,b). Using these matrix representations, we find that (7) asserts the 
first n equations in (1) and (8) asserts the remaining ones. , 

5-1.4. Remarks. (a) Since the order of variables can be changed in an extremum 
problem, we can choose any n variables as constituting x in the above theorem, 
not necessarily the first n. If some other n variables are chosen, then the matrix 
of A1 will consist not of the first n columns of the Jacobian matrix of f '(a, b) as 
in the above proof, but the n columns corresponding to the variables chosen. 
Therefore the condition that A1 is invertible effectively says that the n×n matrix 
formed by some n columns of the n×(n+m) Jacobian matrix of f '(a, b) is inverti-
ble. It can happen that no matter which n columns we select, the n×n matrix 
formed by them fails to be invertible. One of the examples below will illustrate 
what can happen in that event. 

In the actual instances we discuss, the number of constraints will be either 
one or two, and correspondingly, n will be either 1 or 2. Therefore we shall be 
able to check the above condition on the Jacobian matrix without recourse to the 
methods that are available in linear algebra. 

In fact, when n = 1, the Jacobian matrix is 1×(1+m) and the condition is 
simply that some entry in the matrix, i.e., some partial derivative, is nonzero. 
When n = 2, the Jacobian matrix is 2×(2+m) and the condition is that some 2×2 
‘submatrix’ is invertible; this can easily be seen to be equivalent to the two rows 
of the Jacobian matrix not being proportional to each other. 
(b) Let us consider the example discussed just before Def. 5-1.2, namely, the 
problem of minimising φ(x,y) = x2 + y2 subject to the constraint f1(x,y) = 
x2 _ y2 _ 1 = 0. We can choose either x or y to play the role of x in the theorem, 
as long as the conditions are satisfied. At the points of minimum (±1,0), we find 
that ∂f1/∂x is nonzero but ∂f1/∂y is zero. Therefore, the condition of invertibility 
is not fulfilled if the present y is chosen to play the role of x in the theorem. This 
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is what was behind the failure of the attempt to find the extremum by expressing 
y in terms of x from the constraint, which had led to φ(x,y) = 2x2 _ 1 = Φ(x). 

When we discuss a concrete example or problem, it will be convenient to 
use the following standard terminology: 

• The functions f and φ will be called the constraint function and objec-
tive function, respectively. 

• The set T of the theorem will be called the constraint set.  

• The equations (Dj φ)(x,y) + 
p
Σ
n

=1
λp(Dj fp)(x,y) = 0 (1 ≤ j ≤ n + m) will be 

called the Lagrange equations. 
• The equations fp(x,y) = 0 (1 ≤ p ≤ n) will be called the constraint equa-

tions. 
• The λp will be called the Lagrange multipliers. 
• The function φ+

 p
Σ
n

=1
λp fp will be called the Lagrangian. 

We shall use the phrase ‘invertibility condition holds at’ a point of the constraint 
set to mean that for some choice of x (i.e., for some n variables of the problem), 
the linear derivative of the constraint function with respect to x is invertible at 
the point. This means that the ‘invertibility condition fails at’ a point of the con-
straint set if, for every choice of n variables of the problem, the linear derivative 
of the constraint function with respect to x fails to be invertible at the point. 

Using this terminology, Theorem 5-1.3 can be summarised as saying that if 
a local extremum occurs at a point where the invertibility condition holds, then 
the Lagrange equations are satisfied at that point. This leaves open the possibil-
ity that an extremum occurs at a point where the invertibility condition fails and 
the Lagrange equations are not satisfied. Then it would be futile to check for the 
condition after solving the Lagrange equations. We recommend that the points 
(if any) of the constraint set at which the invertibility condition fails, be checked 
first to see if any of them is an extremum. Usually textbook problems do not 
have such points, because authors are not so sadistic as to include problems that 
do. There are exceptions, though. 

5-1.5. Examples. (a) Consider the problem of finding all constrained local ex-
trema of φ(x,y) = 1 _ (x + y) + xy (objective function) subject to the constraint 
f(x,y) = x2 + y2 _ 1 = 0. The Jacobian matrix of the constraint function is 
[2x 2y]. Since the entries cannot both become zero at any point where the con-
straint is satisfied, the invertibility condition holds on the entire constraint set. 
Therefore the Lagrange equations must be satisfied at any point of local extre-
mum. Let us solve the Lagrange equations 

1 (2 ) 0, 1 (2 ) 0y x x y− + + λ = − + + λ =  
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together with the constraint 
x2 + y2 _ 1 = 0. 

The Lagrange equations lead to 2 ( ) ( ) 0x y x yλ − − − = , from which we deduce 
that x = y or λ = _1

2
_ . In the former case, the constraint equation leads to x = y = 

±1/√2. In the latter case, the Lagrange equations leads to x + y = 1, which along 
with the constraint equation, yields xy = 0, so that either x = 1, y = 0 or x = 0, y = 
1. Thus we get the four points P1 = (1/√2,1/√2),  P2 = (_1/√2,_1/√2), P3 = (1,0) 
and P4 = (0,1). (It may be noted that P1 ,P2 correspond to λ = _1

2
_(√2 _ 1) and 

P3 ,P4 correspond to λ = _12
_ .) Evaluation of φ at these points shows that φ attains 

its minimum at P3 and P4 and maximum at P2 . It remains to determine whether 
P1 is a point of constrained local extremum. To this end, we note that P1 satisfies 
x ≥ 0, y ≥ 0 and consider the related problem of finding extrema of 1 _ (x + y) + 
xy subject to y = √(1 _ x2), 0 ≤ x ≤ 1. This is precisely equivalent to the problem 
of extrema of Φ(x) = 1 _ [x + √(1 _ x2)] + x√(1 _ x2) on the interval [0,1]. Rou-
tine computations show that Φ attains its maximum value at x = 1/√2. While we 
know that, if φ has a constrained local maximum at (1/√2,1/√2), then Φ has a 
local maximum at 1/√2, we shall now argue the converse. [But see 5-1.P2.] The 
just proven fact that Φ attains its maximum value at x = 1/√2 means that 0 ≤ x 
≤ 1 ⇒ Φ(x) ≤ Φ(1/√2). In view of the aforementioned equivalence, 

0 ≤ x ≤ 1,  y ≥ 0,  y = √(1 _ x2) ⇒ φ(x,y) = 1 _ (x + y) + xy ≤ Φ(1/√2). 

When y ≥ 0, the function y = √(1 _ x2) provides the unique solution of the con-
straint equation. Therefore, the statement displayed above can be rephrased as 

0 ≤ x ≤ 1,  y ≥ 0,  x2 + y2 _ 1 = 0 ⇒ φ(x,y) = 1 _ (x + y) + xy ≤ Φ(1/√2). 

Now consider the open ball of radius 1_ 1/√2 centred at P1 = (1/√2,1/√2). If 
(x,y) lies in this ball, it satisfies 0 ≤ x ≤ 1,  y ≥ 0; if it also satisfies the constraint, 
then it follows that φ(x,y) ≤ Φ(1/√2) = φ(1/√2,1/√2). Thus, φ has a constrained 
local maximum at P1 . 

(b) The constraint y5z + z5x + x5y = 3(_π
4
_ )6 holds at (_π

4
_ , _π

4
_ , _π

4
_ ). If one attempts to 

maximise or minimise tan x + tan y + tan z (locally) subject to the constraint, the 
point (_π

4
_ , _π

4
_ , _π

4
_ ) immediately presents itself as one solution of the constraint and 

Lagrange equations, with λ = _1/3(_π
4
_ )5. However, settling its status (whether 

maximum or minimum or neither) by the sort of procedure adopted in the pre-
ceding example is not a realistic option. More on this in the next section. 
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y = x2/3 

(0,_1) 

(c) The Lagrange multiplier method furnishes those points of extremum where 
the invertibility condition holds. However, an extremum can occur at a point 
where the condition does not hold, as the following example shows. Suppose we 

wish to minimise x2 + (y + 1)2 subject to y3 _ x2 = 0. 
(Graphically, this amounts to minimising the dis-
tance from the point (0,_1) on the y-axis to the curve 
y = x2/3; see the accompanying figure to guess the 
solution right away.) The Jacobian matrix of the 
constraint function is [_2x 3y2]. There exists one 
point in the constraint set, namely (0,0), where both 
entries of the matrix are zero. At any other point 

where a local extremum occurs, the Lagrange equations must hold: 2x _ 2λx = 0 
and 2(y + 1) + 3λy2 = 0. It follows from these equations and the constraint that x 
≠ 0 and hence that λ = 1 and 3y2 + 2y + 2 = 0. However, there is no such real 
number y! Therefore, if at all there is a minimum, it must occur at (0,0). Al-
though the Lagrange equations did not yield this point, one can directly verify 
by elementary methods that an absolute minimum indeed occurs there. To wit, 
y3 _ x2 = 0 ⇒ y ≥ 0 ⇒ x2 + (y + 1)2 = y3 + (y + 1)2 ≥ 1 = 0 + (0 + 1)2. What the 
Lagrange multiplier method has done for us is to guarantee that there is no local 
extremum other than (0,0). 

Problem Set 5-1 

5-1.P1. Vanishing of the first derivative is not a sufficient condition for an ex-
tremum, e.g., y = x3 has no extremum at 0 although its derivative vanishes there. 
Use this to show that the Lagrange equations can hold when there is no local 
extremum. 

5-1.P2. Let S ⊆ \n×\m be open and T = {(x,y) ∈ S : f(x,y) = 0}, where f is a map 
from S to \n. Suppose (a,b) ∈ T, W ⊆ \m is open, b ∈ W and g:W→\n is the 
unique map such that (g(y),y) ∈ T whenever y ∈ W. Then prove the following: 
(a) y ∈ W, (x,y) ∈ T ⇒ x = g(y). In particular, a = g(b). 
(b) If φ:S→\ has the property that the map Φ:W→\ defined by Φ(y) = 

φ(g(y),y) has a local minimum at b, then φ has a constrained local minimum 
at (a,b) ∈ T, the constraint being that f(x,y) = 0. 

5-1.P3. Minimise x2 + y2 + z2 subject to x _ y + z = 2 and 2x + y + 4z = 16, given 
that a minimum exists. 

5-1.P4. Use the Lagrange multiplier method to find 
(a) the point on the line x + y = 4 that is closest to the circle x2 + y2 = 1; 
(b) the point on the circle x2 + y2 = 1 that is closest to the line x + y = 4. 

2
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5-1.P5. Find all solutions to the Lagrange equations for minimising the (square 
of the) distance between two points (x,y) and (u,v), subject to the two con-
straints that (x,y) lie on the circle  x2 + y2 = 1 and (u,v) lie on the line u + v = 4. 
Check whether there are any points of extremum other than the solutions ob-
tained.  

5-1.P6. Find the absolute maximum and minimum values of x2 + y2 + z2 subject 
to the constraints 

22 2
14 5 25

yx z+ + =  and z x y= + . 

5-1.P7. Solve the problem of finding all absolute minima of 2 2 2( 1)x y z+ + −  
subject to the constraint 223 2 2 2 6 7x xy y x y− + − − +  = 0 by (a) the Lagrange 
multiplier method and (b) converting it to an unconstrained problem. 

5-1.P8. Choose polar coordinates (r,θ) in the plane so as to have _ _π
2
_  < θ ≤ _π

2
_  

and r positive, zero or negative. Define f :\2→\ as 

f(r,  θ) = 

2

2

if 0

cos if 0

r

rr

⎧ θ =
⎪
⎨

θ ≠⎪ θ⎩
.
 

Show that 
(a) f  is continuous at the origin; 
(b) f does not have a local minimum at the origin; 
(c) the restriction of f  to a line through the origin has a local strict minimum 
there. 

5-1.P9. Define f :\2→\ as 

f(x,y) = 

6 2
2 2 2

4 2 2
42 if ( , ) (0,0)

( )
0 if ( , ) (0,0).

x yx y x y x y
x y

x y

⎧ + − − ≠⎪ +⎨
⎪ =⎩

 

 
(a) Show that f  is continuous at (0,0).  
(b) For _ _π

2
_  < θ ≤ _π2

_  and t ∈ \, define gθ(t) = f(t cos θ, t sin θ). Show that gθ(0) = 0, 
gθ'(0) = 0 and gθ"(0) = 2. Thus the restriction of f  to a line through (0,0) has a 
strict local minimum at (0,0). 
(c) Show that (0,0) is not a local minimum for f  by considering f(x,x2). 

5-1.P10. Define f :\2→\ as 
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f(x,y) = 

2 2

2 2
2 2

2 2
2 2

if 0

( )cos if 0arctan ( / )

( ) cos /2

x y y

x yx y x yy x

x yx y

⎧
⎪ +
⎪

=
⎪ ++ ≠ ≠⎨
⎪
⎪ +⎪ + π⎩

 

Show that 
(a) f  is continuous at (0,0); 
(b) the restriction of f  to any line through (0,0), i.e., y = kx or x = 0, has a local 
strict minimum at (0,0); 
(c) f  does not have a local minimum at (0,0). 

5-2 Sufficient Conditions 

Recall the second derivative test for local extrema in a single variable. It asserts 
that a sufficient, but not necessary, condition for a function f  to have a maxi-
mum (respectively, minimum) at a point x of its interval of definition is that f  be 
differentiable on an open subinterval containing x with derivative 0 at x and that 
the second derivative at x be negative (respectively, positive) [see, e.g., Shirali 
and Vasudeva [23, Proposition 9-5.12]]. We begin by establishing the analogue 
for local extrema in \n. 

5-2.1. Theorem. Suppose that x is a point in the domain S ⊆ \n of a real-valued 
function f  such that the derivatives Dj f  (1 ≤ j ≤ n) are differentiable at each 
point of some ball centred at x, while Dj f (x) = 0 (1 ≤ j ≤ n) and the second par-
tial derivatives Di j f  are continuous at x. Let 

Q(h) = 
j
Σ
=

n

1
hj [ i

Σ
=

n

1
hiDi j f(x)] for h ∈ \n. 

(a) If Q(h) > 0 for all nonzero h ∈ \n, then f has a local strict minimum at x. 
(b) If Q(h) < 0 for all nonzero h ∈ \n, then f has a local strict maximum at x. 
(c) If there exist nonzero h' and h" in \n such that Q(h' ) > 0 > Q(h"), then f has 

neither a local minimum nor a local maximum at x. 

Proof. We begin by noting the property of Q that, for any λ ∈ \ and any h ∈ \n, 
Q(λh) = λ2Q(h).………………………………(1) 

Since Q is continuous, it has a minimum value m and a maximum value M on 
the compact set {h ∈ \n : ||h || = 1}. Then for any nonzero h ∈ \n, we have m ≤ 
Q(h/||h ||) ≤ M, from which it follows by using (1) that 

m||h ||2 ≤ Q(h) ≤ M ||h ||2 for any h ∈ \n.……………………(2) 

if 0 .x y= ≠
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Let r be the radius of the ball mentioned in the hypothesis. By Proposition 
3-5.5, for any h ∈ \n with ||h || < r, there exists θ ∈ (0,1) such that 

f(x + h) _ f(x) = 
j
Σ
=

n

1
hj · Dj f(x) + 2

1
j
Σ
=

n

1
hj[ i

Σ
=

n

1
hiDi j f(x + θh)] 

= 2
1

j
Σ
=

n

1
hj[ i

Σ
=

n

1
hi (Di j f(x + θh) _ Di j f(x))] + 2

1 Q(h).……(3) 

(a) Under the hypothesis here, m > 0. By continuity of Di j f , there exists a posi-
tive δ < r such that 

j
Σ
=

n

1 i
Σ
=

n

1
|Di j f(x + h) _ Di j f(x)| < 2

1 m whenever ||h || < δ. 

Since θ ∈ (0,1), we have ||θh || ≤ ||h || and hence 

j
Σ
=

n

1 i
Σ
=

n

1
|Di j f(x + θh) _ Di j f(x)| < 2

1 m whenever ||h || < δ. 

Now, |hi|  ≤ ||h || for all i. Therefore 

|
j
Σ
=

n

1
hj [ i

Σ
=

n

1
hi(Di j f(x + θh) _ Di j f(x))]| ≤ 2

1 m||h ||2 

and hence from (3) and then (2), we obtain 

f(x + h) _ f(x) ≥ 2
1 m||h ||2 _

4
1 m||h ||2 = 4

1 m||h ||2 for ||h || < δ. 

This shows that f  has a local strict minimum at x. 
(b) This argument is similar but M < 0 and 2

1 m is to be replaced by 2
1− M. 

(c) In view of (1), we may assume that ||h' || = 1 = ||h" ||. By continuity of Di j f , 
there exists a positive δ < r such that 

j
Σ
=

n

1 i
Σ
=

n

1
|Di j f(x + h) _ Di j f(x)| < Q(h' ) when-

ever ||h || < δ. Then 

|
j
Σ
=

n

1
hj [ i

Σ
=

n

1
hiDi j f(x + h) _ Di j f(x)]) | < Q(h' )||h ||2 whenever 0 < ||h || < δ. 

Therefore, when h = λh', 0 < λ < δ, we have ||h ||2 = λ2 and it follows from (3) 
and (1) that 

f(x + h) _ f(x) > 2
1 Q(h) _

2
1 Q(h' )||h ||2 = 2

1 λ2Q(h' ) _
2
1 Q(h' )λ2 = 0. 

This shows that f does not have a local maximum at x. A similar argument 
shows that f  also does not have a local minimum at x. , 

5-2.2. Remark. In the preceding section we mentioned vanishing of first partial 
derivatives as a necessary condition for a local extremum; second partial deriva-
tives were not involved and were not even assumed to exist. When the latter 
exist, the argument of part (c) of the above theorem can be used for obtaining an 
additional necessary condition for a local maximum (respectively, minimum), 
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namely, that Q(h) ≤ 0 (respectively, Q(h) ≥ 0) for all nonzero h ∈ \n, provided of 
course that the conditions therein about differentiability and continuity are ful-
filled. Indeed, if Q(h' ) > 0 for some nonzero h', then one can reason exactly as in 
(c) above that f does not have a local maximum at x.  

In concrete applications, the conditions stipulated within (a), (b) or (c) have 
to be verified for the function at hand. Methods for doing so are available 
through linear algebra, but we shall not discuss them. The verification is easy to 
carry out in some instances, as we now illustrate: 

Example. We seek the extrema of 

f(x1 ,x2 ,x3) = 3x1
2 + 2x2

2 + 4x3
2 + 4x3x1

_ 10x1
_ 4x2

_ 12x3 on \3. 

The first partial derivatives are 
D1 f  = 6x1 + 4x3

_ 10,  D2 f  = 4x2
_ 4,  D3 f  = 8x3 + 4x1

_ 12. 

It is immediate that all three vanish at (x1 ,x2 ,x3) = (1,1,1) and nowhere else. So 
a local extremum, if any, must occur at this point. In order to apply the theorem, 
we compute second partial derivatives, which happen to be constants: 

D1 1 f  = 6 D2 1 f  = 0 D3 1 f  = 4 
D1 2 f  = 0 D2 2 f  = 4 D3 2 f  = 0 
D1 3 f  = 4 D2 3 f  = 0 D3 3 f  = 8 

Hence Q is given by 

Q(h1 ,h2 ,h3) = 6h1
2 + 4h2

2 + 8h3
2 + 8h3h1 . 

Upon recasting this as 

Q(h1 ,h2 ,h3) = 2(h1 + 2h3)2 + 4h1
2 + 4h2

2, 

we see that Q > 0 unless (h1 ,h2 ,h3) = (0,0,0). From the theorem we can now 
conclude that f  has a strict local minimum at (x1 ,x2 ,x3) = (1,1,1). 

We have obtained this conclusion by routine computation. A skillful but 
elementary computation shows that 

f(x1 ,x2 ,x3) = (x1
_ x2)2 + (x1 + x2

_ 2)2 + (x1 + 2x3
_ 3)2 _ 13, 

whereby the same conclusion can be obtained without any differentiation. 

 The verification is even easier if either [Di j f(x)] is a diagonal matrix 
(which means Di j f(x) = 0 for i ≠ j) or n = 2. In the former case, we have Q(h) = 

i
Σ
=

n

1
Di i f(x)hi

2, from which it follows that the condition of (a) (respectively, (b)) is 
fulfilled if each diagonal entry Di i f(x) is positive (respectively, negative) and 
that the condition of (c) is fulfilled if some diagonal entry is positive and another 
is negative. We first present an instance when this situation occurs and then go 
on to discuss the case when n = 2. 

Example. Let a > b > c > 0. For the function 
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f(x,y, z) = (ax2 + by2 + cz2) exp (_x2 _ y2 _ z2) on \3, 

we show that there are seven points where all partial derivatives vanish. We also 
show that the function has a local maximum at two of the seven points, a mini-
mum at one and neither a maximum nor a minimum at the remaining four. 

Since f
x

∂
∂ = 2xexp(_x2 _ y2 _ z2) [a _ (ax2 + by2 + cz2)], and similarly for 

f
y

∂
∂ , f

z
∂
∂ , the points where all three partial derivatives vanish are precisely the 

solutions of (1)–(3) below: 

x = 0 or a = ax2 + by2 + cz2…………………………(1) 
y = 0 or b = ax2 + by2 + cz2…………………………(2) 
z = 0 or c = ax2 + by2 + cz2.…………………………(3) 

Now (0,0,0) is a solution, where f  obviously has a minimum. We shall obtain six 
others. If a solution (x,y, z) has two nonzero coordinates, say y and z, then (2) 
and (3) lead to b = c, which contradicts the hypothesis. Therefore a solution of 
(1)–(3) can have at most one nonzero coordinate. So, a solution with x ≠ 0 must 
satisfy y = 0 = z and hence by (1) must also satisfy a = ax2, so that x = ±1. We 
conclude that (±1,0,0),  (0,±1,0),  (0,0,±1) are the only solutions of (1)–(3) be-
sides (0,0,0), thereby making a total of seven solutions. 

It will now be shown that (±1,0,0) are points of maximum while (0,±1,0),  
(0,0,±1) provide neither a maximum nor a minimum. The second partial deriva-
tives are given by 

2

2
f

x
∂
∂

 = 2exp(_x2 _ y2 _ z2)[a _ (5ax2 + by2 + cz2) + 2x2(ax2 + by2 + cz2)], 

2 f
y x

∂
∂ ∂

 = _4xyexp(_x2 _ y2 _ z2)[(a + b) _ (ax2 + by2 + cz2)], 

and correspondingly for the others. Upon evaluating them at (±1,0,0), we find 
that the Hessian matrix at both points is a diagonal matrix with entries 
_4a/e, 2(b _ a)/e, 2(c _ a)/e. All these are negative in view of the hypothesis that 
a > b > c > 0. As noted above, the condition stipulated in (a) of Theorem 5-2.1 is 
fulfilled and thus (±1,0,0) are points of maximum. Upon evaluating at (0,±1,0) 
however, we find that the Hessian matrix at these points is a diagonal matrix 
with entries 2(a _ b)/e, _4b/e, 2(c _ b)/e, which are, respectively, positive, nega-
tive and negative. Thus the condition stipulated in (c) of Theorem 5-2.1 is 
fulfilled and (0,±1,0) are points of neither maximum nor minimum. At the re-
maining points (0,0,±1), the Hessian matrix turns out to be a diagonal matrix 
with entries 2(a _ c)/e, 2(b _ c)/e, _4c/e, which are respectively positive, positive 
and negative. Once again by (c) of Theorem 5-2.1, (0,0,±1)) are points of neither 
maximum nor minimum. 

We go on to discuss the case when n = 2. 
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First of all, Q(h) simplifies to a11h1
2 + (a12 + a21) h1h2 + a22h2

2, where ai j = 
Di j f(x), i, j = 1,2. By Young’s theorem (Theorem 3-5.4), a12 = a21 and therefore 
Q(h) further simplifies to a11h1

2 + 2a12h1h2 + a22h2
2. When a11 ≠ 0, an elementa-

ry computation gives 

a11h1
2 + 2a12h1h2 + a22h2

2 = a11 [( 12
1 2

11

a
h ha+ )2 –

2
212 11 12

22
11

a a a
h

a
− ] , 

from which it follows that a sufficient condition for Q(h) to be positive for all 
nonzero (h1 ,h2) is that a12

2 < a11a22 and a11 > 0. Obviously, the condition a11 > 0 
can be replaced by a22 > 0. Similarly, a sufficient condition for Q(h) to be nega-
tive for all nonzero (h1 ,h2) is that a12

2 < a11a22 and either a11 < 0 or a22 < 0. 
Next, suppose a12

2 > a11a22 . Then if a11 ≠ 0, the equality displayed above 
also shows that Q(h) can take positive as well as negative values; this happens 
even if a11 = 0, because in this situation, a12

2 > 0 and Q(h) = h2 (2a12h1 + a22h2), 
where a12 ≠ 0. Let us summarise all of this as a theorem, keeping in view that ai j 
= Di j f(x). 

5-2.3. Theorem. Suppose that x is a point in the domain S ⊆ \2 of a real valued 
function f  such that the derivatives D1 f and D2 f are differentiable at each point 
of some ball (disc) centred at x, while D1 f (x) = 0 = D2 f (x) and the second par-
tial derivatives D1 1 f , D1 2 f  and D2 2 f  are continuous at x. 
(a) If D1 2 f(x)2 < [D1 1 f(x)] · [D2 2 f(x)] and D1 1 f(x) > 0 (or D2 2 f(x) > 0), then f 

has a local strict minimum at x. 
(b) If D1 2 f(x)2 < [D1 1 f(x)] · [D2 2 f(x)] and D1 1 f(x) < 0 (or D2 2 f(x) < 0), then f 

has a local strict maximum at x. 
(c) If D1 2 f(x)2 > [D1 1 f(x)] · [D2 2 f(x)] then f has neither a local minimum nor a 

local maximum at x. 

In the sufficient condition of Theorem 5-2.1, a crucial role is played by 
Q(h). Note that Q is a special kind of a map from \n to \, which is closely re-
lated to a linear map without itself being linear. Such maps have a name: 

5-2.4. Definition. A map Q :\n→\ is called a quadratic form if there exists an 
n×n matrix [ai j] such that 

Q(h) = 
j
Σ
=

n

1
hj [ i

Σ
=

n

1
hiai j ] for h ∈ \n. 

Q is said to be positive definite if Q(h) > 0 whenever h ≠ 0 and positive 
semidefinite if Q(h) ≥ 0 for all h. Similarly for negative definite and negative 
semidefinite. 

When f is a real-valued function having second partial derivatives Di j f(x) , 
the quadratic form given by the matrix [Di j f(x)] is called the Hessian form of f 
at x. The matrix is called the Hessian matrix of f at x. 

Thus, what we have called Q(h) in Theorem 5-2.1 is in fact the Hessian 
form of f at the point x. We recount in terms of the concepts just defined what 
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the three parts of the theorem say under the stated hypotheses. Part (a) says that 
if the Hessian form is positive definite at the point in question, then there is a 
local strict minimum, while part (b) says that if the Hessian form is negative 
definite, then there is a local strict maximum. Part (c) says that if the Hessian 
form is neither positive semidefinite nor negative semidefinite, then there is nei-
ther a local minimum nor a local maximum. The necessary condition for a local 
maximum in Remark 5-2.2 was that the Hessian form be negative semidefinite. 

5-2.5. Examples. (a) Let [ai j] be the 3×3 matrix whose rows are, respectively, 

[2 1 4], [1 1 3], [4 3 11]. 
It is a simple computation that the associated quadratic form Q is given by 

Q(h1 ,h2 ,h3) = 2h1
2 + h2

2 + 11h3
2 + 6h2 h3 + 8h3 h1 + 2h1 h2 . 

One can verify that this can be put in the form 

Q(h1 ,h2 ,h3) = (h1 + h2 + 3h3)2 + (h1 + h3)2 + h3
2 . 

It follows that Q is positive definite. If the 11 is changed to 10, then the last term 
h3

2 will have to be deleted and Q will be positive semidefinite. 

(b) Let [ai j] be the 2×2 matrix whose rows are, respectively, 

[2λ 1] and [1 2λ]. 

The associated quadratic form Q maps (h1 ,h2) into 2λ(h1
2 + h2

2) + 2h1h2 . When 
the value of λ is _12

_(√2 _ 1), this becomes 

Q(h1 ,h2) = (√2 _ 1)(h1
2 + h2

2) + 2h1h2 . 

We find that Q is neither positive semidefinite nor negative semidefinite. How-
ever, when restricted to those (h1 ,h2) for which h1 = h2 , it will behave as though 
it is positive definite; when restricted to those (h1 ,h2) for which h1 + h2 = 0, it 
will behave as though it is negative definite. 

Now suppose α:\→\2 is a linear map such that every (h1 ,h2) in the range 
of α satisfies h1 + h2 = 0; for instance, 

α(k) = (k, _k). 

Then a consequence of the fact observed above is that in case the composition 
Q α—which surely maps \ into \—turns out to be a quadratic form in \, then 
it is negative definite. Similarly, for α(k) = (k,k), the composition Q α is posi-
tive definite if it is a quadratic form. 

(c) Consider the 3×3 matrix whose rows are, respectively, 

[A B B], [B A B], [B B A], 

where A and B are distinct real numbers. The associated quadratic form Q is 

Q(h1 ,h2 ,h3) = A(h1
2 + h2

2 + h3
2) + 2B(h2h3 + h3h1 + h1h2) 
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= B(h1 + h2 + h3)2 + (A _ B)(h1
2 + h2

2 + h3
2). 

This shows that Q need not be positive (or negative) definite. However, when 
restricted to those (h1 ,h2 ,h3) ∈ \3 for which h1 + h2 + h3 = 0, it will behave as 
though it is positive or negative definite according as A > B or A < B. 

Now suppose α:\2→\3 is a linear map such that every (h1 ,h2 ,h3) in the 
range of α satisfies h1 + h2 + h3 = 0; for instance, 

α(k1 ,k2) = (k1 ,k2 , _(k1 + k2)) or (2k1 ,3k2 , _(2k1 + 3k2)). 

Then a consequence of the fact observed above is that in case the composition 
Q α, which surely maps \2 into \, is a quadratic form in \2, then it is positive 
or negative definite according as A > B or A < B. That the composition will al-
ways be a quadratic form follows from the next result. 

5-2.6. Proposition. Let Q be a quadratic form in \n with matrix [ai j] and 
α:\m→\n be a linear map with matrix [bi p], 1 ≤ i ≤ n and 1 ≤ p ≤ m. Then the 
composition Q α:\m→\ is a quadratic form in \m with matrix [cp q], 1 ≤ p, q ≤ 
m, where 

cp q = 
j
Σ
=

n

1
bj q( i

Σ
=

n

1
ai j bi p).………………………(A) 

Proof. Consider any k ∈ \m. Since α has matrix [bi q], the j th component of α(k) 
is 

α(k)j = 
q
Σ
m

=1
bj q kq . 

Therefore  

(Q α)(k) = 
j
Σ
=

n

1
α(k)j [ i

Σ
=

n

1
α(k)i ai j] = 

j
Σ
=

n

1
(

q
Σ
m

=1
bj q kq ) [

i
Σ
=

n

1
(

p
Σ
m

=1
bi p kp )ai j] 

= 
q
Σ
m

=1
kq [ p

Σ
m

=1
kp [

j
Σ
=

n

1
bj q( i

Σ
=

n

1
ai j bi p)]]. , 

The above proposition can be reformulated as saying that Q α is a quad-
ratic form given by the matrix product [bi p]T [ai j][bi p], where the superscript T 
indicates transpose. 

It may be recalled from the proof of the necessary conditions for a con-
strained extremum [Theorem 5-1.3] that we used the composed function called 
Φ in the argument, although the point of the Lagrange multiplier method is to 
circumvent an explicit computation of Φ. Since sufficient conditions for an un-
constrained extremum involve the Hessian form, one may anticipate that any 
proof concerning sufficient conditions for a constrained extremum would in-
volve the Hessian form of the composed function Φ. Therefore it is useful to 
express the second partial derivatives of a composed function φ G in terms of 
second and first derivatives of φ and G. We do so in the next proposition, by 
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employing the chain rule with respect to partial derivatives as explained in Sec-
tion 3-4. 

5-2.7. Proposition. Let U and V be open subsets of \m and \n, respectively, and 
G:U→V,  φ:V→\ be functions such that φ as well as all the n component func-
tions Gj (1 ≤ j ≤ n) of G have differentiable first partial derivatives everywhere. 
Then φ G has differentiable first partial derivatives and at any x ∈ U, and for 
any p,q with 1 ≤ p ≤ m,  1 ≤ q ≤ m,  we have 

[Dp q(φ G)](x) = 
j
Σ
=

n

1[[
 i
Σ
=

n

1
(Di j φ)(G(x))·(Dp Gi)(x))]·(Dq Gj)(x)) 

+ (Dj φ)(G(x))·(Dp q Gj (x))],……………(1) 

where all multiplications of numbers are indicated by a dot ·. In particular, if 
the second partial derivatives of φ as well as of all the n component functions Gj 
are continuous at G(a) and a respectively, then the second partial derivatives of 
φ G are continuous at a. 

Proof. By the chain rule, we have 

[Dq (φ°G)](x) = 
j
Σ
=

n

1
(Dj φ)(G(x))·(Dq Gj)(x)). 

Since all first partial derivatives on the right side have been assumed differenti-
able, those of φ G are also differentiable; besides, we can apply the chain rule 
once again and a routine computation leads to (1), which then implies the last 
statement. , 

5-2.8. Remark. Continuing with the notation of the above proposition, we note 
that: 
(a) The Hessian form Hφ G  at x of the composition φ G is given by the matrix 
with (p,q)th entry [Dp q(φ G)](x), which is the left side of (1). 
(b) The Hessian form Q at G(x) of φ is given by the matrix with (i, j)th entry 

ai j = (Di j φ)(G(x)). 

(c) Lastly, the linear derivative α = G'(x) at x of G is given by the matrix with 
(i,p)th entry  

bi p = (Dp Gi)(x). 

Therefore it follows from Proposition 5-2.6 that on the right side of (1), the first 
term (after implementing the double summation) is the (p,q)th entry of a matrix 
that gives the quadratic form Q α. In other words, (1) asserts that the Hessian 
matrix Hφ G  at x of the composition φ G differs from a matrix that gives the 
quadratic form Q α by 
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j
Σ
=

n

1
(Dj φ)(G(x))·(Dp q Gj(x)). 

In particular, if this sum happens to be 0 for all p and q, then the Hessian form of 
φ G is the same as the composition Q α, where Q is the Hessian form of φ at 
G(x) and α is the linear derivative of G at x. 

It may be pertinent here to note that for a twice differentiable function L de-
fined on an open subset S ⊆ \n×\m, the Hessian form at a point (a,b) ∈ S is the 
quadratic form given by the matrix [(Di j L)(a,b)] of dimension (n + m)×(n + m). 
Also, it may be recalled that the function L = φ+

 p
Σ
n

=1
λp fp , the Hessian form of 

which will play a crucial role in the next result, is called the Lagrangian. 

5-2.9. Theorem. Let φ:S→\ and f :S→\n be differentiable functions on an open 
subset S ⊆ \n×\m such that all the partial derivatives of φ and of every compo-
nent function of f are differentiable. Let T = {(x,y) ∈ S : f(x,y) = 0}. Assume that 

(a) all second partial derivatives are continuous at (a,b) ∈ T; 

(b) the linear derivative A1 of f with respect to x at (a,b), i.e., the map A1:\n→\n 
such that A1 h = f '(a, b)(h, 0), is invertible; 

(c) there exist n real numbers λ1 ,…,λn such that 

(Dj φ)(a,b) + 
r
Σ
=

n

1
λr(Dj fr)(a,b) = 0 for 1 ≤ j ≤ n + m.…………(1) 

If the Hessian form H at (a,b) of the function L defined on S by 

L(x,y) = φ(x,y) + 
r
Σ
=

n

1
λr fr(x,y) 

satisfies 
H(u) > 0 whenever 0 ≠ u ∈ \n×\m and f '(a, b)(u) = 0, 

then φ has a constrained local strict minimum at (a,b), the constraint being that 
f(x,y) = 0. If the inequality is reversed, then φ has a constrained local strict 
maximum at (a,b). 

Proof. We shall need not only the linear map A1:\n→\n but also the associated 
map A2:\m→\n defined as A2 k = f '(a, b)(0,k), and the corresponding maps 
B1:\n→\ and B2:\m→\ with φ in place of f . We shall use the following prop-
erty of B1 and B2 : 

[φ'(a,b)](h,k) = [φ'(a,b)][(h, 0) + (0,k)] 

= B1h + B2 k for (h,k) ∈ \n×\m.………(2) 

Since A1 is invertible, the implicit function theorem provides a continuously 
differentiable function g on some open set W containing b such that 
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g(b) = a, y ∈ W ⇒ (g(y),y) ∈ T……………………(3) 
and 

g'(b) = _A1
_1A2 .………………………………(4) 

According to part (b) of the theorem just quoted, g maps into an open subset U 
of \n×\m such that every (x,y) ∈ T∩U is of the form (g(y),y) with y ∈ W. This 
has the consequence that if the map Φ:W→\ given by 

Φ(y) = φ(g(y),y) 

has a local strict minimum at b, then φ has a constrained local strict minimum at 
(a,b), the constraint being that f(x,y) = 0. 

Therefore we need only show that Φ has a local strict minimum at b. With 
this in mind, we show first that Φ'(b) = 0. 

By the chain rule, the linear derivative at b of the map Φ is given by Φ'(b) = 
φ'(g(b),b)G'(b), where G is the map 

G(y) = (g(y),y), ∀ y ∈ W.…………………………(5) 

By Remark 4-3.1, G'(b): \m→\n×\m is given by  

G'(b)(k) = (g'(b)k,k) ∀ k ∈ \m. 

Note that it follows from this equality that G'(b) is injective, something that we 
shall need only towards the end of the proof. It also follows from this equality 
that Φ'(b) is given by 

Φ'(b)(k) = φ'(g(b),b)(g'(b)k,k) 

= φ'(a,b)(g'(b)k,k) 

= B1(g'(b)k) + B2 k, in view of (2). 

Thus Φ'(b) = B1 g'(b) + B2 and it follows from (4) that 

Φ'(b) = _(B1A1
_1)A2 + B2 .…………………………(6) 

Let λ be the linear map from \n to \ represented by an 1×n matrix [λ1 ,…,λn]. 
We shall argue that  

λA1 + B1 = 0…………………………………(7) 
and 

λA2 + B2 = 0.…………………………………(8) 

To see why, observe that A1 and A2 are represented [see Remark 4-3.3] by the 
respective matrices  

1 1 1

1 2 2

1

n

n

n n n

D f D f
D f D f

D f D f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

O

L

 and 

1 1 1

1 2 2

1

n n m

n n m

n n n m n

D f D f
D f D f

D f D f

+ +

+ +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

O

L

, 



5-2 Sufficient Conditions 171 

while  

[ ]1 nD Dφ φL  and [ ]1n n mD D+ +φ φL , 

respectively, represent B1 and B2 , all partial derivatives being understood as 
taken at (a,b). Using these matrix representations, we find that the first n equa-
tions in (1) assert (7) and the remaining ones assert (8). 

Now (7) can be rephrased as λ = _B1A1
_1. Together with (8), this yields 

_(B1A1
_1)A2 + B2 = 0.………………………………(9) 

By virtue of (6), this means Φ'(b) = 0, as claimed. 
In the light of Theorem 5-2.1, it remains only to prove that Φ has differenti-

able first partial derivatives, its second derivatives are continuous at b and that 
its Hessian form HΦ at b is positive definite. 

Since Φ is the composition φ G, where G(y) = (g(y),y), it follows by 
Proposition 5-2.7 that firstly, it has differentiable first partial derivatives with 
second derivatives continuous at b and secondly, that 

[Dp q(φ°G)](y) = 
n

j
Σ
+

=

m

1[[
n

i
Σ
+

=

m

1
(Di j φ)(G(y))·(Dp Gi)(y))]·(Dq Gj)(y)) + 

 (Dj φ)(G(y))·(Dp q Gj (y))]. 

The same argument applies with the n components fr in place of φ . This leads to 
n more equations like the one above, which the reader may choose either to 
imagine or to write down (without defacing this book!). However, in these n 
equations, the left sides will be 0 because f((g(y),y) = 0 everywhere. Therefore, 
upon multiplying them by λ1 ,…,λn, respectively, and adding to the equation 
displayed above, we get  

[Dp q(φ G)](y) = 
n

j
Σ
+

=

m

1[[
n

i
Σ
+

=

m

1
(Di j L)(G(y))·(Dp Gi)(y))]·(Dq Gj)(y))] 

+
n

j
Σ
+

=

m

1
(Dj L)(G(y))·(Dp q Gj(y)). 

Now the given equality (1) of the hypothesis implies that the second summation 
on the right side here is 0 when y = b. Consequently, 

[Dp q(φ G)](b) = 
n

j
Σ
+

=

m

1[[
n

i
Σ
+

=

m

1
(Di j L)(G(b))·(Dp Gi)(b))]·(Dq Gj)(b))] 

= 
n

j
Σ
+

=

m

1
[(Dq Gj)(b)) ·[ n

i
Σ
+

=

m

1
(Di j L)(G(b))·(Dp Gi)(b))]]. 

By Proposition 5-2.6, this means that, at the point b, the Hessian form HΦ of Φ = 
φ G is the composition H α, where the linear map α:\m→\n×\m is 
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represented by the matrix having (Dp Gi)(b) as its (i,p) th entry. But this matrix 
represents precisely the linear derivative G'(b). Thus 

HΦ = H G'(b). 

With a view to checking the positive definiteness of HΦ, consider any h ∈ \m, h 
≠ 0. The element u = G'(b)(h) ∈ \n×\m has the property that 

f '(a, b)(u) = f '(a, b)(G'(b)(h)) = 0, 
because 

f '(a, b)(G'(b)(h)) = [ f '(G(b))G'(b)](h) = [( f G)'(b)](h) and f G = 0 on W. 

As already noted above, G'(b) is injective, and therefore u ≠ 0. The hypothesis 
about H now implies that H(u) > 0, so that HΦ(h) = [H G'(b)](h) = H(u) > 0, 
confirming the positive definiteness of HΦ . , 

5-2.10. Examples. (a) In 5-1.5(a), we settled the status of the point P1 = 
(1/√2,1/√2) by using an explicit solution of the constraint equation, which seems 
such a shame because that is precisely what the Lagrange multiplier method is 
meant to avoid. By means of the above theorem we can now handle the matter 
without resorting to an explicit solution (which may be considered the shameless 
way to do it!). The Hessian matrix of the Lagrangian L(x,y) = φ(x,y) + λ f(x,y) 
has rows 

[2λ 1] and [1 2λ]. 

Therefore the Hessian form Q maps (h1,h2) into 2λ(h1
2 + h2

2) + 2h1h2 . For P1 ,  
the value of λ is _1

2
_(√2 _ 1). So, as seen in Example 5-2.5(b), Q(h1,h2) = 

(√2 _ 1)(h1
2 + h2

2) + 2h1h2 and it is negative for all nonzero (h1,h2) satisfying h1 
+ h2 = 0. We wish to know whether it is positive (or negative) for all nonzero 
(h1,h2) satisfying f '(1/√2,1/√2)(h1,h2) = 0. The linear derivative f '(1/√2,1/√2) has 
the 1×2 matrix 

[(D1 f )(1/√2,1/√2) (D2 f )(1/√2,1/√2)] = [√2 √2]. 

Therefore, f '(1/√2,1/√2)(h1,h2) = 0 ⇒ h1 + h2 = 0. As already noted, the quad-
ratic form Q is negative for all such nonzero (h1,h2). Since (D2 f )(1/√2,1/√2) = 
√2 ≠ 0, the invertibility condition of the above theorem holds, and it follows 
thereby that φ has a local (strict) maximum at P1 . 
(b) Let f be a twice continuously differentiable function on an open subset U of 
\3 that includes the point (a,a,a), having the cyclicity property that 

f(x,y, z) = f(y,z,x) = f(z,x,y) whenever (x,y, z),  (y, z,x),  (z,x,y) ∈ U. 
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Observe that if one among (x,y, z),  (y,z,x),  (z,x,y) belongs to any ball that is 
contained in U and centred at (a,a,a), then so do the other two. Suppose that 
D1 f(a,a,a) ≠ 0. Also, let F be a twice continuously differentiable on an open 
interval containing a. We shall show that, subject to the constraint  

f(x,y, z) = f(a,a,a), 
the function 

φ(x,y, z) = F(x) + F(y) + F(z) 

has a local strict maximum or minimum at (a,a,a) according as 

F"(a) < F'(a) 11 12

1

( , , ) ( , , )
( , , )

f a a a f a a a
f a a a

−  

or 

F"(a) > F'(a) 11 12

1

( , , ) ( , , )
( , , )

f a a a f a a a
f a a a

− , 

where the subscripts indicate partial differentiation ( f1 means D1 f and so on). 
In view of the cyclicity property and the observation about it, f1(a,a,a) = 

f2(a,a,a) = f3(a,a,a) and f11(a,a,a) = f22(a,a,a) = f33(a,a,a); also all other second 
partial derivatives are equal to each other. Therefore, firstly, the linear derivative 
f '(a,a,a) is represented by the 1×3 matrix with each entry equal to f1(a,a,a). As 
this is given to be nonzero, the invertibility condition of the above theorem is 
fulfilled. Since the entries of f '(a,a,a) are equal and nonzero, the elements 
(h1 ,h2 ,h3) ∈ \3 such that f '(a,a,a)(h1 ,h2 ,h3) = 0 are those for which h1 + h2 + h3 
= 0. Secondly, the Hessian matrix of the Lagrangian φ + λ f at (a,a,a) is as in 
Example 5-2.5(c), with 

A = F"(a) + λ f11(a,a,a) and B = λ f12(a,a,a). 

As discussed there, the associated quadratic form is negative or positive for the 
relevant nonzero elements (h1 ,h2 ,h3) ∈ \3 according as A < B or A > B. Now, 

φi(a,a,a) + λ fi(a,a,a) = 0 for i = 1,2,3 if λ = _
1

( )
( , , )
F a

f a a a
′ . 

Hence A = F"(a) _ F'(a) f11(a,a,a) / f1(a,a,a) and B = _F'(a) f12(a,a,a) / f1(a,a,a). 
This shows that A < B or A > B according as 

F"(a) < F'(a) 11 12

1

( , , ) ( , , )
( , , )

f a a a f a a a
f a a a

−  

or 

F"(a) > F'(a) 11 12

1

( , , ) ( , , )
( , , )

f a a a f a a a
f a a a

− . 

The theorem now yields the required conclusion. 
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We can now determine whether the point (π/4,π/4,π/4) in Example 5-1.5(b) 
is a local strict maximum or minimum [see 5-2.P9]. 

For a treatment of the theorem that gives formal recognition to its differen-
tial geometry aspects, the reader may consult Edwards [10]. Another discussion 
is available in the Internet article by Cheng [6]. 

5-2.P1. Find all points of local maxima and minima of the function f  defined on 
\2 by 

f(x,y) = 2x3 _ 3x2 + 2y3 + 3y2. 

5-2.P2. (a) Find all local maxima and minima of 

f(x1 ,x2 ,x3) = x1
4 + x2

4 + x3
4 _ 4x1x2x3 on \3 

by using Theorem 5-2.1. 
(b) Obtain the final conclusion of part (a) without any differentiation by recast-
ing f(x1 ,x2 ,x3) as a sum of squares plus a constant. 
(c) Use your answer to (b) to suggest a fourth degree polynomial g(x1 ,x2 ,x3), for 
which the final conclusion is the same but g is not of the form αf + β, with α 
and β constant. 
(d) Show that a search for the local extrema of the function F(x1 ,x2 ,x3) = 
x1

10 + x2
10 + x3

10 _ 10x1x2x3 on \3 leads to the same final conclusion as for the 
function f  of part (a). 

5-2.P3. Let a > b > 0 > c. For the function 

f(x,y, z) = (ax2 + by2 + cz2) exp (_x2 _ y2 _ z2) on \3 

show that there are seven points where all partial derivatives vanish. Also show 
that the function has a local maximum at two of the seven points, a minimum at 
one and neither a maximum nor a minimum at the remaining four. 

5-2.P4. Find all extrema of F(x,y, z) = xyz (x + y + z _ 1) on \3. 

5-2.P5. For the quadratic form Q in \3 associated with the matrix with rows 

[1 2 _1],  [2 13 _5] and [_1 _5 4], 
write Q(h) as a sum of squares and determine whether Q is positive definite. 
You may denote h by (a,b,c) instead of (h1 ,h2 ,h3). 

5-2.P6. For the quadratic form Q in \3 associated with the matrix with rows 

[1 _1 _1],  [_1 5 _5] and [_1 _5 10], 

Problem Set 5-2 
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write Q(h) as a sum of squares (if possible) and determine whether Q is positive 
definite. You may denote h by (a,b,c) instead of (h1 ,h2 ,h3). 

5-2.P7. Let Q be the quadratic form in \3 associated with the matrix having 
rows 

[A B _B],  [B A _B] and [_B _B A], where A ≠ B. 

Let α:\2→\3 be the map α(a,b) = (a,b,a + b). Determine whether Q°α is posi-
tive definite. 

5-2.P8. Let Q be as in 5-2.P6 above and α be as in 5-2.P7. Determine whether 
Q°α is positive definite. 

5-2.P9. The point (π/4,π/4,π/4) satisfies the Lagrange equations for the function 
tan x + tan y + tan z  subject to the constraint y5z + z5x + x5y = 3(π/4)6. Determine 
whether it is a point of constrained local strict maximum or minimum. 

5-2.P10. The point (π/6,π/6,π/6) satisfies the Lagrange equations for the func-
tion sin x + sin y + sin z subject to the constraint yz + zx + xy = 3(π/6)2. 
Determine whether it is a point of constrained local strict maximum or mini-
mum. 

5-2.P11. The point (π/4,π/4,π/4) satisfies the Lagrange equations for the func-
tion tan x + tan y + tan z subject to the constraint yz + zx + xy = 3(π/4)2. 
Determine whether it is a point of constrained local strict maximum or mini-
mum. 

5-2.P12. If the hypothesis about H in Theorem 5-2.9 is changed to: 

∃ u',u" ∈ \n×\m such that f '(a,b)(u' ) = f '(a,b)(u") = 0 and H(u' ) > 0 > H(u"), 

will it be true that on every open set containing (a,b), φ takes values greater than 
as well as less than φ(a,b) while satisfying the constraint? Justify. 

5-2.P13. Lagrange equations for the function x2 + y2 + z2 subject to the con-
straint z = xy + 2 have (x,y,z) = (0,0,2),  λ = _4 as one solution. Determine 
whether this is a local extremum without converting it to an unconstrained prob-
lem. 

5-2.P14. (This is the one-dimensional analogue of 5-2.P13.) Lagrange equations 
for the function x2 + y2 + z2 + u2 subject to the constraint f(x,y, z,u) = u _ xyz _ 2 
= 0 have (x,y, z,u) = (0,0,0,2),  λ = _4 as one solution. Determine whether this is 
a local extremum without converting it to an unconstrained problem. 

5-2.P15. Lagrange equations for the function x3 + y3 + z3 + u3 subject to the con-
straint f(x,y, z,u) = u _ (yz + zx + xy) _ 1 = 0 have (x,y,z,u) = (0,0,0,1),  λ = _3 
as one solution. Determine whether this is a local extremum. Conversion to an 
unconstrained problem is acceptable. 
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5-2.P16. Let F and g be twice continuously differentiable functions on \,  g(0) = 
0 = F'(0) ≠ F"(0). Lagrange’s equations for a local extremum of F(x) + F(y) + 
F(z) with constraint f(x,y, z) = z _ g(x)g(y) _ C = 0 (where C is some constant) 
have (x,y,z) = (0,0,C), λ = _F'(C) as one solution. Show that this solution is a 
local extremum if |F"(0)| > |F'(C)|·g'(0)2. Under what further condition is it a 
maximum? 

5-2.P17. Lagrange equations for the function x2 + y2 + z2 subject to the con-
straint f(x,y, z) = zez _ xy(x2 + y2) _ e = 0 have (x,y, z) = (0,0,1),  λ = _1/e as one 
solution. Determine whether this is a local extremum. 

5-2.P18. Lagrange equations for the function xyz subject to the constraint 
f(x,y, z) = zez _ xy(x2 + y2) _ e = 0 have (x,y, z) = (0,0,1),  λ = 0 as one solution. 
Determine whether this is a local extremum. 

5-2.P19. In 5-1.P5, two solutions were found for the Lagrange equations. For 
each of them determine whether the point corresponds to a local maximum or 
minimum or neither. 

5-2.P20. Find the local extrema of x subject to the constraint  

x2 + y2 + z2 _ 2b√(x2 + y2) + (b2 _ a2) = 0, 

where a and b are given positive constants satisfying b > a. (The constraint 
represents a torus and the reader may find it instructive to visualise what the 
solution means.) 

5-2.P21. Find the smallest possible area for a hexagon circumscribing a unit 
circle. 
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6-1 Cuboids and Pavings 

A straightforward analogue of a closed interval in higher dimensions is a Carte-
sian product of closed intervals. Although many authors prefer to call them 
‘intervals’, we shall refer to them as cuboids. They are best visualised as rectan-
gles in \2 and as ‘boxes’ in \3.  

In this chapter and the next, we shall use the norm ||x || = ||x ||∞ = max{|x i | : 
1 ≤ i ≤ n}. Consequently, the closed ball of radius r centred at a ∈ \n consists of 
all x ∈ \n such that max{ | |i ix a−  : 1 ≤ i ≤ n} ≤ r. This is the same as {x ∈ \n : 
ai

_ r ≤ xi ≤ ai + r for 1 ≤ i ≤ n }; in other words, the Cartesian product of the 
intervals [ai

_ r,  ai + r], each of which has length 2r. 

6-1.1. Definition. A subset I of \n is called a closed cuboid if there are closed 
intervals [ai ,bi],  where ai < bi ,  1 ≤ i ≤ n,  such that 

I = [a1 ,b1]×…×[an ,bn]. 

An open cuboid is defined analogously. The interval [ai ,bi] will be referred to 
as the i th edge and will sometimes be denoted by Ii . In case the lengths of all 
the edges are equal, we speak of a cube. The product of the lengths of the edges, 

(b1
_ a1) … (bn

_ an) 
is called the volume of the cuboid (whether open or closed) and is denoted by 
vol(I ). 

When n = 1, a closed cuboid is just a closed bounded interval and its vol-
ume is the length. 

There will be little occasion to work with open cuboids and we shall under-
stand a cuboid to be closed unless specified as open. It is easy to check that what 
was called a cuboid in 3-3.P6 is the same as a closed cuboid in the sense just 
defined. This fact will play no role in our considerations. 

6-1.2. Remarks. (a) A cuboid [a1 ,b1]×…×[an ,bn] with i ib a r− = for each i is 
the same as a closed ball of radius r/2 centred at c, where ci = (ai + bi)/2 for each 
i. However, we shall usually describe it as a cube, or even as a cuboid. Similarly, 
an open cuboid with each side equal to r is an open ball of radius r/2. 
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(b) For a cuboid I = [a1 ,b1]×…×[an ,bn], we have  

Ii = [ai ,bi] = {xi : x ∈ I} 
and 

ai = min{xi : x ∈ I} and bi = max{xi : x ∈ I}. 

(c) The interior I° of the closed cuboid I = [a1 ,b1]×…×[an ,bn] is the open cuboid 
formed by the corresponding open intervals, namely, (a1 ,b1)×…×(an ,bn). To see 
why, consider any x in the latter (open) cuboid. By definition, ai < xi < bi for 
each i. If we take δ to be a positive number less than each of the 2n positive 
numbers bi

_ xi ,xi
_ ai , then ||y _ x || < δ implies y ∈ I. This shows that x ∈ I°. 

Conversely, suppose such a positive number δ exists for some point x ∈ \n, i.e., 
x ∈ I°. Then the point y for which yi = xi

_ δ/2 for each i satisfies ||y _ x || < δ and 
therefore y ∈ I, from which it follows that ai ≤ xi

_ δ/2, so that ai < xi  for each i. 
Similarly, we can show xi < bi  and thus x ∈ (a1 ,b1)×…×(an ,bn). The simple 
proof that the closure of the open cuboid (a1 ,b1)×…×(an ,bn) is the correspond-
ing closed cuboid [a1 ,b1]×…×[an ,bn] is left as 6-1.P4. 
(d) Given a closed cuboid I = [a1 ,b1]×…×[an ,bn] and ε > 0, there exists an open 
cuboid J such that I ⊂ J and vol(J ) < vol(I ) + ε. Consider the cuboid J = 
(a1

_ δ,b1 + δ×…×(an
_ δ,bn + δ), where δ > 0. Surely it contains I and its vol-

ume is vol(J ) = (b1
_ a1 + 2δ) … (bn

_ an + 2δ), which tends to vol(I ) as δ→0. 
Therefore, it is possible to choose δ small enough to ensure that vol(J ) < vol(I ) 
+ ε. 

For example, if I = [1,2]×[3,5] ⊂ \2, which has volume vol(I ) = 
(2 _ 1)(5 _ 3) = (1)(2) = 2, then the open cuboid J = (1 _ δ, 2 + δ)×(3 _ δ, 5 + δ) 
has volume vol(J ) = (1 + 2δ)(2 + 2δ) = 2 + 6δ + 4δ2 < vol(I ) + 10δ if δ < 1; 
now, this is guaranteed to be less than vol(I ) + ε provided that δ < min {1,ε/10}. 

Similarly, given an open cuboid I and ε > 0, there exists a closed cuboid J 
such that 

J ⊂ I and vol(I ) < vol(J ) + ε. 
Consider the cuboid 

J = [a1 + δ,b1
_ δ]×…×[an + δ,bn

_ δ], 

where 0 < δ < 1
2 min{bi

_ ai : 1 ≤ i ≤ n}. It is contained in the given cuboid I and 
its volume is vol(J ) = (b1

_ a1
_ 2δ) … (bn

_ an
_ 2δ), which tends to vol(I ) as 

δ→0. Therefore, it is possible to choose δ small enough to ensure that vol(I ) < 
vol(J ) + ε. 

For example, if I = (1,2)×(3,5) ⊂ \2, which has volume vol(I ) = 
(2 _ 1)(5 _ 3) = (1)(2) = 2, then the closed cuboid 

J = [1 + δ, 2 _ δ]×[3 + δ, 5 _ δ], where δ < 1
2 , 
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has volume vol(J ) = (1 _ 2δ)(2 _ 2δ) = 2 _ 6δ + 4δ2 > vol(I ) _ 6δ; now, this is 
guaranteed to be greater than vol(I ) _ ε provided that δ < min { 1

2 , 6
ε }. 

(e) [Required in Proposition 6-1.11 below] For I = [a1 ,b1]×…×[an ,bn], we have 

sup{||y _ x || : y ∈ I,x ∈ I} = sup{||y _ x || : y ∈ I°,x ∈ I°} 
= max{bi

_ ai : 1 ≤ i ≤ n} = M, say. 

It is clear that neither of these sups can exceed M. To prove the reverse, let M = 
bk

_ ak , where 1 ≤ k ≤ n. Then for a given positive ε < M/2, any pair of points y 
and x of I° such that xk = ak + _ε2

_  and yk = bk
_ _ε

2
_  satisfies ||y _ x || ≥ (bk

_ ak) _ ε = 
M _ ε . 

(f) Suppose n > 1. If we delete [ap ,bp] in the Cartesian product I = 
[a1 ,b1]×…×[an ,bn], we get a cuboid in \n_1 with volume vol(I )/(bp

_ ap). We 
introduce no special name for this cuboid in \n_1 but shall denote it by I~Ip. Thus 

vol(I~Ip) = vol(I )/(bp
_ ap). 

When n = 1, there is only one edge to begin with, and deleting it results in an 
empty Cartesian product. So there is no such cuboid as I~Ip ; however, 
vol(I )/(bp

_ ap) = 1 and it will be convenient to make the convention that the 
symbol vol(I~Ip) means 1 when n = 1. 

6-1.3. Definition. For any closed cuboid I = [a1 ,b1]×…×[an ,bn], the 2n subsets 

{x ∈ I : xp = ap} and {x ∈ I : xp = bp}, 1 ≤ p ≤ n 

are called its lower faces and upper faces, respectively. 

When n = 2 or 3, a cuboid is a rectangle or a ‘box’ and its faces in the sense 
defined above are what are called sides. When n = 1, a cuboid is an interval and 
the left endpoint is the only lower face, while the right endpoint is the only up-
per face. When n = 2, the lower and left sides are the two lower faces and the 
upper and right sides are the two upper faces. 

In one, two and three dimensions, it is obvious from a 
visualisation that when the lower face of a cuboid coincides 
with the upper face of another, one pair of corresponding 
edges consists of consecutive intervals and the remaining 

pairs (if any!) consist of identical intervals. The next result formalises this in n 
dimensions. 
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6-1.4. Proposition. Suppose 

I = [a1 ,b1]×…×[an ,bn] and J = [c1 ,d1]×…×[cn ,dn] 

are cuboids and the lower face {x ∈ I : xp = ap} of I is the same set as the upper 
face {x ∈ J: xq = dq} of J. Then p = q, ap = dp and [ai ,bi] = [ci ,di] for i ≠ p. Also, 
an interior point of either cuboid cannot belong to the other. Lastly, I∪J is the 
closed cuboid K1×…×Kn ,  where Kp = [cp ,bp] and Ki = [ai ,bi] = [ci ,di] for i ≠ p. 

Proof. If p ≠ q, then the points x and x' with xi = x'i = ai for i ≠ q and xq = aq ,  x'q 
= bq both belong to the first mentioned face; however they cannot both belong to 
the second, because otherwise aq = xq = dq = x'q = bq , contradicting the stipula-
tion [see Def. 6-1.1] that aq < bq . Thus p = q. The point x with each xi = ai 
belongs to the first mentioned face and therefore to the second, which means xp 
= dp , and hence ap = dp . The proof that [ai ,bi] = [ci ,di] for i ≠ p is left as 6-1.P1. 

An interior point x of I must satisfy ap < xp . Since ap = dp , it cannot satisfy 
xp ≤ dp , which rules out the possibility that it belongs to J. A similar argument 
shows that an interior point of J cannot belong to I. 

For the last part, suppose x ∈ I∪J. Then xp ∈ [ap ,bp]∪[cp ,dp] while xi ∈ 
[ai ,bi] for i ≠ p. Since ap = dp ,  we have [ap ,bp]∪[cp ,dp] = [cp ,bp]. Therefore, x 
has been shown to lie in the closed cuboid K1×…×Kn ,  where Kp = [cp ,bp] and Ki 
= [ai ,bi] = [ci ,di] for i ≠ p. The converse is just as easy. , 

The n-dimensional analogue of a partition will be defined in terms of parti-
tions of intervals in one dimension, the properties of which we take for granted. 
In order to avoid the appearance of giving a circular definition, we prefer to call 
the n-dimensional analogue by another name, namely, paving. 

6-1.5. Definition. If I = [a1 ,b1]×…×[an ,bn] is a closed cuboid, any set P of n 
partitions 

Pi  : ai = xi 0 < xi 1 < … < xi mi = bi , 1 ≤ i ≤ n, 

of the respective edges [ai ,bi] is called a paving of the cuboid I . A cuboid J for 
which the ith edge Ji is one of the subintervals of [ai ,bi] formed by Pi , i.e., 

J = J1×…×Jn , where each Ji is a subinterval formed by Pi or 
J = 

1 1 2 21 1 1 2 1 2 1[ , ] [ , ] [ , ]
n nj j j j n j n jx x x x x x− − −× × ×L ,  1 ≤ ji ≤ mi , 1 ≤ i ≤ n, 

is called a cuboid formed by (or of) the paving P. An open cuboid 

1 1 2 21 1 1 2 1 2 1( , ) ( , ) ( , )
n nj j j j n j n jx x x x x x− − −× × ×L ,  1 ≤ ji ≤ mi , 1 ≤ i ≤ n, 

is called an open cuboid formed by (or of) the paving. For clarity, we may 
sometimes speak of the former as a closed cuboid formed by (or of) the paving. 

6-1.6. Definition. A family of cuboids is said to be nonoverlapping if no inte-
rior point of any one of them belongs to any other cuboid of the family. 
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A subfamily of a nonoverlapping family of cuboids is clearly nonoverlap-
ping. 

6-1.7. Remarks. (a) By Remark 6-1.2(c), the open cuboids formed by a paving 
are the interiors of the (closed) cuboids formed by it. Likewise, the (closed) cu-
boids formed by a paving are the closures of the open cuboids formed by it. 
(b) Given a partition of an interval (in \), it is trivial that every point of the in-
terval belongs to some subinterval formed by the partition. In higher 
dimensions, this has the consequence that, given a paving of a cuboid, every 
point of the latter belongs to some cuboid formed by the paving. Thus a cuboid 
is contained in the union of the cuboids formed by a given paving of it. The re-
verse inclusion is obvious and we conclude that any cuboid is precisely equal to 
the union of the family of all the cuboids formed by a given paving. 
(c) Let n > 1. Consider the cuboid I~Ip in \n_1 obtained by deleting the pth edge 
Ip of a cuboid I in \n. In other words, 

I~Ip = I1×…×Ip_1×Ip+1×…×In . 
If P is a paving of I consisting of the partitions P1 ,…,Pn  of the respective edges 
I1 ,…, In ,  then deleting Pp leads to a paving of I~Ip , which we shall denote by 
P~Pp . Fix any subinterval [α,β] of Ip formed by Pp and, as illustrated in the fig-
ure for two dimensions with p = 1, consider any cuboid K formed by P, for 
which the pth edge is [α,β]. 

 
That is, 

K = K1×…×Kn , where each Ki is a subinterval formed by Pi and Kp = [α,β]. 

Obviously, K~Kp is a cuboid formed by P~Pp and this provides a bijection be-
tween such cuboids formed by P and all the cuboids formed by P~Pp . This is 
reflected in the figure by the fact that the vertical sides of all the four different 
shaded rectangles correspond to all the four different subintervals of the parti-
tion of the vertical side of the main big rectangle I. 

[α,β]=K1  

K

Other possi-
bilities for K 

K~K1 n = 2, p = 1 

I1

I2 

I = I1×I2 
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(d) The total volume of the cuboids formed by a paving of a cuboid I is equal to 
vol(I ). This follows by a straightforward induction on n using (c) above, the 
initial case n = 1 being simply the well known fact that when we have a partition 
of an interval in \, the total length of the subintervals agrees with the length of 
the whole interval. 
(e) The family of cuboids formed by a paving of a cuboid is nonoverlapping, 
and hence so is any subfamily. In order to prove this, it is sufficient to show that, 
if J and K are distinct cuboids formed by the same paving P, then an interior 
point of either of them cannot belong to the other. In symbols, J°∩K = ∅ = 
J∩K°. By definition of cuboid, J ≠ K implies that Jp ≠ Kp for some p (1 ≤ p ≤ n). 
Since the intervals Jp and Kp are formed by the same partition of the pth edge, 
they can have only an endpoint in common. Thus if x ∈ J°, its pth component, xp 
belongs to the interior of Jp and therefore cannot belong to Kp , which implies 
that x ∉ K. 

It now follows from the definition of ‘face’ that any common point of J and 
K must belong to a face of J and also to a face of K. 

The next proposition deals with a situation which is depicted in the two fig-
ures below for two dimensions. Suppose we start with a cuboid I = I1×I2 , and 
partitions P1 ,P2 of the edges I1 , I2 respectively [see the left figure]. Then P1 ,P2 
constitute a paving of I. Consider a cuboid J (drawn shaded) such that the end-
points of its edges occur among points of the partitions P1 ,P2 . Then J must have 
a paving Q [now see the figure on the right] such that the family F of all cuboids 
formed by Q is a subfamily of the family G of all the cuboids formed by the giv-
en paving P1 ,P2  of I. Moreover, J cannot be the union of any other family of 
cuboids formed by the given paving of I. And, of course, the total volume of the 
cuboids in F is equal to the volume of J . 

 

6-1.8. Proposition. Suppose I = [a1 ,b1]×…×[an ,bn] is a closed cuboid, and the 
partitions 

Pi  : ai = xi 0 < xi 1 < … < xi mi = bi , 1 ≤ i ≤ n, 

provide a paving of I. Let J = [α1 ,β1]×…×[αn ,βn] be a cuboid such that each of 
the αi and βi are points of Pi . Then there exists a paving Q1 ,…,Qn of J such 
that the family F of all the cuboids formed by this paving is a subfamily of the 

I1 

I2 

I = I1×I2

I1 

I2 

I = I1×I2 

J J
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family G of all the cuboids formed by the given paving P1 ,…,Pn . Moreover, F 
is the unique subfamily of G having union J, the total volume of all the cuboids 
of F is equal to vol(J), and an interior point of J cannot belong to a cuboid of G 
that is not in F. 

Proof. By hypothesis, for each i, there exist pi and qi such that 

αi = xi pi ,  βi = xi qi ,  pi < qi . 
Now the points 

Qi : αi = xi pi < … < xi qi = βi 

furnish a partition of [αi ,βi], so that Q1 ,…,Qn is a paving of J. Besides, the 
subintervals of [αi ,βi] formed by Qi are among the subintervals of [ai ,bi] formed 
by Pi . It therefore follows from Def. 6-1.5 that the family F of all the cuboids 
formed by Q1 ,…,Qn is a subfamily of the family G of all the cuboids formed by 
the given paving P1 ,…,Pn . 

By Remark 6-1.7(b), ∪F = J. For the uniqueness, first observe that, given a 
partition of an interval (in \), the midpoint of any subinterval formed by the 
partition belongs to none of the other subintervals. In higher dimensions, this has 
the consequence that the ‘centre’ of any one of the cuboids formed by a paving 
belongs to none of the other cuboids. Now consider any subfamily F1 of the 
family of all the cuboids formed by given paving such that ∪F1 = J = ∪F. If 
some cuboid were to be in F but not in F1 (or vice versa), then its centre would 
belong to ∪F but not to ∪F1 (or vice versa), a contradiction. Consequently, F1 = 
F. 

Since F is the family of all the cuboids formed by a paving of J, it follows 
by Remark 6-1.7(d) that the total volume of all the cuboids of F is equal to 
vol(J). 

It remains to prove that an interior point of J cannot belong to a cuboid of G 
that is not in F. For this purpose, we first observe from the above definition of 
Qi that, if a subinterval [xi j ,xi j+1] formed by Pi satisfies both the inequalities 

xi j  < βi and xi j+1 > αi ,…………………………(1) 

then it is also a subinterval formed by Qi . Now consider a cuboid K = K1×…×Kn  
in G that is not in F, and an interior point x = (x1 ,…,xn) of J. We have to show 
that x ∉ K. Since K is not in F, then for some i, the interval Ki = [xi j ,xi j+1] is not 
a subinterval formed by the partition Qi , so that (1) does not hold. Since x is an 
interior point of J = [α1 ,β1]×…×[αn ,βn], we must have αi < xi < βi . If it were 
also the case that xi j  ≤ xi ≤ xi j+1 , then (1) would hold. Therefore, xi ∉ [xi j ,xi j+1] 
= Ki , from which it follows that x ∉ K. , 

In \2, if one has a finite number of rectangles, possibly overlapping, inside 
a single rectangle I, the sides of the inner rectangles can be ‘produced’ to gener-
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ate a paving of I. When this is done, each of the inner rectangles will be a union 
of some family of rectangles formed by the paving; this will continue to be so 
even if the paving is refined. There is of course a similar phenomenon in \3 but 
one has to ‘produce’ the faces. The next proposition describes the matter in \n 
but without introducing any formal definition of ‘producing’. 

6-1.9. Proposition. Let K1 ,…,Km be cuboids contained in a single cuboid I and 
let δ > 0 be given. Then there exists a paving of I such that 
(a) each Kk is the union of some subfamily Fk  of the family of all the cuboids 
formed by the paving; moreover, vol(Kk) equals the total volume of all the cu-
boids of Fk ; 
(b) the total volume of the cuboids in the subfamilies Fk  does not exceed the 
total volume of the Kk ; 
(c) an interior point of Kk cannot be in any cuboid formed by the paving that is 
not in Fk ; 
(d) for any cuboid J formed by the paving, max{|| x _ x' || : x, x' ∈ J} < δ. 
Proof. Since all the Kk are contained in I, their ith edges are subintervals of the 
ith edge of I. Therefore, the endpoints of these edges give rise to a partition of 
the ith edge of I. Take any refinement of it such that every subinterval has length 
less than δ, and denote it by Pi . Then P1 ,…,Pn  constitute a paving of I satisfy-
ing (d). By Proposition 6-1.8, for each k, there is some subfamily Fk  of the 
family of all the cuboids formed by the paving such that (c) holds and Kk is the 
union of Fk  while the total volume of the cuboids of Fk  equals vol(Kk), so that 
(a) also holds. Taking the sum over all k and noting that some cuboids may oc-
cur in more than one Fk , we get (b). , 

It is easy to conjecture on the basis of 
some figures that an intersection of two 
(closed) cuboids is either a cuboid or is a sub-
set (perhaps empty) of a face of each. The 
next proposition establishes this in general. 

6-1.10. Proposition. Let I and J be (closed) cuboids such that I∩J is not a cu-
boid. Then I∩J is a subset (perhaps empty) of a face of I as well as of a face of 
J. 
Proof. Let I = [a1 ,b1]×…×[an ,bn] and J = [α1 ,β1]×…×[αn ,βn], where ai < bi and 
αi < βi for 1 ≤ i ≤ n. Then x ∈ I∩J if and only if 

max{ai ,αi} ≤ x ≤ min{bi ,βi} for 1 ≤ i ≤ n. 

If max{ai ,αi} < min{bi ,βi} for every i, then I∩J is a cuboid. So, suppose 

max{ai ,αi} ≥ min{bi ,βi} for some i. 
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In case max{ai ,αi} > min{bi ,βi}, the intersection I∩J is empty. We need con-
sider only the case when 

max{ai ,αi} = min{bi ,βi}. 
This equality implies that every x ∈ I∩J satisfies xi = max{ai ,αi} = min{bi ,βi}. 
Two possibilities can arise (not mutually exclusive): max{ai ,αi} = ai and 
max{ai ,αi} = αi . 

Suppose max{ai ,αi} = ai . Then I∩J is a subset of the face of I given by xi = 
ai . Besides, 

min{bi ,βi} = max{ai ,αi} = ai < bi so that min{bi ,βi} = βi . 

Therefore, I∩J is a subset of the face of J given by xi = βi . The possibility that 
max{ai ,αi} = αi is argued along similar lines. , 

We conclude this section with a preview of some of the other tedious con-
siderations that will be required in the sequel [e.g. Lemma 7-2.1, Proposition 7-
2.2, Proposition 7-3.5]—but stay with us! 

6-1.11. Proposition. Let H ⊆ W ⊆ \n, where H is compact and W is open. If F is 
a finite family of closed cuboids that cover H (i.e., the union of the cuboids in 
the family contains H), then there exists a family of closed cuboids G that also 
covers H and: 
(a) each cuboid in G is contained in W ; 
(b) G is finite and the total volume of the cuboids in G is no greater than the total 
volume of the cuboids in the family F ; 
(c) G is a nonoverlapping family. 
Proof. [See figure below, where W is oval shaped, H is a segment and F consists 
of two cuboids.] First we argue that there is a positive lower bound to the dis-
tances between points of H and points of the complement W c of W, which is to 
say, there exists δ > 0 such that 

h ∈ H,  ||h _ x || < δ ⇒ x ∈ W. 

If this were not so, then there would exist sequences {hn} in H and {xn} in W c 
such that ||hn

_ xn ||→0. Since H is compact, some subsequence {hnk
} would 

converge to a limit h ∈ H. Since H ⊆ W, we would have h ∈ W, an open set, and 
hence there would exist some η > 0 such that ||h _ x || < η ⇒ x ∈ W. By choosing 
k ∈ N large enough to make ||hnk

_ xnk
|| < η/2 as well as ||hnk

_ h|| < η/2, we 
would have the contradiction that ||h _ xnk

|| < η even though xnk
 ∉ W. This estab-

lishes the existence of a positive δ of the kind indicated above. 
Now let F be a finite family of closed cuboids that cover H and consider 

any one cuboid I in the family. There is a paving P1 ,…,Pn of  I ,  

Pi : ai = xi 0 < xi 1 < … < xi mi = bi , 1 ≤ i ≤ n, 
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such that max{ 1| |
i ii j i jx x −−  : 1 ≤ ji ≤ mi , 1 ≤ i ≤ n} < δ. It follows by Remark 

6-1.2(e) that for any cuboid  

J = 
1 1 2 21 1 1 2 1 2 1[ , ] [ , ] [ , ]

n nj j j j n j n jx x x x x x− − −× × ×L ,  1 ≤ ji ≤ mi , 1 ≤ i ≤ n, 

formed by the paving, we have 

sup {||y _ x || : y ∈ J,x ∈ J} < δ. 

Now select only those cuboids 
formed by the paving which con-
tain at least one point h of H. 
Clearly, they cover the intersection 
I∩H. Also, every point x of such a 
cuboid satisfies ||h _ x || < δ and 
therefore, belongs to W. Thus all 
the selected cuboids are subsets of 
W. Moreover, by Remark 6-1.7(d), 
their total volume is no greater than 
that of I. If we form the family H of 
cuboids selected in this manner for 
all the various I ∈ F,  it will not 
only cover H but will also satisfy 
(a) and (b) with H in place of G. 

To obtain a family G that also 
satisfies (c), we apply Proposition 6-1.9 to the cuboids K1 ,…,Km of the finite 
family H, and thereby obtain families F1 ,…,  Fm as in that proposition. By (a) 
and (b) therein, the family G = F1 ∪…∪Fm satisfies (a) and (b) of the present 
proposition. That it also satisfies (c) follows from Remark 6-1.7(e) and the fact 
that, according to Proposition 6-1.9, all the cuboids of G are formed by the same 
paving of a certain cuboid. , 

Problem Set 6-1 

6-1.P1. Complete the proof that [ai ,bi] = [ci ,di] for i ≠ p in Proposition 6-1.4. 

