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Preface

A thorough knowledge of multivariable analysis is an essential prerequisite for
graduate studies in mathematics. The subject is presented in this book in a man-
ner that would suit readers having a background of calculus in two and three
variables, mathematical analysis in one variable, including compactness, and
rudiments of matrices and determinants. The prerequisites with essential details
are listed briefly in Chapter 1.

In Chapter 2, after a brief discussion of the basic algebraic theory of func-
tions defined on subsets of R” and having values in R", the concepts of limit and
continuity of these functions are defined. Also discussed is the invertibility of
linear maps, which is a fundamental concern in the inverse and implicit function
theorems at a subsequent stage. The chapter ends with a brief discussion of
double sequences and series. Differentiation of functions from (subsets of) R”
into R", their partial derivatives and equality of ‘mixed’ partial derivatives of
second order are discussed in the next chapter. The approach to the inverse and
implicit function theorems in Chapter 4 is via contraction mappings in R". Use
of compactness of a closed ball has been avoided, as it does not lend itself to the
situation when R” is replaced by an infinite-dimensional space. In the final sec-
tion of the chapter, a second form of the implicit function theorem has been
proved using the concept of connectedness, and also a two-dimensional version
that is not a special case of the one in higher dimensions. The purpose of Chap-
ter 5, on extrema, is to discuss from a theoretical perspective the methods of
optimisation (determining points of extremum), constrained as well as uncon-
strained, of functions of several real variables. The reader is presumed to be
familiar with the (pre-analysis) calculus techniques of solving optimisation
problems in several variables, including the method of Lagrange multipliers.
Instances are given when the Lagrange method appears to ‘fail’. More impor-
tant, a sufficient condition for a constrained extremum is proved, which few
other books seem to cover. The next two chapters are devoted to Riemann inte-
gration and the transformation (change of variables) formula in R". Fubini’s
theorem for continuous functions is also included. The treatment in Chapters 6
and 7 is more leisurely than elsewhere, and the details differ in some essential
ways. Chapter 8 treats differential forms, chains and the general Stokes theorem
in R" without assuming the reader has a background in multilinear algebra. The
formal introduction to the concepts involved is preceded by heuristic considera-
tions in terms of vector analysis, which the reader is presumed to have
encountered in calculus. The final section discusses the connections of differen-
tial forms with vector analysis in greater detail than is customary. The book
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closes with Chapter 9, in which solutions to most of the problems are presented,
some in greater detail than others.

The book contains very general and complete versions of a number of im-
portant theorems and constructions. In order to mitigate the difficulties faced by
the reader in assimilating the sophisticated versions of these, we have considered
it expedient to include appropriate motivation. Complete definitions, explana-
tions and proofs have been provided throughout. A large number of illustrative
examples and problems for solution form an integral part of any book intended
for self study or a course text. Accordingly, the book has a liberal sprinkling of
both, with elaborate hints or solutions for most of the problems.

The reader with previous experience of the subject who wishes to find
something different in this book is invited to browse the following items:

Problem 2-3.P14, Problem 2-3.P15, Examples 3-2.3, Problem
3-3.P14, Remark 3-4.10, Problems 3-4.P22 and 3-4.P23, Prob-
lem 4-1.P10, Problem 4-1.P11, Remark 4-2.5, Examples 4-3.4,
Theorem 4-4.1, Remark 4-4.3, Example 4-4.6, Problem 4-4.P3,
Example 5-1.5(c), Theorem 5-2.9, Proposition 6-5.1, Problem
6-5.P3, Proposition 7-1.1, Proposition 7-1.3, Example 7-
4.16(b), Examples 8-2.2(f) and (h), Problem 8-6.P7, parts of
Section 8-7 and the problems therein.

Chapter 8 was written by Harkrishan L. Vasudeva with help from Satish
Shirali.
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Preliminaries

We shall find it convenient to use logical symbols such as V, 3, 3, = and <.
These are listed below with their meanings. A brief summary of set algebra,
functions, elementary real analysis, matrices and determinants, which will be
used throughout this book, is included in this chapter. Our purpose is descriptive
and no attempt has been made to give proofs of the results stated. The reader is
expected to be familiar with the material.

The words ‘set’, ‘class’, ‘collection’ and ‘family’ are regarded as synony-
mous and no attempt has been made to define these terms.

1-1 Sets and Functions

Throughout this book, the following commonly used symbols will be employed:

V means ‘for all’ or ‘for every’

J means ‘there exists’

3 means ‘such that’

= means ‘implies that’ or simply ‘implies’

< means ‘if and only if’.

The concept of set plays an important role in every branch of modern mathemat-
ics. Although it is easy and natural to define a set as a collection of objects, it
has been shown that this definition leads to a contradiction. The notion of set is
therefore left undefined, and a set is described by simply listing its elements or
by its properties. Thus {x;,x,,...,x,} is the set whose elements are x,x,,...,X,;
and {x} is the set whose only element is x. If X is the set of all elements x such
that some property P(x) is true, we shall write

X={x:P(x)}.
The symbol & denotes the empty set.

We write x € X if x is a member of the set X; otherwise x ¢ X. If Yis a subset
of X, that is, if x € Y implies x € X, we write Y c X. If Y € Xand X C ¥, then X =

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 1, © Springer-Verlag London Limited 2011



2 Preliminaries

Y. If Y Xand Y # X, then Y is proper subset of X. Observe that & < X for
every set X.

We list below the standard notations for the most important sets of num-
bers:
N the set of all natural numbers
Z the set of all integers
Q the set of all rational numbers
R the set of all real numbers

C the set of all complex numbers.

Given two sets X and Y, we can form the following new sets from them:
XUY={x:xeXorxeY}
XNnY={x:xeXandxeY}.

XUY and XNY are the union and intersection respectively of X and Y. If {X,} is
a collection of sets, where o runs through some indexing set A, we write

UX, and NX,

aEA aEA
for the union and intersection, respectively, of X, :

UX, = {x:xeX, foratleast one o.e A}

asA

NX, = {x:xeX,forevery o.€ A}.
acA

If A =N, the set of all natural numbers, the customary notations are

UX, and NX, .

n=1 n=1

If no two members of {X,} have any element in common, then {X,} is said
to be a pairwise disjoint collection of sets.

If Y c X, the complement of Y in X is the set of elements that are in X but
not in Y, that is
N\Y={x:xeX xe Y}.

The complement of Y is denoted by Y whenever it is clear from the context
with respect to which larger set the complement is taken.
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If {X,} is a collection of subsets of X, then the following De Morgan’s laws
hold:

(UX, )= N(X,) and (X, )= UX,)".

aeA oA aeA aeA

The Cartesian product X,xX>%---xX, of the sets X;,X,,...,X, is the set of
all ordered n-tuples (x;,x,,...,x,), where x;€ X; fori =1,2,... ,n.

The symbol
fX—=Y

means that f'is a function (or mapping or map) from the set X into the set Y; that
is, f'assigns to each x € X an element f{x) € Y. The elements assigned to members
of X by f are often called values of /. If 4 — X and B c Y, the image of 4 and
inverse image of B are, respectively,

S(A) = {fix) s xe 4}
f(B)={x: fx)e B,

Note that /~'(B) may be empty even when B # &. The assertion that C = f(4) is
sometimes conveniently rephrased as ‘/ maps (the subset) 4 onto C°.

The domain of fis X and the range is f(X); the range space is Y. If f(X) =Y,
the function f'is said to map X onto Y (or the function is said to be surjective).
We write £'(y) instead of £'({y}) for every y € Y. If /() consists of at most
one element for each y € Y, fis said to be one-to-one (or injective). If fis one-to-
one, then /' is a function with domain f(X) and range X. A function which is
both injective and surjective is said to be bijective. One also speaks of a bijec-
tion or one-to-one correspondence. In the case when f is bijective, /' is a
function with domain Y and range X, in which case, it is called the inverse of f.
An inverse is unique if it exists and is referred to as the inverse of f. A map is
said to be invertible if it has an inverse; thus being invertible is the same as be-
ing bijective.

It is sometimes necessary to consider a function f only on a subset S of its
domain X. Technically, that makes it a different function and it is called the re-
striction of f to S. Introducing a new symbol to denote a restriction can clutter
the notation and we shall avoid it as far as possible.

Let g:U—V and f: X—Y be maps, where X has a nonempty intersection with
the range g(U). Then the inverse image Z = g"'(Xng(U)) < U is nonempty and
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the function fog:Z—Y such that (fog)(z) = f(g(z)) is called the composition of f
and g. For most theoretical purposes, it is sufficient to work with the case X ©
2(U), because this ensures that Xng(U) = g(U) and hence that Z = U.