6-1.P2. Suppose I = [a1 ,b1]×…×[an ,bn] and J = [c1 ,d1]×…×[cn ,dn] are cuboids 
and the lower face {x ∈ I : xp = ap} of I is the same set as the lower face {x ∈ J: xq 
= cq} of J. Then p = q, ap = cp and [ai ,bi] = [ci ,di] for i ≠ p. Also, either I ⊆ J or 
J ⊆ I. Lastly, I and J have interior points in common. 

δW 

H 

Sides shorter than δ

F consists of two cuboids 
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6-1.P3. Prove the following converse of Proposition 6-1.4: If a union of two 
(closed) cuboids is a cuboid and they have no common interior points, then there 
is one dimension in which the lower face of one is the upper face of the other, 
and their edges in the remaining dimensions coincide. 

6-1.P4. Prove that the closure of the open cuboid I = (a1 ,b1)×…×(an ,bn) is the 
corresponding closed cuboid J = [a1 ,b1]×…×[an ,bn]. 

6-1.P5. Suppose I = [a1 ,b1]×…×[an ,bn] is a closed cuboid, and the partitions 

Pi  : ai = xi 0 < xi 1 < … < xi mi = bi , 1 ≤ i ≤ n, 

provide a paving of I. Let F be a subfamily of the family of all the cuboids 
formed by the paving. If the union ∪F is a cuboid J, show that there exists a 
paving Q1 ,…,Qn of J such that the family of all the cuboids formed by this pav-
ing is none other than F. Moreover, the total volume of all the cuboids 
belonging to F is equal to the volume of J. 

6-2 Riemann Integral Over Cuboids 

The definition of Riemann integral over a cuboid and the proofs of most basic 
properties are direct analogues of the one-dimensional case, with pavings play-
ing the role of partitions. We shall therefore restrict ourselves to formal 
definitions and comment on some proofs. 

6-2.1. Definition. Let I ⊂ \n be a cuboid and f : I→\ be a bounded function. 
Given a paving P of I, let K1 ,…,Km denote the cuboids formed by P and for j = 
1, … , m, let 

mKj = inf {f(x) : x ∈ Kj} and MKj = sup {f(x) : x ∈ Kj}. 

Then the lower sum of f over the paving P is 

L( f ,P) = 
j
Σ
m

=1
mKjvol(Kj)  

and the upper sum is 
U( f ,P) = 

j
Σ
m

=1
MKjvol(Kj). 

It is trivial that L( f ,P) = _U(_f ,P). 

Sometimes one may need to take the sum only over some cuboids. It is then 
convenient to introduce a name, such as F, for the family of cuboids involved in 
the sum and write 

j
Σ
m

=1
mj vol(Kj) and 

j
Σ
m

=1
Mj vol(Kj) respectively as 

ΣK ∈ F mK vol(K) and ΣK ∈ F MK vol(K). 
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It is easy to prove that L( f  + g,P) ≥ L( f ,P) + L(g ,P) and U( f  + g,P) ≤ 
U( f ,P) + U(g ,P). Also, L(cf ,P) = cL( f ,P) and U(cf ,P) = cU( f ,P) for any 
nonnegative constant c. If c < 0, then L(cf ,P) = cU( f ,P) and U(cf ,P) = cL( f ,P). 

Recall that a partition Q of an interval is called a refinement of a partition P 
of the same interval when Q includes every point of P.  

6-2.2. Definition. A paving Q of I = [a1 ,b1]×…×[an ,bn] consisting of 

Qi : ai = ξi 0 < ξi 1 < … < ξi pi = bi , 1 ≤ i ≤ n, 

is a refinement of a paving P consisting of 

Pi : ai = xi 0 < xi 1 < … < xi mi = bi , 1 ≤ i ≤ n, 

if each xi ji is also a point of Qi . In other words, if each partition Qi is a refine-
ment of the partition Pi in the usual sense in one dimension. 

As with partitions, any two pavings have a common refinement. If the parti-
tion Pi is refined by adding a point ti to it, which means xi p_1 < ti < xi p for some 
p,  1 ≤ p ≤ mi ,  then we obtain a refinement of P; call it P'. Among the cuboids 
formed by P, those having [xi p_1 ,xi p] as the ith edge are not among the ones 
formed by P'. However, each such cuboid C is the union of two cuboids formed 
by P', which have [xi p_1 , ti] and [ti ,xi p] as their respective ith edges and have all 
other edges the same as C. Those not having [xi p_1 ,xi p] as the ith edge are 
among the cuboids formed by P'. Also, P' forms no cuboids besides the 
aforementioned ones. 

Using what has been noted in the preceding paragraph, one can easily adapt 
the one-dimensional arguments about partitions to prove that refining a paving 
does not decrease the lower sum and does not increase the upper sum, and that 
L( f ,P1) ≤ U( f ,P2) for any pavings P1 and P2 .  

6-2.3. Definition. For a bounded function f : I→\, where I is a cuboid in \n, the 
supremum of the set of all lower sums L( f ,P) is called the lower Riemann 
integral of f over I and is denoted by I−

∫ f. The infimum of all upper sums 
U( f ,P) is called the upper Riemann integral of f over I and is denoted by 

_

I∫ f.  

It is trivial to see that 

I−
∫ ( f + g) ≥ I−

∫ f + I−
∫ g, 

_

I∫ ( f + g) ≤ 
_

I∫ f +
_

I∫ g 
and that 

I−
∫ f  =  _

_

I∫ (_f ). 
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From the fact that L( f ,P1) ≤ U( f ,P2) for any pavings P1 and P2 , one can 
easily obtain the inequality I−

∫ f ≤ 
_

I∫ f. Like the previous two, the next defini-
tion is also a direct analogue of the one in \. 

6-2.4. Definition. A bounded function f : I→\, where I is a cuboid in \n, is 
called Riemann integrable if I−

∫ f = 
_

I∫ f. The common value of the upper and 
lower integrals is denoted by I∫ f and is called the Riemann integral of the 
function f. 

We shall usually drop the word ‘Riemann’ in this connection, as we do not 
intend to discuss any other type of integral.  

When n = 1, a paving is simply a partition and all the concepts defined in 
this Section so far reduce to the ones known by the same name in one 
dimension. 

The following criterion of integrability is proved the same way as in \ and 
is equally useful: 

6-2.5. Proposition. A bounded function f : I→\, where I is a cuboid in \n, is 
integrable if and only if ,  for every ε > 0, there exists a paving P of I such that 

U( f ,P) _ L( f ,P) < ε .……………………………(A) 
Such a paving satisfies 

I∫ f – ε < L( f ,P) ≤  U( f ,P) < I∫ f + ε .……………………(B) 

It can now be proved by imitating the one-dimensional case that, whenever 
functions f and g on a cuboid are both integrable, the following are also inte-
grable: f  + g,  fg, | f | and cf (where c is a constant); moreover the usual equalities 
and inequalities concerning them hold. 

6-2.6. Example. Let f : [0,1]×[0,1]→\ be defined as 

f(x,y) = 
2

3 if 

if .

y

x y

∈⎧⎪
⎨

∉⎪⎩

Q
Q

 

We shall show that f  is not integrable. On any cuboid K ⊆ [0,1]×[0,1], we have 
MK = 3 and also mK ≤ 1, the latter because y ∉ _ ⇒ f(x,y) = x2 ≤ 1. Conse-
quently, MK

_ mK  ≥ 2 for every K. It follows that U( f ,P) _ L( f ,P) ≥ 
2 ·vol([0,1]×[0,1]) = 2 for every paving P. By Proposition 6-2.5, f cannot be in-
tegrable. 

6-2.7. Proposition. Suppose J ⊆ I, both cuboids, and f : I→\ is integrable. Then 
the restriction g of the function f  to the cuboid J is also integrable. 
Proof. Denote the ith edges of I and J by Ii and Ji respectively. Since J ⊆ I, each 
Ji is a subinterval of Ii , i.e., has its endpoints lying in the latter. Therefore, given 
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any paving of I, its partition of Ii has a refinement Pi which is obtained by add-
ing only the endpoints of Ji (unless already present). Those points of Pi that lie in 
Ji form a partition Qi of the latter and the subintervals formed by Qi are precisely 
those among the ones formed by Pi that are subsets of Ji . From the definition of 
cuboids formed by a paving [Def. 6-1.5], it now follows that the family G of 
cuboids formed by the paving Q = {Q1 ,…,Qn} of J is a subfamily of the family 
F of cuboids formed by the refinement P = {P1 ,…,Pn} of the given paving of I. 

Now consider any ε > 0. Using Proposition 6-2.5, we find that there exists a 
paving P1 of I such that U( f ,P1) _ L( f ,P1) < ε . Note that any refinement must 
also satisfy the same inequality. In particular, if P is its refinement obtained by 
adding only the endpoints of Ji to the partition of the Ii , then we have 
U( f ,P) _ L( f ,P) < ε . For Q, F and G as in the preceding paragraph, 

0 ≤ U(g ,Q) _ L(g ,Q) = ΣK ∈ G ( MK
_ mK ) vol(K) 

and 
ΣK ∈ F (MK

_ mK ) vol(K) = U( f ,P) _ L( f ,P) < ε . 

Since G ⊆ F and MK
_ mK  ≥ 0, we also have 

ΣK ∈ G ( MK
_ mK ) vol(K) ≤ ΣK ∈ F (MK

_ mK ) vol(K). 

Together with the above two inequalities, this implies that 0 ≤ U(g ,Q) – L(g ,Q) 
< ε . The existence of such a paving Q of J proves the integrability of g by 
Proposition 6-2.5. , 

6-2.8. Example. Let Let f : [0,3]×[0,1]→\ be defined by the same scheme as in 
Example 6-2.6, which is that 

f(x,y) = 
2

3 if 

if .

y

x y

∈⎧⎪
⎨

∉⎪⎩

Q
Q

 

The restriction of this function to [0,1]×[0,1] is the function of Example 6-2.6, 
which was shown not to be integrable. It now follows by Proposition 6-2.7 that 
the function here is also not integrable. 

6-2.9. Remark. Returning to the bijection mentioned in Remark 6-1.7(c) when n 
> 1, the total volume of cuboids K with pth edge [α,β] must be the product of 
β _ α with the total volume of the cuboids K~Kp . Since the latter are precisely 
the cuboids formed by the paving P~Pp of I~Ip , it follows from Remark 6-1.7(d) 
that their total volume is vol(I~Ip). Therefore, the total volume of all the cuboids 
having [α,β] as the pth edge is (β _ α)vol(I~Ip). This is trivially true when n = 1 
because of our convention in this case that vol(I~Ip) = 1 despite the fact that 
there is no such cuboid as I~Ip. In view of Remark 6-1.2(f), this also equals 
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(β _ α)vol(I )/(bp
_ ap), where Ip = [ap ,bp]. What this means in terms of the fig-

ure shown earlier in this connection is that the total area of the shaded rectangles 
is the product of their common width β _ α with the ratio of the area of I to the 
length of its horizontal edge. We emphasise that the above conclusion is valid 
even when n = 1, so that we may use it below [in Proposition 6-2.10 and Propo-
sition 6-2.11] without assuming n > 1. 

6-2.10. Proposition. Let I be a cuboid and both f : I→\ g: I→\ be bounded. If 
f(x) = g(x) for x ∈ I°, then 

I−
∫ f  = I−

∫ g and 
_

I∫ f  =
_

I∫ g. 

In particular, if one of the functions is integrable, so is the other and has the 
same integral. 
Proof. Consider any ε > 0. By definition of lower integral, there exists a paving 
Q of I such that 

I−
∫ g – _ε3

_  < L(g ,Q).………………………………(1) 

By definition of paving [see Def. 6-1.5], Q consists of some partitions Q1 ,…,Qn 
of the edges of I. Let δ be any positive number less than the lengths of all the 
subintervals formed by all the Qi . (We are free to require at a later stage that δ 
be even smaller.) For 1 ≤ i ≤ n, each Qi has a refinement Pi that has just two ad-
ditional points, one in the first subinterval at a distance less than δ from the left 
endpoint and one in the last subinterval at a distance less than δ from the right 
endpoint. Now let P be the paving of I consisting of the refinements P1 ,…,Pn . 
Then (1) holds with P in place of Q. 

The family of cuboids formed by P can be subdivided into two disjoint sub-
families, one consisting of those having an edge that shares an endpoint with an 
edge of I and those having no such edge. Name these subfamilies as B and I 
respectively. Recall that, by definition, a cuboid K formed by P has edges that 
are subintervals formed by the partitions Pi , so that an edge Kp that may share an 
endpoint with an edge of I must have length less than δ. Since the edge of I has 
two endpoints, it follows by Remark 6-2.9 that the total volume of such cuboids 
is at most 2δ·vol(I~Ip) and hence the total volume of the cuboids in B is at most 
2δ·

 p
Σ
n

=1
vol(I~Ip), i.e.,  

ΣK ∈ B vol(K ) ≤ 2δ ·
 p
Σ
n

=1
vol(I~Ip).…………………………(2) 

We now require that δ < ε/(6M
p
Σ
n

=1
vol(I~Ip)), where M is a common upper bound 

of | f | and |g|. Then, with obvious meanings for mK
f  and mK

g , it follows from 
(2) regarding f  that 
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|ΣK ∈ B mK
f vol(K )| ≤  MΣK ∈ B vol(K ) < 2Mδ ·

 p
Σ
n

=1
vol(I~Ip) < _ε3

_  

and similarly, regarding g, that 

|ΣK ∈ B mK
g vol(K )| < _ε3

_ . 

These two inequalities imply that 

L( f ,P) = ΣK ∈ B mK
f vol(K ) +  ΣK ∈ I mK

f vol(K ) > _ _ε
3
_ + ΣK ∈ I mK

f vol(K )…(3) 

and 

L(g ,P) = ΣK ∈ B mK
g vol(K ) + ΣK ∈ I mK

g vol(K ) < _ε3
_ + ΣK ∈ I mK

g vol(K ).…(4) 

Now, it is immediate from the definition of I that the cuboids in it are subsets of 
I°. Therefore, mK

f  = mK
g  for K∈ I and the summations on the right sides of (3) 

and (4) are equal. It follows that 
L( f ,P) _ L(g ,P) > 2(_ _ε

3
_ ). 

As already noted, (1) holds with P in place of Q. Hence, we obtain from the 
above inequality that L( f ,P) > I−

∫ g _ ε  and hence that I−
∫ f  ≥ L( f ,P) > 

I∫ g _ ε .  As this has been established for every positive ε, we have I−
∫ f  ≥ I−

∫ g. 
The reverse inequality follows by a similar argument with the roles of f  and g 
interchanged. 

The equality for upper integrals follows either by an analogous argument or 
from the observation that I−

∫ φ =  _
_

I∫ (_φ) for any bounded φ. , 

6-2.11. Proposition. Let J ⊆ I, both cuboids, and let g :J→\ and f : I→\ both 
be bounded. Suppose f(x) = 0 for x ∉ J while f(x) = g(x) for x ∈ J°. Then 

I−
∫ f  = J−

∫ g and 
_

I∫ f  =
_

J∫ g. 

In particular, if one of the functions is integrable, so is the other and has the 
same integral. 
Proof. By Proposition 6-2.10, the function g1:J→\ such that g1 = g on J° and g1 
= f elsewhere on J has the same lower and upper integrals as g. It is sufficient 
therefore, to prove that f has the same upper and lower integrals as g1 . Since 
there will be no further occasion to refer to g1 , we may as well denote g1 by g. 
Then the function f  agrees with g on J and is 0 for x ∉ J. 

In view of the equality K−
∫ φ =  _

_

K∫ (_φ) for any bounded φ and any cuboid 
K, one need consider only lower integrals. 

We shall first prove I−
∫ f  ≥ J−

∫ g. 
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Consider any ε > 0. By definition of lower integral, there exists a paving Q 
of J such that 

J−
∫ g – _ε2

_  < L(g ,Q).…………………………………(1) 

By definition of paving [see Def. 6-1.5], Q consists of some partitions Q1 ,…,Qn 
of the edges of J. In the next paragraph, we describe a paving P of I to be ob-
tained from Q. 

Denote the edges of J and I by Ji = [ai ,bi] and Ii = [αi ,βi], respectively. 
Since J ⊆ I, we have Ji ⊆ Ii , and hence αi ≤ ai < bi ≤ βi , for each i. If J = I, there 
is nothing to prove. So we assume J ⊂ I. This has the consequence that for some 
i, we must have either αi < ai or bi < βi . Let δ be any positive number less than 
all those differences ai

_ αi and βi
_ bi that are positive. (We are free to re-

quire at a later stage that δ be even smaller.) Then δ has the property that, in case 
αi < ai , the point ai

_ δ belongs to the interval (αi ,ai), and in case bi < βi , the 
point bi + δ belongs to (bi ,βi). Thus the partition Qi of Ji gives rise to a partition 
Pi of Ii that consists all the points of Qi and also αi ,  ai

_ δ in case αi < ai  and 
bi + δ,  βi in case bi < βi . Note that Pi includes at most four additional points be-
sides those of Qi . Furthermore, 

(a) subintervals formed by Pi that have both endpoints in Ji are 
among those already formed by Qi   

(b) and conversely; 
(c) subintervals formed by Pi that have exactly one endpoint 

in Ji are at most two in number and have length δ, while 
(d) those that have neither endpoint in Ji are disjoint from Ji . 

We shall now work with the paving P of I consisting of the partitions P1 ,…,Pn . 

The family of cuboids 
formed by P can be subdi-
vided into three disjoint 
subfamilies I, B and O as 
follows. I consists of those 
cuboids K for which every 
edge Ki has both endpoints 
in Ji (so that K ⊆ J and is 
one of the cuboids formed 
by Q); B consists of those 
cuboids K for which some 
edge Kp has exactly one 
endpoint in Jp (so that Kp 
has length δ by (c) above); 

b2+δ  

a3-δ  

b1+δ  

β2

β1
b1  a1 = α1 

a2  

b2  

α2 

Cuboids of B are partially shaded 
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O consists of the remaining cuboids K, each of which must have an edge with 
both endpoints outside Ji (so that K is disjoint from J by (d) above). Therefore, 
denoting the infimum of f over any cuboid K by mK , we have 

L( f ,P) = ΣK ∈ I mK vol(K ) + ΣK ∈ B mK vol(K ) +  ΣK ∈ O mK vol(K ). 

By (a) and (b) above, I is precisely the family of cuboids formed by Q; more-
over f agrees with g on these cuboids. So, the foregoing equality leads to 

L( f ,P) = L(g ,Q) +  ΣK ∈ B mK vol(K ) +  ΣK ∈ O mK vol(K ).……………(2) 

By (c), each K ∈ B has at least one edge of length δ and it therefore follows from 
Remark 6-2.9 that the total volume of all the cuboids in B cannot exceed 
2δ·

p
Σ
n

=1
vol(I~Ip), i.e. 

ΣK ∈ B vol(K ) ≤ 2δ ·
 p
Σ
n

=1
vol(I~Ip). 

We now require that δ < ε/4M
p
Σ
n

=1
vol(I~Ip), where M is an upper bound of | f |. It 

then follows from the inequality just noted that 

|ΣK ∈ B mK vol(K )| ≤  MΣK ∈ B vol(K ) < 2Mδ ·
p
Σ
n

=1
vol(I~Ip) < _ε2

_ .…………(3) 

By (d), each K ∈ O has an edge Kp disjoint from the corresponding edge Jp of J, 
and therefore, is itself disjoint from J, so that f  is 0 on K. Hence, (2) becomes  

L( f ,P) = L(g ,Q) +  ΣK ∈ B mK vol(K ), 

which, in conjunction with (3), implies 

|L( f ,P) _ L(g ,Q) | < _ε2
_ .………………………………(4) 

Consequently, 
L( f ,P) _ L(g ,Q) > _ _ε

2
_ . 

Therefore, in view of (1), we have L( f ,P) > J−
∫ g _ ε and hence I−

∫ f  ≥ L( f ,P) 
> J−
∫ g _ ε .  Since this is true for every positive ε, it follows that 

I−
∫ f  ≥ J−

∫ g , 

as required. 
The proof of the reverse inequality is similar in parts but we shall present 

full details of everything that is slightly different. 
Again, consider an arbitrary ε > 0 and let P' = {P'1 ,…,P'n} be an arbitrary 

paving of I. As before, denote the edges of J and I by Ji = [ai ,bi] and Ii = [αi ,βi] 
respectively. Since J ⊆ I, we have Ji ⊆ Ii , and hence αi ≤ ai < bi ≤ βi , for each i. 
If J = I, there is nothing to prove. So we assume J ⊂ I. This has the consequence 
that for some i, we must have either αi < ai or bi < βi . Let δ be any positive 
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number less than all those differences ai
_ αi and βi

_ bi that are positive. (We 
are free to require at a later stage that δ be even smaller.) Then δ has the proper-
ty that, in case αi < ai , the point ai

_ δ belongs to the interval (αi ,ai), and in case 
bi < βi , the point bi + δ belongs to (bi ,βi). Let Pi be the refinement of P'i ob-
tained by including the points ai , ai

_ δ (unless αi = ai) and also the points bi , bi 
+ δ (unless bi = βi). Note that Pi includes at most four additional points besides 
those of P'i . (It is worth bearing in mind that the subinterval of Pi that begins at 
bi may end before bi + δ, in which case its length is less than δ; similarly for a 
subinterval that ends at ai .) Let the partition Qi of Ji consist of those points of 
the partition Pi of Ii that belong to [ai ,bi]. Then 

(a) subintervals formed by Pi that have both endpoints in Ji are 
among those already formed by Qi   

(b) and conversely; 
(c) subintervals formed by Pi that have exactly one endpoint 

in Ji are at most two in number and have length δ or 
less, while 

(d) those that have neither endpoint in Ji are disjoint from Ji . 

We now argue exactly as above with the paving P of I consisting of the par-
titions P1 ,…,Pn and the paving Q of J consisting of the partitions Q1 ,…,Qn , 
thereby obtaining (4). Keeping in mind that P is a refinement of P', it then fol-
lows that 

L( f ,P' ) ≤ L( f ,P) ≤ L(g ,Q) + _ε
2
_  ≤ J−

∫ g + _ε
2
_ . 

Since this has been proved for an arbitrary paving P' of I, it follows that I−
∫ f  ≤ 

J−
∫ g + _ε

2
_ . Here ε > 0 is arbitrary and we therefore conclude that I−

∫ f  ≤ J−
∫ g . , 

Problem Set 6-2 

6-2.P1. Let I = [0,1]×[0,2] ⊂ \2 and the paving P consist of the partitions P1 : 
0,1 of [0,1] and P2 : 0,1,2 of [0,2]. If f(x1,x2) = x1 + x2 ,  find m(K) and M(K) for 
each cuboid K formed by the paving. 

6-2.P2. Let I = [0,1]×[0,2] ⊂ \2, n be a positive integer, and the paving P con-
sist of the partitions 

P1 : j
n

, 0 ≤ j ≤ n and P2 : 2k
n

, 0 ≤ k ≤ n. 

Compute L( f ,P) for f(x1 ,x2) = x1 + x2 . 
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6-2.P3. Let I = [0,1]×[0,2]×[2,3]×[1,5] ⊂ \4, n be a positive integer, and the 
paving P consist of the partitions 

P1 : 
1j

n , 0 ≤ j1 ≤ n, P2 : 
2j

n , 0 ≤ j2 ≤ 2n, 

P3 : 2 + 3j
n , 0 ≤ j3 ≤ n, P4 = 1+ 4j

n , 0 ≤ j4 ≤ 4n. 

For f(x1 ,x2 ,x3 ,x4) = x1 + x2 + x3 + x4 , compute U( f ,P) _ L( f ,P). 

6-2.P4. Suppose in the proof of Proposition  6-2.11, one subdivides the family 
of cuboids formed by P as follows: I is as before; O consists of the cuboids K 
for which some edge Kp has both endpoints outside Jp ; and B consists of the 
remaining cuboids. Can one still carry out the proof (or are these subfamilies 
perhaps the same as before)? 

6-2.P5. Suppose J ⊆ I, both cuboids, and g:J→\ is the restriction to J of 
f : I→\. Define χ: I→\ as being 1 on J and 0 elsewhere on I (usually called the 
‘characteristic function’ of J). Show that g is integrable if, and only if the prod-
uct fχ is, in which case, J∫ g = I∫ ( fχ). 

6-2.P6. Let f : [0,1]×[a,b]→ \ be defined as 

f(x,y) = 
0 if  or 

1/ if  and  with minimal .p
q

x y

q y x q

∉ ∉⎧⎪
⎨ ∈ = ∈⎪⎩

Q Q
Q N  

Prove that f  is integrable and has integral 0. 

6-2.P7. (a) If f : I→\ is integrable, where I is a cuboid in \n, and if f(x) ≥ 0 on I, 
show that I∫ f  ≥ 0. 
(b) If f : I→\ is integrable, where I is a cuboid in \n, show that | f | is integrable 
and that | I∫ f | ≤ I∫ | f | . 

6-2.P8. Suppose f : [a1 ,b1]×…×[an ,bn]→ \ is increasing in each variable (n ≥ 
2). Show that f  is integrable. 

6-2.P9. Let f : I→\ and g:I→\ be integrable, where I ⊆ \m is a cuboid. Show 
that the product function fg:I→\ is integrable. 

6-2.P10. Let f : I→\ be integrable, where I ⊆ \m is a cuboid and let φ:I×\n→\ 
be defined by 

φ(x, y) = f(x) for x ∈ I,  y ∈ \n. 

Show that φ is integrable over I×J, where J is any cuboid in \n. 

6-2.P11. If f1 and f2 are Riemann integrable over intervals I1 = [a1 ,b1] and I2 = 
[a2 ,b2] respectively and ( f1 f2 )(x,y) = f1(x) f2(y) for (x,y) ∈ I = I1×I2 , prove that 

∫I  f1 f2  = ( ∫I1 f1 )( ∫I2 f2 ), i.e., ∫I  f1(x) f2(y)dxdy = ( ∫I1 f1(x)dx)( ∫I2 f2(y)dy).  



 

6-3 Iterated Integral Over Cuboids 

Computation of integrals over cuboids in \n is usually carried out by n itera-
tions, a procedure from multivariable calculus, with which the reader is 
doubtless familiar. Although the procedure works for all continuous functions, it 
can break down for more general functions. We shall illustrate this presently, but 
first we take note of two examples in \ that we shall need. One is the Dirichlet 
function, which takes only two different values, one at rational numbers and the 
other at irrational numbers. It is well known from analysis in \ that this function 
is not integrable over any interval. The second function on \ that we wish to 
note is the Thomae function, which is 0 at irrational numbers and equals 1/q at 
any rational number p/q, where q is the minimal possible positive integer in any 
such representation of the latter. Such a function has already been mentioned in 
6-2.P6, where f(x,y) becomes the Thomae function for each fixed rational y. The 
solution of that problem essentially consists in showing that the Thomae func-
tion is integrable over [0,1]. Since all lower sums are 0, it follows that the 
integral is 0. 

Let I and J be cuboids in \n and \m respectively. Then I×J is a cuboid in 
\n+m. If f : I×J→\ is bounded, then for each y ∈ J, the function φ:I→\ defined 
by φ(x) = f(x,y) is also bounded. Therefore, it has upper and lower integrals, 
which we shall denote by 

_

I∫ f(x,y)dx and I−
∫ f(x,y)dx respectively. 

Each is a bounded function of y and we shall denote their upper and lower inte-
grals by 

_

J∫ dy
_

I∫ f(x,y)dx, J−
∫ dy

_

I∫ f(x,y)dx and 
_

J∫ dy I−
∫ f(x,y)dx, 

J−
∫ dy I−

∫ f(x,y)dx 

respectively. Similarly, we have the following functions of x: 
_

J∫ f(x,y)dy and J−
∫ f(x,y)dy respectively 

and their upper and lower integrals 
_

I∫ dx
_

J∫ f(x,y)dy, I−
∫ dx

_

J∫ f(x,y)dy and 
_

I∫ dx  J−
∫ f(x,y)dy, 

I−
∫ dx J−

∫ f(x,y)dy 

respectively. This notation dispenses with explicit mention of φ or its analogue 
y→f(x,y), and we need not introduce any letters to denote them. 

 197 6-3 Iterated Integral Over Cuboids 
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6-3.1. Examples. (a) Let f : [0,1]×[a,b]→\ be defined [as in 6-2.P6] thus: 

f(x,y) = 
0 if  or 

1/ if  and  with minimal .p
q

x y

q y x q

∉ ∉⎧⎪
⎨ ∈ = ∈⎪⎩

Q Q
Q N  

Here I = [0,1] and J = [a,b]. In order to consider J∫ f(x,y)dy, fix any x ∈ I = 
[0,1]. If x ∉ _, then f(x,y) = 0 ∀ y ∈ J and therefore, the integral exists and is 0. 
But if x ∈ _, say x = p/q with q minimal positive, then f(x,y) = 0 for irrational y 
and 1/q for rational y; in other words, Dirichlet’s function with the two values 0 
and 1/q. This means J∫ f(x,y)dy does not even exist. And this despite the fact 
that I J×∫ f  does exist and is 0, as seen in 6-2.P6. 

Note however that J−
∫ f(x,y)dy = 0 for all x, so that I∫ dx J−

∫ f(x,y)dy = 0. 
It is also true [see Problem 6-3.P1] that I∫ dx

_

J∫ f(x,y)dy = 0. 
In order to consider I∫ f(x,y)dx, fix any y ∈ J = [a,b]. If y ∉ _, then f(x,y) = 

0 ∀ x ∈ I and therefore, the integral exists and is 0. But if y ∈ _, then f(x,y) is 
Thomae’s function and therefore, has integral 0. Thus I∫ f(x,y)dx = 0 ∀ y ∈ J. 
So, J∫ dy I∫ f(x,y)dx = 0 = I J×∫ f . 

(b) Let f : [0,3]×[0,1]→\ be as in Example 6-2.8: 

f(x,y) = 2

3 if 

if .

y

x y

∈⎧⎪
⎨

∉⎪⎩

Q
Q

 

As seen before, [0,3] [0,1]×∫ f does not exist. In order to consider [0,3]∫ f(x,y)dx, 
fix any y ∈ [0,1]. If y ∈ _, then f(x,y) = 3 ∀ x ∈ [0,3] and so [0,3]∫ f(x,y)dx = 9. If 
y ∉ _, then f(x,y) = x2 ∀ x ∈ [0,3] and so [0,3]∫ f(x,y)dx = 1

3 (27 _ 0) = 9. So, 

[0,3]∫ f(x,y)dx = 9 ∀ y ∈ [0,1] and we therefore have [0,1]∫ dy [0,3]∫ f(x,y)dx = 9. 
And this despite the fact that [0,3] [0,1]×∫ f  does not even exist. 

We shall now show that what was noted regarding upper and lower inte-
grals in the first of the above two examples actually typifies what happens in 
general. 

6-3.2. Theorem. Let I and J be cuboids in \n and \m respectively and suppose 
that f : I×J→\ is integrable. Then the functions Φ and Ψ defined on J by 

Φ(y) = I−
∫ f(x,y)dx and Ψ(y) = 

_

I∫ f(x,y)dx 

are integrable and both have integral equal to I J×∫ f , which is to say, 

J∫ dy I−
∫ f(x,y)dx = I J×∫ f  =  J∫ dy

_

I∫ f(x,y)dx. 
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The analogous functions of x given by 

J−
∫ f(x,y)dy and 

_

J∫ f(x,y)dy 

are also integrable and 

I∫ dx J−
∫ f(x,y)dy = I J×∫ f  =  I∫ dx

_

J∫ f(x,y)dy. 

Proof. Let P be a paving of I×J. Then P is comprised of a paving of I and a pav-
ing of J. Denote the families of cuboids formed by the latter two by F and G 
respectively. Then the cuboids formed by P are precisely those that are of the 
form K×L, where K ∈ F and L ∈ G. 

Set 
MK×L = sup { f(x,y) : (x,y) ∈ K×L}, NL = sup {Ψ(y) : y ∈ L}. 

Also, for any y ∈ J, set 
MK(y) = sup { f(x,y) : x ∈ K}. 

Then y ∈ L ⇒ MK×L ≥ MK(y). It follows for each y ∈ L that 

ΣK ∈ F MK×L vol(K) ≥ ΣK ∈ F MK(y) vol(K) ≥ 
_

I∫ f(x,y)dx = Ψ(y). 

Since this is true for all y ∈ L, it further follows that 

ΣK ∈ F MK×L vol(K) ≥ NL . 

If we multiply both sides by vol(L) and take the summation over all L ∈ G, while 
taking into account that vol(K)·vol(L) = vol(K×L), we get 

ΣL ∈ G ΣK ∈ F MK×L vol(K×L) ≥ ΣL ∈ G NL vol(L) ≥ 
_

J∫ Ψ. 

As already noted, the family of cuboids formed by P is precisely {K×L : K ∈ F, 
L ∈ G}. Therefore, the left side in the above inequality is nothing but U( f ,P). 
Thus 

U( f ,P) ≥ 
_

J∫ Ψ 

for any paving P. It follows that 

I J×∫ f  ≥ 
_

J∫ Ψ = 
_

J∫ dy
_

I∫ f(x,y)dx. 

An analogous argument shows that 

I J×∫ f  ≤ J−
∫ Φ = J−

∫ dy I−
∫ f(x,y)dx. 
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Consequently, 

I J×∫ f  ≤ J−
∫ dy I−

∫ f(x,y)dx ≤ J−
∫ dy

_

I∫ f(x,y)dx ≤ 
_

J∫ dy
_

I∫ f(x,y)dx ≤ I J×∫ f  

and also 

I J×∫ f  ≤ J−
∫ dy I−

∫ f(x,y)dx ≤ 
_

J∫ dy I−
∫ f(x,y)dx ≤ 

_

J∫ dy
_

I∫ f(x,y)dx ≤ I J×∫ f . 

The first of these quadruple inequalities implies that 
_

I∫ f(x,y)dx, which is Ψ(y), 
is integrable with integral I J×∫ f , and the second one implies the corresponding 
thing about I−∫ f(x,y)dx. 

The rest follows by an analogous argument. , 

6-3.3. Remark. When f  is continuous, it is continuous as a function of x alone 
(for each fixed y) and therefore, in the above theorem we have 

I−
∫ f(x,y)dx = 

_

I∫ f(x,y)dx = I∫ f(x,y)dx 

and furthermore, 
J∫ dy I∫ f(x,y)dx = I J×∫ f . 

Similarly, f  is a continuous function of y alone (for each fixed x) and therefore 

J−
∫ f(x,y)dy = 

_

J∫ f(x,y)dy = J∫ f(x,y)dy 

and furthermore, 
I∫ dx J∫ f(x,y)dy = I J×∫ f . 

The integrals J∫ dy I∫ f(x,y)dx and I∫ dx J∫ f(x,y)dy are called iterated (or 
repeated) integrals. The double equality 

J∫ dy I∫ f(x,y)dx = I J×∫ f  =  I∫ dx J∫ f(x,y)dy, 

which has been shown to hold when f  is continuous, is sometimes known as 
Fubini’s Theorem. 

6-3.P1. For the function f  of Example 6-3.1(a), show that I∫ dx
_

J∫ f(x,y)dy = 0. 

6-3.P2. For the function f  of Example 6-3.1(b), determine whether 
[0,3]∫ dx [0,1]∫ f(x,y)dy = 9. 

6-3.P3. For the function f  of Example 6-3.1(b), where I = [0,3] and J = [0,1], 
compute whichever of the following exist 

Problem Set 6-3 
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I∫ dx J−
∫ f(x,y)dy, I∫ dx

_

J∫ f(x,y)dy, J∫ dy I−
∫ f(x,y)dx, 

J∫ dy
_

I∫ f(x,y)dx 

and determine which (if any) are equal. 

6-3.P4. For the function f : [0,π]×[0,1]→\ defined by 

f(x,y) = 
cos if  is rational
0 if  is irrational

x y
y

⎧
⎨
⎩

, 

show that [0,1]∫ dy [0, ]π∫ f(x,y)dx exists but that [0, ]π∫ dx [0,1]∫ f(x,y)dy and 

[0, ] [0,1]π ×∫ f  do not. 

6-3.P5. For the function f : [0,1]×[0,1]→\ defined by 

f(x,y) = 

2

2

1/ 0 1

1/ 0 1
0 elsewhere

y x y

x y x

⎧ < < <
⎪⎪− < < <⎨
⎪
⎪⎩

, 

show that [0,1]∫ dx [0,1]∫ f(x,y)dy and [0,1]∫ dy [0,1]∫ f(x,y)dx both exist but are un-
equal. 

6-3.P6. Using Fubini’s theorem and the positivity of the integral of a positive 
continuous function on a rectangle with nonempty interior, give a simple proof 

of the equality 
2 2f f

x y y x
∂ ∂
∂ ∂ ∂ ∂=  for mixed partial derivatives, assuming that both are 

continuous. 

6-3.P7. For each i ∈ ,̀ let φi be continuous on \, vanish outside Ii = (2
_i, 21_ i] 

and satisfy 
iI∫ φi = 1. Put 

f(x,y) = 1
1
[ ( ) ( )] ( )i i i

i
x x y

∞

+
=

φ − φ φ∑ . 

Show that the function is well defined on all of \2 (i.e., the series always con-
verges) and 

1
0∫ dy 1

0∫ f(x,y) dx = 0 but 1
0∫ dx 1

0∫ f(x,y) dy = 1. 

6-4 Riemann Integral Over Other Sets 

Suppose we want the Riemann integral of a bounded function over a set that is 
not a cuboid. Right at the outset, we require the set be bounded, which implies 
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that it is contained in some cuboid. We select any one such cuboid I, say, extend 
the function to be zero outside the set and then take the integral (if it exists) over 
I. Before proceeding any further, we must show that it does not matter which 
cuboid containing the set is selected. The formal statement will be easier if we 
introduce the following notation for the extension just referred to: Suppose E is 
a bounded nonempty subset of \n ; for any cuboid I ⊇ E and any function 
f :E→\, we denote by fI the real valued function on I defined as 

fI (x) = 
( ) if 
0 if .

f x x E
x E
∈⎧

⎨ ∉⎩
 

6-4.1. Proposition. Suppose E is a bounded subset of \n and f :E→\ is 
bounded. For any cuboids I1 and I2 containing E, 

1I−
∫ f I1  = 

2I−
∫ f I2  and 

1

_

I∫ f I1  = 
2

_

I∫ f I2 . 

In particular, the function f I1 is integrable if, and only if f I2 is, in which case, 

1I∫ f I1  = 
2I∫ f I2 . 

Proof. Let J = I1∩I2  and suppose J is a cuboid. Then both the following are true: 
(1) the restrictions of f I1 and f I2 to J are both equal to fJ and (2) f I1(x) = f I2(x) = 
fJ (x) for x ∈ J° while f I1(x) = f I2(x) = 0 for x ∉ J. Therefore, the equality of lower 
and upper integrals follows immediately from Proposition 6-2.11. 

If J is not a cuboid, then by Proposition 6-1.10, it is a subset of a face of I1 
as well as of a face of I2 . Therefore, f I1 vanishes on the interior of I1 while f I2  
vanishes on the interior of I2 . By Proposition 6-2.10, it follows that 

1I−
∫ f I1  = 

2I−
∫ f I2  = 0 = 

1

_

I∫ f I1  = 
2

_

I∫ f I2 . , 

With the above proposition in hand, we are almost ready to define E∫ f  as 

I∫ If , except that we need to ensure that the constant function 1 will turn out to 
be integrable! We restrict ourselves to sets E for which this happens. The func-
tion on a set X ⊇ E, which equals 1 on E and 0 on the complement (which may 
be empty) is called the characteristic function of E. It will be denoted by χE 
without explicit mention of X, which will usually be understood from the con-
text. When f  is the constant function 1 on E, any extension fI  to a cuboid I ⊇ E is 
obviously the characteristic function of E on I. The constant function 1 on E will 
turn out to be integrable if we restrict E to have the property that, for some cubo-
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id I ⊇ E, the characteristic function χE is integrable. The same will then be true 
for any cuboid I ⊇ E by Proposition 6-4.1. 

6-4.2. Definition. A bounded set E ⊆ \n is said to have content if for some cu-
boid I ⊇ E, the characteristic function of E on I is integrable. Its integral is 
called the content of E and will be denoted by c(E). 

In view of Proposition 6-4.1, E has content if and only if for every cuboid I 
⊇ E, the characteristic function χE of E on I is integrable. Moreover the integral 

I∫ χE is the same regardless of the particular cuboid; so the content is indepen-
dent of I. 

Let E be the set of all those points in the cuboid I = [0,1]×[0,1] that have ra-
tional components. It is quickly seen that E does not have content. Indeed, every 
cuboid of every paving of I contains points of E as well as points of its comple-
ment, so that the upper and lower sums of χE are 1 and 0, respectively. This 
means the upper and lower integrals are also 1 and 0, respectively. 

6-4.3. Definition. Suppose E ⊆ \n has content and f :E→\ is bounded. Then 
the lower and upper (Riemann) integrals E−

∫ f  and 
_

E∫ f  of f are the lower and 
upper Riemann integrals I−

∫ fI  and 
_

I∫ fI  for any cuboid I ⊇ E. The function f  is 
said to be integrable if I−

∫ f  = 
_

I∫ f  and the common value of the lower and up-
per integrals, denoted by E∫ f ,  is called the (Riemann) integral of f . 

We emphasise once again that the values of the lower and upper integrals, 
and hence also the integrability and value of the integral, are independent of the 
choice of the cuboid containing E [Proposition 6-4.1]. 

6-4.4. Remarks. (a) If c(E) = 0, then I∫ χE = 0 for any cuboid I ⊇ E. So, for 
every ε > 0, there exists a paving P of I such that U(χE,P) < ε. But U(χE,P) = 
ΣK ∈ F vol(K ), where F is the family of those cuboids formed by P that have a 
nonempty intersection with E. For any bounded function f :E→\, the absolute 
values of the lower and upper sums cannot exceed (sup | f |)ΣK ∈ F vol(K ) < 
(sup | f |)ε. It follows that 

E−
∫ f  = 

_

E∫ f  = 0 when c(E) = 0. 

(b) It can be proved by using the corresponding results for integrals over cuboids 
that, whenever functions f and g on E are both integrable, the following are also 
integrable: f + g,  fg, | f | and αf (where α is a constant); moreover the usual 
equalities and inequalities concerning them hold. 
(c) Let f :E→\ be integrable and A ⊆ E ⊆ I, where I is a cuboid. Denote the 
restriction of f  to A by f |A .  By definition of the extension to I, it follows that 
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( f |A)I = fI ·χA . Suppose both E and its subset A have content. Then fI and χA are 
both integrable and hence their product ( f |A)I is integrable by part (b) above. 
This implies by Def. 6-4.3 that f |A is integrable. In future, we shall avoid intro-
ducing the symbol f |A by using notation as in Def. 6-4.5 below. 
(d) Let f :E→\ be bounded and A ⊆ E ⊆ I, where I is a cuboid. Suppose f  is 
zero outside A. Then ( f |A)I = fI . If both A and E have content, then it follows 
that 

I−
∫ fI  = I−

∫ ( f |A)I = I−
∫  fI ·χA  and 

_

I∫ fI  = 
_

I∫ ( f |A)I = 
_

I∫  fI ·χA  

for any cuboid I ⊇ E. 

(e) As in the case of integrals over a cuboid, for any set E having content, we 
have 

E−
∫ ( f + g) ≥ E−

∫ f + E−
∫ g, 

_

E∫ ( f + g) ≤ 
_

E∫ f +
_

E∫ g 
and 

E−
∫ f  =  _

_

E∫ (_f ). 

 

6-4.5 Definition. Let A ⊆ E ⊆ \n, where A has content, and suppose f :E→\ is 
bounded on A. Then the lower and upper (Riemann) integrals A−

∫ f  and 
_

A∫ f  
of f on A are the lower and upper Riemann integrals of the restriction f |A , i.e., 

I−
∫ ( f |A)I  and 

_

I∫ ( f |A)I  for any cuboid I ⊇ A. The function f  is said to be in-
tegrable on A if A−

∫ f  = 
_

A∫ f  and the common value of the lower and upper 
integrals, denoted by A∫ f ,  is called the (Riemann) integral of f  on A. 

Using this terminology, we can rephrase Remark 6-4.4(c) as saying that if 
both E and its subset A have content and a function f  is integrable on E, then it is 
also integrable on A. Similarly, we can rephrase Remark 6-4.4(d) as saying that 
if f :E→\ is bounded and A ⊆ E ⊆ I, where I is a cuboid and both A and E have 
content, and if f  is zero outside A, then 

_

A∫ f  = 
_

E∫ f  and A−
∫ f  = E−

∫ f . 

It may be noted that in the above definition, E need not be bounded, but A 
has to be, because it is assumed to have content. 

6-4.6. Remarks. (a) It is trivial to show for characteristic functions that 

E ⊆ F ⇒ χE ≤ χF ; 
χE∩F  = χE ·χF  and χE∪F  = χE + χF

_ χE ·χF . 

Also, denoting the complement of a set F by Fc, and the set difference E∩Fc by 
E\F, we have 
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χE\F = χE∩F c  = χE
_ χE∩F . 

Taken in conjunction with Remark 6-4.4, these properties have the following 
straightforward consequences, which will be used in this chapter without refer-
ence: 

(b) If E and F both have content, then: E ⊆ F ⇒ χE ≤ χF  ⇒ c(E ) ≤ c(F ). 
(c) If c(F ) = 0 and E ⊆ F, then E has content and c(E) = 0. 

(d) If E and F both have content, then so do E∩F and E∪F ; moreover 

c(E∪F ) ≤ c(E) + c(F) in general, 
while 

c(E∪F ) = c(E) + c(F) in case c(E∩F ) = 0. 

(e) If c(E) = c(F) = 0, then c(E∩F ) = c(E∪F ) = 0. 
(f) If f :E→\ is bounded on the subset A ⊆ E having content zero, then f  is in-
tegrable over A and A∫ f  = 0 .  
(g) If c(A∩B) = 0 and f :A∪B→\ is bounded, then by Remark 6-4.4(e), 

A B∪−
∫ f  ≥ A−

∫ f + B−
∫ f , 

_

A B∪∫ f  ≤ 
_

A∫ f +
_

B∫ f . 

If furthermore A and B have content and f  is integrable over A as well as B, then 
A∪B has content, f  is integrable over A∪B and 

A B∪∫ f = A∫ f + B∫ f .  

(h) If E and F have content, then so does the difference E\F, and c(E\F ) = 
c(E) _ c(E∩F ). 

Any closed cuboid has content equal to its volume, because the integral of 
the constant function 1 is the volume. For an open cuboid, the same can be seen 
to be true by applying Proposition 6-2.11. We shall therefore use the terms ‘con-
tent’ and ‘volume’ interchangeably in connection with cuboids. 

6-4.7. Proposition. A finite union of cuboids has content and its content does 
not exceed the total volume of the cuboids. 
Proof. This is immediate from Remark 6-4.6(d) and the fact that the content of a 
cuboid is the same as its volume. , 

6-4.8. Proposition. A face of a cuboid has content zero. 

Proof. A face {x ∈ I : xp = ap} of a cuboid I = [a1 ,b1]×…×[an ,bn] is contained in 
the cuboid J = J1×…×Jn , where Jp = [ap

_ ε,ap + ε], ε > 0, and Ji = [ai ,bi] for i ≠ 
p. The volume (or content) of J is 2ε·vol(I )/(bp

_ ap). By Remark 6-4.6(b), the 
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content of the face cannot exceed the content (or volume) of J, which is 
2ε·vol(I )/(bp

_ ap). Since this holds for an arbitrary ε > 0, we conclude that the 
content of a face is always 0. , 

6-4.9. Proposition. Let F be a nonoverlapping family of cuboids. Then 
(a) the intersection of a cuboid of F with any union of other cuboids of F has 
content zero; 
(b) the content of the union ∪F equals the sum of the contents (volumes) of the 
cuboids of F. 
Proof. (a) By definition of nonoverlapping [see Def. 6-1.6], an interior point of a 
cuboid K of the family cannot belong to any union K' of other cuboids of the 
family. Therefore, K∩K', if nonempty, must consist of points belonging to the 
faces of K. Since there are only finitely many faces and each of them has content 
zero by Proposition 6-4.8, it follows by Remark 6-4.6(d) that the union of all the 
faces has content zero. Therefore, the subset K∩K' must have content zero. 

(b) This follows from what has just been proved and Remark 6-4.6(d). ,  

6-4.10. Proposition. Let E ⊆ \n be bounded. If E has content, then for any ε > 
0, there exists a finite family F of closed cuboids such that 
(i) F covers E; 
(ii) the total volume of all the cuboids of F is less than c(E ) + ε; 
(iii) F is nonoverlapping. 
Moreover, the following are equivalent: 
(α) E has content zero; 
(β) for any ε > 0, there exist finitely many closed cuboids which cover E, have 

total volume less than ε and form a nonoverlapping family; 
(γ) for any ε > 0, there exist finitely many closed cuboids which cover E and 

have total volume less than ε ; 
(δ) for any ε > 0, there exist finitely many open cuboids which cover E and have 

total volume less than ε . 

Proof. Throughout this argument, whenever I is a cuboid containing E, the sym-
bol MK will denote the sup of χE on a cuboid K ⊆ I. Thus, MK is 1 or 0 
depending on whether K contains a point of E or not. 

Suppose E has content and ε > 0. Let E ⊆ I, a cuboid. Since c(E ) = I∫ χE by 
definition, there exists a paving P of I such that 0 ≤ U(χE ,P) < c(E) + ε . Let F 
be the family of those cuboids formed by P that contain a point of E, and let G 
consist of the rest. Then F covers E. Furthermore, since MK is 0 or 1 according 
as K ∈ G or K ∈ F, we have 
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ΣK ∈ F vol(K) = ΣK ∈ F MK vol(K) + ΣK ∈ G MK vol(K) = U(χE ,P) < c(E) + ε . 

Thus, F fulfills (i) and (ii). It follows from Remark 6-1.7(e) that it also fulfills 
(iii). 

(α)⇒(β). This is immediate from what has just been proved. 

(β)⇒(γ ). Trivial. 

(γ )⇒(δ). Let ε > 0 and consider any m closed cuboids that cover E and have 

total volume less than _ε2
_ . By Remark 6-1.2(d), each closed cuboid K is contained 

in an open cuboid with volume less than vol(K) + _
2
_ε_
m
_ . Therefore, we have m 

open cuboids which cover E and have total volume less than _ε2
_  + _2

_ε_
m
_ m = ε . 

(δ)⇒(α). Let ε > 0 and consider any m open cuboids which cover E and have 
total volume less than ε . Then the corresponding closed cuboids (their closures) 
K1 ,…,Km do the same. Besides, any point of E belongs to the interior of one or 
more of them. Let I be a cuboid that contains their union and hence also E. By 
Proposition 6-1.9, there exists a paving P of I such that (a)–(c) of that proposi-
tion hold. In terms of the notation there, (c) ensures that MK = 0 whenever K ∉ 
Fk  for every k. Therefore, it follows from (a) and (b) that 

U(χE ,P) ≤ Σk(ΣK ∈ Fk vol(K)) ≤ Σkvol(Kk) < ε. 

Since this is true for every ε > 0, χE  is integrable with I∫ χE = 0. , 

Recall from Def. 2-4.12 that the boundary ∂A of a subset A is the set of 
those points that belong to its closure A  but not to its interior A°. For a point x of 
a closed cuboid [a1 ,b1]×…×[an ,bn], the meaning of not belonging to its interior 
(a1 ,b1)×…×(an ,bn) is simply that for some p, one of the inequalities ap ≤ xp ≤ bp 
should be an equality, which is the same as saying that x belongs to a face. Thus, 
the boundary of a cuboid is the union of all its faces. 

As noted immediately after Def. 6-4.2, the set {(x,y) ∈ [0,1]×[0,1] : x,y ∈ Q} 
has no content. Its interior is empty and therefore, the boundary is the same as 
its closure [0,1]×[0,1]. 

6-4.11. Corollary. Suppose a bounded set E ⊆ \n does not have content zero. 
Then there exists η > 0 such that, given any finitely many cuboids covering E, 
those among them that have a point of E in their interior have total volume 
greater than η. 
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Proof. Since E does not have content zero, it follows by Proposition 6-4.10(γ ) 
that there exists η > 0 such that any finite family of cuboids covering E has total 
volume greater than 2η. 

Suppose, if possible, that F is a finite family of cuboids covering E such 
that the subfamily G of those cuboids of F that have points of E in their interior 
have total volume η', where η' < 2η. The cuboids of F that are not in the sub-
family can have points of E only on their boundary. But the boundaries have 
content zero by Proposition 6-4.8 and there are only finitely many of them. 
Therefore, their union has content zero and by Proposition 6-4.10(γ), there exists 
a finite family H of cuboids covering the union and with total volume less than 
2η _ η'. Now H∪G is a finite family of cuboids covering E and having total 
volume less than (2η _ η' ) + η' = 2η. This is a contradiction, which shows that 
F cannot have the supposed property. , 

The next proof uses the simple fact that if two functions agree on an open 
ball, then either one of them is continuous at the centre if and only if the other 
one is. 

6-4.12. Lemma. Let E ⊆ J, where J is a cuboid, and f :E→\ be any function. If 
the extension fJ  (see description above)  is discontinuous at x ∈ J, then x ∈ E

_
; 

moreover, if x ∉ ∂E, then x ∈ E° and f  is discontinuous at x. 
Proof. Suppose, if possible, that x ∉ E

_
. Since E

_
 is closed, some open ball centred 

at x is disjoint from E and therefore, fJ is zero everywhere on the intersection of 
that ball with J. So, fJ cannot be discontinuous at x. Next, suppose x ∉ ∂E. Then, 
by definition of boundary, x ∈ E°. Therefore, some open ball centred at x is a 
subset of E. So fJ agrees with f everywhere on that ball. If f  were to be continu-
ous at x, so would fJ . , 

6-4.13. Theorem. Suppose I ⊆ \n is a cuboid and the set E of points of disconti-
nuity of a bounded function f : I→\ has content zero. Then f  is integrable. 
Proof. Let J be a closed cuboid such that I ⊆ J°. Denote by fJ the extension of f 
to J obtained by setting fJ (x) = 0 for x ∉ I. By Lemma 6-4.12, the discontinuities 
of fJ are contained in E∪∂I. If we can prove fJ integrable, it will follow by Prop-
osition 6-2.7 that f  is also integrable. Since ∂I has content zero, so does E∪∂I 
and therefore, it is sufficient to prove the result when E ⊆ I°. 

As usual, we denote by MK and mK , respectively, the supremum and in-
fimum of f  on a cuboid K. Also, M will denote sup{| f(x)| : x ∈ I}. 

Let ε > 0. Since E has content zero, by Proposition 6-4.10 there exists a fi-
nite family U of open cuboids which cover E and have total volume less than ε . 
Since E ⊆ I°, we may replace them with their intersections with I° and assume 
that all of them are subsets of I°. This ensures that their closures are subsets of I, 
so that Proposition 6-1.9 is applicable. 



6-4 Riemann Integral Over Other Sets 209 

Now the union of all cuboids of U is an open subset of I and therefore, its 
complement in I, which we shall denote by H, is a compact set. Since U covers 
E, which is the set of discontinuities of f , the latter is continuous at each point of 
the compact set H. Therefore, it is uniformly continuous on H and there exists δ 
> 0 such that 

x,x' ∈ H,  || x _ x' || < δ ⇒ | f(x) _ f(x' )| < ε.………………………(1) 

Applying Proposition 6-1.9 to the closures K1 ,…,Km of the cuboids of U , we 
get a paving P of I satisfying (a)–(d) of that proposition. In terms of the notation 
there, denote 1

m
k =U Fk by F, and let G consist of the remaining cuboids formed 

by P. By (c), a cuboid K of G cannot contain an interior point of any Kk and is 
therefore disjoint from the union of the cuboids of U , which means it is a subset 
of H. By (d) and (1), it follows that x,x' ∈ K ⇒ | f(x) _ f(x' )| < ε . Therefore 

 0 < MK
_ mK ≤ ε  whenever K ∈ G .………………………(2) 

 By (b), the total volume of all the cuboids of F is no greater than the total vo-
lume of all the cuboids of U and hence no greater than ε . That is, 

ΣK ∈ F vol(K) ≤ ε.…………………………………(3) 
Using (2) and (3), we get 

0 ≤ U( f ,P) _ L( f ,P) = ΣK ∈ F (MK
_ mK) vol(K) + ΣK ∈ G (MK

_ mK) vol(K) 

< 2M ·ΣK ∈ F vol(K) + ε·ΣK ∈ G vol(K) ≤ 2Mε + vol(I )·ε = ε·[2M + vol(I )]. 

Since this has been shown to hold for any ε > 0, it follows that f  is integrable. , 

Consider again the subset of [0,1]×[0,1] consisting of points with rational 
coordinates. We have noted already that it does not have content and that its 
boundary is [0,1]×[0,1]. Since the boundary has content 1, in particular, it does 
not have content zero. The equivalence between a set not having content and its 
boundary not having content zero (which includes the possibility that the boun-
dary has no content) is what the next proposition is about. 

6-4.14. Proposition. A bounded set E ⊆ \n has content if and only if  its boun-
dary ∂E has content zero. 
Proof. Suppose ∂E has content zero and I ⊇ E is a cuboid. The function χE is 
continuous on E° and therefore, its points of discontinuity must lie on ∂E by 
Lemma 6-4.12. Therefore, by Proposition 6-4.13, χE is integrable, which means 
E has content. 

For the converse, suppose ∂E does not have content zero. As usual, we de-
note by MK and mK , respectively, the supremum and infimum of f  on a cuboid 
K. Now, there exists η > 0 as in Proposition 6-4.11. It is sufficient to show for 
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any cuboid I ⊇ E and any paving P of I that U(χE ,P) _ L(χE ,P) > η, because it 
will immediately follow that χE is not integrable, which means E does not have 
content. So, consider any paving P of any cuboid I ⊇ E . Let F be the family of 
those cuboids formed by P which have points of ∂E in their interior. By Proposi-
tion 6-4.11, 

ΣK ∈ F vol(K) > η. 

Since each K ∈ F has a point of ∂E in its interior, it follows that K contains 
points of E as well as of its complement. Consequently, χE takes the value 1 as 
well as 0 on K and hence MK

_ mK  = 1. Together with the inequality displayed 
above, this implies 

U(χE ,P) _ L(χE ,P) ≥ ΣK ∈ F (MK
_ mK) vol(K) = ΣK ∈ F vol(K) > η. 

As already noted, the result follows from here. , 

6-4.15. Theorem. Suppose E ⊆ \n is a bounded set having content and the set 
of points of discontinuity of a bounded function f :E→\ has content zero. Then f  
is integrable. 
Proof. Let F be the set of points of discontinuity of f , and let I ⊇ E be a cuboid. 
By Lemma 6-4.12, the set of discontinuities of the extension fI is a subset of 
F ∪∂E. Since E has content, ∂E has content zero by Proposition  6-4.14, while F 
has content zero by hypothesis. Therefore, F ∪∂E has content zero and hence, so 
does the set of discontinuities of fI . It follows by Theorem 6-4.13 that fI  is inte-
grable. Hence f  is integrable by Def. 6-4.3. , 

6-4.16. Proposition. Suppose F ⊆ \n is a bounded set having content and 
f :F→\ is a bounded function such that the set E of points where f(x) ≠ 0 has 
content zero. Then f is integrable and F∫ f  = 0. 
Proof. Let M = sup{| f(x)| : x ∈ F}. Now proceed as in the proof of ‘(δ)⇒(α)’ in 
Proposition 6-4.10 but with ε replaced by _M

ε__ . The inequality displayed there will 
now turn out as 

|U( fI ,P)| ≤ Σk (ΣK ∈ Fk M ·vol(K)) ≤ M·Σkvol(Kk) < ε. 

Since _f satisfies the same hypotheses, it follows that the lower sum L( fI ,P) 
satisfies a similar inequality. The conclusion now follows. , 

It is now straightforward to show that, if two functions on a set with content 
differ only on a subset of content zero, then one of them is integrable if and only 
if the other one is, in which case their integrals agree. Sometimes it happens that 
a function f  is defined only on a subset of a convenient set F and the subset E on 
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which it is undefined has content zero. For example, F = {(x,y) ∈ \2 : 0 ≤ x ≤ 1,  
x ≤ y ≤ 1} and f(x,y) = exp (_x/y). This function is undefined on the subset E = 
{(x,y) ∈ F : y = 0}, which consists of the single point (0,0) and therefore, has 
content zero. Since f  is bounded, it can be extended to all of F so as to continue 
being bounded; one can then work with the extended function on the set F. The 
first thing to check is whether F has content. We shall leave the matter to the 
next section [see Example 6-5.2(b)], where a general sufficient condition for the 
purpose will be discussed. 

Problem Set 6-4 

6-4.P1. Suppose a bounded set E ⊆ \n has positive content. Show that it has an 
interior point. 

6-4.P2. If a set E has content, show that its closure E  must also have content 
and that c(E) = c(E). 

6-4.P3. Let 1 ≤ p ≤ n and s be a fixed real number. Define a map α:\n→\n as 
α(x)i = xi if i ≠ p and α(x)p = xp + s. If E ⊆ \n has content, show that α(E ) also 
has content and c(α(E)) = c(E ). 

6-4.P4. If E ⊆ \n has content and f :E→\ is integrable, show that | f | is inte-
grable and that | E∫ f | ≤ E∫ | f | . 

6-4.P5. Justify Remark 6-4.6(f). 

6-4.P6. Let f :E→\ be bounded, where E ⊆ \n is also bounded. Suppose there 
exists a sequence {Xk : k ∈ N} of subsets of E such that f  is integrable over each 
E\Xk (i.e., E∩Xk

c) and c(Xk)→0 as k→∞. Show that f  is integrable over E and 
that 

E kX∫ f  → E∫ f  as k→∞. 

6-4.P7. (A mean value theorem) Suppose E ⊆ \n has content and f :E→\ is 
integrable. Prove that there exists μ ∈ [m,M ], where m = inf { f(x) : x ∈ E} and M 
= sup{ f(x) : x ∈ E}, such that E∫ f  = μ·c(E ). If E is also closed and connected 
and if f  is continuous, show that μ = f(ξ) for some ξ ∈ E. 

6-4.P8. Let E ⊂ \n with c(E) ≠ 0, and E = E
—

°. If f  is a continuous nonnegative 
function on E and M denotes sup{f(x) : x ∈ E}, show that 

l
m
i
→
m
∞

( ∫E f m)1/m = M. 

Show that the condition that E = E
—

° cannot be omitted. 
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6-4.P9. Let E ⊆ \n have content and suppose f :E→\ and g:E→\ are integrable 
over E. Show that fg is integrable over E. 

6-4.P10. Let K be a cuboid and f :K→\ be integrable. For each x ∈ K, define the 
cuboid Jx to be [a1 ,x1]×…×[an ,xn] and let F(x) = ∫Jx

f . Show that the function 
F:K→\ is continuous. 

6-4.P11. Let E = {(x,y) ∈ \2 : 0 ≤ x ≤ 1,  0 ≤ y ≤ 1,  (x,y) ≠ (0,0)}, and define 
f :E→\ by f(x,y) = 2xy/(x2 + y2). Show that E∫ f  exists. 

6-5 Iterated Integral Over Other Sets 

One frequently needs integrals over sets bounded by parts of spherical or plane 
surfaces described by an equation such as z = (1 _ x2 _ y2)1/2 on some compact 
set E ⊆ \2. In order to ensure that the sets have content, it is necessary to know 
that a part of the boundary described as 

z = φ(x,y), (x,y) ∈ E 

has content zero. We begin by establishing this.  

6-5.1. Proposition. Suppose E ⊆ \n_1 has content and f :E→\ is uniformly con-
tinuous. Then the subset F = {(x,y) ∈ \n : x ∈ E, y = f(x)} of \n has (n-
dimensional) content zero. 

Proof. Let ε > 0. By uniform continuity, there exists δ > 0 such that 

| f(x) _ f(x' )| < _12
_ ε/(c(E) + 1) whenever x,x' ∈ E and ||x _ x' || < δ. 

By Proposition 6-4.10, there exist finitely many closed cuboids that cover E and 
have total volume less than c(E) + 1. Each of them has a paving such that every 
cuboid K formed by the paving satisfies x,x' ∈ K ⇒  ||x _ x' || < δ. Let G be the 
(finite) family of all cuboids formed by all pavings. Then each K ∈ G satisfies: 

x,x' ∈ K∩E ⇒  | f(x) _ f(x' )| < _12
_ ε/(c(E) + 1). (1) 

Moreover, 
G covers E…………………………………(2) 

and 
ΣK ∈ G vol(K) < c(E) + 1.……………………………(3) 

By (1), for each K ∈ G, there exists an interval I ⊂ \ with length no greater than 
ε/(c(E) + 1) such that x ∈ K∩E ⇒ f(x) ∈ I ; in other words, {(x,y) ∈ \n : x ∈ K∩E, 
y = f(x)} ⊆ K×I. Now K×I is a cuboid in \n with vol(K×I) ≤ vol(K)·ε/(c(E) + 1). 
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From (2), it follows that F ⊆ K∈U G (K×I), and from (3) that ΣK ∈ G vol(K×I ) < ε. 
Proposition 6-4.10 now implies that F has content zero. , 

6-5.2. Examples. (a) Suppose we wish to show that the disc D = {(x,y) : x2 + y2 
≤ a2} ⊆ \2 has content (a > 0). Its boundary can be described in two parts as y = 
√(a2 _ x2) and y = _√(a2 _ x2) both on the compact set [_a,a]. By Proposition 6-
5.1, each part has content zero. Therefore, the disc D has content. For any 
f :D→\ which is known to be integrable, one can now invoke Theorem 6-3.2 to 
evaluate D∫ f as the iterated (i.e., repeated) integral 

a

a
dx

−∫
2 2

2 2
( , )a

a x

x f x y dy
−

−

−∫ . 

In particular, the content c(D) is given by this iterated integral with f(x,y) = 1. 
The usual elementary evaluation confirms that this works out to be πa2. 

(b) We return to the example briefly mentioned at the end of the preceding sec-
tion: 

F = {(x,y) ∈ \2 : 0 ≤ x ≤ 1,  x ≤ y ≤ 1} and f(x,y) = exp (_x/y). 

(F is the shaded triangle in the upper figure 
shown alongside.) The boundary of F is the un-
ion of the three subsets (not disjoint) 

{(x,y) ∈ \2 : x = 0,  0 ≤ y ≤ 1},  

{(x,y) ∈ \2 : 0 ≤ x ≤ 1,  y = 1},  

{(x,y) ∈ \2 : 0 ≤ x ≤ 1,  y = x}. 

The first is described by the function x = 0 on the 
compact domain 0 ≤ y ≤ 1; the second and the 
third by the functions y = 1 and y = x on the 
compact domain 0 ≤ x ≤ 1. It follows by Proposi-
tion 6-5.1 that each of the three subsets has 
content zero and hence F has content. The func-
tion f  is undefined at (0,0) and we may set it 
equal to any value at that point. The only discon-
tinuity will be at (0,0) and therefore, F∫ f  exists 
by Theorem 6-4.13. The pair of inequalities that 
define F can easily be seen to be equivalent to 
the pair 0 ≤ y ≤ 1,  0 ≤ x ≤ y (see the figure). It 
follows that the set F can alternatively be de-
scribed as 

(x, 0) 

x ≤ y ≤ 1 

(1, 1) 

(0, y) 0≤ x ≤ y 

(1, 1) 
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F = {(x,y) ∈ \2 : 0 ≤ y ≤ 1,  0 ≤ x ≤ y}. 

By Theorem 6-3.2, F∫ f  can therefore be evaluated as  
1

0
dy∫ 0

exp( / )y x y dx−∫ . 

It is left to the reader to check that this works out to be (e _ 1)/2e. 

Let α:\n→\n be the (linear) map given by 
α(x1 , … , xn) = (x1 + x2 , x2 , … , xn) 

and I be a cuboid [a1 ,b1]×…×[an ,bn]. 
Then α(I) need not be a cuboid. In the 
language of elementary geometry, it is a 
‘parallelogram’ when n = 2 and a ‘paral-
lelepiped’ when n = 3. We shall use these 
terms only informally, without using the 
concepts in any proof. A visualisation, as 
in the figure shown on the left, suggests 
that the parallelogram has the same base 
and height as the cuboid. Therefore, on 

the basis of elementary geometry, one would expect it to have the same content. 
The assertion that c(α(I )) = c(I ) makes sense within our formal framework and 
we now prove that it is indeed true in all dimensions n ≥ 2. 

The next proposition says that a linear map which merely adds the jth com-
ponent to the ith component (i ≠ j) has the property that it maps a cuboid into a 
set having the same content as the cuboid. 

6-5.3. Proposition. Let n ≥ 2 and 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ≠ j. Suppose α:\n→\n is 
the (linear) map given by α(x1 , … , xn) = (y1 , … , yn), where yk = xk for k ≠ i and 
yk = xk + xj for k = i (i.e., yi = xi + xj). Then for any cuboid I, the set α(I ) has con-
tent and c(α(I )) = c(I ). 

Proof. For ease of notation, we shall assume i = 1 and j = 2, so that α(x1 , … , xn) 
= (x1 + x2, … , xn). The map α has an inverse, which is given by α

_1(x1 , … , xn) = 
(x1

_ x2 , x2 , … , xn). Now, (y1 , … , yn) ∈ α(I ) if and only if α
_1(y1 , … , yn) = 

(y1
_ y2 , y2 , … , yn) ∈ I. Denoting the edges of I by [ai ,bi], 1 ≤ i ≤ n, this is 

equivalent to 

(y2 … , yn) ∈ [a2 ,b2]×…×[an ,bn] and a1 + y2 ≤ y1 ≤ b1 + y2 . 
So, 

α(I ) = {(y1 ,…,yn) ∈ \n : (y2 ,…,yn) ∈ [a2 ,b2]×…×[an ,bn],a1 + y2 ≤ y1 ≤ b1 + y2}. (1) 

In particular, α(I) is a subset of the cuboid 

I = [1,2]×(3,5] 

α(I )
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J = [a1 + a2 , b1 + b2]× [a2 ,b2]×…×[an ,bn]. 

Among the boundary points of α(I ), those that satisfy yi = ai or bi , 2 ≤ i ≤ n,  lie 
in a face of J and therefore form a set of content zero [Proposition 6-4.8]. The 
remaining boundary points of α(I ) satisfy 

either (y2 , … , yn) ∈ [a2 ,b2]×…×[an ,bn] and y1 = a1 + y2 

or (y2 , … , yn) ∈ [a2 ,b2]×…×[an ,bn] and y1 = b1 + y2 . 

Since the equalities y1 = a1 + y2 and y1 = b1 + y2 both define uniformly continu-
ous functions on [a2 ,b2]×…×[an ,bn], Proposition 6-5.1 shows that these 
boundary points also form a set of content zero. Therefore, the entire boundary 
of α(I ) has content zero, which implies that α(I ) has content by Proposition 6-
4.14. It remains to show that c(α(I )) = c(I ). 

Let f denote the characteristic function of α(I ) on the cuboid J, which con-
tains it. By Def. 6-4.3, c(α(I )) = J∫ f . By Theorem 6-3.2, J∫ f  is the integral 
over the cuboid [a2 ,b2]×…×[an ,bn] ⊆ \n_1 of 

g(y2 , … , yn) = 
1 2 1 2

_

[ , ]a a b b+ +∫ f(y1 , … , yn) dy1 . 

For any (y2 , … , yn) ∈ [a2 ,b2]×…×[an ,bn], it follows from (1) that 

(y1 , … , yn) ∈ α(I ) ⇔ a1 + y2 ≤ y1 ≤ b1 + y2 . 

Since f  is the characteristic function of α(I ), the above equivalence implies that 
the value of f(y1 , … , yn) is 1 or 0 depending on whether a1 + y2 ≤ y1 ≤ b1 + y2  or 
not. Therefore, 

g(y2 , … , yn) = 
1 2 1 2

_

[ , ]a y b y+ +∫ f(y1 , … , yn) dy1 = 
1 2 1 2

_

[ , ]a y b y+ +∫ 1 dy1 

= 
1 2 1 2[ , ]a y b y+ +∫ 1 dy1 = b1

_ a1 , 

which is a constant function. Hence 

c(α(I )) = J∫ f  = 
2 2[ , ] [ , ]n na b a b× ×∫ L (b1

_ a1) = (b1
_ a1) … (bn

_ an) = vol(I ) = c(I ). 

, 

The above proposition can be proved without resorting to Theorem 6-3.2 on 
repeated integrals. See 6-5.P1. 

Problem Set 6-5 

6-5.P1. Suppose n ≥ 2, I = [a1 ,b1]×…×[an ,bn], where b1
_ a1 > b2

_ a2  and 
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S = {(x1 , … , xn) ∈ \n : (x2 , … , xn) ∈ [a2 ,b2]×…×[an ,bn],  a1 + x2 ≤ x1 ≤ b1 + x2}. 

 

Prove the following without using Proposition 6-5.3: 

(a) S = B∪C∪D, where 

B = {(x1 , … , xn) ∈ Rn : (x2 , … , xn) ∈ [a2 ,b2]×…×[an ,bn],  a1 + x2 ≤ x1 ≤ a1 + b2} 
C = {(x1 , … , xn) ∈ Rn : (x2 , … , xn) ∈ [a2 ,b2]×…×[an ,bn],  a1 + b2 ≤ x1 ≤ b1 + a2} 
D = {(x1 , … , xn) ∈ \n : (x2 , … , xn) ∈ [a2 ,b2]×…×[an ,bn],  b1 + a2 ≤ x1 ≤ b1 + x2}. 

(b) The cuboid 
J = [a1 + a2 ,b1 + a2]×[a2 ,b2]×…×[an ,bn] 

is the union A∪B∪C, where 

A = {(x1 , … , xn) ∈ \n : (x2 , … , xn) ∈ [a2 ,b2]×…×[an ,bn],  a1 + a2 ≤ x1 ≤ a1 + x2}. 

(c) A,B,C,D all have content and that A∩B,  B∩C,  C∩D all have content zero. 
(d) S has content and c(S ) = (b1

_ a1) … (bn
_ an). 

(e) If the hypothesis that b1
_ a1 > b2

_ a2  is dropped, S need not be the union of 
B,C,D but the equality of part (d) is nevertheless valid. 

6-5.P2. Let T denote the triangular region {(x,y) ∈ \2 : x ≥ 0,  y ≥ 0,  0 ≤ x
a

+ y
b

 ≤ 
1}, where a > 0 and b > 0. Assume that f  is continuous on T and has continuous 
partial derivative D2 1 f on the interior of T. Prove that there is a point (x0 ,y0) on 
the segment joining (a, 0) to (0,b) such that 

∫T  D2 1 f =  f(0,0) _ f(a, 0) + aD1f(x0 ,y0). 

6-5.P3. If A > 0 and 0 < ε < 1,  show that the subset 

{(x,y) ∈ \2 : x ≥ 0,  y ≥ 0,  0 ≤ 
2

2 2
x

x y+
 < ε,  0 < 

of the first quadrant of \2 (see the figure) has content 
that does not exceed Aε½ .  

A 

B 
C

D
S is the shaded 
parallelogram.  

I is the rec-
tangle with 
vertical sides 

J is the rec-
tangle with 
vertical sides 

C is the rec-
tangle with 
vertical sides 

and 

A, B, D are 
triangles 

A½

((Aε)½,(A(1– ε))½) 

x2 + y2 < A} 



 

 

Transformation of Integrals  

7-1 Special Cuboids 

So far we have presumed a minimal knowledge of linear algebra on the part of 
the reader. However in this chapter, we shall use basic properties of determi-
nants and the fact that any invertible matrix is a product of ‘elementary’ 
matrices. 

The transformation formula that justifies the so called ‘substitution’ or 
‘change of variables’ rule for evaluating a Riemann integral is fairly easy to es-
tablish in \. In higher dimensions however, the corresponding formula is far 
more difficult to prove. This is the task we take up in this chapter. 

One hurdle that can be foreseen right at the outset is that even so simple a 
transformation of variables as 

u x y= +  v x y= −  
need not map a cuboid into a cuboid. More generally, one would need to inves-
tigate whether a transformation of variables maps a set having content into a set 
of the same kind. 

The diameter of a nonempty bounded subset E ⊆ \n is understood to be 
sup{||x _ y || : x,y ∈ E}. Using this terminology, Remark 6-1.2(e) says that the 
cuboid I = [a1 ,b1]×…×[an ,bn] and its interior I° both have diameter max{bi

_ ai 
: 1 ≤ i ≤ n}, where it is understood that the norm || || is || ||∞ . We now introduce 
the notation diam E  for the diameter of a set E ⊆ \n. 

For the diameter of a nonempty bounded set to be zero, it is necessary and 
sufficient that it contain one and only one point. In fact if the diameter is zero, 
then ||x _ y || = 0 for x,y belonging to the set; i.e., x = y for every pair x,y of 
points of the set. 

For any cuboid I, it is easy to see that vol(I) ≤ (diam I )n. Equality holds 
when all edges are of equal length, not otherwise. Now suppose n > 1. Then the 
ratio (diam I )n/vol(I) can be arbitrarily large: for instance, take I = [0,a]×[0,3], 
where 0 < a < 3, so that the diameter is 3, the volume is 3a and the ratio is 3/a. 
As suggested by this instance as well as by other instances that the reader can 
surely come up with, the ratio may be intuitively taken as a measure of how far 
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the cuboid is from being a cube (all edges equal in length). If we require that no 
edge be longer than double the shortest, then the cuboid has to be reasonably 
close to being a cube and, as will be seen at the beginning of the forthcoming 
proof, the ratio cannot exceed 2n. 

Example. The cuboid [0,1]×[0,π] in \2 has its ‘vertical’ edge longer than dou-
ble the other. However, it can be ‘broken up’ into subcuboids with vertical edge 
longer but not longer than twice the other. One way is to partition the vertical 
edge with points 0, π/2 and π. Since 1 < π/2 < 2, this will serve the purpose. 
Instead of partitioning the vertical edge into two equal subintervals, we could 
have partitioned it into three equal subintervals. We cannot go beyond 3—unless 
we also partition the horizontal edge—the reason being that π/4 < 1. 

Similarly, if the cuboid [0,1]×[0,√29] is to be broken up as above, one may 
partition the vertical edge into anywhere from 3 to 5 equal subintervals, because 
these are the only integers n for which 1 < 1

n √29 < 2. The fact that this can al-
ways be done in at least one way is the crux of the next proof. Before reading it, 
the reader would do well to solve 7-1.P1. 