If {X, : oe A} is any family of subsets of X, then
SLUXH=UrX,)

aeA acA

and

NXH) e NFX).

aeA oA
Also, if {Y,, : o€ A} is a family of subsets of Y, then
SieUrH=Us71)
aEA aEA
and

fcNY)H)=Nsrte).

acA [VISHN

If Y, and Y, are subsets of Y, then

fl(Yl\ ) :fl(Yl)\fl(Y2)~
Finally, if /: X—7Y and g: Y—Z, the composite function gof': X—Z is defined by
(gof)x) =g(f(x)).

1-2 The Real Number System

In the present section, field axioms, linear ordering axioms and the least upper
bound axiom of R are listed in detail. They fall naturally into three groups.

A.
For all real numbers x,y and z, we have
() x+y=y+tux
(i) (x+y)+z=x+(y+2);
(ii1) there exists 0 € R such that x + 0 = x;
(iv) there exists a we R such that x + w=0;
V) xy=yx;
(vi) )z =x(y2);

(vii) there exists 1 € R such that 1 # 0 and x'1 =x;
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(viii) if x is different from 0; there exists a w e R such that xw = 1;
(ix) x(v+z)=xy+xz
The second group of properties possessed by the real numbers has to do
with the fact that they are ordered. They can be phrased in terms of positivity of

real numbers. When we do this, our second group of axioms takes the following
form.

B.

The subset P of positive real numbers satisfies the following:

(i) P is closed with respect to addition and multiplication, that is, if x,y €
P, then so are x + y and xy,

(i) xe€ Pimplies —x¢ P,

(i) xeRimpliesx=0orxePor—xeP.

Any system satisfying the axioms of groups A and B is called an ordered field,
for example, the ordered field of rational numbers.

In an ordered field, we define the notion x <y to mean y —x € P. We write x
<ytomean ‘x<yorx=y’.

Absolute value is defined in any ordered field in the familiar manner:

x ifx=20
|x| = .
—x ifx<O.

It can be shown on the basis of this definition that the ‘triangle inequality’

|x+y| <[x|+]|y]
or equivalently,
lx=y| <|x-z|+|z-x]
holds.

From the two groups of axioms (A) and (B), it can be shown that R > Q o
N.

The third group contains only one axiom and it is this axiom that sets apart
the real numbers from other ordered fields. Before stating this axiom, we need to
define some terms. Let X be a nonempty subset of R. If there exists M such that
x < M for all x € X, then X is said to be bounded above and M is said to be an
upper bound of X. If there exists m such that x > m for all x € X, then X is said to
be bounded below and m is said to be a lower bound of X. If X is bounded above
as well as below, then it is said to be bounded. A number M’ is called the least
upper bound (or supremum) of X if it is an upper bound and M’ < M for each
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upper bound M of X. The final axiom guarantees the existence of least upper
bounds for nonempty subsets of R that are bounded above.

C.

Every nonempty subset of R that has an upper bound possesses a least up-
per bound.

We shall denote the least upper bound of X by sup X or by sup {x :x e X} or
by sup x.
xeX
The greatest lower bound or infimum can be defined similarly. It follows
from C above that every nonempty subset of R that has a lower bound possesses
a greatest lower bound. The greatest lower bound of X is denoted by inf X or by
inf {x :xe X} or by ig)f( x. Note that )162)1; x=- su);: —X.

The following characterisation of supremum is used frequently.

1-2.1. Proposition. Let X be a nonempty set of real numbers that is bounded
above. Then M = sup X if and only if

(i) x<Mforallxe X, and
(i1) given any € > 0, there exists x € X such that x> M — €.

There is a similar characterisation of the infimum of a nonempty set of real
numbers that is bounded below.

Certain kinds of subsets of R have a special role. If a < b, both real num-
bers, then the subset {x € R : a <x < b} is called an open interval and is denoted
by (a,b). Subsets of the form {x e R : x <b} and {xe R : a <x } are also called
open intervals and denoted respectively by (—eo, b) and (a,<). The subsets {x € R
ra<x<b}, {xeR:x<b},{xeR:a<x} are closed intervals and are denoted
by [a,b], (—e,b], [a,), respectively. It is clear what [a,b) and (a,b] mean, and
these intervals are neither open nor closed.

1-3 Sequences of Real Numbers

Functions that have the set N of natural numbers as domain play an important
role in analysis. A function f:N—S, where S is any nonempty set, is called a
sequence in S or a sequence of elements of S.

A sequence of real numbers is a map x:N—R. Given such a map, we de-
note x(n) by x,, and this value is called the nth ferm of the sequence. The
sequence itself is frequently denoted by {x,},>. It is important to distinguish
between the sequence {x,},>; and its range {x, : n € N}, which is a subset of R.
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A real number / is said to be a limit of the sequence {x,},> if for each € > 0,
there is a positive integer n, such that for all n > ny, we have |x,— /| <e€. It is
easy to verify that a sequence has at most one limit. When {x,},>; does have a
limit, we denote it by lim x,,. In symbols, / = lim x,, if

Ve>0,3dnyd3n=2ng=|x,—[|<e.
A sequence that has a limit is said to converge (or to be convergent).

If lim x,, and lim y, both exist, then so do lim(x, +y,) and lim (x,),); more-
over, lim(x,+y,) = limx, +lim y, and lim(x,y,) = (lim x,)(lim y,). If o is any
real number, then lim (ow,) = olim x,,).

The sequence x,, = (1+%)" has a limit denoted by e; this number is irrational

and lies between 2 and 3.
1/n
=1.

limn

A sequence {x,},> of real numbers is said to be increasing if it satisfies the
inequalities x, < x,.1, n=1,2,..., and decreasing if it satisfies the inequalities x,
> x,1, n=1,2,.... We say that the sequence is monotone if it is either increas-
ing or it is decreasing.

A sequence {x,},> of real numbers is said to be bounded if there exists a
real number M > 0 such that |x,| < M for all n € N. The following simple crite-

rion for the convergence of a monotone sequence is very useful.

1-3.1. Proposition. 4 monotone sequence of real numbers is convergent if and
only if it is bounded.

Let {s,}.>1 be a sequence in any set and let n; <n, < --- <mn, < ---bea
strictly increasing sequence of natural numbers. Then {s,, } 1 is called a subse-

quence of {s,},>1

1-3.2. Bolzano—Weierstrass Theorem. A bounded sequence of real numbers
has a convergent subsequence.

The convergence criterion described in Proposition 1-3.1 is restricted to
monotone sequences. It is important to have a condition implying the conver-
gence of a sequence of real numbers that is applicable to a larger class and
preferably does not require knowledge of the value of the limit. The Cauchy
criterion gives such a condition.

A sequence {x,},> of real numbers is said to be a Cauchy sequence if, for
every € > 0, there exists an integer n, such that |x, — x,,| <€ whenever n > n, and
m 2 ny. In symbols,

YV &> 0, 3 ng such that (n = ng, m = ng) = |x, — x,,| <€.
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1-3.3. Cauchy Convergence Criterion: A sequence of real numbers converges
if and only if'it is a Cauchy sequence.

When a sequence {s,},>| is described in form s, = é] ay, it is called a series
and the number ay, is called its kth term, rather than s,. The number s, is then
called the nth partial sum of the series. The limit lims,, if it exists, is called the
sum of the series. The symbol 2 a, denotes the series as well as the sum, if any.
The context determines Wthh of the two is intended. The series Z k? is con-
vergent if and only if p > 1.

1-4 Limits of Functions and Continuous Functions

Mathematical analysis is primarily concerned with limit processes. We have
already reviewed one of the basic limit processes, namely, convergence of a
sequence of real numbers. In this section we shall recall the notion of the limit of
a function, which is used in the study of continuity, differentiation and integra-
tion. The notion is parallel to that of the limit of a sequence. We shall also state
the definition of continuity and its relation to limits.

A point a € R is said to be a limit point of a subset X C R if every open in-
terval (a — €, a + €) in R, where € > 0, contains a point x # a such that xe X.

Let f'be a real-valued function defined on a subset X of R and « be a limit
point of X. We say that f(x) fends to [ as x tends to a if, for every € > 0, there
exists some & > 0 such that

|f(x)—I|<e VxelX satisfying 0<|x—a|<3d.
The number / is said to be the limit of f(x) as x tends to a and we write
lilgf(x) =] or f(x)—>las x—a.

Note that f{a) need not be defined for the above definition to make sense. More-
over, the value / of the limit is uniquely determined when it exists.

If )lcljg f(x) and )lcllg g(x) both exist, then so do )1(113 (f(x) + g(x)) and
JICIE} (f(x)g(x)); moreover,
lim (/(x) +g(x)) = lim f(x) + lim g(x)
and

lim (/()g() = (lim fG0)(lim g(x)).

If ov is any real number, then lll}}z (of(x)) = o )1{1_r>1{11 fx)).
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If f(x) < h(x) £ g(x) whenever 0 < |[x—a| < § and if ]lcl_rg f(x) and )1(1_1’)1} 2(x)
both exist and are equal, then }Lma h(x) also exists and 113}1 h(x) = )16133 fx)
= lim g(x).