7-1.1. Proposition. A cuboid in \n always has a paving P such that every cubo-
id K formed by it satisfies (diam K)n < 2nvol(K). 

Proof. When n = 1, this is trivial, because a cuboid is now an interval and its 
diameter equals the length, which is the same as its volume. So we need consid-
er only n > 1. 

To begin with, note that for a cuboid K to have the property in question, it is 
sufficient that there exist l > 0 such that the length L of every side satisfies l ≤ L 
< 2l. For if this obtains then diam K < 2l and vol(K) ≥ l n,  which implies (di-
am K)n < 2nvol(K). 

Consider a cuboid [a1 ,b1]×…×[an ,bn]; suppose 

min{bi
_ ai : 1 ≤ i ≤ n } = bj

_ aj , where 1 ≤ j ≤ n. 

For each i (1 ≤ i ≤ n), let mi be the largest positive integer (easily seen to exist) 
such that bj

_ aj ≤ (bi
_ ai)/mi . Then (bi

_ ai)/2mi < bj
_ aj and hence  

bj
_ aj ≤ i i

i

b a
m
−

 < 2(bj
_ aj).…………………………(1) 

For each i, let Pi be the partition of [ai ,bi] that subdivides the interval into subin-
tervals of length (bi

_ ai)/mi each. Then the paving consisting of the partitions 
P1 ,…,Pn has the property that each cuboid K formed by it has edges with 
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lengths (bi
_ ai)/mi . In view of (1) and the remark in the preceding paragraph, K 

has the required property. , 

Given a nonempty bounded subset of \2, it is intuitively clear what is meant 
by ‘circumscribing’ it in a rectangle with horizontal and vertical sides. It is a 
consequence of the fact that we are using the max norm || ||∞ that the circum-
scribing rectangle, generally a cuboid, has the same diameter as the given set. If 
all points of the set lie on the same horizontal or vertical line, then the rectangle 
reduces to a segment, but it is nevertheless contained in a proper rectangle hav-
ing the same diameter. There is cause for some discomfort when the set has 
diameter zero, because no cuboid can have diameter zero. But even in this ex-
treme case, one can enclose the set in a cuboid having arbitrarily small diameter. 
We now go on to formulate and prove the analogue of all this in n dimensions. 
The concept of circumscribing will not be required. 

7-1.2. Proposition. [Needed in Propositions 7-2.2, 7-4.2] Let E ⊆ \n
 be non-

empty and bounded. If diam E = 0 and ε > 0, then there exists a closed cuboid K 
⊇ E such that diam K = ε . If diam E > 0, then there exists a closed cuboid K ⊇ E 
such that diam K = diam E.  

Proof. Denote diam E by δ. If s is some point in E, then any x ∈ E satisfies 
|xi

_ si | ≤ ||x _ s|| ≤ δ for every i (1 ≤ i ≤ n), so that si
_ δ ≤ xi ≤ si + δ. Therefore, 

ai = inf{xi : x ∈ E} and bi = sup{xi : x ∈ E}.………………(1) 
exist.  

Suppose δ = 0. Then there is only one point in E and ai = bi for every i. The 
cuboid K with edges [ai

_ _1
2
_ε,ai + _1

2
_ε], 1 ≤ i ≤ n, therefore has the required 

property. 
Now suppose δ > 0. Then there are at least two points in E and therefore, it 

cannot happen that ai = bi for every i ; otherwise (a1 ,…,an) would be the only 
point in E and the diameter would be zero. Define 

ai' = ai and bi' = bi if ai < bi ………………………(2) 
and 

ai' = ai
_ _δ

2
_  and bi' = bi + _δ

2
_  = ai + _δ

2
_  if ai = bi .…………(3) 

Then K = [a1' ,b1' ]×…×[an' ,bn'] is a closed cuboid. Besides, it contains E and 
therefore diam K ≥ diam E. It remains to prove the reverse inequality: diam K ≤ 
diam E = δ. 

For any i such that ai = bi , we have bi' _ ai' = δ by (3). It is sufficient to 
prove bi' _ ai' ≤ δ for those i for which ai < bi . In view of (2), the inequality to be 
proved is equivalent to bi

_ ai ≤ δ. In order to arrive at this, consider any ε > 0. It 
follows from (1) that there exist x,y ∈ E such that 
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xi < ai + 2
ε  and bi

_
2
ε  < yi . 

It follows that yi
_ xi > bi

_ ai
_ ε . Since yi

_ xi ≤ ||y _ x || ≤ δ, we conclude that δ 
> bi

_ ai
_ ε . But this is true for any ε > 0 and therefore bi

_ ai ≤ δ. As already 
noted, this completes the proof. , 

We close this section with a sharpening of Proposition 7-1.1, which we 
shall need later. The sharpening consists in replacing the factor 2 by an arbitrary 
μ > 1. As in Proposition 7-1.1, a cuboid K will satisfy (diam K)n < μnvol(K) if 
there exists l > 0 such that the length L of every edge satisfies l ≤ L < μ l. Sup-
pose, for instance, that we want such a paving of [0,1]×[0,√29] with μ  = 3

2 . As 
before, we seek to take the length of the shorter edge as l and subdivide only the 
longer edge into n equal subintervals of length L each. In the present case, l = 1 
and L = √29/n. The inequality l ≤ L < μ l now becomes 1 ≤ √29/n < 3

2 . This 
holds when n = 4 or 5. If we choose n = 4 (or 5), the required paving is made up 
of the (trivial) partition of [0,1] consisting only of its endpoints and the partition 
of [0,√29] that subdivides it into 4 (or 5) equal subintervals. In this example as 
well as in the two described earlier, the search for a paving in which the partition 
of the shorter edge consists only of its endpoints turned out to be successful. But 
it can happen that we have to subdivide the shorter edge also, as we now illu-
strate.  

Suppose we want a paving of [0,5]×[0,6] with μ  = 11
10 . Since 6  > 5( 11

10 ), 
we must subdivide the longer edge into 2 or more subintervals. If we subdivide 
only the longer edge into n subintervals of length 6

n  each (n ≥ 2), then the longer 

edge of each resulting subcuboid is of length 5 > 11
10

6
n . This makes it necessary 

to subdivide both edges. In fact, if we subdivide [0,5] into 11 equal parts and 
[0,6] into 13 equal parts, we shall have obtained the paving we want, because 5

11  

< 6
13  < 5

11
11
10 . In order to see how to arrive at 11 and 13, read the next proof! 

7-1.3. Proposition. [Used in Proposition 7-3.5] Given μ > 1 and a paving of a 
cuboid in \n, there exists a refinement of the paving such that every cuboid K 
formed by the refinement satisfies (diam K)n < μnvol(K). 

Proof. When n = 1, this is trivial. So we need consider only n > 1. For a cuboid 
K to have the property in question, it is sufficient that there exist l > 0 such that 
the length L of every edge satisfies l ≤ L < μ l. For, if this obtains, then diam K < 
μ l and vol(K) ≥ l n,  which implies (diam K)n < μnvol(K). 
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Choose a positive integer N such that 1+ 1
N  < μ . Let k0 be the total number 

of subintervals formed by all the n partitions that make up the given paving and 
denote their lengths by λi ,  1 ≤ i ≤ k0 . Let j be an index (1 ≤ j ≤ k0) such that λj is 
least among all the finitely many positive numbers λi . Using the integer part 
function [ ], set 

mi = i

j
N
⎡ ⎤λ
⎢ ⎥

λ⎢ ⎥⎣ ⎦
 for each i, 1 ≤ i ≤ k0 . 

Then mj = N, and by minimality of λj ,  we have mi ≥ N = mj . Also, mi ≤ N i

j

λ
λ  < 

mi + 1, so that  
j

N
λ

 ≤ i

im
λ

 < 
11 i

j
i

m
m N

+
λ  = 11 j

im N
λ⎛ ⎞

+⎜ ⎟
⎝ ⎠

 ≤ 11 j

N N
λ⎛ ⎞+⎜ ⎟

⎝ ⎠
 < μ j

N
λ

. 

Thus, if l = λj /N, we have l ≤ λi /mi < μ l .  Now, refine the given partitions of the 
edges by subdividing the ith subinterval into mi equal subintervals (1 ≤ i ≤ k0), 
which must then have length λi /mi  each. Then the length L of any subinterval 
satisfies l ≤ L < μ l. It follows that the length of the edge of any cuboid K formed 
by the refinement satisfies the same inequality. As observed at the beginning, 
this is sufficient to ensure that (diam K)n < μnvol(K). , 

Problem Set 7-1 

7-1.P1. For each of the following cuboids, we want a paving in which the first 
edge (normally called horizontal) has the partition consisting only of its end-
points. What is the minimum and maximum number of equal subintervals for a 
partition of the vertical edge if each cuboid formed by the paving is to have a 
vertical edge longer than the horizontal but not longer than twice as much? 
(a) [0,1]×[0,2e]; (b) [0,2]×[0,√99] 

7-1.P2. For the cuboid [0,1]×[0,2e], we want a paving in which the first edge 
(normally called horizontal) has the partition consisting only of its endpoints. 
What is the minimum and maximum number of equal subintervals for a partition 
of the other edge if each cuboid formed by the paving is to have a vertical edge 
longer than the horizontal but not longer than 3

2  times the horizontal? 

7-1.P3. Name a triplet n1 ,n2 ,n3  of positive integers such that, if the edges of the 
cuboid [0,6]×[0,9]×[0,11] are respectively subdivided into n1 ,n2 ,n3  equal subin-
tervals, each cuboid K of the resulting paving will satisfy (diam K)3 < 
( 4

3 )3vol(K). 
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7-1.P4. (This Problem explains why we switched to 11
10  from 3

2  in the example 
just before Proposition 7-1.3.) For 0 < a < b, let P be a paving of [0,a]×[0,b] 
consisting of the trivial partition of [0,a], i.e., only one subinterval, and a parti-
tion of [0,b] consisting of n equal subintervals; each cuboid formed by P thus 
has edges of length a and b/n . Let l be the smaller of these and L the bigger. 
(a) If μ > √2, show that it is possible to choose n in such a way that l ≤ L < μl. 
(b) If 1 < μ ≤ √2, show that for certain values of a and b it is not possible to 
choose n as above. 

7-2 Transformation of Content 

As a step towards the transformation formula, we need to establish what relation 
there is, if any, between the contents of E and α(E ) when α is a map that serves 
for changing variables in an integral. In other words, when α is an injective con-
tinuously differentiable function defined on some set containing E. The present 
section addresses this matter of ‘transformation of content’. 

Examples. Let E = [1,3]×[1,2] ⊆ \2 and α:E→\2 be defined as α(u,v) = (x,y) = 

( u
v , uv). The usual way to describe α is to write x 

= u
v , y = uv. Then all four of u,v,x and y are posi-

tive and we find that u = √(xy) and v = y
x . In 

other words, α
_1(x,y) = (√(xy) , y

x ). We conclude 

from this that (u,v) ∈ E if and only if (x,y) satisfies 

the pair of inequalities 1 ≤ √(xy) ≤ 3 and 1 ≤ y
x  

≤ 2; or equivalently, (x,y) lies in the first quadrant 

between the hyperbolas xy = 1,  xy = 9 and the 

straight lines y = x,y = 4x. Thus, α(E ) can be ex-

pressed as (see adjoining figure) 

α(E ) = {(x,y) ∈ \2 : x > 0,  y > 0,  1 ≤ xy ≤ 9,  x ≤ y ≤ 4x}. 

As another illustration, consider E = {(u,v) ∈ \2 : 0 < u < A and 0 < v < 2π} 
= (0,A)×(0,2π), an open rectangular subset of \2. For 0 < δ < min{A,  _π

2
_}, the set 

Eδ = [δ,A]× [δ, 2π _ δ] is a closed rectangle. The transformation α defined on E 
by α(u,v) = (ucos v, u sin v) is injective. Setting (x,y) = α(u,v) renders u,v into 
polar coordinates in the (x,y)-plane. So, one can guess that α maps E bijectively 
onto the subset 

xy = 1 

xy = 9 

y = x 
y = 4x 
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G = {(x,y) ∈ \2 : 0 < x2 + y2 < A2,  either x < 0 or y ≠ 0}. 

A precise justification of why α maps E bijectively onto G is left as 7-2.P3. One 
can also sketch α(Eδ) in the (x,y)-plane as a subset of the disc centred at the ori-
gin and having radius A, but with an appropriate subset removed (the latter is 
shaped like a keyhole; see the figure below).  

 
Our first result here is concerned purely with open and compact subsets of 

\n and its statement (i) will be used in the proposition immediately after it as 
well as elsewhere. Statement (ii) will be used in Proposition 7-2.4 and Proposi-
tion 7-2.5 only. We are about to use Theorem 2-5.7, according to which, a 
subset of \n is compact if and only if it is closed and bounded. 

7-2.1. Lemma. Let H ⊆ W, where W is an open subset of \n and H is compact. 
Then there exists an open set V such that  
(i) H ⊆ V ⊆ V

—
⊆ W and V

—
 is compact 

and 
(ii) there exists η > 0 such that h ∈ H,  ||h _ x || < η ⇒ x ∈ V . 

Proof. As in the proof of Proposition 6-1.11, let δ > 0 have the property that  

h ∈ H,  ||h _ x || < δ ⇒ x ∈ W. 

Define V to be the union of some finitely many open _δ
2
_ -balls covering the com-

pact set H. Since there are only finitely many balls in the union, the closure V  is 
contained in the union of the closures, i.e., the corresponding closed balls. 
Therefore, 

x ∈ V
—

 ⇒ ||h _ x || ≤ _δ2
_  for some h ∈ H 

⇒ x ∈ W. 

α(Eδ) is 
shaded 
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Thus V
—

 ⊆ W. Furthermore, x ∈ V
—

 ⇒ ||x || ≤ ||h _ x || + ||h || ≤ _δ
2
_ + ||h ||, which 

shows that V
—

 is bounded. Since it is closed, it must be compact. This proves (i). 
Since H is a compact subset of the open set V, we can once again proceed as 

in the proof of Proposition 6-1.11 and obtain η > 0 such that h ∈ H,  ||h _ x || < η 
⇒ x ∈ V . This proves (ii). , 

7-2.2. Proposition. [Used in Proposition 7-2.4 and the transformation formula 
(Theorem 7-4.4)] Suppose E ⊆ \n is bounded, E

—
 ⊆ W, where W is an open sub-

set of \n, and α:W→\n is continuously differentiable. Then there exists M0 > 0 
such that for any F ⊆ E having content and any ε > 0, α(F) is covered by a finite 
family of cuboids with total volume less than M0·c(F) + ε. In particular, 
(a) if α(F ) has content, then c(α(F)) ≤ M0·c(F ), and 
(b) if F has content zero, then α(F ) has content and c(α(F)) = 0. 

Proof. Since E
—

 is compact, it follows by Lemma 7-2.1 that there exists an open 
set V such that E

—
 ⊆ V ⊆ V

—
 ⊆ W and V

—
 is compact. Since α is continuously diffe-

rentiable on W, the real-valued function which maps each x ∈ W into ||α'(x)|| is 
continuous, and is therefore bounded on the compact subset V

—
 of W. So, there 

exists M > 0 such that 

||α'(x)|| ≤ M whenever x ∈ V
—

. 

We shall show that M0 = (2M)n has the required property. 
Consider any F ⊆ E having content and any ε > 0. By Proposition 6-4.10, 

there exists a finite family of closed cuboids that cover F and have total volume 
less than c(F) + ε/(2M)n. Since their union is closed, they also cover F

—
. Now F

—
 

is a compact subset of the open set V. So, by Proposition 6-1.11, there exists a 
finite family F of closed cuboids which cover F

—
, have total volume less than 

c(F) + ε/(2M)n and are contained in V and hence also in V
—

. Each cuboid may 
now be replaced by the cuboids formed by any paving of it; call the resulting 
family H. By selecting each paving as in Proposition 7-1.1, we may assume that 
each cuboid K of H satisfies 

(diam K)n < 2nvol(K). 

 Considering that a cuboid is convex and every cuboid of H is a subset of V
—

, 
it follows by Corollary 3-3.4 that ||α(x) _ α(y)|| ≤ M ||x _ y || whenever x and y 
belong to the same cuboid of the family. Thus, diam α(K) ≤ M·diam K  for each 
K ∈ H. By Proposition 7-1.2, α(K) is contained in a closed cuboid α(K)' having 
diameter at most M·diam K . Now 
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vol(α(K)' ) ≤ (M ·diam K)n < Mn2nvol(K). 

This shows that the finite family {α(K)' : K ∈ H} of closed cuboids, which cer-
tainly covers α(F), has total volume less than (2M)n[c(F) + ε/(2M)n] = 
M0·c(F) + ε , where M0 = (2M)n. This completes the proof of the existence of M0 
of the required kind. 

Statement (a) is now an easy consequence. For the proof of statement (b), 
note that when F has content zero, the finite family {α(K)' : K ∈ H} has total 
volume less than ε . Since it covers α(F), it follows upon using the equivalences 
in Proposition 6-4.10 that α(F ) has content and that c(α(F)) = 0. , 

Example. Let W be the open first quadrant in the plane and let α be the continu-
ously differentiable function on W defined by α(x,y) = (1/x, 1/y). Then α maps E 
= {(x,y) ∈ W : 0 < x < 1,  0 < y < 1} into a subset of \2 that is not even bounded 
and therefore has no content. But for any δ > 0 and A > 0, it maps {(x,y) ∈ W : δ 
< x < δ + A,  δ < y < δ + A } into a bounded rectangle, which does have content. 
The closure of the latter set is contained in W, while that of E is not. However, 
the transformation given by α(x,y) = (√x, √y) does map E into a set with content, 
in fact, into itself. Note that, unlike the first transformation, this one has a con-
tinuous extension to the closure of W. 

Note that the above proposition makes no claim that if F has positive con-
tent then α(F ) has content. We shall need the fact that under certain 
circumstances, such a thing does happen. Before we prove the result in this di-
rection, we establish the following corollary to the inverse function theorem. 

7-2.3. Proposition. [Used in Proposition 7-4.2] Let W be an open subset of \n 
and α:W→\n be a continuously differentiable injective map with an invertible 
derivative α' everywhere on W. Then 
(a) α maps open subsets of W onto open subsets of \n; 
(b) α

_1 is continuously differentiable and 

 (i) (α
_1)'(y) = α'(α

_1(y))
_1 for every y ∈ α(W ); 

 (ii) (α
_1)'(α(x)) = α'(x)

_1 for every x ∈ W. 

Proof. Let V be an open subset of W. By Inverse Function Theorem 4-2.1, every 
x ∈ V belongs to an open set Wx ⊆ V such that firstly, α(Wx) ⊆ α(V ) is open in \n 
and secondly, the restriction of α to Wx has a continuously differentiable inverse 
β satisfying (β)'(y) = α'(α

_1(y))
_1 for every y ∈ α(Wx). Now  

y ∈ α(V ) ⇒ y = α(x) for some x ∈ V ⇒ y ∈ α(Wx) 

for some x ∈ V ⇒ y ∈ x V∈U α(Wx) 
and 

y ∈ x V∈U α(Wx) ⇒ y ∈ α(V ), because α(Wx) ⊆ α(V ). 
Thus, 
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α(V ) = x V∈U α(Wx). 

(a) Since α(V ) is the union of all the open sets α(Wx), x ∈ V, it must be open 
in \n. 

(b) Since β must agree with α
_1 on its own domain, i.e., on α(Wx), it follows 

that α
_1 has the two properties: being continuously differentiable and satisfying 

(α
_1)'(y) = α'(α

_1(y))
_1 on α(Wx). Since α(V ) is the union of sets α(Wx), it further 

follows that α
_1 has the two properties on α(V ). But this is true for an arbitrary 

open subset V of W. Consequently, α
_1 has the two properties on the whole of 

α(W ). Since the injectivity of α ensures that every x ∈ W is of the form α
_1(y), y 

∈ α(W ), it now follows that (α
_1)'(α(x)) = α'(x)

_1 for every x ∈ W. , 

The result about α(F ) having content when F does is as follows: 

7-2.4. Proposition. [Used in Proposition 7-4.2] Let W be an open subset of \n 
and α:W→\n be a continuously differentiable injective map with an invertible 
derivative α' everywhere on W. Then  
(a) if F has content and F  ⊆ W, then α(F) has content; 
(b) if H ⊆ W is compact, then there exists η > 0 such that, for any subset F ⊆ W 

with diameter less than η, having content and containing a point of H, the set 
α(F ) has content 

Proof. By 2-6.P8(c), continuity and injectivity of α together imply that it maps 
the boundary of a set E satisfying E  ⊆ W into the boundary of α(E), which is to 
say α(∂E ) ⊆ ∂(α(E)). By 4-2.P5 [or by Proposition 7-2.3(a)], α(W) is open; in 
case E  is compact, α(E ) is also compact and hence  ( )Eα  ⊆ α(E ) ⊆ α(W). 
Since the inverse of α is also continuous (by Inverse Function Theorem 4-2.1) 
and injective, it follows when E  is compact that ∂(α(E)) ⊆ α(∂E), so that 
α(∂E ) = ∂(α(E)). 

Let H ⊆ W be compact. According to Lemma 7-2.1, there exists an open set 
V such that 
 (i) H ⊆ V ⊆ V ⊆ W and V  is compact; 

 (ii) there exists η > 0 such that: h ∈ H,  ||h _ x || < η ⇒ x ∈ V . 

 Consider a subset E of V  that has content. Its boundary ∂E must have con-
tent zero by Proposition 6-4.14. Therefore, by Proposition 7-2.2(b), α(∂E) also 
has content zero. But E  ⊆ V ⊆ W and therefore α(∂E ) = ∂(α(E)), as observed 
at the beginning. Hence, by Proposition 6-4.14 again, it follows that α(E ) has 
content. Thus, α maps a subset of V  that has content into one that also has con-
tent. 
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(a) Now let F have content and F  ⊆ W. Since a set having content is bounded, 
so is its closure, which must then be compact. Thus F  is compact and hence we 
may choose H to be F in what has just been proved, whereupon we can con-
clude that α(F) has content. 
(b) Let the subset F ⊆ W contain a point of H and have diameter less than η. By 
(ii) above, F is a subset of V, so that F  ⊆ V  ⊆ W. It now follows by (a) that 
α(F ) has content. , 

The next proposition is needed in Proposition 7-4.2. 

7-2.5. Proposition. Let W be an open subset of \n and α:W→\n be a conti-
nuously differentiable map. Suppose H is a compact subset of W. Then for any ε 
> 0,  there exists δ > 0 such that,  for any cuboid K containing a point x ∈ H and 
having diameter less than δ,  

K ⊆ W and ||α(b) _ α(a) _ α'(x)(b _ a)|| < ε||b _ a|| ∀ a,b ∈ K. 

Proof. Let V and η be as in Lemma 7-2.1. By compactness of V ,  the map 
α':W→L(\n, \n) is uniformly continuous on V . So there exists δ > 0 such that 

x,y ∈ V ,  || x _ y || < δ ⇒ ||α'(x) _ α'(y)|| < 2n
ε .………………(1) 

(As elsewhere in our discussion of integration, the norm in \n is || ||∞ , with the 
corresponding norm understood in L(\n, \n).) If we replace δ by min {δ,η}, 
then we have 

x ∈ H,  || x _ y || < δ ⇒ y ∈ V.…………………………(2) 

Now let K be any cuboid containing x ∈ H and having diameter less than δ, and 
consider any a,b ∈ K. By (2), K ⊆ V ⊆ V . Therefore, K ⊆ W, and moreover by 
(1), 

y ∈ K ⇒ ||α'(y) _ α'(a)|| < 2n
ε .………………………(3) 

From this inequality and convexity of a cuboid, we obtain by Corollary 3-3.7 
that 

||α(b) _ α(a) _ α'(a)(b _ a)|| ≤ 2
ε ||b _ a||.……………………(4) 

Since x ∈ K, it follows from (3) that ||α'(x) _ α'(a)|| < 2n
ε  and hence that 

||α'(x)(b _ a) _ α'(a)(b _ a)|| < 2n
ε ||b _ a|| ≤ 2

ε ||b _ a||. 

Combining this with (4), we get  
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||α(b) _ α(a) _ α'(x)(b _ a)|| < ε||b _ a||. , 

Problem Set 7-2 

7-2.P1. Give an example of a subset F ⊆ W ⊆ \, where W is open, α:W→\ is 
continuously differentiable with an invertible derivative (which means nonzero 
in dimension 1) everywhere, F has content but α(F ) does not. 

7-2.P2. Show that the result of Proposition 7-2.2 holds with 
M0 = (sup{||α'(x)|| : x ∈ E })n. 

7-2.P3. Show that the transformation α defined on E by α(u,v) = 
(ucos v, u sin v) is bijective and maps E = {(u,v) ∈ \2 : 0 < u < A and 0 < v < 2π} 
onto G = {(x,y) ∈ \2 : 0 < x2 + y2 < A2,  either x < 0 or y ≠ 0}. 

7-3 Set Functions 

The path that we take in proving the transformation formula involves studying 
what are called set functions, which are functions with a class (family) of subsets 
of a set as their domain. As is often the case in mathematics, their usefulness 
stems from the properties of the domain. Of particular importance to us is the 
class of subsets having content, and we begin by proving some of its properties 
that we shall need. 

Throughout this chapter, the symbol Ac will denote the complement of a 
subset A of \n. 

7-3.1. Proposition. Suppose E ⊆ \n. Then the class CE of subsets of E having 
content has the properties that  
(a) ∅ ∈ CE ; 
(b) A,B ∈ CE ⇒ A∪B,A∩B,Ac∩B ∈ CE . 
Proof. (a) is trivial, because ∅ is a subset of a cuboid of arbitrarily small vo-
lume. 
(b) Let A,B ∈ C.E . By the sufficiency condition of Proposition 6-4.14, ∂A and ∂B 
both have content zero and hence by Remark 6-4.6(e), ∂A∪∂B also has content 
zero. But the boundaries of A∪B,A∩B,Ac∩B are all subsets of ∂A∪∂B and 
therefore have content zero by Remark 6-4.6(c). It follows by the necessity con-
dition of Proposition 6-4.14 that A∪B,A∩B,Ac∩B ∈ CE . , 
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7-3.2. Definition. A set function in a set E ⊆ \n is a real-valued function on the 
class CE of all subsets of E that have content. A set function σ in E is said to be 
additive if σ(A∪B) = σ(A) + σ(B) whenever c(A∩B) = 0. 

7-3.3. Examples. (a) A trivial example of an additive set function is σ(A) = 0 for 
all A ∈ CE . The most obvious nontrivial example of a set function is simply c. 
That it is additive is the substance of Remark 6-4.6(d). 
(b) Let f :E→\ be integrable on every subset A ∈ CE . Then σf (A) = A∫ f  defines 
an additive set function in E by Remark 6-4.6(g). 

(c) Suppose E ⊆ \n and α:E→\n maps every subset of E that has content into a 
subset of α(E) that also has content. Let f :α(E)→\ be integrable on every sub-
set of α(E) that has content. Then σ(A) = ( )Aα∫ f  defines a set function in E. If α 
is bijective, then it maps A∩B onto α(A)∩α(B); if α also maps a set with con-
tent zero onto a set with content zero, then it follows that σ is additive. For this 
example to be of the same kind as the preceding one, there needs to be an in-
tegrable function g:E→\ such that A∫ g = σ(A) = ( )Aα∫ f  for all A ⊆ E having 
content. Whether such a function g exists or not naturally depends upon α and f. 
Some of our initial results pertain to this matter, as it will turn out to be crucial 
for the transformation formula. 

7-3.4. Proposition. Let σ be an additive set function in E. If F is a finite non-
overlapping family of cuboids contained in E then σ(∪F ) = ΣK ∈ F σ(K). In 
particular, if f :E→\ is integrable, then

k∪∫ F f  =  ΣK ∈ F K∫ f .  

Proof. Since F is finite, an induction argument using Proposition 6-4.9 leads to 
the desired equality. The last part follows upon using Remark 6-4.6(g). , 

If Φ is a function on an interval [a,b] ⊆ \, then one can regard Φ(v) _ Φ(u) 
as defining something akin to a set function σ on subintervals [u,v] of [a,b]. 
Then 

[Φ(v) _ Φ(u)]/(v _ u) = ( )
( )
I

c I
σ , 

where I = [u,v], v _ u ≠ 0, σ(I ) = Φ(v) _ Φ(u). Its limit as v _ u→0, u ≤ x ≤ v, is 
the derivative Φ'(x), and by the fundamental theorem of calculus, σ(I ) = I∫ Φ', 
provided of course the derivative exists everywhere. If Φ' ≤ f , then σ(I ) ≤ I∫ f . 
The next proposition establishes such an inequality in higher dimensions under a 
hypothesis that falls short of assuming that a derivative exists and does not ex-
ceed f ; what it does say has the rough consequence that ‘if a derivative were to 
exist, it would not exceed f ’. The quaint looking hypothesis is satisfied in a situ-

7-3 Set Functions 
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ation we shall encounter during the proof of the transformation formula (Theo-
rem 7-4.4). 

7-3.5. Proposition. Let W ⊆ \n be open, σ an additive set function in W that has 
nonnegative values, and let f :W→\ be integrable over every subset of W that 
has content. Suppose H is a compact subset of W and for every ε > 0, there ex-
ists a δ > 0 such that, for any x ∈ H and any cuboid I containing x and having 
diam I < δ, 

I ⊆ W and σ(I ) ≤ [sup{f(z) : z ∈ I } + ε](1+ ε)n+1(diam I )n. 
Then 

σ(A) ≤ A∫ f  

whenever A has content and A
_

 ⊆ H°. 

Proof. We shall first prove the inequality when A = A
_

 ⊆ H° is a cuboid. Consid-
er any ε > 0 and any μ > 1. Since f  is integrable over A, there exists a paving P1 
of A such that U( f ,P1) < A∫ f + ε . Let P be a refinement of P1 such that every 
cuboid K formed by P has diameter less than δ. Then 

U( f ,P) ≤ U( f ,P1) < A∫ f + ε , 

and by Proposition 7-1.3, we can ensure that each cuboid K also satisfies (di-
am K)n < μnvol(K). Denote by F the family of these cuboids. For each cuboid K 
∈ F, let MK = sup{ f(z ): z ∈ K}. 

Since K ⊆ A ⊆ H, it contains points of H; moreover, diam K < δ. Therefore 
by hypothesis, 

σ(K ) ≤ (1+ ε)n+1 ( MK + ε) (diam K)n 
and hence 

σ(K ) ≤ (1+ ε)n+1 μn ( MK + ε) vol(K ). 

Therefore by Proposition 7-3.4, 

σ(A) = ΣK ∈ F σ(K ) ≤ (1+ ε)n+1 μn ΣK ∈ F ( MK + ε) vol(K ) 

= (1+ ε)n+1 μnU( f ,P) + (1+ ε)n+1 μn ε[vol(A)] 

< (1+ ε)n+1 μn ( A∫ f + ε) + (1+ ε)n+1 μn ε[vol(A)]. 

Since this has been proved for every ε > 0 and every μ > 1, the required inequa-
lity holds for a cuboid A.  

In view of Proposition 7-3.4, it follows that the inequality also holds when 
A is a union of a finite nonoverlapping family of cuboids. 
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We go on to the general case of an arbitrary set A having content and such 
that A

_
 ⊆ H°. 

Consider any ε > 0. Since | f |  is integrable on the set H, it has a finite su-
premum, which we denote by M. Since A has content, it is bounded by 
definition; therefore A

_
 is compact. By Proposition 6-4.10, there exists a union F 

of a finite nonoverlapping family of cuboids such that 

A
_
 ⊆ F and c(F) < c(A

_
) + M

ε . 

By Proposition 6-1.11, we can ensure that F ⊆ H°, so that, by what has been 
proved above, the required inequality holds for each cuboid in F. Now, c(A) = 
c(A

_
) [see 6-4.P3]. Therefore, 

A ⊆ F ⊆ H° and c(F) < c(A) + M
ε . 

Using Proposition 7-3.1, and Remark 6-4.6(d) and 6-4.6(g), we have 

c(F∩Ac) = c(F) _ c(A) < M
ε  and F∫ f  = A∫ f + cF A∩∫ f .  

Therefore, recalling that M = sup{| f(x)| : x ∈ H}, we have 

F∫ f  < A∫ f + MM
ε  = A∫ f + ε . 

Since σ is additive as well as nonnegative, it follows from the inclusion A ⊆ F 
that 

σ(A) ≤ σ(F). 

As F is a union of a finite nonoverlapping family of cuboids and the required 
inequality holds for each cuboid in the union, Proposition 7-3.4 and the above 
inequality lead to 

σ(A) ≤ F∫ f . 

Together with the preceding inequalities about integrals, this implies that 

σ(A) < A∫ f + ε . 

This has been shown to hold for an arbitrary ε > 0 and therefore σ(A) ≤ A∫ f . , 

7-4 The Transformation Formula 

We shall soon come to the main result of this chapter. The first proposition of 
this section can be regarded as the special case of the tansformation formula 

7-3 Set Functions 
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when the transformation of variables is linear and the integrand is identically 1, 
although no integral is explicitly mentioned. 

When α:\n→\n is a linear map, det α will denote the determinant of the 
matrix representation of α as described in Chapter 2. Since α is its own linear 
derivative everywhere, detα is also the Jacobian of α at each point of \n. 

7-4.1. Proposition. If A ⊆ \n is a cuboid and α:\n→\n is an invertible linear 
map, then 

c(α(A)) = |detα |c(A). 

(This is true even when α is not invertible, but the case will not arise in our con-
siderations.) 
Proof. If α is of the type that merely multiplies the kth component by some non-
zero a, i.e., 

α(x1 , … , xn) = (y1 , … , yn), 
where 

yj = 
for 
for 

j

j

x j k
ax j k

≠⎧⎪
⎨ =⎪⎩ ,

……………………………(1) 

then it maps the cuboid A onto a cuboid with kth edge of length |a | times that of 
A and all other edges the same as those of A; the volume of the latter is 
|a |vol(A). Since the content of a cuboid is the volume and detα = a, the desired 
equality holds in this case. 

If α is of the type that merely interchanges two components, i.e. 

α(x1 , … , xn) = (y1 , … , yn), 
where 

yj = 
if  
if 
if 

k

j

x j k
x j l
x k j l

⎧ =
⎪ =⎨
⎪ ≠ ≠⎩

l

,
………………………(2) 

then it only interchanges the kth and l th edges of any cuboid and the volume 
therefore remains unaltered; also, detα = _1. So, the desired equality holds in 
this case. 

If α is of the type that merely adds one row to another row, i.e., there exist 
distinct indices k, l such that 

α(x1 , … , xn) = (y1 , … , yn), 
where 

yj = 
for 
for 

j

j l

x j k
x x j k

≠⎧⎪
⎨ + =⎪⎩ ,

…………………………(3) 

(so that yk = xk + xl ), then c(α(A)) = c(A) by Proposition 6-5.3 while detα = 1. 
Therefore the desired equality holds in this case too. 
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By Remark 2-3.4, every invertible linear map is a composition of linear 
maps of the type (1), (2) and (3), i.e., having an elementary matrix. Also, if the 
equality in question holds for two linear maps, then it surely holds for their 
composition. Therefore it holds for all invertible linear maps. , 

7-4.2. Proposition. Let W be an open subset of \n and α:W→\n be a conti-
nuously differentiable injective map with an invertible derivative α' everywhere 
on W. Suppose H ⊆ W is a compact subset and ε > 0. Then there exists δ > 0 
such that, for any cuboid I that contains a point x ∈ H and has diameter less than 
δ, we have I ⊆ W and 

c(α(I )) ≤ |det α'(x)|(1+ ε)n(diam I ) n .  

Proof. Let the open set V be as in Lemma 7-2.1. By Proposition 7-2.3, α(W) is 
open, α

_1 is continuously differentiable and (α
_1)'(α(x)) = α'(x)

_1 for every x ∈ 
W. Denoting the linear map α'(x) by βx ,  this can be written as 

βx
_1 = (α

_1)'(α(x)) for every x ∈ W. 

Therefore, as a map from W to L(\n, \n), βx
_1  is continuous. Now V

_
  is compact 

and therefore there exists a real number M > 0 such that ||βx
_1 || ≤ M for every x ∈ 

V
_
. This means that 

||βx
_1(h) || ≤ M ||h || for every x ∈ V

_
 and every h ∈ \n.……………(1) 

Now consider any ε > 0. By Proposition 7-2.5, there exists δ > 0 such that,  
for any cuboid I containing a point x ∈ H and having diameter less than δ,  

I ⊆ W and ||α(b) _ α(a) _ βx (b _ a)|| < M
ε ||b _ a || ∀ a,b ∈ I. 

Since I is closed, it follows by Proposition 7-2.4(a) that α(I) has content. Now 
consider any such cuboid I and any a,b ∈ I. Then the above inequality holds and 
therefore it follows from (1) that 

||βx
_1(α(b)) _ βx

_1(α(a)) _ (b _ a)|| < M M
ε ||b _ a || = ε ||b _ a || . 

This implies that 
||βx

_1(α(b)) _ βx
_1(α(a))|| < (1+ ε)||b _ a || .  

Therefore, βx
_1(α(I )) has diameter no greater than (1+ ε)diam I . By Proposition 

7-1.2, βx
_1(α(I)) is contained in some cuboid J of the same diameter. So, 

α(I) ⊆ βx(J )…………………………………(2) 
and 

diam J ≤ (1+ ε)diam I .……………………………(3) 

Now by Proposition 7-4.1, c(βx(J )) = |detβx |vol(J ) and, as already noted, α(I ) 
has content. The inclusion (2) implies c(α(I)) ≤ c(βx(J )). Consequently by (3), 
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c(α(I )) ≤ |det βx |vol(J ) ≤ |det βx |(diam J ) n  ≤  |det α'(x)|(1+ ε)n(diam I ) n.  , 

7-4.3. Proposition. Let E ⊆ F ⊆ \n, where E has content and f :E→\ is inte-
grable. Let g:F→\ be the extension of f  to F obtained by setting it equal to zero 
outside E. Then g is integrable on any subset [see Def. 6-4.5] of F that has con-
tent. 
Proof. Consider a subset A of F that has content and let I be a cuboid that con-
tains F and hence also E and A. Denote by χA the characteristic function of A on 
I. 

Since f :E→\ is integrable, its extension fI  to the cuboid I is integrable, i.e., 
I∫ fI  exists, where 

fI (x) = 
( ) if 
0 if 

f x x E
x E

∈⎧
⎨ ∉⎩

 for any x ∈ I. 

Since A has content, the characteristic function χA (domain I ) is integrable. 
Hence, the product fI χA is integrable. 

For the integrability of g on A, what we need is [by Def. 6-4.5] that the re-
striction g|A of g to the subset A should be integrable when extended as (g|A)I  to I 
by setting it equal to zero outside A. We shall prove the required integrability by 
arguing that (g|A)I  is, in fact, the same as the product fI χA , for which integrabil-
ity has already been established in the preceding paragraph. 

By definition of g, we have 

g(x) = 
( ) if 
0 if 

f x x E
x E

∈⎧
⎨ ∉⎩

 for any x ∈ F, 

(g|A)I (x) = 
( ) if 
0 if 

g x x A
x A

∈⎧
⎨ ∉⎩

 for any x ∈ I 

and 

χA(x) = 
1 if 
0 if 

x A
x A

∈⎧
⎨ ∉⎩

 for any x ∈ I. 

From the above descriptions of the four functions, we deduce for any x ∈ I that 

x ∈ E∩A ⇒ fI (x)χA(x) = fI (x) = f(x) and (g|A)I (x) = g(x) = f(x); 

x ∉ A ⇒ fI (x)χA(x) = 0 and (g|A)I (x) = 0; 

x ∈ A,x ∉ E ⇒ fI (x)χA(x) = fI (x) = 0 and (g|A)I (x) = g(x) = 0. 

This covers all possibilities for x ∈ I and therefore fI (x)χA(x) = (g|A)I (x) every-
where on I. , 
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We now come to the main result. The proof begins with a special case 
which is adequate for most purposes, especially when the integrand is continu-
ous. The reader has the option of focusing attention only on this case. 

In the statement of the theorem, detα' is the Jacobian of α and one may re-
place it by some such symbol as Jα if desired. 

7-4.4. Theorem. Transformation Formula: Let W ⊆ \n be open and E
_

 ⊆ W, 
where E has content. Suppose α:W→\n is a continuously differentiable injective 
map with an invertible derivative α' everywhere on W. Then, for any integrable 
function f :α(E

_
)→\, the function ( f α) |detα' | :E

_
→\ is also integrable and 

( )Eα∫ f  = E∫ ( f α) |det α' | . 

Proof. We shall first prove this under the additional hypothesis that 
( f α) |detα' | :E

_
→\ is integrable. 

Since any integrable function f  is a difference of integrable nonnegative-
valued functions, namely, 1

2  (| f | + f )  and 1
2 (| f | _ f ) ,  it suffices to prove the 

formula for nonnegative f . Also, we need prove only the inequality 

( )Eα∫ f  ≤ E∫ ( f α) |det α' | , 

because the reverse inequality will follow from it in view of the following: 

 (i) α
_1 :α(W )→W enjoys the same properties as α 

 (ii) ( f α) |det α' |  is integrable and nonnegative on E and 
 (iii) |det (α' α

_1 )| |det (α
_1 )' |  = 1 on α(W). 

The last mentioned equality results from the chain rule together with the fact 
that α α

_1  is the identity map on α(W). 
Since E has content, it is bounded and hence E

_
 is compact. By hypothesis, E

_
 

⊆ W and therefore by Lemma 7-2.1 (applied twice), there exists open sets V1 and 
V2 such that 

E
_
 ⊆ V1 ⊆ V

_
1 ⊆ V2 ⊆ V

_
2 ⊆ W 

and V
_

2 is compact (hence also V
_

1). If f  is extended to α( V
_

2) by setting it equal to 
zero outside α( E

_
), then by Proposition 7-4.3, the extension is integrable on 

every subset of α( V
_

2) that has content.  
It is sufficient to prove the inequality in question for the extended function 

and from here onwards we shall denote the extended function by f . 
Let A be any subset of V2 having content. Then A

_
 ⊆ V

_
2 ⊆ W and by Proposi-

tion 7-2.4(a), α(A ) has content. Also, α(A) ⊆ α( V
_

2), so that f  is integrable over 
α(A ). Define a nonnegative set function σ in V2 by 

σ(A) = ( )Aα∫ f . 
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We shall argue that σ is additive. To see why, let c(A1∩A2) = 0. Then 
c(α(A1∩A2)) = 0 by Proposition 7-2.2(b). However, the injectivity of α implies 
that α(A1∩A2) = α(A1)∩α(A2). So, c(α(A1 )∩α(A2)) = 0. It follows from Re-
mark 6-4.6(g) that σ is additive. 

Now let H be the compact subset V
_

1 of V2 . Consider any ε > 0. 
By Lemma 7-2.1, there exists δ1 > 0 such that if a cuboid I contains some x 

∈ H and has diameter less than δ1 , then 

I ⊆ V2 .……………………………………(1) 

Since V
_

2 is compact and |detα' |  does not vanish anywhere, it has a positive 
lower bound on V

_
2, which we shall call m. Also, α' and hence detα'  are un-

iformly continuous on V
_

2 and, accordingly, there exists δ2 > 0 such that whenever 
the diameter of a cuboid I is less than δ2 and I ⊆ V

_
2, we have 

|det α'( y1) _ det α'( y2 )| < mε whenever y1 , y2 ∈ I. 

This implies for all x ∈ H∩I that  

|det α'(x)| ≤ |det α'( y1)| + mε ≤ |det α'( y1)|(1+ ε) whenever y1 ∈ I.……(2) 

By Proposition 7-4.2, there exists δ3 > 0 such that, for any cuboid I that con-
tains some x ∈ H and has diameter less than δ3 , we have I ⊆ W and 

c(α(I )) ≤ |det α'(x)|(1+ ε)n(diam I ) n .……………………(3) 

Now consider any cuboid I that contains x and has diameter less than δ = 
min {δ1 , δ2 , δ3}. Then I satisfies (1), (2) as well as (3). From (1), it follows that 
σ(I ) is defined. Besides, 

σ(I ) = ( )Iα∫ f  ≤ sup { f(z) : z ∈ α(I)}·c(α(I)) 

≤ sup {( f α)(u)  : u ∈ I }·c(α(I)). 

Now |detα' |  is continuous on the compact set V
_

2 and therefore bounded on it. 
Let M be an upper bound. Choose y ∈ I such that sup {( f α)(u)  : u ∈ I } ≤ 
( f α)(y ) + M

ε . Then the above inequality becomes 

σ(I ) ≤ [( f α)(y) + M
ε ] ·c(α(I )) . ………………………(4) 

From (2) and (3), we get 

c(α(I )) ≤ |det α'( y)|(1+ ε)n+1(diam I ) n . 

Combining this with (4), we get 

σ(I ) ≤ [( f α)(y) + M
ε ]|det α'( y)|(1+ ε)n+1(diam I ) n  
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≤ sup{[( f α)(z) + M
ε ]|det α'( z)| : z ∈ I}·(1+ ε)n+1(diam I ) n  

≤ sup{( f α)(z )|det α'( z)| + ε  :  z ∈ I}·(1+ ε)n+1(diam I ) n . 

By Proposition 7-3.5, we now have σ(A) ≤ A∫ ( f α) |detα' |  whenever A
_

 ⊆ H°. 
Since E

_
 ⊆ V1 ⊆ V

_
1 = H and V1 is open, then E

_
 ⊆ H°. So, 

σ(E ) ≤ E∫ ( f α) |det α' | , 
which is the same as 

( )Eα∫ f  ≤ E∫ ( f α) |det α' | . 

As noted at the beginning, this inequality is all we needed to prove in order 
to establish the result under the additional hypothesis that ( f α) |detα' | :E

_
→\ 

is integrable. 
By Theorem 6-4.15, the additional hypothesis is fulfilled when f  is conti-

nuous. Therefore, the result has been established for continuous f , and in 
particular, for any constant function. 

Now let f :α(E
_

)→\ be an integrable function. As before, we may assume f  
to be nonnegative. Since α(E

_
) ⊆ α(W), where α(E

_
) is compact and α(W ) is 

open, Lemma 7-2.1 yields η > 0 such that h ∈ α(E
_

),  ||h _ x || < η ⇒ x ∈ α(W ). 
Consider any ε > 0 and any cuboid I containing α(E

_
). Then the integral of f  

over α(E) is the same as its integral over I, with the understanding that f  is ex-
tended to be zero outside α(E ). This means f α is extended to be zero outside 
E. Now, there exists a paving P of I such that 

( )Eα∫ f – ε < L( f ,P) ≤  U( f ,P) < ( )Eα∫ f + ε.………………(5) 

By refining P if necessary, we may assume that the diameter of each cuboid 
formed by it is no greater than η. This guarantees that any cuboid K formed by P 
that intersects α(E ) lies within α(W). This has two consequences for the family 
F of such cuboids. One is that 

c(α
_1(K)∩α

_1(K' )) = c(α
_1(K∩K' )) = 0 whenever K ∈ F, K' ∈ F, K ≠ K'.…(6) 

This follows from Proposition 7-2.2(b) upon noting that c(K∩K' ) = 0 by Propo-
sition 6-4.9(a). Another consequence is that α

_1(K) ⊆ W, and hence for any 
constant function k on a cuboid K, 

K∫ k = 1 ( )K−α∫ (k α)|det α' | ,………………………(7) 

keeping in mind that the result has been shown to hold for a constant function. 
Denoting by F the union of all α

_1(K) with K ∈ F, we have E  ⊆ F. As f α 
has been extended to be zero outside E, according to the observation made im-
mediately after Def. 6-4.5, 
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F−∫ ( f α) |det α' |  = E−∫ ( f α) |det α' |.…………………(8) 

Also, 
L( f ,P) = ΣK ∈ F (inf{ f(x) : x ∈ K})vol(K). 

Denote by mK the function on I that equals the constant inf{ f(x) : x ∈ K} on K 
and is extended to be 0 outside K. Then mK α ≤ f α on α

_1(K). By (7), we 
have 

(inf{ f(x) : x ∈ K})vol(K) = K∫ mK  = 1 ( )K−α∫ (mK α)|detα' |. 

It follows that 

L( f ,P) = ΣK ∈ F 1 ( )K−α∫ (mK α)|detα' | ≤ ΣK ∈ F 1 ( )K−α−∫  ( f α) |detα' | ,  

using the fact that mK α ≤ f α on α
_1(K). Therefore by (6) and Remark 6-

4.6(g), 
L( f ,P) ≤ F−∫ ( f α) |det α' |  

= E−∫ ( f α) |det α' | by (8). 

A similar argument shows that U( f ,P) ≥ 
_

E∫ ( f α) |det α' |. Therefore by (5), 

( )Eα∫ f – ε < E−∫ ( f α) |det α' | ≤  
_

E∫ ( f α) |det α' | < ( )Eα∫ f + ε . 

The required integrability and equality are now immediate. , 

The theorem above differs from the versions in Burkill and Burkill [5] and 
in Protter and Morrey [20] in that f  is not assumed continuous. It also differs 
from the version in Spivak [26] in that it assumes that f  is defined on a closed 
set rather than on an open set. 

7-4.5. Example. Evaluate the following integral: 

F∫ ( y xy
x

+ ) dx dy, 

where F is the region in the first quadrant of the xy-plane between the hyperbo-
las xy = 1, xy = 9 and the lines y = x and y = 4x (as in the figure at the beginning 
of Section 7-2). 

The way the evaluation would be presented in calculus would be with an in-

troduction of new variables u = √(xy) and v = y
x , or equivalently, x = u

v  and y 
= uv. The ‘uv-region corresponding to F’ would then be given by the inequalities 
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1 ≤ u ≤ 3,  1 ≤ v ≤ 2. This procedure fits into the framework of the preceding 
theorem, as we now describe. 

First of all, F = {(x,y) ∈ \2 : x > 0,  y > 0,  1 ≤ xy ≤ 9,  1 ≤ y
x  ≤ 4}. As noted 

at the beginning of Section 7-2, by taking u = √(xy) and v = y
x , we can express 

F as α(E), where E = {(u,v) ∈ \2 : 1 ≤ u ≤ 3,  1 ≤ v ≤ 2} and α is given by α(u,v) 

= ( u
v , uv). This map α is injective on W = {(u,v) ∈ \2 : u > 0,  v > 0}. Also, α' 

has matrix 

2
1 u
v v
v u

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

which is continuous and invertible on W and the Jacobian is detα'  = 2 u
v  > 0. 

With f(x,y) = y
x + √(xy), we have ( f α) (u,v) = u + v. The given integral and 

the integral 

E∫ ( f α) |detα' |  =  E∫ (u + v)2 u
v du dv 

both exist. Therefore, they are equal by the transformation formula (Theorem 7-
4.4). Now the second of the integrals is easily found to be 8 + 52

3 ln 2, which is 
therefore the required value. 

The most frequently used transformation in \2 is the introduction of polar 
coordinates to convert an integral over a disc of radius A centred at (0,0) to an 
integral over an (r,θ)-rectangle [0,A]×[0,2π] or its interior E. However, the po-
lar transformation α(r,θ) = (r cos θ, r sin θ) is not injective on any open set 
containing E

_
. In order to accommodate the transformation to polar coordinates, 

we make use of some further ideas.  

7-4.6. Definition. For any nonempty subset E of \n, a balloon is a sequence 
{Em} of subsets such that 
 (i) each Em has content, 
 (ii) Em ⊆ Em+1 ⊆ E for each m, 
 (iii) m mE∈U N = E. 

7-4.7. Examples. (a) With n = 1, the subset E = \ has no content; but the se-
quence of subsets [_m,m], m = 1,2,3,… is a balloon. The subsets [_m,∞) do not 
provide a balloon because they do not have content. 
(b) Let n = 2. The sequence of subsets Em = {(x,y) ∈ \n : x2 + y2 < 1 _ 1

m } consti-
tutes a balloon for E = {(x,y) ∈ \2 : x2 + y2 < 1} and so do their closures. Note 
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that we cannot select a finite number of Em that can cover E. In this connection, 
let 

Vε = {(x,y) ∈ \n : (1 _ ε)2 < x2 + y2 < (1 + ε)2} , where 0 < ε < 1. 

Fom Example 6-5.2(a), we have c(Vε) = π[(1 + ε)2 _ (1 _ ε)2] = 4πε , which ap-
proaches zero with ε . No matter how small ε may be, we can select a finite 
number of Em such that, when taken together with Vε , they can cover E. What is 
at play here is the compactness of the closure of E, which is a consequence of 
the boundedness of E. 

(c) Let E = {(u,v) ∈ \2 : 0 < u < A and 0 < v < 2π} = (0,A)×(0,2π), an open rec-
tangular subset of \2. If Em = [ 1

m ,A]× [ 1
m , 2π _ 1

m ] for m > max{1/A, 1
π } then the 

sequence of closed rectangles {Em} is a balloon for E, consisting of compact 
sets. The transformation α defined on E by α(u,v) = (ucos v, u sin v) is injective 
and continuously differentiable, its linear derivative α' being given by the matrix 

cos sin
sin cos

v u v
v u v

−⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Thus α'(u,v) is an invertible linear map for all (u,v) ∈ E. By Proposition 7-
2.4(a), the sets α(Em) have content; also, they are compact. As noted at the be-
ginning of Section 7-2, α maps E bijectively onto the subset G = {(x,y) ∈ \2 : 0 
< x2 + y2 < A2,  either x < 0 or y ≠ 0} and therefore the sequence {α(Em)} is a 
balloon for α(E ), consisting of compact sets. 

Recall from 2-4.P9 that, for any F ⊆ \n, we have F
_

 = F ∪∂F = F°∪∂F. We 
shall use this fact presently. 

7-4.8. Proposition. Let F ⊂ \n have content. Then for any ε > 0, there exists an 
open set V ⊇ ∂F such that F ∪V is open and c(V ) < ε . In particular, c(F ∪V ) < 
c(F ) + ε. 

Proof. Since F has content, the boundary ∂F has content 0. It follows by the 
equivalence of (α) and (δ) in Proposition 6-4.10 that there exists an open set V ⊇ 
∂F such that c(V ) < ε . We need only prove that F ∪V is open. This follows from 
the computation 

F ∪V = F∪(∂F ∪V ) = (F ∪∂F )∪V = (F°∪∂F )∪V 
= F°∪(∂F ∪V ) = F°∪V. , 

7-4.9. Proposition. Let {Em} be a balloon for E. If E has content, 
then l

m
i
→
m
∞

c(Em) = c(E ). 

Proof. Since c(Em) ≤ c(Em+1) ≤ c(E ), the limit must exist and not exceed c(E ). 
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To prove the reverse inequality, consider any ε > 0. Since E has content, the 
preceding proposition yields an open set V containing ∂E such that E∪V is open 
and c(V ) < ε . Since each Em has content, the proposition also yields open sets Vm 
containing ∂Em such that Em∪Vm is open and c(Vm) < ε/2m. Now, 

E ⊆ m∈U N (Em∪Vm) and V ⊇ ∂E, 
from which we get 

E
_
 = E ∪∂E ⊆ V ∪ m∈U (Em∪Vm). 

Thus, the sets V and Em∪Vm (m ∈ N) constitute an open cover of E
_
. Since E has 

content, it is bounded and therefore so is its closure E
_
. But this means E

_
 is com-

pact and the foregoing open cover contains a finite subcover. Thus there exists k 
∈ N such that V and {Em∪Vm : 1 ≤ m ≤ k} constitute a cover of E

_
. But Em ⊆ Ek 

for 1 ≤ m ≤ k and therefore E
_

 is covered by V,  {Vm : 1 ≤ m ≤ k} and Ek . Conse-
quently, 

c(E) = c(E
_

) ≤ c(V ) + ∑1 ≤ m ≤ k c(Vm) + c(Ek) < 2ε +
m
li

→
m

∞
c(Em). 

This implies the required reverse inequality. , 

7-4.10. Examples. (a) Returning to the transformation α(u,v) = (ucos v, u sin v) 
discussed above [see Example 7-4.7(c)], we note that it is easy to see 
why l

m
i
→
m
∞

c(Em) = c(E ), because Em and E are rectangles and both c(Em) and c(E ) 
can be computed directly. However, regarding the associated balloon α(Em), the 
disc with a keyhole removed, the computation of the content calls for some ef-
fort. Nevertheless, Proposition 7-4.9 allows us to conclude painlessly 
that l

m
i
→
m
∞

c(α(Em)) = c(α(E )), which is of course πA2. 

(b) Consider E = (0,1)×(0,A) and α(u,v) = (√(uv),  √[(1 _ u)v] on E. The se-
quence of sets Em = [ 1

m , 1 _ 1
m ]×[ 1

m , A _ 1
m ], starting from a sufficiently large m, 

is a balloon for E. A simple computation shows that α'(u,v) is represented by the 
matrix 

1
2 1

1

v u
u v

v u
u v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥− −⎣ ⎦

,  

which is invertible for every (u,v) ∈ E (the determinant is 11
4 1[ ]u u

u u
−

−+ , i.e., 
1 1
4 (1 )u u− ). The equation (x,y) = (√(uv), √(v _ uv) ) is equivalent to the pair 
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x = √(uv),  y = √(v _ uv), 

which can be handled by elementary computation, leading to 

u = 
2

2 2
x

x y+
,  v = x2 + y2 . 

This shows that α maps E onto the subset 

α(E ) = {(x,y) ∈ \2 : x > 0,  y > 0,  x2 + y2 < A} 

of the open first quadrant of \2 and has an 
inverse given by 

α
_1(x,y) = (x2/(x2 + y2) , x2 + y2). 

For interested readers, we present a figure that 
depicts a representative α(Em). Without com-
puting c(α(Em)), one can deduce painlessly 
from Proposition 7-4.9 that 

m
li

→
m

∞
c(α(Em)) = 

c(α(E)). In terms of the figure, it means that the area of the shaded pizza slice 
(once bitten) approaches _14

_πA2. 

7-4.11. Proposition. Let {Em} be a balloon for E. If E has content and f :E→\ 
is integrable (on E ), then f  is integrable on each Em and 

m
li

→
m

∞ mE∫ f = E∫ f. 

Proof. That f  is integrable on each Em is a consequence of the observation re-
corded immediately after Def. 6-4.5. The same observation guarantees that f is 
integrable on E\Em . Since E is assumed to have content, we have c(E\Em) = 
c(E) _ c(Em), which approaches zero by Proposition 7-4.9. It now follows by 6-
4.P6 (wherein, we take Xm = E\Em) that the equality in question holds. , 

What makes this result useful is that transformations such as the one from 
polar to rectangular coordinates, or the one in Example 7-4.10(b), do not satisfy 
the hypotheses of the transformation formula on some desired domain of inte-
gration but do satisfy them on each set of an appropriately selected balloon for 
the domain. This has already been illustrated in the discussions above. We pro-
ceed to ensure our freedom to select a balloon according to our convenience 
provided the function is nonnegative-valued. 

7-4.12. Proposition. Let f :E→\ be nonnegative-valued and {Em} be a balloon 
for E (not assumed to have content). If  L  = 

m
li

→
m

∞ mE∫ f  exists, then for any other 

α(Em) is 
shaded 
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balloon consisting of sets on which f is integrable, the corresponding limit exists 
and equals L. 

Proof. Let {Fp} be any other balloon for E such that f  is integrable on each set 
Fp . Then f  is integrable on each intersection Em∩Fp [see observation immedi-
ately after Def. 6-4.5] and the inequality 

m pE F∩∫ f  ≤ 
mE∫ f  holds for each p and 

m, because f  ≥ 0. Moreover, the sequence 
pF∫ f  is increasing (recall that Fp ⊆ 

Fp+1 by definition of a balloon). 

Now, the sequence of sets {Em∩Fp}, m = 1,2,…, is a balloon for Fp and by 
Proposition 7-4.11 and the inequality noted at the beginning, we have  

pF∫ f  = 
m
li

→
m

∞ m pE F∩∫ f  ≤ 
m
li

→
m

∞ mE∫ f  =  L. 

Thus, L is an upper bound for the increasing sequence 
pF∫ f . It follows that 

m
li

→
m

∞ pF∫ f  exists and does not exceed L. A similar argument establishes the re-

verse inequality. , 

The next proof uses the result of 2-6.P17. 

7-4.13. Proposition. Any open subset of \n has a balloon consisting of compact 
sets. 
Proof. To begin with, consider a bounded open subset W. The first step is to 
construct a sequence {Hm} of compact sets contained in W such that Hm ⊆ Hm+1 
and W = m∈U ` Hm . The second step is to construct a sequence {Em} of sets pos-
sessing the same properties and also having content. 

Since W is assumed bounded, its complement W c is nonempty and there-
fore, by 2-6.P17, the distance d(x,W c ) of a point x ∈ \n from W c is a continuous 
function of x. Hence, the subsets Hm = {x ∈ \n : d(x,W c ) ≥ 1

m }, m ∈ N,  are 
closed in \n and are contained in W. Since W is bounded, the sets Hm are also 
bounded and hence compact. Also, Hm ⊆ Hm+1 because 1

m  > 1
1m+ . Because W is 

open, each x ∈ W satisfies d(x,W c ) > 0 and therefore belongs to Hm for some m. 
Consequently, W = m∈U ` Hm . This completes the first step. 

In view of compactness, each Hm is contained in a finite union Qm of closed 
cuboids contained in W. Such a union of cuboids is compact and has content. 
Since a finite union of compact sets having content is again compact and has 
content, the sets Em = 1

m
k=U Qk ⊆ W are likewise. Moreover, 

W = m∈U ` Hm ⊆ m∈U ` Qm ⊆ m∈U ` Em ⊆ W. 
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This means {Em} is a balloon for W consisting of compact sets. The second step 
is now also complete and it has been shown that a bounded open set has a bal-
loon consisting of compact sets.  

Finally, suppose W is not bounded and for each p ∈ ̀ , let Wp = {x ∈ W : ||x || 
< p}. Then each Wp is bounded as well as open, while W = p∈U Wp . According 
to what has already been proved, for each p there is a balloon {Ep, m}m ∈ N for Wp . 
Define 

Em = p m≤U Ep, m .………………………………(1) 

Being a finite union of compact sets having content, each Em is compact and has 
content. Since Ep, m ⊆ Ep, m+1 ,  we have Em ⊆ Em+1 ⊆ W. It remains only to prove 
that every x ∈ W belongs to some Em . With this in mind, consider any x ∈ W. 
Then x ∈ Ep, m for some p and some m. But Ep, m ⊆ Ep, m+1  and hence x ∈ Ep, m' for 
some m' ≥ p. It now follows from our definition of Em in (1) that x ∈ Em' . , 

7-4.14. Theorem. Let W ⊆ \n be open and α:W→\n be a continuously differen-
tiable injective map with an invertible derivative α' everywhere on W. Suppose 
that f :α(W )→\ is a function that is nonnegative everywhere and integrable 
over every subset of its domain that has content and that the same is true of  
( f α) |detα' | :W→\. Then for any balloons {Em} and {Fp} for α(W ) and W, 
respectively, if either of the limits 

m
li

→
m

∞ mE∫ f  and l
p
i
→
m

∞ pF∫ ( f α) |detα' | (1) 

exists, then so does the other and the limits are equal. In case either of the inte-
grals ( )Wα∫ f and W∫ ( f α) |det α' |  exists ( possibly both), it is equal to both 
limits. In particular, if both the integrals exist, then they are equal to each other.  

Proof. By Props. 7-4.12 and 7-4.13, we may assume that {Fp} consists of com-
pact sets. Then {α(Fp)} consists of compact sets that also have content by 
Proposition 7-2.4(a). It is trivial to deduce that α(Fp) ⊆ α(Fp+1) and α(W ) = 

p∈U α(Fp). Therefore {α(Fp)} is a balloon for α(W ) consisting of compact 
sets. By Transformation Formula 7-4.4, we have 

( )pFα∫ f  = 
pF∫ ( f α) |detα' |  for each p.…………………(2) 

If the second limit mentioned in (1) exists, then (2) implies that l
p
i
→
m

∞ ( )pFα∫ f  
exists and is equal to it. Since {α(Fp)} is a balloon for α(W ), it follows by Prop-
osition 7-4.12 that the first limit in (1) also exists and is equal to it. On the other 
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hand, if the first limit exists, it follows by Proposition 7-4.12 that l
p
i
→
m

∞ ( )pFα∫ f  
exists and is equal to it. Therefore by (2), the second limit exists and is equal to 
it. 

The last part follows by virtue of Proposition 7-4.11. , 

7-4.15. Corollary. Suppose D is the disc {(x,y) ∈ \2 : 0 ≤ x2 + y2 ≤ A2}, where A 
> 0, and f :D→\ is continuous. Let E denote the rectangle {(r,θ) ∈ \2 : 0 ≤ r ≤ 
A,  0 ≤ θ ≤ 2π}, i.e., [0,A]×[0,2π]. Then 

D∫ f  = ∫ E∫ f(r cosθ, r sinθ) r dr dθ = 2
0

π
∫ dθ 0

A
∫ f(r cosθ, r sinθ) r dr . 

= 0
A
∫ dr 2

0
π

∫ f(r cosθ, r sinθ)r dθ .  

Proof. Since f  is continuous, the integrals all exist, while the second, third and 
fourth integrals are equal by Fubini’s theorem [Remark 6-3.3]. So, we need only 
prove that the first and second are equal. Since | f | is also continuous, the corre-
sponding integrals with | f | in place of f  also exist and hence, as in the proof of 
Transformation Formula 7-4.4, we may restrict our considerations to nonnega-
tive f.  

Let W = {(u,v) ∈ \2 : 0 < u < A and 0 < v < 2π} = (0,A)×(0,2π), an open 
subset of E. Since E\W has content zero, the integral over E is equal to that 
over W. Then, as seen in Example 7-4.7(c), the transformation α:W→\2 defined 
by α(r,θ) = (r cosθ, r sinθ) satisfies the hypotheses of Theorem 7-4.14 and 
α(W ) = {(x,y) ∈ \2 : 0 < x2 + y2 < A2,  either x < 0 or y ≠ 0} ⊆ D. Again, 
D\α(W ) has content zero and so, the integral over D is equal to that over α(W ). 
So it is sufficient to show that ( )Wα∫  f  = ∫ W∫ f(r cosθ, r sinθ) r dr dθ. But since 
we have restricted considerations to nonnegative f , the foregoing equality is 
guaranteed by the last part of Theorem 7-4.14. , 

A similar argument justifies the usual procedure of evaluating the integral 
over the part of the disc in the first quadrant, i.e., {(x,y) ∈ \2 : 0 ≤ x2 + y2 ≤ A2,  x 
≥ 0,  y ≥ 0}, via polar coordinates in the above manner, the integration with re-
spect to θ being taken over [0,  _π

2
_ ] .  

7-4.16. Examples. (a) We shall show that 2
0 )exp( x dx∞ −∫ = 1

2 √π. For any A > 0, 
let SA denote the square {(x,y) ∈ \2 : 0 ≤ x ≤ A,  0 ≤ y ≤ A}. Then 

[ 2
0 )exp(A x dx−∫ ]2 = [ 2

0 )exp(A x dx−∫ ][ 2
0 )exp(A y dy−∫ ] 

= 2 2 )exp(
AS x y dxdy− −∫ , 
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where we have used Fubini’s theorem [6-4.P11 is an alternative] in the last step. 
Therefore, we need only prove that 

2 2 )exp(
AS x y dxdy− −∫ → _π

4
_  as A→∞. 

Let 
QA = {(x,y) ∈ \2 : 0 ≤ x2 + y2 ≤ A2,  x ≥ 0,  y ≥ 0}, 

the part in the first quadrant of the disc of radius A centred at (0,0). Observe that 
QA ⊆ SA ⊆ QA√2 and exp(_x2 _ y2) > 0 everywhere. It follows that 

2 2exp( )
AQ x y dxdy− −∫  ≤ 2 2 )exp(

AS x y dxdy− −∫  ≤ 
2

2 2exp( )
AQ x y dxdy− −∫ . 

Introducing polar coordinates and applying the observation recorded after the 
proof of Cor. 7-4.15, we get 

2 2exp( )
AQ x y dxdy− −∫  = /2

0
π
∫ dθ 2

0 exp( )A r rdr−∫  = _π2
_ [ 1

2 (1 _ exp(_A2))] 

= _π4
_ [1 _ exp(_A2)] 

and similarly, 

2

2 2exp( )
AQ x y dxdy− −∫  = _π4

_ [1 _ exp(_2A2)]. 

Using these values in the double inequality displayed above, we get 
_π
4
_ [1 _ exp(_A2)] ≤ 2 2 )exp(

AS x y dxdy− −∫  ≤ _π4
_ [1 _ exp(_2A2)]. 

It is immediate from this double inequality that 2 2exp( )
AS x y dy− −∫ → _π

4
_  as 

A→∞. 

(b) The evaluation obtained above can also be expressed as 

[ 2
0 exp( )x dx∞ −∫ ]2 = 1

4 lim 1 1/
1/

1
(1 )

m
m ds

s s
−

−
∫  as m→∞,………………(A) 

because the limit on the right here is in fact π. This form of the equality makes it 
possible to pretend (if one is so inclined) that trigonometric functions are still 
waiting for humans to discover them. While the virtues of avoiding trigonome-
tric functions can be mathematically challenged [see the Internet article by 
Gilsdorf [11]], a proof of (A) can be differently enabled via the rational polar 
coordinates advocated in Wildberger [28]. For a point (x,y) in the first quadrant 
excluding (0,0), the rational polar coordinates (s,Q) are given by 

Q = x2 + y2, s = 
2

2 2
x

x y+
 [= cos2 θ — of course!]. 
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Note that s ∈ [0,1] and Q ∈ (0,∞). Every (s,Q) ∈ [0,1]×(0,∞) uniquely determines 
a point (x,y) ≠ (0,0) in the first quadrant in accordance with the following trans-
formation α: 

x = √(sQ), y = √ [(1 _ s)Q]. 

Though injective on [0,1]×(0,∞), it is continuously differentiable only on the 
proper subset (0,1)×(0,∞), which is easily seen to be mapped onto the interior of 
the first quadrant [see Example 7-4.10(b)]. Now Transformation Formula 7-4.4 
requires the coordinate transformation α to be continuously differentiable on an 
open set W that contains the closure of the domain of integration. Therefore, it 
does not justify the use of rational polar coordinates for transforming an integral 
over any subset α(E ) of the first quadrant whose closure includes a point of an 
axis. However, we can use Theorem 7-4.14, as we now show.  

Since the functions involved are continuous, their integrals over bounded 
domains with content always exist. The domain of integration that was denoted 
by QA in (a) above can be replaced by its subset {(x,y) ∈ \2 : x > 0,  y > 0,  x2 + y2 
≤ A2}. This domain is, in turn, the image α(W ) of the set W = (0,1)×(0,A2]. If we 
set Em = [ 1

m , 1_ 1
m ]×[ 1

m , A2], then {Em} is a balloon for W. Since the functions 
involved are nonnegative, it follows by Theorem 7-4.14 that 

2 2 )exp(
AQ dxdyx y− −∫  = 

m
li

→
m

∞ mE∫ exp(_Q) · |detα'(s,Q)| ds dQ 

= 
m
li

→
m

∞ mE∫ exp(_Q)  1
4

1
(1 )s s−

⎡ ⎤
⎢ ⎥
⎣ ⎦

ds dQ 

= 
m
li

→
m

∞

1 1/

1/

m

m

−
∫ [

2

1/ exp( )A
m Q dQ−∫ ] 1

4
1

(1 )s s−
⎡ ⎤
⎢ ⎥
⎣ ⎦

ds 

= 
m
li

→
m

∞
[ 2exp ( 1/ ) exp ( )m A− − − ] 1

4
1 1/

1/ (1 )
1m

m s s
ds−

−∫  

= [ 21 exp ( )A− − ] ·
m
li

→
m

∞
1
4

1 1/

1/ (1 )
1m

m s s
ds−

−∫ . 

The required equality follows upon letting A→∞. 
The equality claimed in Wildberger [28, p. 268, Example 27.3] is now es-

tablished. 
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Problem Set 7-4 

7-4.P1. Prove the following: Let E ⊆  W
_

1 ⊆ W ⊆ \n, where E and W1 have con-
tent, and W and W1 are both open. Suppose α:W→\n is a continuously 
differentiable map that is invertible on W1 and such that {x ∈ W1 : det α' (x) = 0} 
has content zero. Then, for any integrable function f :α(E

_
)→\ such that 

( f α) |detα' | : E
_
→\ is also integrable, we have 

( )E fα∫  = E∫ ( f α) |det α' | . 

7-4.P2. Prove Cor. 7-4.15 by using 7-4.P1 instead of Theorem 7-4.14. 

7-4.P3. Evaluate ∫E tan
_1(x + y) dxdy,  where E = {(x,y) ∈ \2 : x ≥ 0,  y ≥ 0,  x + y 

≤ 1}. 

7-4.P4. Let f(x,y) = 1/(x2 + y2)α and E = {(x,y) ∈ \2 : 0 < x2 + y2 ≤ 1}. Consider a 
balloon {Em}m ∈ N for E such that f  is bounded and hence integrable on each Em . 
Show that l

m
i
→
m
∞ mE∫ f exists for α < 1 and it does not exist for α ≥ 1. 

7-4.P5. Show that the hypothesis that f  is nonnegative in Proposition 7-4.12 
cannot be omitted. 

7-4.P6. Determine real numbers a1,b1,c1 and a2,b2,c2 such that the transforma-
tion T: \2→\2 given by T(x,y) = (u,v) = (a1 + b1x + c1y,a2 + b2x + c2y) maps 
(0,0) into (2,_1), (1,0) into (5,0) and (0,1) into (3,_2). Compute the Jacobian of 
T and use it to compute ∫D exp (2u _ v) dudv, where D is the image of [0,1]×[0,1] 
under T. 



 

 

The General Stokes Theorem 
Written by Harkrishan L. Vasudeva with help from Satish Shirali 

8-1 Heuristic Background 

The most important formula of analysis is the fundamental theorem of calculus. 
The formulas of Green, Gauss and Stokes are an extension of this theorem. They 
also constitute the extensively used part of the machinery of integral calculus. A 
far reaching generalisation of the above said theorems is the Stokes Theorem. In 
order to prove the theorem in its general form, we need to develop a good deal 
of material, known as differential forms. Much care has been taken to give clear 
definitions, examples and transparent proofs to tehnical challenging results. Dif-
ferential forms also provide better insight into vector calculus, as is illustrated 
by the material covered in Section 8-8. A less formal and more intuitive intro-
duction to the material covered in this chapter is available in Crowin and 
Szczarba [8], Lang [18] and Protter and Morrey [20]. 

One version of the substitution rule for Riemann integrals in one dimen-
sion is as follows (Pugh [21; p. 177]): 

8-1.1. Theorem. Let f :[a,b]→R be Riemann integrable and Φ:[α,β]→[a,b] be 
a bijection with a continuous positive first derivative. Then 

∫[a, b] f(t)dt = ∫[α, β] ( f Φ)(s)Φ'(s)ds. 

Since Riemann integrability of f  on [a,b] implies that of f(_t) on [_b, _a] 
and also implies the equality 

∫[a, b] f(t)dt = ∫[_ b, _ a] f(_t)dt 

(both integrals have the same sets of lower and upper sums), we have the fol-
lowing consequence of Theorem 8-1.1: 

8-1.2. Theorem. Let f :[a,b]→R be Riemann integrable and Φ:[α,β]→[a,b] be 
a bijection with a continuous negative first derivative. Then 

∫[a, b] f(t) dt = _ ∫[α, β] ( f Φ)(s)Φ'(s) ds. 

Combining the above two theorems, we have 

8-1.3. Theorem. Let f :[a,b]→R be Riemann integrable and Φ:[α,β]→[a,b] be 
a bijection with a continuous first derivative that vanishes nowhere. Then 

∫[a, b] f(t) dt = ∫[α, β] ( f Φ)(s)|Φ'(s)|ds. 
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It is this form of the substitution rule that the transformation formula of 
Chapter 7 generalises. 

Theorem 8-1.3 does not use the fundamental theorem of calculus (FTC). 
However, there is another version of the substitution rule which is scarcely dif-
ferent from the FTC [Shirali and Vasudeva [23; p. 378]]: 

8-1.4. Theorem. Let F:[a,b]→R and Φ:[α,β]→[a,b] both be differentiable. If 
F' and (F' Φ)Φ' are both Riemann integrable, then 

∫Φ
Φ

(

(

α
β
)

)
F'(t) dt = ∫α

β(F' Φ)(s)Φ'(s) ds. 

The proof of this theorem consists in merely observing that both sides are 
equal to F(Φ(β)) _ F(Φ(α)) by the FTC. The equality of the theorem can there-
fore also be expressed as 

F(Φ(β)) _ F(Φ(α)) = ∫α
β(F' Φ)(s)Φ'(s) ds. 

Written in this form, it looks more like the FTC than the substitution rule and we 
shall call it the ‘substitution form of the FTC’. 

Some features that distinguish Theorem 8-1.4 from Theorem 8-1.3 are 
worth noting. Perhaps the most obvious one is that Φ'(s) appears without abso-
lute value. Precisely for this reason, it is difficult to state the equality in terms of 
integrals over intervals without distinguishing the lower and upper limits of in-
tegration. Another feature worth noting is that the interval of integration on the 
left side of Theorem 8-1.4 need not be the range of the substitution function Φ. 

Having extended the substitution rule in the form of Theorem 8-1.3 to high-
er dimensions, it is natural to ask whether the substitution form of the FTC can 
also be extended. It can, but only for the case when F' has a continuous deriva-
tive. This is the task we take up in this chapter. The n-dimensional version is 
called the general Stokes theorem and resembles the well known calculus theo-
rems of Green, Stokes and Gauss when n = 2 or 3. 

A comparison of the equalities in Theorem 8-1.4, Theorem 8-1.3 and its ex-
tension to higher dimensions in Theorem 7-4.4 suggests that the role of Φ' 
should be played by a Jacobian but without absolute value. This will be the mo-
tivation for Jacobians without absolute value occurring as factors within 
integrands in the formulation of Def. 8-2.4 below. 

Let us look at the equality in the substitution form of the FTC from a heuris-
tic viewpoint, leaving it to later sections to make the ideas mathematically 
precise. First of all, the one-dimensional integral on the right side means that 
‘action’ takes place over an interval in one direction, but action on the left side 
takes place at points, namely Φ(β) and Φ(α). We can declare evaluation at a 
point to be zero-dimensional integration and write the left side as a difference of 
zero-dimensional integrals 

The General Stokes Theorem 
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∫{Φ(β)} F _ ∫{Φ(α)} F. 

By a further sleight of hand, we can then rewrite it as 

∫{Φ(β)} _ {Φ(α)} F. 

It is to be kept in mind that whatever meaning we ultimately assign to the hither-
to meaningless symbol {Φ(β)} _ {Φ(α)}, it is certainly not the algebraic 
difference of Φ(β) and Φ(α) nor even a set theoretic difference. All this may 
sound like a joke, but precise meanings can be given to these rough ideas and a 
generalisation of the substitution form of the FTC can be formulated in terms of 
them and proved. 

8-2 Differential Forms 

In this section we give a formal mathematical meaning to the kind of expres-
sions that appear as integrands of line and surface integrals in calculus and 
discuss their addition. The formal meaning will be essentially that they produce 
numbers out of ‘parametrised’ paths and surfaces. It should be noted that paths 
and surfaces differ only in the dimension of their parameter domains and will be 
collectively named as ‘surfaces’; moreover, we shall define them as coming with 
a parametrisation and there will be no question of choosing a parametrisation or 
carrying out a reparametrisation. These terms will be used only for heuristic 
descriptions of a link-up with what the reader already knows from calculus. 

8-2.1. Definition. A k-surface in an open set U ⊆ Rn is the restriction to the 
cuboid [0,1]k = {(u1 ,…,uk) : 0 ≤ ui ≤ 1 for 1 ≤ i ≤ k} of a C1 map from an open 
set ⊆ Rk containing [0,1]k into U. 

If the map is C2, we shall speak of a C2 k-surface or of a k-surface of class 
C2. 

Remarks. (a) It may be emphasised that a k-surface is a map into an open subset 
U of a Euclidean space and not a subset of U. 
(b) The domain of a k-surface can be taken to be any closed cuboid in Rk with 
nonempty interior. We have chosen the so called ‘unit cuboid’ in order to avoid 
introducing symbols for the endpoints of the edges. In specific examples, we 
may use other cuboids and leave it to the reader to rephrase matters in terms of 
the unit cuboid. 

(c) It is not required that the map in the definition be injective on the interior of 
[0,1]k ; thus it is not necessarily a ‘parametrisation’ of its range. 

(d) It is convenient to regard a map from the set {0} consisting of a single point 
into an open set U ⊆ Rn as a 0-surface. 
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8-2.2. Examples. (a) A 1-surface in R2 or R3 is the same as a continuously dif-
ferentiable curve or path, as understood in calculus, provided that the 
continuously differentiable function involved can be extended to an open set 
containing the domain. The next two examples are special cases. It is left to the 
reader to verify that the extension is possible. 
(b) The function that maps every t ∈ [0,1] into (cos πt, sin πt) ∈ R2 is a 1-surface 
in R2, usually visualised as the upper semicircle with radius 1 and centre at the 
origin, traversed anticlockwise. It may seem more familiar to think of this as 
mapping every t ∈ [0,π] into (cos t, sin t). The reader will probably regard the 
function that maps t ∈ [_1,1] into (_t,√(1 _ t2)) ∈ R2 as providing an ‘equivalent 
parametrisation’ of the same curve; however, this map is not a 1-surface because 
√(1 _ t2) is not differentiable at the points ±1 ∈ [_1,1]. 
(c) For fixed a > 0 and b > 0, define 

γ(t) = (acos t, bsin t) ∈ R2, 0 ≤ t ≤ 2pπ. 

Then γ gives rise to a 1-surface, namely, 

λ(t) = (acos (2pπt), bsin (2pπt)) ∈ R2, 0 ≤ t ≤ 1. 

Its range is an ellipse whenever p ≥ 1 or p ≤ _1. When p is an integer, it is said to 
be a ‘closed’ curve, meaning thereby that λ(0) = λ(1). 

(d) Let u,v,w be vectors in R3 with 
v and w linearly independent. As usual, 
we shall denote points of R2 by (x,y) 
instead of (x1 ,x2). Put 

Φ(x,y) = u + xv + yw, 
0 ≤ x ≤ 1, 0 ≤ y ≤ 1. 

Then Φ is a 2-surface in R3 and its range 
is a parallelogram with one vertex at u 
and sides represented by v and w. The 

components of Φ are 

Φi(x,y) = ui + xvi +  ywi , i = 1,2,3. 

(e) The function Φ that maps 

(r,θ) ∈ [0,1]×[0,1] into (rcos (2πθ), rsin (2πθ)) ∈ R2 

is a 2-surface in any open subset of R2 that contains its range, the unit disc (i.e., 
with radius 1, centre at the origin). 
(f) Define a function Φ from [0,1]×[0,1] into R3 as 

Φ(r,θ) = 
2

2 2 2

2 cos (2 ) 2 sin(2 ) 1, ,
1 1 1

r r r
r r r

⎛ ⎞πθ πθ −
⎜ ⎟⎜ ⎟+ + +⎝ ⎠

, 

u 
v

w 

The General Stokes Theorem 
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This is a 2-surface in R3 and its range is the upper unit hemisphere described by 
the equation z = √(1 _ x2 _ y2). Indeed, the point Φ(r,θ) is the point of intersec-
tion of the line joining (0,0,_1) and (rcos 2πθ, rsin 2πθ, 0) with the upper 
hemisphere. Similarly, 

Ψ(r,θ) = 
2

2 2 2

2 cos(2 ) 2 sin(2 ) 1, ,
1 1 1

r r r
r r r

⎛ ⎞πθ πθ −−⎜ ⎟⎜ ⎟+ + +⎝ ⎠
 

maps onto the lower hemisphere. Both are 2-surfaces in R3, because the compo-
nent functions have C1 extensions to an open set containing [0,1]×[0,1]. We note 
that 

Ξ(r,θ) = (rcos (2πθ), rsin (2πθ),√(1 _ r2)) 

also maps [0,1]×[0,1] onto the upper unit hemisphere, but is not a 2-surface for 
lack of a partial derivative when r = ±1. On the other hand, 

Λ(ψ,θ) = (cos (2πθ)sin (1
2πψ), sin (2πθ) sin (1

2πψ), cos (1
2πψ)), (ψ,θ)∈ [0,1]2 

does define a 2-surface with the upper unit hemisphere as its range. Here 2πθ 
and 1

2 πψ are the three-dimensional polar coordinates of the point Λ(ψ,θ). 
(g) The function that maps t ∈ [0,1] into (cos (2πt), cos (4πt)) ∈ R2 is a 1-surface 
or ‘path’ in R2. It is closed because it maps 0 and 1 into the same point of R2. Its 

range is the part of the parabola y = 2x2 _ 1 between (_1,1) and (1,1). The func-
tion that maps t ∈ [0,1] into (cos (πt), cos (2πt)) ∈ R2 is also a 1-surface with the 
same range but is not a closed path. 
(h) Let Φ:[0,1]2→R2 be the map given by 

Φ(r,θ) = ( 1
2 (3r _ 1)cos (2πθ), 1

2 (3r _ 1)sin (2πθ)). 

The reader may verify that the range is the same as in Example (e) above. None-
theless, they are two different 2-surfaces. This one is not injective on the interior 
of [0,1]2 and therefore does not correspond to what is understood as a ‘paramet-
risation’ in calculus. 

The definition of a differential form involves formidable looking integrals 
which are not all that difficult to set up. We begin with evaluation of similar 
integrals before coming to the formal definition. 

8-2.3. Examples. (a) Consider the 2-surface of Example 8-2.2(d). In the expres-
sion ω = x1 dx1 dx2 , to which we have yet to assign any mathematical meaning, 
we substitute x1 = Φ1(x,y) and dx1 dx2 = ∂(Φ1 ,Φ2)/∂(x,y)dxdy to get 

Φ1(x,y) 1 2( , )
( , )x y

∂ Φ Φ
∂

dxdy = (u1 + xv2 +  yw3)(v1w2
_ v2w1) dxdy. 

The product on the right side describes a function of (x,y) on [0,1]×[0,1], which 
is continuous and therefore has an integral. The symbol ∫Φ ω will mean the value 



254 

of the integral. Note that, although the range of Φ is a parallelogram, we do not 
mention it in the symbol for the integral. This is partly because the parallelo-
gram is implicit when we mention Φ and partly because we may want to make 
the same substitutions using a different Φ with some other range. Note that ac-
cording to the scheme by which we have substituted for dx1 dx2 , the order of x1 
and x2 matters. Therefore, it is better to denote dx1 dx2 by dx12 and agree to dis-
tinguish it from dx21 . 

The final integration will always be over the domain [0,1]×[0,1] of Φ. Thus 

∫Φ x1 dx1 2 means ∫ (u1 + xv2 +  yw3)(v1w2
_ v2w1) dxdy, 

where the latter integration is over [0,1]×[0,1]. The value of the integral is easily 
seen to be (u1 + 1

2 v2 + 1
2 w3)(v1w2

_ v2w1). 

(b) In the case of a 1-surface, the Jacobian reduces to the derivative. For the 1-
surface λ of Example 8-2.2(c) with p = 1, and ω = xdy, the integral ∫λ ω will 
mean ∫[0,1] acos 2πt( d

dt bsin 2πt) dt. The reader will find that this integral evalu-
ates to πab. Similarly, ∫λ ydx is ∫[0,1] bsin 2πt(d

dt acos 2πt) dt, which evaluates to 
_πab. 

In the definition we are about to enunciate, ordered k-tuples 〈i1 , i2 ,…, ik〉 are 
not expected to have distinct entries. 

8-2.4. Definition. A simple differential form of order k ≥ 1 (or simple k-form 
for short) in an open set U ⊆ Rn is a real-valued function on the set of all k-
surfaces in U for which there exists an ordered k-tuple 〈i1 , i2 ,…, ik〉 with entries 
from among 1,2,…,n and a continuous function f  on U such that the k-surface 
Φ is mapped into 

[0,1]k∫ 1 2

1 2

( , , , )
( ( ))

( , , , )
ki i i

k
f u du

u u u
∂ Φ Φ Φ

Φ
∂

K

K
. 

The simple k-form is then denoted by f
1 2 ki i idx L  and the above integral by 

∫Φ 1 2 ki i if dx L . 

If f  equals 1 everywhere, then we write the simple k-form as simply 
1 2 ki i idx L . 

If the integers i1 , i2 ,…, ik  are distinct, the k-form 
1 2 ki i idx L  is called a basic 

k-form. 

When k = 1, the Jacobians are understood to be the derivatives rd
du
Φ [see 

Example 8-2.3(b) above].  

The General Stokes Theorem 
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8-2.5. Remarks. (a) The definition requires the function f  to be only continu-
ous. However, what we want to do with differential forms will not work unless 
the function is at least of class C1 and often C2. It makes little difference if one 
requires them to have continuous partial derivatives of all orders. 

(b) It is not assumed that the function f  is unique. If the order of indices in 
〈i1 , i2 ,…, ik〉 is changed by a permutation, then the Jacobian is affected to the 
extent that it gets multiplied by the sign of the permutation. The multiplication is 
undone by multiplying by the sign of the permutation again. Thus 

f
1 2 ki i idx L  and (sign σ) f

1 2 kj j jdx L  

are the same differential form provided 〈i1 , i2 ,…, ik〉 is obtained by applying σ to 
〈 j1 , j2 ,…, jk〉 or vice versa. In particular, interchanging two among the dxi re-
verses the sign. Thus when k ≥ 3, we have dx1 2 = (_1)dx2 1 and so on, while dx1 2 3 
= dx2 3 1 = dx3 1 2 . Furthermore, when the indices i1 , i2 ,…, ik are not k distinct in-
tegers, the Jacobian vanishes and therefore the integral becomes 0. This means 
the function f  can be replaced by 0. 
(c) When n ≤ 3, we denote x1,x2,x3 by x,y,z respectively and write dx32 as d(zy), 
dx1 as d(x) and so on. Accordingly, the integral ∫λ ydx in Example 8-2.3(b) 
should have been denoted by ∫λ yd(x). 
(d) If the function f  is zero everywhere on U, then f

1 2 ki i idx L  maps every k-
surface into the real number 0. When k > 1, the same is true of any simple k-
form for which the indices i1 , i2 ,…, ik are not k distinct integers. In all these 
cases, we have the zero simple k-form. In particular, when k > n, the indices 
i1 , i2 ,…, ik cannot be distinct and hence we have the zero simple k-form. 
(e) A 0-form in an open set U ⊆ Rn is defined to be a continuous function on U. 
If f  is a 0-form (that is, a continuous function on U ) and Φ a 0-surface, then the 
zero-dimensional integral ∫Φ f  is understood to mean f(Φ(0)). The observations 
made under (b) above obviously do not apply to 0-forms. 

8-2.6. Examples. (a) Consider the simple 1-form xd(y) and the 1-surface λ in 
R2 of Example 8-2.2(c) with p = 1. The latter is given by 

λ(t) = (acos (2πt), bsin (2πt)) ∈ R2, 0 ≤ t ≤ 1. 

Here a > 0 and b > 0. By Def. 8-2.4,  

∫λ xd(y) = ∫[0,1] (acos (2πt)) d
dt (bsin (2πt)) dt = πab. 

Note that the value of the integral has turned out to be the Jordan content of the 
subset of R2 described by the inequality 

2 2

2 2 1yx
a b+ ≤ . This may be familiar to the 

reader from calculus. 
(b) Consider the simple 3-form d(xyz)  in R3 and the 3-surface 
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Φ(r,φ,θ) = (arcos (2πθ) sin (πφ), brsin (2πθ) sin (πφ), crcos (πφ)), 
(r,θ,φ)∈ [0,1]3. 

Observe that Φ maps the cuboid [0,1]3 onto the subset of R3 described by 
2 22

2 2 2 1yx z
a b c+ + ≤ , called ellipsoid. The Jacobian of Φ is 

1 2 3( , , )
( , , )r

∂ Φ Φ Φ
∂ φ θ

 = 2abcπ2r2sin πφ. 

Therefore by Def. 8-2.4, 

∫Φ d(xyz)  = ∫[0,1]3 2abcπ2r2sin πφ drdφdθ, 

which works out to be 4
3 πabc. Note that the value of the integral has turned out 

to be the Jordan content of the ellipsoid mentioned above. Moreover, ∫Φ d(xzy)  = 
4
3− πabc. 

We proceed to define a general differential form. 

Like any two real-valued functions on a common domain, simple k-forms 
can be added and multiplied by constants. Thus, if ω1 and ω2 are simple k-forms 
in an open set U, their sum ω1 + ω2 is the function that maps every k-surface Φ 
in U into the real number ∫Φω1 + ∫Φ ω2 . This is not to say that ω1+ ω2 is a simple 
k-form! A general differential form, called just differential form, is understood 
to be a (finite) sum of simple diferential forms. Naturally, the same differential 
form can be written as a sum of simple forms in various ways, just as a vector 
can be written as a sum of vectors in various ways. However, a vector can be 
written as a sum of specially chosen vectors (scalar multiples of vectors of a 
standard basis, for instance) in a unique way. We shall prove that a general dif-
ferential form can analogously be written as a sum of specially chosen simple 
forms in a unique way. 

A sum of 0-forms is a 0-form, and there is no distinction between simple 
and general 0-forms. 

Throughout the rest of this section and the next two, we shall be working in 
an open subset U of Rn for some n. However, they will not always be mentioned 
explicitly. 

We begin with the formal definition of a differential form in general, having 
order 1 or higher. A differential form of order 0 has already been defined in Re-
mark 8-2.5(e). 

8-2.7. Definition. A differential form of order k ≥ 1 (or k-form for short) in an 
open set U ⊆ Rn is a sum of simple k-forms in U. 

Thus a k-form ω (k ≥ 1) can be represented as ω = ΣI fI dxI , where the 
summation ranges over some k-indices I and each fI is a continuous function. If f 
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is a continuous function, then fω denotes the k-form ΣI ( f fI )dxI . Thus 
f(ΣI fI dxI) = ΣI ( f fI )dxI  by definition of the left side. 

8-2.8. Remark. When k = n _ 1 > 0, only one among the indices 1,2,…,n fails 
to occur in any given k-index I. It is then easier to index the functions fI by the 
single missing index. Thus, for example, when n = 3, it is easier to write a 2-
form as 

f3dx12 + f2dx13 + f1dx23 instead of f12dx12 + f13dx13 + f23dx23 . 

When n = 2, this hardly offers any advantage, but the fact that it can be done for 
n ≥ 2 helps with notation in the proof of the main theorem of this chapter. 

There will be occasions when we want every fI to be of class C1 or higher. 
We shall then describe the differential form as being of that class. 

It is obvious that sums and multiples of k-forms by continuous functions f  
are again k-forms. Also, such familiar looking rules as 

ω1 + ω2 = ω2+ ω1 , ω1+ (ω2+ ω3) = (ω1+ ω2) + ω3 , 
f(ω1 + ω2) = fω1 +  fω2 ,  ( f1 + f2)ω = f1ω + f2ω,  f1( f2ω) = ( f1 f2)ω 

are easily seen to hold. 

A simple k-form ω is itself a k-form, because ω = ω0 + ω, where ω0 denotes 
the zero simple k-form. Moreover, ω0 satisfies ω = ω0 + ω for any k-form ω. 
Therefore, we shall henceforth call it the zero k-form and denote it by 0. It will 
be clear from the context whether the symbol stands for a real number, a vector 
or the zero k-form. For any k-form ω, its constant multiple (_1)ω satisfies 
ω + (_1)ω = 0. Therefore we denote it by _ω. In terms of this notation, the last 
part of Remark 8-2.5(b) can be expressed as 

(a) dx1 2 = _dx2 1 and so on when k ≥ 3; 
(b) f

1 2 ki i idx L  = 0 when the indices i1 , i2 ,…, ik are not k distinct integers 
(i.e., when one of the indices is repeated).  

As with simple k-forms, the number that a k-form ω maps a k-surface Φ into 
is denoted by ∫Φ ω. Thus, 

∫Φ (ω1+ ω2) = ∫Φ ω1+ ∫Φ ω2 
and 

∫Φ (cω) = c∫Φ ω, 

where c is any real number. 

Since the ordered k-tuple 〈i1 , i2 ,…, ik〉 occurs as an index, we call it a k-
index; if we do not wish to specify k, then we speak of simply a multi-index. 
The integers ij must satisfy 1 ≤ ij ≤ n, where n is the dimension of the space we 
are working with. When we are working with Euclidean spaces of different di-
mensions simultaneously, it may become necessary to specify the range of the 
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integers in a k-index, in which case we shall speak of a k-index in or from 
〈1,2,…,n〉. 

8-2.9. Notation. If the k-index 〈i1 , i2 ,…, ik〉 is denoted by I, then dxI  denotes 

1 2 ki i idx K . 

To every simple k-form ω there corresponds a k-index I and a continuous 
function f  such that ω = f dxI . It follows from the definition of ∫Φ ω that 

f dxI + gdxI  = ( f + g)dxI . 

Hence every k-form ω is a sum 

ω = 
1 1 2 2 p pI I I I I If dx f dx f dx+ + +L  

with distinct k-indices I1, I2 ,…, Ip , none of which is a permutation of any other; 
for instance, 

y2d(xz) + sin zd(yz) + 7d(xx); 
or what is the same thing 

sin zd(yz) _ y2d(zx) 
or 

0d(xy) + sin zd(yz) _ y2d(zx). 

Also, the zero 2-form can be written as 

0 = 2d(xx) + 0d(xz) = 7d(xx) + 0d(xz) + 0d(xy), and so on. 

If ω is not 0, then the terms with k-indices containing a repeated entry can 
all be omitted. 

The 3-form 5d(xyz) + 8d(xyx) _ 4d(yzx) is a basic 3-form, because it is the 
same as d(yzx). 

Suppose k ≥ 1. We noted in Remark 8-2.5(b) above that even a basic k-form 
can have several representations. As a first step towards having a standard repre-
sentation we note that there always exists a unique permutation that rearranges 
the ordered k-tuple 〈i1 , i2 ,…, ik〉 of distinct entries i1 , i2 ,…, ik in ascending order. 

A k-index 〈i1 , i2 ,…, ik〉 is said to be ascending if i1 < i2 <…< ik . The inte-
gers i1 , i2 ,…, ik in an ascending k-index are necessarily distinct. Now, a set of k 
distinct integers can be arranged in increasing order in one and only one way. 
Therefore, for a simple k-form f

1 2 ki i idx L  which is nonzero, so that i1 , i2 ,…, ik 
are distinct, there is a unique rearrangement of 〈i1 , i2 ,…, ik〉 as an ascending k-
index J = 〈 j1 , j2 ,…, jk〉 and 

f
1 2 ki i idx L  = (sign σ) f dxJ , 
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where σ is the permutation that rearranges 〈i1 , i2 ,…, ik〉 in ascending order as J. 
We shall soon show that g = (sign σ) f  is the only function such that the above 
equality holds. 

Since every nonzero simple k-form can be written as f dxI  with an ascending 
k-index I, it follows that any k-form ω, the zero k-form included, can be written 
as 

ω = 
1 1 2 2 p pI I I I I If dx f dx f dx+ + +L  

with distinct ascending k-indices I1, I2 ,…, Ip . The possibility that some or all of 
the functions fIr are zero everywhere is not ruled out. Since there can be only 
finitely many distinct ascending k-indices, it further follows that an arbitrary k-
form ω can be written as above, with all possible (distinct) ascending k-indices 
I1, I2 ,…,  included in the sum. In symbols, 

ω = ∑I fI dxI , 

where it is understood that I ranges over all ascending k-tuples. Thus the zero 2-
form in R3 is represented as 

0 = 0d(xy) + 0d(xz) + 0d(yz) 

and in R4 as 

0 = 0dx12 + 0dx13 + 0dx14 + 0dx23 + 0dx24 + 0dx34 .  

If 〈i1 , i2 ,…, ik〉 is different from 〈i '1 , i '2 ,…, i 'k〉, both ascending, then the 
two sets of k distinct integers {i1 , i2 ,…, ik} and {i '1 , i '2 ,…, i 'k} must be different 
from each other and hence some ij must be different from all the i 'j and vice 
versa. This too is a consequence of the fact that a set of k distinct integers can be 
arranged in increasing order in one and only one way. We shall use it in the next 
proof. The reader is reminded that the assumption k ≥ 1 is still in force. 

8-2.10. Proposition. If the continuous function f  does not vanish everywhere 
and I is an ascending k-index, then there exists a k-surface Φ such that 
(a) ∫Φ f dxI  ≠ 0 and 

(b) ∫Φ gdxI '  = 0 for any continuous function g and any ascending k-index I ' ≠ I. 

Proof. Let I = 〈i1 , i2 ,…, ik〉. Suppose f  does not vanish at some ξ ∈ U. Without 
loss of generality, we may further suppose that f(ξ) > 0. Since the function is 
continuous, there exists a real number h > 0 such that every x ∈ Rn satisfying 
|xi

_ ξi| < 2h for i = 1,…,n belongs to U and satisfies f(x) > 0. Let e1,…,en de-
note the standard basis of Rn and define a function Ψ on the open set (_1,2)k as 

 Ψ(u) = ξ +
j
Σ
=

k

1
(huj)eij . 

Its restriction Φ to [0,1]k is a k-surface in U and f(Φ(u)) > 0 for every u ∈ [0,1]k. 
Observe that the Jacobian 
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equals hk everywhere and, consequently, by definition we have 

∫Φ f dxI  = hk ∫[0,1]k f(Φ(u)) du > 0. 

Let I' = 〈i'1 , i'2 ,…, i' k〉 ≠ I be another ascending k-index. Some entry i'j must be 
different from all the ij , call it i'j0. Then we have Φi'j0

 = ξ i'j0
, a constant, and 

hence the Jacobian 
1 2

1 2

( , , , )
( , , , )

ki i i

ku u u
′ ′ ′∂ Φ Φ Φ

∂
K

K
 

vanishes everywhere, so that by definition, 

∫Φ gdxI' = 0. , 

8-2.11. Corollary. Any k-form ω, where k ≥ 1, has a unique representation as a 
sum ω = ∑I fI dxI , where the summation ranges over all ascending k-tuples I. 
Proof. The existence of such a representation has already been argued above. It 
remains only to prove that, if ω = ∑I fI dxI  = ∑I gI dxI , where both summations 
range over all possible ascending k-tuples I, then fI = gI  for each I. 

Suppose there is some ascending k-tuple J such that f  = fJ
_ gJ does not 

vanish everywhere. By Proposition 8-2.10, there exists some k-surface Φ such 
that ∫Φ f dxJ  ≠ 0, i.e., ∫Φ fJ dxJ ≠ ∫Φ gJ dxJ , and also ∫Φ fI' dxI'  = ∫Φ gI' dxI'  = 0 for 
every I' ≠ J. It follows that ∫Φ∑I fI dxI  = ∫Φ fJ dxJ ≠ ∫Φ gJ dxJ  = ∫Φ∑I gI dxI . This 
implies ∑I fI dxI  ≠ ∑I gI dxI . , 

The unique representation of a k-form as ∑I fI dxI , as guaranteed by the 
above Corollary, is called its standard representation. 

The only possible ascending n-index is 〈1 ,2 ,…,n〉. Therefore, any n-form 
in an open subset of Rn has standard representation consisting of a single term; 

thus every n-form is simple. 

8-2.12. Remark. If ω = ∑I fI dxI  in standard representation, then for any con-
tinuous function f , the standard representation of fω is ∑I ( f fI )dxI . If ω = 
∑I fI dxI  and ψ = ∑I gI dxI  both in standard representation, then ω + ψ = 
∑I ( fI + gI)dxI  in standard representation. This simple observation will be crucial 
for some of our computations below. 
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Problem Set 8-2 

8-2.P1. Let ω = 
i
Σ
=

n

1
 fidxi and Φ:[0,1]→Rn be the restriction of a C1 map. Express 

∫Φ ω as a Riemann integral over an interval. Calculate ∫Φ ω, when Φ(u) = 
(u,u2,u3) and ω = dx + dz. 

8-2.P2. Let ω = f1dx23 + f2dx31 + f3dx12 , where f1, f2, f3 are continuous on R3 and 
Φ:[0,1]2→R3, Φ(u) = (Φ1(u),Φ2(u),Φ3(u)) be a 2-surface in R3. Express ∫Φ ω as a 
Riemann integral over a subset of R2. 

8-2.P3. For the 2-surface Φ of Example 8-2.2(d) and the 2-form 

ω = 1 2 2 1 12 1 3 3 1 13 2 3 3 2 23( ) ( ) ( )v w v w dx v w v w dx v w v w dx− + − + − , 
evaluate ∫Φ ω. 

8-2.P4. Consider the 2-surface Φ in R3 of Example 8-2.2(f). Evaluate ∫Φ ω when 

ω = x1dx23 + x2dx31 + x3dx12 . 

8-2.P5. Give an example of a 1-surface Φ in Rn such that for any 1-form ω in 
Rn, the value of ∫Φ ω is 0. 

8-2.P6. Give an example of a 3-surface of class C2 in R2. 

8-2.P7. Let ϕ be a C1 function on [0,1]. Show that it can be extended to a C1 
function on an open interval containing [0,1]. Show that the mapping 
Φ:[0,1]2→R2 defined by Φ(u,v) = (u, v⋅ϕ(u)) is a 2-surface and describe its 
range. Show also that the mapping Ψ:[0,1]→R2 defined by Ψ(t) = Φ(t,1) is a 1-
surface and describe its range. 

8-3 Wedge Products 

The collection of differential forms has a built-in multiplication process, called 
the wedge product or exterior product, and it is denoted by ∧. We multiply a p-
form in Rn by a q-form in Rn and obtain a (p + q)-form, which is 0 by definition 
if p + q > n. It suffices to define the wedge product of forms in standard repre-
sentation and then show that the same formula works for forms that are in other 
representations. 

Until further notice, only forms of order 1 or higher will be under consider-
tion. 

8-3.1. Notation. If I = 〈i1 , i2 ,…, ip〉 is an ascending p-index and J = 〈 j1 , j2 ,…, jq〉 
an ascending q-index, we denote by 〈I,J 〉 the (p + q)-index 

〈I,J〉 = 〈i1 , i2 ,…, ip , j1 , j2 ,…, jq〉. 
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8-3.2. Remark. Observe that 〈I,J〉 need not be an ascending index even when I 
and J are. Examples: I = 〈147〉 and J = 〈135〉 gives 〈I,J〉 = 〈147135〉, and I = 
〈147〉 and J = 〈235〉 gives 〈I,J〉 = 〈147235〉, which is an odd permutation of the 
ascending index 〈123457〉. Also, 〈123457〉 is an even permutation of 〈J, I〉 = 
〈235147〉. 

8-3.3. Definition. Let α = ∑I fI dxI  and β = ∑J gJ dxJ  be a p-form and a q-form, 
respectively, both in standard representation. Their (wedge) product is the 
(p + q)-form given by 

α∧β = ΣI, J fI gJ dx〈I, J〉 . 

In R3 for example, we have 

dx1∧dx3 = (1dx1 + 0dx2 + 0dx3)∧ (0dx1 + 0dx2 + 1dx3) = dx13 . 

If we drop the terms in the standard representations of α and β for which fI 
and gJ are zero everywhere, the computation of α∧β will not be affected. How-
ever, this option is available only when neither α nor β is the zero form. We do 
not wish to consider separate cases when one among them is the zero form. But 
in a specific situation, we may drop the zero terms, as we now illustrate. 

dx15∧dx2348 = dx152348 = _dx123458 , 

dx15∧dx16 = dx1516 = 0 (the zero 4-form). 
Also, 

1 13 5 12 245 2 345 1 13245 1 2 13345 5 12245

2 5 12345

( ) (2 ) 2 2x dx x dx dx x dx x dx x x dx x dx
x x dx

+ ∧ − = − +
−

 

= 1 12345 2 5 123452x dx x x dx− −  

= 1 2 5 12345(2 )x x x dx− + . 

We draw attention to the fact that the right side of the defining equality for 
the wedge product need not be a standard representation for two reasons. One is 
that 〈I,J〉 may contain a repeated index. A second is that, if each 〈I,J〉 containing 
no repeated index is subjected to a permutation that rearranges its entries in as-
cending order, the ascending multi-indices obtained after rearrangement may not 
be distinct, as noted in Remark 8-3.2. 

This makes it difficult to use the sum ΣI,J fI gJ dx〈I, J〉 for a further computa-
tion of a wedge product such as 

(ΣI,J fI gJ dx〈I, J〉)∧ (∑K hK dxK). 

We shall overcome this difficulty by showing that the defining equality for the 
wedge product is actually valid even when the differential forms on the left side 
are not in standard representation. However, in order to do this, we first work 
with the definition as above in terms of standard representations. 
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8-3.4. Proposition. Suppose I is a p-index and J is a q-index (neither one as-
sumed to be ascending) and fI , gJ are continuous functions. Then 

( fI dxI)∧(gJ dxJ) =  ( fI gJ)dx〈I, J〉 . 

Proof. It is clear from Def. 8-3.3 that 0∧β = α∧0 = 0 for any α and β. 
If I contains a repeated index, then so does 〈I,J〉 and what is required to be 

proved reduces to 0∧ (gJ dxJ) = 0, which is true. Same when J contains a re-
peated index. So, assume that neither I nor J contains a repeated index. 

Let ρ and σ be the permutations that rearrange I and J, respectively, as as-
cending indices ρI and σJ. Then by Remark 8-2.5(b), 

fI dxI = (sign ρ) fI dxρI and gJ dxJ = (sign σ)gJ dxσJ . 

Moreover, the standard representations of fI dxI and gJ dxJ are 

fI dxI = ∑K ≠ ρI 0dxK + (sign ρ) fI dxρI and gJ dxJ = ∑L ≠ σJ 0dxL + (sign σ)gJ dxσJ . 

Therefore, it follows from Def. 8-3.3 that 

( fI dxI)∧(gJ dxJ) = (sign ρ)(sign σ)( fI gJ)dx〈ρI, σJ〉 . (1) 

Now we consider two cases. 
Case 1. 〈I,J〉 contains a repeated index. 
In this case, 〈ρI,  σJ〉 also contains a repeated index. Consequently, both 

(sign ρ)(sign σ)( fI gJ)dx〈ρI, σJ〉 and ( fI gJ)dx〈I, J〉 are the zero form and it follows 
from (1) that ( fI dxI)∧ (gJ dxJ) = 0 = ( fI gJ)dx〈I, J〉 . 

Case 2. 〈I,J〉 contains no repeated index. 
This means no index occurring in I occurs in J and we can unambiguously 

define τ to be the permutation of 〈I,J〉 that agrees with ρ on I and agrees with σ 
on J. Then τ is the product of the permutations ρ and σ (in either order) and 
sign τ = (sign ρ)(sign σ). Also, τ〈I,J〉 = 〈ρI,  σJ〉. Therefore 

( fI gJ)dx〈ρI, σJ〉 = ( fI gJ)dxτ〈I, J 〉 = (sign τ)( fI gJ)dx〈I, J〉 . 

Substituting this in (1), we get 

( fI dxI)∧(gJ dxJ) = (sign ρ)(sign σ)(sign τ)( fI gJ)dx〈I, J〉 
= (sign τ)2( fI gJ)dx〈I, J〉 = ( fI gJ)dx〈I, J〉 . , 

8-3.5. Proposition. Both distributive laws hold: If α and β are p-forms and γ is 
a q-form, then 

(α + β)∧γ = α∧γ + β∧γ and γ∧ (α + β) = γ∧α + γ∧β. 

Proof. Suppose  
α = ∑I fI dxI , β = ∑I gI dxI  and γ = ∑J hJ dxJ , 

all being standard representations. Then by Def. 8-3.3, 

α∧γ = ΣI,J fI hJ dx〈I, J〉 , β∧γ = ΣI,J gI hJ dx〈I, J〉 .  
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Besides, the standard representation of α + β is ∑I ( fI + gI)dxI . Therefore we can 
apply Def. 8-3.3 to obtain 

(α + β)∧γ = ΣI,J ( fI + gI)hJ dx〈I, J〉  
= ΣI,J fI hJ dx〈I, J〉 + ΣI,J gI hJ dx〈I, J〉 .  

The preceding three equalities lead immediately to (α + β)∧γ = α∧γ + β∧γ. 
The proof that γ∧ (α + β) = γ∧α + γ∧β is similar. , 

We now use the two propositions above to establish that the defining equal-
ity in Def. 8-3.3 for the wedge product is valid even when α = ΣI fI dxI  and β = 
ΣJ gJ dxJ  are not standard representations. 

8-3.6. Proposition. Let α = ΣI fI dxI  and β = ΣJ gJ dxJ , not necessarily standard 
representations. Then 

α∧β = ΣI, J fI gJ dx〈I, J〉 . 
In other words, 

(ΣI fI dxI )∧(ΣJ gJ dxJ ) = ΣI, J fI gJ dx〈I, J〉 . 

Proof. By repeated application of distributivity (Proposition 8-3.5), we have 

α∧β = ΣI (( fI dxI)∧(ΣJ gJ dxJ )) = ΣI ΣJ (( fI dxI)∧ (gJ dxJ )) 

= ΣI, J fI gJ dx〈I, J〉 by Proposition 8-3.4. , 

8-3.7. Proposition. The wedge product is associative: If α,β,γ are forms of any 
orders, then 

(α∧β)∧γ = α∧ (β∧γ). 

Proof. Straightforward computation using the above two propositions. , 

8-3.8. Proposition. If α is a p-form and β is a q-form, then 
α∧β = (_1)pq(β∧α). 

Proof. In view of the distributivity proved in Proposition 8-3.5, it is sufficient to 
prove the equality only for simple forms α = fI dxI  and β = gJ dxJ . Proposition 8-
3.4 and the property noted just after Def. 8-2.7 that f1( f2ω) = ( f1 f2)ω further re-
duces the matter to the case when α = dxI  and β = dxJ . Thus we need only prove 
that 

dxI ∧dxJ = (_1)pq(dxJ ∧dxI) , 

where I is a p-index and J is a q-index. We also know from Proposition 8-3.4 
that 

dxI ∧dxJ = dx〈I, J〉 and dxJ ∧dxI = dx〈J, I〉 . 
Therefore, we need only prove that 
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dx〈I, J〉 = (_1)pqdx〈J, I〉 . 

This will follow if we show that the sign of the permutation σ that rearranges 
〈I,J〉 as 〈J , I〉 is (_1)pq, because we know from Remark 8-2.5(b) that dx〈I, J〉 = 
(sign σ)dx〈J, I〉 . To see why sign σ = (_1)pq, let 

I = 〈i1 , i2 ,…, ip〉 and J = 〈 j1 , j2 ,…, jq〉 . 
Then 

〈I,J〉 = 〈i1 , i2 ,…, ip , j1 , j2 ,…, jq〉 and 〈J, I〉 = 〈 j1 , j2 ,…, jq , i1 , i2 ,…, ip〉 . 

It is easily seen from here that permuting 〈I,J〉 into 〈J, I〉 can be achieved by 
successively interchanging each of ip, ip _1 ,…, i1 , in that order, with its immedi-
ate neighbours to the right j1 , j2 ,…, jq (again, in that order), one after the other. 
This calls for q interchanges to be carried out for each of the p indices 
ip, ip _1 ,…, i1 . Therefore, sign σ = (_1)pq. , 

The above considerations did not take into account forms of order 0, which 
are defined to be continuous functions. We complete the picture by setting f∧α 
= α∧ f  = fα, where f  is a continuous function and thus a 0-form. It is left to the 
reader to verify that the properties of the wedge product that have been shown to 
hold continue to be valid when one or more of the forms involved are of order 0. 

8-3.9. Proposition. If h is a continuous function and α,β are forms of any or-
ders, then (hα)∧β = h(α∧β) = α∧(hβ). 

Proof. Immediate from Proposition 8-3.6. , 

Note that, since hα = h∧α and h(α∧β) = h∧ (α∧β), the first equality in 
Proposition 8-3.9 can also be obtained as a consequence of Proposition 8-3.7. 

8-3.10. Remark. It is a consequence of Proposition 8-3.4 and Proposition 8-3.7 
that, for any k-index 〈i1 , i2 ,…, ik〉, the equality 

1 2 ki i idx L = 
1 2 ki i idx dx dx∧ ∧ ∧L  

holds. We shall often write 
1 2 ki i idx dx dx∧ ∧ ∧L for 

1 2 ki i idx L or, what is the same 
thing, for dxI , where I = 〈i1 , i2 ,…, ik〉. 

Problem Set 8-3 

8-3.P1. For 1-forms α,β, show by direct computation (without using Proposition 
8-3.8) that α∧β = _β∧α. 

8-3.P2. Show that there is a 2-form α in R4 such α∧α ≠ 0. 



8-4 The Exterior Derivative 

In this section we define the exterior derivative of any differential form. More 
specifically, given any k-form ω of class C1 in an open set U ⊆ Rn, we produce a 
(k + 1)-form in U, called the exterior derivative. A characterisation is provided at 
the end. 

We remind the reader that all our discussion pertains to an open subset of 
Rn. 

8-4.1. Definition. The exterior derivative of a 0-form f  of class C1 is the 1-form 
df  = 

j
Σ
=

n

1
(Dj f )dxj  

and that of a k-form (k ≥ 1) of class C1 in standard representation ω = ∑I fI dxI  
is the (k + 1)-form 

dω = ∑I (dfI )∧dxI . 

It may appear at first sight that the symbol ‘dxj’ now has two meanings, one 
in the sense of the definition of a differential form and another as the exterior 
derivative of the 0-form f  given by f(x) = xj . However, the exterior derivative of 
this 0-form is nothing but what we have called dxj in the former sense. So the 
two meanings turn out to be the same. 

8-4.2. Examples. (a) If f :R3→R is given by f(x1 , x2 , x3) = x1
2 + x2x3 , then 

df = 1 1 3 2 2 32x dx x dx x dx+ + . 

(b) If fi :Rn→R is the function that maps any point in Rn onto its ith coordinate, 
i.e., fi(x1 , x2 , … , xn) = xi , then Dj fi = 1 or 0 according as j = i or j ≠ i. Therefore, 
dfi = dxi . 
(c) Suppose n = 2 and ω is a 1-form given in xy-notation as 

ω = f dx + gdy. 
Then 

dω = (df )∧(dx) + (dg)∧ (dy) 

= f f g gdx dy dx dx dy dy
x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ ∧ + + ∧⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

= f gdy dx dx dy
y x

∂ ∂∧ + ∧
∂ ∂

 

= g f dx dy
x y

⎛ ⎞∂ ∂− ∧⎜ ⎟∂ ∂⎝ ⎠
, 
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because the terms involving dx∧dx and dy∧dy vanish. 

(d) Suppose n = 4 and ω is a 2-form given in terms of x1 , x2 , x3 , x4 by 

ω = x4dx1∧dx2 + x2x3dx 1∧dx3 .  
Then 

dω = dx4∧dx1∧dx2 + (x3dx2 + x2dx3)∧dx1∧dx3 
= dx4∧dx1∧dx2

_ x3dx1∧dx2∧dx3 

since dx3∧dx2∧dx3 = 0. 

(e) The 1-form in R2 given by ω = xdy is not the (exterior) derivative of any 0-
form. Suppose, if possible, that ω = df, where f  is a C1 function on R2. Since by 
definition, df = (Dx f )dx + (Dy f )dy, for any closed curve γ with component func-
tions γ1 and γ2 , i.e., a 1-surface with γ(0) = γ(1), we have 

∫γ ω = ∫[0,1] [(Dx f )(γ1(t),γ2(t)) 1d
dt
γ⎛ ⎞

⎜ ⎟
⎝ ⎠

+ (Dy f )(γ1(t),γ2(t)) 2d
dt
γ⎛ ⎞

⎜ ⎟
⎝ ⎠

]dt 

= ∫[0,1]
d
dt f(γ1(t),γ2(t)) dt = f(γ1(1),γ2(1)) _ f(γ1(0),γ2(0)) 

= 0, 

because γ(0) = γ(1). On the other hand, for the closed curve given by γ(t) = 
(cos (2πt), sin (2πt)), we have ∫γ ω = π as seen in Example 8-2.6(a). This contra-
diction shows that ω = xdy is not the (exterior) derivative of any 0-form. 

8-4.3. Theorem. If α is a p-form and β a q-form, both of class C1, then α∧β is 
also of class C1 and 

d(α∧β) = (dα)∧β + (_1)pα∧ (dβ). (1) 

Moreover, d is linear. In particular, if ω = ∑I fI dxI ,  not necessarily in standard 
form, then dω = ∑I (dfI )∧dxI . 
Proof. It is straightforward to see from the definition of wedge product that α∧β 
is also of class C1. 

The linearity of d on 0-forms is a trivial consequence of the linearity of par-
tial differentiation. For higher order forms, when ∑I fI dxI  and ∑I gI dxI are 
standard representations, their sum has standard representation ∑I ( fI + gI)dxI  
and the multiple c∑I fI dxI , where c ∈ R, has standard representation ∑I (cfI)dxI . 
This allows us to check linearity by a routine computation. It is then straightfor-
ward to verify that dω = ∑I (dfI)∧dxI  even if ω = ∑I fI dxI , not necessarily in 
standard form. 

We begin by proving (1) when one among α and β is a 0-form. If both are, 
then (1) is essentially the product formula for derivatives. It can be summarised 
as 

d( fg) = (df )g + f(dg), 
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when f and g are C1 functions. We shall use this special case shortly. 

Suppose α is a 0-form and β is a q-form, q > 0. In view of the distributivity 
of the wedge product and linearity of d, we need prove (1) in this case only 
when β = gdxJ , a simple q-form. In order to avoid losing sight of the hypothesis 
that α is a 0-form of class C1, which means simply a C1 function, we shall de-
note it by f . Then 

dβ = dg∧dxJ . 

Using the result of the preceding paragraph and the distributivity of the wedge 
product, we obtain 

d(α∧β) = d( f∧β) = d(( fg)dxJ) = d( fg)∧dxJ  = ((df )g + f(dg))∧dxJ  

= ((df )g))∧dxJ + ( f(dg))∧dxJ . 
Now, by Proposition 8-3.9, we have 

((df )g))∧dxJ  = (df )∧ (gdxJ ) = (dα)∧β 
and 

( f(dg))∧dxJ  = f(dg∧dxJ) = α∧ (dβ). 

Therefore d(α∧β) = (dα)∧β + α∧ (dβ). Since p = 0 in the present case, the 
foregoing equality is the same as (1). 

If α is a p-form, p > 0, and β a 0-form, we can prove analogously that (1) 
holds, or alternatively, appeal to the fact that α∧β = β∧α when one of these is 
0-form, and apply the case just established in the preceding paragraph. 

Finally, consider the case when both α and β are higher order forms. Again, 
in view of the distributivity of the wedge product and linearity of d, we need 
prove (1) only when both are simple forms. Therefore we take 

α = fdxI  and β = gdxJ , 

where f  and g are C1 functions and dxI , dxJ  are basic forms with ascending in-
dices I, J. Then 

α∧β = fg dx〈I, J〉  = fg (dxI ∧ dxJ). 

Therefore, 
d(α∧β) = d( fg)∧dx〈I, J〉  = ((df )g + f(dg))∧dx〈I, J〉  

= ((df )g)∧dx〈I, J〉 + ( f dg)∧dx〈I, J〉  
Now, by Proposition 8-3.9, 

((df )g)∧dx〈I, J〉 = ((df )g)∧(dxI ∧ dxJ) = df ∧(dxI ∧ gdxJ) 

= (df ∧dxI)∧ (gdxJ) = (dα)∧β. 

Also, by Proposition 8-3.8, dg∧dxI = (_1)pdxI ∧dg and hence 

( f dg)∧dx〈I, J〉 = ( f dg)∧ (dxI ∧ dxJ) = f(dg∧(dxI ∧ dxJ)) 

= f((dg∧dxI)∧ dxJ) = f((_1)pdxI ∧dg)∧dxJ) 
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= (_1)p f ∧dxI ∧ (dg∧dxJ ) = (_1)p α∧ (dβ). 
Thus, 

d(α∧β) = (dα)∧β + (_1)pα∧ (dβ). , 

Since d is defined only on forms of class C1, then d(dω) makes sense only 
for forms ω of class C2. 

8-4.4. Corollary. Let ω be a C2 form of order p in U ⊆ Rn. Then d(dω) = 0. 
Proof. Observe that d(dxI) = d(1dxI) = 0 because every partial derivative of the 
constant function 1 is 0. 

Let ω = f ∈ C2(U ). Then  

d(dω) = d(
j
Σ
=

n

1
(Dj f )dxj) 

= 
j
Σ
=

n

1
d(Dj f )∧dxj 

= 
i,
Σ
j

n

=1
(Di j f )dxi∧dxj . 

= 
1 i j n≤ < ≤
∑ (DiDj f _ DjDi f )dxi∧dxj 

= 0, 

because Di j f = Dj i f  by Schwarz’ Theorem 3-5.3 ( f is of class C2). Thus, d(dω) 
= 0 when ω is a C2 form f  of order 0. This may be written as d2f = 0. 

If ω = fdxI , then by Def. 8-4.1, dω = df∧dxI . Consequently, by (1) of Theo-
rem 8-4.3, d(dω) = d2f∧dxI + (_1)1df∧d(dxI) = 0 since d2f = 0 and d(dxI) = 0. 
This proves the result for simple forms. Additivity of d now implies it for gener-
al forms. , 

8-4.5. Remark. The 1-form in R2 given by ω = xdy is not the (exterior) deriva-
tive of any C2 0-form. Indeed, if xdy = df, where f  is a C2 function, then d2f = 0, 
whereas d(xdy) = dx∧dy ≠ 0. [See also Example 8-4.2(e).] 

We have shown in the above paragraphs that the exterior derivative pos-
sesses the following properties: 

 (i) d is additive: d(α + β) = dα + dβ; 
 (ii) d(α∧β) = (dα)∧β + (_1)pα∧ (dβ), where p is the order of α; 
 (iii) d(dα) = 0, where α is a C2 form of any order. 

These properties together with the fact that df = 
j
Σ
=

n

1
(Dj f )dxj when f  is a 0-form 

of class C1 characterise d on the family of all C1 forms. Applying the last men-
tioned fact to f = xi , we obtain df = 

j
Σ
=

n

1
(Dj f )dxj = 1dxi , because all other terms in 

the summation have Dj f  = 0. Thus df = dxi . Since f is of class C2, (iii) now leads 
to 0 = d(df ) = d(dxi). Hence, repeated application of (ii) yields 
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d(
1 2 ki i idx dx dx∧ ∧ ∧L ) = 0. 

But by Remark 8-3.10 
1 2 ki i idx dx dx∧ ∧ ∧L  = dxI , where I = 〈i1 , i2 ,…, ik〉. Thus 

d(dxI) = 0 for any k-index I. Now, if ω = ΣI fI dxI  is any k-form of class C1, by 
(i) and (ii), we have dω = ΣI (dfI ∧dxI + fI d(dxI)) = ΣI dfI ∧dxI since d(dxI) = 0. 

Problem Set 8-4 

8-4.P1. Write the standard representation of the 1-form df, where f(x1 ,…,xn) = 

i
Σ
=

n

1
xi

2 and show directly from the definition that its exterior derivative is 0. 

8-4.P2. Let ω be a k-form in U ⊆ Rn. If there is a (k _ 1)-form λ such that dλ = 
ω, then ω is said to be exact in U. If dω = 0, then ω is said to be closed in U. Let 
U = R2\{(0,0)} be the plane with origin removed. Show that the 1-form 

η = 2 2
xdy ydx

x y
−
+  

is closed but not exact. 

8-5 Induced Mappings on Forms 

Let us consider in detail what happens to functions (0-forms) under a mapping 
of their domain. 

Suppose that U is an open subset of Rn, V an open subset of Rm. If a real va-
lued function f  is defined on V, then a map T:U→V naturally generates a related 
function 

T*f = f T 

on U. Thus, if T maps the open set U into the open set V, then the set of real va-
lued functions on V is mapped (in the opposite direction) to the set of functions 
on U under the correspondence f→T*f in the manner described above. If f and T 
are both continuous, then the same is true of T*f. 

In other words, we have shown that a mapping T* of 0-forms on V into 0-
forms on U arises naturally from a continuous map T:U→V. 

The definition below extends this idea to forms of higher order when T is a 
C1 map from U to V. 

We shall use x for points of U and y for points of V. Let t1 , .…, tm be the 
component functions of T. Note that for each i (1 ≤ i ≤ m), dti = 

j
Σ
=

n

1
(Djti)dxj is a 

1-form in U. They will be mentioned in the forthcoming definition. 

8-5.1. Definition. With notation as above, the mapping T*, which maps each k-
form 

ω = ∑I bI dyI 
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in standard representation into 

T*ω = ∑I (bI T )
1 2 ki i idt dt dt∧ ∧ ∧L , 

where 〈i1 , i2 ,…, ik〉 = I, is called the mapping (of forms) induced by the map 
T:U→V. 

Example. Let ω = y1dy1∧dy2 + y3
2dy1∧dy3 + y1y2dy2∧dy3  be a 2-form in 

R3, and let T :R2→R3 be defined by 

T(x1 ,x2) = (x1 + x2 ,x2
2,x1x2). 

The component functions of T are t1(x1 ,x2) = x1 + x2 ,  t2(x1 ,x2) = x2
2,  t3(x1 ,x2) = 

x1x2 . So, dt1 = dx1 + dx2 ,  dt2 = 2x2dx2 ,  dt3 = x2dx1 + x1dx2 . Therefore, 

T*ω = (x1 + x2)(dx1 + dx2)∧ (2x2dx2) + (x1x2)2(dx1 + dx2)∧ (x2dx1 + x1dx2) 
+ (x1 + x2)x2

2(2x2dx2)∧(x2dx1 + x1dx2) 
= (2x2(x1 + x2) + x1

3x2
2 _ x1

2x2
3 _ 2x2

4(x1 + x2))dx1∧dx2 . 

8-5.2. Remarks. (a) If any of the terms in the standard representation ω = 
∑I bI dyI  are the zero form of order k, then so is the corresponding term in T*ω. 
Therefore, in computing T*ω from ω, we may omit the zero terms. 
(b) Combined with this observation, the definition yields T*(dyiμ) = dtiμ for μ = 
1,…,m. 
(c) In the case of a simple k-form, 

ω = fI dyI  = fI 1 2 ki i idy dy dy∧ ∧ ∧L , 

the observation and Definition together yield  

T*ω = (fI T )
1 2 ki i idt dt dt∧ ∧ ∧L  

= (T*f I) 1 2
* ( ) * ( ) * ( )

ki i iT dy T dy T dy∧ ∧ ∧L . 

The last equality holds irrespective of whether 〈i1 , i2 ,…, ik〉 is an ascending in-
dex or not. Indeed, the same permutation is needed on each side to produce an 
ascending index. 

(d) By the second part of Remark 8-2.12, T*(ω1 + ω2) = T*(ω1) + T*(ω2). 

(e) It follows from (c) and (d) that, for an arbitrary k-form ω = ∑I bI dyI in V, 
whether in standard representation or not, we have 

T*ω = ∑I (T*b I ) 1 2
* ( ) * ( ) * ( )

ki i iT dy T dy T dy∧ ∧ ∧L . 

(f) If ω1 and ω2 are forms of any orders, then 

T*(ω1∧ω2) = T*(ω1)∧T*(ω2). 

This is trivial if one is a 0-form, and follows from (d) and (e) for other cases. 
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(g) A k-surface Φ is, by definition, the restriction of a C1 map defined on an 
open set containing the cuboid [0,1]k. Therefore it makes sense to speak of Φ*, 
thereby meaning Φ1*, where Φ1 is any C1 function of which Φ is the restriction. 
In case there are more than one such Φ1, then whatever we say about Φ* will be 
valid with any choice of Φ1 . 

The following is a natural property of induced mappings on forms. The 
symbol ST denotes the composition S T, and T*S* denotes T* S*. 

8-5.3. Proposition. Let U,V,W be open sets in Rn,Rm and Rr, respectively. Sup-
pose T :U→V and S :V→W are C1 maps. If ω is a k-form in W, then S*ω is a k-
form in V, T*S*ω and (ST )*ω are k-forms in U and 

T*S*ω = (ST )*ω. 

Proof. Only the equality is in need of proof. If ω is a 0-form, that is, a continu-
ous function f :W→R, then  

(ST )*ω = (S T)*f = f (S T ) = ( f S) T = (S*f ) T = T*(S*f ) = (T*S*) f . 

Thus, the equality holds for 0-forms. 
Let us denote points of U,V,W by x,y,z, respectively. Let t1 ,…, tm be the 

component functions of T and s1 ,…, sr be the component functions of S. We 
denote the component functions of ST by u1 ,…,ur . If ω = dzq , then 

S*ω = S*(dzq) = dsq = 
j
Σ
m

=1
(Djsq)dyj , 

so that 
T*S*ω = T*(S*ω) = 

j
Σ
m

=1
((Djsq) T)dtj = 

j
Σ
m

=1
((Djsq ) T)

 i
Σ
=

n

1
(Ditj)dxi 

= 
i
Σ
=

n

1
(Diuq)dxi by the chain rule 

= duq = (ST)*ω. 

If ω = 
q
Σ

r

=1
fqdzq is a 1-form in W, we have 

(ST )*ω = 
q
Σ

r

=1
((ST)* fq)(ST )*dzq = 

q
Σ

r

=1
(T*S* fq)(T*S*dzq) = T*(

q
Σ

r

=1
(S* fq)(S*dzq)) 

= T*(S*ω) = T*S*ω. 

The general case of the equality to be proved now follows from Remark 8-
5.2(e). , 

The next proposition shows that exterior differentiation of forms and of in-
duced forms have the expected relationship. 

8-5.4. Proposition. Let U be an open set in Rn, V an open set in Rm and suppose 
T :U→V is a C2 map. Then 

d(T*ω) = T*(dω) 

The General Stokes Theorem 



8-5 Induced Mappings on Forms 273 

for any k-form ω in V of class C1. 
Proof. We use y = (y1 ,…,ym) for points of V and x = (x1 ,…,xn) for points of U. 
Let t1 , .…, tm be the component functions of T. If ω = f  is a 0-form, then 

T*(dω) = T*(
j
Σ
m

=1
(Dj f )dyj) = 

j
Σ
m

=1
T*(Dj f )T*(dyj) = 

j
Σ
m

=1
((Dj f ) T )dtj 

= 
j
Σ
m

=1
((Dj f ) T)

 i
Σ
=

n

1
(Ditj)dxi = 

i
Σ
=

n

1
(

j j
Σ
m

=1
((Dj f ) T )(Ditj))dxi 

= 
i
Σ
=

n

1
 Di ( f T) dxi by the chain rule 

= d(T*f ) = d(T*ω). 

Thus, the result holds for 0-forms. 
Now let ω = f

1 2 ki i idy dy dy∧ ∧ ∧L  = f dyI , where I = 〈i1 , i2 ,…, ik〉 is an as-
cending k-index. Then by definition of T* and Remark 8-5.2(f), we have 

d(T*ω) = d(T*f
1 2 ki i idt dt dt∧ ∧ ∧L ) 

= d(T*f )∧
1 2 ki i idt dt dt∧ ∧ ∧L + (_1)0T*f d(

1 2 ki i idt dt dt∧ ∧ ∧L ), 

where we have used (1) of Theorem 8-4.3 in the second step. Since the result 
has been shown above to hold for 0-forms, we have d(T*f ) = T*(df ). Apply the 
identity (1) of Theorem 8-4.3 to d(

1 2 ki i idt dt dt∧ ∧ ∧L ) repeatedly k _ 1 times 
and use Corollary 8-4.4 k times, which we may, because T is of class C2. Upon 
doing so, we find that d(

1 2 ki i idt dt dt∧ ∧ ∧L ) = 0. Therefore, 

d(T*ω) = T*(df )∧
1 2 ki i idt dt dt∧ ∧ ∧L  = T*(df )∧T*(dyI) 

= T*(df ∧dyI) by Remark 8-5.2(f) 

= T*(dω). 

Thus, the result holds for simple k-forms. Since d and T* are both additive [see 
Theorem 8-4.3 and Remark 8-5.2(d)], it holds for all k-forms. , 

Problem Set 8-5 

8-5.P1. Consider the mapping T:R→R2 defined by T(x) = (x2,x3). If ω = y1dy2 is 
a 1-form in R2, show that T*ω = 3x2dx. 

8-5.P2. Let T:R2→R be defined by T(x, y) = x _ y. Find T*(dx). 

8-5.P3. Let T:R2→R2 be given by T(x1, x2) = (ax1 + bx2 ,cx1 + ex2) and let ω = 
dy1∧dy2 . Show that T*ω = (ae _ bc)dx1∧dx2 . 

8-5.P4. Verify in Rn that df1∧…∧dfn = 1

1

( , , )
( , , )

n

n

f f
x x

∂
∂

K

K
 dx1∧…∧dxn for any C1 

functions f1 ,…, fn . 
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8-5.P5. In the notation used for Def. 8-5.1, show for any simple k-form ω = bI -

dyI in V with k ≤ n that 

T*ω = (bI T)ΣJ
1

1

( , , )
( , , )

k

k

i i

j j

t t
x x

∂
∂

K

K
dxJ ,  

where 〈 i1 ,…, ik〉 = I and the summation extends over all ascending k-indices J = 
〈 j1 ,…, jk〉 in {1,…,n}. If k > n, then T*ω = 0. It is not assumed that I is ascend-
ing. 

8-5.P6. Let ω be a k-form and Φ a k-surface in an open set U ⊆ Rm. Let 
ιk :[0,1]k→Rk be the inclusion map, that is, ιk(y) = y. Show that ∫Φ ω = ∫ιkΦ*ω. 

8-5.P7. Let T:R2→R3 and f :R3→R3 be C2 mappings and the component func-
tions of f  be f1, f2 , f3 . Suppose ω is the 1-form defined by ω = f1dx + f2dy + f3dz . 
Prove that T*(dω) = 〈(curl f ) T,N〉, where N(u,v) ∈ R3 has respective compo-
nents 

2 3 3 11 2 ( , ) ( , )( , )
, ,

( , ) ( , ) ( , )
T T T TT T

u v u v u v
∂ ∂∂

∂ ∂ ∂
, 

curl f  is as defined on p.296 and 〈, 〉 denotes the inner product in R3. 

8-6 Chains and Their Boundaries 

The modern language of differential forms originated with É. Cartan but the 
general Stokes theorem was proposed by H. Poincaré as the formula: 

∫∂Φ ω = ∫Φ dω, 

where Φ is a k-surface with ‘boundary’ ∂Φ in an open set U ⊆ Rn, in which the 
(k _ 1)-form ω is defined. 

George Stokes was the first to bring the classical result attributed to him in-
to the public domain, but he did not claim credit, as he had come to know of it 
from Lord Kelvin. 

The general Stokes theorem transforms an integral over a surface into 
another over the region enclosed by the surface, and includes the well-known 
theorems of Green, Gauss and Stokes, but with somewhat restrictive hypotheses. 

First we verify the Stokes formula for the n-surface defined by the identity 
map of [0,1]n onto itself and then go to the general case with the help of induced 
forms. 

The boundary of the 1-surface defined by the identity map of [0,1] onto it-
self, intuitively speaking, is the ‘sum’ of two zero-dimensional surfaces that map 
onto {1} and {0}, the latter taken with a negative sign, for reasons discussed in 
Section 8-1. For Green’s theorem on [0,1]2 in calculus, the boundary is supposed 
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to be traversed ‘anticlockwise’, which means it is taken to consist of the four 1-
surfaces given by 

Γ10(t) = (0, t), Γ20(t) = (t, 0), Γ11(t) = (1, t) and Γ21(t) = (t, 1), 

but Γ10 and Γ21 are to be traversed in the reverse direction in order that the anti-
clockwise orientation be maintained. Reversal of direction means that integrals 
computed using the above parametrisation are to be multiplied by _1. Equiva-
lently, the parametrisation is to be reversed (replace t by 1 _ t). Thus we may 
think of the anticlockwise boundary as _Γ10 + Γ11 + Γ20

_ Γ21 , or 

i
Σ
=

2

1
(_1)i(Γi0

_ Γi1). 

To make this precise, we need to have a way of (i) forming sums of k-surfaces 
with 1 and _1 permitted as coefficients; (ii) setting up integrals of differential 
forms over such sums and (iii) generalising Γi0 and Γi1 to higher dimensions. 

8-6.1. Definition. Let U be an open subset of Rn and Φ1 ,Φ2 ,…,Φr be k-
surfaces. By a k-chain in U we mean a formal linear combination of k-surfaces 

c = 
q
Σ

r

=1
aqΦq , 

where Φ1 ,Φ2 ,…,Φr are k-surfaces and a1 ,a2 ,…,ar are real numbers. 

It may be emphasised that c is not a linear combination of the functions 
Φ1 , Φ2 ,…,Φr defined on [0,1]k but a ‘formal’ linear combination, meaning the-
reby a function defined on the set of all k-surfaces with respective values 
a1 ,a2 ,…,ar on the surfaces Φ1 ,Φ2 ,…,Φr and value 0 at every other k-surface. 

The integral of a k-form ω over a chain c = 
q
Σ
r

=1
aqΦq  is defined by 

∫c ω = 
q
Σ

r

=1
aq ∫Φqω. 

We can add k-chains and multiply them by real constants as we do with any real 
valued functions defined on a set, which is the set of all k-surfaces in the present 
case. Thus, if c = 

q
Σ
r

=1
aqΦq and c' = 

q
Σ
'=

r'

1
aq'Φq' , then c + c' = 

q
Σ
r

=1
aqΦq +

q
Σ
'=

r'

1
aq'Φq' , 

where terms may be combined in the usual manner, and for any real number a, 
the chain ac is 

q
Σ

r

=1
(aaq)Φq . We give below some elementary properties of chains. 

8-6.2. Proposition. Let a be a real number and let ω, ω' be k-forms in an open 
set U ⊆ Rn. Suppose c,c' are k-chains in U. Then 

∫c (ω + ω') = ∫c ω + ∫c ω', 

∫c + c' ω = ∫c ω + ∫c' ω, 

∫ac ω = a ∫c ω. 

Proof. If c = 
q
Σ
r

=1
aqΦq , then 
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∫c (ω + ω') = 
q
Σ

r

=1
aq ∫Φq (ω + ω') = 

q
Σ

r

=1
aq ∫Φq ω +

q
Σ

r

=1
aq ∫Φq ω' = ∫c ω + ∫c ω'. 

The remaining assertions can be proved analogously. , 

 
We proceed to define the boundary of a k-surface in U ⊆ Rn. For each posi-

tive integer i, 1 < i ≤ k, define mappings Γi0 and Γi1 as 

Γi0(x1 ,…,xk_1) = (x1 ,…,xi_1 , 0,xi ,…,xk_1) 
and 

Γi1(x1 ,…,xk_1) = (x1 ,…,xi_1 , 1,xi ,…,xk_1). 

These functions map [0,1]k_1 into various faces of [0,1]k. For instance, if k = 2, 
then Γ21 takes [0,1] onto the edge of [0,1]2 between the vertex with coordinates 
(0,1) and the vertex with coordinates (1,1), whereas Γ20

 takes [0,1] onto the edge 
between the vertex (0,0) and the vertex (1,0). Actually, they map Rk_1 into Rk 
and have derivatives of all orders. Therefore, if V is an open set in Rk containing 
[0,1]k, then the inverse images Γi0

_1(V ) and Γi1
_1(V ) are open sets in Rk_1 [see 2-

6.P11], which Γi0 and Γi1 map into V. Consequently, if Φ is a k-surface, then the 
composed maps Φ Γi1 and Φ Γi0 are (k _ 1)-surfaces and hence the summation 
in Def. 8-6.4 below describes a (k _ 1)-chain. Besides, if Φ is of class C2, then so 
are Φ Γi1 and Φ Γi0. 

Strictly speaking, our notation for the maps Γi0 and Γi1 should indicate k as 
well, but we prefer not to complicate our symbols and instead take k as unders-
tood from the context. When we work with a composition such as Γi0 Γj0 , it 
should be borne in mind that the value of k for Γi0 is 1 higher than that for Γj0 . 
So, the symbols Γi0 and Γj0 do not mean quite the same thing in the composition 
Γj0 Γi0 as they do in the composition Γi0 Γj0 . This caveat applies to 8-6.P2–8-
6.P4. 

8-6.3. Remarks. (a) The component functions of Γi0 and Γi1 may be denoted by 
(Γi0)j and (Γi1)j , 1 ≤ j ≤ k. With this notation, we can describe Γi0 by setting 

(Γi0)j =

1

0
j

j

x j i
j i

x j i−

⎧ <
⎪ =⎨
⎪ >⎩

 

and analogously for Γi1 with 1 replacing 0 when j = i. 

(b) Since Γi0 and Γi1 map [0,1]k_1 into Rk, there are k Jacobians associated with 
each, depending on which k _ 1 component functions we are taking the Jacobian 
of: 

0 1 0 1 0 1 0

1 1

(( ) , , ( ) , ( ) , , ( ) )
( , , )

i i j i j i k

kx x
− +

−

∂ Γ Γ Γ Γ
∂

K K

K
, 1 ≤ j ≤ k, 
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and similarly for Γi1 . However, since (Γi0)i and (Γi1)i are constant functions (0 
and 1, respectively), the Jacobian vanishes unless j = i, in which case, the Jaco-
bian is 1 1

1 1

( , )
( , )

k

k

x x
x x

−

−

∂
∂

K

K
 = 1 everywhere. 

8-6.4. Definition. If Φ:[0,1]k→U ⊆ Rn is a k-surface, k > 1, the boundary of Φ 
is defined to be the (k _ 1)-chain 

∂Φ = 
i
Σ
=

k

1
(_1)i(Φ Γi0

_ Φ Γi1). 

and that of a 1-surface Φ:[0,1]→U ⊆ Rn is the 0-chain Φ(1) _ Φ(0). Further-
more, the boundary of a k-chain c = 

q
Σ
r

=1
aqΦq , where k > 0, is defined to be 

∂c = 
q
Σ

r

=1
aq∂Φq . 

One can informally think of ∂Φ as essentially the restriction of Φ to the fac-
es of [0,1]k, each of which is suitably ‘reparametrised’. 

If k = 2, then 

∂Φ = 
i
Σ
=

2

1
(_1)i(Φ Γi0

_ Φ Γi1) = Φ Γ20 + Φ Γ11
_ Φ Γ10

_ Φ Γ21 . 

The boundary being the sum of 1-surfaces with appropriate signs is a 1-chain. 

8-6.5. Example. Let the 2-surface Φ:[0,1]2→R2 be given by 

Φ(r,θ) = (rcos (3πθ), rsin (3πθ)). 

Since Γ10 (t) = (0,t), Γ11 (t) = (1,t), Γ2 0 (t) = (t,0), Γ2 1(t) = (t,1), we have 
Φ Γ10 (t) = (0,0); range is just the origin; 
Φ Γ11 (t) = (cos (3πt), sin (3πt)); range is the circle of radius 1 about the origin, 

the subsets [0,_13
_] and [ _2

3
_ ,1] of [0,1] both being mapped into the upper semi-

circle; 
Φ Γ20 (t) = (t,0); range is the segment between the origin and (1,0); 
Φ Γ21 (t) = (_t,0); range is the segment between the origin and (_1,0). 

Note that the ranges of Φ Γ10 , Φ Γ20  and Φ Γ21  contain interior points of 
the range of Φ. Moreover, integrals over Φ Γ20  and Φ Γ21  need not cancel. 

8-6.6. Remark. Consider the inclusion mapping ιk :[0,1]k→Rk, that is, ιk (y) = y. 
Since it is the restriction of a C2 map of Rk into itself, it provides a k-surface and 
the induced map ιk* is defined. Also, Γi0 and Γi1 can be considered as mapping 
Rk_1 into Rk, and moreover the compositions ιk Γi0 and ιk Γi1 reduce to Γi0 and 
Γi1 . Consequently, 

∂ιk  = 
i
Σ
=

k

1
(_1)i(Γi0

_ Γi1). 
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Problem Set 8-6 

8-6.P1. Show that Γi0*(dyj) = Γi1*(dyj) = 

1

if 
0 if 

if 

j

j

dx j i
j i

dx j i−

⎧ <
⎪ =⎨
⎪ >⎩ . 

8-6.P2. If Φ is a k-surface, k > 1, prove that 

∂(∂Φ) = 
i
Σ
=

k

1
(_1)i

 j

k
Σ
=

_1

1
(_1)j(Φ Γi0 Γj0

_ Φ Γi0 Γi1
_ Φ Γi1 Γj0 + Φ Γi1 Γj1). 

8-6.P3. Prove that, for any i, j, 1 ≤ i ≤ j ≤ k_1, we have 

(i) Γi0 Γj0 = Γj+1,0 Γi0 , 

(ii) Γi0 Γj1 = Γj+1,1 Γi0 , 

(iii) Γi1 Γj0 = Γj+1,0 Γi1 , 

(iv) Γi1 Γj1 = Γj+1,1 Γi1 . 

8-6.P4. If Φ is a k-surface, k > 0, prove that 

(i) 
i
Σ
=

k

1 j

k
Σ
=

_1

1
(_1)i+ jΦ Γi0 Γj0 = 0, 

(ii) 
i
Σ
=

k

1 j

k
Σ
=

_1

1
(_1)i+ j (Φ Γi0 Γj1 + Φ Γi1 Γj1) = 0, 

(iii) 
i
Σ
=

k

1 j

k
Σ
=

_1

1
(_1)i+ jΦ Γi1 Γj1 = 0. 

8-6.P5. Let c be a k-chain, k > 1. Show that ∂(∂c) = 0. 

8-6.P6. State conditions under which the formula 

∫Φ ( f dω) = ∫∂Φ ( f ω) _ ∫Φ (df )∧ω 

holds, and show that it generalises the formula of integration by parts. 

8-6.P7. For the 2-surfaces Φ of Example 8-2.2(e) and Example 8-2.2(h), de-
scribe the four maps Φ Γ10 ,Φ Γ11 ,Φ Γ2 0 ,Φ Γ2 1 on the domain [0,1]. Also, 
describe their ranges in the terminology of analytic geometry of R2. Which, if 

any, of the four maps has range contained in the the boundary of the range of Φ  
in the sense of Def. 2-4.12? (Answer this on the basis of a figure; precise proof 
not required.) 

8-6.P8. Let ω be an n-form of class C1 in an open set U ⊆ Rn and c an (n + 1)-
chain of class C2. Show that ∫∂c ω = 0. 
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8-7 The General Stokes Theorem 

We begin with the substitution form of the fundamental theorem of calculus in 
the language of differential forms. 

8-7.1. Theorem. Let F be a C1 function on an open set U ⊆ R and Φ a 1-surface 
of class C2 in U. Then ∫Φ dF = ∫∂Φ F. 

Proof. ∫Φ dF = ∫[0,1] (F' Φ)Φ' = ∫0
1 (F' Φ)(s)Φ'(s) ds = F(Φ(1)) _ F(Φ(0)). 

Also, ∂Φ = Φ(1) _ Φ(0). (Here Φ(0) and Φ(1) denote 0-surfaces.) Conse-
quently, 

∫∂Φ F = F(Φ(1)) _ F(Φ(0)). , 

8-7.2. Example. Let F = x be the 0-form in an open set U, where [0,1] ⊂ U ⊂ 
R1. Let Φ:[_1,1]→U be given by Φ(x) = x2. Then 

∫Φ dF = ∫_
1
11⋅2tdt = 0 

and 

∫∂Φ F = F(Φ(1)) _ F(Φ(_1)) = F(1) _ F(1) = 0. 

8-7.3. Theorem. Green’s Theorem for Differential Forms. Let U be an open 
subset of  R2, ω a 1-form of class C1 in U and c a 2-chain in U of class C2. Then 

∫∂c ω = ∫c dω. 

Proof. We use y for points of R2 and x for points of R1. It is clear from the defi-
nitions of boundary and of integral over a chain that we need establish the 
equality only when c is a C2 2-surface Φ. 

Since ω is a 1-form, it can be represented as 

ω = f2 dy1 +  f1 dy2 . 
Therefore, 

dω = (D1 f1
_ D2 f2) dy1∧dy2 , 

where the negative sign comes from interchanging dy2 with dy1 . 

To begin with, suppose the 2-surface Φ is given by the inclusion map 
ι:[0,1]2→R2. Observe that (Di fi ) ι = (Di fi ) for i = 1,2 and the Jacobian of ι is 
1. Consequently, 

∫ι dω = ∫ι (D1 f1) dy1∧dy2
_ ∫ι (D2 f2) dy1∧dy2  

= ∫[0,1]2 (D1 f1 ) dy1dy2
_ ∫[0,1]2 (D2 f2 ) dy1dy2 . 

8-7 The General Stokes Theorem 279 



280 

Using Fubini’s theorem, we have 

∫ι dω = ∫[0,1] dy2 ∫[0,1] (D1 f1 ) dy1
_ ∫[0,1] dy1 ∫[0,1] (D2 f2 ) dy2 . 

Now, 
∫[0,1] (D1 f1 ) dy1 = f1(1,y2) _ f1(0,y2) = ( f1 Γ11

_ f1 Γ10)(y2) 
and 

∫[0,1] (D2 f2 ) dy2 = f2(y1 ,1) _ f2(y1 , 0) = ( f2 Γ21
_ f2 Γ20)(y1). 

Therefore, ∫ι dω is seen to be equal to 

∫[0,1] ( f1 Γ11
_ f1 Γ10)(y2) dy2

_ ∫[0,1] ( f2 Γ21
_ f2 Γ20)(y1) dy1  

= ∫[0,1] ( f1 Γ11
_ f1 Γ10)(x) dx _ ∫[0,1] ( f2 Γ21

_ f2 Γ20)(x) dx (1)  

by renaming the variables y2 and y1 as x. 

We next compute the integral ∫∂ι ω. Now, ∂ι = _Γ10 + Γ11 + Γ20
_ Γ21 ; there-

fore, 

∫∂ι ω = 
10 11 20 21−Γ +Γ +Γ −Γ

ω∫  = _∫Γ10
ω + ∫Γ11

ω + ∫Γ20
ω _ ∫Γ21

ω. (2) 

Now, 
∫Γi1

ω = ∫Γi1
f1 dy2 + ∫Γi1

f2 dy1 

= ∫[0,1]
f1 Γi1

1id
dx
Γ dx + ∫[0,1]

f2 Γi1
1id

dx
Γ dx. 

Together with Remark 8-6.3(b), this implies 

∫Γi1
ω = ∫[0,1] fi Γi1 dx. (3) 

Similarly, 
∫Γi0

ω = ∫[0,1] fi Γi0 dx. (4) 

Substituting (3) and (4) in (2) and using (1), we obtain the required result in the 
case when the 2-surface c = Φ is the inclusion map ι:[0,1]2→R2. 

Suppose now that c is a 2-surface Φ:[0,1]2→R2. Then by the result of 8-
5.P6, 

∫Φ dω = ∫ι Φ*(dω) 

= ∫ι d(Φ*ω) by Proposition 8-5.4. 
Now, Φ is (can be extended to be) a C2 map from an open subset of R2 to U and 
ω is a 1-form in U. Therefore Φ*ω is a 1-form in an open subset of R2. This 
permits us to use the special case that has already been proved. Together with 
Remark 8-6.6, this leads to 
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8-7 The General Stokes Theorem 281 

∫ι d(Φ*ω) = ∫∂ι Φ*ω = 
2

0 1
1
( 1) ( )

*
i

i i
i=

− Γ −Γ∑

Φ ω∫  = 
i
Σ
=

2

1
(_1)i( ∫Γi0 Φ*ω _ ∫Γi1 Φ*ω) 

= 
i
Σ
=

2

1
(_1)i ∫ιk_1

(Γi0*(Φ*ω) _ Γi1*(Φ*ω)) by 8-5.P6 again 

= 
i
Σ
=

2

1
_1)i ∫ιk_1

((Φ Γi0)*(ω) _ (Φ Γi1)*(ω)) by Proposition 8-5.3 

= ∫∂Φ ω, 

applying 8-5.P6 to each of the four integrals in the previous sum. As recorded at 
the beginning of this proof, it is sufficient to prove the theorem when the chain c 
is a 2-surface, as has now been done. , 

8-7.4. Example. Let Φ be the 2-surface of Example 8-3-2(h). Below we trans-
form the integral ∫∂Φ xdy via Theorem 8-7.3 and show that it does not yield the 
area (content in R2) of the range of Φ. 