The following important formulation of limit of a function is in terms of
limits of sequences.

1-4.1. Proposition. Let f: X—R and let a be a limit point of X. Then }ig(llf(x) =1/
if and only if, for every sequence {x,},> in X that converges to a and x, # a for

every n, the sequence {f(x,)},»1 converges to I.

Let f'be a real-valued function whose domain of definition is a set X of real
numbers. We say that f'is continuous at the point x € X if, given € > 0, there ex-
ists a & > 0 such that for all y € X with |y — x| <8, we have |f(y) — f(x)| < €. The
function is said to be continuous on X if it is continuous at every point of X. If
we merely say that a function is continuous, we mean that it is continuous on its
domain.

It may checked that f'is continuous at a limit point @ € X if and only if f(a) is
defined and 1151(11 f(x) =f(a). The following criterion of continuity of fat a point a

€ X follows immediately from the preceding criterion and Proposition 1-4.1.

1-4.2. Proposition. Let f be a real-valued function defined on a subset X of R
and a € X be a limit point of X. Then f'is continuous at a if and only if, for every
sequence {x,},>1 in X that converges to a and x, # a for every n, lim f(x,) =
fUim x,) = f(a).

This result shows that continuous functions are precisely those which send
convergent sequences into convergent sequences; in other words, they ‘preserve’
convergence.

The next result, which is known as the Bolzano intermediate value theorem,
guarantees that a continuous function on an interval assumes (at least once)
every value that lies between any two of its values.

1-4.3. Intermediate Value Theorem: Let I be an interval and - I—R be a con-
tinuous mapping on I. If a,b € I and o. € R satisfy f(a) < o < f(b) or f(a) > o. >
(D), then there exists a point c € [ between a and b such that f(c) = .

1-5 Compact Sets

The notion of compactness, which is of enormous significance in analysis, is an
abstraction of an important property possessed by certain subsets of real num-
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bers. The property in question asserts that every ‘open cover’ of a closed and
bounded subset of R has a finite ‘subcover’. This simple property of closed and
bounded subsets has far reaching implications in analysis; for example, a real-
valued continuous function defined on [0,1], say, is bounded and uniformly con-
tinuous. In what follows, we shall define the notion of compactness in R and list
some of its characterisations. To begin with, we recall the definitions of open
and closed subsets of R.

A subset G of R is said to be open if for each x € G, there is an open interval
(x—¢, x +¢€),e>0, which is contained in G. A subset of R is said to be closed if
its complement is open.

Let X be a subset of R. An open cover (covering) of X is a collection € =
{Gy: oe A} of open sets in R whose union contains X, that is,

Xc UG, .
o

If ' is a subcollection of € such that the union of sets in € also contains X, then
C" is called a subcover (or subcovering) from C of X. If @ consists of finitely
many sets, then we say that C'is a finite subcover (or finite subcovering).

A subset X of R is said to be compact if every open cover of X contains a
finite subcover. The following proposition characterises compact subsets of R.

1-5.1. Heine—Borel Theorem: Let X be a set of real numbers. Then the follow-
ing statements are equivalent:

(i) Xis closed and bounded.
(i) Xis compact.

1-5.2. Proposition. Let [ be a real-valued continuous function defined on the
closed bounded interval I = [a,b]. Then fis bounded on I and assumes its maxi-
mum and minimum values on I, that is, there are points x| and x, in I such that

S £f(x) £ f(xo) for all xe X.

For our next proposition, we shall need the following definition. Let f'be a
real-valued continuous function defined on a set X. Then f'is said to be uniformly
continuous on X if, given € > 0, there is a & > 0 such that for all x,y € X with

[x —y| <8, we have | /(x) - f(y)| <.

1-5.3. Proposition. If a real-valued function f is continuous on a closed and
bounded interval I, then f is uniformly continuous on I.
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1-6 Derivatives and Riemann Integral

Let S < R and x be a limit point of S. A function f/: S—R is differentiable at x if

lim f(x+hl,)l_f(X)

h—0
exists, in which case, the limit is called the derivative of fat x and is denoted by
f'(x). It is often more convenient to write %f(x) for f'(x). The derivative func-

tion f" is the one that maps each point of differentiability into the derivative at
that point and is called simply derivative of f.
If f'(x) and g'(x) both exist, then so do (f+ g)'(x) and (fg)'; moreover,
(f*8)(x) =/"(x) + g'(x) and (fg)'(x) = f"(x)g(x) + f(x)g'(x).
If o is any real number, then (o) '(x) = o f"(x)). If x is a limit point of the set on
which g # 0 and also belongs to the set, then

LY = L0260~ F(0)g' ()
(@o-"2 |

We assume that the reader is aware of trigonometric functions, the exponen-
tial and natural logarithm functions, and also of their limit and differentiation
properties, such as

4 sinx = cosx, a4 tan 'x = 1 d Inx = % and so forth.

dx dx 1+x2°  dx

The functions can be defined variously via limit processes and all their proper-
ties learned in calculus can be derived from there. The manner in which this is
done will be of no consequence for the material in this book.

1-6.1. Proposition. Chain Rule: Suppose f: S—R is differentiable at x € S and g
maps a set containing f(S) into R. If g is differentiable at f(x) € f(S), then the
composition gof'is differentiable at x and

(gof)'(x) =g'(f/(x)- f'x).

Let 7 denote an interval. A function f: /=R is said to have a local maximum
at ¢ € [ if there exists & > 0 such that x € 7, [x — ¢| <& = f(x) < f{(¢). Similarly for
a local minimum.

A function f:/—R is said to be increasing if, for all x;,x, €1,

x; <x = f(x)) < f(x2)
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and strictly increasing if
x1 <xp = fx1) <f(x2).

Correspondingly for decreasing and strictly decreasing. A monotone function on
an interval is one which is either increasing or decreasing.

1-6.2. Proposition. If f:[a,b]—>R satisfies f'(x) =2 0 for every x € [a,b], then f is
increasing. Similarly, if f:[a,b] >R satisfies f'(x) < 0 for every x € [a,b], then f
is decreasing.

1-6.3. Proposition. I/ f:[a,b] >R has a local maximum or a local minimum at ¢
€ (a,b) then f'(c) = 0.

1-6.4. Proposition. Suppose f:[a,b]>R satisfies f'(c) = 0, where ¢ € (a,b). If
f"(c) <0 then f has a local maximum at ¢ and if f"(c) > 0 then f has a local min-
imum at c.

1-6.5. Mean Value Theorem: Suppose the continuous function f:[a,b]>R is
differentiable on (a,b). Then there exists some & € (a,b) such that

J0)=fla)=fE)(b~a).

1-6.6. Taylor’s Theorem: Suppose ne N and f:[a,b]—>R is a function such that
f“‘*l) is continuous on [a,b] and ﬂ”) exists on (a,b). Then there exists some ¢ €
(a,b) such that

n-1 (k) (n)
=L@ - + LDy

k=0

1-6.7. Proposition. Suppose f:[a,b]—>R has derivative zero at every point of its

domain. Then the function is a constant.

If the equation f(x) = y, where y is given and x is to be found, has a solution
x = r, then the sequence {x,} generated by the scheme

Xpr1 =%, + f ’(3517)71 (y—f(xp)

converges to the solution » under appropriate but broad hypotheses. One such set
of hypotheses is that on some interval containing » but not as an endpoint, |f’|
has a positive lower bound m, the second derivative |f”| has an upper bound M

2m . . . . . ,
and |x;—r| < 5. This way of approximating the solution is called Newton's

method. Although we shall not make direct use of this, we shall be drawing a
parallel between it and something else that we shall encounter.

By a partition P of an interval [a,b] we mean a finite sequence of points x;
in the interval such that
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P:a=xo<x;<--<x,=b.

For a bounded function f:[a,b] >R and any partition, the nonempty set {f(x) :
X1 < x <X} is bounded above as well as below for each k. Consequently, it has
supremum M, and an infimum my. The upper and lower sums of f over the par-
tition P are, respectively,

2 Mo —xr)  and 2 my (X —Xp1).

Their respective infimum and supremum are called the upper and lower inte-
grals respectively of f'and are denoted by T: fand | : f.
Thus B
[/ =inf{% My(x;—x1) : all partitions P}
and
[/ = sup {32 my.(x—x;.1) - all partitions P}.

It turns out that I: f2 j: f for every bounded function f. If equality holds, then
the function f is said to be Riemann integrable, or simply integrable, and the
integral of f from a to b is the common value of the upper and lower integrals,
denoted by ,

[of
Sometimes it is convenient to speak of f being integrable on [a,b].

The integral exists, for instance, if /is continuous or monotone.