Theorem 8-7.3 transforms the integral into ∫Φ dx∧dy. By definition, this 
means ∫[0,1]2 JΦdrdθ, where JΦ means the Jacobian of Φ with respect to (r,θ). 
Computation leads to JΦ = 3

2
π (3r _ 1). Therefore, the integral evaluates to 3

4
π , 

which differs from the area of the range of Φ, as the latter is π. 

8-7.5. Stokes Theorem for Differential Forms. Let U be an open subset of  R3, 

ω be a 1-form in U of class C1 and c a 2-chain in U of class C2. Then 

∫∂c ω = ∫c dω. 

Proof. Let ι:[0,1]2→R2 be the inclusion map. Then by 8-5.P6 and Proposition 8-
5.P4, we have 

∫Φ dω = ∫ι Φ*(dω) = ∫ι  d(Φ*ω). 

It follows from here by using Green’s Theorem (Theorem 8-7.3) that 

∫Φ dω = ∫∂ι Φ*ω. 
Now, 

∫∂ι Φ*ω = 
i
Σ
=

2

1
(_1)i( ∫Γi0

Φ*ω _ ∫Γi1
Φ*ω) 

= 
i
Σ
=

2

1
(_1)i ∫ι (Γi0*(Φ*ω) _ Γi1*(Φ*ω)) by 8-5.P6 again 

= 
i
Σ
=

2

1
(_1)i ∫ι ((Φ Γi0)*(ω) _ (Φ Γi1)*(ω)) by Proposition 8-5.3 

= ∫∂Φ ω, 

applying 8-5.P6 to each of the four integrals in the previous sum. , 
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8-7.6. Example. Let Φ be the 2-surface described by the equations  
x = cos u, y = (b + sin u)cos v, z = (b + sin u)sin v, 

where 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π and b ∈ R. (When b > 1, this parametrises a torus.) 

Let ω = Pdx + Q dy + R dz be a 1-form in R3 of class C1. Then dω = 

R Q dy dzy z
⎛ ⎞∂ ∂− ∧⎜ ⎟∂ ∂⎝ ⎠

+ P R dz dxz x
⎛ ⎞∂ ∂− ∧⎜ ⎟∂ ∂⎝ ⎠

+ Q P dx dyx y
⎛ ⎞∂ ∂− ∧⎜ ⎟∂ ∂⎝ ⎠

. We shall prove 

that ∫∂Φ ω = ∫Φ dω, where ∂Φ = 
i
Σ
=

2

1
(_1)i(Φ Γi 0

_ Φ Γi 2π). 

From the definition of integrals of forms, we get 

∫Φ
P Pdz dx dx dyz y

⎛ ⎞∂ ∂∧ − ∧⎜ ⎟∂ ∂⎝ ⎠
 

= ∫
[0, 2π]2

( , ) ( , )( , ) ( , )( , ) ( , )
z x x yP Pu v u v dudvz u v y u v

⎛ ⎞⎛ ⎞⎛ ⎞ ∂ ∂∂ ∂Φ − Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
o o  

= ∫
[0, 2π]2 ( , ) cos ( , ) sin sin ( sin )P Pu v v u v v u b u dudvz y

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂Φ − Φ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
o o . (1) 

Set F(u,v) = P Φ. Then 

F
v

∂
∂ = ( , )P u vy

⎛ ⎞∂ Φ⎜ ⎟∂⎝ ⎠
o

y
v

∂
∂ + ( , )P u vz

⎛ ⎞∂ Φ⎜ ⎟∂⎝ ⎠
o

z
v

∂
∂  

= _sin v (b + sin u) ( , )P u vy
⎛ ⎞∂ Φ⎜ ⎟∂⎝ ⎠

o + cos v(b + sin u) ( , )P u vz
⎛ ⎞∂ Φ⎜ ⎟∂⎝ ⎠

o . (2) 

Substituting from (2) into (1), we find that the right side of (1) becomes 

∫
[0, 2π]2

sin u F
v

∂
∂ dudv = ∫

[0, 2π]
sin u (F(u, 2π) _ F(u, 0))du = 0 

since F(u, 2π) = (P Φ)(u, 2π) = P(cos u,b + sin u, 0) = (P Φ)(u, 0) = F(u, 0). 
Therefore, it follows from (1) that 

∫Φ
P Pdz dx dx dyz y

⎛ ⎞∂ ∂∧ − ∧⎜ ⎟∂ ∂⎝ ⎠
= 0. (3) 

On using the definition of integrals of forms, we get 

∫Φ
Q Qdx dy dy dzx z

⎛ ⎞∂ ∂∧ − ∧⎜ ⎟∂ ∂⎝ ⎠
 

= ∫[0, 2π]2 ( , ) sin sin ( , ) cos ( sin )Q Qu v u v u v u b u dudvx z
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂Φ − Φ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

o o . (4) 
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Observe that 

u
∂
∂ (sin v(b + sin u) (Q Φ)(u,v)) 

= sin vcos u (Q Φ)(u,v) + sin v (b + sin u){( Q
x

∂
∂ Φ)(u,v)(_sin u) 

+ ( Q
y

∂
∂ Φ)(u,v)cos ucos v + ( Q

z
∂
∂ Φ)(u,v)cos usin v} (5) 

and 

v
∂
∂ (cos ucos v (Q Φ)(u,v)) 

= (_sin v)cos u (Q Φ)(u,v) + cos ucos v{( Q
y

∂
∂ Φ)(u,v) (_sin v)(b + sin u)  

+ ( Q
z

∂
∂ Φ)(u,v)cos v (b + sin u)}. (6) 

Substituting from (5) and (6) into the right side of (4), we get 

_ ∫ [0, 2π]2 u
∂
∂ (sin v (b + sin u)(Q Φ)(u,v)) + v

∂
∂ (cos ucos v (Q Φ)(u,v)). (7) 

Now, 

∫ [0, 2π] u
∂
∂ (sin v(b + sin u)(Q Φ)(u,v)) du = 0 

and 

∫ [0, 2π] v
∂
∂ (cos ucos v (Q Φ)(u,v)) dv = 0. 

Therefore 

∫Φ
Q Qdx dy dy dzx z

⎛ ⎞∂ ∂∧ − ∧⎜ ⎟∂ ∂⎝ ⎠
= 0. 

Similarly, 

∫Φ
R Rdy dz dz dxy z

⎛ ⎞∂ ∂∧ − ∧⎜ ⎟∂ ∂⎝ ⎠
= 0. 

Together with (3), these two equalities show that ∫Φ dω = 0. In order to prove the 
required equality, we must thus show that ∫∂Φ ω = 0. 

Now, 
∫∂Φ Pdx =  _∫Φ Γ10

Pdx + ∫Φ Γ12π
Pdx + ∫Φ Γ20

Pdx _ ∫Φ Γ22π
Pdx. (8) 

Also, using the subscript 1 to denote first components, we have 

d
dt ((Φ Γ10)1(t)) = t

∂
∂ Φ1(0, t) = t

∂
∂ cos 0 = t

∂
∂ cos 2π = t

∂
∂ Φ1(2π, t) 
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 = t
∂
∂ ((Φ Γ12π)1(t)). 

Therefore, 

∫Φ Γ10
Pdx = ∫[0,2π] ((P Φ Γ10)(t)) t

∂
∂ ((Φ Γ10)1(t)) dt = ∫Φ Γ12π

Pdx. 

Since d
d t ((Φ Γ20)1(t)) = d

d t Φ1(t, 0) = d
d t Φ1(t, 2π) = d

d t ((Φ Γ22π)1(t)), 
therefore, 

∫Φ Γ20
Pdx = ∫[0,2π] ((P Φ Γ20)(t)) d

dt ((Φ Γ20)1(t)) dt = ∫Φ Γ22π
Pdx. 

Using (8), we therefore conclude that ∫∂Φ Pdx = 0. 

Similar arguments, all exploiting the fact that Φ(0, t) = Φ(2π, t) and Φ(t, 0) = 
Φ(t, 2π), lead to ∫∂Φ Qdy = 0 = ∫∂Φ Rdz. Consequently, ∫∂Φ ω = 0, as remained to 
be shown. 

8-7.7. Theorem. Divergence Theorem for Differential Forms. Let U be an 
open subset of  R3, ω a 2-form of class C1 in U and c a 3-chain in U of class C2. 
Then 

∫∂c ω = ∫c dω. 

Proof. We use y for points of R3 and x for points of R2. It is clear from the defi-
nitions of boundary and of integral over a chain that we need establish the 
equality only when c is a C2 3-surface Φ. 

Since ω is a 2-form, it can be represented as 

ω = f1 dy2∧dy3 +  f2 dy1∧dy3 +  f3 dy1∧dy2 . 
Therefore 

dω = (D1 f1
_ D2 f2 + D3 f3) dy1∧dy2∧dy3 , 

where the negative sign comes from interchanging dy2 with dy1 . 

To begin with, suppose the 3-surface Φ is given by the inclusion map 
ι:[0,1]3→R3. Observe that (Di fi ) ι = (Di fi ) for i = 1,2,3 and the Jacobian of ι is 
1. Consequently, 

∫ι dω = ∫ι (D1 f1) dy1∧dy2∧dy3
_ ∫ι (D2 f2) dy1∧dy2∧dy3 + ∫ι (D3 f3) dy1∧dy2∧dy3 

= ∫[0,1]3 (D1 f1 ) dy1dy2dy3
_ ∫[0,1]3 (D2 f2 ) dy1dy2dy3 + ∫[0,1]3 (D3 f3 ) dy1dy2dy3 . 

Using Fubini’s theorem, we have 

∫ι dω = ∫[0,1] dy3 ∫[0,1] dy2 ∫[0,1] (D1 f1 ) dy1  

_ ∫[0,1] dy1 ∫[0,1] dy3 ∫[0,1] (D2 f2 ) dy2  
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+ ∫[0,1] dy1 ∫[0,1] dy2 ∫[0,1] (D3 f3 ) dy3 . 
Now, 

∫[0,1] (D1 f1 ) dy1 = f1(1,y2 ,y3) _ f1(0,y2 ,y3) = ( f1 Γ11
_ f1 Γ10)(y2 ,y3), 

∫[0,1] (D2 f2 ) dy2 = f2(y1 ,1,y3) _ f2(y1 ,0,y3) = ( f2 Γ21
_ f2 Γ20)(y1 ,y3) 

and 

∫[0,1] (D3 f3 ) dy3 = f2(y1 ,y2 ,1) _ f2(y1 ,y2 ,0) = ( f3 Γ31
_ f3 Γ30)(y1 ,y2). 

Therefore, ∫ι dω is seen to be equal to 

∫[0,1] dy2 ∫[0,1] dy3 ( f1 Γ11
_ f1 Γ10)(y2 ,y3) 

_ ∫[0,1] dy1 ∫[0,1] dy3 ( f2 Γ21
_ f2 Γ20)(y1 ,y3) 

+ ∫[0,1] dy1 ∫[0,1] dy2 ( f3 Γ31
_ f3 Γ30)(y1 ,y2) 

= ∫[0,1] dx1 ∫[0,1] dx2 ( f1 Γ11
_ f1 Γ10)(x1 ,x2) 

_ ∫[0,1] dx1 ∫[0,1] dx2 ( f2 Γ21
_ f2 Γ20)(x1 ,x2) 

+ ∫[0,1] dx1 ∫[0,1] dx2 ( f3 Γ31
_ f3 Γ30)(x1 ,x2) (1)  

by renaming each of the variable pairs (y2 ,y3,), (y1 ,y3), (y1 ,y2) as (x1 ,x2). 
We next compute the integral ∫∂ι ω. Now, 

∂ι = _Γ10 + Γ11 + Γ20
_ Γ21

_ Γ30 + Γ31 . 
Therefore 

∫∂ι ω = 
10 11 20 21 30 31−Γ +Γ +Γ −Γ −Γ +Γ

ω∫  

= _∫Γ10
ω + ∫Γ11

ω + ∫Γ20
ω _ ∫Γ21

ω _ ∫Γ30
ω + ∫Γ31

ω. (2) 

Now, 
∫Γi1

ω = ∫Γi1
f1 dy2∧dy3 + ∫Γi1

f2 dy1∧dy3 + ∫Γi1
f3 dy1∧dy2 

= ∫[0,1]2 f1 Γi1
1 2 1 3

1 2

(( ) , ( ) )
( , )
i i

x x
∂ Γ Γ

∂
dx1dx2  

+ ∫[0,1]2 f2 Γi1
1 1 1 3

1 2

(( ) , ( ) )
( , )
i i

x x
∂ Γ Γ

∂
dx1dx2  

+ ∫[0,1]2 f3 Γi1
1 1 1 2

1 2

(( ) , ( ) )
( , )
i i

x x
∂ Γ Γ

∂
dx1dx2 . 

Together with Remark 8-6.3(b), this implies 
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∫Γi1
ω = ∫[0,1]2 fi Γi1 dx1dx2 . (3) 

Similarly, 
∫Γi0

ω = ∫[0,1]2 fi Γi0 dx1dx2 . (4) 

Substituting (3) and (4) in (2) and using (1), we obtain the required result in 
the case when the 3-surface c = Φ is the inclusion map ι:[0,1]3→R3. 

Suppose now that c is a 3-surface Φ:[0,1]3→R2. Then by the result of 8-
5.P6, 

∫Φ dω = ∫ι Φ*(dω) = ∫ι d(Φ*ω) by Proposition 8-5.4. 

Now, Φ is (can be extended to be) a C2 map from an open subset of R3 to U and 
ω is a 2-form in U. Therefore, Φ*ω is a 2-form in an open subset of R3. This 
permits us to use the special case that has already been proved. Together with 
Remark 8-6.6, this leads to 

∫ι d(Φ*ω) = ∫∂ι Φ*ω = 
3

0 1
1
( 1) ( )

*
i

i i
i=

− Γ −Γ∑

Φ ω∫  = 
i
Σ
=

3

1
(_1)i( ∫Γi0 Φ*ω _ ∫Γi1 Φ*ω) 

= 
i
Σ
=

3

1
(_1)i ∫ιk_1

(Γi0*(Φ*ω) _ Γi1*(Φ*ω)) by 8-5.P6 again 

= 
i
Σ
=

3

1
_1)i ∫ιk_1

((Φ Γi0)*(ω) _ (Φ Γi1)*(ω)) by Proposition 8-5.3 

= ∫∂Φ ω, 

applying 8-5.P6 to each of the 6 integrals in the previous sum. As recorded at 
the beginning of this proof, it is sufficient to prove the theorem when the chain c 
is a 3-surface, as has now been done. , 

8-7.8. Example. The divergence theorem is used to evaluate 

∫∂Φ x dy∧dz + y dz∧dx + z dx∧dy (1) 

where Φ is described by 

Φ(t,u,v) = (t cos u, (b + t sin u)cos v, (b + t sin u)sin v), 

where 0 ≤ t ≤ a, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π and a,b ∈ R, and 0 < a < b. 

By the divergence theorem, the integral to be evaluated equals 

∫Φ 3dx∧dy∧dz = 3 ∫
[0,a]×[0,2π]×[0,2π]

JΦ dt du dv 
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= 3 ∫
[0,a]×[0,2π]×[0,2π]

det
cos sin 0

sin cos cos cos ( sin )sin
sin sin cos sin ( sin )cos

u t u
u v t u v b t u v
u v t u v b t u v

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥+⎣ ⎦

dt du dv 

= 3 ∫
[0,a]×[0,2π]×[0,2π]

t(b + t sin u) dt du dv = 6π∫
[0,a] ×[0,2π]

t(b + t sin u) dt du 

= 6π2a2b. 

We next evaluate (1) to verify the answer. 

By definition, 
d(x dy∧dz + y dz∧dx + z dx∧dy) = 3dx∧dy∧dz 

and 

∂Φ = 
3

1i=
∑ (_1)i(Φ Γi 0

_ Φ Γi 1), 

where Γi 0 and Γi 1 are understood as 

Γ1 0(u,v) = (0,u,v),  Γ1 1(u,v) = (a,u,v),  0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π, 

Γ2 0(t,v) = (t, 0,v),  Γ2 1(t,v) = (t, 2π,v),  0 ≤ t ≤ a, 0 ≤ v ≤ 2π, 

Γ3 0(t,u) = (t,u, 0),  Γ3 1(t,u) = (t,u, 2π),  0 ≤ t ≤ a, 0 ≤ u ≤ 2π. 
 
What we have to prove is the equality 

3

1i=
∑ (_1)i∫Φ Γi0

x dy∧dz + y dz∧dx + z dx∧dy 

_ 3

1i=
∑ (_1)i∫Φ Γi1

x dy∧dz + y dz∧dx + z dx∧dy  

= ∫Φ 3dx∧dy∧dz. 

The six compositions Φ Γi 0 and Φ Γi 1 occurring in the boundary chain ∂Φ are 

(Φ Γ1 0)(u,v) = Φ(0,u,v) = (0,b cos v,b sin v), 

(Φ Γ2 0)(t,v) = Φ(t, 0,v) = (t,b cos v,b sin v), 

(Φ Γ3 0)(t,u) = Φ(t,u, 0) = (t cos u,b + t sin u, 0), 

(Φ Γ1 1)(u,v) = Φ(a,u,v) = (a cos u, (b + a sin u)cos v, (b + a sin u)sin v), 

(Φ Γ2 1)(t,v) = Φ(t, 2π,v) = (t,b cos v,b sin v), 

(Φ Γ3 1)(t,u) = Φ(t,u, 2π) = (t cos u,b + t sin u, 0). 

Using the above compositions, we first compute 
3

1i=
∑ (_1)i∫Φ Γi0

x dy∧dz _ 3

1i=
∑ (_1)i∫Φ Γi1

x dy∧dz. 
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By Def. 8-2.4, we have 

∫Φ Γ10
x dy∧dz = ∫

[0, 2π]2
0 ( cos , sin )

( , )
b v b v

u v
∂

∂ dudv = 0. (1) 

Similarly, 

∫Φ Γ20
x dy∧dz = ∫

[0,a]×[0,2π]
t ( cos , sin )

( , )
b v b v

t v
∂

∂ dtdv = 0 (2) 

because 
( cos , sin )

( , )
b v b v

t v
∂

∂  = 0. 

∫Φ Γ30
x dy∧dz = ∫

[0,a]×[0,2π]
t cos u ( sin ,0)

( , )
b t u

t u
∂ +

∂ dtdu = 0. (3) 

∫Φ Γ11
x dy∧dz = ∫

[0, 2π]2
a cos u (( sin ) cos , ( sin )sin )

( , )
b a u v b a u v

u v
∂ + +

∂ dudv 

= ∫
[0, 2π]2

(a cos u)·det
cos cos ( sin )sin
cos sin ( sin )cos

a u v b a u v
a u v b a u v

− +⎡ ⎤
⎢ ⎥+⎣ ⎦

dudv 

= ∫
[0, 2π]2

(a2cos2u)(b + a sin u)dudv = 2π2a2b. (4) 

∫Φ Γ21
x dy∧dz = ∫

[0,a]×[0,2π]
t ( cos , sin )

( , )
b v b v

t v
∂

∂ dtdv = 0 (5) 

because 
( cos , sin )

( , )
b v b v

t v
∂

∂  = 0. 

∫Φ Γ31
x dy∧dz = ∫

[0,a]×[0,2π]
(t cos u) ( sin ,0)

( , )
b t u

t u
∂ +

∂ dtdu = 0. (6) 

From (1)–(6), it follows that 
3

1i=
∑ (_1)i∫Φ Γi0

x dy∧dz _ 3

1i=
∑ (_1)i∫Φ Γi1

x dy∧dz 

= _(0 _ 2π2a2b) + (0 _ 0) _ (0 _ 0) = 2π2a2b. (7) 

Next we compute 
3

1i=
∑ (_1)i∫Φ Γi0

y dz∧dx _ 3

1i=
∑ (_1)i∫Φ Γi1

y dz∧dx. 

By Def. 8-2.4, we have 

∫Φ Γ10
y dz∧dx = ∫

[0, 2π]2
(b cos v) ( sin ,0)

( , )
b v

u v
∂

∂  dudv = 0. (8) 
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Similarly, 

∫Φ Γ20
y dz∧dx = ∫

[0,a]×[0,2π]
(b cos v) ( sin , )

( , )
b v t

t v
∂

∂  dtdv 

= ∫
[0,a]×[0,2π]

(b cos v) ·det
0 cos
1 0

b v⎡ ⎤
⎢ ⎥
⎣ ⎦

dtdv 

= ∫
[0,a]×[0,2π]

(_b2cos2v) dtdv = _πab2. (9) 

∫Φ Γ30
y dz∧dx = ∫

[0,a]×[0,2π]
(b + t sin u) 0 cos( , )

( , )
t u
u v

∂
∂ dtdu = 0.  (10) 

∫Φ Γ11
y dz∧dx = ∫

[0, 2π]2
(b + a sin u)cos v 0( , cos )

( , )
t u
t u

∂
∂ dudv 

= ∫
[0, 2π]2

(b + a sin u)cos v·det
cos sin ( sin )cos

sin 0
a u v b a u v

a u
+⎡ ⎤

⎢ ⎥−⎣ ⎦
dudv 

= ∫
[0, 2π]2

a (b + a sin u)2sin ucos2v dudv = 2π2a2b. (11) 

∫Φ Γ21
y dz∧dx = ∫

[0,a]×[0,2π]
(b cos v) ( sin , )

( , )
b v t

t v
∂

∂  dtdv = _πab2 (12) 

as in (2). 

As in (3), we have 

∫Φ Γ31
y dz∧dx = ∫

[0,a]×[0,2π]
(b + t sin u) (0, cos )

( , )
t u
t u

∂
∂  dtdu = 0. (13) 

From (8)–(13), it follows that 
3

1i=
∑ (_1)i∫Φ Γi0

y dz∧dx _ 3

1i=
∑ (_1)i∫Φ Γi1

y dz∧dx 

= _(0 _ 2π2a2b) + (_πab2 _ (_πab2)) _ (0 _ 0) = 2π2a2b. (14) 

Finally, we use the compositions to compute 
3

1i=
∑ (_1)i∫Φ Γi0

z dx∧dy _ 3

1i=
∑ (_1)i∫Φ Γi1

z dx∧dy. 
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∫Φ Γ10
z dx∧dy = ∫

[0, 2π]2
(b sin v) (0, cos )

( , )
b v
u v

∂
∂  dudv = 0. (15) 

∫Φ Γ20
z dx∧dy = ∫

[0,a]×[0,2π]
(b sin v) ( , cos )

( , )
t b v

t v
∂

∂ dtdv 

= ∫
[0,a]×[0,2π]

(_b2sin2v) dtdv = πab2. (16) 

∫Φ Γ30
z dx∧dy = 0. (17) 

∫Φ Γ11
z dx∧dy = ∫

[0, 2π]2
(b + a sin u)sin v ( cos , ( sin )cos )

( , )
a u b a u v

u v
∂ +

∂ dudv 

= ∫
[0, 2π]2

(b + a sin u)sin v·det
sin 0

cos cos ( sin )sin
a u

a u v b a u v
−⎡ ⎤

⎢ ⎥− +⎣ ⎦
dudv 

= ∫
[0, 2π]2

a (b + a sin u)2sin usin2v dudv = 2π2a2b. (18) 

∫Φ Γ21
z dx∧dy = ∫

[0,a]×[0,2π]
(b sin v) ( , cos )

( , )
t b v

t v
∂

∂ dtdv = πab2 (19) 

as in (16). 
∫Φ Γ31

z dx∧dy = 0. (20) 

From (15)–(20), it follows that 
3

1i=
∑ (_1)i∫Φ Γi0

z dx∧dy _ 3

1i=
∑ (_1)i∫Φ Γi1

z dx∧dy 

= _(0 _ 2π2a2b) + (πab2 _ (πab2)) _ (0 _ 0) = 2π2a2b. (21) 
From (7), (14) and (21), we find that 

3

1i=
∑ (_1)i∫Φ Γi0

x dy∧dz + y dz∧dx + z dx∧dy 

_ 3

1i=
∑ (_1)i∫Φ Γi1

x dy∧dz + y dz∧dx + z dx∧dy = 6π2a2b. 

8-7.9. The General Stokes Theorem. Let U be an open subset of  Rn, ω a 
(k _ 1)-form of class C1 in U and c a k-chain of class C2 in U. Then 

∫∂c ω = ∫c dω. 

Proof. We use y for points of Rn and x for points of Rk_1. 
It is clear from the definitions of boundary and of integral over a chain that 

we need establish the equality only when c is a C2 k-surface. 
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The case when n = k = 1 easily handled. Indeed, ω is a 0-form, which is 
simply a C1 function F on the open set U ⊆ R, and the k-surface c is a 1-surface 
Φ, which is nothing but the restriction to [0,1] of a C2 function that maps an 
open set containing [0,1] into U. Therefore, ∂c = ∂Φ = Φ(1) _ Φ(0). (Here Φ(0) 
and Φ(1) denote 0-surfaces.) Consequently, 

∫∂c ω = F(Φ(1)) _ F(Φ(0)). 
Also, 

∫c dω = ∫[0,1] (F' Φ)Φ' = ∫0
1 (F' Φ)(s)Φ'(s) ds 

and the required equality holds by virtue of the fundamental theorem of calcu-
lus. [See the substitution form of the FTC in Section 8-1; the latter does not 
assume either F' or Φ' to be continuous and is therefore more general than the 
present case under discussion.] 

Now suppose that n = k > 1 and that the k-surface c is given by the inclusion 
map ιk :[0,1]k→Rk, that is, ιk(y) = y. 

Since n = k > 1, the (k _ 1)-form ω is an (n _ 1)-form and hence [see Re-
mark 8-2.8] we can represent ω as 

ω = 
i
Σ
=

k

1
fi dy1∧…∧dyi_1∧dyi+1∧…∧dyk . 

Therefore, 

dω = 
i
Σ
=

k

1
dfi ∧dy1∧…∧dyi_1∧dyi+1∧…∧dyk 

= 
i
Σ
=

k

1
(_1)i_1(Di fi )dy1∧…∧dyk , 

where (_1)i_1 comes from interchanging dyi successively with dy1 ,…,dyi_1 . Re-
call that the chain c under consideration is the k-surface given by the inclusion 
map ιk :[0,1]k→Rk. Moreover, (Di fi ) ιk  =  (Di fi ) and the Jacobian of ιk  is 1. 
Consequently, 

∫c dω = 
i
Σ
=

k

1
(_1)i_1 ∫ιk(Di fi)dy1∧…∧dyk 

= 
i
Σ
=

k

1
(_1)i_1 ∫[0,1]k (Di fi )dy1… dyk . 

Using Fubini’s theorem [see Remark 6-3.3], we have 

∫c dω = 
i
Σ
=

k

1
(_1)i_1 ∫[0,1]k

_1 dy1… dyi_1dy i+1… dyk ∫[0,1] (Di fi )dyi . 
Now, 

∫[0,1] (Di fi )dyi = fi(y1,…,yi_1 , 1 ,yi+1 ,…,yk) _ fi(y1,…,yi_1 , 0 ,yi+1 ,…,yk) 

= ( fi Γi1
_ fi Γi0)(y1,…,yi_1 ,yi+1 ,…,yk). 

Therefore ∫c dω is seen to be equal to 
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i
Σ
=

k

1
(_1)i_1 ∫[0,1]k

_1( fi Γi1
_ fi Γi0)(y1,…,yi_1 ,yi+1 ,…,yk) dy1… dyi_1dyi+1… dyk 

= 
i
Σ
=

k

1
(_1)i_1 ∫[0,1]k

_1 ( fi Γi1
_ fi Γi0) dx1… dxk_1 ,  (1)  

by renaming the variables y1,…,yi_1 ,yi+1 ,…,yk as x1 ,…,xk_1 . (One can consider 
the renaming as a transformation of variables with Jacobian 1.) 

We next compute the integral ∫∂c ω. As noted in Remark 8-6.6 above, ∂ιk  

=  
i
Σ
=

k

1
(_1)i(Γi0

_ Γi1); therefore 

∫∂c ω = 
0 1

1
( 1) ( )

k i
i i

i=
− Γ −Γ∑

ω∫  = 
i
Σ
=

k

1
(_1)i∫Γi0 ω +

i
Σ
=

k

1
(_1)i+1 ∫Γi1 ω. (2) 

Now, 

∫Γi1 ω = 
j
Σ
=

k

1 ∫Γi1 fj dy1∧…∧dyj_1∧dyj+1∧…∧dyk 

= 
j
Σ
=

k

1∫ [0,1]k
_1 fj Γi1

1 1 1 1 1 1 1

1 1

(( ) , , ( ) , ( ) , , ( ) )
( , , )

i i j i j i k

kx x
− +

−

∂ Γ Γ Γ Γ
∂

K K

K
 dx1… dxk_1 . 

Together with Remark 8-6.3(b), this implies 

∫Γi1 ω = ∫[0,1]k
_1 fi Γi1 dx1… dxk_1 . (3) 

Similarly, 
∫Γi0 ω = ∫[0,1]k

_1 fi Γi0 dx1… dxk_1 . (4) 

Substituting (3) and (4) in (2) and using (1), it follows that the theorem is valid 
for the special case when n = k ≥ 1, ω is an (n _ 1)-form and c = ιk  = ιn . 

Suppose now that n may or may not be equal to k and that c is a k-surface 
Φ:[0,1]k→Rn. Then by the result of 8-5.P6, 

∫Φ dω = ∫ιkΦ*(dω) = ∫ιk d(Φ*ω) by Proposition 8-5.4. 

Now, Φ is (can be extended to be) a C2 map from an open subset of Rk to U and 
ω is a (k _ 1)-form in U. Therefore Φ*ω is a (k _ 1)-form in an open subset of 
Rk. This permits us to use the special case that has already been proved. Togeth-
er with Remark 8-6.6, this leads to 

∫ιk d(Φ*ω) = ∫∂ιk
Φ*ω = 

0 1
1
( 1) ( )

*
k i

i i
i=

− Γ −Γ∑

Φ ω∫  

= 
i
Σ
=

k

1
(_1)i( ∫Γi0 Φ*ω _ ∫Γi1 Φ*ω) 

= 
i
Σ
=

k

1
(_1)i ∫ιk_1

(Γi0*(Φ*ω) _ Γi1*(Φ*ω)) by 8-5.P6 again 
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= 
i
Σ
=

k

1
(_1)i ∫ιk_1

((Φ Γi0)*(ω) _ (Φ Γi1)*(ω)) by Proposition 8-5.3 

= ∫∂Φ ω, 

applying 8-5.P6 to each of the 2k integrals in the previous sum. As recorded at 
the beginning of this proof, it is sufficient to prove the theorem when the chain c 
is a (k _ 1)-surface, as has now been done. , 

8-7.10. Example. We shall verify the equality in the general Stokes theorem 
when the differential form ω is 

dx2∧dx3∧dx4 + (x1 + x2)dx1∧dx3∧dx4 + (x2
_ x4)dx1∧dx2∧dx4 + x3 dx1∧dx2∧dx3 

in R4 and the chain c is the inclusion map ι :[0,1]4→R4. 
From the given ω, we obtain 

dω = (0 _ 1 + 0 _ 0)dx1∧dx2∧dx3∧dx4 = _dx1∧dx2∧dx3∧dx4 . 
Therefore, 

∫ι dω = _∫ι  dx1∧dx2∧dx3∧dx4 = _∫[0,1]4 dy1 dy2 dy3 dy4 = _1. 
Now, 

Γ1 0(y1,y2 ,y3) = (0,y1,y2 ,y3) and Γ1 1(y1,y2 ,y3) = (1,y1,y2 ,y3). 

So, ∫Γ10
ω = ∫[0,1]3 (1)(1)dy1 dy2 dy3 = 1 = ∫Γ11

ω. Hence, 

∫Γ10
ω _ ∫Γ11

ω = 0. 
Also, 

Γ2 0(y1,y2 ,y3) = (y1,0,y2 ,y3) and Γ2 1(y1,y2 ,y3) = (y1,1,y2 ,y3). 
So, ∫Γ2 0

ω = ∫[0,1]3 y1dy1 dy2 dy3 = 1
2  and ∫Γ2 1

ω = ∫[0,1]3 (y1+1)dy1 dy2 dy3 = 3
2 . 

Hence, 
∫Γ10

ω _ ∫Γ11
ω = _1. 

Next, 
Γ3 0(y1,y2 ,y3) = (y1,y2 , 0,y3) and Γ3 1(y1,y2 ,y3) = (y1,y2 , 1,y3). 

So, ∫Γ3 0
ω = ∫[0,1]3 (y1

_ y2)dy1 dy2 dy3 = 0 = ∫Γ3 1
ω. Hence, 

∫Γ3 0
ω _ ∫Γ3 1

ω = 0. 
Finally, 

Γ4 0(y1,y2 ,y3) = (y1,y2 ,y3 , 0) and Γ4 1(y1,y2 ,y3) = (y1,y2 ,y3 , 1). 

So, ∫Γ4 0
ω = ∫[0,1]3  y3dy1 dy2 dy3 = 1

2  = ∫Γ4 1
ω. Hence, 

∫Γ4 0
ω _ ∫Γ4 1

ω = 0. 

Taking the alternating sum of ∫Γi 0
ω _ ∫Γi 1

ω, i = 1,2,3,4, we get ∫∂ ι ω = 
_0 + (_1) _ 0 + 0 = _1, which is the same as the value obtained for ∫ι dω. 
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Problem Set 8-7 

8-7.P1. Use the divergence theorem to evaluate 

∫∂Φ F1 dy∧dz + F2 dz∧dx + F3 dx∧dy, (1) 

where 

Φ:[0,1]×[0,2π]×[0,1]→R3 

is given by 

Φ(r,θ,z) = (r cosθ,r sinθ, z) 
and 

F(x,y,z) = (1_ (x2 + y2)3,1_ (x2 + y2)3,x2z2). 

8-7.P2. Using Green’s theorem, calculate the integral ∫∂ι Pdx + Qdy, where P = 
25 xy y− −  and Q = 22xy x−  and ι is the identity mapping of [0,1]2 = {(x, y) : 0 

≤ x ≤ 1, 0 ≤ y ≤ 1}. Verify the answer by evaluating the integral directly. 

8-7.P3. Use the Stokes theorem to evaluate the integral 

∫∂Φ y dx + z dy + x dz, (1) 

where Φ:(r,θ)→(rcos θ, rsin θ,
2 sin 2

2
r

b
θ ), 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π is a 2-surface in 

R3. 

Verify your answer by actually evaluating the integral (1).  

8-8 The Integral Formulas of Vector Analysis 

We conclude this chapter with some discussion that helps exlain the connection 
between Stokes theorem (Theorem 8-7.5) and the divergence theorem (Theorem 
8-7.7) of differential forms to the classical Stokes and divergence theorems of 
analysis by reducing integration of forms over ‘parametrised’ surfaces to inte-
grals over domains in Euclidean spaces. 

We begin with the following: 

8-8.1. Definition. Let U be an open set in \n. A vector field is a map F:U→\n 
of the open set U into \n. Since F associates a vector F(v), v ∈ U, to each point 
of U, F is called a vector field. The map F is represented by coordinate func-
tions, F = ( f1 , f2 ,…, fn). 

Recall that F is continuous (respectively, differentiable) if each fi is conti-
nuous (respectively, differentiable). 

The General Stokes Theorem 
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8-8.2. Example. Let U be the complement of the origin in \2. For (x,y) ∈ U, set 

F(x,y) = 1 1
2 22 2 2 2

,
( ) ( )

x y

x y x y

⎛ ⎞−⎜ ⎟
⎜ ⎟+ +⎝ ⎠

. 

Then F Is a vector field which to each point (x,y) ∈ U associates 

( )2 2 1/2 2 2 1/2( ) ( )
, yx

x y x y
−

+ +
, having the same number of coordinates, namely, two, in 

this case. 

Suppose f is a differentiable function on U ⊆ \. Then grad f is the vector 
field 

grad f = 
1 2

, , ,
n

f f f
x x x

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

L . (1) 

With every vector field F defined in an open set U ⊆ \n is associated a 1-form 

ωF = f1 dx1 +  f2 dx2 + … +  fn dxn . (2) 

We define the divergence of F to be the function divF:U→\ given by 

divF = 1 2

1 2

n

n

FF F
x x x

∂∂ ∂
+ + +

∂ ∂ ∂
L . (3) 

The 1-form corresponding to the vector field grad f is 

i
Σ
=

n

1 i
i

f dx
x

∂
∂

. (4) 

The 1-form (4) is precisely the exterior differential of f. 

The correspondence between forms and scalar and vector fields in R3 de-
serves special mention. The above said correspondence will be needed in the 
latter part of the chapter. 

Let U be an open set in R3. A vector field on U is a continuous function 
F:U→R3 with component functions F1 ,F2 ,F3 . 

With every such F is associated a 1-form in U, namely, λF = F1dx + F2dy 
+ F3dz and a 2-form ωF = F1dy∧dz + F2dz∧dx + F3dx∧dy. Conversely, every 
1-form λ in U is λF and every 2-form ω is ωF for some vector field F on U. 

Let f  be a C1 function defined on U. The gradient of f  is the vector 

grad f  = 
1 2 3

, ,f f f
x x x

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

. 

Thus grad f  is a vector field on U. It is often denoted by ∇f . 
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Observe that F = grad f  if and only if λF = df . Let F = (F1 ,F2 ,F3 ) be a C1 
vector field on U. Its curl is the vector field 

curl F = ∇×F  =  3 32 1 2 1, ,
F FF F F F
y z z x x y

⎛ ⎞∂ ∂∂ ∂ ∂ ∂
− − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

and its divergence is the function 

div F = ∇·F = 31 2 FF F
x y z

∂∂ ∂
+ +

∂ ∂ ∂
. 

Since ωF = F1dy∧dz + F2dz∧dx + F3dx∧dy, when F is C1, we have 

dωF = 31 2 FF F
dx dy dz

x y x
⎛ ⎞∂∂ ∂

+ + ∧ ∧⎜ ⎟∂ ∂ ∂⎝ ⎠
 = (div F) dx dy dz∧ ∧  

as all other terms vanish. Therefore, div F = 0 if and only if dωF = 0. 
Furthermore, since 

d(λF) = d(F1dx + F2dy + F3dz) = 1 1F F
dy dx dz dx

y z
⎛ ⎞∂ ∂

∧ + ∧⎜ ⎟∂ ∂⎝ ⎠
 

3 32 2 F FF F
dx dy dz dy dx dz dy dz

x z x y
⎛ ⎞∂ ∂∂ ∂⎛ ⎞+ ∧ + ∧ + ∧ + ∧⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

= 3 32 1 2 1F FF F F F
dy dz dz dx dx dy

y z z x x y
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂⎛ ⎞− ∧ + − ∧ + − ∧⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

, 

it follows that curl F = 0 if and only if d(λF) = 0. 

Example. Observe that curl (grad f ) = 0, where f:U→R is a C2 function, and 

div (curl F) = 0 when F is a C2 vector field. 

If F = grad f , then λF = df . Since d(λF) = d(df ) = 0, it follows that curl F = 
0, that is, curl (grad f ) = 0. 

By definition of divergence and curl, 

div (curl F) = 3 32 1 2 1F FF F F F
x y z y z x z x y
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂⎛ ⎞− + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 = 0, 

since F is of class C2 and Schwarz’s theorem (Theorem 3-5.3) is therefore appli-
cable. 

Now, let F = ( f1 , f2 ,…, fn) be a vector field in an open set U ⊆ \n. Consider 
the (n _ 1)-form corresponding to F: 

ω = 
i
Σ
=

n

1
(_1)i_1 fi dx1∧dx2∧…∧dxi_1∧dxi+1∧…∧dxn . (5) 

The General Stokes Theorem 
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Then dω is the n-form 

dω = (
i
Σ
=

n

1
i

i

f
x

∂
∂

)dx1∧dx2∧…∧dxn  

=  (divF)dx1∧dx2∧…∧dxn . (6) 
 
See proof of Theorem 8-7.9 and (3) above. 

8-8.3. Definition. Let In = [0,1]n be the unit cuboid in \n and let ιn be the inclu-

sion mapping with domain In into \n. Then ιn is called a positively oriented 
surface and its boundary 

∂ιn = 
i
Σ
=

n

1
(_1)i(Γi0

_ Γi1) (7) 

is said to be the positively oriented boundary. 

Now let Φ be an injective mapping of [0,1]n into  \n of class C2 whose Ja-
cobian is positive (at least in the interior of [0,1]n). Let Ω = Φ([0,1]n). By 
Inverse Function Theorem 4-2.1, Ω is the closure of an open subset of \n. We 
define the positively oriented boundary of the set Ω to be the chain 

∂Φ = Φ(∂[0,1]n). (8) 

We denote this (n _ 1)-chain by ∂Ω. 

8-8.4. Volume Element. In Examples 8-2.6(b), the value of the form dx∧dy∧dz 
over the surface Φ:I3→\3 defined by 

Φ(r,φ,θ) = (arcos 2πθ sin πφ, brsin 2πθ sin πφ, crcos πφ), (r,θ,φ)∈ [0,1]3 

turns out to be  4
3 πabc. This is the Jordan content of the ellipsoid 

2 22

2 2 2 1yx z
a b c+ + ≤ . 

Let Φ:In→\n be an n-surface in \n. Assume that Φ is injective, continuous-
ly differentiable with positive Jacobian JΦ. Let f be a continuous real-valued 
function on the range Ω of Φ. By Transformation Formula 7-4.4,  

∫[0,1]n f(Φ(u)JΦ(u)du = ∫Φ( [0,1]n) f(x)dx. (9) 

It follows from the definition of the form ω = fdx1∧dx2∧…∧dxn  and (9) above 
that 

∫Φω = ∫[0,1]n f(Φ(u) )JΦ(u)du = ∫Φ( [0,1]n) f(x)dx. (10) 

Consequently, when f  = 1 everywhere, (10) becomes 

∫Φdx1∧dx2∧…∧dxn  = ∫[0,1]n dx. (11) 
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The above discussion leads to the following: 

8-8.5. Definition. The n-form 

dx1∧dx2∧…∧dxn (12) 

is called the volume element in \n. It is often denoted by dVn (the subscript is 
dropped when it is not necessary to specify the dimension.) 

Remark. Let F = ( f1 , f2 ,…, fn) be a vector field in an open set U ⊆ \n. Define 

ωF = f1 dx1 +  f2 dx2 + … +  fn dxn 

and let γ:I→\ be a 1-surface, γ(u) = (γ1 (u),γ2(u),…,γn(u)). Then the integral of 
ωF can be written in the following way: 

∫ γωF = 
i
Σ
=

n

1 ∫ 0
1 fi(γ(u))γ'(u)du 

= ∫ 0
1 F(γ(u))γ'(u)du 

= ∫ 0
1 F(γ(u)) · t |γ'(u) |du, (13) 

where t denotes the unit vector in the direction of γ'(u) .  We call |γ'(u) |du the 
element of arclength along γ and denote it by the customary notation ds. The 
formula (13) can then be written in the form 

∫ γωF = ∫ γ (F· t )ds. (14) 

The Surface Area. Let Φ be a 2-surface in an open set U ⊆ \3 of class C1 with 

parameter domain I2 ⊆ \2 given by  

x1 = Φ1(u,v), x2 = Φ2(u,v), x3 = Φ3(u,v),  (u,v) ∈ I2. (15) 

Assume that Φ is an injective mapping of I2 onto Φ(I2). It is well known that the 
vector 

2 3 3 1 1 2
1 2 3

( , ) ( , ) ( , )
( , ) ( , ) ( , )

e e e
u v u v u v

∂ Φ Φ ∂ Φ Φ ∂ Φ Φ
+ +

∂ ∂ ∂
 (16) 

represents a normal to the surface described by (15) and is denoted by N(u,v). 
We denote by n the unit vector in the direction of N, that is, 

n = N
N

. 

If Φ is a k-surface in \k of class C1 with parameter domain Ik_1, associate 
with (u1 ,u2 ,…,uk_1) the vector 

N(u1 ,u2 ,…,uk_1) = 1 2 1

1 2 11 , , , 1 2 1

( , , , )
( , , , )

k

k
k

i i i
i

i i i k k
e

u u u
−

−≤ ≤ −

∂ Φ Φ Φ
∑

∂K

K

K
, (17) 

The General Stokes Theorem 
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where e1 ,e2 ,…,ek denotes the standard basis in \k. The Jacobian in (17) corres-
ponds to the equation 

(x1 ,x2 ,…,xk) = Φ(u1 ,u2 ,…,uk_1). 

If f  is a continuous function on Φ(Ik_1), the area integral of f  is defined to be 

∫Φ f dA = ∫I k_1 f(Φ(u1 ,u2 ,…,uk_1)) |N(u1 ,u2 ,…,uk_1) |du1 …duk_1. (18) 

In particular, we obtain the area of Φ, namely, 

A(Φ) = ∫I k_1 ||N(u1 ,u2 ,…,uk_1) ||du1 …duk_1. (19) 

We next compute the area of the boundary 
i
Σ
=

k

1
(_1)i(Γi0

_ Γi1) of Ik using (19). 
Observe that this is a linear combination of (k _ 1)-surfaces in  \k. They are, in 
fact, 2k in number. Fix i = ij . Then the mapping Γij0 : 
(u1 ,u2 ,…,uk_1)→ (u1 ,u2 ,…,0 ,…,uk_1) , where 0 occurs in the ijth coordinate of 
the k-tuple on the right. A straightforward computation shows that the sum on 
the right side of (17) equals eij . Hence the (k _ 1)-dimensional area of the ijth 
face, using (19), equals 1. Hence the total area of the boundary is 2k. Moreover, 
N ·eip = 0, p ≠ j, p = 1,2,…,k. 

We next use the formula (19) to evaluate the surface area of of the sphere 
Φ:(u,v)→(a sinucosv, a sinusinv, acosu), a > 0 and 0 ≤ u ≤ π, 0 ≤ v ≤ 2π. A 
straightforward computation shows 

1 2( , )
( , )u v

∂ Φ Φ
∂

 = a2sinucosu ,  2 3( , )
( , )u v

∂ Φ Φ
∂

 = a2sin2 ucosv ,  3 1( , )
( , )u v

∂ Φ Φ
∂

 = a2sin2 usinv , 

N = a2sin2 ucosve1 + a2sin2 usinve2 + a2sinucosue3 , 

||N || = a2| sinu| , 

A(Φ) = a2 ∫0
π
∫0
2π sinududv = 4πa2. 

8-8.6. Stokes Theorem. Let F = ( f1 , f2 , f3) be a vector field of class C1 defined in 
an open set U ⊆ \3 and Φ be an injective transformation of I2 into U of class C2 
with positive Jacobian. Then 

∫Φ (curlF ) ·n dA = ∫∂Φ (F· t )ds. 

Proof. Let ω = f1 dx1 +  f2 dx2 +  f2 dx3 be the 1-form associated with the vector 
field F. Then 

dω = 3 32 1 2 1
2 3 3 1 1 2

2 3 3 1 1 2

f ff f f f
dx dx dx dx dx dx

x x x x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂

− ∧ + − ∧ + − ∧⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
, 
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∫Φdω =  ∫I 2 [ 3 2 3 3 3 12 1

2 3 3 1

( , ) ( , )
( , ) ( , )

f ff f
x x u v x x u v

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ Φ Φ ∂ ∂ Φ Φ∂ ∂
− Φ + − Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

o o  

 

2 1 1 2

1 2

( , )
( , )

f f
x x u v

⎛ ⎞⎛ ⎞∂ ∂ ∂ Φ Φ
+ − Φ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

o ] dudv 

= ∫I 2 ((curlF) Φ) ·N(u,v)dudv 

=  ∫I 2 ((curlF) Φ) ·n(u,v) ||N(u,v) ||dudv 

= ∫I 2 ((curlF) Φ) ·ndA 

= ∫Φ (curlF) ·ndA, (20) 

using (18). Also, 
∫∂Φ ω = ∫∂Φ (F· t )ds, (21) 

using (15). 

The proof is completed on using Theorem 8-7.5 , (20) and (21). , 

The connection between the divergence theorem for differential forms 
(Theorem 8-7.7) and the classical form of the theorem is the following. 

8-8.7. The Divergence Theorem. Let F = ( f1 , f2 ,  f3) be a vector field of class C1 
in an open set U ⊆ \3 and Φ be a 3-surface in U that is injective on [0,1]3 and is 
of class C2 with positive Jacobian. If Ω = Φ([0,1]3) and ∂Ω = Φ(∂ιn), then 

∫Ω divFdV = ∫∂Ω F·ndA. 

Proof. Let 
ω =

 
 f1 dx2∧dx3 +  f2 dx3∧dx1 + f3 dx1∧dx2  

be the 2-form associated with the vector field F. Then 

dω = 31 2

1 2 3

ff f
x x x

⎛ ⎞∂∂ ∂
+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

 dx1∧dx2 ∧dx3  

= (divF )  dx1∧dx2 ∧dx3 . 

By Transformation Formula 7-4.4, 

∫Φdω = ∫ΦdivF dx1∧dx2∧dx3  

The General Stokes Theorem 
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= ∫[0,1]3
div (F(Φ(u))JΦ(u)du1du2du3 

= ∫Ω (divF )dx1dx2dx3 , (22) 

using (9). 

Also, 

∫∂Φ ω = 
3

0 1
1

( ( 1) ( ))i
i i

i=
Φ − Γ −Γ∑

ω∫  

= 
i
Σ
=

3

1 ∫[0,1]3
 fi(Φ(u1 ,u2 ,  u3) 1 2

1 2

( , )
( , )

i i

u u
∂ Φ Φ
∂

 du1du2du3 

= ∫∂Ω F·ndA, (23) 

using (11). 

In view of Theorem 8-7.7, (22) and (23), it follows that 

∫Ω (divF )dx1dx2dx3 = ∫∂Ω F·ndA. , 

The proof of the following generalisation to \n of Theorem 8-8.7 is no dif-
ferent from that of the above said theorem; it is therefore not included. 

8-8.8. The Divergence Theorem (Generalisation). Let F = ( f1 , f2 ,…, fn) be a 
vector field of class C1 in an open set U ⊆ \n and Φ be an n-surface in U that is 
injective on In and is of class C2 with positive Jacobian. If Ω = Φ(In) and ∂Ω = 
Φ(∂ιn), then 

∫Ω divFdV = ∫∂Ω F·ndA.  

 





 

 

Solutions 

Problem Set 2-2 

2-2.P1. (a) ||_x||1 = 
k
Σ
n

=1
|_xk | = 

k
Σ
n

=1
|xk | = ||x||1 ≥ 0. Also, ||x||1 = 0 means 

k
Σ
n

=1
|xk | = 0. 

But each term in the sum 
k
Σ
n

=1
|xk | is nonnegative. Therefore, 

k
Σ
n

=1
|xk | = 0 if and only 

if each xk = 0, or equivalently, x = 0. 

(b) ||αx||1 = 
k
Σ
n

=1
|αxk| = |α|( 

k
Σ
n

=1
|xk|) = |α|| ||x||1. 

(d) ||x + y||1 = 
k
Σ
n

=1
|xk + yk|1 ≤ 

k
Σ
n

=1
|xk | +

k
Σ
n

=1
|yk | = ||x||1 + ||y||1. 

(e) ||x _ z||1 = ||(x _ y) + (y _ z)||1 ≤ ||x _ y||1 + ||y _ z||1 by part (d). 

(f) ||x||1 = ||(x _ y) + y||1 ≤ ||x _ y||1 + ||y||1 by part (d). Therefore, 

||x||1 _ ||y||1 ≤ ||x _ y||1. 

By an analogous argument, ||y||1 _ ||x||1 ≤ ||y _ x||1. But what has been proved in 
part (a) shows that ||y _ x||1 = ||x _ y||1. Therefore, 

||y||1 _ ||x||1 ≤ ||x _ y||1. 

The two inequalities displayed above together yield |||x||1 _ ||y||1| ≤ ||x _ y||1. 
2-2.P2. Let y be the n-vector with every component equal to 1 and z be the one 
with zk = |xk |. Then ||x||1 = 

k
Σ
n

=1
|xk | = y·z ≤ ||y||2 ||z||2 = n1/2||x||2 .   

2-2.P3. ||x + y ||22 = (x + y) ·(x + y) = 
k
Σ
n

=1
(x + y)2 = 

k
Σ
n

=1
xk

2 +
k
Σ
n

=1
2xkyk +

 k
Σ
n

=1
yk

2 = ||x||22 + 
||y ||22, because 

k
Σ
n

=1
xkyk = x ·y is given to be 0. 

2-2.P4. Write a2bc as a3/2b1/2a1/2b1/2c and so on. Let x denote the 4-vector 
(a3/2b1/2, b3/2c1/2, c3/2a1/2) and y denote the 4-vector (a1/2b1/2c, b1/2c1/2a, c1/2a1/2b). 
Then x·y = abc(a + b + c) and ||x|| ||y|| = (a3b + b3c + c3a)1/2[abc(a + b + c)]1/2. 
The Cauchy–Schwarz inequality yields the required result. 
2-2.P5. |||xp|| _ ||x||| ≤ ||xp

_ x ||. 

2-2.P6. (a) The inequality is valid if a1 = a2 =…= an = 0; so suppose at least one 
ai > 0. Let bk = ak/(  j

Σ
=

n

1
aj

p )1/p for 1 ≤ k ≤ n. Observe that 0 ≤ bk ≤ 1, so that bk
q ≤ 

9 
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bk
p . Hence (

k
Σ
n

=1
ak

q)/[(
 j
Σ
=

n

1
aj

p )1/p]q = 
k
Σ
n

=1[ak
q / [ (

 j
Σ
=

n

1
aj

p )1/p]q] = 
k
Σ
n

=1
bk

q  ≤  
k
Σ
n

=1
bk

p  = 

k
Σ
n

=1[ak
p / [ (

 j
Σ
=

n

1
aj

p )1/p]p] = 1. So, 
k
Σ
n

=1
ak

q  ≤ [ (
j
Σ
=

n

1
aj

p)1/p]q. 

(b) max1≤ j≤ n |xj | ≤ (
j
Σ
=

n

1
|xj |p )1/p ≤ n1/pmax1≤ j≤ n |xj |. Therefore ||x ||∞ ≤ (

j
Σ
=

n

1
|xj |p )1/p ≤ 

n1/p||x ||∞ . But limp→∞ n1/p = 1. Therefore limp→∞ || x || p exists and equals ||x ||∞ . 

Problem Set 2-3 

2-3.P1. A(x) = A(x·1) = xA(1) = ax. So, A(x + y) = a(x + y) = ax + ay = A(x) + 
A(y). 

2-3.P2. A(cx) = A(cx1 ,cx2) = ((c3x1
3 + c3x2

3)1/3, 0) = (c(x1
3 + x2

3)1/3, 0) = c((x1
3 + 

x2
3)1/3, 0) = cA(x). But when x = (1,0) and y = (0,1), we have A(x + y) = (21/3, 0), 

A(x) = A(y) = (1,0). 

2-3.P3. Straightforward computation. 

2-3.P4. A straightforward computation confirms that f1(x,y)2 + 4 f2(x,y)2 = 1. So 
the range is included in {(u,v) ∈ R2 : u2 + 4v2 = 1}, an ellipse. The reverse inclu-
sion can be proved: Take any (u,v) ∈ R2 with u2 + 4v2 = 1. Then _1 ≤ u ≤ 1. If u 
= 1, then v = 0 and (x,y) = (1,0) satisfies f1(x,y) = 1 = u,  f2(x,y) = 0 = v, so that 
f(x,y) = (u,v); if u = _1, then again v = 0 and (x,y) = (0,1) satisfies f(x,y) = (u,v). 
Suppose _1 < u < 1; then v ≠ 0 and hence v >< 0. Take y = 1 and x = 
±√[(1 + u)/(1 _ u)] according as v >< 0. One can then verify that f(x,y) = (u,v). 
Thus the range is precisely {(u,v) ∈ R2 : u2 + 4v2 = 1}. 

2-3.P5. Since f ' is continuous, it maintains the same sign in some open interval I 
containing x0. Therefore f  is injective on I and has an inverse g when restricted 
to I. Then φ is injective on I×R: Consider distinct (x1 ,y1),  (x2 ,y2) ∈ I×R. If x1 ≠ 
x2 ,  then since both are in I and f  is injective on I, we have f(x1) ≠ f(x2) and 
φ(x1 ,y1), φ(x2 , y2) differ in the first component. Suppose x1 = x2 ; then y1 ≠ y2 
while x1 f(x1) = x2 f(x2), so that _y1 + x1 f(x1) ≠ _y2 + x2 f(x2), which means 
φ(x1 ,y1), φ(x2 , y2) differ in the second component. Thus φ is injective and hence 
invertible on I×R. If x ∈ I, we have u = f(x) ⇔ x = g(u) ⇒ x f(x) = ug(u). Also, v 
= –y + xf(x) ⇔ y = _v + xf(x) = _v + ug(u). 

2-3.P6. B(x1 + x2) = A(x1 + x2 , 0) = A((x1, 0) + (x2 ,0)) = A(x1,0) + A(x2 , 0) = 
B(x1) + B(x2) and B(cx) = A(cx, 0) = A(c(x, 0)) = cA(x, 0) = cB(x). Similarly for C. 
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2-3.P7. C((x1,y1) + (x2 ,y2)) = C(x1 + x2 , y1 + y2) = A(x1 + x2) + B(y1 + y2) = A(x1) 
+ B(y1) + A(x2) + B(y2) = C(x1,y1) + C(x2,y2); C(c(x,y)) = C(cx,cy) = A(cx) + 
B(cy) = cA(x) + cB(y) = c(A(x) + B(y)) = cC(x,y). 

2-3.P8. Direct computation shows A to be linear. The required matrix is 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10000
01000
00100
00000
00000

. 

2-3.P9. The function f :R2→R2 is f(xu1 + yu2) = (ex cos y)v1 + (ex sin y)v2 . The 
single equation is f(xu1 + yu2) = pv1 + qv2 . In coordinate language,  f(x,y) = 
(p,q),  where f(x,y) is defined as (ex cos y,ex sin y). 

2-3.P10. x2 + x3 = 20,  –3x2 – 4x3 = 2000. (a) Yes,Yes. (b) x1 = –5β – 6γ + 9. 

2-3.P11. The three equations x ·z i = 0 for i = 1,2,3 are x1 + 3x2 + 2x3
_ x4 = 0, 

3x1 + 10x2 + 4x3 = 0 and 4x1 + 13x2 + 7x3 + 4x4 = 0. Eliminating x1 from the 
second and third equations, we get x2

_ 2x3 + 3x4 = 0 and x2
_ x3 + 8x4 = 0. Eli-

minating x2 from the last equation, we get x3 + 5x4 = 0. We can now choose x4 = 
1, which leads to x3 = _5, x2 = _13, x1 = 50. So one possibility is x = 
(50,_13,_5,1). 

2-3.P14. If a = 0, then the points (t, t, t) and (t, _ t, t) serve the purpose, provided 
that 0 < t < _13

_  and 3t2 < δ2. If a = 1, then (1, t, t) and (1,_t, _t) serve the purpose, 
provided that 0 < 2t2 < δ2. Suppose 0 ≠ a ≠ 1. Choose t so that 0 < 2| t | < |a _ 1| 
and 2t2 < δ2. Then the points (a, t, t) and (a, t, _t) both lie in the δ-ball centred at 
(a, 0,0); also, a + 2t _ 1 has the same sign as a _ 1 and hence F(a, t, t) = 
at2(a + 2t _ 1) and F(a, t, _t) = _at2(a _ 1) have opposite signs. 

2-3.P15. Choose t such that 0 < | t | < |b|, |c| and 3t2 < δ2. Then (±t,b + t,c + t) 
both lie in the required δ-ball. Also, |b + _1

2
_ t | ≥ |b| _ _1

2
_ | t | = |b| _ | t | + _1

2
_ | t | > _12

_ | t | 
and hence (b + _1

2
_ t)2 > _1

4
_ t2, which implies b(b + t) > 0, i.e., b + t has the same 

sign as b. Similarly, c + t has the same sign as c. It follows that (b + t)(c + t) has 
the same sign as bc. Therefore F(t,b + t,c + t) = 3t2(b + t)(c + t) has the same 
sign as bc, whereas F(_t,b + t,c + t) = _t2(b + t)(c + t) has sign opposite to that 
of bc. 

2-3.P16. ||A(1,0)|| = ||(1 + 0,0)|| = ||(1,0)|| = √(12 + 02) = 1; ||A(0,1)|| = ||(0 + 
1,0)|| = 1; ||A(3/5,4/5)|| = ||(7/5,0)|| = 7/5; ||A(12/13,5/13)|| = ||(17/13,0)|| = 
17/13; and ||A(1/√2,1/√2)|| = ||(1/√2 + 1/√2,0)|| = √(2 + 0) = √2. So the largest 
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one is ||A(1/√2,1/√2)||. Lastly, x1
2 + x2

2 ≤ 1 ⇒ (x1 + x2)2 + 02 = x1
2 + x2

2 + 2x1x2 ≤ 
(x1

2 + x2
2) + (x1

2 + x2
2) ≤ 2. 

2-3.P17. 5,  2,  5/2,  50/13. (a) ||A(x1 , x2)||2 = (x1 + x2)2 + (2x1 – x2)2 = 5x1
2 + 2x2

2 – 
2x1x2 . (b) Since |2x1x2 | ≤ x1

2 + x2
2, it follows from (a) that ||A(x1 , x2)||2 ≤ 5x1

2 + 
2x2

2 + x1
2 + x2

2 ≤ 6(x1
2 + x2

2) ≤ 6 when ||x || ≤ 1. (c) Using (b), we have sup 
{||Ax || : ||x || ≤ 1} ≤ √6. 

2-3.P18. A(x1 , x2)2 = (x1 + x2 )2 + (x1 – x2)2 = 2(x1
2 + x2

2). So sup {||Ax || : ||x || ≤ 
1} ≤ √2. When x = (x1 , x2) = (1/√2,1/√2),  we have ||x || = 1 and ||Ax || = ||(√2,0)|| 
= √2. Hence sup {||Ax || : ||x || ≤ 1} = √2. 

2-3.P19. When x ≠ 0, the vector v = (a/2||x ||)x lies in the ball V and Av = 
(a/2||x ||)Ax. 

Problem Set 2-4 

2-4.P1. Let A and B be closed. Then by definition, their complements Ac and Bc 
are open. It has been shown (in the paragraph following Def.2-4.2) that an inter-
section of two open sets is open. Therefore Ac∩Bc is open and hence its 
complement (Ac∩Bc)c is closed. But (Ac∩Bc)c = A∪B. A similar argument ap-
plies to the intersection of any family of closed sets, because it has been noted 
that a union of any family of open sets is open. 

2-4.P2. Denote the ball by B. Let e1 = (1,0,0,… ,0), so that ||e1|| = 1, and con-
sider y = a + re1 . Then ||y _ a || = r and hence y does not belong to B. It is 
nevertheless a closure point of the ball. To see why, let B1 be an open ball about 
y with radius α, say. Take β = min{ 1

2 α,r}. Then the point z = y _ βe1 = 
a + (r _ β)e1 is in B because ||z _ a || = ||(r _ β)e1|| = r _ β < r; it is also in B1 be-
cause ||z _ y || = β < α. Thus any ball B1 about y contains a point of B, which 
means y is a closure point of B. But y does not belong to B, as noted earlier. 
Since we have found a closure point of B that does not belong to it, it follows 
that B is not closed. 

2-4.P3. ||x || = || (x _ u) + u || ≤ ||x _ u || + ||u || ≤ M + ||u ||. 

2-4.P4. Since F is closed, its complement Fc is open. Since an intersection of 
two open sets is open, the set U∩Fc is open. But U∩Fc = U\F. The argument 
that F\U is closed is similar. 
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2-4.P5. Let A ⊆ Rn. Since A° ⊆ A (as is immediate from Def.2-4.7) and is an 
open set by Proposition 2-4.9, it is a subset of the union of all open sets con-
tained in A. For the reverse inclusion, consider any a belonging to the union in 
question. Then a ∈ B, where B ⊆ A and is open. Since B is open, a is an interior 
point of it. Since B ⊆ A, it follows from Def.2-4.7 that a is an interior point of A 
as well, thereby proving the reverse inclusion. 

As noted immediately after Def.2-4.10, it is trivial that A ⊆ A
_

; moreover, A
_

 
is closed by Proposition 2-4.11. Therefore it contains the intersection of all 
closed sets containing A. For the reverse inclusion, consider any a ∈ A

_
 and any 

closed set C ⊇ A. By Def.2-4.10, any ball about a contains a point of A; but then 
that point must belong to C, because C ⊇ A. It follows that a is a closure point of 
C and hence belongs to C, considering that C is closed. Thus it has been shown 
that every point of A

_
 belongs to every closed set containing A, whereby the re-

verse inclusion has been found to hold. 

2-4.P6. Suppose x is a closure point. For each p, the ball B(x, 1
p ) contains some 

xp ∈ X. The sequence {xp}p≥1 then converges to x. Conversely, suppose a se-
quence {xp}p≥1 in X converges to x. Consider any ball B(x,ε) about x. Some p ∈ N 
satisfies ||xp

_ x || < ε . For any such p, we have xp ∈ B(x,ε) as well as xp ∈ X. This 
means B(x,ε) contains a point of X. It follows that x is a closure point. 

2-4.P7. Suppose {xp}p≥1 is a convergent sequence in {x ∈ R2 : ||x || = 1}. That is, 
||xp|| = 1 for every p and xp→x for some x ∈ Rn. If we show that ||x || = 1, it will 
follow by Proposition 2-4.5 that {x ∈ R2 : ||x || = 1} is closed. From the inequality 
||x || = ||xp

_ (xp
_ x)|| ≤ ||xp|| + ||xp

_ x || = 1+ ||xp
_ x ||, we obtain ||x || ≤ 1 upon tak-

ing the limit as p→∞. Similarly, from the inequality ||x || = ||xp
_ (xp

_ x)|| ≥ 
||xp|| _ ||xp

_ x || = 1_ ||xp
_ x ||, we obtain ||x || ≥ 1 by taking the limit as p→∞. So, 

||x || = 1. 

2-4.P8. Consider any ball B about (_1,0) with radius ε. Let 0 < r < ε. Then the 
point (_1, r), which obviously belongs to E, also belongs to B by virtue of the 
inequality ||(_1, r) _ (_1,0)|| = ||(0,r)|| = r < ε. On the other hand, the point 
(_1_ r, 0) obviously does not belong to E but does belong to B by virtue of the 
inequality ||(_1_ r, 0) _ (_1,0)|| = ||(_r, 0)|| = r < ε. Thus any ball about (_1,0) 
contains a point of E as well as a point of its complement. As noted immediately 
after Def.2-4.12, this means (_1,0) belongs to the boundary of E. 

To show that (1,0) is an interior point of F = {(x1,x2) ∈ R2 : 0 ≤ x1 ≤ 2}, let δ 
= 1. Since ||(x1,x2) _ (1,0)|| = ||(x1

_ 1,x2)||, then ||(x1,x2) _ (1,0)|| < δ ⇒ |x1
_ 1| < 1 

as well as |x2| < 1 ⇒ 0 < x1 < 2 ⇒ (x1,x2) ∈ F. This means δ = 1 has the property 
that the δ-ball about (x1 ,x2) is contained in F. 
2-4.P9. It is immediate from the definitions of closure and boundary that F

_
 ⊇ 

F ∪∂F. Also, F ⊇ F°  by definition of interior. So, F ∪∂F ⊇ F°∪∂F. It remains 
to note why F°∪∂F ⊇ F

_
. But this too is trivial from the definition of boundary. 



 

Problem Set 2-5 

2-5.P1. Let K1 ,…,Km be compact subsets of Rn and {xp}p≥1 be a sequence in 
their union K. For some j, 1 ≤ j ≤ m, there must be infinitely many p such that xp 
∈ Kj . Therefore some subsequence has every term in Kj . Since Kj is compact, it 
follows that the subsequence has a subsequence converging to a limit in Kj , 
which must then belong to the union K. But this subsequence is itself a subse-
quence of the sequence that we started with. The latter is therefore seen to have 
a subsequence converging to a limit in K. 

2-5.P2. Consider a closed ball B = {x ∈ Rn : ||x _ u|| ≤ r}. Let a,b ∈ B and 0 ≤ λ ≤ 

1. Then ||a _ u|| ≤ r and ||b _ u|| ≤ r and therefore 

||λa + (1_ λ)b _ u|| = ||λa + (1_ λ)b _ λu _ (1_ λ)u|| ≤ λ||a _ u|| + (1_ λ) ||b _ u|| 

≤ λr + (1_ λ)r = r, 

so that λa + (1_ λ)b ∈ B. A similar argument works for an open ball {x ∈ Rn : 
||x _ u|| < r}. 

2-5.P3. Suppose {xp}p≥1 does not converge to x. Then there exists ε > 0 such that 
some subsequence {xpq

}q≥1 satisfies ||xpq
_ x|| ≥ ε for all q. Since K is compact, 

{xpq
}q≥1 has a convergent subsequence, which we shall denote by {ξr}r≥1 . Then 

{ξr}r≥1 is a convergent subsequence of {xp}p≥1 and also satisfies the inequality 
||ξr

_ x|| ≥ ε for all r. But according to the hypothesis, this subsequence must 
converge to x, in contradiction with the inequality. To show that compactness of 
K cannot be dropped, consider the sequence 1,0,2,0,3,0,4,… in R. Any conver-
gent subsequence must converge to 0, but the sequence itself does not. 

2-5.P4. The set is not bounded and therefore not compact in view of Theorem 2-
5.7. 

2-5.P5. Let U be an open cover of X = {x}∪{xp : p ∈ N}. By definition of cover, 
some set U ∈ U has to contain x. Since U is open, there is some ε > 0 such that 
the ε-ball B about x is a subset of U. Now convergence of {xp}p≥1 to x means that 
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there is some N ∈ N such that p ≥ N ⇒ xp ∈ B ⇒ xp ∈ U. Once again by definition 
of cover, for each p < N, some set Up ∈ U has to contain xp . Hence the finite sub-
family {U, U1,…,Up_1} of U covers X. We have shown that any open cover of X 
contains a finite subcover, which is what it means for X to be compact. 

2-5.P6. Consider the disjoint open sets U = {(x,y) ∈ R2 : x < 0} and U = {(x,y) ∈ 
R2 : x > 0}. Since (x,y) ∈ A ⇒ x2

 ≥ 1+ y2 > 0, we have A ⊆ U∪V. Consequently, 
A = (U∩A)∪(V∩A) and (U∩A)∩(V∩A) ⊆ U∩V = ∅. It remains only to see 
why U∩A ≠ ∅ ≠ V∩A. This follows from the fact that (_2,0) ∈ U∩A and (2,0) ∈ 
V∩A. 

Problem Set 2-6 

2-6.P1. Denote lti→mx f(t) by L. We must show ||L _ y|| ≤ K. Consider any ε > 0. By 

definition of limit, ∃ δ' > 0 such that || f(t) _ L|| < ε whenever 0 < ||t _ x|| < δ' and 
t ∈ A. Since x is a limit point of A, there exists ξ ∈ A such that 0 < ||ξ _ x|| < 
min {δ,δ'}. This ξ must satisfy || f(ξ) _ L|| < ε as well as || f(ξ) _ y|| ≤ K. It fol-
lows that ||L _ y|| ≤ K. 

2-6.P2. (a) Denote lti→mx f(t) by L. For any ε > 0, there exists δ1 > 0 such that 0 < 
||u _ a|| < δ1 ,  0 < ||v _ b|| < δ1 ⇒ || f(u,v) _ L|| < ε/2. It follows by 2-6.P1 that 0 < 
||u _ a|| < min {δ1 ,μ} ⇒ || l

v
i
→
m

b
f(u,v) _ L|| ≤ ε/2 < ε . Since ε > 0 is arbitrary, it 

follows that l
u
i
→
m

a
[l

v
i
→
m

b
f(u,v)] exists and equals L. Proceeding in an analogous 

manner, one can show that if there exists a positive number ν such that 
l
u
i
→
m

a
f(u,v) exists whenever ||v _ b|| < ν, then the l

v
i
→
m

b
[l

u
i
→
m

a
f(u,v)] exists and is 

equal to lti→mx f(t). 

(b) Here n = m = k = 1. Now, l
y
i
→
m

0
f(x,y) = 0 whether x is 0 or not; for x = 0, this 

is trivial because f(0,y) = 0 for all y, and for x ≠ 0, l
y
i
→
m

0
f(x,y) = l

y
i
→
m

0
y sin( )xy

xy  = 0. 

Thus we have l
y
i
→
m

0
f(x,y) = 0 for |x| < μ, where μ is any positive number. Conse-

quently, l
x
i
→
m

0
l
y
i
→
m

0
f(x,y) = 0. Now, l

x
i
→
m

0
f(x,y) = l

x
i
→
m

0
y sin( )xy

xy  = y; it follows that 
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l
y
i
→
m

0
 l

x
i
→
m

0
f(x, y) = 0 as well. Moreover, lim(x, y)→(0, 0) 

sin( )xy
x  = 

lim(x, y)→(0, 0) y sin( )xy
xy  = 0. 

2-6.P3. As seen in Example 2-6.6(a), the function satisfies the inequality | f(x,y)| 
= |x sin (1/y)| ≤ |x |, which shows that the limit as (x,y )→(0,0) is 0. The same 
inequality shows that l

x
i
→
m

0
f(x,y) = 0 for y ≠ 0, which implies l

y
i
→
m

0
[l

x
i
→
m

0
f(x,y)] = 

0.  However, l
y
i
→
m

0
f(x,y) does not exist unless x = 0. So the domain of l

y
i
→
m

0
f(x,y) 

consists of a single point and consequently hs no limit point. Thus, there is no 
such thing as l

x
i
→
m

0
[l

y
i
→
m

0
f(x,y)]. 

2-6.P4. l
x
i
→
m

0
f (x, 0) = 1 = _l

y
i
→
m

0
f (0,y). 

2-6.P5. We have f(x + h,y + k) _ f(x,y) = (x + h)2(y + k) _ x2y 
= x2k + 2xyh + 2xhk + yh2 + h2k. 

Let 0 < δ < 1. Then 
√(h2 + k2) < δ ⇒ |h|, |k|, |hk|,h2 < δ < 1 

⇒ | x2k + 2xyh + 2xhk + yh2 + h2k | < δ(x2 + 2|xy| + 2|x| + |y| + 1). 
To ensure that this is less than ε, choose 

δ < min{1,1/(x2 + 2|xy| + 2|x| + |y| + 1)}. 

2-6.P6. At any point (x,y) ≠ (0,0), the function is continuous because it is a quo-
tient of continuous functions and the denominator does not vanish at the point in 
question. Continuity at (0,0) follows from the inequality | f(x,y)| ≤ 
|x |[x2/(x2 + y2)] ≤ |x |. 

2-6.P7. First assume the function f : S→Rm is continuous at x ∈ S and let {sp} be 
a sequence in S converging to x. We shall show that { f(sp)} converges to f(x). 
Consider any ε > 0. By continuity of f at x, some δ > 0 satisfies ||s _ x|| < δ ⇒ 
|| f(s) _ f(x)|| < ε . Since lp→im∞ sp = x, there exists some p0 such that p ≥ p0 ⇒ 
||sp

_ x|| < δ. Therefore p ≥ p0 ⇒ || f(sp) _ f(x)|| < ε . Such an integer p0 has been 
shown to exist for an arbitrary ε > 0. Therefore lp→im∞ f(sp) = f(x). 

For the converse, assume that every sequence {sp} in S converging to x sat-
isfies lp→im∞ f(sp) = f(x). We shall argue why f must be continuous at x. Suppose, if 
possible, that f is not continuous at x. Then there must exist ε > 0 for which no δ 
> 0 can fulfill the requirement that ||s _ x|| < δ ⇒ || f(s) _ f(x)|| < ε . That is to say, 
whatever the number δ > 0 may be, there exists some s such that ||s _ x|| < δ but 
|| f(s) _ f(x)|| ≥ ε. For every p ∈ N, the number δ = 1

p  is positive and so, there 
exists sp such that ||sp

_ x|| < 1
p  but || f(sp) _ f(x)|| ≥ ε. These inequalities show 
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that the sequence {sp} converges to x but the sequence { f(sp)} does not con-
verge to f(x). This contradicts the assumption that every sequence {sp} in S 
converging to x satisfies lp→im∞ f(sp) = f(x). Therefore the supposition that f is not 
continuous at x must be incorrect.  

2-6.P8. (a) Since ||x1| _ |ξ1|| ≤ |x1
_ ξ1| ,  we have 

|| f(x1 ,x2) _  f(ξ1,ξ2)|| = ||(|x1|, x2) _ (|ξ1| ,ξ2)|| ≤ ||(x1 ,x2) _ (ξ1,ξ2)||. 

This shows that f  is continuous (take δ = ε). 
(b) It was seen in Problem 2-4.P8 that u = (_1,0) is a boundary point of E. Now, 
f(u) = f(_1,0) = (1,0) and f(E) = {(x1 ,x2) ∈ R2 : 0 ≤ x1 ≤ 2}. It was also seen in 
Problem 2-4.P8 that (1,0) is an interior point of {(x1 ,x2) ∈ R2 : 0 ≤ x1 ≤ 2}. 
(c) Let u ∈ U∩∂E and consider any ε-ball B2 about f(u). Then for some δ > 0, 
the δ-ball B1 about u has the property that f(B1) ⊆ B2 . Since u is a boundary 
point of E, the ball B1 contains a point x ∈ E as well as a point y ∈ Ec. Therefore 
f(x) ∈ f(B1)∩ f(E). Since f(B1) ⊆ B2 , it follows that B2 contains the point f(x) ∈ 
f(E ). Similarly, it contains the point f(y) ∈ f(Ec). Since f  is injective, one can 
show that f(y) ∈ f(E)c as follows: If not, then f(y) ∈ f(E) and hence f(y) = f(z) 
for some z ∈ E. Since f  is injective, this implies y = z. But this is a contradiction, 
because z ∈ E and y ∈ Ec. Thus, B2 has been shown to contain the point f(x) ∈ 
f(E) as well as the point f(y) ∈ f(E)c. Therefore, f(u) ∈ ∂( f(E)). 

2-6.P9. Whichever norm we may use, 
|| f(x) _ f(ξ)|| ≥ | fj (x) _ fj (ξ)| for each j 

and, by Proposition 2-2.6,  
|| f(x) _ f(ξ)|| ≤ || f(x) _ f(ξ)||1 = 

j
Σ
=

n

1
| fj (x) _ fj(ξ)|. 

2-6.P10. || f(x1 ,…,xn) _ f(ξ1 ,…,  ξn)|| = |g(x1) _ g(ξ1)|. 

2-6.P11. To prove the sufficiency part, suppose f  is continuous and consider any 
s ∈ f

_1(V ), where V ⊆ \m is open. Since f(s) is an interior point of V, there ex-
ists ε > 0 such that the ε-ball about f(s) is a subset of V, which means ||y _ f(s)|| 
< ε ⇒ y ∈ V. By continuity at s, there exists some δ > 0 such that, for any x ∈ S, 

||x _ s|| < δ ⇒ || f(x) _ f(s)|| < ε ⇒ f(x) ∈ V ⇒ x ∈ f
_1(V ). 

Thus, the intersection of S with the δ-ball about s is a subset of f
_1(V ). Now let 

U be the union of all such balls, one for each s ∈ f
_1(V ). Then U is open (being a 

union of open sets) and contains the centres of all the balls in the union, so that 
f

_1(V ) ⊆ U. Moreover, f
_1(V ) ⊆ S by definition of inverse image. So, 

f
_1(V ) ⊆ S∩U. 

But since the intersection of S with any ball in the union is a subset of f
_1(V ), 

we also have 
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S∩U ⊆ f
_1(V ). 

Thus f
_1(V ) = S∩U. This proves the sufficiency part. 

To prove the necessity part, suppose that, for any open set V ⊆ \m, the in-
verse image f

_1(V ) = {x ∈ S : f(x) ∈ V} is the intersection of S with some open 
set U ⊆ \n. Let s be any point of S and ε > 0. Choose V to be the ε-ball about 
f(s). Then 

f
_1(V ) = {x ∈ S : f(x) ∈ V} = {x ∈ S : || f(x) _ f(s)|| < ε} = S∩U 

for some open set U ⊆ \n. Since V has been chosen as the ε-ball about f(s), we 
have f(s) ∈ V, i.e., s ∈ f

_1(V ), and therefore s ∈ S∩U. But U is open and therefore 
some δ > 0 satisfies 

x ∈ S, ||x _ s|| < δ ⇒ x ∈ U. 
Therefore 

x ∈ S, ||x _ s|| < δ ⇒ x ∈ S∩U = f
_1(V ) ⇒ f(x) ∈ V. 

But V was chosen to be the ε-ball about f(s). Therefore 
x ∈ S, ||x _ s|| < δ ⇒ || f(x) _ f(s)|| < ε. 

Since such a positive δ has been shown to exist for every ε > 0, we see that f  is 
continuous at s. 

2-6.P12. Let {yp} be a sequence in f(K ). Then there is a sequence {xp} in K such 
that yp = f(xp) ∀ p ∈ .̀ Since K is compact, {xp} has a convergent subsequence 
{xp(k)} with limit x ∈ K, in view of Theorem 2-5.7 and Theorem 2-5.2. Since f  is 
continuous at x, it follows that { f(xp(k))} converges to f(x) [see 2-6.P7]. This 
means that the subsequence {yp(k)} of {yp} is convergent with limit in f(K ). Thus 
any sequence in f(K ) contains a convergent subsequence with limit in f(K ). By 
Theorem 2-5.7 and Theorem 2-5.2, f(K ) is compact. 

2-6.P13. Taking ε = 1 in the definition of uniform continuity, we find that there 
exists some δ > 0 such that 

|| f(ξ) _ f(x)|| < 1 as long as ||ξ _ x || < δ, where ξ ∈ X,  x ∈ X.………(1) 

By Proposition 2-5.3, there exists a finite family U of δ-balls B, all centred at 
points of X, such that U covers X. Since U covers X, the family { f(B∩X ) : B ∈ U 
} covers f(X ). In view of (1), each set f(B∩X ) is contained in a 2-ball in \m. 
Therefore f(X ) is covered by the finite family of sets f(B∩X ), each of which is 
contained in a 2-ball. Using the facts that (a) any ball is bounded (b) the union of 
a finite family of bounded sets is bounded and (c) a subset of a bounded set is 
bounded, we conclude that f(X ) is bounded. This means that f  is bounded. 

The result of the next problem can be obtained as a consequence of the fol-
lowing: (1) A continuous image of a connected set is connected. (2) A connected 
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subset of \ is an interval. But here we ask for a direct proof. The result will be 
needed for 6-4.P7. 

2-6.P14. Suppose not. Then there exist α,β,γ  ∈ \ such that α,β ∈ f(X ), α < γ  < 
β, but γ  ∉ f(X ). The sets (_∞,γ ) ⊆ \ and (γ ,∞) ⊆ \ are open. Since their union 
consists of all real numbers except γ  ∉ f(X ), we have 

f
_1((_∞,γ ))∪ f

_1((γ ,∞)) = X.………………………(1) 
Also, 

f
_1((_∞,γ ))∩f

_1((γ ,∞)) = ∅………………………(2) 

because (_∞,γ )∩(γ ,∞) = ∅. By continuity of f  and 2-6.P11, there exist open 
sets U ⊆ \n and V ⊆ \n such that 

f
_1((_∞,γ )) = X∩U and f

_1((γ ,∞)) = X∩V. 
From (1) and (2), it follows that 

(X∩U )∪(X∩V ) = X and (X∩U )∩(X∩V ) = ∅. 

Since the intersections (_∞,γ )∩ f(X ), (γ ,∞)∩ f(X ) are nonempty (considering 
they contain α and β, respectively), the same is true of their inverse images 
f

_1((_∞,γ )∩ f(X )) = f
_1((_∞,γ )) = X∩U and f

_1((γ ,∞)∩ f(X )) = f
_1((γ ,∞)) = 

X∩V. The existence of such open sets U,V contradicts the connectedness of X. 

2-6.P15. Since I = [a,b]×[c,d] is compact, f  is uniformly continuous on I. Since 
|g| is Riemann integrable, it has an upper bound M, say. Given any ε > 0, there 
exists δ > 0 such that for every pair of points z = (x,y),  z' = (x',y') in I such that 
|| z _ z' || < δ, we have | f(x,y) _ f(x',y')| < ε/M . Now consider any y,y' such that 
| y _ y' | < δ and any x ∈ [a,b]. Setting z = (x,y) and z' = (x,y'), we have || z _ z' || < 
δ and therefore | f(x,y) _ f(x,y')| < ε/M  and hence |g(x) f(x,y) _ g(x) f(x,y')| < ε. 
But this means | y _ y' | < δ ⇒ |g(x) f(x,y) _ g(x) f(x,y')| < ε for all x ∈ [a,b]. 
Hence 

| y _ y' | < δ ⇒ |F(y) _ F(y')| ≤ b
a∫ |g(x) f(x,y) _ g(x) f(x,y')| dx ≤ ε(b _ a). 

2-6.P16. Suppose, if possible, that λ1 and λ2 are both limits at x and that λ1 ≠ λ2 . 
Then ε = ||λ1

_ λ2|| > 0. By Def. 2-6.5, there exist δ1 > 0 and δ2 > 0 such that 

|| f(x + h) _ λ1|| < _ε2
_  whenever 0 < ||h || < δ1 and x + h ∈ A 

and 
|| f(x + h) _ λ2|| < _ε2

_  whenever 0 < ||h || < δ2 and x + h ∈ A. 

Choose h such that 0 < ||h || < min{δ1,δ2} and x + h ∈ A. Such an h exists be-
cause x is a limit point of A. Then the inequalities || f(x + h) _ λ1|| < 2

ε  and 
|| f(x + h) _ λ1|| < 2

ε  both hold and hence 
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ε = ||λ1
_ λ2|| ≤ || f(x + h) _ λ1|| + || f(x + h) _ λ2|| < _ε2

_  + _ε
2
_  = ε, 

a contradiction. 

2-6.P17. Let x,y ∈ \n and and ε > 0. There exists s ∈ S such that ||x _ s || < 
d(x,S) + ε. Now, d(y,S) ≤ ||y _ s || ≤ ||y _ x|| + ||x _ s || < ||y _ x|| + d(x,S) + ε . It 
follows that d(y,S) _ d(x,S) < ||y _ x|| + ε . By interchanging x and y in this ar-
gument, we get d(x,S) _ d(y,S) < ||y _ x|| + ε . Therefore |d(x,S) _ d(y,S)| < 
||y _ x|| + ε . Since this holds, for every ε > 0, we conclude that |d(x,S) _ d(y,S)| 
≤ ||y _ x||. Uniform continuity is now immediate. 

2-6.P18. (a) Straightforward computation.  
(b) Observe that Φ1

2 + Φ2
2 = 2(1 (2 1)sin )u v− α − π  and (1 (2 1)sin )u v− α − π  is 

always positive in view of the hypothesis that 0 < α < 1. 
Consider (u,v) ≠ (u',v') such that Φ(u,v) = Φ(u',v'). 
Suppose u = u'. Then v ≠ v' and the equality Φ3(u,v) = Φ3(u',v') leads to 

cos πv = cos πv' unless u = u' = 1
2 . But πv and πv' both belong to the interval 

[0,π] and cos is injective on this interval. So we find that u = u' = 1
2 . Therefore 

2u _ 1 = 2u' _ 1 = 0. Consequently, Φ(u,v) = (cos 2πv, sin 2πv, 0) and similarly 
for Φ(u',v'). It follows that cos 2πv = cos 2πv' and sin 2πv = sin 2πv'. But 2πv 
and 2πv' both belong to the interval [0,2π] and are distinct. So, one among 2πv 
and 2πv' must be 0 and the other must be 2π. This means one among v,v' is 0 
and the other is 1. 

Now suppose that u ≠ u'. First we rule out the possibility that either u or u' 
is 1

2 . If u = 1
2 , then the observation recorded at the beginning and the fact that 

Φ1(u,v)2 + Φ2(u,v)2 = Φ1(u',v')2 + Φ2(u',v')2 
together lead to 

1
2(1 (2( ) 1)sin )v− α − π = (1 (2 ' 1)sin ')u v− α − π , 

which is to say, 

(1 (2 ' 1)sin ')u v− α − π  = 1, or (2 ' 1)sin 'u vα − π = 0. 
But also 

(2 ' 1) cos 'u vα − π = Φ3(u',v') = Φ3(u,v) = 1
2(2( ) 1)cos vα − π = 0. 

Hence 2 2(2 ' 1)uα − = 0 It follows that u' = 1
2 , which is a contradiction because u' 

≠ u. We conclude that u ≠ 1
2 ; a similar argument shows that u' ≠ 1

2 . 
Having ruled out the possibility that either u or u' is 1

2 , we again use the ob-
servation recorded at the beginning to arrive at the equality 

(2 1)sinu vα − π = (2 ' 1)sin 'u vα − π . 

Since Φ3(u',v') = Φ3(u,v), we also have 

(2 1)cosu vα − π = (2 ' 1) cos 'u vα − π . 
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The foregoing two equalities show that (2u _ 1)2 = (2u' _ 1)2. Since u ≠ u', we 
obtain from here that 2u _ 1 = _(2u' _ 1), which yields u = 1_ u', as desired. 
Since neither u nor u' is 1

2 , we further obtain sin πv = _sin πv' and cos πv = 
_cos πv'. But πv and πv' both belong to the interval [0,π] and sin is nonnegative 
on this interval. It follows that sin πv = _sin πv' = 0. Therefore cos πv = _cos πv' 
= ±1. Once again using the fact that πv and πv' both belong to the interval [0,π], 
we conclude that one among πv and πv' must be 0 and the other must be π. This 
means one among v,v' is 0 and the other is 1. 

Problem Set 2-7 

2-7.P1. By the result of 2-3.P18, ||A ||  = √2. 

2-7.P2. From 2-7.P1, ||A ||  = √2, and from 2-3.P16, ||B|| = √2. Now, (BA)(x1,x2) = 
(2x1,0). Therefore ||(BA)(x1,x2)||2 = (2x1)2 + 02 = 4x1

2 ≤ 4(x1
2 + x2

2) = 4||(x1,x2)||2, 
which implies that ||BA|| ≤ 2 = (√2)(√2) = ||B||·||A || , as required. 

2-7.P3. ||A || = √2 = ||B ||, so that ||B || ||A || = 2. But ||BA || = 0, because BA = O. 

2-7.P4. No matter which norms are being used, ||(0,b)|| ≤ ||(a,b)||, which is to 
say, ||A(a,b)|| ≤ ||(a,b)||. Therefore ||A || ≤ 1. Since ||A(0,b)|| = ||(0,b)||, we have 
||A || = 1. 

2-7.P5. Modify the argument of the theorem above.  

2-7.P6. ||B
_1|| = ||AA

_1B
_1 _  BA

_1B
_1 + BA

_1B
_1|| = ||BA

_1B
_1 + (A _ B)A

_1B
_1|| ≤  

||BA
_1B

_1|| + ||(A _ B)A
_1|| ||B

_1||. Therefore ||B
_1||(1 _ ||(B _ A)A

_1|| ) ≤ ||BA
_1B

_1||. 
The required inequality now follows because 1 _ ||(B _ A)A

_1|| is positive. 

2-7.P7. Let {ek : 1 ≤ k ≤ n} be the standard basis in Rn and yk = Aek for 1 ≤ k ≤ n. 

Set y = (y1,y2 ,…,yn). For x ∈ Rn, we have x = 
k
Σ
n

=1
xkek and Ax = 

k
Σ
n

=1
xk Aek = 

k
Σ
n

=1
xkyk = x ·y .  

Problem Set 2-8 

2-8.P1. 
n
Σ
∞

=1
f(m,n) = 1

2m  and consequently, 
m
Σ
∞

=1
(

n
Σ
∞

=1
f(m,n)) = 

m
Σ
∞

=1
1
2m  = 1. Also, 

m
Σ
∞

=1
f(m,n) = (_1)n_1 and hence 

n
Σ
∞

=1
(

m
Σ
∞

=1
f(m,n)) is undefined. Since 

s(2n + 1,2n + 1)→1 and s(2n, 2n)→0 as n→∞, the series is not convergent.  
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2-8.P2. 
n
Σ
∞

=1
f(1,n) = ∞ and 

n
Σ
∞

=1
f(2,n) = _∞; 

m
Σ
∞

=1
f(m, 1) = ∞ and 

m
Σ
∞

=1
f(m, 2) = _∞. 

2-8.P3. The terms of the finite sum s(p,p) correspond to the points with integral 
coordinates in the square with vertices (1,1), (p, 1), (p,p) and (1,p). The number 
of points on the line segments passing through (n, 1) and (1,n), both terminating 
at (n,n), is 2n _ 1, where 1 ≤ n ≤ p. The sum of the squares of the coordinates of 
any point on either of the segments is greater than n2 and consequently, s(p,p) ≤ 

n
Σ
p

=1
(2n _ 1)n

_α  = 
n
Σ
p

=1
2n1_α _

 n
Σ
p

=1
 n

_α. These are partial sums of convergent series 
and hence, Proposition 2-8.10 shows that that the double series Σm, n (m2 + n2)

_α/2 
is convergent. 

Problem Set 3-2 

3-2.P1. Show that (x + h)3 + (y + k) – (x3 + y) can be expressed as (3x2)h + k + 
[√(h2 + k2) ] ·u(h, k), where u(h, k) = (3xh2 + h3)/√(h2 + k2)  for (h, k) ≠ (0, 0). 
Then use the fact that |h | ≤ √(h2 + k2)  to show that |u(h, k)| ≤ (|3x | + 
|h |)√(h2 + k2 ) . 

3-2.P3. If h = 0, then [φ(th, tk) _ φ(0,0)]/t = 0 and derivative in the direction 
(h,k) is 0. Suppose h ≠ 0. Then [φ(th, tk) _ φ(0,0)]/t = tk3/h→0 as t→0. Thus, the 
derivative in every direction is 0. Since f(0,0) = 0 and f( y3,y) = 1 for y ≠ 0, it 
follows that f  is not continuous at (0,0). 

3-2.P4. Since f(x) _ f(0) = ||x || , for any ε > 0, choosing δ = ε ensures that 0 < 
||x || < δ ⇒ | f(x) _ f(0)| < ε . Thus f  is continuous. If f  were to be differentiable, 
then by Remark 3-2.5(b), it would have a derivative at 0 in the direction of e1 . 

Therefore [ f(te1) _ f(0)]/t would have a limit as t→0. But [ f(te1) _ f(0)]/t = t
t || , 

and it is well known that this does not have a limit as t→0. 
3-2.P5. Denoting the ‘increment’ vector by (h,k) we have 

f(x + h,y + k) _ f(x,y) = (2xh + h2, yh + xk + hk, k) = (2xh, yh + xk, k) + (h2, hk, 0) 

= A(h,k) + (h2, hk, 0), 

where A:R2→R3 is the map for which A(h,k) = (2xh, yh + xk, k). Now, (h2, hk, 0) 
= ||(h,k)||u(h,k), where u(h,k) = (h2, hk, 0)/√(h2  + k2 ) .  Since A is linear with 
matrix as stated in the problem and since u(h,k)→0 as (h,k)→0, the required 
conclusion follows. 



Problem Set 3-2  317 

3-2.P6. Denote the ‘increment’ vector by (h,k). The expression we must deal 
with is ((x + h)2 + (y + k))10 – (x2 + y)10. Since it would be cumbersome to ex-
pand the 10th powers, we prefer to start with 

(z + s)10 – z10 = 10z9s +
10

2j=
∑ C(10, j)z10 _ j s j, 

where C(10, j) is the usual binomial coefficient 10!/j!(10 _ j)! Denoting the 
sum 

10

2j=
∑ C(10, j)z10 _ j s j _1  by u(s), we have 

(z + s)10 – z10 = 10 z9s + su(s), where u(0) = 0 and u(s)→0 as s→0. 
It follows from here by taking 

z = (x2 + y) and s = (x + h)2 + (y + k) – (x2 + y) = 2hx + h2 + k 
that ((x + h) 2 + (y + k))10 – (x2 + y)10 

= 10(x2 + y)9(2hx + h2 + k) + (2hx + h2 + k) · u(2hx + h2 + k) 
= 20x(x2 + y) 9h + 10(x2 + y)9k + 10h2(x2 + y)9 + (2hx + h2 + k) · u(2hx + h2 + k). 

Now, 
|10h2(x2 + y) 9| ≤ (10(x2 + y) 9 ·√(h2 + k2) ) · √(h2 + k2) and 
10(x2 + y)9·√(h2 + k2) approaches 0 as (h,k) approaches (0,0). 

Also, by the Cauchy–Schwarz inequality, 

|2hx + h2 + k| ≤ |h · (2x + h) + k· (1)| ≤ √(h2 + k2) · √[(2x + h)2 + 12] 

and (2x + h) 2 + 12 is bounded as (h,k) approaches (0,0). But this also implies 
that 2hx + h2 + k→0 as (h,k)→(0,0) and hence that u(2hx + h2 + k) does the 
same. It follows that, if we take v(h,k) to be the quotient,  

[10h2(x2 + y) 9 + (2hx + h2 + k) · u(2hx + h2 + k)]/√(h2 + k2) , 

when (h,k) ≠ (0,0), then v(h,k)→0 as (h,k)→(0,0) and 

((x + h)2 + (y + k))10 – (x2 + y)10 = [20x(x2+ y)9 10(x2 + y)9][k
h ] 

+ ||(h, k)||v(h, k). 
Thus, (x2 + y)10 is a differentiable function of (x, y) with derivative given by the 
1×2 matrix 

[20x(x2 + y)9 10(x2 + y)9]. 

3-2.P7. We have 

(x + h)20(y + k)10 – x20y10 = [(x + h)2(y + k)]10 – (x2y)10. 

Letting s = (x + h)2(y + k) – x2y in this, we obtain 

(x + h)20(y + k)10 – x20y10 = (x2y + s)10 – (x2y)10 

= 10(x2y)9s + |s|·v(s), where v(s)→0 as s→0, 

according to what is given. From Example 3-2.3(b),  
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s = A(h,k) + ||(h,k)||u(h,k), 

where A:R2→R is the linear map for which A(h,k) = 2xyh + x2k and 

u(h,k) = 
2 2

2 2

2xhk yh kh

h k

+ +

+
 when (h, k) ≠ (0, 0). 

It follows that 

(x + h)20(y + k)10 – x20y10 = 10(x2y)9[A(h,k) + ||(h,k)||u(h,k)] + |s |·v(s), 
so that 

(x + h)20(y + k)10 – x20y10 = 10(x2y)9A(h,k) + 10(x2y)9· ||(h,k)||u(h,k) + |s |·v(s) 
and also that 

|s | ≤ ||A||·||(h,k)|| + ||(h,k)||·|u(h,k)|, 
which implies that 

( , )
s

h k
 is bounded as ||(h,k)||→0. 

This and the fact that s→0 as ||(h,k)||→0 together have the consequence that 

w(h,k) = 10(x2y)9·u(h,k) +
( , )

s
h k

·v(s)→0 as ||(h,k)||→0. 

Since the above equality for (x + h)20(y + k)10 – x20y10 can be recast as 

(x + h)20(y + k)10 – x20y10 = 10(x2y)9A(h,k) + ||(h,k)||w(h,k), 

we have obtained the derivative in question as 10(x2y)9A(h,k), which is to say, 
the required derivative is the linear map B:R2→R such that 

B(h,k) = 10(x2y)9(2xyh + x2k) = 20x19y10h + 10x20y9k. 

It has the 1×2 matrix [20x19y10 10x20y9]. 

3-2.P8. Since ( ) ( )f x th f x
t

+ −  = ( ) ( )( )( )f x t h f x
t

− −+ −− − , it is immediate from Def. 3-2.4 
that Dh f(x) = _D_h f(x). Therefore the derivatives in the directions h and _h can-
not both be positive. The function f(x1 ,x2 ) = x1 has derivative 1 in the direction 
h = e1 at every point (x1 ,x2 ) ∈ R2. 

3-2.P9. Since each fk is differentiable in (a,b), we have fk(α + hk) _ fk(α) = 
fk'(α)hk + |hk |uk (hk), where uk(hk)→0 as hk→0. Let x = (x1 ,…,xn) ∈ E and h = 
(h1 ,…,hn) ∈ Rn. Then 

f(x + h) _ f(x) = 
k
Σ
n

=1
[ fk(xk + hk) _ fk(xk)] = 

k
Σ
n

=1
fk'(xk)hk + 

k
Σ
n

=1
|hk |uk (hk), 

so that 
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| f(x + h) _ f(x) _
k
Σ
n

=1
fk'(xk)hk | ≤ ||h || |

 k
Σ
n

=1
kh
h

uk(hk)| 

and |
 k
Σ
n

=1
uk (hk)|→0 as h→0 because uk(hk)→0 as hk→0. 

3-2.P10. By definition of ak(x), we have fk(x + h) _ fk(x) = ak(x)hk + hkEk (h), 
where Ek(h)→0 as h→0. So,  f(x + h) _ f(x) = 

k
Σ
n

=1
[ fk(x + h) _ fk(x)] = 

k
Σ
n

=1
ak(x)hk + 

k
Σ
n

=1
hkEk (h), so that 

| f(x + h) _ f(x) _
k
Σ
n

=1
ak(x)hk | = |

k
Σ
n

=1
hkEk (h)| ≤ ||h || |

k
Σ
n

=1
Ek (h) | 

and |
k
Σ
n

=1
Ek (h) |→0 as h→0. 

3-2.P11. F(c + h) _ F(c) = g(c + h)·f(c + h) _ g(c)·f(c) 

= g(c + h)·{ f(c + h) _ f(c)} 

= g(c + h)·{ f '(c)(h) + ||h ||u(h)} 

= g(c + h)·{ f '(c)(h)} + ||h ||g(c + h)·u(h) 

= g(c)·{ f '(c)(h)} + [g(c + h) _ g(c)]·{ f '(c)(h)} 
+ ||h ||g(c + h)·u(h). 

Now, 

| [g(c + h) _ g(c)]·{ f '(c)(h)} + ||h ||g(c + h)·u(h) | 
≤ ||h ||[ ||g(c + h) _ g(c)|| || f '(c)|| + ||g(c + h)|| ||u(h) || ]. 

Since g is continuous at c, it follows that g(c + h) is bounded as h→0. Therefore 
both terms in the bracket on the right side tend to 0 as h→0. 

3-2.P12. D1 f(0,0) = 
0

lim
t →

( ,0) (0,0)f t f
t
−  = 

0
lim
t →

t
t  = 1 and similarly, D2 f(0,0) = 1. 

If h = (a1 ,a2), where a1a2 ≠ 0, is any other direction, then Dh f(0,0) = 

0
lim
t →

1 2( , ) (0,0)f ta ta f
t

−  = 
0

lim
t →

1
t , which does not exist. It follows from Remark 3-

2.5(b) that f  is not differentiable. 



 

Problem Set 3-3 

3-3.P1. (a) As shown in 3-2.P3, the derivative in every direction is 0, so that the 
zero linear map serves as the Gateaux derivative.  
(b) Consider any h ∈ Rn. Then 

lim [ f(x + th) – f(x)]/t = Ah as t→0.……………………(1) 

For k belonging to some ball K centred at 0 ∈ Rn, 

g( f(x) + k)) – g( f(x)) = g'( f(x))k + || k ||v(k), (2)  

where v(k)→0 as k→0. Since f is continuous at x, then for all sufficiently small t, 
we have f(x + th) – f(x) ∈ K. Then we may take k = f(x + th) – f(x) in (2). But if 
we choose k in this manner, then we have f(x) + k = f(x + th). Therefore by (2) 
and the linearity of g'( f(x)), 

)( ( ) ( ( ))g f x th g f x
t

+ −  = g'( f(x)) k
t + || ||k

t v(k),………………(3) 

where, by (1), k/t→Ah and hence ||k ||/t is bounded as t→0. Since k→0 as t→0, it 
follows from (3) and (2) that 

lim )( ( ) ( ( ))g f x th g f x
t

+ −  = g'( f(x))Ah as t→0. 

3-3.P2. Since f is continuous, x is an interior point of the domain of g f . Consid-
er any k ∈ Rm. Then 

lim [g( f(x) + tk) _ g( f(x))]/t = Gk as t→0.……………………(1) 

For sufficiently small t and any h ∈ Rn, we have 

(g f )(x + th) = g(Ax + t(Ah) + b) = g( f(x) + t(Ah)) 

and hence [(g f)(x + th) _ (g f)(x)]/t = [g( f(x) + t(Ah)) _ g( f(x))]/t. By (1), this 
has limit G(Ah) as t→0. 

3-3.P3. Modify the proof of Corollary 3-3.4, keeping in mind that the chain rule 
is not available for Gateaux derivatives. So, fish for something else that will 
serve the purpose. 

3-3.P4. (a) Since f  is real valued, each G(ej) is a real number. For a general h ∈ 

Rn, the linearity of G leads to G(h) = G(h1 ,…,hn) = G(
j
Σ
=

n

1
hj ej ) = 

j
Σ
=

n

1
hj G(ej). 

Since G ≠ 0, at least one among G(ej) must be nonzero. So h'j = G(ej) describes a 
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nonzero element of Rn. The Cauchy–Schwarz inequality yields |G(h1 ,…,hn)| ≤ 

√(
 j
Σ
=

n

1
hj

2)√j
Σ
=

n

1
G(ej)2 = ||h ||2√j

Σ
=

n

1
G(ej)2, with the rider that equality holds here only 

if there is some real number α such that h = αh'. The inequality shows that ||G || 

≤ √j
Σ
=

n

1
G(ej)2. Since equality indeed holds when h = h'/||h'||2 while ||h ||2 = 1, we 

find that ||G || = √j
Σ
=

n

1
G(ej)2. Hence, the equality ||G || = |G(h)| holds with ||h ||2 = 1 if 

and only if |G(h1 ,…,hn)| = √(
j
Σ
=

n

1
hj

2)√j
Σ
=

n

1
G(ej)2 = ||h ||2√j

Σ
=

n

1
G(ej)2 with ||h ||2 = 1. 

According to the rider, this is only possible when h also satisfies h = αh' where 

α is some real number. Such an α must satisfy |α| = ||h ||2/||h' ||2 = 1/||h' ||2 . There 

are exactly two such real numbers α, namely, ±1/||h' ||2 . Therefore h = ±h'/||h'||2 

are the only two h ∈ Rn satisfying ||G || = |G(h)| and ||h ||2 = 1. 

(b) Proceeding as in (a), we have G(h) = 
j
Σ
=

n

1
hj G(ej). Therefore |G(h)| ≤ 

(
j
Σ
=

n

1
|hj | )·max{|G(ej)| : 1 ≤ j ≤ n} = ||h ||1· max{|G(ej)| : 1 ≤ j ≤ n}, so that ||G || ≤ 

max{|G(ej)| : 1 ≤ j ≤ n} = |G(ep)|, say. Note that p need not be unique. Select h ∈ 

Rn such that hp = 1 and hi = 0 for i ≠ p. Then ||h ||1 = 1 and |G(h)| = |G(ep)| = 

max{|G(ej)| : 1 ≤ j ≤ n}, which shows that ||G || = max{|G(ej)| : 1 ≤ j ≤ n} and 

also that |G(h)| = ||G ||. Since |G(_h)| = ||G || and ||_h ||1 = 1, we get two elements 

of Rn of the required kind. When p is not unique, we can get at least two more. 

3-3.P5. Denote F(b) – F(a) by p, and let φ:[a,b]→R be defined by 

φ(t) = p ·F(t). 

Also, φ is the composition of the maps t→ F(t) and x→ p·x in that order. The 
first one has derivative h→ F'(t)h and the second one has derivative h→ p·h 
[Remark 3-2.2(d)]. Their norms are, respectively, ||F'(t)||  and || p || [see Example 
2-7.3(c)]. By the chain rule, the derivative φ'(t) exists and equals the composi-
tion of the linear maps 

h→  F'(t)h and h→ p ·h, 
in that order. Using the property that ||ST || ≤ ||S || ||T || for any linear maps S and 
T for which the product ST is defined, we find that 

||φ'(t)|| ≤ || p ||·||F'(t)||  ∀ t ∈ (a,b). 
However, by the mean value theorem, 

|φ(b) – φ(a)| = |φ'(c)|·|b _ a| for some c ∈ (a,b) 
= ||φ'(c)||·(b _ a). 
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Moreover, φ(b) = p ·F(b) and φ(a) = p ·F(a). Hence 
| p ·(F(b) – F(a))| ≤ || p || ||F'(c)||·(b _ a), 

i.e., ||p ||2 ≤ (b _ a)||p || ||F'(c)||  (because p = F(b) – F(a)). 
So, ||p || ≤ (b _ a)||F'(c)|| . 
Since p = F(b) – F(a), this is the same as ||F(b) _ F(a)||  ≤ (b _ a)||F'(c)|| . 

3-3.P6. (a) Suppose x = Σ xj ej  and y = Σ yj ej , where aj  ≤ xj  ≤ bj  and aj  ≤ yj  ≤ bj  
for 1 ≤ j ≤ n, and let 0 ≤ t ≤ 1. Then tx + (1 _ t)y = Σ ( txj + (1 _ t)yj )ej and a = ta 
+ (1 _ t)a ≤ txj + (1 _ t)yj  ≤  tb + (1 _ t)b = b. 
(b) Let x = Σ xk ek . Since x and x + h both belong to the cuboid, then for 1 ≤ k ≤ 
n, we have (i) ak ≤ xk ≤ bk and (ii) ak ≤ xk + hk ≤ bk . When 0 ≤ t ≤ 1, we therefore 
have aj ≤ xj + thj ≤ bj. This, together with the first j _ 1 inequalities in (ii) and the 
last n _ j inequalities in (i) leads to the required conclusion. 
(c) Yes: If √(h1

2 + … + hn
2) is less than the radius of the ball (or equal), then so 

is √(h1
2 + … + t2hj

2). 

3-3.P7. φ'(t) is the limit as h→0 of the quotient Φ(h) = h
etxfehtxf )())(( μ+−μ++  and 

the derivative of f  at x + t(μe) in the direction of e is the limit as h→0 of F(h) = 

h
etxfheetxf )()( μ+−+μ+ . The relation is Φ(h) = μF(μh) for μ ≠ 0. This implies (i) 

and that (ii) φ'(t) is μ times (De f )(x + t(μe)), the directional derivative in ques-
tion. For (iii), we note that 

f(x + μe) _ f(x) = φ(1) _ φ(0) = φ'(θ) = μ·(De f )(x + θ(μe)),0 < θ < 1. 

3-3.P8. The map x→ f1(x)u1 from E to Rm is the composition A f1 ,  where 
A:R→Rm is the linear map given by Az = zu1 . By the chain rule, its derivative at 
x0 is the composition A f1'(x0). This composition maps h ∈ Rn into A( f1'(x0)(h)) = 
[ f1'(x0)(h)]u1 . If f2 :E→R is also differentiable at x0 ∈ E, then the derivative of 
the map x→ f2(x)u2 from E to Rm is given by h→[ f2'(x0)(h)]u2 . Therefore 

φ'(x0)(h) = [ f1'(x0)(h)]u1 + [ f2'(x0)(h)]u2 .  

3-3.P9. (a) f(2π) _ f(0) = (0,0) has norm 0 but f '(θ) = (_sinθ, cosθ) has norm 1. 
(b) Apply the one variable mean value theorem to φ(t) = [ f(a + t(b _ a)) ]·c on 
[0,1], noting that φ'(t) = limh→0 [ ( ( )( )) ( ( ))f a t h b a f a t b a

h c+ + − − + −
 ] = [(Db_a f )(a + 

t(b _ a)]·c, because limu→v u·c = v·c.  
(c) The function satisfies f(b) _ f(a) = (0,0); since the function has a linear de-
rivative represented by the matrix [ ]sin cost t− , it follows by Remark 3-2.5(b) 
that it has a directional derivative given by [(Db_a f )(a + θ(b _ a)] = 
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2π[_sin2πθ, cos2πθ]. The required θ must satisfy _c1 sin2πθ + c2 cos2πθ = 0. If 
c1 = 0, then θ = 1

4  or 3
4 . If c2 = 0, then θ = 1

2 . If c2 /c1 > 0, then there are two 
possibilities for θ: 1

2π arctan(c2 /c1) and 1
2  + 1

2π arctan (c2 /c1). If c2 /c1 < 0, then 
again there are two possibilities for θ: 1

2  + 1
2π arctan (c2 /c1) and 1 + 1

2π arc-
tan (c2 /c1).  

(d) f(1) _ f(0) = (0,0) and f '(θ) = (1 _ 2θ, 1 _ 3θ2), which cannot be (0,0) for any 
value of θ. Now c1(1 _ 2θ) + c2(1 _ 3θ2) = _3c2θ2 _ 2c1θ + (c1 + c2) and 
( f(1) _ f(0))·(c1 ,c2) = 0. If c2 = 0, then these can be equal only if θ = 1

2 . Howev-
er, if c2 ≠ 0, then these can be equal only if θ is one among the numbers _[c1 ± 
√(c1

2 + 3c2
2 + 3c1c2)]/3c2 . It remains to check when both of them lie in (0,1). To 

do so, we express them as 1
3− [u ± √(u2 + 3u + 3)], where u = c1/c2 . By applying 

usual differentiation techniques to the functions 1
3− [u ± √(u2 + 3u + 3)], one can 

show that _[c1 + √(c1
2 + 3c2

2 + 3c1c2)]/3c2 lies in (0,1) ⇔ c1/c2 < _1 and that 
_[c1

_ √(c1
2 + 3c2

2 + 3c1c2)]/3c2 lies in (0,1) ⇔ c1/c2 > _2. In case _2 < c1/c2 < 
_1, of course both lie in (0,1). Thus θ is nonunique ⇔ c2 ≠ 0 and _2 < c1/c2 < _1. 

3-3.P10. (a) Denote the centre of the ball B by a and consider any b ∈ B. By 
Problem 3-3.P9(b), we have ( f(b) _ f(a))·c = 0 for every c ∈ Rm; in particular, 
for c = f(b) _ f(a). Therefore f(b) = f(a). Since b is an arbitrary point of B here, 
it follows that f  is constant on B. 
(b) For any a,b ∈ B such that 0 ≠ b _ a = pu for some p ∈ R, we have f(b) = f(a). 
This follows by using the result of Problem 3-3.P9(b) and noting that Db _ a f  = 
pDu f. 

3-3.P11. Let s0 be any point of S. By Corollary 3-3.4, f is constant in any open 
ball contained in S. Therefore S1 = {s ∈ S : f(s) = f(s0)} is an open subset of S. 
However, by continuity of f, the set S2 = {s ∈ S : f(s) ≠ f(s0)} is also an open sub-
set of S. Since S1 and S2 are disjoint open subsets of the connected set S with 
union equal to S, one among the two must be empty. Now S1 cannot be empty 
because it contains s0 . Therefore S2 must be empty, which means S1 = S, i.e., f(s) 
= f(s0) ∀ s ∈ S.  

3-3.P12. Apply 3-3.P7(iii) with (x, t) as x, t as μ and (1,_1) as e. Then 

f(x + t, 0) _ f(x, t) = t·[D(1, _1) f((x, t) + θ(t, _t))] = t·[D(1, _1) f(x + θt , (1 _ θ)t)] 

= t·[ f
x

∂
∂ (x + θt , (1 _ θ)t)(1) +  f

t
∂
∂ (x + θt , (1 _ θ)t)(_1)] = 0, because f

x
∂
∂  

= f
t

∂
∂  by hypothesis. 

Therefore f(x, t) = f(x + t, 0) > 0 for all (x, t). 
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3-3.P13. Applying 3-3.P9(b) with m = 1, we get for some θ ∈ (0,1), 

f(y) _ f(x) = (Dy _ x f )(x + θ(y _ x)) = 
i
Σ
=

n

1
( yi

_ xi)
i

f
x

∂
∂

(z), where z = x + θ(y _ x). 

Therefore by the Cauchy–Schwarz inequality, | f(y) _ f(x)| ≤ 

[
i
Σ
=

n

1
( yi

_ xi )2 ]1/2[
i
Σ
=

n

1(
i

f
x

∂
∂

(z))2 ]1/2. On letting y→0 and using (ii) and (iii), we get 

| f(0) _ f(x)| ≤ ε[
 i
Σ
=

n

1
xi

2 ]1/2 for sufficiently small 
i
Σ
=

n

1
xi

2. This means f  is differentia-

ble at 0 (with derivative zero). 

3-3.P14. It suffices to consider only φ. Continuity at points (x,y) ≠ (0,0) is clear. 
The observation that 

4 2 2 4

2 2 2
4

( )
x x y y

x y
+ −

+
= 1 + 2

2

2 2( )
y

x y+

2 2

2 2( )
x y
x y

−
+

 so that |φ(x,  y)| ≤ 3|y | 

proves continuity at (0,0). For any (h,k) ≠ (0,0) and any t ≠ 0, we have 

( , ) ( , )0 0th tk
t

φ − φ  = k
4 2 2 4

2 2 2
4

( )
kh h k

h k
+ −

+
, 

which shows that the right side here is the derivative in the direction (h,k). 
Hence the partial derivatives D1φ(0,0) and D2φ(0,0) are obtained from here by 
setting (h,k) = (1,0) and (h,k) = (0,1), respectively. Thus D1φ(0,0) = 0 and 
D2φ(0,0) = _1. If φ were to be differentiable at (0,0), we would have 

φ(h,k) _ φ(0,0) = (_1)k + (h2 + k2)1/2u(h,k), 

where u(h,k)→0 as (h,k)→(0,0). This would imply that 

u(h,k) = (h2 + k2)
_1/2 [k

4 2 2 4

2 2 2
4

( )
kh h k

h k
+ −

+
 + k] = 2(h2 + k2)

_1/2 kh2 2 2

2 2 2
3

( )
h k
h k

+
+

, 

which does not approach 0 as (h,k)→(0,0), because its value when k = h is 
21/2h/|h |. This would be a contradiction. The directional derivative is not linear 
in (h,k); so no Gateaux derivative. 

3-3.P15. Suppose a1 ≠ 0. Then 1 2( , ) (0,0)f ta ta f
t

−  = 
3 2

1 2
3 2 2 4

1 2( )
t a a

t a t a+
 = 

2
1 2

2 2 4
1 2

a a
a t a+

, which 

has limit 
2

2
1

a
a  as t→0. If a1 = 0, then 1 2( , ) (0,0)f ta ta f

t
−  = 0. The value of the func-

tion at any point of the parabola x = y2 other than (0,0) is 1
2 , whereas its value at 

(0,0) is 0, i.e., f(y2,y) _  f(0,0) = 1
2  for all y ≠ 0. The directional derivative is not 

linear in (a1 ,a2); so no Gateaux derivative. 
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3-4.P1. f(x, y) = ( f1(x,y), f2(x,y), f3(x,y) ),  where f1(x,y) = x2,  f2(x,y) = xy and 
f3(x,y) = y. The 3×2 matrix having rows [∂f i /∂x ∂f i /∂y], where i = 1,2,3,  is the 
one given in the problem. Since each partial derivative is continuous, the func-
tion f is differentiable [Theorem 3-4.4] and hence the derivative is given 
[Theorem 3-4.2] by the aforementioned matrix. 

3-4.P2. Since f(x, 0) = 0 = f(0,y) for all x,y,  both partial derivatives exist at (0,0) 
and are 0. To prove discontinuity at (0,0),  we shall work with the norm ||(u,v)|| = 
√(u2 + v2). For any δ > 0, the point (x,y) = (δ/2,δ/2) satisfies ||(x,y) _ (0,0)|| < δ 
but | f(x,y) _ 0| = 1/2, whereby f  is seen to be discontinuous at (0,0). If h ≠ 0 ≠ k, 
then [ f(th, tk) _ f(0,0)]/t = hk/t(h2 + k2), which has no limit as t→0. 

3-4.P3. Since f(x, 0) = 0 = f(0,y), both partial derivatives exist and are 0. Since 
|x |, | y | ≤ (x2 + y2)1/2, we have | f(x,y)| ≤ (x2 + y2)/(x2 + y2)1/2 = (x2 + y2)1/2. There-
fore f  is continuous at (0,0). However, there is no derivative in any direction 
(h,k) for which h ≠ 0 ≠ k, because [ f(th, tk) _ f(0,0)]/t = thk/| t |(h2 + k2)1/2, which 
has no limit as t→0. 

3-4.P4. The partial derivatives ∂x/∂p,  ∂x/∂q,  ∂y/∂p,  ∂y/∂q are all continuous and 
the map is therefore differentiable. The Jacobian is the determinant of 

⎥
⎦

⎤
⎢
⎣

⎡ −
qpq
qpq

cossin
sincos , 

which is p. 

3-4.P5. ∂x/∂p = _sin p cosh q,  ∂x/∂q = cos p sinh q,  ∂y/∂p = cos p sinh q,  ∂y/∂q = 
sin p cosh q.  Upon computing the relevant determinant, we find that the Jacobian 
is _sin2p _ sinh2q. This vanishes ⇔ (p,q) = (kπ, 0), where k ∈ ]. 

3-4.P6. Proceed as in the proof of Theorem 3-4.4. Statement (1) is now available 
only for 2 ≤ j ≤ n. So, split g(x + h) _ g(x) as [g(x + zn ) _ g(x + z1 )] + [g(x + 
z1 ) _ g(x + z0 )] = Σ j=

n
2 (g(x + zj ) _ g(x + zj_1 )) + [g(x + h1e1) _ g(x)] and handle 

the summation by using (1) as in the theorem. For g(x + h1e1) _ g(x), invoke the 
definition of D1g. 

3-4.P7. As in Theorem 3-4.4, g(x + h) – g(x) = Σ j
n
=1 hj (Dj g)(x + zj – 1  + θj hj ej ) 

for any x ∈ E. Now boundedness of partial derivatives yields the desired continu-
ity. 

Problem Set 3-4 325 



Solutions 
 

326 

3-4.P8. Here f1(x,y) = sin x cos y, f2(x,y) = x + y, f3(x,y) = x2 _ y. Therefore the 
partial derivatives are 
D1 f1 = cos x cos y, D2 f1 = _sin x sin y, D1 f2 = 1, D2 f2 = 1, D1 f3 = 2x, D2 f3 = _1. 

The Jacobian matrix is therefore 
cos cos sin sin

1 1
2 1

x y x y

x

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

3-4.P9. As in Example 3-2.6, the derivative at (0,0) in any direction (h,k) is 
h3/(h2 + k2), which is not linear in (h,k). Therefore there is no Gateaux derivative 
at (0,0). But partial derivatives are 1 and 0. Since [ f(t, 0) _ f(0,0)]/t = 1, then 
(D1 f )(0,0) = 1; since f(0,y) = 0 ∀ y, then (D2 f )(0,0) = 0. For (x,y) ≠ (0,0), 

(D1 f )(x,y) = 
2 2 2 3

2 2 2

3 ( ) (2 )
( )

x x y x x
x y
+ −

+
 = 

4 2 2

2 2 2

3
( )
x x y
x y

+
+

 = 
2 2 2 2 2 4

2 2 2

( )
( )

x y x y y
x y

+ + −
+

 

= 
2 2 2

2 2 2

( )
1

( )
y x y

x y
−

+
+

 

and (D2 f )(x,y) = 
3

2 2 2

2
( )

x y
x y

−
+

 = 
2

2 2 2 2

2xy x
x y x y

−
+ +

. 

Therefore |(D1 f )(x,y)| ≤ 2 and |(D2 f )(x,y)| ≤ 1. Thus the partial derivatives are 
bounded.  

3-4.P10. For (x, y) ≠ (0,0), we have (D1 f )(x,y) = 2xy2 ln (x2 + y2) + 2x3y2/(x2 + y2) 
and similarly for (D2 f )(x,y). Also, (D1 f )(0,0) =  (D2 f )(0,0) = 0. (It may be re-
called from 3-4.P9 that mere existence of partial derivatives does not ensure that 
there is a Gateaux derivative.) Since the partial derivatives we have obtained are 
continuous, the function is differentiable everywhere by Theorem 3-4.4. There-
fore the linear derivative also provides the Gateaux derivative. By Theorem 3-
4.2, the matrix representation, which must be 1×2, has entries (D1 f )(x,y), 
(D2 f )(x,y), respectively. 

3-4.P11. (a) (D1 f )(x,y) = (1 + y2)/(1 + x2 + y2 + x2y2) and (D2 f )(x,y) = _(1 
+x2)/(1 + x2 + y2 + x2y2). Since both are continuous,  f  is differentiable every-
where by Theorem 3-4.4 and thus f(x,y) = f(0,0) + x(D1 f )(0,0) + y(D2 f )(0,0) + 
||(x,y)||u(x,y), where u(x,y)→0 as (x,y)→0. Now f(0,0) = 0, (D1 f )(0,0) = 1 and 
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(D2 f )(0,0) = _1. So, f(x,y) = x _ y + ||(x,y)||u(x,y). Since u(x,y)→0 as (x,y)→0,  
the required approximation is x _ y. 
(b) Proceed similarly, noting that f(3, 1

2 ) = 4
π  and that (D1 f )(3, 1

2 ) = 1
10 , 

(D2 f )(3, 1
2 ) = 4

5− . The answer is 1 4 1
10 5 2( 3) ( )x y− − − . 

3-4.P12. By the chain rule, 

g'(t) = [(D1 f )( ty1 + (1 _ t)x1 , y2)]·(y1
_ x1) + [(D2 f )(x1 , ty2 + (1 _ t)x2)]·(y2

_ x2). 

Now, f(y1 ,y2) _ f(x1 ,x2) = g(1) _ g(0) = g'(θ), where 0 < θ < 1, using the mean 
value theorem. So, 

f(y1 ,y2) _ f(x1 ,x2) = [(D1 f )(θy1 + (1 _ θ)x1 , y2)]·(y1
_ x1) 

+ [(D2 f )(x1 , θy2 + (1 _ θ)x2)]·(y2
_ x2). 

Take zi = θyi + (1 _ θ)xi . 

3-4.P13. Follow the argument of part (b) of Theorem 3-4.9, keeping in mind that 
x is now not an arbitrary point of S. 

3-4.P14. Direct computation will yield the result. However, it is easier when 

determinants are used. First, J(y, z) = det u v

u v

y y
z z
⎡ ⎤
⎢ ⎥⎣ ⎦

 and similarly for J(z,x) and 

J(x,y). Second, 

det
u u v

u u v

u u v

x x x
y y y
z z z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = det
v u v

v u v

v u v

x x x
y y y
z z z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 0. 

Expanding these by the first column obviously leads to the required equalities. 

3-4.P15. (a) Since the cofactor Ai k  is a function of only those entries not in the 

i th row (or kth column), we have 
i ja

∂
∂

Ai k  = 0 for any i , j , k . It follows that 

i ja
∂

∂
(ai k Ai k )  = 0 if k ≠ j and Ai j  if k = j. The equality detA = Σ j ai j Ai j  now 

implies that 
i ja

∂
∂

detA = Ai j  for any i , j . 

(b) By the chain rule, d
dx

detA = Σ i j [(
i ja

∂
∂

detA) ai j'] = Σ i j Ai j ai j'.……(*) 

From this and the fact that Ai j  = (AB
i)i j , we further obtain d

dx
detA = 

Σ i j (AB
i )i j ai j' = Σ i [Σ j (AB

i)i j ai j'] = Σ i detAB
i . 
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(c) Since Ai j  = cj i detA, it follows from (*) of part (b), that d
dx

detA = de-

tA Σi j ai j' cj i . This says that d
dx

( ln (detA)) = Σi j ai j' cj i . 

3-4.P16. z is homogeneous of degree 0. By Euler’s Theorem 3-4.9(a), the an-
swer is 0. 

3-4.P17. If y0 ∈ [c,d], then 

|F(y0 + h) _ F(y0) _ h ( b

a∫ 0( , )
f

x y
y

∂
∂

dx) | 

= | b
a∫ ( f(x,y0 + h) _ f(x,y0) _ h 0( , )

f
x y

y
∂
∂

) dx| 

≤ b
a∫ | f(x,y0 + h) _ f(x,y0) _ h 0( , )

f
x y

y
∂
∂

| dx 

≤ |h| b
a∫ | 0( , )

f
x y h

y
∂

+ θ
∂

_
0( , )

f
x y

y
∂
∂

| dx,  

where 0 < θ < 1. Since f
y

∂
∂  is continuous on the compact domain [a,b]×[c,d], we 

know that f
y

∂
∂ (x,y0 + h) converges uniformly to f

y
∂
∂ (x,y0) as h→0. Therefore the 

last mentioned integral tends to 0 as h→0. Using this limit in the inequality 
proved shows F'(y) to be as claimed. If [c,d] is replaced by (c,∞), then we can 
apply the previous case to [c',d] for every c' > c and every d > c' to conclude 
that the result continues to hold after the replacement. Similarly, it holds if [c,d] 
is replaced by R. 

3-4.P18. First consider any u ∈ [0, _1
2
_]. We have 0 ≤ _ln (1 _ u) = u + 

2 3

2 3
u u+ + … = u(1+

2

2 3
u u+ + …) ≤ u(1 + u + u2 + …) = 1

u
u−  and also 1 _ u ≥ 

_1
2
_ . Therefore 0 ≤ u ≤ _12

_  ⇒ 0 ≤ _ln (1 _ u) ≤ 2u. So, α ≥ √2 ⇒ 0 ≤ 
2

2
sin φ

α  ≤ _12
_  ⇒ 0 

≤ _ln (1 _ 2

2
sin φ

α ) ≤ 2
2

2
sin φ

α  ≤ 2
2
α for all φ. Thus 0 ≤ _ln (α2 _ sin2 φ) + 2 lnα ≤ 

2
2
α  for α ≥ √2 and all φ. Hence 

0 ≤ _ / 2
0
π
∫ ln (α2 _ sin2 φ) dφ + π lnα ≤ 2

π
α  for α ≥ √2.…………(1) 

Now, by Leibnitz’s formula [see last part of 3-4.P17], when α > 1, we have 
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d
dα

/ 2
0
π
∫ ln (α2 _ sin2 φ) dφ = / 2

0
π
∫ [

∂
∂α  ln (α2 _ sin2 φ)]dφ = / 2

0
π
∫ 2 2

2
sin
α

α − φ
dφ = 

/ 2
0
π
∫ 2

4
2 1 cos2

α
α − + φ

dφ = 0
π
∫ 2

2
2 1 cos

α
α − + φ

dφ = 
2 1
π

α −
 in view of the general equality 

0
π
∫ cos

d
a b

θ
+ θ  = 

2 2a b
π
−

 when a > b > 0. 

But d
dα π ln(α+ √(α2 _ 1)) = 

2 1
π

α −
 and therefore, 

/ 2
0
π
∫ ln (α2 _ sin2 φ) dφ = π ln(α + √(α2 _ 1)) + c 

= π lnα+ π ln [1+ √(1 _
2

1
α )] + c for some constant c and all α > 1.………(2) 

Since ln [1+ √(1 _
2

1
α )]→ln2 as α→∞, the equality (2) shows that 

[ / 2
0
π
∫ ln (α2 _ sin2φ) dφ _ π lnα_π ln2 _ c]→0 as α→∞. 

On the other hand, (1) implies that 
[ / 2

0
π
∫ ln (α2 _ sin2φ) dφ _ π lnα]→0 as α→∞. 

Thus, c = _π ln2. Together with (2), this leads to the required equality. 

3-4.P19. By Leibnitz’s formula [see last part of 3-4.P17], u'(x) = 

0
π
∫ sin φ sin (nφ _ xsin φ) dφ and u"(x) = _ 0

π
∫ sin2 φ cos (nφ _ xsinφ) dφ. Therefo-

re 

x2u" + xu + (x2 _ n2)u 
= _x2

0
π
∫ sin2 φ cos (nφ _ xsin φ) dφ + x 0

π
∫ sin φ sin (nφ _ xsin φ) dφ 

+ (x2 _ n2) 0
π
∫ cos (nφ _ xsin φ) dφ 

= 0
π
∫ [(x2cos2 φ _ n2)cos (nφ _ xsin φ) +  xsin φ sin (nφ _ xsin φ)]dφ 

= [_(n + xcosφ)sin (nφ _ xsin φ)]0
π = 0. 

3-4.P20. In view of the given continuity of f,  α,  β and D2 f, the function Φ(s, t) 

= t
s∫ f(x,y) dx has partial derivatives s

∂Φ
∂  = _ f(s,y),  t

∂Φ
∂  = f(t,y) by the funda-

mental theorem of calculus, and y
∂Φ
∂  = t

s∫
f
y

∂
∂ (x,y) dx by Leibnitz’s formula [see 

3-4.P17]. The required equality for F' now follows by the chain rule. Continuity 

of the derivative follows from the given continuity of f,  α',  β' and D2 f. 
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3-4.P21. For n = 1, we have F1(x) = 0
x
∫ f(t) dt and hence F1'(x) = f(x). By Prob-

lem 3-4.P20, we find for n > 1, that Fn'(x) = 1
( 1)!n− (x _ x)n _ 1 f(x) + 

1
( 2)!n− 0

x
∫ (x _ t)n _ 2 f(t) dt = 1

( 2)!n− 0
x
∫ (x _ t)n _ 2 f(t) dt. It therefore follows by in-

duction that Fn
(n)(x) = f(x) ∀n ∈ ̀ . 

3-4.P22. To show that Γ(t) ∉ D, it is sufficient to prove that Γ1(t)2 + Γ2(t)2 > 1. 
By (b), Γ1(0)2 + Γ2(0)2 = 1. Therefore, if we can establish that d

dt (Γ1(t)2 + Γ2(t)2) 
> 0 when t = 0, the required conclusion will follow. Since this derivative is non-
negative in view of (a) and (b), all we need to establish is that it is nonzero. 

Define a = Γ1'(0), b = Γ2'(0), α = γ1'(θ0) = _sin θ0 , β = γ2'(θ0) = cos θ0 . Then 
hypotheses (c) and (d) yield 

α2 + β2 = 1, a2 + b2 > 0, aα + bβ = 0, (1) 

where we have availed ourselves of the fact that γ3'(θ0) = 0 while using (d). 
When t = 0, 

1
2

d
dt (Γ1(t)2 + Γ2(t)2) = Γ1(0) Γ1'(0) + Γ2(0) Γ2'(0) 

= cos θ0 Γ1'(0) + sin θ0 Γ2'(0) by (b) 
= aβ _ bα. 

Because of (1), this cannot be 0. As noted at the end of the first paragraph, this is 
all we need to establish. 

3-4.P23. Recall that Φ is given by 

Φ1(u,v) = (1 (2 1)sin )cos 2u v v− α − π π , Φ2(u,v) = (1 (2 1)sin )sin 2u v v− α − π π , 
Φ3(u,v) = (2 1)cosu vα − π . 

where 0 < α < 1. 
(a) is obvious, because Γ(u0) = (u0 , 0) = γ(0). 
(b) (Φ Γ)(s) = (1,0, (2 1)sα − ). This yields (Φ Γ)'(s) = (0,0,2α) for all s ∈ [0,1]. 

(c) We note the following simple computational facts: 

(i) replacing ξ by 1− ξ  reverses the signs of 2 1ξ − , cos πξ , sin 2πξ  but 
preserves sin πξ  and cos 2πξ ; 

(ii) replacing ξ by _ξ reverses the signs of sin πξ , sin 2πξ  but preserves 
cos πξ  and cos 2πξ . 

Using these, it is an easy computation that, for all t ∈ [_1,1], 
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(Φ γ)1(t) = (Φ1 γ)(t) = 0(1 (2 1)sin )cos 2u t t+ α − π π , 
(Φ γ)2(t) = (Φ2 γ)(t) = 0(1 (2 1)sin )sin 2u t t− + α − π π , 

(Φ γ)3(t) = (Φ3 γ)(t) = 0(2 1)cosu tα − π . 

This shows that Φ γ is continuously differentiable on [0,1]. 
(d) It follows from (b) that (Φ Γ)'(u0) = (0,0,2α) ≠ 0. Therefore the required 
conclusion will follow if we can show that (Φ γ)3'(0) = 0 but (Φ γ)2'(0) ≠ 0. 
From the computation of (Φ γ)3(t) in (c), we find that its derivative is 

(Φ γ)3'(t) = 0(2 1)sinu t−πα − π , 

so that (Φ γ)3'(0) = 0. From the computation of (Φ γ)2(t) in (c), we find that its 
derivative is 

(Φ γ)2'(t) = 0 02 (1 (2 1)sin )cos 2 (2 1)cos sin 2u t t u t t− π + α − π π − πα − π π . 

For t = 0, this leads to 
(Φ γ)2'(0) = _2π ≠ 0. 

This establishes (d). 
The interpretation about the graph of Φ Γ lying on the ‘edge’ of M is that 

the points with 0 < t < 1 cannot lie on the edge. 

Problem Set 3-5 

3-5.P1. No, because θ depends on h and there is no telling how it will behave as 
h→0. 

3-5.P2. Since f(h, 0) = 0, we have D1 f(0,0) = 0. By an elementary computation, 
for (x,y) ≠ (0,0),  we have D1 f(x,y) = 2xy4/(x2 + y2)2. Therefore D1 f(0,k) = 0 
when k ≠ 0. This shows that D2 1 f(0,0) = 0. Similarly, D1 2 f(0,0) = 0. An ele-
mentary computation also shows that, for (x,y) ≠ (0,0),  we have D2 1 f(x,y) = 
[2xy/(x2 + y2)]3, which is not continuous at (0,0). 

3-5.P3. Since f(h, 0) = 0, we have D1 f(0,0) = 0. By an elementary computation, 
for (x,y) ≠ (0,0),  we have D1 f(x,y) = 2xy4/(x2 + y2)2. The partial derivatives of 
D1 f(x,y) at (0,0) are both 0. If D1 f  were differentiable at (0,0), we would have 

D1 f(h,k) = D1 f(h,k) _ D1 f(0,0) = hD1 1 f(0,0) + kD2 1 f(0,0) + (h2 + k2)1/2u(h,k) 

= (h2 + k2)1/2u(h,k), 
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where u(h,k)→0 as (h2 + k2)1/2→0, which amounts to D1 f(h,k)/(h2 + k2)1/2→0, 
i.e., 2hk4/(h2 + k2)5/2→0 as (h2 + k2)1/2→0. But this is false, because when k = λh, 
we have 2hk4/(h2 + k2)5/2 = 2λ4/(1 + λ2)5/2. 

3-5.P4. D1 F = f '(x + g(y)),  D2 F  = f '(x + g(y))g'(y),  D1 1 F = f"(x + g(y)),  D1 2 F 
= f"(x + g(y))g'(y). So (D1 F)( D1 2 F) = f '(x + g(y))  f"(x + g(y))g'(y) = 
(D2 F)(D1 1 F). 

3-5.P5. Let f(t) = F(tx, ty). Then on the one hand,  f '(t) = x(D1 F)(tx, ty) + 
y(D2 F)(tx, ty), so that 
f"(t) = x2 (D1 1 F)(tx, ty) + xy(D1 2 F)(tx, ty) + xy(D2 1 F)(tx, ty) + y2(D2 2 F)(tx, ty) 

= x2 (D1 1 F)(tx, ty) + 2xy(D1 2 F)(tx, ty) + y2 (D2 2 F)(tx, ty) 

by Young’s theorem (Theorem 3-5.4). On the other hand, f(t) = tpF(x,y), which 
leads to f '(t) = ptp_1F(x,y), so that f"(t) = p( p _ 1)t p_2F(x,y). So, x2 (D1 1 F)(tx, ty) 
+ 2xy(D1 2 F)(tx, ty) + y2(D2 2 F)(tx, ty) = p( p _ 1)t p_2F(x,y). Setting t = 1, we get 
the desired equality. We remark that one can do this with higher derivatives too 
and obtain an equality that can be expressed in self-explanatory notation as (xD1  
+ yD2 )mF(x,y) = p( p _ 1)…(p _ m + 1)F(x,y). 

3-5.P6. Proceed as in the proof of Schwarz’s theorem (Theorem 3-5.3) up to (2). 
But now D2 1 f is also continuous and the analogue of (2) for ψ(x) = f(x,b + h) – 
f(x,b) also holds. As in the proof of Young’s theorem (Theorem 3-5.4), ψ(a + h) 
– ψ(a) = φ(b + h) – φ(b). So, when h = k, the right sides of (2) and its analogue 
are equal. Cancel h2 and use the given continuity. 

3-5.P7. For h ≠ 0, 

f(h,y) _ f(0,y) = h2 arctan y
h

_ y2 arctan h
y  = h[h arctan y

h
_ y( y

h arctan h
y )]. 

Therefore D1 f(0,y) = _y (including the case when y = 0). It follows that 
D2 1 f(0,0) = _1. A similar argument shows that D1 2 f(0,0) = 1. 

3-5.P8. Write D1 f as f1 and so on. By Euler’s theorem (Theorem 3-4.9(a)), we 
have (1) xf1 + yf2 + zf3 = nf. Upon differentiating with respect to x,y, z, we get (2) 
xf11 + yf12 + zf13 = (n _ 1)f1 and two more equations (3) and (4). The reader would 
do well to write them out! It may be noted that the first order partial derivatives 
appear on the right sides with the factor (n _ 1), but appear on the left side in (1) 
without the factor. We have four linear equations for three ‘unknowns’ x,y, z. 
Applying Cramer’s rule to (2)–(4), we get z = (n _ 1)B/H, where B is the deter-
minant of a certain matrix, which we shall denote by [B]. Moreover, the 
numerator of z when using Cramer’s rule with (2), (3), (1) in that order works out 
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to be (n _ 1)A. Also, the coefficient matrix is the transpose of [B]. Since it is 
given that z ≠ 0, we know B ≠ 0. Therefore z = (n _ 1)A/B. By multiplying the 
two solutions obtained for z, we get the required equality. 

3-5.P9. Proceed as in 3-5.P8, but since nothing is guaranteed to be nonzero, 
Cramer’s Rule only yields Hz = (n _ 1)B and Bz = (n _ 1)A. Multiply to get 
B2z(n _ 1) = AHz(n _ 1). First suppose z ≠ 0. Then the required equality is imme-
diate if n _ 1 ≠ 0; but n _ 1 = 0 ⇒ Hz = 0 = Bz, ⇒ H = 0 = B (as z ≠ 0) ⇒ B2 = 
AH, which establishes the required equality for all z ≠ 0. For the rest, take the 
limit as z→0. 

3-5.P10. Differentiate the equalities of 3-4.P14 with respect to v and u, respec-
tively, and subtract. 

3-5.P11. Use the chain rule twice successively in F(x,y) = 0, to get 
Fx + Fy y' = 0 = Fxx + 2Fxy y' +  Fyy(y')2 + Fy y". 

Eliminate y' : Fy
3y" = _Fxx Fy

2 + 2Fxy Fx Fy
_ Fyy Fx

2, which equals the given de-
terminant. 

3-5.P12. Observe that, since f(s, t) is a continuous function of t for each s, it fol-
lows by the fundamental theorem of calculus (FTC) that y

c∫ f(s, t) dt  is a 
differentiable function of y with a continuous derivative f(s,y) at every (s,y) ∈ 
[a,b]×[c,d]. Therefore, by Leibnitz’s formula [see 3-4.P17], 

D2 F(x,y) = x
a∫ [

y
∂

∂
 ( y

c∫ f(s, t) dt)] ds = x
a∫  f(s,y) ds. 

One further application of the FTC leads to D1 2 F(x,y) = f(x,y). Now, since f  
must be uniformly continuous, y

c∫ f(s, t) dt is a continuous function of s for each 
y. Therefore by the FTC, D1 F(x,y) = y

c∫ f(x, t) dt. Yet another application of the 
FTC leads to D2 1 F(x,y) = f(x,y). 

3-5.P13. Proceed as in Corollary 3-5.6 after showing for each k that 
| f k (x + h) _ f k (x) _

j
Σ
n

=1
hj · Dj fk(x)| ≤ Ln

 _1
2 ||h ||2 . To arrive at this, set up φ as in the 

proof of Theorem 3-5.5 and note that it satisfies 

|φ(1) _ φ(0) _ φ'(0)| = |φ'(θ) _ φ'(0)| = |
j
Σ
n

=1
hj · Dj fk (x + θh) _

j
Σ
n

=1
hj · Dj fk (x) | 

≤ 
j
Σ
n

=1
|hj| |Dj fk (x + θh) _ Dj fk (x)| ≤ L||h ||2 j

Σ
n

=1
|hj| ≤ L||h ||22n

 _1
2  

by Cauchy–Schwarz. But 
|φ(1) _ φ(0) _ φ'(0)| = | f k (x + h) _ f k(x) _

j
Σ
n

=1
hj · Dj fk (x)|. 
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4-1.P1. Let X = (0,1) ⊆ \ and Tx = _12
_x. Then T is a contraction map without any 

fixed point. For (i), [x ∈ \,x = x2] ⇔ x = 0 or 1. So the fixed points are 0 and 1. 
For (ii), there are no fixed points unless α = 0, in which case every x ∈ \ is a 
fixed point. For (iii), the domain and range are disjoint and there is no question 
of fixed points. 

4-1.P2. Let x0 be the unique fixed point of T 3. Then T 3(Tx0) = T(T 3(x0)) = Tx0 . 
Therefore Tx0 is a fixed point of T 3, so that Tx0 = x0 . Thus x0 is a fixed point of T 
as well. If T were to have another fixed point, then so would T 3. The reader will 
see that the result is true for any power of T. 

4-1.P3. (a) If x0 and y0 are both fixed points of T, then ||Tx0
_ Ty0|| = ||x0

_ y0||, 
which contradicts the hypothesis unless x0 = y0 . 
(b) The hypothesis here immediately implies that of part (a). 

4-1.P4. (a) ||Tx _ Ty|| = |(x + 1/x) _ (y + 1/y)| = |(x _ y) + (1/x _ 1/y)| = |(x _ y) _  
(x _ y)/xy| = |x _ y| |1 _ 1/xy| < |x _ y| = ||x _ y ||, and x + 1/x ≠ x for all x. 

(b) f '(x) = 1 _ ex(1 + ex)
_2 and 0 < 1 _ ex(1 + ex)

_2 < 1 everywhere. If z were to be 
a fixed point, we would have z = f(z) = z + (1 + ez)

_1, which implies (1 + ez)
_1 = 

0, a contradiction. 

4-1.P5. Consider the real-valued map g:X→\ defined by g(x) = ||x _ Tx||. Then 

|g(x) _ g(y)| = | ||x _ Tx|| _  ||y _ Ty|| | 
≤ | ||x _ Tx|| _ ||y _ Tx|| | + | ||y _ Tx|| _ ||y _ Ty|| | 
≤ ||x _ y || + ||Tx _ Ty|| ≤ 2||x _ y ||. 

Therefore g is continuous. Since X is compact, g attains its minimum at some z ∈ 
X. If z ≠ T(z), then g(T(z)) = ||Tz _ T(Tz)|| < ||z _ Tz|| = g(z), contradicting the 
minimality of g(z). Therefore z = T(z), i.e., z is a fixed point of T. If w were to be 
another fixed point, then we would have ||Tz _ Tw|| = ||z _ w || although z ≠ w, a 
contradiction. 

4-1.P6. d
dx Tx = 1 _ 7x6/500. Therefore, when x ∈ [1,2] the double inequality 0 < 

d
dx Tx < 1 must hold. From the first part of this double inequality, it follows that 
x _ (x7 _ 6)/500 describes an increasing function on [1,2]. Besides, T(1) = 1 + 

Solutions 334 
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5/500 > 1 and T(2) = 2 _ (128 _ 6)/500 = 439/250 < 2. Therefore T maps [1,2] 
into itself. Now max ( d

dx Tx) exists because d
dx Tx is a continuous function on the 

closed bounded interval [1,2]. The second part of the above double inequality 
implies that | d

dx Tx| < 1. By Proposition 4-1.5¸ it follows that T is a contraction 
and hence by Contraction Principle 4-1.6, the given sequence converges to the 
unique fixed point of T, which is easily seen to be √76. 

4-1.P7. T 2x = 1 for every x ∈ [0,3] and therefore T n is a contraction when n = 2. 

4-1.P8. By (i), αn ≥ 0 for all n. By (ii), there exists a positive k < 1 and a positive 
integer m > N such that 0 ≤ αm < k. From (i), it now follows that 

||Tmx _ Tmy|| ≤ k||x _ y || for all x,y ∈ X. 
That is, Tm is a contraction. Now apply Corollary 4-1.8. 

4-1.P9. Note that x ∈ \ is a fixed point of f  if and only if x is a root of the poly-
nomial g(x) = x3 _ 3x + 1. 
(a) By direct evaluation, we find g(_2) < 0 < g(_1), g(0) > 0 > g(1) and g(1) < 0 
< g(2). So, there is a root u between _2 and _1, a root v between 0 and 1 and a 
root w between 1 and 2. Then u < v < w. Since g is a polynomial of degree 3, 
there are no further roots. It follows that these are the only three fixed points of 
f . This establishes (a). We remark for later reference that g > 0 on (u,v) and g < 
0 on (v,w). 
(b) Since the map t→t3 is strictly increasing on \, therefore f is strictly increas-
ing on [u,w]. But f(u) = u and f(w) = w. So, f  maps the open interval (u,w) onto 
itself. 
(c) If x = v, then f n(v) = v for all n. Suppose u < x < v. Then on the one hand,  
f(x) < f(v) = v and on the other hand, x3 _ 3x + 1 = g(x) > 0 [see remark above at 
the end of (a)], so that _13

_(1 + x3) > x, i.e., f(x) > x. Thus u < x < v ⇒ u < x < f(x) 
< v. Therefore f n(x) is an increasing sequence in (u,v) and thus has a limit in 
(u,v]. Its limit is easily seen to be a fixed point of f  and must therefore be equal 
to v. A similar argument when v < x < w shows that f n(x) is a decreasing se-
quence in (v,w) with limit v. 
(d) Since w > 1 (as seen in (a)), there exist x1 and x2 in (u,w) such that both are 
greater than 1. By the mean value theorem, | f(x1) _ f(x2)| = |x1

_ x2| | f '(t)|, where t 
lies between x1 and x2 ; in particular t > 1. But f '(t) = t2 > 1. So, | f(x1) _ f(x2)| > 
|x1

_ x2| . 
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4-1.P10. (a) f(x) = x ⇔ g(x) = x5 + x _ 1 = 0. Now g( 3
4 ) = 3

4 (( 3
4 )4 + 1) _ 1 = 

1011
1024

_ 1 < 0 < g(1) and g'(x) = 5x4 + 1 > 0 everywhere. So, g has a unique root in 

\, which lies in [ 3
4 , 1], i.e., f  has a unique fixed point α ∈ \, which lies in [ 3

4 , 1]. 
(b) f '(x) = _4x3/(x4 + 1)2 < 0 when x > 0. This and the fact that f(y) > 0 ∀ y ∈ \ 
lead to the required conclusion. 

(c) Since 0 < 3
4  < α by (a), we have f( 3

4 ) > α > 3
4  by (b). First we show that f  is 

a self map of the interval [ 3
4 , f( 3

4 )]. Consider any x such that 3
4  ≤ x ≤ f( 3

4 ). It 

follows from (b) and (i) that f( 3
4 ) ≥ f(x) ≥ f 2( 3

4 ) > 3
4 . So, f  is a self map of 

[ 3
4 , f( 3

4 )]. Next, we show that | f '(x)| ≤ | f '( 16
21 )| on [ 3

4 , f( 3
4 )]. To this end, 

d
dx | f '(x)| = d

dx [4x3/(x4 + 1)2] = 4x2(_5x4 + 3)/(x4 + 1)3, which is positive when x4 

< 3
5 . Now, (16

21 )4 < (16
21 )2 = 256

441  < 3
5 . Therefore | f '(x)| is increasing on [ 3

4 , 16
21 ]. 

Hence | f '(x)| ≤ | f '( 16
21 )| on [ 3

4 , 16
21 ]. But 3

4  < f( 3
4 ) = 256

337 < 256
336 = 16

21 . Therefore the 

interval in question, namely [ 3
4 , f( 3

4 )], is a subinterval of [ 3
4 , 16

21 ]. Consequently, 

the inequality | f '(x)| ≤ | f '(16
21 )| holds on [ 3

4 , f( 3
4 )] as well. From (i) and Proposi-

tion 4-1.5, it now follows that f  is a contraction. Note: The contraction f  

approximates α via the contraction principle, but Newton’s method applied to 

the polynomial g works much faster.  

4-1.P11. Consider a sequence {rp} in (0,1) such that rp→1. For each p, the map 
Tp(x) = rp (Tx) is a contraction in S and therefore has a fixed point xp , i.e., xp ∈ S 
and rp(Txp) = xp . Since S is compact, some subsequence {xp(k)} converges to a 
limit x ∈ S. Since T must be continuous (in view of the inequality it satisfies), the 
equality rp(k)(Txp(k)) = xp(k) ∀ k immediately shows that x is a fixed point of T. The 
map T given by Tx = x satisfies the condition; the reader may observe that every 
point is a fixed point. 

4-1.P12. Define f :X→\ by f(x) = ||Tx _ x|| ≥ 0. Then || f(x) _ f(ξ)|| ≤ (1+ c) 
||x _ ξ||, where c is the contraction constant. This inequality shows that f  is con-
tinuous. Moreover, 

f(Tx) = ||T(Tx) _ Tx|| ≤ c||Tx _ x|| = cf(x) for all x ∈ X. 
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In the case when X is closed as well as bounded, it is compact [Theorem 2-
5.7] and we can deduce that f(x0) = 0 for some x0 ∈ X by Theorem 2-6.13. This 
x0 is then a fixed point of T, considering that ||Tx0

_ x0|| = f(x0) = 0. 
Now suppose X is not bounded (but is closed). Take any z ∈ X and consider 

the set Y = {x ∈ X : f(x) ≤ f(z)}. Since f  is continuous, Y is closed. For y ∈ Y, we 
have 

||z _ y|| ≤ ||Tz _ z|| + ||Tz _ Ty|| + ||Ty _ y|| ≤ 2 f(z) + c||z _ y||. 
Hence 

||z _ y|| ≤ 2 f(z)/(1_ c). 
Consequently, Y is not only closed but also bounded. Besides, T maps Y into Y 
because 

y ∈ Y ⇒ f(Ty) ≤ cf(y) ≤ cf(z) ≤ f(z) ⇒ Ty ∈ Y. 
Therefore T has a fixed point in Y and hence also in X. 

Finally, since 

||x _ x0|| = ||x _ Tx0|| ≤ ||Tx _ x|| + ||Tx _ Tx0|| ≤ f(x) + c||x _ x0||, 

we have ||x _ x0|| ≤ f(x)/(1_ c). It follows that 

||xp
_ x0|| ≤ f(xp)/(1_ c) = f(T p_1x1)/(1_ c) ≤ cp_1 f(x1)/(1_ c), 

which shows that the sequence {xp}p≥1 converges to x0 . 

Problem Set 4-2 

4-2.P1. For both g and g1 , the interval (3,5) may be taken as the open set; g1(y) 
= _y1/2. No, because any open set containing 0 must also contain negative num-
bers, which cannot be squares of any real numbers. 

4-2.P2. Since xd
yd  = (1 + x)ex > 0 on (_1,∞), the given function is injective when 

restricted to this interval and has range (_e
_1,∞), which is an open subset U of \ 

containing e. Therefore there is a continuous inverse g with domain U. These 
will serve the purpose; so will any subset V of U that contains e and is open, 
taken with the restriction of g to V. Corresponding question for (_2, _2/e2): The 
point (_2, _2/e2) lies on the graph of y = xex . Find an open set containing y = 
_2/e2 such that there is a continuous function x = g(y) defined on it, for which x 
= g(y) ⇒ y = xex  and g(_2/e2) = _2. The answer is that xd

yd  < 0 on (_∞, _ _3
2
_) and 

the given function when restricted to this interval is injective and has range U = 
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(_ _3
2
_e

_3/2, 0). Take g to be the inverse defined on U. Note that we know the exis-
tence of the required map though we cannot compute it explicitly. 