If the restriction of f to [, B] < [a,b] is integrable, we say that f is inte-
grable on [a, B].

If f: [a,b]>R and g: [a,b] >R are both integrable on [a,b], then so are f+ g,
fgand af (o a real number); moreover,

I Fre=lf+ g and [ (@) =0f, 1.
Suppose f:[a,b]—>R is bounded and a < ¢ < b. If f is integrable on [a,b],
then it is integrable on [a, c] as well as [¢, b], and the equality
Jod =11+ Llr
holds. Conversely, if f'is integrable on [a,c] as well as [c, b], then it is integrable

on [a,b] and the foregoing equality holds. The equality holds without the pro-
viso that a < ¢ < b if we agree that

[Lr=-1r.
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If f:[a,b] >R and g: [a,b]—>R are both integrable and f(x) < g(x) for each x
ela,bl,then]’ f<['g.

If fis integrable on [a,b], and [o, B] < [a, b], then fis integrable on [, B]. If
also />0 on [a,b] then [* 1 <[" f.

1-6.8. Proposition. Let f:[a,b]—>R be integrable. Then |f]:[a,b]—>R is also
integrable and

b b
[ f1 <[, 1f1.
The following is known as the fundamental theorem of integral calculus.
1-6.9. Proposition. Let f: [a,b] >R be integrable and let
Fx)=[ f,a<x<b.

Then F is continuous on [a,b]. Moreover, if [ is continuous at a point c € [a,b],
then F is differentiable at ¢ and

F'(e)=flo).

There are two versions of the substitution rule or change of variables for-
mula, and it is the first version that we shall generalise to higher dimensions in
Chapter 7 as the transformation formula for integrals.

1-6.10. Proposition. Version 1: Suppose ¢:[o,B]—[a,b] is a bijection having a
continuous derivative that vanishes nowhere. If (fo@)|¢| is integrable on [o.,B]
and f'is integrable on the image ¢([o,B]) = [a, b], then

(=12 oo

The reason for the absolute value on the right side is that in case ¢’ < 0 eve-
rywhere, we have @(o.) = b and @(B) = a. It is possible to deduce the integrability
of (fo@)|@’| from the remaining hypotheses. See Pugh [21, pp. 170-171].

1-6.10. Proposition. Version 2: Let F:[a,b]>R and ¢:[o,B]—[a,b] both be
differentiable. If F' and (F'o @)@’ are both Riemann integrable, then

9B p
oo F' = I, Eo0)0"
It is not presumed in either version of the above proposition that @(cr) <
o)
The next result is the formula of integration by parts.

1-6.11. Proposition. Let f'and g be differentiable functions on [a,b] having in-
tegrable derivatives ' and g'. Then the products fg' and f'g are integrable, and
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[? fg'=f(b)g(b) - flarg(@) -]’ f'g.

1-6.12. Proposition. Suppose {f,},>1 is a sequence of Riemann integrable func-
tions on [a,b] with uniform limit f. Then f is Riemann integrable on [a,b] and

timf” £ =" 1.

If a function f [a,o]—>R is integrable on [a,b] whenever a < b , the symbol
[ f means i!g{lq jj /', even if the limit does not exist. If it does not, we say that
|7 f is divergent; otherwise convergent. In either case, [ f is called the improper
integral of f over [a,°). If it is convergent, we speak of f being integrable over
[a,e).

1-6.13. Integral Test:.Suppose f:[1,00)—>R is nonnegative-valued and decreas-
ing. Then the series g“l f(k) converges if and only if the improper integral j:o f
converges.

1-7 Matrices

We shall confine our attention to matrices whose entries are from the field R of
real numbers, as these are the only matrices that will be used in subsequent dis-
cussions.

An array of mn real numbers with m rows and n columns,

a;p dp a4y,
ay dp Ay
aml amZ T amn

is called a real mxn matrix. When m = n, the array is called a square matrix of
order n or simply a matrix of order nxn. Its diagonal containing the entries
ay1,0yy,...,4,, is called the leading or main diagonal.

> nn

In writing, a matrix is often denoted by a single letter 4 or X, or by any oth-
er symbol one cares to choose. For example, a common notation for the matrix
of the definition is 4 = [a;;], where a;; denotes the entry in the ith row and jth
column. The square bracket is a conventional symbol and is indicative of the
fact that we are not considering a determinant. A matrix with a single row

A:[al a, - a,l,
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where ay,a,,...,a, € R, is called a row matrix, and a matrix with a single col-
umn
b
s=|",
bm
where by,b,,...,b, € R, is called a column matrix. Row vectors can be con-

verted into column vectors and vice versa by an operation that is called
transposition. It is practical to define transposition for any matrix. The transpose
of any mxn matrix 4 = [a;;] is the nxm matrix that has the first row of 4 as its
first column, the second row of A as its second column, and so on. Thus the
transpose of the matrix 4 = [a;;] is

4y Gy o Ay
qT= |42 7 Gm
Ay Gy w0 Gy
The transpose of the row matrix 4 = [al a, - an] is the column matrix
4
AT = a,
a

and the transpose of the column matrix

is the row matrix B" = [bl by, - bm].

The matrices A4 = [a;;] and B = [b;;] are equal if the number of rows (respec-
tively, columns) in 4 equals the number of rows (respectively, columns) in B
and a;=b;for1 <i<m,1<j<n.

Two matrices A4 and B are said to be conformable for addition if each has
the same number of rows and the same number of columns as the other. The
sum of two matrices 4 = [a;;] and B = [b;;] is defined only when they are con-
formable for addition. Their sum is then defined as the matrix having a;; + b;; as
the entry in the ith row and jth column. Thus,
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A+B= [a;’j—"_bl‘j].
The matrix —4, where 4 = [a;], is that matrix whose entries are those of 4
multiplied by —1, that is,
A= [—a,-j].
The matrix having every entry 0 is called a nul/l matrix and is written O.
When o is a real number and 4 = [a;;] is a matrix, 04 is defined to be the
matrix each of whose entries is o times the corresponding entry of 4, that is,
oA = [oay].
By virtue of the definitions above, we are justified in writing

24 instead of 4 + 4
34 instead of 54 —2A.

Further, since the addition, subtraction and scalar multiplication of matrices is
based on the addition, subtraction and scalar multiplication of corresponding
entries, the laws that govern these operations also govern the analogous opera-
tions on matrices. More precisely, we have the following:

Let A4,B,C be matrices that are conformable for addition and o, be real
numbers. Then

(i) A+(B+C)=A+B)+C (associative law)
(i) A+B=B+4 (commutative law)
(i) 4+0=4

(iv) A+(A)=0
(v) o(A+B)=0d+0B
(vi) o(BA) = (af)4.

Two matrices 4 and B (in that order) are conformable for multiplication if the
number of columns in 4 is equal to the number of rows in B. The product AB is
then defined to be the matrix whose entry in the ith row and jth column is

1
kgl A bkj .

Thus AB = k)él a;xby;]. A numerical example will perhaps be helpful. Take

1 -1 3 45
A= and B= .
{0 2} {6 0 8}

The number of columns of 4 is equal to the number of rows of B. The entry in
the first row and second column of 4B equals

Zar b= (D) +(-1)(0) = 4.

The other entries of the product may be similarly computed. Upon doing so, we
obtain
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-3 4 3
AB = .
12 0 16
The reader may note that 4 and B may be conformable for the product 4B but
not for the product B4, in which case the latter product is undefined.

In general, AB # BA (even when both AB and BA are defined).

The other properties of matrix multiplication are similar to those for num-
bers, that is,

(1) (ad)B=o(AB)=A(aB) when o is real;

(i) A(BC)=(4B)C (associative law)
(i) (A+B)C=A4C+BC (right distributive law)
(iv) C(A4+B)=CA+CB (left distributive law),

provided the matrices 4,B and C are such that the expressions on the left are
defined.

The square matrix of order # that has 1 in its leading diagonal places and 0
elsewhere is called the identity matrix of order n. It is denoted by /. Let 4 be a
square matrix of order n; then 47/ =14 = A. Also, I=P=P=...

For real numbers, xy = 0 implies that either x or y (or both, of course) must
be zero. This law does not govern matrix products; that is, AB = O does not nec-
essarily imply that 4 = O or B = O. Indeed, for the matrices

a b b 2b
A= and B= ,
0 0 —a —2a

the product 4B is O. Again, AB may be O but not B4. For example, if

a b b 0
A= and B= ,
0 0 —-a 0

then

1-8 Determinants

Let ji,/2,...,j. be an ordering of the positive integers 1,2,...,n. An inversion
occurs in this ordering whenever a greater integer precedes a smaller one. The
number of inversions occurring in ji,j, ..., j, is the sum

k=X k,,
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where £ is the number of integers greater than s that precede s in the given or-

dering ji,j2, - jn-
Let 4 = [a;;] be an nxn square matrix of real numbers. The determinant of A

is the number

ap dp o 4y,
a a Y a
_ |21 22 2n| _ k
4] = : Do Sl 2(=1 o, Ay,
anl an2 e ann

where in each term, the second (column) subscripts ji, /s, ..., /j, are some order-
ing of 1,2,...,n and the sum is taken over all possible j,,/,, ..., ,. For each term,
the exponent & in (—1)* is the number of inversions occurring in j, o, ... , j,. Be-
sides the notation | 4| for the determinant of 4 = [a;;], we also write

Ay Gty
a a e a
D=deta=|2" "2 ¥
anl an2 ann
It can be shown that
D=a,C+a;,Cr+-+a;,C,, j=12,....n 3)
and
D= a,G,+a,,Cp++a,C,, k=12,...,n, 4)
where

Cjp=(=1)/"detM , ,

and M, is a matrix of order n—1 obtained by deleting the jth row and kth col-
umn of 4.

The following expansion of the third order determinant is instructive:

1 30
6 4 2 4 2 6

D=2 6 4|=(=D""1 +(=D"*%.3 +(=D".0
102()‘02() _12() 1o

=12-3-840-6=-12.

This expansion has been implemented using the first row. The expansion using
the third column gives

2 6 1 3
D= _1 1+3.0 +_1 2+3.4
=D 10 =D 10

13
+(—1)3+3~2‘ ‘:—12.

2 6
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We list below some properties of determinants:

(1) Interchange of two rows or columns multiplies the value of the determi-
nant by —1.

(i) Addition of a multiple of one row or column to another does not alter the
value of the determinant.

(iii) Multiplying one row or column by & multiplies the value of the determi-
nant by k.

(iv) Transposition leaves the value of the determinant unaltered.
(v) A zero row or zero column renders the value of the determinant zero.

(vi) Proportional rows or columns (i.e., ones which are multiples of each oth-
er) render the value of the determinant zero; in particular, if two rows or
columns of a (square) matrix are identical, then the determinant of the
matrix is zero.

(vii) IfA4 and B are square matrices of order n, then
det (4B) = (detA)(det B).

We next discuss elementary row and column operations for matrices:
(i) Interchanging two rows or two columns;
(il) Multiplying a row or column by a nonzero real number;
(i) Adding a multiple of a row or column to another;
(iv) Adding a row or column to another (special case of (iii)).

A square matrix of order n is called an elementary matrix if it can be ob-
tained from the identity matrix of order » by a single elementary row or column
operation of type (i), (ii) or (iii). Elementary operations can be represented by
elementary matrices in the following manner. Let E be the elementary matrix
obtained by performing an elementary row (respectively, column) operation on
1. If the same elementary row (respectively, column) operation is performed on a
square matrix 4 of order n, then the resulting matrix is the same as the product
EA (respectively, AE).

For instance, suppose 4 = [a;;], i,j = 1,2,3, and

0
E12: 1
0

S O
—_ o O

is the elementary matrix obtained by interchanging the first and second rows in
1. Then
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0 1 Offay a, a; ay Ay dy
Epd=|1 0 0|ay ay ay a; qp dy
0 0 1][lay ay a5 a3 d3p  ds

Thus the resulting matrix is obtained from A by interchanging the first and
second rows.

We record the following observation here: If in the elementary row (or col-
umn) operation of type (iii) above, the multiplying factor is 0, then the resulting
elementary matrix is the identity matrix; otherwise it is a product of two elemen-
tary matrices of type (ii) with an elementary matrix of type (iv), the latter
appearing in the middle. An illustration is shown when 5 times the third row is
added to the first row:

(=)

1 05 1 0 1 0 11 0 0
01 0j=|0 1 0 1 0fj0 1 0].
0 01 00 0 0 Ifj0O 0 5

D |—

A square matrix is said to be invertible or nonsingular if there exists a
square matrix B of the same order such that AB=BA4 = I.

Such a matrix B, which can be proved to be unique (if it exists), is called the
inverse of A and is denoted by 4. The inverse of 4 can be obtained from what
is called the adjoint of A, written as adj(4) whose (Z,j)th entry is the cofactor of
ay;, that is, (—1)’* det(M,,) , where M;; is the submatrix of order n—1 obtained
from 4 by deleting the jth row and the ith column. The relation between the in-
verse and the adjoint is that

5 1 .
= ——adj(4).
detcy 29

The following statements for a square matrix 4 of order » are equivalent:

(a) A is invertible;

(b) There exists a unique square matrix B of order # such that 4B = B4

=1
() A is a product of elementary matrices;

) det(4)=0.

See Artin [2, p. 16], Gopalkrishnan [12, p. 245], Singh [24, p. 40] or Hoffman
and Kunze [14, p. 255].

We shall need the following simple consequence: In view of the observation
recorded above, every invertible matrix is a product of elementary matrices of

type (1), (ii) or (iv).
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Functions Between Euclidean Spaces

2-1 Background

Solving equations of various sorts is one of the main concerns of mathematics.
Equations in which there is more than one unknown or ‘variable’ naturally in-
volve functions of more than one variable. The phrase ‘several variables’ is to be
understood in the sense ‘more than one variable but including the possibility of
one variable as a special case’.

The kind of equations that are of concern here are limited (e.g., differential
and difference equations are excluded). Some equations may have no solution:

x=x+1 (no solution, obviously)
(x+1)Y>=x*=2(x+6)+ 18 (no solution, almost as obviously).

Some equations may have many solutions, such as sinx = 0. For others, the solu-
tion required may be a function:

x*+y* =1, find x in terms of y.

A system of equations (sometimes called simultaneous equations) may ask for
some variables to be expressed in terms of the remaining variables:

2x+3y+7z—-8w=3
4x+6y+8z—-Tw=4,

where x and y are to be obtained in terms of z and w (can’t be done!). For linear
systems the subject of linear algebra provides complete answers in terms of ma-
trices and determinants. In what follows, we shall be concerned more with
nonlinear systems, in which the left hand sides have continuous partial deriva-
tives.

The answers provided for questions about nonlinear equations are not as sa-
tisfactory as for linear systems in linear algebra. No general solution methods
are available for nonlinear systems; the sufficient conditions for existence of a
solution are not necessary conditions, and even the existence has a limitation
that is rather too technical to describe at this stage. Because of the limitation, the

solutions obtained are /ocal solutions in mathematical parlance.
A system of two equations such as

SiGen,x2,31,2,13) =0
S (x1,x2,¥1,02,3) =0

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 2, © Springer-Verlag London Limited 2011



24 Functions Between Euclidean Spaces

can be regarded as a single equation for the single function f'that maps the point
(X1,%2,V1,72,3) of RXRXRxRxR = R’ into the point

(f1 Gx1,x2,Y1,02,13), f2(x1,%2,31,¥2,)3)) of RxR = R%.
The equation for f can be written as simply f(u) = 0, where u is the element
(x1,X2,¥1,¥2,)3) In R’ and 0 on the right hand side denotes the element (0,0) of
R?. If the intention is to solve for (x1,x2) in terms of (y1,12,3), then we natural-
ly think of R’ as R*xR? and write the equation as

fe,y)=0€eR?,
where x = (x1,x;) € R? and y=U1,Y2,13) € R®. The domain of fis then unders-
tood to be a subset of R*xR’. In order to carry over ideas of continuity and
differentiability to such functions, we need to know more about R” when n may
be greater than 1. We discuss the relevant aspects of R” in the next section.

2-2 Euclidean Spaces

We begin with a formal definition of what we mean by R" and other relevant
terminology.

2-2.1. Definition. The Cartesian product RxRx---xR (n factors) consisting of
all ordered n-tuples x = (x1,x,, ... ,X,), where x; € R for 1 <k < n, is denoted by
R". By the kth coordinate (or component) of x, we mean the number x;. The
sum of x, y € R” is the ordered n-tuple x + y for which the kth component is giv-
en by (x + y) =x; + yfor 1 k< n. For o€ R, the product o is the ordered n-
tuple for which the kth component is (0x); = owxy for 1 < k<n. That is to say,

(xlax29"'9xn)+(y19y29"'5yﬂ):(x1+ylax2+y29 9xn+yn)
and ouxy, X2, ..., X,) = (0], O, ..., OX,).

The set R" with sum and product as defined above will be called Euclidean n-
space.

We shall generally speak of ‘components’ when n > 3 and ‘coordinates’
when n < 3, except in a context where established convention dictates otherwise.