4-2.P3. The first part is the same as Example 4-2.2(d). As f(x,y) = f(x,y + 2π), f  
is not injective. 

4-2.P4. The inverse function theorem says only that the function is locally in-
vertible. Since it is not injective [as seen in 4-2.P3], it is certainly not invertible. 

4-2.P5. Let U ⊆ E be open and b ∈ f(U). Then b = f(a) for some a ∈ U. Since 
f '(a) is invertible, the inverse function theorem yields open sets U1 ⊆ U and V ⊆ 
\n such that a ∈ U1 and f(U1) = V. But then f(a) ∈ V ⊆  f(U). Since b = f(a) and V 
is open, this means f(U) is open. 

4-2.P6. Let b be any point of V. Then b = f(a) for some a ∈ U. By hypothesis, 
f '(a) is invertible and hence the inverse function theorem yields open sets U1 ⊆ 
U and V1 ⊆ \n such that a ∈ U1 and f(U1) = V1and f  has a differentiable local 
inverse on V1 . But then b = f(a) ∈ V1 and the local inverse is therefore differenti-
able at b. However, g has to agree with the local inverse and must therefore also 
be differentiable at b. 

4-2.P7. Let K denote the closure of f(V). It is trivial to show that f(V–) ⊆ K. To 
prove the reverse inclusion, consider any y ∈ K. Then there exists a sequence 
{xn} in V such that f(xn)→y. Since V– is compact, xn→x ∈ V– when {xn} is re-
placed by a suitable subsequence. From the continuity of f, it follows that 
f(xn)→f(x), so that y = f(x). Since x ∈ V–, we have y ∈ f(V–). So K ⊆  f(V–), and 
hence K = f(V–). Finally, we note that the set f(V ), of which K is the closure, is 
an open set, as proved in 4-2.P5. 

4-2.P8. [f(h) _ f(0)]/h = 1 + 2hsin (1/h)→1 as h→0. Also 

f '(x) = 1+ 4xsin (1/x) _ 2cos (1/x) for x ≠ 0. 

Now consider any (_δ,δ). When n is any natural number greater than 1/2πδ, the 
number x = 1/2πn belongs to (_δ,δ) and satisfies f '(x) = _1 < 0, while the num-
ber x = 1/(2n + 1)π also belongs to (_δ,δ) but satisfies f '(x) = 3. Thus f ' takes 
positive as well as negative values in (_δ,δ), and consequently, f  cannot be in-
jective on (_δ,δ). 

4-2.P9. (a) Φ(s,x) = Φ(s',x') ⇒ (φ(s) + ψ(x), x) = (φ(s') + ψ(x'), x') ⇒ [x = 
x',  φ(s) + ψ(x) = φ(s') + ψ(x')] ⇒ [ψ(x) = ψ(x'),  φ(s) + ψ(x) = φ(s') + ψ(x')] ⇒ 
φ(s) = φ(s') ⇒ s = s'. (b) Let (s',x') ∈ Rn×X. Then s' _ ψ(x') = φ(s) for some s, so 
that (s',x') = (φ(s) + ψ(x'),x') = Φ(s,x'). 

4-2.P10. Since all partial derivatives are continuous in open set containing 
(0,0,0), f  is continuously differentiable. The determinant of the Jacobian matrix 
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at (0,0,0) is found to be 20, which is nonzero. By the inverse function theorem, f 
has a continuously differentiable local inverse at (meaning, on some open set 
containing) the point (0,0,0). 

4-2.P11. Sufficient conditions are that f  and g be continuously differentiable 
mappings of all pairs (u,v) belonging to some open set containing (u0 ,v0), where 
x0 = f(u0 ,v0) and y0 = g(u0 ,v0) and ∂(f,g)/∂(u,v) ≠ 0 at (u0 ,v0). Differentiating 
the equalities u = F(x,y),  v = G(x,y) with respect to u and v, we get 

1 = 
F
x

∂
∂

f
u

∂
∂  + 

F
y

∂
∂

g
u

∂
∂ ,  0 = 

F
x

∂
∂

f
v

∂
∂  + 

F
y

∂
∂

g
v

∂
∂ , 

0 = 
G
x

∂
∂

f
u

∂
∂  + 

G
y

∂
∂

g
u

∂
∂ ,  1 = 

G
x

∂
∂

f
v

∂
∂  + 

G
y

∂
∂

g
v

∂
∂ . 

We get the required equalities by solving these four equations. (Remark: Actu-
ally these equations merely state that the Jacobian matrix of a map and of its 
inverse are inverse matrices. Therefore, if one knows how to express each entry 
of the inverse of a matrix in terms of the ‘cofactors’ from the latter, one can eas-
ily generalise the result of this problem to higher dimensions.) 

4-2.P12. Since f(_x, _y) = f(x,y) and (_x, _y) ≠ (x,y) whenever (x,y) ≠ (0,0), 
therefore f  always maps at least two points of U into the same point. To show 
that precisely two points of U are mapped into the same point, consider 
(x,y), (u,v) ∈ U that are mapped into the same point. Then we have the two equa-
tions x2 _ y2 = u2 _ v2 and 2xy = 2uv. Squaring the first and using the second, we 
get x2 + y2 = u2 + v2, which, upon being combined with the first, leads to x2 = u2,  
y2 = v2. We may suppose x ≠ 0. If y = 0, then the preceding equations imply that 
v = 0 and x = ±u, so that either (x,y) = (u,v) or (x,y) = (_u, _v). If y ≠ 0, then the 
second of the original two equations shows that u,v have the same or opposite 
signs according as x,y do. It follows again that either (x,y) = (u,v) or (x,y) = 
(_u, _v). This shows that the mapping is ‘two-to-one’. To show that the mapping 
is surjective, we note that the equations s = x2 _ y2,  t = 2xy can be solved for 
(x2,y2) by elementary methods by first obtaining s2 = (x2 + y2)2 _ t2 and then 
x2 + y2 = √(s2 + t2), leading to x2 = 1

2 (√(s2 + t2) + s) and y2 = 1
2 (√(s2 + t2) _ s). 

These equations show that (s, t) ≠ (0,0) ⇒ (x,y) ≠ (0,0). This demonstrates sur-
jectivity but falls short of obtaining an explicit differentiable local inverse, 
because we have not shown that the sign ambiguity can be settled on some open 
set in such a manner as to ensure differentiability. Rather than doing this, we use 
the inverse function theorem. The linear derivative Df at any (x,y) has matrix 
with first row [2x _2y] and second row [2y 2x]; it can be seen to be invertible 
for any (x,y) ≠ (0,0), for instance via its determinant, which is 4(x2 + y2). 

4-2.P13. Since the three functions mentioned are continuously differentiable and 
x2 + y2 does not vanish on U, the component functions f1 and f2 are continuously 
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differentiable. Therefore, so is f . If f ' is invertible at some (a,b) ∈ U, then by the 
inverse function theorem, f  must be injective on some open set containing (a,b). 
However, any open set containing (a,b) contains points (λa,λb) ≠ (a,b) and 
f(λa,λb) = f(a,b). This contradicts the injectivity of f on the open set. 

4-2.P14. What is to be proved is that the map φ:U→Rn defined by φ(x) = 
( ( )( )1

( ) ( ), , f xf x n
h x h xK ) has a noninvertible linear derivative everywhere on U. 

Since f1 , f1 ,…, fn and h are continuously differentiable and h vanishes no-
where on U, the component functions of φ are continuously differentiable and 
hence so is φ. Therefore by Theorem 2-7.15, if φ' is invertible at some (a,b) ∈ U, 
it is invertible on an open set containing (a,b) and we may assume that (a,b) ≠ 
(0,0). Now, by the inverse function theorem, φ must be injective on some open 
set containing (a,b). However, any open set containing (a,b) contains points 
(λa,λb) ≠ (a,b) and, at the same time, by the homogeneity hypothesis, φ(λa,λb) 
= φ(a,b). This contradicts the injectivity of f on the open set. To deduce 4-2.P13, 
take n = 2, U = {(x,y) ∈ R2 : (x,y) ≠ (0,0)},  f1(x,y) = x2 _ y2,  f2(x,y) = xy and 
h(x,y) = x2 + y2. 

4-2.P15. Since u,v,w are continuously differentiable and homogeneous of de-
gree 0, the same argument as in 4-2.P14 applies. If f1 , f2 ,…, fn are continuously 
differentiable and homogeneous of degree 0 on an open set in Rn, then their Ja-
cobian is zero everywhere on that set. 

4-2.P16. (a) Obvious that r > 0. Since the range of cos
_1  is [0,π], we have θ ∈ 

[0,π] when y ≥ 0. But when y < 0, we have x/(x2 + y2)1/2 ≠ _1, so that cos
_1 (x/(x2 

+ y2)1/2) ≠ π and hence θ ≠ _π. 
(b) First, note that sin (cos

_1u) = √(1 _ u2) ∀ u ∈ [_1,1].  Therefore when y < 0, 
we have sin θ = _sin [cos

_1 (x/(x2 + y2)1/2)] = _|y |/(x2 + y2)1/2 = _(_y)/(x2 + y2)1/2 = 
y/r, and when y ≥ 0, we have sin θ = sin [cos

_1 (x/(x2 + y2)1/2)] = |y |/(x2 + y2)1/2 = 
y/(x2 + y2)1/2 = y/r. Also, cos θ = cos (_θ) = x/(x2 + y2)1/2 = x/r, whether y < 0 or ≥ 
0. 
(c) Suppose (r, θ) ∈ (0,∞)×(_π,π] and x = r cos θ, y = r sin θ. By definition of g, 
the first component of g(x,y) is (x2 + y2)1/2 = (r2cos2 θ + r2sin2 θ)1/2 = r, remem-
bering that r ∈ (0,∞). If y = r sin θ ≥ 0, then sin θ ≥ 0 and so θ ∉ (_π, 0); hence θ ∈ 
[0,π]. Moreover, the second component of g(x,y) is cos

_1 (x/(x2 + y2)1/2)  = 
cos

_1 (cos θ) = θ, considering that θ ∈ [0,π]. If y = r sin θ < 0, then sin θ < 0 and 
so θ ∉ [0,π]; hence θ ∈ (_π, 0). Moreover, the second component of g(x,y) is 
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_cos
_1 (x/(x2 + y2)1/2)  = _cos

_1 (cos θ) = θ, considering that θ ∈ (_π, 0). In either 
case, g(x,y) = (r,θ). 
(d) For the sequence (xn ,yn) = (_1,_1n

_), we have θn→cos
_1 (_1) = π, but for 

(xn ,yn) = (_1,_ _1
n
_), we have θn→_cos

_1 (_1) = π. So lim g(x,y) as (x,y)→(_1,0) 
does not exist. 

4-2.P17.  f '(a) = 2e. So, φy (x) = x + 1
2e (y _ xex); also, x2(y) = 1 + 1

2e (y _ e) and 

x3(y) = 1 + 1
2e (y _ e) + 1

2e [y _ (1 + 1
2e (y _ e)) · exp(1 + 1

2e (y _ e))]. 

Only x1 and x2 are partial sums of the Taylor series of f
_1 at y = e. The point in 

question is f(a) = e. 

4-2.P18. Clearly f ' is continuously differentiable everywhere and its derivative 
at (0,0) is the identity map. Moreover, it maps (0,0) into itself. By the inverse 
function theorem, it has a local inverse at (0,0). By the argument in the proof of 
the theorem, an approximating sequence for the local inverse, valid in some ball 
centred at (0,0), is generated by the contraction map 

φ(u, v)(x,y) = (x,y) + ((u,v) _ f(x,y)) = (u _ y2,v _ x3). 
Thus, if the approximating sequence starts with (x1,y1) = (0,0), then the second 
term is 

(x2 ,y2) = (x1,y1) + ((u,v) _ f(x1,y1)) = (0,0) + ((u,v) _ (0,0)) = (u,v) 
and the third term is 

(x3 ,y3) = (x2 ,y2) + ((u,v) _ f(x2 ,y2)) = (x2 ,y2) + ((u,v) _ (x2 + y2
2, x2

3 + y2) 
= (u,v) +  ((u,v) _ (u + v2,u3 + v)) = (u _ v2,v _ u3). 

Problem Set 4-3 

4-3.P1. No; the relevant Jacobian has value 0. 

4-3.P2. Let f1(x,y, z,u) = 3x + y _ z _ u3,  f2(x,y, z,u) = x _ y + 2z + u,  f3(x,y, z,u) 
= 2x + 2y _ 3z + 2u. Then ∂( f1, f2, f3)/∂(x,y,u) = _12 _ 12u2, which can never be 
0. If there were to exist a solution for x,y, z valid on some interval (in which u 
varies), then the fact that (2x + 2y _ 3z) = (3x + y _ z ) _ (x _ y + 2z) would imply 
that _2u = u3 + u on that interval, which is plainly impossible. 
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4-3.P3. Clearly, f(1,0,0,1) = (0,0). Denote the component functions of f  by f1 
and f2 . Then 

f1(x,y) = f1(x1 , x2 , y1 , y2) = x1y 2 + x2y1
_ 1  

and 
f2(x,y) = f2(x1 , x2 , y1 , y2) = x1x2

_ y1y2 . 

The linear derivative Dy f at (1,0,01) is given by the matrix 

1 1 1 2

2 1 2 2

/ /
/ /

f y f y
f y f y

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 = 0 1
1 0

⎡ ⎤
⎢ ⎥−⎣ ⎦

, 

which is invertible. Therefore the theorem shows that y is a function of x near 
(1,0). Also, the linear derivative Dx f at (1,0,01) is given by the matrix 

1 1 1 2

2 1 2 2

/ /
/ /

f x f x
f x f x

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 = 1 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Therefore the required linear derivative at the point (1,0,01) has matrix 

_
10 1

1 0

−
⎡ ⎤
⎢ ⎥−⎣ ⎦

1 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 0 1
1 0

⎡ ⎤
⎢ ⎥−⎣ ⎦

. 

4-3.P4. We have f(x(y, z),y, z) = 0 ∀ y, z. Using the chain rule to differentiate 

with respect to y, we get f
x

∂
∂ (x(y, z),y, z) · x

y
∂
∂ (y, z) + f

y
∂
∂ (x(y, z),y, z) = 0. Similarly, 

from the identity f(x,y(z,x),z) = 0 ∀ z, x,  we get f
y

∂
∂ (x,y(z,x),z) · y

z
∂
∂ (z,x) + 

f
z

∂
∂ (x,y(z,x), z) = 0. Finally, f

z
∂
∂ (x,y, z(x,y)) · z

x
∂
∂ (x,y) + f

x
∂
∂ (x,y, z(x,y)) = 0. If 

f(x,y, z) = 0, then (x,y, z) = (x(y, z),y, z) = (x,y(z,x), z) = (x,y, z(x,y)). Therefore 

we can write the three equations as f
x

∂
∂

x
y

∂
∂  + f

y
∂
∂  = 0, f

y
∂
∂

y
z

∂
∂  + f

z
∂
∂  = 0, f

z
∂
∂

z
x

∂
∂  + f

x
∂
∂  

= 0. If f
x

∂
∂  = 0, it follows from the first equation that f

y
∂
∂  = 0 and then from the 

second that f
z

∂
∂  = 0 as well. Thus, if one is nonzero, so are the other two. Fur-

thermore, from the first equation, we have f
y

∂
∂  = _ f

x
∂
∂

x
y

∂
∂ ; substituting this in the 

second, we get _ f
x

∂
∂

x
y

∂
∂

y
z

∂
∂  + f

z
∂
∂  = 0. By substituting this in the third, we get 

f
x

∂
∂

x
y

∂
∂

y
z

∂
∂

z
x

∂
∂  + f

x
∂
∂  = 0, or f

x
∂
∂ ( x

y
∂
∂

y
z

∂
∂

z
x

∂
∂  + 1) = 0. The desired equality is 

now immediate. 
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4-3.P5. The product equals 1, not _1, because x
y

∂
∂  = _y/√(1 _ y2 _ z2 _ u2) = _1 = 

y
z

∂
∂  = z

u
∂
∂  = u

x
∂
∂ . 

4-3.P6. By definition, h = f °φ, where φ(x1 ,…,xn) = (g1(x1) ,g2(x2) ,…,gn(xn)). 
By the chain rule and the fact that the determinant of a product of matrices is the 
product of their determinants, we have Jh(x) = Jf (φ(x)) ·Jφ(x1 ,…,xn). Now, the 
Jacobian matrix of φ has diagonal entries gi'(xi), 1 ≤ i ≤ n, and all other entries 
are 0. Therefore its determinant is Jφ(x1 ,…,xn) = g1'(x1) ·g2'(x2) · … · gn'(xn). 

4-3.P7. f maps R1×R2 into R1 = R and has a continuous linear derivative every-
where because all its three partial derivatives 

D1 f(x,y1 ,y2) = 2xy1 + ex, D2 f(x,y1 ,y2) = x2, D3 f(x,y1 ,y2) = 1 

are continuous. Also,  f(0,1,_1) = 0 + 1 _ 1 = 0 and Dx f(0,1,_1) = D1 f(0,1,_1) = 
1 ≠ 0. By Implicit Function Theorem 4-3.2, there exists a differentiable function 
g on an open set containing (1,_1) in R2 such that g(1,_1) = 0 and 
f(g(y1 ,y2),y1 ,y2) = 0 on that open set. Moreover, its linear derivative 
[(D1 g)(1,_1) (D2 g)(1,_1)] is _A1

_1A2 ,  where 

A1 = Dx f(0,1,_1) = 1 
and 

A2 = D( y1, y2) f(0,1,_1) = [D2 f(0,1,_1) D3 f(0,1,_1)] = [0 1]. 

Thus [(D1 g)(1,_1) (D2 g)(1,_1)] = [0 _1]. This means (D1 g)(1,_1) = 0 and 
(D2 g)(1,_1) = _1. 

4-3.P8. Let F:R2→R be defined by F(x, t) = f(x) _ tg(x). Then F(0,0) = 0 and 
(Dx F)(0,0) = f '(0) _ 0·g'(0) ≠ 0. It follows from the implicit function theorem 
that the function x = x(t) of the required kind exists on a suitable interval (_δ,δ) 
and that x'(0) = _(Dt F)(0,0)/(Dx F)(0,0). Since (Dt F)(0,0) = _g(0), we have 
x'(0) = g(0)/f '(0). When g(0) = 0, we take x(t) = 0 on R.  

Problem Set 4-4 

4-4.P1. (i) W = (_1/√2,1/√2). (ii) With W = (_1,_1/√2)∪(_1/√2,1/√2)∪(1/√2,1), 
take g(y) to be √(1 _ y2) on the second interval and either √(1 _ y2) or _√(1 _ y2) 
on the other two (in any combination); all satisfy g(0) = 1. (iii) Same as part (ii); 
the only solution satisfying g(y) > 0 is g(y) = √(1 _ y2) ∀ y ∈ W. 
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4-4.P2. There would be no purpose to this problem if it merely called for the 
two proofs to be written one after the other. The uniqueness established during 
the proof of (a) of Theorem 4-3.2 (just before defining g) can be used in the 
proof of (b) of Theorem 4-4.1 to show instantly that G agrees with G1 on B1. So 
the construction of the map G2 becomes unnecessary. Since that uniqueness was 
not recorded as one of the conclusions of Theorem 4-3.2, it was unavailable 
while proving Theorem 4-4.1 separately. 

4-4.P3. (a) f(x,y) = y3 _ |x|1/2; g(x) = |x|1/6. 
(b) f(x,y) = y2 _ x2; g1(x) = x and g2(x) = _x are both differentiable solutions. Any 
solution g must satisfy |g(x)| = |x|. If it is also differentiable, then the identity 
g(x)2 = x2 leads to g(x)g'(x) = x so that |g'(x)| = 1. Since a derivative has the in-
termediate value property, we must have either g'(x) = 1 everywhere or g'(x) = 
_1 everywhere. So, g1 and g2 are the only possibilities. 
(c) f(x,y) = y2 _ x4; g1(x) = x2, g2(x) = _g1(x), g3(x) = x2 for x ≥ 0 and _x2 for x < 
0, g4(x) = _g3(x). 

4-4.P4. Modify the proof of Theorem 4-4.4 as follows: The function y→F(x,y) 
has a positive derivative at y = b. Therefore there exists a positive η1 < η such 
that the function is negative at b _ η1 and positive at b + η1 . Now apply the in-
termediate value theorem on the interval [b _ η1 ,b + η1 ]. The proof of 
differentiability carries over without any modification. 

4-4.P5. The proof of Theorem 4-4.1 carries over almost verbatim. 

Problem Set 5-1 

5-1.P1. φ(x,y) = xy, f(x,y) = y _ x2, so that Φ(x) = x3. The Lagrange equations 
y _ 2λx = 0, x + λ = 0 taken with = 0 have solution λ = x = y  = 0. 
However, for every δ > 0, the points (_δ,δ2), (δ,δ2), both satisfy the constraint 
and yet φ(_δ,δ2) < φ(0,0) < φ(δ,δ2). 

5-1.P2. (a) Consider any y1 ∈ W such that (x1 ,y1) ∈ T. Suppose, if possible, that 
g(y1)  ≠  x1 . Define g1 on W to agree with g except that g1(y1) = x1 . Then g1 ≠ g 
but (g1(y),y) ∈ T whenever y ∈ W (even when y = y1 , because (x1 ,y1) ∈ T ). This 
contradicts the uniqueness of g. 
(b) The given local minimum at b means that there exists an open ball W1 ⊆ W 
such that b ∈ W1 and φ(g(y),y) ≥ φ(g(b),b) = φ(a,b) whenever y ∈ W1 . The set U1 
= {(x,y) ∈ S : y ∈ W1} is open and contains (a,b) because b ∈ W1 . Consider any 
(x,y) ∈ T∩U1 . We have (x,y) ∈ T and y ∈ W1 ⊆ W, so that x = g(y) by (a). There-
fore φ(x,y) = φ(g(y),y). Since y ∈ W1 , this implies φ(g(y),y) ≥ φ(a,b). Thus φ(x,y) 

constraint y _ x2
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≥ φ(a,b) whenever (x,y) ∈ T∩U1 . Since U1 is an open set containing (a,b), there 
exists an open ball B ⊆ U1 such that (a,b) ∈ B. Now, (x,y) ∈ T∩B ⇒ (x,y) ∈ 
T∩U1 ⇒ φ(x,y) ≥ φ(a,b). 

5-1.P3. The Jacobian matrix of the function has rows 
[1 _1 1] and [2 1 4]. The first two columns provide an invertible matrix, 
so that the invertibility condition holds on the entire constraint set. Denoting the 
point (a,b) of Theorem 5-1.3 by (x,y, z) and λ1 ,…,λn, by λ,  μ,  equations (1) 
there become 2x + λ + 2μ = 0, 2y _λ + μ = 0, 2z + λ + 4μ = 0. These lead to x = 
_(λ + 2μ)/2,  y = (λ _ μ)/2,  z = _(λ + 4μ)/2. Substituting in the constraints, we 
get _3λ _ 5μ = 4 and _5λ _ 21μ = 32. Therefore λ = 2 and μ = _2 and hence 
(x,y, z) = (1,2,3). Since this solution of the Lagrange equations is unique, the 
minimum must occur at (1,2,3). The minimum value of x2 + y2 + z2 is 14. 

5-1.P4. (a) The distance of any point (x,y) from the circle x2 + y2 = 1 is (x2 + 
y2)1/2 _ 1, which is therefore our objective function. The constraint is x + y = 4. 
The Jacobian matrix of the constraint function is [1 1]. Both entries are non-
zero everywhere and therefore the invertibility condition holds on the entire 
constraint set. The Lagrange equations are x(x2 + y2)

_1/2 + λ = y(x2 + y2)
_1/2 + λ = 

0 and the constraint is x + y = 4. The only solution is (x,y) = (2,2). If the mini-
mum exists, then it must occur at (2,2). 
(b) It is sufficient to minimise double the square of the distance of a point (x,y) 
from the line x + y = 4, which is (x + y _ 4)2. The constraint is x2 + y2 = 1. Since 
the constraint set is compact, we expect a minimum as well as a maximum. The 
Jacobian matrix of the constraint function is [2x 2y], the entries of which can-
not both vanish at the same point of the constraint set. The Lagrange equations 
are 2(x + y _ 4) + 2λx = 0 = 2(x + y _ 4) + 2λy and the constraint. There are pre-
cisely two solutions: (x,y) = (1/√2,1/√2) and (_1/√2,_1/√2). By evaluating (x + 
y _ 4)2 at the two points, we find that (1/√2,1/√2) is a point of minimum and the 
other one is a maximum. 

5-1.P5. The objective function is φ(x,y,u,v) = 2 2( ) ( )x u y v− + −  and the con-
straint functions are 4u v+ −  and 2 2 1x y+ − . Observe that the constraint 
equations rule out the possibility that x u−  = 0 = y v− , because this would im-
ply x + y = u + v = 4, whereas 

2 2 1x y+ =  ⇒ |x|, |y| ≤ 1 ⇒ x + y ≤ 2 ⇒ x + y ≠ 4. 

Now, the Lagrangian is L = 2 22 2 ( 1)( ) ( ) ( 4)x yx u y v u v+ −− + − + λ + μ + − . 
Using subscripts to denote partial differentiation, 

Lx = 2( ) 2x u x− + λ ,  Ly = 2( ) 2y v y− + λ ,  Lu = 2( )x u− − + μ  
and Lv = 2( )y v− − + μ . 

For these to be zero, we must have x u−  = y v−  and hence λx = λy. But λ ≠ 0, 
because, as already observed, x u− ≠ 0. Therefore x = y, which implies u = v. 

constraint R valued2 -
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This leads to the two solutions u = v = 2 and x = y = ±1/√2 with λ = ±2√2 _ 1 
and μ = ±√2 _ 4. The Jacobian matrix of the 

0 0 1 1

2 2 0 0x y
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

On the constraint set, one cannot have x = 0 = y; therefore the 2×2 matrices 
formed by the first and third columns and by the second and third columns can-
not both fail to be invertible at the same point of the constraint set. Thus the 
invertibility condition holds everywhere on the constraint set and there are no 
points of extremum other than the solutions obtained. 

5-1.P6. Since the constraints define a compact set and the function x2 + y2 + z2 is 
continuous, an absolute maximum and absolute minimum must exist. The Jaco-

2 2
2 5 25

yx z⎡ ⎤⎣ ⎦  and 
[ ]1 1 1− . These cannot be proportional at any point of the constraint set. It 
therefore follows that the absolute extrema occur among the solutions to the 
Lagrange equations. 

 The partial derivatives of 

L = x2 + y2 + z2 + λ(
22 2

4 5 25 1yx z+ + − ) + μ( z x y− − ) 
are 

∂L/∂x = 2x + 1
2 λx _ μ,  ∂L/∂y = 2y + 2

5 λy _ μ,  ∂L/∂z = 2z + 2
25 λz + μ . 

For these to be zero, we must have x = 2
4

μ
λ+ ,  y = 5

2 10
μ

λ+  and z = 25
2 50

μ
λ+− . Substi-

tuting in z x y= + , we get 25
2 50

μ
λ+ + 5

2 10
μ

λ+ + 2
4

μ
λ+ = 0. Now μ ≠ 0, because 

otherwise the first of the given constraints will not be satisfied. So, 

25( 4)(2 10) 2(2 50)(2 10) 5(2 50)( 4)λ + λ + + λ + λ + + λ + λ + = 0. 

This is a quadratic in λ with roots λ = _10 and λ = _75/17. Corresponding to the 
root λ = _10, we have x = _μ/3,  y = _μ/2 and z = _5μ/6. Substituting this in the 
quadratic constraint, we get μ = ±6(5/19)1/2. The corresponding points are (x,y,z) 
= (±2(5/19)1/2,±3(5/19)1/2,±5(5/19)1/2). Both yield x2 + y2 + z2 = 10. Similarly, 
corresponding to the root λ = _75/17, we get μ = ±140/17(646)1/2 and (x,y, z) = 
(±40/(646)1/2,  +

_
35/(646)1/2,±5/(646)1/2). Both yield x2 + y2 + z2 = 2850/646 < 10. 

It follows that these two points give the absolute minimum and the other two the 
absolute maximum. 

bian matrix of the R valued constraint function has rows2 -

constraint function is R valued2 -
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5-1.P7. (a) The Jacobian matrix of the constraint function is 
[ 6 2 2x y− − 2 4 6x y− + − ], the entries of which can both vanish only when x = 
1 and y = 2. Thus the set S = {(x,y, z) ∈ R3 : 6 2 2x y− − = 0 = 2 4 6x y− + − } is 
the same as {(1,2, z) : z ∈ R}. Observe that this set S can be verified to be con-
tained in the constraint set. Since the invertibility condition fails on the set S, 
extrema that lie in it may not be detected by the Lagrange multiplier method. 
First we seek extrema outside S. The Lagrange equations are 

2 (6 2 2)x x y+ λ − − = 0,  2 ( 2 4 6)y x y+ λ − + − = 0,  2( 1)z − = 0. 

If 6 2 2x y− −  = 0, then x = 0 and y = _1, which violates the constraint. There-
fore 6 2 2x y− −  ≠ 0, and similarly, 2 4 6x y− + −  ≠ 0. So 2x/( 6 2 2x y− − ) = 
2y/( 2 4 6x y− + − ) and hence 2 2 3x xy y x y+ − + −  = 0. Combining this with the 
constraint, we obtain 25 4 8 7x x y+ − +  = 0, so that y = ( 25 4 7x x+ + )/8. When 
we substitute for y from here in the constraint, the resulting equation is 

5(x _ 1)2 [5(x + 1)2 + 16] = 0, 

showing that there is no solution with x ≠ 1. Thus there are no extrema outside S. 
For extrema in S, we recall that the set is defined by 6 2 2x y− − = 0 and 

2 4 6x y− + −  = 0. We may use these two as constraints and apply the Lagrange 
method, taking advantage of the fact that the Jacobian matrix of the two con-
straint functions is invertible everywhere. Alternatively, we may note that, when 
x = 1,  y = 2, we have 2 2 2( 1)x y z+ + −  = 25 ( 1)z+ − , which is obviously mini-
mum when z = 1, whereby the absolute minimum is seen to be at (1,2,1). 
(b) Upon writing the constraint as 2 22 (2 6) (3 2 7)y x y x x− + + − +  = 0 (a quad-
ratic equation for y), we get y = 1

2 [ 3x + ± √ 25( 1)x− − ], so that the constraint set 
is {(1,2, z) : z ∈ R}, which is the same set as what we called S above. (So the 
search for an extremum outside S was doomed before it began!) Then we pro-
ceed as in the last sentence of the preceding paragraph. There is no need for 
differentiation at any stage. 

5-1.P8. (a) | f(r,θ)| ≤ r2. (b) Given a ball |r| < a < 1 centred at the origin, choose 
θ = a/2π, so that the point (r,  θ) = (a/2,θ) satisfies |r| < a as well as r/θ = π. Then 
(r,  θ) is in the given ball and f(r,θ) = _a2/4 < 0. Therefore f  does not have a local 
minimum at the origin. (c) According to our choice of polar coordinates, a line 
through the origin is represented by θ = constant (same on both sides of the ori-
gin) = α, say. If α = 0 (the line is the x-axis), then f(r,θ) = f(r, 0) = r2, which 
shows that the restriction of f  to the line θ = α has a local strict minimum at the 
origin when α = 0. Now suppose α ≠ 0. Then for 0 < |r| < |α|_π2

_ , we have 
cos (r/α) > 0 and hence f(r,α) > 0. Therefore the restriction of f  to the line θ = α 
has a local strict minimum at the origin in this case too. 
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5-1.P9. (a) Since 4x4y2 ≤ (x4 + y2)2, we have 0 ≤ 
6 2

4 2 2
4

( )

x y

x y+
 ≤ x2. Since lim x2 = 0 as 

(x,y)→(0,0), the same is true of 
6 2

4 2 2
4

( )

x y

x y+
. Also, lim(x2 + y2 _ 2x2y) = 0. Hence 

lim f(x,y) = 0 as (x,y)→(0,0). Thus f  is continuous at (0,0). 

(b) Clearly, gθ(0) = f(0,0) = 0. Also,  

( ) (0)g t g
t

θ θ−
 = 1

t [t2 _ 2t3cos2θ sinθ _ 4 6 2

2 4 2 2
4 cos sin

( cos sin )
t

t
θ θ

θ + θ
] 

= t _ 2t2cos2θ sinθ _ 3 6 2

2 4 2 2
4 cos sin

( cos sin )
t

t
θ θ

θ + θ
. 

Therefore gθ' (0) = 0 (when θ = 0 as well as otherwise). Besides, for t ≠ 0, 

gθ' (t) = 2t _ 6t3cos2θ sinθ _ 3 6 2

2 4 2 2
16 cos sin

( cos sin )
t

t
θ θ

θ + θ
 + 

5 10 2

2 4 2 3
16 cos sin

( cos sin )
t

t
θ θ

θ + θ
. 

Therefore 

( ) (0)g t g
t

θ θ
′ ′−

 = 2 _ 6t2cos2θ sinθ _ 2 6 2

2 4 2 2
16 cos sin

( cos sin )
t

t
θ θ

θ + θ
 

+ 
4 10 2

2 4 2 3
16 cos sin

( cos sin )
t

t
θ θ

θ + θ
, 

so that gθ"(0) = 2 (when θ = 0 as well as otherwise).  

(c) f(x,x2) = _x4, which shows that f  takes negative values arbitrarily close to 
(0,0). 

5-1.P10. (a) | f(x,y)| ≤ x2 + y2. (b) Along the y-axis (x = 0), the function becomes 
φ(y) = f(0,y) = y2cos (2y2/π). For 0 < | y| < π/2, we therefore have φ(y) > 0; also 
φ(0) = 0. So φ has a local strict minimum at y = 0. Along the line y = kx, the 
function becomes 

ψ(x) = f(x,kx) = x2 (1 + k2) cos [x2
21

arctan
k

k
+ ] when k ≠ 0 and x2 when k = 0. 

When k ≠ 0, we have ψ(x) > 0 for 0 < |x| < [_π
2
_ |arctan k |/(1 + k2)]1/2 while ψ(0) = 

0, so that ψ has a local strict minimum at x = 0. The case when k = 0 is trivial. 
(c) Consider any open set x2 + y2 < δ2 < π containing (0,0). Take (x,y) with x2 = 
δ2/4[1 + tan2(δ2/4π)] and y = x tan (δ2/4π) ≠ 0. Then 

x2 + y2 = δ2/4 < δ2 while f(x,y) = (δ2/4)cos [(δ2/4) /(δ2/4π)] = _(δ2/4) < 0. 
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5-2.P1. fx = 6x2 _ 6x and fy = 6y2 + 6y. These vanish simultaneously only at 
(0,0), (0,_1), (1,0) and (1,_1). So, extrema can occur only at these points, though 
not necessarily at all of them. Now fxx = 12x _ 6,  fxy = 0 and fyy = 12y + 6. There-
fore fxy

2 > fxx fyy at (0,0) and (1,_1). It follows by (c) of Theorem 5-2.3 that there 
is no extremum at (0,0) and (1,_1). Also,  fxy

2 < fxx fyy at (1,0) and (0,_1). Since fxx 
> 0 at (1,0), it follows from (a) of Theorem 5-2.3 that there is a local strict 
minimum at (1,0); since fxx < 0 at (0,_1), it follows from (b) of Theorem 5-2.3 
that there is a local strict maximum at (0,_1). 

5-2.P2. (a) The first partial derivatives are 

D1 f  = 4x1
3 _ 4x2x3 ,  D2 f  = 4x2

3 _ 4x3x1 ,  D3 f  = 4x3
3 _ 4x1x2 . 

For all three to vanish, we must have x1
4 = x2

4 = x3
4 = x1x2x3 ≥ 0, from which it 

follows that |x1| = |x2| = |x3| and further that |x1|3 = |x2||x3|, so that |x1| = |x2| = |x3| 
= 0 or 1. Although there are nine such points in R3, four of them fail to satisfy 
x1x2x3 ≥ 0. At the remaining five points 

P0 = (0,0,0),  P1 = (1,1,1),  P2 = (1,_1,_1),  P3 = (_1,1,_1),  P4 = (_1,_1,1), 
all three partial derivatives vanish. So a local extremum, if any, must occur at 
one of these five points. In order to apply the theorem, we compute second par-
tial derivatives: 

D1 1 f  = 12x1
2,  D2 1 f  = _4x3,  D3 1 f  = _4x2 

D1 2 f  = _4x3,  D2 2 f  = 12x2
2,  D3 2 f  = _4x1 

D1 3 f  = _4x2 ,  D2 3 f  = _4x1,  D3 3 f  = 12x3
2. 

At P0 ,  we find that all values are 0 and consequently, Q vanishes everywhere. 
So, Theorem 5-2.1 tells us nothing about this point! At P2 ,  we find that 

D1 1 f  = 12,  D2 1 f  = 4,  D3 1 f  = 4 

D1 2 f  = 4,  D2 2 f  = 12,  D3 2 f  = _4 
D1 3 f  = 4,  D2 3 f  = _4,  D3 3 f  = 12. 

Hence Q is given by 

Q(h1 ,h2 ,h3) = 4[3(h1
2 + h2

2 + h3
2) + 2(_h2h3 + h3h1 + h1h2)]. 

Upon recasting this as 

Q(h1 ,h2 ,h3) = 4[(h2
_ h3)2 + (h3 + h1)2 + (h1 + h2)2 + (h1

2 + h2
2 + h3

2)], 
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we see that Q is positive definite. From the theorem we can now conclude that f  
has a strict local minimum at P2 . Similar computations show that f  has a strict 
local minimum at P3 ,P4 and also at P1 . 

Regarding P0  = (0,0,0),  when x1 = x2 = x3  = a,  say,  we have 

x1
4 + x2

4 + x3
4 _ 4x1x2x3 = a3(3a _ 4), 

which is negative for 0 < a < _43
_  and positive for a < 0. Therefore there is no ex-

tremum at P0 . 

(b) x1
4 + x2

4 + x3
4 _ 4x1x2x3 = _1 + _1

3
_[(x1

2 _ 1)2 + (x2
2 _ 1)2 + (x3

2 _ 1)2  

+ 2((x2x3
_ x1)2 + (x3x1

_ x2)2 + (x1x2
_ x3)2) 

+ (x2
2 _ x3

2)2 + (x3
2 _ x1

2)2 + (x1
2 _ x2

2)2 ]. 
The above identity shows that, at the points P1 ,…,P4 , the function has not only 
local minima but also absolute minima. 
(c) In the above answer to part (b), drop the initial constant and also the factor 
_1
3
_ ; then drop the last three squares. The partial derivatives of the resulting func-
tion g(x1 ,x2 ,x3) = (x1

2 + x2
2 + x3

2)2 _ 12x1x2x3 + 3 vanish at the same five points 
as those of f  and there are strict minima at precisely the same four points. 
(d) Proceed as in part (a). The Hessian form at P2 turns out to be 

Q(h1 ,h2 ,h3) = 10[(h2
_ h3)2 + (h3 + h1)2 + (h1 + h2)2 + 7(h1

2 + h2
2 + h3

2)]. 

5-2.P3. Proceeding as in the example illustrated with a > b > c > 0, we find that 
(±1,0,0),  (0,±1,0),  (0,0,±1) and (0,0,0) are the only points where all three partial 
derivatives vanish. The hypothesis a > b > 0 > c implies that f(0, t, 0) > f(0,0,0) = 
0 > f(0,0, t) for all t. Therefore there is no extremum at (0,0,0). There is a maxi-
mum at (±1,0,0) but no extremum at (0,±1,0) for the same reasons as in the 
illustrated example. At (0,0,±1) however, the hypothesis a > b > 0 > c implies 
that the entries of the Hessian matrix are all positive and hence there is a mini-
mum. 

5-2.P4. The first partial derivatives are 

DxF= yz(2x + y + z _ 1),  DyF  = zx(x + 2y + z _ 1),  
DzF  = xy(x + y + 2z _ 1). 

At any point where some two coordinates are 0, all first partial derivatives va-
nish. Although there are three kinds depending on which two coordinates are 0, 
we need consider only one kind. These points are listed below under (A). We 
proceed to find points at which all three partial derivatives vanish and only one 
coordinate is 0. It is sufficient to consider only the possibility x = 0, y ≠ 0 ≠ z. In 
this event, vanishing of the partial derivatives is equivalent to y + z _ 1 = 0. 
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These points are listed under (B). Lastly, we consider the case when all three 
coordinates are nonzero. When this is so, vanishing of the partial derivatives is 
equivalent to 

2x + y + z _ 1 = 0, x + 2y + z _ 1 = 0, x + y + 2z _ 1 = 0. 

It is easily seen that the unique solution of this system is (_1
4
_ , _1

4
_ , _1

4
_). Thus we have 

to consider the following three categories of points that are candidates for an 
extremum: 
(A) x arbitrary with y = z = 0; 
(B) x = 0, y ≠ 0 ≠ z with y + z _ 1 = 0; note that this implies y ≠ 1 ≠ z; 
(C) (_1

4
_ , _1

4
_ , _1

4
_). 

(From 2-3.P14 and 2-3.P15, we know that the points in (A) and (B) are not 
extrema. Here we shall try to demonstrate the fact by applying Theorem 5-2.1.) 

The second partial derivatives are 

Dxx F  = 2yz Dyx F  = 2zx + 2yz + z2 _ z Dzx F = 2xy + 2yz + y2 _ y 
Dyy F  = 2zx Dzy F  = 2xy + 2zx + x2 _ x Dzz F  = 2xy. 

At a point in category (A), the Hessian matrix becomes 

(x2 _ x)
0 0 0
0 0 1
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The associated quadratic form is Q(a,b,c) = 2(x2 _ x)bc. For 0 ≠ x ≠ 1, this can 
take positive as well as negative values, and therefore by Theorem 5-2.1, there is 
no extremum at the point in question. If x = 0 or 1, the Hessian form is identical-
ly zero and the theorem fails. We are forced to argue as in 2-3.P14 why there is 
no extremum at (0,0,0) and (1,0,0). We can then conclude that there is no extre-
mum at any point listed in (A).  

At a point in category (B), the Hessian matrix becomes 

_(y2 _ y)
2 1 1
1 0 0
1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The associated quadratic form is Q(a,b,c) = _2(y2 _ y) (a(a + b + c)). Consider-
ing that 0 ≠ y ≠ 1, we know Q can take positive as well as negative values, and 
therefore by Theorem 5-2.1, there is no extremum at the point in question. Thus 
there is no extremum at any point listed under (B). 

At the only point in category (C), the Hessian matrix becomes 
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2 1 1
1 1 2 116

1 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The associated quadratic form is 

Q(a,b,c) = 1
16 (2a2 + 2b2 + 2c2 + 2bc + 2ca + 2ab) 

= 1
16 [(b + c)2 + (c + a)2 + (a + b)2]. 

This is seen to be positive definite, so that by Theorem 5-2.1, there is a local 
minimum at (_1

4
_ , _1

4
_ , _1

4
_). 

To summarise, there is a local minimum at (_1
4
_ , _1

4
_ , _1

4
_) and no local extremum 

anywhere else. 
(Note: The reader is invited to prove by using the arithmetic mean-

geometric mean inequality and single variable methods that xyz(x + y + z _ 1) ≥ 
_ 1

256  for all x ≥ 0,y ≥ 0, z ≥ 0.) 

5-2.P5. Q(a,b,c) = a2 + 13b2 + 4c2 _ 10bc _ 2ca + 4ab = (a + 2b _ c)2 + (3b _ c)2 
+ 2c2. For this to be zero, we must have a + 2b _ c = 3b _ c = c = 0, which im-
plies (a,b,c) = (0,0,0). So Q is positive definite. 

5-2.P6. Q(a,b,c) = a2 + 5b2 + 10c2 _ 10bc _ 2ca_ 2ab = (a _ b _ c)2 + (2b _ 3c)2 
≥ 0. This shows that Q is positive semidefinite. Since Q(5,3,2) = 0, it is not 
positive definite. 

5-2.P7. α is represented by the 3×2 matrix having rows [1 0] , [0 1] , [1 1]. 
Therefore Q°α is the quadratic form in R2 associated with the product 

1 0 1
0 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

A B B
B A B
B B A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

1 0
0 1
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

This product turns out to have rows 

[2(A _ B) A _ B] and [A _ B 2(A _ B)]. 

The associated quadratic form Q°α is therefore (Q°α)(a,b) = 
2(A _ B)[(a2 + b2) + ab]. Since (a2 + b2) + ab = (a + 1

2 b)2 + 3
4 b2, the form is posi-

tive or negative definite according as A > B or A < B. 

5-2.P8. Q°α is associated with the product 
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1 0 1
0 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 1 1
1 5 5
1 5 10

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

1 0
0 1
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
9 3
3 5
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

So (Q°α)(a,b) = 9a2 + 6ab + 5b2 = (3a + b)2 + 4b2 ≥ 0. This can be zero only if 
(a,b) = (0,0). Thus Q°α is positive definite. 

5-2.P9. As discussed in Example 5-2.10(b), one need only check whether 

F"(a) < F'(a) 11 12

1

( , , ) ( , , )
( , , )

f a a a f a a a
f a a a

−  or F"(a) > F'(a) 11 12

1

( , , ) ( , , )
( , , )

f a a a f a a a
f a a a

− , 

where subscripts indicate partial differentiation, F(x) = tan x,  f(x,y, z) = y5z + z5x 
+ x5y _ 3(π/4)6 and a = π/4. Elementary computations show that  

F'(a) = 2,  F"(a) = 4,  f1(a,a,a) = 6(π/4)5,  
f12(a,a,a) = 5(π/4)4 and f11(a,a,a) = 20(π/4)4. 

So the question is whether 4 < 2(20(π/4)4 – 5(π/4)4)/6(π/4)5, which simplifies to 
whether π < 5, which it is. Therefore (π/4,π/4,π/4) is a point of constrained local 
strict maximum. 
5-2.P10. Proceed as in the previous problem to get  

F'(a) = √3/2,  F"(a) = –1/2,  f1(a,a,a) = π/3,  f11(a,a,a) = 0,  and  f12(a,a,a) = 1. 

Then F'(a)( f11(a,a,a) _  f12(a,a,a))/f1(a,a,a) = _3√3/2π, which is less than 
F"(a) = –1/2, because π < 3√3. So, minimum. 
5-2.P11. Proceed as in the previous problem to get  

F'(a) = 2,  F"(a) = 4,  f1(a,a,a) = π/2,  f11(a,a,a) = 0,  and  f12(a,a,a) = 1. 

Then F'(a)( f11(a,a,a) _  f12(a,a,a))/f1(a,a,a) = _4/π, which is less than F"(a) = 
4. So, minimum. 
5-2.P12. Yes. Let u' = (h,k) with h ∈ Rn and k ∈ Rm. Using equalities established 
in the proof of the theorem, we argue thus: f '(a, b)(u) = A1h + A2k; hence h = –
A1

_1A2 k = g'(b)k; so u' = (g'(b)k,k) = G'(b)(k). Therefore HΦ(h) = H(G'(b)(k)) = 
H(u') > 0. Similarly for u". Apply Theorem 5-2.1. 
5-2.P13. One partial derivative of the constraint function never vanishes; so the 
invertibility condition holds everywhere on the constraint set. The Lagrangian is 
L = x2 + y2 + z2 + λ(z _ xy _ 2). We shall use subscripts to denote partial differen-
tiation. We have Lx = 2x _ λy,  Ly = 2y _ λx,  L z  =  2z + λ. This confirms that 
(x,y, z) = (0,0,2),  λ = _4 is one solution. With these values of x,y, z,λ,  we have 

Lxx = 2  Lyx = 4  Lzx = 0 
 Lyy = 2  Lzy = 0 
   Lzz = 2. 
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Therefore the Hessian form of the Lagrangian is H(a,b,c) = 
2a2 + 2b2 + 2c2 + 8ab. The linear derivative of the constraint function f(x,y, z) = 
z _ xy _ 2 at (0,0,2) has the matrix [0 0 1]. The condition ( f '(0,0,2))(a,b,c) = 
0 thus becomes c = 0. For such (a,b,c), the Hessian form of the Lagrangian is 
H(a,b, 0) = 2a2 + 2b2 + 8ab = 2[(a + b)2 + 2ab]. This is negative when a = _b = 
1 and positive when a = b = 1. Therefore there is no extremum at (0,0,2) by 5-
2.P12. 

5-2.P14. One partial derivative of the constraint function never vanishes; so the 
invertibility condition holds everywhere on the constraint set. The Lagrangian is 
L = x2 + y2 + z2 + u2 + λ(u _ xyz _ 2). We shall use subscripts to denote partial 
differentiation. We have Lx = 2x _ λyz,  Ly = 2y _ λzx,  Lz = 2z _ λxy, Lu = 2u + λ. 
This confirms that (x,y,z,u) = (0,0,0,2),  λ = _4 is one solution. With these val-
ues of x,y,z,u ,λ,  we have 

Lxx = 2  Lyx = 0  Lzx = 0  Lux = 0 
 Lyy = 2  Lzy = 0  Luy = 0 
   Lzz = 2  Luz = 0 
     Luu = 2. 

The Hessian matrix is thus seen to be twice the identity matrix. It follows with-
out further ado that the quadratic form of interest to us is positive definite. 
Therefore the given point is a (local strict) minimum. 

5-2.P15. Conversion leads to x3 + y3 + z3 + (1 + (yz + zx + xy))3, the second de-
rivatives of which are an unpleasant prospect. We prefer not to convert. 

One partial derivative of the constraint function never vanishes; so the in-
vertibility condition holds everywhere on the constraint set. The Lagrangian is L 
= x3 + y3 + z3 + u3 + λ(u _ (yz + zx + xy) _ 1). Denoting partial derivatives by 
subscripts, we have Lx = 3x2 _ λ(y + z),  Ly = 3y2 _ λ(z + x),  Lz = 3z2 _ λ(x + y), 
Lu = 3u2 + λ. This confirms that (x,y, z,u) = (0,0,0,1),  λ = _3 is one solution. 
With these values of x,y,z,u ,λ,  

Lxx = 0 Lyx = 3  Lzx = 3  Lux = 0 
 Lyy = 0  Lzy = 3  Luy = 0 
   Lzz = 0  Luz = 0 
     Luu = 6. 

Therefore the Hessian form of the Lagrangian is H(a,b,c,d) = 
6[(bc + ca + ab) + d2]. The linear derivative of the constraint function f(x,y,z,u) 
= u _ (yz + zx + xy) _ 1 at (0,0,0,1) has the matrix [0 0 0 1]. The condition 
( f '(0,0,0,1))(a,b,c,d) = 0 thus becomes d = 0. For such (a,b,c,d ), the Hessian 
form of the Lagrangian is H(a,b,c, 0) = 6(bc + ca + ab), which is positive when 
(a,b,c,d ) = (1,1,0,0) and negative when (a,b,c,d) = (1,_1,0,0). By the result of 
5-2.P12, there is no extremum at (0,0,0,1). 
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5-2.P16. One partial derivative of the constraint function never vanishes; so the 
invertibility condition holds everywhere on the constraint set. The Lagrangian is 
L = F(x) + F(y) + F(z) + λ(z _ g(x)g(y) _ C). Denoting partial derivatives by 
subscripts, we have Lx = F'(x) _ λg'(x)g(y) ,  Ly = F'(y) _ λg(x)g'(y) ,  Lz = 
F'(z) + λ. This confirms that (x,y, z) = (0, 0,C),  λ = _ F'(C) is one solution. For 
these values of x,y, z,λ,  

Lxx = F"(0)  Lyx = F'(C)g'(0)2  Lzx = 0 
  Lyy = F"(0)  Lzy = 0 
     Lzz = F"(C). 

The Hessian form of the Lagrangian is 

H(a,b,c) = F"(0)a2 + F"(0)b2 + F"(C)c2 + 2F'(C)g'(0)2ab. 

The linear derivative of the constraint function f(x,y,z) = z _ g(x)g(y) _ C at 
(0,0,C) has the matrix [0 0 1]. The condition ( f '(0,0,C))(a,b,c) = 0 thus 
becomes c = 0. For such (a,b,c), the Hessian form of the Lagrangian is H(a,b, 0) 
= F"(0)a2 + F"(0)b2 + 2F'(C)g'(0)2ab. It follows upon completing squares that 

H(a,b, 0) = F"(0)(a +
2( ) (0)

(0)
F C g

F
′ ′

′′ b)2 + 1
(0)F ′′  (F"(0)2 _ F'(C)2g'(0)4)b2. 

Hence H(a,b, 0) retains the same sign for all nonzero (a,b) ∈ \2 if and only if 
F"(0)2 _ F'(C)2g'(0)4 > 0, or equivalently, |F"(0)| > |F'(C)|·g'(0)2. Therefore this 
inequality is a sufficient condition that there be an extremum at (0,0,C). Fur-
thermore, when the condition is satisfied, the sign of H(a,b, 0) is negative if 
F"(0) < 0. Thus the required further condition (for a maximum) is that F"(0) < 0. 

5-2.P17. One partial derivative of the constraint function is nonzero at (0,0,1); 
so the invertibility condition holds at the point. The Lagrangian is L = 
(x2 + y2 + z2) + λ(zez _ xy(x2 + y2) _ e). Denoting partial derivatives by sub-
scripts, we have Lx = 2x _ 3λx2y _ λy3,Ly =2y _ 3λxy2 _ λx3,  Lz = 2z + λ(z + 1)ez. 
This confirms that (x,y, z) = (0,0,1),  λ = _1/e is one solution. For these values 
of x,y, z,λ,  we have 

Lxx = 2   Lyx = 0   Lzx = 0 
   Lyy = 2   Lzy = 0 
      Lzz = _1. 

Therefore the Hessian form H of the Lagrangian is H(a,b,c) = 2a2 + 2b2 _ c2. 
The linear derivative of the constraint function f(x,y, z) = zez _ xy(x2 + y2) _ e at 
(0,0,1) has the matrix [0 0 2e]. The condition ( f '(0,0,1))(a,b,c) = 0 thus 
becomes c = 0. For such (a,b,c), the Hessian form of the Lagrangian is H(a,b, 0) 
= 2a2 + 2b2, which is positive definite. By Theorem 5-2.9, we conclude that the 
point in question is a local extremum (strict minimum). 
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5-2.P18. One partial derivative of the constraint function is nonzero at (0,0,1); 
so the invertibility condition holds at the point. The Lagrangian is L = 
xyz + λ(zez _ xy(x2 + y2) _ e). Denoting partial derivatives by subscripts, we have 
Lx = yz _ 3λx2y _ λy3,Ly = zx _ 3λxy2 _ λx3,  Lz = xy + λ(z + 1)ez. This confirms 
that (x,y, z) = (0, 0,1),  λ = 0 is one solution. For these values of x,y,z,λ,  we 
have 

Lxx = 0   Lyx = 1   Lzx = 0 
   Lyy = 0   Lzy = 0 
      Lzz = 0. 

Therefore the Hessian form H of the Lagrangian is H(a,b,c) = 2ab. The linear 
derivative of the constraint function f(x,y, z) = zez _ xy(x2 + y2) _ e at (0,0,1) has 
the matrix [0 0 2e]. The condition ( f '(0,0,1))(a,b,c) = 0 thus becomes c = 0. 
For such (a,b,c), the Hessian form of the Lagrangian is H(a,b, 0) = 2ab, which 
takes positive as well negative values. By 5-2.P12, we conclude that the point in 
question is not a local extremum. 

5-2.P19. It was already checked that the invertibility condition holds on the 
whole constraint set. The Hessian matrix turns out to be 

2 2 0 2 0

0 2 2 0 2

2 0 2 0

0 2 0 2

+ λ −

+ λ −

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

The linear derivative of the function f(x,y,u,v) = 
(x2 + y2 _ 1,u + v _ 4) at (±1/√2,±1/√2, 2 , 2 ) has the matrix 

2 2 0 0

0 0 1 1

⎡ ⎤± ±
⎢ ⎥
⎣ ⎦

. 

An element (a,b ,c,d) ∈ \4 is mapped into zero by this matrix if and only if a + b 
= 0 = c + d. For such (a,b ,c,d), the Hessian form of the Lagrangian is 
H(a, _a,c,_c) = 4[(1 + λ)a2 _ 2ac + c2]. This is positive definite when λ = 
2√2 _ 1 and can take positive as well as negative values when λ = _2√2 _ 1. 
Therefore (1/√2,1/√2, 2 , 2 ) is a point of local strict minimum but 
(_1/√2,_1/√2, 2 , 2 ) is not an extremum. 

5-2.P20. Since b2 > a2, the constraint cannot hold with √(x2 + y2) = 0. The linear 
derivative of the constraint function is 

 

constraint R valued2 -
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[2x(1 _
2 2

b

x y+
) 2y(1 _

2 2

b

x y+
) 2z ]. 

If z = 0 at any point of the constraint set, then the constraint equation implies 
(√(x2 + y2) _ b)2 = a2 > 0, so that 1 _ b/√(x2 + y2) ≠ 0. It follows that, for the 
above linear derivative to be zero at some point of the constraint set, we must 
have x = y = 0, which is impossible (as already observed). Thus the invertibility 
condition is satisfied. The Lagrangian is 

L(x,y, z) = x + λ(x2 + y2 + z2 _ 2b√(x2 + y2) + (b2 _ a2)) 

and its partial derivatives are 

Lx = 1 + 2λx(1 _
2 2

b

x y+
) = 1 + 2 2

2 x

x y

λ

+
(√(x2 + y2) _ b), 

Ly = 2λy(1 _
2 2

b

x y+
) = 2 2

2 y

x y

λ

+
(√(x2 + y2) _ b), 

Lz = 2λz. 

If λ,  x or √(x2 + y2) _ b were to be 0, then we would have Lx = 1. Therefore if Lx 
= 0, then λ,  x and √(x2 + y2) _ b must all be nonzero; hence, using the expres-
sions for Ly and Lz , we see that Lx = Ly = Lz = 0 implies y = z = 0. Using this in 
the constraint we get |x | _ b = ±a and from Lx = 0, we get the following four 
solutions of the Lagrange and constraint equations: 

x = b + a,  y = z = 0,  λ = _1/2a, 
x = b _ a,  y = z = 0,  λ = 1/2a, 
x = _(b + a),  y = z = 0,  λ = 1/2a, 
x = _(b _ a),  y = z = 0,  λ = _1/2a. 

When y = z = 0, we find that the linear derivative of the constraint function is 

[2x(1 _ b/| x |) 0 0]. 
This maps into zero only those elements of R3 that are of the form (0,β,γ). Also, 
Lxx = Lzz = 2λ,  Lyy = 2λ(1 _ b/| x |) and Lyz = Lzx = Lxy = 0. At (0,β,γ), the Hessian 
form of the Lagrangian therefore works out to be 2λ[(1 _ b/| x |)β2 + γ2]. This is 
positive definite if (1 _ b/| x |) > 0 and λ > 0. Therefore there is a local minimum 
when x = _(b + a), y = z = 0. Similarly, there is a local maximum when x = 
b + a, y = z = 0. The other two solutions correspond neither to a maximum nor a 
minimum. 

5-2.P21. Let xi be the length of the tangent from the i th vertex to the circle, 1 ≤ i 
≤ 6. We have to minimise Σxi subject to Σarctanxi = π. The six entries of the 
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matrix of the linear derivative of the constraint function are 1/(1+ xi
2), all of 

which are nonzero. The invertibility condition is therefore fulfilled everywhere. 
The six partial derivatives of the Lagrangian L are ∂L/∂xi = 1+ λ[1/(1+ xi

2)], and 
for all of these to be zero, we have to have xi = √(_1 _ λ), 1 ≤ i ≤ 6. The con-
straint now implies that _1 _ λ = tan2 _π

6
_  = _1

3
_ , so that λ = __4

3
_ . It follows that xi = 

_
√
1__
3
_ . Now we have the unique solution of the Lagrange equations and the con-

straint. It remains to check the sufficient condition for a minimum. Since the 
second partial derivatives of the Lagrangian are Lxi xi = _2λxi /(1+ xi

2)2 = √3/2 > 0 
and Lxi xj = 0 when i ≠ j, the Hessian form of the Lagrangian is positive definite 
(on all of R6). This verifies the sufficiency. Therefore, the minimum area is _

√
6__
3
_  = 

2√3.

Problem Set 6-1 

6-1.P1. Suppose, if possible, that [ak ,bk] ≠ [ck ,dk] for some k ≠ p. Then one of 
these intervals contains a number t that the other one does not. Let t ∈ [ak ,bk] but 
t ∉ [ck ,dk]. Then the point x for which xi = ai for i ≠ k but xk = t belongs to the 
face of I in question but does not belong to J at all. 

6-1.P2. If p ≠ q, then the points x and x' with xi = x'i = ai for i ≠ q and xq = aq ,  x'q 
= bq both belong to the first mentioned face but cannot both belong to the sec-
ond, because xq ≠ x'q  in view of the stipulation [see Def. 6-1.1] that aq < bq . 
Thus p = q. The point x with each xi = ai belongs to the first mentioned face and 
therefore to the second, which means xp = cp , and hence ap = cp . The proof that 
[ai ,bi] = [ci ,di] for i ≠ p is as in Problem 6-1.P1. Now, either bp ≤ dp , in which 
case I ⊆ J, or dp ≤ bp , in which case J ⊆ I. For the last part, let xi = (ai + bi)/2 for 
i ≠ p and xp = ap + _1

2
_min {bp

_ ap ,dp
_ ap}. Then x ∈ \n is an interior point of I as 

well as J. 

6-1.P3. Consider dimension 1 first: If [a,b] and [c,d], where a < b and c < d, 
have no common interior point and their union is an interval, we shall prove that 
either b = c or a = d. We know a < 2

a b+ < b and c < 2
c d+ < d. So, a = c ⇒ a < 

2
a d+ < d ⇒ a < min { 2

a b+ , 2
a d+ } < min {b,d} ⇒ min { 2

a b+ , 2
a d+ } ∈ (a,b)∩(a,d) 

= (a,b)∩(c,d) = ∅, a contradiction. Hence a ≠ c. We may suppose a < c (the 
contrary case being analogous). We shall argue that b = c. Since c < 2

c d+ < d, we 
have b > c ⇒ a < c < 2

c b+ < b ⇒ c < min { 2
c d+ , 2

c b+ } < min {b,d} ⇒ 
min { 2

c d+ , 2
c b+ } ∈ (c,b)∩(c,d) ⊆ (a,b)∩(c,d) = ∅, a contradiction. Hence b ≤ c. 

But b < c ⇒ b < 2
c b+ < c ⇒ 2

c b+ ∉ [a,b]∪[c,d], a contradiction because 
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[a,b]∪[c,d] is an interval containing b as well as c. Therefore b = c and the one-
dimensional case is established. 

For dimension n > 1, we first observe that if [a,b] ⊆ [c,d], where a < b,  c < 
d,  then the two intervals have an interior point in common. Now, let the n-
dimensional cuboids in question be I = I1×…×In and J = J1×…×Jn and suppose 
I∪J = K1×…×Kn, where the Ii ,Ji ,Ki  are all closed bounded intervals, i.e., one-
dimensional cuboids. Then Ii∪Ji = {zi : z ∈ I∪J} = Ki by Remark 6-1.2(b). Thus 
each Ii∪Ji is a closed bounded interval Ki and the one-dimensional case applies. 
In particular, Ii and Ji must have a point in common. For some p (1 ≤ p ≤ n), 
neither Ip nor Jp contains the other, because otherwise, by the observation at the 
beginning of this paragraph, each pair Ii ,Ji  would have a common interior point 
xi and x = (x1 ,…,xn) would be a common interior point of I and J. We claim that 
Ii = Ji for i ≠ p. For, suppose if possible that Iq ≠ Jq,  where q ≠ p. Then one of 
them contains a point not in the other. To be specific, suppose xq ∈ Iq but xq ∉ Jq. 
Since neither Ip nor Jp contains the other, there exists xp ∈ Jp such that xp ∉ Ip. For 
i ≠ p, q there exists some xi ∈ Ii∪Ji , as already noted. The point x = (x1 ,…,xn) 
then belongs to (I1∪J1)×…×(In∪Jn), which is the same as K1×…×Kn , i.e., I∪J. 
But x ∉ I = I1×…×In because xp ∉ Ip and also x ∉ J = J1×…×Jn because xq ∉ Jq. 
This contradiction proves our claim that Ii = Ji for i ≠ p. This has the conse-
quence that Ip and Jp do not have a common interior point and therefore it 
follows from the one-dimensional case (established above) that the right end-
point of one among Ip and jp is equal to the left endpoint of the other. This and 
the fact that Ii = Ji for i ≠ p quickly lead to required conclusion. 

6-1.P4. By 2-4.P6, an element of \n belongs to the closure of a subset of \n if 
and only if some sequence lying in the subset converges to that element. Let x ∈ 
I . Then some sequence {x(k)}k ∈ ` in I converges to x. This means that the se-
quence {x(k)

i}k ∈ ` of i th components converges to the i th component xi of the 
limit x. Since each x(k) belongs to I, we have ai < x(k)

i < bi for 1 ≤ i ≤ n. Taking 
limits, we have ai ≤ xi ≤ bi for 1 ≤ i ≤ n. Thus x ∈ J. This proves I  ⊆ J. For the 
reverse inclusion, suppose x ∈ J. Then ai ≤ xi ≤ bi for 1 ≤ i ≤ n. Therefore for 
each i, there exists a sequence {ti, k}k ∈ N in (ai ,bi) converging to xi . The sequence 
{x(k)}k ∈ ̀  in \n for which x(k)

i = ti, k then lies in I and converges to x. Thus x ∈ I . 

6-1.P5. Let J = [α1 ,β1]×…×[αn ,βn]. By Remark 6-1.2(b), αi is the minimum 
among the i th coordinates of the points of J. Since J = ∪F, it follows that αi is 
also the minimum among the left endpoints of the i th edges of the cuboids be-
longing to F. In particular, αi is a point of the partition Pi . Similarly, βi is also a 
point of the partition Pi . It follows by Proposition 6-1.8 that there exists a pav-
ing Q1 ,…,Qn of J such that the family F1 of all the cuboids formed by this 
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paving is the unique subfamily of the family of all the cuboids formed by the 
given paving P1 ,…,Pn  satisfying ∪F1 = J. It follows that F = F1 . This com-
pletes the proof the existence of the kind of paving claimed. The last part about 
volumes is now merely a consequence of Remark 6-1.7(d). 

Problem Set 6-2 

6-2.P1. There are only two cuboids: [0,1]×[0,1] and [0,1]×[1,2]. For the first 
one, m is 0 + 0 = 0 and M is 1 + 1 = 2; for the second one, m is 0 + 1 = 1 and M 
is 1 + 2 = 3. 

6-2.P2. On the cuboid Kj, k =
1 ,j j

n n
−⎡ ⎤

⎣ ⎦ × 1 ,k k
n n
−⎡ ⎤⎣ ⎦ , we have mj, k = inf {f(x) : x ∈ 

Kj, k } = 1j
n
−  + 2 1k

n
−  and vol(Kj, k) = 2

2
n . Therefore L( f ,P) = 

1

n

j=
∑

1

n

k=
∑ ( 1j

n
−  + 

2 1k
n
− ) 2

2
n  = 3

n (n _ 1). 

6-2.P3. On each cuboid K formed by the given paving, MK
_ mK  = 4

n  and the 

total volume of all the cuboids is (1)(2)(1)(4) = 8. So, U( f ,P) _ L( f ,P) = ( 4
n ) 8 

= 32
n . 

6-2.P4. It is still true (as before) that each cuboid K in B has at least one edge Kp 
with exactly one endpoint in Jp . So the rest of the proof of Proposition 6-2.11 
goes through as before. The subfamilies need not be the same as before, because 
a cuboid having one edge Kp with exactly one endpoint in Jp and also one edge 
Kq (q ≠ p, of course) with both endpoints outside Jq now belongs to O instead of 
B. 

6-2.P5. First suppose g is integrable. The function fχ is 0 outside J while it 
agrees with f on J and hence with g. It is therefore bounded, agrees with g on 
J°and is 0 outside I. By Proposition 6-2.11, it is integrable and has integral J∫ g. 
Next, suppose fχ is integrable. By Proposition 6-2.7, the restriction of fχ to J is 
integrable; but the restriction is equal to g. By Proposition 6-2.11, J∫ g = I∫ ( fχ). 

6-2.P6. Let ε > 0. Then f(x,y) ≥ ε ⇒ x,y ∈ _ and x = p
q , where the smallest such 

positive q satisfies 1
q  ≥ ε. Since x ∈ [0,1], we must have 0 ≤ p ≤ q. There are 

only finitely many such positive integers q; let N be the largest. For each q, 1 ≤ q 
≤ N, there are q + 1 integers p such that 0 ≤ p ≤ q. So, there are 

1 q N≤ ≤
∑ (q + 1) or 

fewer, say M, rational numbers x1 ,…,xM  such that f(x j ,y) ≥ ε . Let δ > 0 be less 
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than ε and also less than half the smallest distance between any two xj . Then the 
numbers xj ± δ, after excluding 0 _ δ and 1 + δ, form a partition of [0,1]. To-
gether with the partition a = y0 < y1 = b of [a,b], it provides a paving P of the 
domain of f. Let F be the family of those cuboids formed by P that have [0,δ] or 
[xj

_ δ,  xj + δ] or [1 _ δ, 1] as an edge, and G consist of the remaining cuboids. 
By Remark 6-2.9, the total volume of the cuboids in F cannot exceed 6δ(b _ a). 
Therefore, in view of the fact that sup f = 1 and inf f = 0, we obtain the inequal-
ity ΣK ∈ F (MK

_ mK ) vol(K) ≤ 6δ(b _ a). If (x,y) ∈ K ∈ G, then x ≠ xj ∀ j and 
hence f(x,y) < ε , so that MK

_ mK  ≤ ε . It follows that ΣK ∈ G ( MK
_ mK ) vol(K) ≤ 

ε ·vol([0,1]×[a,b]) = ε(b _ a). Therefore U( f ,P) _ L( f ,P) ≤ 6δ(b _ a) + ε(b _ a) 
< 7ε(b _ a), because δ < ε. Since every cuboid contains points with irrational 
coordinates, every lower sum is 0 and hence the integral is 0. 

6-2.P7. (a) For each cuboid K formed by any paving of I, w have MK ≥ 0 and mK 
≥ 0 (usual notation). Therefore U( f,P) = ΣK MKvol(K ) ≥ 0 and L( f,P) = 
ΣK mKvol(K ) ≥ 0. 
(b) First show that if M = sup{ f(s) : s ∈ X}, m = inf { f(s) : s ∈ X}, where X is 
any subset of the domain of the bounded function f , then M _ m = 
sup{| f(s) _ f(t)| : s, t ∈ X}. By definition of M and m, we have f(s) _ f(t) ≤  
M _ m as well as f(t) _ f(s) ≤  M _ m ∀ s, t ∈ X, so that | f(s) _ f(t)| ≤  M _ m ∀ 
s, t ∈ X. To prove the reverse inequality, consider any ε > 0. There exist s, t ∈ X 
such that f(s) > M _ _ε

2
_  and f(t) < m + _ε

2
_ . This implies f(s) _ f(t) > M _ m _ ε . It 

follows from this inequality that sup{| f(s) _ f(t)| : s, t ∈ X} ≥ M _ m _ ε . Since 
this is true for every positive ε , it further follows that sup{| f(s) _ f(t)| : s, t ∈ X} 
≥  M _ m. 

Next, let F be the family of cuboids formed by a paving P of I and let 
mK ( f ) = inf { f(x) : x ∈ K}, MK ( f ) = sup{ f(x) : x ∈ K}, with corresponding 
meanings for mK (| f |), MK(| f |). According to what has been proved above, for 
any s and t belonging to K, we have | | f(s)| _ | f(t)| | ≤  | f(s) _ f(t)| ≤  
MK ( f ) _ mK ( f ), so that sup{| | f(s)| _ | f(t)| | : s, t ∈ K} ≤  MK ( f ) _ mK ( f ). Again 
using what has been proved above, we conclude that MK (| f |) _ mK(| f |) ≤  
MK ( f ) _ mK ( f ). Upon multiplying by vol(K) and taking the sum over K ∈ F , it 
follows that 

U(| f | ,P) _ L(| f | ,P) ≤  U( f,P) _ L( f,P) 

for any paving P and any bounded function f. By Proposition 6-2.5, it now 
follows that, if f is integrable, then so is | f | . To prove the inequality, note that –
| f(x)| ≤  f(x) ≤  | f(x)| ∀ x ∈ K. Since f and | f |  are both integrable, the required 
inequality follows. 
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6-2.P8. Without loss of generality, we may assume that ai = 0,bi = 1 for 1 ≤ i ≤ 
n. Subdivide the domain I = [0,1]×…×[0,1] into mn congruent cuboids. Then 

U( f,P) _ L( f,P) = 1
nm

1 2 1 2
1 2

11 1
, , , 1[ ( , , , ) ( , , , )]n n

n

i ii i i im
i i i m m m m m mf f −− −

= −∑ K K K  

= 1
nm [ 1 2

1 2, , , 1 ( , , , )n
n

ii im
i i i m m mf=∑ K K _ 1 2

1 2

11 1
, , , 1 ( , , , )n

n

ii im
i i i m m mf −− −

=∑ K K ] 

= 1
nm [ 1 2

1 2, , , 1 ( , , , )n
n

ii im
i i i m m mf=∑ K K _ 1 2

1 2

11 1
, , , 1 ( , , , )n

n

jj jm
j j j m m mf −− −

=∑ K K ]. 

Now, any term in the first summation that has ik < m for every k cancels with a 
unique term in the second summation, namely, the one with jk = ik + 1 for every 
k. Note that the latter term has jk > 1 for every k. Similarly, any term in the 
second summation that has jk > 1 for every k cancels with a unique term in the 
first summation, namely, the one with ik = jk

_ 1 for every k. Note that the latter 
term has ik < m for every k. After all the cancellations, the only surviving terms 
from the first (respectively, second) summation are those with ik = m (respec-
tively, jk = 1) for some k. For a given k, the number of terms in the first 
summation with ik = m is mn_1; considering that there are n possibilities for k, the 
total number of such terms is at most nmn_1 (actually fewer because of double 
count). Similarly for the second summation. It follows that 

0 ≤ U( f,P) _ L( f,P) ≤ 
12 n

n
nm M

m
−

 = 2nM
m →0 as m→∞, 

where M = sup | f | over [0,1]×…×[0,1]. 

6-2.P9. Being integrable, each of f  and g must be bounded. Denote by B a com-
mon upper bound for their absolute values. Given any ε > 0, there exists a 
paving P of I such that U( f,P) _ L( f,P) < ε/2B as well as U(g,P) _ L(g,P) < 
ε/2B. Next, let F be the family of cuboids formed by P and, for each K ∈ F, let 
mK ( f ) = inf { f(x) : x ∈ K}, MK ( f ) = sup{ f(x) : x ∈ K}, with corresponding 
meanings for mK (g), MK (g) and for mK ( fg),  MK( fg). Then for any s, t ∈ K, we 
have 

| f(s)g(s) _ f(t)g(t)| = | f(s)g(s) _ f(t)g(s) + f(t)g(s) _ f(t)g(t)| 
≤ |g(s)| | f(s) _ f(t)| + | f(t)| |g(s) _ g(t)| 
≤ B(MK ( f ) _ mK ( f )) + B(MK(g) _ mK(g)), 

so that 
MK ( fg) _ mK( fg) = sup {| f(s)g(s) _ f(t)g(t)| : s, t ∈ K} 

≤ B(MK ( f ) _ mK ( f )) + B(MK(g) _ mK(g)). 
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On multiplying by vol(K) and taking the sum over all K ∈ F, we get 

U( fg,P) _ L( fg,P) ≤ B[U( f,P) _ L( f,P) + U(g,P) _ L(g,P)] < B(ε/2B + ε/2B) = ε, 
which implies fg is integrable. 

6-2.P10. Let ε > 0. There exists a paving P of I ⊆ Rm such that U( f,P) _ L( f,P) 
= ΣK(MK

_ mK)vol(K ) < ε, taken over all the cuboids K formed by P, with MK 
and mK having the usual meanings. Now I×J has a paving P' such that the cubo-
ids formed by it are precisely K×J; also, vol(K×J ) = vol(K )vol(J ) and, by 
definition of φ its sup over K×J is MK and inf is mK. It follows that 
U(φ,P') _ L(φ,P') = ΣK(MK

_ mK)vol(K×J ) = ΣK(MK
_ mK)vol(K )vol(J ) < 

εvol(J ). This shows φ to be integrable over I×J. 

6-2.P11. First we assume that both f1 and f2 are nonnegative. Let P1 : a1 = x0 < x1 
< … < xn = b1 be a partition of I1 and P2 : a2 = y0 < y1 < … < ym = b2 be a parti-
tion of I2 . Then P = P1×P2 is a partition of I into mn subcuboids (subrectangles) 
Ki j . Set 

Mi = sup{ f1(x) : x ∈ [xi _ 1 ,xi]},  M'i = sup{ f2(y) : y ∈ [yi _ 1 ,yi]}, 

mi = inf{ f1(x) : x ∈ [xi _ 1 ,xi]},  m'i = inf{ f2(y) : y ∈ [yi _ 1 ,yi]}, 

Mi j = sup{ f1(x) f2(y) : x ∈ [xi _ 1 ,xi],  y ∈ [yj _ 1 ,yj]},  

mi j = inf{ f1(x) f2(y) : x ∈ [xi _ 1 ,xi],  y ∈ [yj _ 1 ,yj]}. 

Since both f1 and f2 have been assumed nonnegative, we have mj m'j = mi j and 
Mi M'j = Mi j and hence 

mj m'j = mi j ≤ f1(x) f2(y) ≤ Mi j = Mi M'j . 
It follows that 

mj m'j (xi
_ xi _ 1)(yj

_ yj _ 1) ≤ mi j (xi
_ xi _ 1)(yj

_ yj _ 1) ≤ _∫ K i j
f1 f2 

≤ 
_
∫K i j

f1 f2 ≤ Mi j (xi
_ xi _ 1)(yj

_ yj _ 1) ≤ Mi M'j (xi
_ xi _ 1)(yj

_ yj _ 1). 