Elements of Euclidean n-space are often referred to as vectors or as points,
or sometimes also as n-vectors if necessary. In the context of Euclidean spaces,
real numbers are often called scalars. The reader who has encountered ‘plane
vectors’ in an elementary context, will recognise that when (x, x,) is regarded
as providing the coordinates of the ‘terminal point’ of a plane vector, then addi-
tion as described above corresponds to the parallelogram law. Similarly in three
dimensions. Also, ou is the vector obtained from x by ‘scaling’ it by a factor o.
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The vector in R" with x; = 0 for every k is called the zero vector of R” and
is often denoted simply as 0, because usually there is no danger of confusion. It
is trivial to see that the zero vector satisfies 0 + x = x for any vector x € R". Also,
given a vector x € R", the associated vector —x such that (—x); = —x; for | <k<n
has the property that (—x) + x = 0. In fact, the same laws of addition hold as for
real numbers. It follows that cancellation and other properties of addition in R
continue to be valid in R" and that terms in a finite sum of vectors can be rear-
ranged at will.

When the symbol x, is employed for the pth term of a sequence {x,} (either
finite or infinite) in R”, it does not represent the pth component of any single
vector called x. In such a situation, we shall denote the kth component (1 < k <
n) of the vector x, by the symbol x”). In the next paragraph we deal with a spe-
cial finite sequence {e;} <<, of vectors, using subscripts to denote the order of
the term in the sequence and not to indicate a component.

The vectors
e =(1,0,0,...,0), e,=(0,1,...,0), ... , e,=(0,0,0,...,0,1)
constitute what is called the standard basis of the Euclidean space R”. By an
easy computation based on Def. 2-2.1, xje; +xe, + - +x,€, = (X1, X2, ... , Xp).
Furthermore, the converse is also true, namely, that any x = (x, X, ..., x,) € R"

can be expressed as
xX=x1e txe,+ - +x,e,.

Such an expression for x is unique in the sense that, whenever &,,&,, ..., &, are

real numbers for which the equality x = &,e; + e, + -+ + &, holds, the ‘coeffi-
cients’ &, &, ..., &, must necessarily be the components of x; this is because

x=xje;txe+ - tx,e,=(x,X2,...,X,)

x=&er+&ert - +8e, = (1,8, ...,
E1, &, ) = (X1, X2, .0, X).

and also

so that

2-2.2. Definition. T%e inner product of x, y € R" is the real number k)élxkyk and
is denoted by x-y. It is also known as dot product or scalar product. Since x-x
is a sum of squares, it is always nonnegative and therefore has a unique nonneg-
ative square root. The nonnegative square root of x*x is called the Euclidean
norm of x and is denoted by ||x||,. Thus

n Iy
xll = (Z)
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The reason for the subscript 2 will become clear later. The function which
maps each x € R" into || x]|, is called the Euclidean norm on R" and is denoted by

[ 1l2-

The reader is cautioned that some authors define a Euclidean space not as
simply R” but instead as R" with the Euclidean norm; see Rudin [22, p. 16].
However, Apostol [1, p. 47] and Spivak [26, p. 1] define it as we do, while So-
hrab [25, pp. 28, 159] defines it both ways.

The following properties are easy to establish; they hold whenever x,y are
any n-vectors and o, 3 are any real numbers. (In (3), the symbol ‘1 stands for
the real number 1.)

(D ofx+y) = ox + o
(2) (ot Bx = oo + B
3) Ix=x;

(4) a(Bx) = (aB)x =P (ow).
There are many more and they will be used as and when needed.

2-2.3. Proposition. Suppose x, y,ze€ R" and o. is any real number. Then

(@) ll=xll2 = llx[l2 = 0; also || x|, = 0 if and only if x = 0.

(b) Jlowx]l> = fot/ [ x]lz-

©) |xy| < Ix|Llyll2- If equality holds here and ||x||, # 0, then there exists some
real number B such that y = Bx. Similarly if ||y|, # 0. This is the Cauchy—
Schwarz inequality.

(D [Jx+yll2 < llxll2 + [ y[]2. (triangle inequality)

@ llx=zla< Ix=yl*ly-zl..

O [lxllz = [1ylla] < llx =yl

Proof. (a) Since ||x||, is, by definition, the nonnegative square root of k'Z; X7, we

have ||-x||, = ||x|]» = 0. Also, ||x||, = 0 if and only if ||x||} = 0, which means kzilxlzc

= 0. But each term in the sum k'Z; x; is nonnegative. Therefore él x; =0 if and

only if each x; = 0, or equivalently, x = 0.

() llowl}3 = % 0232 = 0 3. 2) = 023 = (od ||

(c) For 1 <k <n, we have (xi]|y|la—yllx]l2)? = 0. Therefore

Xl 1B = 2xllxlll vl + yEllxl 2 0. (1

By taking the sum over k= 1,...,n, we obtain
(DB - 2(E 2 Ixlbl vl + (E DIl 0.

In view of the definition of norm, this inequality becomes
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IxABHVIE = 262, xevllxlal vl + [l Bl 112 2 0,

from which it follows that

xRV = (%) 1€l vl 2 0. @)

If ||x|], = 0, then x = 0 by (a), and hence k)élxkyk, i.e., x-y = 0, which guarantees
that |x+y| < ||x||2]|v|]2. Similarly if || y||, = 0. Suppose neither ||x||, nor || y|}, is 0.
Then (2) shows that ||x|» ||| = élxkyk = x+y. By virtue of (a), it further follows
that ||x|2||yll2 = ||x]2| =Vl = x*(=) = —(x+y). Thus we see that the inequality in
(c) is valid. For the other assertion in (c), consider the possibility that |xy| =
[[x|]2/l ¥||»- When this is the case and x+y > 0, equality must hold in (2) and there-
fore also in (1), 1 < k < n. Consequently, xi||y|a—yl|x], =0 for 1 < k < n.
Hence the number B = || y||,/||x||, must satisfy y; = Bx; for 1 < k& < n. If instead
x+y <0, then we obtain the same conclusion upon replacing y by —y.

(d) [l + 213 = 2 (30’ = 260+ 23w + 207
= [Ix[p +2ey) + Iy
< [l + 20l xlallyll + Iyl by part (¢)
= (|l +[1yl12)*.

@) [lx=zlk=lx=y)+ v=2)|2 < [|x=yll2 +[[y = z[]2 by part (d).
® llxll =[x =y) *yll < lx =yl + [ y[l by part (d). Therefore,

Xl =lyll2 < [lx=yl2.
By an analogous argument, |||/, —||x|l> < ||y —x]|.. But what has been proved in
part (a) shows that ||y —x||, = ||-(x—»)|l» = ||x—y||>. Therefore,

¥l = 11l < [lx =yl
The two inequalities displayed above together yield ||| x|, —||[v[l2| < [|x=y[.. O

It is worth noting here that the proofs of (e) and (f) depend exclusively on
(a) and (d) while the proofs of (a)—-(d) invoke the definition of the Euclidean
norm.

2-2.4. Remark. Note that an element of R can be regarded as an ordered 1-
tuple. The Euclidean 1-space R' is thus the set of real 1-tuples with sum and
product as in Def. 2-2.1. The mapping ¢ from R' to R such that x—x; is clearly
a bijection satisfying

O(x ty) =@+ =x1+y = 0(x) T 0(), Xy =x131 = 0X)O(y),
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and d(owx) = (o), = oo, = od(x) = ¢'(ov)-x for any real number o.

This means that, for all intents and purposes,

(i) the sum of x and y as elements of R' has the same meaning as
the sum of 0(x) and () in R;

(ii) the scalar product of x and y as elements of R' has the same
meaning as the product of ¢(x) and ¢(y) in R; and

(iii) the product of o € R and x € R' has the same meaning as the
product of o € R and ¢(x) € R, which is essentially the same as
the inner product of ¢ '(o) € R' and x € R'. We may ignore the
distinction between the real number ¢(x) € R and the vector x €
R', as long as we keep in mind that both the products of R' are
actually the same as the ordinary product in R.

Since ||x|| = [x,2]"* = |x1| = |0(x)| and we identify x with d(x), we may write ||x||

=|x].

In working with the concepts of convergence, open set, continuity and so
forth in R, the fact that the norm, i.e., absolute value, possesses properties (a),
(b) and (d) of Proposition 2-2.3 is needed at every turn. Availability of these
properties for the norm in R” enables us to extend the concepts to R” by having
the norm take over the role of absolute value; this will become evident as the
chapter proceeds.

There are two other standard norms, || ||; and || || on R" defined as:
.
Ixll = 2 %1, [l = max {|x;] : 1 <j<nj.

These two norms can be shown to satisfy the analogues of parts of (a), (b) and
(d), but not (c) of Proposition 2-2.3. This is the reason for the common name
‘norm’. Other norms are also possible, but we shall not need them. Since (e) and
(f) of the proposition follow solely from (a) and (d), they are true of all norms.
The proof that || ||; is a norm is left as a problem [see 2-2.P1], but we shall prove
it for || || in Proposition 2-2.5 below.

Before proceeding, we point out that the inequalities |x;| < ||x[;, |x;]| < || x][2,
|x;| < [|x] always hold for 1 <j <n.