Summing over i and j and using Remark 6-4.6(g), we get L( f1 ,P1)L( f2 ,P2) ≤ 

_∫ K f1 f2 ≤ 
_
∫K f1 f2 ≤ U( f1 ,P1)U( f2 ,P2). In view of the fact that, first, this holds for 

all partitions P1 ,P2 , second, f1 , f2  are integrable, and third, L( f1 ,P1), L( f2 ,P2),  
U( f1 ,P1),  U( f2 ,P2) ≥ 0, it follows that 

( ∫I1
f1(x)dx) ( ∫I2

f2(y)dy) ≤  _∫ K f1 f2 ≤  
_

∫K f1 f2 ≤  ( ∫I1
f1(x)dx) (∫I2

f2(y)dy). 

To remove the assumption that f1 and f2 are nonnegative, let gk = max{fk , 0} and 
hk = min{fk , 0},  k = 1,2. Then g1 ,g2 ,h1 ,h2 are all integrable and ∫Ik

fk = 
∫Ik

gk
_ ∫Ik

hk ,  k = 1,2. A simple computation now leads to the required equality. 



 

Problem Set 6-3 

6-3.P1. Fix any x ∈ I. If x ∉ Q, then f(x,y) = 0 ∀ y ∈ [a,b] and therefore 
_

J∫ f(x,y)dy = 0. Suppose x ∈ Q. Then x = p/q with some minimal positive q and 
f(x,y) = 1/q if y ∈ Q while f(x,y) = 0 if y ∉ Q. Therefore 

_

J∫ f(x,y)dy = (b _ a)/q. 
Thus 

_

J∫ f(x,y)dy is the product of the constant (b _ a) with the Thomae func-
tion, which has integral 0. Therefore I∫ dx

_

J∫ f(x,y)dy = 0. 

6-3.P2. No. For each fixed x ∈ [0,3] other than x = √3, f(x,y) takes only two val-
ues: 3 when y ∈ Q but x2 when y ∉ Q. Therefore, f  is the Dirichlet function, 
which is not integrable. Thus [0,1]∫ f(x,y)dy does not exist except when x = √3. 

6-3.P3. Consider any x ∈ [0,3]. If x2 = 3, then f(x,y) = 3 ∀ y ∈ [0,1]. So 
[0,1]∫ f(x,y)dy = 3. If x2 ≠ 3, then f(x,y) takes only two values: 3 when y ∈ Q but 

x2 when y ∉ Q. Therefore when x2 < 3, [0,1]−
∫ f(x,y)dy = x2 and 

_

[0,1]∫ f(x,y)dy = 3. 
Similarly, when x2 > 3, [0,1]−

∫ f(x,y)dy = 3 and 
_

[0,1]∫ f(x,y)dy = x2. This means 
[0,1]−
∫ f(x,y)dy = x2 when x < √3 but 3 when x > √3. For 

_

[0,1]∫ f(x,y)dy, it is the 
other way around. Therefore, 

[0,3]∫ dx [0,1]−
∫ f(x,y)dy = [0, 3 ]−

∫ x2dx + [ 3,3]−
∫ 3dx = 9 _ 2√3 

and [0,3]∫ dx
_

[0,1]∫ f(x,y)dy = 9 + 2√3. 
Now consider y ∈ [0,1]. If y ∈ Q, then f(x,y) = 3 ∀ x ∈ [0,3] and so, [0,3]−

∫ f(x,y)dx 
= 

_

[0,3]∫ f(x,y)dx = 9. But if y ∉ Q, then f(x,y) = x2 ∀ x ∈ [0,3] and so, 
[0,3]−
∫ f(x,y)dx = 

_

[0,3]∫ f(x,y)dx = 9. Therefore 

[0,1]∫ dy [0,3]−
∫ f(x,y)dx = [0,1]∫ dy

_

[0,3]∫ f(x,y)dx = 9. 

6-3.P4. If y ∈ _, then f(x,y) = cosx. So [0, ]π∫ f(x,y)dx = [0, ]π∫ cosxdx = 0. If y ∉ _, 
then f(x,y) = 0. So [0, ]π∫ f(x,y)dx = 0. Hence, for all y, [0, ]π∫ f(x,y)dx = 0, so that 

[0,1]∫ dy [0, ]π∫ f(x,y)dx = 0. For x = _π
2
_ , f(x,y) = 0 for all y. So [0,1]∫ f(_π

2
_ ,y)dy = 0. For 

x ≠ _π2
_ , f(x,y) = cosx if y ∈ _ and 0 if y ∉ _. So, when x ≠ _π2

_ , [0,1]∫ f(x,y)dy does not 
exist. Now let P be a paving of [0,  _π

4
_ ]×[0,1] into subcuboids K1 ,…,Km . Then 

U( f,P) _ L( f,P) = Σ1≤ i≤m (supKi f _ infKi f )vol(Ki) ≥ Σ1≤ i≤m (_
√
1__
2
_ _ 0)vol(Ki) = 

(_
√
1__
2
_ )(_π

4
_ ). The result now follows by Proposition 6-2.7. 

6-3.P5. [0,1]∫ f(x,y)dx = [0, ]y∫ (1/y2)dx + [ ,1]y∫ (_1/x2)dx = 1/y + (1 _ 1/y) = 1. So, 

[0,1]∫ dy [0,1]∫ f(x,y)dx = 1. [0,1]∫ f(x,y)dy = [0, ]x∫ (_1/x2)dy + [ ,1]x∫ (1/y2)dy = 
_1/x _ (1 _ 1/x) = _1. So, [0,1]∫ dx [0,1]∫ f(x,y)dy = _1. 
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6-3.P6. Suppose there exists a point (x0 ,y0) at which 
2 2f f

x y y x
∂ ∂

∂ ∂ ∂ ∂−  ≠ 0. Without loss 
of generality, we may assume that it is positive. In view of the continuity of the 
partial derivatives, (x0 ,y0) lies in the interior of a closed rectangle R = 

[a,b]×[c,d] on which 
2 2f f

x y y x
∂ ∂

∂ ∂ ∂ ∂−  > 0. So ∫R
2 2f f

x y y x
∂ ∂

∂ ∂ ∂ ∂−  > 0. On the other hand, by 
Fubini’s theorem, 

∫R
2 2f f

x y y x
∂ ∂

∂ ∂ ∂ ∂−  = d
c∫ dy 

2b f
a x y dx∂

∂ ∂∫  – b
a∫  dx

2d f
c y x dy∂

∂ ∂∫  = 0, 

since each equals f(b,d) _ f(b,c) _ f(a,d) + f(a,c). 

6-3.P7. At each point (x,y) ∈ \2, at most one term in the series is different from 
zero and therefore no convergence problem arises in the definition of the func-
tion. Also, f  vanishes outside (0,1]×(0,1], is unbounded on every open set 
containing (0,0) and is continuous except at (0,0).  

We begin by simplifying the description of f . In order to do so, consider any 
(x,y) ∈ (0,1]×(0,1]. There exists a unique j ∈  ̀such that x ∈ (2

_j, 21_ j ]. If j > 1,  
then we have 

f(x,y) = 1
1
[ ( ) ( )] ( )i i i

i
x x y

∞

+
=

φ − φ φ∑  

= 1 1 1[ ( ) ( )] ( ) [ ( ) ( )] ( )j j j j j jx x y x x y− − +φ − φ φ + φ − φ φ  

= 1( ) ( ) ( ) ( )j j j jx y x y−−φ φ + φ φ  = 1( )[ ( ) ( )]j j jx y y−φ −φ + φ . 

However, if j = 1, then f(x,y) = 1
1
[ ( ) ( )] ( )i i i

i
x x y

∞

+
=

φ − φ φ∑ = 1 1( ) ( )x yφ φ . Thus f  

has the simplified description: 

f(x,y) = 
11

1

1 1
2 2

1 1
1 1 2 2

( )[ ( ) ( )] if  with 1

( ) ( ) if  with 1.

j jj j j

j j

x y y x j

x y x j

−−

−

φ −φ + φ < ≤ >

φ φ < ≤ =

⎧⎪
⎨
⎪⎩

 

This simplified description shows that, when x ∈ (2
_j, 21_ j ] with j > 1 (so that x ∉ 

(2
_j, 21_ j ] with j = 1), 

1
0∫ f(x,y) dy = 1

0∫ 1( )[ ( ) ( )]j j jx y y−φ −φ + φ dy 

= ( )j xφ 1
0∫ 1[ ( ) ( )]j jy y−−φ + φ dy = ( )j xφ [_1 + 1] 

= 0 = 1( )xφ , considering that x ∉ (2
_j, 21_ j] with j = 1. 

But when x ∈ (2
_j, 21_ j ] with j = 1,  

1
0∫ f(x,y) dy = 1

0∫ 1 1( ) ( )x yφ φ dy = 1( )xφ . 
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Thus 1
0∫ f(x,y) dy = 1( )xφ  for all x ∈ (0,1]. This implies 1

0∫ dx 1
0∫ f(x,y) dy = 

1
0∫ 1( )xφ dx = 1. 

Before computing the integral iterated in the reverse order, note that 
11/ 2

1/ 2

j

j

−

∫ 1( )[ ( ) ( )]j j jx y y−φ −φ + φ dx = 1[ ( ) ( )]j jy y−−φ + φ  for j > 1 

and 
11/ 2

1/ 2

j

j

−

∫ 1 1( ) ( )x yφ φ dx = 1( )yφ  for j = 1. 

It follows from the simplified description of f  derived above that 

1
0∫ f(x,y) dx = 

11/ 2

1/ 21

j

j
j

−∞

=
∑ ∫ f(x,y) dx =  1

1/ 2∫ f(x,y) dx +
11/ 2

1/ 22

j

j
j

−∞

=
∑ ∫  f(x,y) dx 

= 1( )yφ  + 
2j

∞

=
∑ 1[ ( ) ( )]j jy y−−φ + φ , 

in view of what was noted in the preceding paragraph. Now, for any integer m > 
1,  

1( )yφ  + 
2

m

j=
∑ 1[ ( ) ( )]j jy y−−φ + φ  = ( )m yφ . 

Therefore 1
0∫ f(x,y) dx = l

m
i
→
m
∞

( )m yφ . But this limit is zero when 0 < y ≤ 1, be-

cause m > ln
ln 21 y−  ⇒ 1/2m_1 < y ⇒ ( )m yφ = 0. Thus 1

0∫ f(x,y) dx = 0 for 0 < y ≤ 

1, and consequently, 1
0∫ dy 1

0∫ f(x,y) dx = 0. 

Problem Set 6-4 

6-4.P1. If E° = ∅, then ∂E = E  and c(∂E) = c(E ) ≥ c(E) > 0, contradicting 
Proposition 6-4.14. 

6-4.P2. E  has content by Proposition 6-4.14 because ∂E ⊆ ∂E. Since c(E∩∂E) ≤ 
c(∂E) = 0 and E  = E∪∂E , it follows by Remark 6-4.6(d) that c(E) = c(E). 

6-4.P3. If E is a cuboid, then α(E) is also a cuboid; moreover, its edges have the 
same length as those of E. Therefore they have the same volume and thus same 
content too. Since α is continuous on an open set containing E and is an injec-
tive map, it follows by 2-6.P8(c) that α(∂E) ⊆ ∂(α(E)). But α has a continuous 
inverse on the open set Rn containing α(E) and therefore α(∂E) = ∂(α(E)). Now 
suppose E has content. By Proposition 6-4.14, c(∂E) = 0. Using this with Propo-
sition 6-4.10 and what has just been proved about the behaviour of α on cuboids 
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that c(∂(α(E))) = 0. By Proposition 6-4.14, α(E) has content. Finally, applying 
Proposition 6-4.10, for any ε > 0, we first obtain finitely many cuboids covering 
E and having total volume less than c(E) + ε; their images under α then provide 
finitely many cuboids covering α(E) and having the same total volume, which is 
less than c(E) + ε . By Remark 6-4.6(b), it follows that c(α(E)) ≤ c(E) + ε . 
Therefore c(α(E)) ≤ c(E). Arguing the same way with α

_1 (i.e., replacing s by 
_s), we find that c(E) ≤ c(α(E)). 

6-4.P4. Let I be a cuboid such that E ⊆ I. By definition of integrability of 
f :E→R, the extension If :I→R is integrable and E∫ f  = I∫ If . Hence by 6-2.P7, 
| If | is integrable and | E∫ f |  = | I∫ If | ≤ I∫ | If | . But | If |  = | f |I . Therefore, again by 
definition, | f | is integrable and | E∫ f |  ≤ I∫ | If |  = I∫ | f |I  = E∫ | f |. 

6-4.P5. Let m = inf {f(x) : x ∈ A} and M = sup{f(x) : x ∈ A}; let I be any cuboid 
containing A. Then m ≤ f I (x) ≤ M on I and 0 = m·c(A) = I∫ mχA ≤ I−

∫ f I  ≤ 
_

I∫ f I  ≤ 

I∫ MχA = M·c(A) = 0. Therefore I∫ If  exists and is zero, i.e., A∫ f exists and is 
zero. 

6-4.P6. We shall use the easily proven inequality I−
∫ ( f + g) ≥ I−

∫ f + I−
∫ g and its 

analogue for upper integrals. 

Let m = inf {f(x) : x ∈ E} and M = sup{f(x) : x ∈ E}; let I be any cuboid con-
taining E. For any subset G of E, denote by fG the extension to I of the restriction 
of f  to G. Then mχXk ≤ fXk ≤ MχXk  and fE = fE\Xk + fXk . It follows from the 
foregoing inequality that m·c(Xk) ≤ I−

∫ fXk ≤ 
_

I∫ fXk ≤ M·c(Xk) and further that 
lim I−

∫ fXk = lim
_

I∫ fXk = 0; also, it follows from the equality that 

I−
∫ fXk + I∫ fE\Xk  = I−

∫ fXk + I−
∫ fE\Xk ≤ I−

∫ fE ≤ 
_

I∫ fE ≤ 
_

I∫ fXk +
_

I∫ fE\Xk  

= 
_

I∫ fXk + I∫ fE\Xk .  

The result follows from here upon using the limits established just earlier. 

6-4.P7. If c(E) = 0, then E∫ f  = 0 and therefore any μ ∈ [m,M ] serves the pur-
pose. When c(E) ≠ 0, we have m·c(E) ≤ E∫ f  ≤ M·c(E) and hence m ≤ 1

( )c E E∫ f  ≤ 
M. Take μ = 1

( )c E E∫ f . If E is closed, then it is also compact (being bounded), so 
that m and M are in the range of f . If E is also connected then, the range of f  
must be an interval [see 2-6.P14] and must therefore be [m,M ]. This implies the 
existence of the required ξ. 

6-4.P8. Observe that f(x)m ≤ Mm for all x ∈ E. So, ∫E f m ≤ Mmc(E), which implies 

li
m
m
→

s
∞
up ( ∫E f m)1/m ≤ M. Now, let ε > 0. There exists x0 ∈ E such that f(x0) > M _ ε. 
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Any open cuboid I containing any point of E, in particular x0 , must contain a 
point interior to E and hence must also contain an open cuboid K ⊆ E. Therefore 
c(E∩I ) ≥ c(K∩I ) = c(K) > 0. By continuity of f , there exists an open cuboid I 
such that f(x) > M _ ε on I. Hence ∫E f m ≥ ∫E∩ I f m ≥ (M _ ε)mc(E∩I ). Since 
c(E∩I ) > 0, we have l

m
i
→
m
∞

c(E∩I )1/m = 1 and therefore li
m
m

→
i
∞
nf ( ∫E f m)1/m ≥ M _ ε. 

Since this holds for every ε > 0, we have li
m
m

→
i
∞
nf ( ∫E f m)1/m ≥ M. The reverse ine-

quality has already been proved. To see why the condition E = E
—

° cannot be 
omitted, take E = [0,1]∪{5} and f(x) = 1 on [0,1] and f(5) = 2. 

6-4.P9. Let I be a cuboid containing E. If fI ,  gI and ( fg)I are the functions on I 
obtained by setting f,g and fg equal to zero outside E, then surely ( fg)I equals 
the product ( fI )(gI). In view of Def. 6-4.3, we need prove only that ( fI )(gI) is 
integrable. This follows from 6-2.P9. 

6-4.P10. Consider any x,y ∈ K. Observe that Jx is the disjoint union of Jx∩ Jy and 
Jx\Jy and similarly for Jy . Therefore 

|F(x) _ F(y)| = |
xJ f∫ _

yJ f∫ | = | \x yJ J f∫ _
\y xJ J f∫ | ≤ | \x yJ J f∫ | + | \y xJ J f∫ | 

= ( \ \) ( ) | |
x y y xJ J J J f∪∫ . 

If we set u = (u1 ,…,un) and v = (v1 ,…,vn), where ui = min{xi ,yi} and vi = 
max{xi ,yi}, it is easy to check that (Jx\Jy)∪(Jy\Jx) ⊆ Jv\Ju . Therefore 

( \ \) ( ) | |
x y y xJ J J J f∪∫  ≤ \ | |

v uJ J f∫  ≤ M ·c(Jv\Ju), where M = sup | f |. Since ui ≤ vi for 
each i, we have Ju ⊆ Jv and therefore c(Jv\Ju) = c(Jv) _ c(Ju). Our choice of u 
and v implies that c(Jv) _ c(Ju) can be made arbitrarily small by taking x and y 
sufficiently close. 

6-4.P11. The function is defined on the cuboid [0,1]×[0,1] except at the origin. 
Set it equal to 0 at the origin; the extended function is discontinuous only at the 
origin and is also bounded. By Theorem 6-4.15, it is integrable and hence so is 
the given function. 

Problem Set 6-5 

6-5.P1. Since b1
_ a1 > b2

_ a2 , we have a1 + b2 < b1 + a2 . It follows that, when 
x2 ∈ [a2 ,b2], we have 

a1 + a2 ≤ a1 + x2 ≤ a1 + b2 < b1 + a2 ≤ b1 + x2 .…………………(1) 
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(a) From the last three inequalities in (1), we get 

[a1 + x2 ,b1 + x2] = [a1 + x2 ,a1 + b2]∪[a1 + b2 ,b1 + a2]∪[b1 + a2 ,b1 + x2]. 

It is now immediate that S = B∪C∪D. 
(b) From the first three inequalities in (1), we get 

[a1 + a2 ,b1 + a2] = [a1 + a2 ,a1 + x2]∪[a1 + x2 ,a1 + b2]∪[a1 + b2 ,b1 + a2]. 

It is now immediate that J = A∪B∪C. 
(c) By Proposition 6-5.1, the boundaries of A,B,C,D all have content zero. 
Therefore by Proposition 6-4.14, all the four sets have content. Since A∩B = 
{(x1 , … , xn) ∈ Rn : (x2 , … , xn) ∈ [a2 ,b2]×…×[an ,bn],  x1 = a1 + x2}, it follows by 
Proposition 6-5.1 that it has content zero. A similar argument applies to B∩C 
and C∩D. 
(d) In view of the above, Remark 6-4.6(d) shows that S has content and that, 
firstly, c(S) = c(B) + c(C) + c(D) and secondly, that c(J) = c(A) + c(B) + c(C). 
But c(J) = vol(J) = (b1

_ a1) … (bn
_ an). Therefore, we need only prove that 

c(D) = c(A). This results from applying 6-4.P3 with s = a1
_ b1 and p = 1. 

(e) Take [a1,b1] = [0,1], [a2 ,b2] = [0,2]. Then (x1 , … , xn) ∈ B if x1 = 2 and x2 = 0; 
but (x1 , … , xn) ∉ S. 

If b1
_ a1 ≤ b2

_ a2 , let N be an integer large enough so that (b2
_ a2)/N < 

b1
_ a1 . Now partition [a2,b2] into N equal subintervals I1 , … , IN , so that S is the 

union of N sets S1 , … , SN obtained by replacing [a2 ,b2] in its definition by 
I1 , … , IN . Each of these sets satisfies the hypothesis that has now been dropped. 
So, it is covered by part (d) and therefore has content (b1

_ a1) … (bn
_ an)/N. 

Moreover, the intersection of the union of S1 , … , Sk with Sk+1 (1 ≤ k < N) has 
content zero. Hence, c(S) = Σk c(Sk) = (b1

_ a1) … (bn
_ an). 

6-5.P2. By Theorems 6-3.2, 6-4.13 and 6-5.1 

∫T  D2 1 f =  ∫0
a dx ∫0

b(1 _ x/a) D2 1 f(x,y) dy = ∫0
a [ D1 f(x,b(1 _ x/a)) _ D1 f(x, 0)] dx 

= ∫0
a [ D1 f(x,b(1 _ x/a)) dx+ f(0,0) _ f(a, 0 

=  aD1 f(x0 ,b(1 _ x0 /a)) + f(0,0) _ f(a, 0), 

where 0 ≤ x0 ≤ a,  by the mean value theorem for integrals. Observe that x0 /a + 
b(1 _ x0 /a)/b = 1. So, the point (x0,y0), where y0 = b(1 _ x0 /a), lies on the line 
segment joining (a, 0) to (0,b). 

6-5.P3. The given set E is the same as 

{(x,y) ∈ \2 : x ≥ 0,  y ≥ 0,  (x,y) ≠ (0,0),  0 ≤ x < (Aε)½,  x[(1 _ ε)/ε]½ 

< y < (A _ x2)½}. 
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Since 0 ≤ x < (Aε)½ ⇒ x[(1 _ ε)/ε]½ < (A _ x2) ½ 

and x = (Aε)½ ⇒ x[(1 _ ε)/ε]½ = (A _ x2) ½, 
the boundary is the union of the four (nondisjoint) sets 

{(0,y) ∈ \2 : 0 ≤ y ≤ A½},  {((Aε)½, [A(1 _ ε)]½)},  
{(x,y) ∈ \2 : 0 ≤ x ≤ (Aε)½,  y  =  x[(1 _ ε)/ε]½}  

and 
{(x,y) ∈ \2 : 0 ≤ x ≤ (Aε)½,  y  =  (A _ x2)½}. 

The first two are easily seen to be subsets of rectangles of arbitrarily small con-
tent (area in the present context) and the latter two have content zero in view of 
Proposition 6-5.1. Therefore the given set has content. Also, it is a subset of the 
rectangle [0, (Aε)½]×[0, A½], which has content Aε½. 

Problem Set 7-1 

7-1.P1. (a) 3,5 because 1 < 2e/n ≤ 2 ⇔ 3 ≤ n ≤ 5. (b) 3,4 because 2 < √99/n ≤ 4 
⇔ 3 ≤ n ≤ 4 . 

7-1.P2. 4,5. A partition with n subintervals will do if and only if 1 < 2e
n  ≤ 3

2 , 

i.e., 4
3
e  ≤ n < 2e. Since 5

2  < e < 3, this implies 10
3  < n < 6. Therefore integers 

other than 4 and 5 are ruled out. One can check that n = 4 and n = 5 both fulfil 1 
< 2e

n  ≤ 3
2 . 

7-1.P3. As in the proof of Proposition 7-1.3, choose N such that 1 + 1/N < 4
3 , 

e.g., N = 4. Then 9
6 (4)⎡ ⎤⎣ ⎦ = 6 and 11

6 (4)⎡ ⎤⎣ ⎦ = 7. Therefore the triplet (nonunique) 
may be taken as 4,6,7. To check that this triplet works, we note that 4

3
6
4 = 2,  9

6  
< 2 and 11

7  < 2. 

7-1.P4. The inequality l ≤ L < μl will hold if and only if either a ≤ b/n < μa or b/n  
≤ a < μ b/n , depending on which among a and b/n  is bigger. These are respective-
ly equivalent to b/aμ  < n ≤ b/a and b/a ≤ n < μb/a . Therefore the inequality l ≤ L < 
μl will hold if and only if either b/aμ  < n ≤ b/a or b/a ≤ n < μb/a . In other words if 
and only if b/aμ  < n < μb/a . Therefore it is possible to choose n as required if and 
only if the interval (b/aμ ,μ b/a ) contains an integer. 

(a) If b/a < μ, then b/aμ  < 1 and also μb/a > b/a > 1. Therefore the interval in ques-
tion contains the integer 1. Suppose b/a ≥ μ . Since μ > √2, we have μ2 _ 1 > 1 
and hence μ/(μ2 _ 1) < μ ≤ b/a . It follows that 1 < (b/a)(μ2 _ 1)/μ = (b/a)(μ _ 1/μ ) 
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= length of the interval (b/aμ , μb/a ). Therefore the interval in question contains 
an integer in this case as well. 

(b) If 1 < μ ≤ √2, take a = 1 and b = μ . Then the interval (b/aμ ,μb/a ) is (1, μ2) ⊆ 
(1,2), which contains no integer. 

Problem Set 7-2 

7-2.P1. Let W = (0,∞), α(x) = 1/x and F = (0,1). Then α(F) = (1,∞), which is not 
even bounded. Note that F  is not a subset of W and therefore Proposition 7-2.4 
is not contradicted. 

7-2.P2. Modify the proof as follows: Consider an arbitrary η > 0. Since α' is 
continuous, E  is covered by open balls contained in the open set V (as in the 
proof) such that, on each ball, ||α'|| varies by no more than η/2. Replace V by the 
union of these balls; then sup{||α'(x)|| : x ∈ V } ≤ M0

1/n + η. Take an arbitrary μ 
> 1 and, instead of Proposition 7-2-1, use Proposition 7-1.3 to ensure that (di-
am K)n < μnvol(K). Then the total volume of the family {α(K)' : K ∈ H} of 
closed cuboids (as in the proof) is less than (μ(M0

1/n + η))n[c(F) + ε/(2M)n]. 
Since ε > 0, η > 0 and μ > 1 are all arbitrary, the total volume no greater than 
M0c(F). 

7-2.P3. First injectivity. Consider (u1 ,v1),  (u2 ,v2) ∈ E and (u1 ,v1) ≠ (u2 ,v2). De-
note α(u1 ,v1) by (x1 ,y1), and α(u2 ,v2) by (x2 ,y2). We claim (x1 ,y1) ≠ (x2 ,y2).The 
definition of α shows that x1

2 + y1
2 = u1

2 and x2
2 + y2

2 = u2
2. Therefore if u1 ≠ u2 , 

we have x1
2 + y1

2 ≠ x2
2 + y2

2, so that (x1 ,y1) ≠ (x2 ,y2). If u1 = u2 , then v1 ≠ v2 . 
Since by definition of E, we have 0 < v1 < 2π as well as 0 < v2 < 2π, therefore 
either cosv1 ≠ cosv2 or sinv1 ≠ sinv2 . Since u1 = u2 ≠ 0, it follows that either 
u1cosv1 ≠ u2cosv2 or u1sinv1 ≠ u2sinv2, i.e., (x1 ,y1) ≠ (x2 ,y2). Thus α is injec-
tive. 

For surjectivity, consider any (x,y) ∈ G. We must find (u,v) ∈ E such that 
α(u,v) = (x,y), i.e., x = ucosv and y = u sin v. Set 

u = (x2 + y2)1/2  (1) 

and v = 
1

1

cos if 0

2 cos if 0

x
u

x
u

y

y

−

−

>

π − ≤

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

. (2) 

The given definition of G ensures that 0 < u < A. To show that (u,v) ∈ E, we 
need only show that 0 < v < 2π. Since the range of cos

_1 is [0,π], it is immediate 
that 0 ≤ v ≤ π when y > 0 and that π ≤ v ≤ 2π when y ≤ 0. In particular, v = 0 ⇒ y 



Solutions 
 

372

> 0 and v = 2π ⇒ y ≤ 0. We argue why v ≠ 0. Suppose if possible that v = 0. 
Then y > 0. This implies on the one hand that x < u by (1) and on the other hand 
by (2) that v = cos

_1(_
u
x_), which further implies cos

_1(_
u
x_) = 0, so that x = u. This 

contradition shows that v cannot be 0. Now suppose, if possible, that v = 2π. 
Then y ≤ 0. By (2), this implies that v = 2π _ cos

_1(_
u
x_), which further implies 

cos
_1(_

u
x_) = 0, so that x = u > 0, and on using (1), we have y = 0. But by the given 

definition of G, we have x > 0 ⇒ y ≠ 0. Thus v cannot be 2π either. So, 0 < v < 
2π. It remains to show that α(u,v) = (x,y), i.e., ucos v = x and u sin v = y. 

We use the two consequence of (2) that firstly, cos v = _
u
x_ regardless of 

whether y > 0 or y ≤ 0, and secondly, sin v = √(1 _ (_
u
x_)2) for y > 0 and _√(1 _ (_

u
x_)2) 

for y ≤ 0. It follows from the former consequence that ucos v = u·_
u
x_ = x regardless 

of whether y > 0 or y ≤ 0. And it follows from the latter consequence that, for y 
> 0, we have u sin v = u√(1 _ (_

u
x_)2) = √y2 = y, while for y ≤ 0, we have u sin v = 

_u√(1 _ (_
u
x_)2) = _√y2 = y. 

Problem Set 7-4 

7-4.P1. Since W1 has content, its boundary ∂W1 has content zero by Proposition 
6-4.14. It follows by Remark 6-4.6(d) that the set F = {x ∈ W1 : det α' (x) = 
0}∪∂W1 has content zero. Therefore, for each integer k, there exist [Proposition 
6-4.10] finitely many closed cuboids which cover F and have total volume less 
than 1/k. Denote their union by Sk . Then Sk is closed, F ⊆ Sk and c(Sk) < 1/k. 
Each of the aforementioned cuboids is contained in an open cuboid with volume 
not more than twice as much [Remark 6-1.2(iv)]. Denote the union of these open 
cuboids by Tk . Then Tk ⊇ Sk and c(Tk) < 2/k. Also, E\Tk has content by Remark 
6-4.6(h). Note that W

_
1∩Tk

c = W1∩Tk
c because Tk contains ∂W1. Now, 

E
—
\
—
T
—

k = E
—

∩
——

T
——

k
c ⊆ E

—
∩T

——
k
c = E

—
∩Tk

c ⊆ W
_

1∩Tk
c = W1∩Tk

c ⊆ W1∩Sk
c = W1\Sk 

and the invertibility of α on W1 yields 

α(E\Tk) = α(E\(E∩Tk)) = α(E)\α(E∩Tk). 

Furthermore, the set α(E\Tk) has content in view of Proposition 7-2.4 (take W1 
as the set ‘W’ there). Therefore the integrals 

∫α(E)\α(E∩Tk) f and ∫E\Tk ( f α) |det α' | 

both exist. Since α is invertible and α' injective on the open set W1\Sk contain-
ing E

—
\
—
T
—

k , it follows from Theorem 7-4.4 that the two integrals are also equal. 
Moreover, since all the sets E∩Tk are contained in the single set E, whose clo-
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sure is contained in the open set W on which α is continuously differentiable, it 
follows that c(α(E∩Tk))→0 as k→∞ by Proposition 7-2.2. The required conclu-
sion now follows from what was established in Problem 6-4.P6. 

7-4.P2. Since f  is continuous, the integrals all exist, while the second, third and 
fourth integrals are equal by Fubini’s theorem [see Remark 6-3.3]. So, we need 
only prove that the first and second are equal. To this end, let W = R2 and W1 = 
{(r,θ) ∈ R2 : 0 < r < B,  0 < θ < 2π} = (0,B)×(0,2π),  where B > A. Then the 
transformation α:W→R2 defined by α(r,θ) = (r cosθ, r sinθ) is continuously 
differentiable on W. On the open subset W1 , it is invertible with detα' = r > 0 
everywhere. Besides, W1 has content and E ⊆ W

_
1 = [0,B]×[0,2π]. Finally, α(E) 

= D and ( f α) (r,θ) = f(r cosθ, r sinθ) . The required equality therefore follows 
from 7-4.P1. (A similar argument justifies the usual procedure of evaluating the 
integral over the part of the disc in the first quadrant, i.e., {(x,y) ∈ R2 : 0 ≤ x2 + y2 
≤ A2,  x ≥ 0,  y ≥ 0}, via polar coordinates in the above manner, the integration 
with respect to θ being taken over [0,  –π2 ] . ) 

7-4.P3. Let (x,y) = α(u,v) = (u,v _ u). Then α is injective and continuously dif-
ferentiable on R2, with linear derivative α'(u,v) given by the matrix having first 
row [1 0] and second row [_1 1]. If we take f(x,y) = tan

_1(x + y), then 
[( f α) |det α' |](u,v) = tan

_1v. Using our definition of α, the set E is most easily 
‘described in terms of u and v’ by the inequalities u ≥ 0,  v _ u ≥ 0,  v ≤ 1, which 
is the same as, u ≥ 0,  u ≤ v ≤ 1. As a figure would immediately suggest and a 
little manipulation will easily confirm, it is also the same as 0 ≤ v ≤ 1,  0 ≤ u ≤ v. 
Such a description of E in terms of u and v simply means E = α(F), where 

F = {(u,v) ∈ R2 : 0 ≤ u ≤ 1,  u ≤ v ≤ 1} = {(u,v) ∈ R2 : 0 ≤ v ≤ 1,  0 ≤ u ≤ v}. 

By the transformation formula (Theorem 7-4.4), the required integral is 

∫F [( f α) |det α' |](u,v) dudv = ∫F tan
_1v dudv. 

By Fubini’s theorem [see Remark 6-3.3] this can be evaluated as either  
1
0∫ ( 1

u∫  tan
_1v dv) du or 1

0∫ ( 0
v
∫ tan

_1v du) dv. 

The latter is easier to evaluate and leads to the answer 1
4 2
π − . 

7-4.P4. By Proposition 7-4.12, we may choose the balloon according to our 
convenience, which means we take Em = {(x,y) ∈ R2 : 1

m  ≤ x2 + y2 ≤ 1} By the 

Proposition 7-4.15, 
mE f∫  = 

mm EE f χ∫  = 
mEE f χ∫  

= 2
0

π
∫ dθ 1

0∫ f(r cosθ, r sinθ) ·χEm(r cosθ, r sinθ)r dr 
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= 2
0

π
∫ dθ 1

1/m∫ f(r cosθ, r sinθ)r dr 

= 2
0

π
∫ dθ 1

1/m∫ 2
r

r
drα  = 

2 2
2 1

2 2 <  for each if 1 

2 (1 ln ) <  for each if 1

(1 ) m m

m m

− α
π

− α ∞ α ≠

π + ∞ α =

−⎧⎪
⎨
⎪⎩

. 

Therefore l
m
i
→
m
∞ mE∫ f  is finite (in fact, 2

2 2
π

− α ) if α < 1 and does not exist other-
wise. 

7-4.P5. It is well known that: (1) limA→∞ 0
A
∫

sin x
x dx exists in \; (2) 

(2 1)
2

k
k

+ π
π∫ sin x

x dx ≥ 2
(2 1)k+ π  for k ∈ ;̀ (3) 1

k k
ν

=μ
∑  ≥ ln (ν + 1) _ lnμ for μ < ν. Con-

sider the function f(x) = sin x
x . The sequence {Em}, where Em = [0,m], is a 

balloon for [0,∞) and we know from (1) that l
m
i
→
m
∞ mE∫ f  is finite. Now let {Fm} be 

the sequence of sets where 

Fm = [0, (2m_1)π] ∪
2

[2 , (2 1) ]
m

k m
k k

=
π + πU  

= [0, (2m_1)π] ∪  [2mπ, (2m+1)π] ∪
2

1
[2 , (2 1) ]

m

k m
k k

+=
π + πU . 

Each Fm is a union of m2 _ m + 2 disjoint closed intervals and therefore has con-
tent. Since [0, (2m_1)π]∪[2mπ, (2m+1)π] ⊆ [0, (2m+1)π], therefore Fm ⊆ Fm+1 . 

Also,
1m

∞

=
U Fm ⊇ 

1m

∞

=
U  [0, (2m_1)π] = [0,∞). Thus {Fm} is a balloon for [0,∞), and 

moreover, 

mF∫ f  = (2 1)
0

m− π
∫ sin x

x dx + 
2m

k m=
∑ (2 1)

2
k

k
+ π

π∫ sin x
x dx. 

In view of (2), we have 
2m

k m=
∑ (2 1)

2
k

k
+ π

π∫ sin x
x dx ≥

2m

k m=
∑ 2

(2 1)k+ π  ≥
2m

k m=
∑ 2

(2 2)k+ π  = 1
π

2m

k m=
∑ 1

1k +  = 1
π

2

1

1 1m

k m k= +

+
∑ . 

By using (3) and the above representation of 
mF∫ f  as a sum, we deduce from this 

inequality that 

mF∫ f  ≥ (2 1)
0

m− π
∫ sin x

x dx + 1
π [ln (m2 + 2) _ ln(m + 1)]. 

The second term on the right tends to ∞ with m while the first has a finite limit 
by (1). It follows that 

mF∫ f  tends to ∞ with m. 
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7-4.P6. Since T(0,0) = (2,_1), we have a1 = 2 and a2 = _1. Furthermore, since 
T(1,0) = (5,0), we have 2 + b1 = 5 and _1 + b2 = 0 and hence b1 = 3 and b2 = 1. 
Similar considerations lead to c1 = 1 and c2 = _1. So, 

T(x,y) = (u,v) = (2 + 3x + y, _1 + x _ y). 

Now x
∂
∂ (2 + 3x + y) = 3, y

∂
∂ (2 + 3x + y) = 1, x

∂
∂ (_1 + x _ y) = 1, y

∂
∂ (_1 + x _ y) = 

_1. Therefore the Jacobian is _4. Since the equations 
u = 2 + 3x + y, v = _1 + x _ y 

lead to x = 1
4 (u + v _ 1) and y = 1

4 (u _ 3v _ 5), the mapping T is bijective. By the 
transformation formula, 

∫D exp (2u _ v) dudv = ∫[0,1]×[0,1] exp (2(2 + 3x + y) _ (_1 + x _ y))(4) dxdy 
= ∫[0,1]×[0,1] exp (5 + 5x + 3y)(4) dxdy = 4e5 ∫[0,1] e5x dx ∫[0,1] e3y dy 
= 4

15 e5 (e5 _ 1)(e3 _ 1). 

Problem Set 8-2 

8-2.P1. Φ is a 1-surface and Φ(u) = (Φ1(u),…,Φn(u)). 

∫Φ ω = ∫Φ  i
Σ
=

n

1
fidxi = ∫[0,1]  i

Σ
=

n

1
fi(Φ(u)) id

du
Φ du. 

If Φ(u) = (u,u2,u3) and ω = dx + dz, then the above integral equals 

∫[0,1]
1d

du
Φ du + ∫[0,1]

3d
du
Φ du = ∫[0,1]  du +  ∫[0,1] 3u2du = 2. 

8-2.P2. ∫[0,1]2 [ f1(Φ1(u),Φ2(u),Φ3(u)) 2 3

1 2

( , )
( , )u u

∂ Φ Φ
∂  + f2(Φ1(u),Φ2(u),Φ3(u)) 3 1

1 2

( , )
( , )u u

∂ Φ Φ
∂  + 

f3(Φ1(u),Φ2(u),Φ3(u)) 1 2

1 2

( , )
( , )u u

∂ Φ Φ
∂ ] du1du2 . 

8-2.P3. ∫Φ ω = 

∫[0,1]2
1 3 2 31 2

1 2 2 1 1 3 3 1 2 3 3 2
( , ) ( , )( , )

( ) ( ) ( )
( , ) ( , ) ( , )

x x x xx x
v w v w dxdy v w v w dxdy v w v w dxdy

x y x y x y
∂ ∂∂

− + − + −
∂ ∂ ∂

 

= 2 2 2
1 2 2 1 1 3 3 1 2 3 3 2( ) ( ) ( )v w v w v w v w v w v w− + − + −  because 

( , )
( , )

i j
i j j i

x x
v w v w

x y
∂

= −
∂

. 

8-2.P4. Φ1(r,θ) = 2
2 cos 2

1
r

r
πθ

+
, Φ2(r,θ) = 2

2 sin 2
1

r
r

πθ
+

, Φ3(r,θ) = 
2

2
1
1

r
r

−
+

. So, 
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2 3( , )
( , )r

∂ Φ Φ
=

∂ θ

2

2 3
16 cos 2

(1 )
r

r
π πθ

+
, 3 1( , )

( , )r
∂ Φ Φ

=
∂ θ

2

2 3
16 sin 2

(1 )
r

r
π πθ

+
 and 

1 2( , )
( , )r

∂ Φ Φ
=

∂ θ

2

2 3
8 (1 )

(1 )
r r

r
π −

+
. 

Therefore, Φ1(r,θ) 2 3( , )
( , )r

∂ Φ Φ
=

∂ θ
 

3 2

2 4
32 cos 2

(1 )
r

r
π πθ

+
, 

Φ2(r,θ) 3 1( , )
( , )r

∂ Φ Φ
=

∂ θ
 

3 2

2 4
32 sin 2

(1 )
r

r
π πθ

+
 and Φ3(r,θ) 1 2( , )

( , )r
∂ Φ Φ

=
∂ θ

 
2 2

2 4
8 (1 )

(1 )
r r

r
π −

+
. 

The sum of these three is 
3 2 2

2 4 2 2
4 (1 )8 8

(1 ) (1 )
r r r r

r r
+ −π = π

+ +
. Therefore 

∫Φ ω = 8π ∫[0,1]2 2 2(1 )
r
r+

drdθ = 8π ∫[0,1] 2 2(1 )
r
r+

dr = 2π. 

8-2.P5. Let (a1 ,…,an) be any point in Rn and let Φ:[0,1]→ Rn be the constant 
map with value (a1 ,…,an) everywhere on [0,1]. Then each component function 
of Φ is also constant and therefore has derivative (Jacobian) 0 everywhere. Con-
sider any 1-form ω = 

j
Σ
=

n

1
fjdxj. Since ∫[0,1] fj(Φ(u))Φj'(u) du = 0 for every j, we 

have ∫Φ ω = 0. 

8-2.P6. Let Φ:[0,1]3→R2 be given by Φ(x1 ,x2 ,x3) = (x1 ,x2). 

8-2.P7. To extend ϕ to the left of 0, take ϕ(u) = ϕ(0) + uϕ'(0) and to extend to 
the right of 1, take ϕ(u) = ϕ(1) + (u _ 1)ϕ'(1). Since ϕ is the restriction of a C1 
map on R, it follows easily that Φ is the restriction of a C1 map on R2. Thus it is 
a 2-surface. 

Its range is {(x,y) ∈ R2 : 0 ≤ x ≤ 1 and 0 ≤ y ≤ ϕ(x) or 0 ≥ y ≥ ϕ(x)}. 
The range of Ψ is the graph of ϕ, namely, {(x,y) ∈ R2 : 0 ≤ x ≤ 1, y = ϕ(x). 

Problem Set 8-3 

8-3.P1. Let α = 
i
Σ
=

n

1
fidxi and β = 

i
Σ
=

n

1
gidxi . Then α∧β = (

i
Σ
=

n

1
fidxi)∧ (

 i
Σ
=

n

1
gidxi) = 

i,
Σ
j

n

=1
figjdxi∧dxj = _

 i,
Σ
j

n

=1
figjdxj∧dxi = (

 i
Σ
=

n

1
gidxi)∧ (

 i
Σ
=

n

1
fidxi) = _β∧α. 

8-3.P2. Put α = dx1∧dx2 + dx3∧dx4 . Then α∧α = 2dx1∧dx2∧dx3∧dx4 . 



Problem Set 8-4 

8-4.P1. Since Di f = 2xi for 1 ≤ i ≤ n, then df  = 2
i
Σ
=

n

1
(xidxi). Now, Djxi = 1 if j = i 

and 0 otherwise. Therefore 
d(df ) = 2

i
Σ
=

n

1
((

j
Σ
=

n

1
(Djxi)dxj)∧dxi) 

= 2
i
Σ
=

n

1
((Dixi)dxi∧dxi) because Djxi = 0 if j ≠ i 

= 0 because dxi∧dxi = 0. 

8-4.P2. We have 

dη = d 2 22 2
x ydy dxx y x y

⎛ ⎞
−⎜ ⎟+ +⎝ ⎠

 

= 
2 2 2 2

2 22 2
y x y xdx dy dx dyx y x y

⎛ ⎞ ⎛ ⎞− −∧ − ∧⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 = 0. 

The other terms vanish since dx∧dx = dy∧dy = 0. Thus η is closed. 
Next. suppose η is exact; then there exists a C2 function f  such that 

df = 2 22 2
f f x ydx dy dy dxx y x yx y

∂ ∂+ = −+ +∂ ∂
. 

Consider the 1-surface γ:[0,1]→U given by γ(t) = (cos 2πt, sin 2πt). That is γ1(t)  
=  cos 2πt,  γ2(t) = sin 2πt. On the one hand, we have 

∫γ df = ∫[0,1] ( f
x

∂
∂ (γ(t)) d

dt γ1(t) dt + f
y

∂
∂ (γ(t)) d

dt γ2(t)) dt = ∫[0,1]
d
dt ( f(γ(t)) dt 

= f(γ(1)) _ f(γ(0)) = 0 because γ(0) = γ(1). 
But on the other hand, 

∫γ df = ∫γ
f fdx dy
x y

∂ ∂+
∂ ∂

= ∫γ 2 22 2
x ydy dxx y x y−+ +  

= 2π ∫[0,1] (cos 2πt) d
dt (sin 2πt) _  (sin 2πt) d

dt (cos 2πt) dt = 4π2 ≠ 0. 

Problem Set 8-5 

8-5.P1. As in Def. 8-5.1, denote the two component functions of T by t1 and t2 . 
Then t1(x) = x2 and t2(x) = x3 and T*ω = T*( y1dy2) = t1d(t2) = x2(3x2)dx = 3x4dx. 

377 Problem Set 8-4 
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8-5.P2. In subscript notation, we have T(x1, x2) = x1
_ x2 and we have to find 

T*(dy1). Now, T*(dy1) = d(x1
_ x2) = dx1

_ dx2 = dx _ dy in xy-notation. 

8-5.P3. T*ω = T*(dy1∧dy2) = d(ax1 + bx2)∧d(cx1 + ex2) 
= (adx1 + bdx2)∧ (cdx1 + edx2) = (ae _ bc)dx1∧dx2 . 

8-5.P4. df1∧…∧dfn = (
j
Σ
=

n

1
1

j

f
x

∂
∂ dxj) ∧…∧ (

j
Σ
=

n

1
n

j

f
x

∂
∂ dxj) .  In view of Proposition 8-

3.5 and Proposition 8-3.7, this is a sum of various wedge products having n fac-
tors each. Those summands with repeated dxj are zero and can be neglected. and 
we are left with a sum of wedge products 

1

1' '

n

n

ii

i i

tt
x x

∂∂
∂ ∂L dxi '1∧…∧dxi 'n , 

where 〈i'1 , i'2 ,…, i'n〉 is an n-index of distinct integers in {1,…,n}, and all such 
n-indices occur. If σ is the permutation that rearranges 〈i'1 , i'2 ,…, i'n〉 in ascend-
ing order as the k-index 〈1,…,n〉, then dxi'1∧…∧dxi'k = (sign σ)dx1∧…∧dxn . 
Therefore the wedge product displayed above is equal to 

(sign σ) 1

1

nii

n

tt
x x

∂∂
∂ ∂L  dx1∧…∧dxn . 

It follows from this that the sum of wedge products that df1∧…∧dfn equals (re-
call that all permutations of 〈1,…,n〉 must occur) is precisely 

1

1

( , , )
( , , )

n

n

f f
x x

∂
∂

K

K
 dx1∧…∧dxn . 

8-5.P5. If k > n, then it is obvious that T*ω = 0. So assume k ≤ n. By Def. 8-5.1 
and Remark 8-5.2(e), T*ω = (bI T)dti1∧…∧dtik . We can drop the factor bI T in 
the rest of our computation. Now, 

dti1∧…∧dtik = (
j
Σ
=

n

1
1i

j

t
x

∂
∂ dxj) ∧  …∧ (

j
Σ
=

n

1
ki

j

t
x

∂
∂ dxj) .  

In view of Proposition 8-3.5 and Proposition 8-3.7, this is a sum of various 
wedge products having k factors each. Those summands with repeated dxj are 
zero and can be neglected. and we are left with a sum of wedge products 

1

1' '

k

k

ii

i i

tt
x x

∂∂
∂ ∂L  dxi'1∧…∧dxi'k , 

where 〈i'1 , i'2 ,…, i'k〉 is a k-index of distinct integers in {1,…,n}, and all such k-
indices occur. If σ is the permutation that rearranges 〈i'1 , i'2 ,…, i'k〉 in ascending 
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order as the k-index J = 〈 j1 ,…, jk〉, then dxi'1∧…∧dxi'k = (sign σ)dxJ . Therefore 
the wedge product displayed above is equal to 

(sign σ) 1

1

k

k

ii

j j

tt
x x

∂∂
∂ ∂L  dxJ . 

It follows from this that, in the sum of wedge products that dti1∧…∧dtik equals, 
those terms for which 〈i'1 , i'2 ,…, i'k〉 is a permutation of any one particular as-
cending J = 〈 j1 ,…, jk〉 (recall that all its permutations must occur) add up to 

1

1

( , , )
( , , )

k

k

i i

j j

t t
x x

∂
∂

K

K
 dxJ .  

Besides, all ascending k-indices J are covered; therefore dti1∧…∧dtik is precise-
ly equal to the summation in the statement of the problem. 

8-5.P6. It is enough to argue the case when ω = bI dyI , a simple k-form. Let I = 
〈 i1 ,…, ik〉, an ascending k-index in {1,…,m} and denote the component func-
tions of Φ by Φ1 ,…,Φm . We apply 8-5.P5 with n = k and T = Φ to get 

Φ*ω = (bI Φ) 1

1

( , , )
( , , )

ki i

kx x
∂ Φ Φ
∂

K

K
dx1∧…∧dxk . 

Since the Jacobian of the inclusion map is 1, it follows from the above equality 
and the definition of integral of a differential form over a surface that ∫Φ ω = 
∫ιkΦ*ω. 

8-5.P7. dω = 3 32 1 2 1f ff f f f
dx dy dy dz dz dx

x y y z z x
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂⎛ ⎞− ∧ + − ∧ + − ∧⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

T*(dω) = 2 1 *( ) *( )
f f

T T dx T dy
x y

⎛ ⎞⎛ ⎞∂ ∂
− ∧⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

o  

3 32 1*( ) *( ) *( ) *( )
f ff f

T T dy T dz T T dz T dx
y z z x

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂⎛ ⎞+ − ∧ + − ∧⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
o o  

Now, T*(dx) = dT1 = 1 1T Tdu dv
u v

∂ ∂
+

∂ ∂
, T*(dy) = 2 2T Tdu dv

u v
∂ ∂

+
∂ ∂

 and T*(dz) = 

3 3T T
du dv

u v
∂ ∂

+
∂ ∂

. Therefore 

T*(dω) = 2 1 1 2( , )
( , )

f f T T
T du dv

x y u v
⎛ ⎞⎛ ⎞∂ ∂ ∂

− ∧⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
o  
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3 2 3 3 3 12 1( , ) ( , )
( , ) ( , )

f T T f T Tf f
T du dv T du dv

y z u v z x u v
⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎛ ⎞+ − ∧ + − ∧⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

o o . 

Thus T*(dω) is the required inner product. 

Problem Set 8-6 

8-6.P1. By Proposition 8-5.4, Γi0*(dyj) = d(Γi0*yj) = d((Γi0)j) and similarly for 
Γi1 . From the description of (Γi0)j in Remark 8-6.3, we find that d((Γi0)j) and 
d((Γi1)j) are as required. 

 
8-6.P2. ∂Φ = 

i
Σ
=

k

1
(_1)i(Φ Γi0

_ Φ Γi1) and hence 

∂(∂Φ) = 
i
Σ
=

k

1
(_1)i

 j

k
Σ
=

_1

1
(_1)j((Φ Γi0

_ Φ Γi1) Γj0
_ (Φ Γi0

_ Φ Γi1) Γj1) 

= 
i
Σ
=

k

1
(_1)i

 j

k
Σ
=

_1

1
(_1)j(Φ Γi0 Γj0

_ Φ Γi1 Γj0
_ Φ Γi0 Γj1 + Φ Γi1 Γj1). 

8-6.P3. (i) Γj0(x1 ,…,xk_1) = (x1 ,…,xj_1 , 0,xj ,…,xk_1) and therefore 

Γi0 Γj0(x1 ,…,xk_1) = Γi0(x1 ,…,xj_1 , 0,xj ,…,xk_1) 

= 1 1 1

1 1 1 1

( , , ,0,0, , , ) if 
( , , ,0, , , ,0, , , ) if 

j j k

i i j j k

x x x x i j
x x x x x x i j

− −

− − −

=⎧⎪
⎨ <⎪⎩

K K

K K K .
 

Γi0(x1 ,…,xk_1) = (x1 ,…,xi_1 , 0,xi ,…,xk_1) and therefore 

Γj+1,0 Γi0(x1 ,…,xk_1) = Γj+1,0(x1 ,…,xi_1 , 0,xi ,…,xk_1) 

= 1 1 1

1 1 1 1

( , , ,0,0, , , ) if 
( , , ,0, , , ,0, , , ) if 

i i k

i i j j k

x x x x i j
x x x x x x i j

− −

− − −

=⎧⎪
⎨ <⎪⎩

K K

K K K . 

Similarly the other relations. 

8-6.P4. (i) The result is true for k = 2, because 

i
Σ
=

2

1  j
Σ
=

1

1
(_1)i+ jΦ Γi0 Γj0 = Φ Γ10 Γ10

_ Φ Γ20 Γ10 = 0 

by part (i) of 8-6.P3 (with i = j = 1). 
Assume that the result is true for k_1, that is, 

i i

k
Σ
=

_1

1  j

k
Σ
=

_2

1
(_1)i+ jΦ Γi0 Γj0 = 0. 

Now, 
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i
Σ
=

k

1 j

k
Σ
=

_1

1
(_1)i+ jΦ Γi0 Γj0 

= 
k

i
Σ
=

_1

1 j

k
Σ
=

_2

1
(_1)i+jΦ Γi0 Γj0 +

j

k
Σ
=

_1

1
(_1)k+jΦ Γk0 Γj0 +

 k

i
Σ
=

_1

1
(_1)i+k_1Φ Γi0 Γk_1,0 

= 
j

k
Σ
=

_1

1
(_1)k+jΦ Γk0 Γj0 +

 k

i
Σ
=

_1

1
(_1)i+k_1Φ Γi0 Γk_1,0 

by the induction hypothesis. 
But 

j

k
Σ
=

_1

1
(_1)k+jΦ Γk0 Γj0 +

 k

i
Σ
=

_1

1
(_1)i+k_1Φ Γi0 Γk_1,0 

= 
i

k
Σ
=

_1

1
(_1)k+iΦ Γk0 Γi0 +

 k

i
Σ
=

_1

1
(_1)i+k_1Φ Γi0 Γk_1,0 = 0 

by part (i) of 8-6.P3. 
Similarly the others. 

8-6.P5. Follows from the results of 8-6.P4. 

8-6.P6. Suppose f  is a function of class C1 on an open subset U of Rn. Let ω be 
a (k _ 1)-form of class C1 and Φ a k-surface in U. Under these conditions, the 
formula holds and the proof is as follows. 

It is a consequence of the general Stokes theorem that ∫Φ d( fω) = ∫∂Φ ( fω). 
Now, d( fω) = (df )∧ω + f dω and hence ∫Φ d( fω) = ∫Φ (df )∧ω + ∫Φ ( f dω). Subs-
tituting the previous equality into the aforementioned consequence of Stokes 
theorem, one gets ∫∂Φ ( fω) = ∫Φ (df )∧ω + ∫Φ ( f dω), which implies the required 
equality. 

Now suppose n = 1, k = 0 and U ⊆ R is an open set containing the closed 
interval [a,b]. Then the k-form ω is a 0-form, which is a C1 function g. Consider 
a k-surface Φ:[0,1]→U such that Φ(0) = a and Φ(1) = b. Then ∂Φ is the chain 
{Φ(1)} _ {Φ(0)} = {b} _ {a}. This means ∫∂Φ ( fω) = f(b)g(b) _ f(a)g(a). Also, 
∫Φ ( f dω) = ∫Φ ( f dg) = ∫[0,1] fg' = ∫0

1 f(ξ)g'(ξ)dξ and ∫Φ (df )∧ω = ∫Φ (gdf ) = 

∫0
1 f '(ξ)g(ξ)dξ. Thus the equality proved reduces to that of the formula of integra-

tion by parts, but under stronger differentiability hypotheses. 

8-6.P7. Γ10 (t) = (0, t), Γ11 (t) = (1, t), Γ2 0(t) = (t, 0), Γ2 1(t) = (t, 1). Therefore, for 
Φ as in Example 8-2.2(e), we have 
Φ Γ10 (t) = (0,0); range: just the origin; 
Φ Γ11 (t) = (cos 2πt, sin 2πt); range: circle of radius 1 about the origin; 
Φ Γ20 (t) = (t, 0); range: segment between the origin and (1,0); 
Φ Γ21  is the same as Φ Γ20 . 
Only Φ Γ11  has range contained in the boundary of the range of Φ. 
For Φ as in Example 8-2.2(h), we have 
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Φ Γ10 (t) = (_ 1
2 cos 2πt, _ 1

2 sin 2πt); range: the circle of radius 12  about the origin; 
Φ Γ11 (t) = (cos 2πt, sin 2πt); range: the circle of radius 1 about the origin; 
Φ Γ20 (t) = ( 1

2 (3t _ 1),0); range: segment between (_ 1
2 ,0) and (1,0); 

Φ Γ21  is the same as Φ Γ20 . 
Only Φ Γ11  has range contained in the boundary of the range of Φ. 

8-6.P8. By the general Stokes theorem, ∫∂c ω = ∫c dω. However, dω is an (n + 1)-
form and is therefore 0. 

Problem Set 8-7 

8-7.P1. By the divergence Theorem, (1) is the same as 

31 2 FF F
dx dy dz

x y zΦ

∂⎛ ⎞∂ ∂
+ + ∧ ∧⎜ ⎟∂ ∂ ∂⎝ ⎠∫  

= 2 2 2 2[ 6( )( ) 2 ]x y x y x z dx dy dz
Φ

− + + + ∧ ∧∫  

= 5 2 2
[0,1] [0,2 ] [0,1]

[ 6 (cos sin ) 2 (cos ) ]r r z rdrd dz
× π ×

− θ + θ + θ θ∫  

= 1
4 π. 

We next verify the answer by actually evaluating (1). 

Now, 
∂Φ = _(Φ Γ1 0

_ Φ Γ1 1) + (Φ Γ2 0
_ Φ Γ2 2π) _ (Φ Γ3 0

_ Φ Γ3 1), 
where 

Γ1 0(θ, z) = (0,θ, z), Γ2 0(r,z) = (r, 0, z), Γ3 0 (r,θ) = (r,θ, 0) 
Γ1 1(θ, z) = (1,θ, z), Γ2 2π(r,z) = (r, 2π, z), Γ3 1(r,θ) = (r,θ, 1). 

Therefore, 

∫Φ Γ10
F1 dy∧dz = ∫

[0, 2π]×[0,1]
(F1 Φ)(0,θ, z) (0 sin , )

( , )
z

z
∂ ⋅ θ

∂ θ
dθdz = 0; 

∫Φ Γ11
F1 dy∧dz = ∫

[0,2π]×[0,1]
(F1 Φ)(1,θ, z) (1 sin , )

( , )
z

z
∂ ⋅ θ

∂ θ
dθdz = 0, 

because (F1 Φ)(1,θ, z) = 0; 

∫Φ Γ20
F1 dy∧dz = ∫

[0, 1]×[0,1]
(F1 Φ)(r, 0, z) ( sin 0, )

( , )
r z

r z
∂ ⋅

∂
drdz = 0; 
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∫Φ Γ22π
F1 dy∧dz = ∫

[0, 1]×[0,1]
(F1 Φ)(r, 2π, z) ( sin 2 , )

( , )
r z

r z
∂ ⋅ π

∂
drdz = 0; 

∫Φ Γ30
F1 dy∧dz = ∫

[0, 1]×[0, 2π]
(F1 Φ)(r,θ, 0) ( sin , 0)

( , )
r

r
∂ ⋅ θ

∂ θ
drdθ  = 0; 

∫Φ Γ31
F1 dy∧dz = ∫

[0, 1]×[0, 2π]
(F1 Φ)(r,θ, 1) ( sin ,1)

( , )
r

r
∂ ⋅ θ

∂ θ
drdθ  = 0. 

Thus ∫∂Φ F1 dy∧dz = 0. Of the six corresponding integrals occurring in the sum 
for ∫∂Φ F2 dz∧dx, the first two and last two turn out to be 0, but the middle two 
both turn out to be 6

7−  and cancel out. So, ∫∂Φ F2 dz∧dx. We proceed to find 

∫∂Φ F3 dx∧dy. 

∫Φ Γ10
F3 dx∧dy = ∫

[0, 2π]×[0,1]
(F3 Φ)(0,θ, z) (0 cos , 0 sin )

( , )z
∂ ⋅ θ ⋅ θ

∂ θ
dθdz = 0; 

∫Φ Γ11
F3 dx∧dy = ∫

[0, 2π]×[0, 1]
(F3 Φ)(1,θ, z) (1 cos ,1 sin )

( , )z
∂ ⋅ θ ⋅ θ

∂ θ
dθdz = 0; 

∫Φ Γ20
F3 dx∧dy = ∫

[0, 2π]×[0, 1]
(F3 Φ)(r, 0, z) ( cos 0, sin 0)

( , )
r r

r z
∂ ⋅ ⋅

∂
drdz = 0; 

∫Φ Γ22π
F3 dx∧dy = ∫

[0, 2π]×[0, 1]
(F3 Φ)(r, 2π, z) ( cos 2 , sin 2 )

( , )
r r

r z
∂ ⋅ π ⋅ π

∂
drdz = 0; 

∫Φ Γ30
F3 dx∧dy = ∫

[0, 1]×[0, 2π]
(F3 Φ)(r,θ, 0) ( cos , sin )

( , )
r r

r
∂ ⋅ θ ⋅ θ

∂ θ
drdθ = 0, 

because (F3 Φ)(r,θ, 0) = 0; 

∫Φ Γ31
F3 dx∧dy = ∫

[0, 1]×[0, 2π]
(F3 Φ)(r,θ, 1) ( cos , sin )

( , )
r r

r
∂ ⋅ θ ⋅ θ

∂ θ
drdθ 

= ∫
[0, 1]×[0, 2π]

(r2cos2θ)r drdθ = 1
4 π. 

Therefore, ∫∂Φ F3 dx∧dy = 1
4 π. It follows that the required value of the integral is 

0+ 0 + 1
4 π = 1

4 π. 

8-7.P2. Using Green’s theorem, 
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2
0 1

1

2 2

( 1) ( )

(5 ) (2 )
i

i i
i

xy y dx xy x dy

=
− Γ −Γ∑

− − + −∫  

= ∫[0,1]2
Q P dx dy
x y

⎛ ⎞∂ ∂− ∧⎜ ⎟∂ ∂⎝ ⎠
 

= ∫[0,1]2 ( )(2 2 ) ( 2 )y x x y dx dy− − − − ∧  

= ∫[0,1]2 (4 )y x dx dy− ∧  

= ∫[0,1]  ∫[0,1] (4 )y x dx dy−  = 1 32 2 2− = . 

y→(0, y) y→(1, y) x→(x, 0) x→(x, 1) 

2
0 1

1

2

( 1) ( )

(5 )
i

i i
i

xy y dx

=
− Γ −Γ∑

− −∫ =
10 11

2 2(5 ) (5 )xy y dx xy y dxΓ Γ− − − + − −∫ ∫  

20 21

2 2(5 ) (5 )xy y dx xy y dxΓ Γ+ − − − − −∫ ∫  

= ∫[0,1] 5dx _ ∫[0,1] (4 _ x)dx = 1 35 4 .2 2− + =  

2
0 1

1

2

( 1) ( )

(2 )
i

i i
i

xy x dy

=
− Γ −Γ∑

−∫ = 
10 11

2 2(2 ) (2 )xy x dy xy x dyΓ Γ− − + −∫ ∫  

20 21

2 2(2 ) (2 )xy x dy xy x dyΓ Γ+ − − −∫ ∫  

= ∫[0,1] (2y _ 1) dy = 1 _ 1 = 0. 

The answer is verified too. 

8-7.P3. F1 = y 1 0
F
x

∂
=

∂
 1 1

F
y

∂
=

∂
 1 0

F
z

∂
=

∂
 

F2 = z 2 0
F
x

∂
=

∂
 2 0

F
y

∂
=

∂
 2 1

F
z

∂
=

∂
 

F3 = x 3 1
F
x

∂
=

∂
 3 0

F
y

∂
=

∂
 3 0

F
z

∂
=

∂
 

By Stokes theorem the integral (1) equals 
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_ ∫Φ dy∧dz + dz∧dx + dx∧dy. (2) 

Observe that 

2
2

sin cos
( , ) (sin cos 2 cos sin 2 )sin 2 cos 2( , )

y y r
y z r r

r r bz zr
b b

r

∂ ∂ θ θ
∂ ∂ ∂θ= = = θ θ − θ θθ θ∂ ∂∂ θ

∂ ∂θ

 

=
2

sinr
b− θ , 

( , )
( , )
z x
r

∂
∂ θ

= 
2

cosr
b− θ , 

( , )
( , )
x y
r

∂
∂ θ

 = r. 

The last integral (2) equals 

∫
[0, a]

 ∫
[0, 2π]

2 2
sin cosr rdrd drd rdrdb b

⎡ ⎤
θ θ + θ θ − θ⎢ ⎥

⎣ ⎦
= _πa2 

( ,0) ( , 2 )
(0, ) ( , )

r r r r
a

→ → π
θ → θ θ → θ

 

∫∂Φ y dx = 
i
Σ
=

2

1
(_1)i

0 1i i

ydx
Φ Γ −Φ Γ

∫
o o

 = _ ∫Φ Γ10
y dx + ∫Φ Γ1a

y d 

+ ∫Φ Γ20
y dx _ ∫Φ Γ22π

y dx 

= ∫Φ Γ1a
y dx 

= ∫
[0, 2π]

( sina θ )( sina− θ ) dθ 

= ∫
[0, 2π]

2
2(1 cos 2 )

2
a d a− θ− θ = −π ; 

∫∂Φ z dy = _ ∫Φ Γ10
z dy + ∫Φ Γ1a

z dy + ∫Φ Γ20
z dy _ ∫Φ Γ22π

z dy 

= ∫Φ Γ1a
z dy = ∫

[0, 2π]

2 sin 2 cos
2

a a d
b

θ θ θ  

= 
2

4
a
b ∫ [0, 2π]

[ ]sin(2 ) sin(2 ) 0dθ + θ + θ − θ θ = . 
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Similarly 

∫∂Φ x dz = 0. 

The answer is thus verified. 
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# 
∃, 1 
∀, 1 
⇒, 1 
⇔, 1 
∅, 1 
∈, 1 
∉, 1 
`, 2 
], 2 
_, 2 
R, 2 
^, 2 
∪, 2 
∩, 2 

A 

Absolute maximum, 151 
Absolute minimum, 151 
Absolute value, 5 
Additive set function, 229, 236 
Adjoint, 21 
Akilov, 130 
Apostol, 26, 127 
Ascending, 258, 259 
Associative law, 17, 18 

B 

Balloon, 239, 243, 244 
Banach–Cacciopoli principle, 119 
Basic k-form, 254 
Berberian, 152 
Bessel's equation, 107 
Bijection, 3 
Bijective, 3, 131 
Bolzano–Weierstrass theorem, 7, 45 
Boundary, 209 
Boundary of a k-chain, 277 

Boundary of a set, 44 
Bounded, 5 
Bounded above, 5 
Bounded below, 5 
Bounded sequence, 7 
Brown, 127 
Burkill, 138 

C 
C 1 function (or C 1 map), 99 
Cartesian product, 3, 24 
Cauchy complete, 30 
Cauchy convergence criterion, 8 
Cauchy sequence, 7, 30 
Cauchy–Schwarz inequality, 26 
Centre of a ball in Rn, 40 
Centred at a, 40, 124 
Chain rule, 11, 85, 86, 135, 235 
Change of variables, 14, 217 
Change of variables formula, 14 
Chaudhary, 130 
Cheng, 174 
Class, 1 
Class C 1, 99 
Closed ball, 42, 125 
Closed cuboid, 177 
Closed cuboid formed by, 180 
Closed differential form, 270 
Closed interval, 6 
Closed r-ball in Rn, 42 
Closed subset of Rn, 41 
Closure of a set, 43, 247 
Closure point, 43 
Collection, 1 
Column matrix, 16 
Commutative law, 17 
Compact, 230 
Compact set, 10, 48, 57, 161, 185, 209, 

223, 235 
Compactness, 9, 45, 127 
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Complement, 2, 41 
Component, 24 
Composite function, 4, 85 
Composition, 4, 168, 233 
Composition of linear maps, 34, 35 
Conformable for addition, 16 
Conformable for multiplication, 17 
Connected set, 51, 145 
Connectedness, 145 
Constant map, 35, 79 
Constrained extrema, 152 
Constrained local maximum, 152 
Constrained local minimum, 153 
Constrained local strict maximum, 169 
Constrained local strict minimum, 169 
Constrained optimisation, 151 
Constraint equations, 157 
Constraint function, 157 
Constraint set, 157 
Constraints, 151 
Content of a set, 203 
Continuity, 8 
Continuous at a point, 9, 52 
Continuous everywhere, 52 
Continuous on a set, 9 
Continuously differentiable, 99, 124, 

137, 144 
Contraction (mapping or map), 117 
Contraction mapping theorem, 119 
Contraction principle, 119, 126 
Converge (double sequence), 70 
Converge (sequence), 7, 30 
Converge absolutely, 71 
Convergent double series, 71 
Convergent improper integral, 15 
Convergent sequence, 7, 30 
Convex set, 49, 90, 112, 224 
Coordinate, 24 
Coordinate transformation, 247 
Cover (or covering), 47 
Cube, 177 
Cuboid, 94, 177 
Cuboid formed by, 180 
Curl, 296 

D 

De Morgan’s laws, 3 
Decreasing function, 12 
Decreasing sequence, 7 
Derivative at a point, 11, 78 
Derivative function, 11 
Determinant, 15, 19, 98, 137, 232 
diam E , 217, 219 
Diameter, 217, 218, 219, 233 
Differentiable, 11 
Differential form, 256 
Differentiation, 8 
Directional derivative, 77, 82 
Dirichlet function, 197 
Divergence, 296 
Divergence theorem, 284 
Divergent improper integral, 15 
Domain, 3 
Dot product, 25 
Double limit, 70 
Double sequence, 69 
Double series, 69, 71 
Drager, 123 

E 

Edge of a cuboid, 177 
Elementary matrix, 20, 37, 233 
Elementary real analysis, 1 
Elementary row and column 

operations, 20 
Empty set, 1 
Equivalent parametrisation, 252 
Euclidean norm, 25 
Euclidean n-space, 24 
Euler’s relation, 103 
Euler's theorem, 103 
Exact differential form, 270 
Exponential function, 11 
Exterior derivative, 266 
Exterior product, 261 
Extremum, 151 
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F 

Family, 1, 4, 47, 183, 224 
Field axioms, 4 
Finite subcover (or subcovering), 10, 

48, 241 
Finney, 153 
First partial derivative, 109 
Fixed point, 117 
Foote, 123 
Fréchet differentiable at a point, 79 
Fubini’s theorem, 200, 245 
Functions, 1 
Fundamental ttheorem of integral 

calculus, 14 

G 

Gateaux derivative, 79 
Gauss’ theorem, 250 
General Stokes theorem, 274 
Gilsdorf, 246 
Gopalkrishnan, 21 
Gradient, 77, 295 
Graves, 138 
Greatest lower bound, 6 
Green’s theorem, 250 

H 

Have content, 203 
Heine–Borel theorem, 10, 48 
Hessian form, 165, 169 
Hessian matrix, 165 
Hoffman, 21 
Homogeneous of degree p, 102, 103 

I 

Identity map, 34 
Identity matrix, 18, 36 
Image, 3 
Implicit function theorem, 134, 136, 

144 

Implicit function theorem in two 
dimensions, 146 

Improper integral, 15 
Increasing function, 11 
Increasing sequence, 7 
Induced mapping, 270 
Infimum, 6 
Infinite-dimensional space, 127 
Injective, 3, 124, 131 
Inner product in Rn, 25 
Integrable, 13, 203 
Integral test, 15, 74 
Integration, 8 
Integration by parts, 14, 278 
Interior of a set, 42, 178 
Interior point, 42 
Intermediate value theorem, 117, 147 
Intermediate value theorem (Bolzano), 

9 
Intersection, 2 
Intersection of open sets, 40 
Inverse, 3 
Inverse function theorem, 121, 124 
Inverse image, 3 
Inverse of a differentiable map, 124 
Inverse of a linear map, 34, 226 
Inverse of a matrix, 21, 36 
Inversion, 18 
Invertible, 3 
Invertible linear map, 34, 124, 232 
Invertible matrix, 21, 36 
Isolated point, 53 
Iterated (or repeated) integral, 200, 213 

J 

Jacobian, 98, 232 
Jacobian matrix, 98, 137 

K 
Kantorovich, 130 
k-chain, 275 
k-index, 257 
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k-surface, 251 
Kumaresan, 138 
Kunze, 21 

L 

L(Rn,Rm), 61, 64 
Lagrange equations, 157 
Lagrange multipliers, 138, 151, 157 
Lagrangian, 157, 169 
Lang, 127 
Leading diagonal, 15 
Least upper bound, 5 
Least upper bound axiom, 4 
Left distributive aw, 18 
Leibnitz’s formula, 107 
Limit of a function, 8, 54 
Limit of a sequence, 7, 30 
Limit point, 8, 53, 55, 56 
Linear (or Fréchet) derivative, 79 
Linear map (operator, transformation), 

32 
Linear ordering axioms, 4 
Lipschitz condition, 115 
Local inverse, 127 
Local maximum, 11, 151 
Local minimum, 11, 151 
Local solution, 23, 137 
Local strict maximum, 151, 161 
Local strict minimum, 151, 161 
Locally invertible, 127 
Logarithm function (natural), 11 
Loomis, 130 
Lower bound, 5 
Lower face, 179 
Lower integral, 13 
Lower Riemann integral, 188, 203, 204 
Lower sum, 13, 187 

M  
Main diagonal, 15 
Map, 3 
Mapping, 3 

Matrices and determinants, 1 
Matrix, 15 
Matrix of a linear map, 34 
Mean value theorem, 12, 110 
Möbius band, 61, 108 
Monotone function, 12 
Monotone sequence, 7 
Morrey, 238 
Multi-index, 257 

N 
Nanda, 130 
Negative definite, 165 
Negative semidefinite, 165 
Newton’s method, 12, 129 
Nonoverlapping, 180, 185, 231 
Nonsingular matrix, 21 
Norm of a linear map, 62 
Null matrix, 17 
n-vector, 24 

O 

Objective function, 151, 157 
One-to-one, 3 
One-to-one correspondence, 3 
Onto, 3 
Open ball, 42, 124, 126 
Open cover (or covering), 10, 47, 48 
Open cuboid, 177 
Open cuboid formed by, 180 
Open interval, 6 
Open mapping, 131 
Open set, 10, 40, 41, 67 
Optimisation problem, 151 
Ordered field, 5 

P 

Page, 127 
Pairwise disjoint, 2 
Partial derivative, 96 
Partial sums of a double series, 71 
Partition, 12 
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Paving of a cuboid, 180 
Polar coordinates, 124, 222, 239, 253 
Positive definite, 165 
Positive semidefinite, 165 
Product of a scalar and a linear map, 35 
Product of linear maps, 35 
Product of matrices, 17 
Product of scalar and vector, 24 
Proper subset, 2 
Protter, 238 
Pugh, 14 

Q 
Quadratic form, 165, 167, 168 

R 
Radius of a ball in Rn, 40, 125 
Range, 3 
Range space, 3 
Rational components, 203 
Rational polar coordinates, 246 
r-ball in Rn, 40 
Rectangular coordinates, 124, 242 
Refinement, 188, 190, 191, 195, 220 
Repeated (or iterated) limit, 70 
Restriction, 3 
Riemann integrable, 13, 189 
Riemann integral, 189, 203, 204 
Right distributive law, 18 
Row matrix, 16 
Rudin, 26, 127 

S 
Scalar, 24 
Scalar product, 25 
Schwarz, 109 
Schwarz’s theorem, 110, 269 
Second partial derivative, 109, 169 
Self map, 117 
Sequence, 6 
Set, 1 
Set algebra, 1 

Set function, 229 
Shirali, 53, 74 
Shrinking lemma, 119 
Shrinking map, 117 
Simple differential form, 254 
Singh, 21 
Sohrab, 26 
Spivak, 26 
Square matrix, 15 
Standard basis, 25 
Standard representation, 258, 260 
Stereographic projection, 39 
Sternberg, 130 
Stokes theorem, 250 
Strictly decreasing function, 12 
Strictly increasing function, 12 
Subcover (or subcovering), 10, 47 
Submatrix, 21 
Subsequence, 7, 45, 46 
Subset, 1 
Substitution, 217 
Substitution form of the FTC, 250 
Substitution rule, 14, 249 
Sum in Rn, 24 
Sum of a double series, 71 
Sum of linear maps, 35 
Sum of two matrices, 16 
Supremum, 5 
Surjective, 3, 131 
System of (or simultaneous) equations, 

23 

T 
Taylor’s theorem, 12, 109, 112 
Term of a double series, 71 
Terms of a double sequence, 69 
Thomae function, 197 
Thomas, 153 
Transformation, 32 
Transformation formula, 14, 217, 228, 

231, 235, 250 
Transformation of content, 222 
Transpose, 16 



Index 394 

Transposition, 16 
Triangle inequality in R, 5 
Triangle inequality in Rn, 26, 28, 41 
Trigonometric functions, 11, 246 
Twice continuously differentiable, 112 

U 
Unconstrained extremum, 167 
Unconstrained optimisation, 151 
Uniformly continuous on a set, 10, 57 
Union, 2 
Union of open sets, 40 
Unique local solution, 137 
Upper bound, 5 
Upper face, 179 
Upper integral, 13 
Upper Riemann integral, 188, 203, 204 
Upper sum, 13, 187 

V 
Vasudeva, 53, 74 
Vector, 24 
Volume of a cuboid, 177 

W  
Wedge product, 261 
Wildberger, 246 

Y 
Young, 109 
Young’s theorem, 111 

Z 
Zero vector, 25 
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