2-2.5. Proposition. Suppose x, y,ze€ R" and o. is any real number. Then

(@) [|=x||- = || x| 2 0; a@lso || x||. = 0 if and only if x = 0.

(b) llowrlos = for][|x[|...

©) [|x+ Y[l £ [|X]]o0 + |V |0 - (triangle inequality)

Proof. (a) This is obvious from the fact that ||x|l.. = max{|x;| : 1 <j < n} =

max {|—x;|: 1 <j<n}.
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(b) If o0 = 0, then ow; = 0 for 1 <j < n and hence || ox||.. = max {|ox;| : 1 <j < n}
= 0, while at the same time, |0 ||x||.. = O-||x||.. = 0. If o # 0, then |0 > 0 and | ow;|
< | o] if and only if |x;| < |x;|. Hence

max {|ox| 1</ <n} = ojmax {|x| : 1 <j<n},

Le., [loux]l.. = orf[[ x|
(c) By definition of || ||.., we have |x;| < ||x]|. and |y;| < |||l for 1 <j < n. It fol-
lows that |x;+y;| < [x;|+]y;] < [[x[|«+|[¥]l for 1 <j < n. Appealing to the

definition of || ||.. once again, we conclude that ||x + y||e. < || X + || V|0 - O

What makes these norms useful is that they are simpler to compute than the
Euclidean norm (no root is involved) and also have the following relation to the
latter:

2-2.6. Proposition. For any xe R", we have
@ lIxlle < lixll2 < llxlli < 7eflxfles -
(b) [1x ]l < (n)-{lx]l -
Proof. (a) The first inequality follows from the fact that one of the terms in the
sum £ | = |x[3 equals ||,

For the second inequality, we use induction on n: If n = 1, then ||x||, = || x|
for any x. Suppose ||x||, < ||x||; for any n-vector x. Then for any (n+1)-vector x,

2 _ ol o n oo 2 1 2 2 1 2 2
HXH2 - kg]xk - kz=1xk + xn+1 S (Ellxkl) + xn+1 S (E||xk|) + xn+1 +

+1
202, D) | = (2, ) = 17

Since |x;| < ||x] for 1 £ k < n, it follows that || x|, =/é |x;| < n-{|x ||, which
proves the third inequality.

(b) Since |x;| < ||x|l.. for 1 <k < n, we have ||x|]3 :,é. x;[2 < n- || x)|2. O

The inequalities (a) of Proposition 2-2.6 render the three norms equivalent
in the sense that whatever we have to say in connection with convergence, con-
tinuity or differentiability will usually be true with reference to one norm if and
only if it is true with reference to the other two norms. Thus, any one of the
three norms in R” can take over the role of absolute value in R. In view of the
equivalence, we shall often not specify which norm is intended and denote the
norm by || ||, i.e., without any subscript. Whenever there is a need to work with a
specific norm, we shall choose the one that seems convenient for the situation at
hand.

Here is the first instance of our not specifying a norm on account of reasons
just explained:
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2-2.7. Definition. 4 sequence {x,},> in R" is said to converge to x € R" if for
every € > 0 there exists a natural number N such that

lx,—x|| <€ whenever p=N.

The element x of R" (which can easily be shown to be unique) is called the limit
of the sequence. In symbols, x,—>x or 1i_r)n X, = x. A sequence is said to be
convergent it converges to some limit.

An alternative formulation would be that x,—x if and only if the associated
real sequence ||x, —x|| converges to 0 in the usual sense of elementary analysis.

Proofs of the properties that
ll)l_I)I}Q (xp+yp) = ;1_13;10 Xp+ ;l_l};lo yp and ;L)mn (o) = (})l_I)I}Q Ocp)(;ll}}o Xp)

whenever the limits on the right sides exist are completely analogous to those
for real sequences and will therefore not be taken up. A similar remark applies
to the result that a convergent sequence {x,},>; in R” is bounded in the sense that
there exists a real number M such that ||x,|| < M for all p.

2-2.8. Proposition. 4 sequence {x,},>1 in R" converges to x € R" if and only if
the real sequence {x\" }}pZI converges to the real number x; for each j. In other

words, convergence in R" is equivalent to componentwise convergence.
Proof. Note that (x,—x); = x”)—x; by Def. 2-2.1. Therefore |x')—x;| =
|(x, —x);| <||(x,—x)||. This implies that if x,—>x then x*’; — x; for each ;.

For the converse, suppose x } — x; for each j and consider any € > 0. For
each j there exists N; such that |(x, —x);| < & whenever p = N;. Set N = max {N, :
1 <j < n}. Then, for every j, 1 <j<n, |(x,—x);| <& whenever p > N. It follows
that max {|(x,—x);| : 1 <j < n} <& whenever p = N. But this means precisely
that ||x, —x[l.. < € whenever p = N. By Proposition 2-2.6, such an N exists for the

other two norms as well. O

2-2.9. Definition. 4 sequence {x,},s in R" is called a Cauchy sequence if for
every € >0, there exists a natural number N such that

lx,—x4]| <€ whenever p=N and q=N.

As in the case of R, it is easy to prove that a convergent sequence in R" is
Cauchy. The least upper bound property of R has the important consequence
that a Cauchy sequence in R is always convergent. This carries over to R" with
very little effort, as we shall now see. Thus R” is ‘(Cauchy) complete’.

2-2.10. Theorem. Any Cauchy sequence in R" converges to some limit.

Proof. Let {x,},» be a Cauchy sequence in R". Now, (x,—x,); = x'* — x*) by

Def. 2-2.1, and we therefore have [x) — x| = |(x,—x,);| < ||x,—x,|. It follows
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that, for each j such that 1 < < n, the real sequence {x }} p=1 18 Cauchy and

hence converges to some limit in R; denote its limit by x;. Then the vector

x=(xp...,x,)eR"

is seen to have the property that x,—x in view of Proposition 2-2.8. O

2-2.11. Proposition. Suppose {x,} 1 is a sequence in R" and x € R". If for every
€> 0 and every N € N, there exists some integer p € N satisfying p > N as well as
||x, —x|| <&, then {x,},=1 has a subsequence converging to x.

Proof. Consider € = 1 and N = 1. By hypothesis, some integer p; € N satisfies p;
> 1 as well as [|x,, —x|| < 1. Now consider & = 1 and N = p; + 1. Then by hypo-
thesis, some integer p, € N satisfies p, > p; as well as ||x,, —x|| < 3. Next, we
consider € = % and N = p,+ 1, and apply the hypothesis once again. Proceeding
in this manner, we obtain a subsequence {qu}qzl such that ||qu—x|\ < % . This
inequality implies that {qu} 421 converges to x. O

Problem Set 2-2

2-2.P1. Show that the analogues of Proposition 2-2.3 for all parts except (c¢) hold
for ||

2-2.P2. Show that ||x||; < n"?||x]}>.
2-2.P3. Show that if x+y = 0, then ||x + y|3 = [|x[|3 + |[v|]3-

2-2.P4. If a, b, c are positive real numbers, show that abc(a + b + ¢) < a’b + b’c
+cla.

2-2.P5. If x,—x, show that ||x,[[—]|x]|.
2-2.P6. (a) Suppose 0 <p < g and 0 <, for 1 <j <n. Then prove that

. n
(Z g <(Z a/)".
j=1 Jj=1

(b) Show that Jim [|x|, = [|x]., where x = (xi,...,x,) € R" and |x[|, =

n / _ . .
(1", |1x]l.. = max {]x] : 1</ <n}.
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2-3 Simplest Functions Between Euclidean Spaces (Linear)

A function (or ‘map’) will often be referred to as a transformation when the
domain is a subset of R” with n > 1.

2-3.1. Definition. A map (or mapping) A:R"—R" is called linear if
A(xy + x3) = A(x1) + A(xz) and A(cx) = cA(x) ¥V x1,x2,xe R"and c € R.

When a map A is linear, we shall delete the parentheses ()’ in ‘A(x)’ whenever
convenient. Thus the above conditions defining linearity can also be written as

A(x) +x3) = Ax| + Ax, and A(cx) = c(Ax) V x;,x,xeR"and c e R.
A linear map is sometimes called a linear operator or a linear transformation.

2-3.2. Examples. (a) n = m = 1. The map A:R"—R" defined by Ax = 5x is easily
seen to be linear: 5(x; +x;) = 5x; + 5x; and 5(cx) = ¢(5x). Instead of 5 any other
number could have been taken of course; thus the map A such that A(x) = ax is
linear, whatever the number a may be.

In fact, these are the only linear maps when n = m = 1, because A(x) =
A(x-1) = xA(1) = ax, where a = A(1). This will also follow from more general
considerations below.

(b) n =1 but m is any positive integer. Let b be any vector in R". Define the map
A:R">R" by Ax = xb (product of the scalar x with vector b). Since

(x1+x)b=x1b+x:b and x(cb) = c(xb),

which is to say,
A(x) +xp) =Ax; + Ax, and  A(ch) = c(A4x),

the map 4 is linear. The special vector b that plays a role in describing 4 can be
expressed as b= 1b=A41.

Conversely, any linear map A:R"—>R" (where n = 1) is of this kind, because
if we set b= A1, we have Ax = A(x-1) =x-A(1) = xb.

Linear maps 4:R"—R" with n = 1 will be referred to again and the reader
would do well to keep this example in mind for ready retrieval when it is men-
tioned later on.

(¢) m = 1 but n is any positive integer. Let z € R”". Define a map R"—R by
x—z-x, the dot product of z and x in R". Then elementary properties of the dot
product lead to

zo(x1 +xp) =zxy tzxy,  z+(cx) =c(zx),

which is the same as saying that the map x—z-x from R" to R is linear. This
example will also be needed in the sequel.
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(d) n =m = 2. Let a,b, c,d be real numbers. The map A:R*>SR? defined as
A(x,y) = (ax + by, cx +dy) is linear. A part of verifying the linearity is to check
that, for any (x,y) € R* and (x', y") € R?, the vector (a(x +x) + b(y +y"), c(x +x") +
d(y+y") is the sum of (ax+ by, cx+dy) and (ax'+ by, cx'+dy'). This is easily
checked. The other part is to check that, for any scalar A and any (x, y) € R the
vector

(a(hx) + b(hy), c(Ax) +d(Ay))
is the same as Max + by, cx + dy).

This too is easy to verify.
To solve the linear equations
ax+by=u
cx+dy=v,
where u and v are given, is to find (x, y) such that A(x, y) = (u, v).
It is a consequence of the discussion below that the only linear maps of R?
into R? are of the kind described in the foregoing example.

A linear map from a space R” into itself is often called a linear map (or li-
near operator) in R".

Any linear map 4 satisfies 40 = 0, because 40 = A(0 + 0) = 40 + A0 =
2(A0). The fact that A0 = 0 for any linear map A will be used in future without
explicit mention.

Letey, e, ..., e, be the standard basis
e =(1,0,0,...,0), e,=(0,1,...,0), ... , €,=1(0,0,0,...,0,1)

of R", and A:R"—R" be linear. If the (vector) values of Ae;, Ae,, ..., Ae, are
given, then the value of Ax for any vector x = xje; +x;e; + - +x,e, € R” can be
found easily, because

Ax=x(dey) +xy(Aey) + -+ +x,(4e,). )

Some readers may prefer to express this informally as follows: If the vector x
has scalar components xi,x,...,x, then Ax can be expressed in terms of
Aey, Ae,, ..., Ae, with the very same scalar coefficients, namely, x;,x,, ..., X,.
(Caution: It may be possible to express Ax this way with other coefficients as
well.)

One very useful consequence of (1) is that if we know what 4 maps the n
vectors eq, e, ..., e, into, then we know what 4 maps all the infinitely many
vectors of R” into. Thus we can create a linear map by simply deciding what the
vectors Ae;, Ae,, ... , Ae, should be and then leaving the rest to linearity via (1).

Now let f1, />, ..., fn be the standard basis of R™. Consider any linear map
A:R"—>R"™. For each j from 1 to n, the vector Ae; € R" has m components, which
we shall name as g;;:
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a;; =(A4e);, 1 <i<m.
Then ! !

m
Aej=ay; fitay ot +aw fu= _Zlal-jfi , 1<j<n.
=

The coefficients @;; (which are mn in number) form an m>n matrix in the usual
way. Observe that the summation takes place over the first index i, i.e., the row
index, of a;; . In view of (1), for any vector x = xje; +xe, + - +x,¢, € R", the
image Ax is

Ax=xi(Sa, f)+n(San )+ +x(Lay, )
=(Za )it (e, )t + (£ a3 ) @)

This shows that, for any linear map A:R"—>R", there exist mn numbers a;; (1 <
i< m 1< j< n) such that the image of any element (x;,x;,...,x,) €
R"is A(x1,x2,...,X) = V1, V2, ..., V) € R, where

yy=apXx tapx, +--+a,x,

Yy =y X tayX, 0t ay, X,

3)

Y = QX + A%y toeet DX

In other words, if we represent x by the nx1 column matrix [X] with entries
X1,X2,...,X,, and represent Ax = y by the mx1 column matrix [Y] with entries
V1,V2,--+»Vm, then [Y] equals the matrix product [A][X], where [4] is the m*n
matrix [a;;]. We refer to the matrix [4] with entries a;; arising from the linear
transformation A as the matrix of A. In particular, when n = m = 1, 4 is of the
form y = ax. Also, when n = m = 2, A is of the form described in Example 2-
3.2(d).

In the reverse direction, any mxn matrix [a;;] gives rise to a linear transfor-
mation 4:R"—R", namely the one defined by (2).

The correspondence described above between linear maps and their matric-
es is one-to-one and therefore a linear map can be completely specified through
its matrix.

As with a map of any kind of a set X into itself, the inverse of 4 is a map
S: X—X such that the compositions 4oS and So4 are both equal to the ‘identity
map’ I: X—X given by I(x) = x for all x € X. In this context, when X = R", the
identity map is clearly linear; moreover, the inverse, if any, is also linear. It will
be denoted by 4. Considerable interest attaches to the question when a given
linear map has an inverse. The elementary fact that a composition 4oB of invert-
ible maps is invertible, with inverse B 'oA™, will be used in Theorem 2-7.11.
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If A and B are linear maps from R” to R, then the map x—(4x + Bx) is easi-
ly seen to be a linear map. It is called the sum of 4 and B, and is denoted by
A+ B. Thus

(A+B)x=Ax+ Bx wheneverx € R".

If A € R, then the map x— A(4x) is also seen to be a linear map; it is called the
product of A and 4, and is denoted by A4. The map (—1)4 will be denoted by
the symbol —4. We shall have occasion to refer to the constant map x— 0; this
constant map will be denoted by O. Such properties as the following are easy to
verify:

A+B=B+4, A+B+C)=A+B)+C, A+0=4,

A+(=A)=0, MA +B)=AA4+AB, Mud) = (A4,

and so on. Thus, linear maps behave rather like vectors in R* for some k with
regard to addition and to multiplication by scalars. One can even argue that k
should be the product mn, but this is a matter we do not pursue here.

Linear maps, like other maps, can be composed whenever the range of one
is a subset of the domain of the other. If A:R"—R" and B:R"—R’ are linear,
then the composition BoA:R"—R” is a linear map, as is easy to check. It is de-
noted simply by BA, without the symbol o to indicate composition, and is called
the product of the linear maps 4 and B. If n = m = p, then both the products AB
and BA are defined, but they are not necessarily equal. In other words, multipli-
cation of linear maps is not commutative (unless n = 1). Such properties as

A(B+C)=AB+ AC, (B+ C)A=BA + CA, \A)UB) = (M)(4B),
and so on are easy to verify.
2-3.3. Remarks. (a) Let A:R"—>R" and B:R"—R” be linear maps with matrices

[a;;] and [by;] respectively. Then the matrix of the composed map BA:R"—>R” is
the matrix product [by;][a;;].

Proof. Let {¢;: 1 <j<n}, {f;: 1 <i<mj} and {g; : 1 <k < p} be the stan-
dard bases of R”, R" and R”, respectively. Then

m P
Ae; = ’_Ziaijfi , Bfi= /;1 byi g

m m 14 m
Hence, (BA)e,= ;1 a;; Bf; = ; a;; ( é biigi)= 1;1 ( .; briaij) g .

But this says precisely that B4 has matrix [c;;] with ¢;; = "le by; a; ;. By the defi-

nition of matrix product, the matrix of B4 is therefore [b; ;][a;;].
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We note a useful consequence of this result: The identity linear map 7 of R”
into itself has the matrix known by the familiar name of the identity matrix of
order nxn; combined with the above result, this shows that a linear map
A:R">R" is invertible if and only if its matrix is invertible.

(b) To solve the linear equations (3), where y = (v, v2, ... , V) 18 given, is to find
X = (x1,X2,...,X,) such that Ax = y. A unique solution x exists for every given y
if and only if 4 is invertible; when this is the case, x = A’ly. However, an inverse
can exist only if m = n. We shall have no occasion to make use of this fact, but
whenever we assume that some linear map 4:R"—R™ is invertible, we shall also
assume that m = n.

If A:R"—R" is injective, then the only solution of (3) with each y; = 0 is the
one for which each x; = 0. It is known from linear algebra that this implies that
for every (y1,¥2,...,y,) € R", (3) has a solution (x1,x5,...,x,) € R”, which has
the consequence that 4 is surjective. Thus an injective linear map A:R"—>R" is
surjective and hence invertible. We shall use this fact in the proof of the implicit
function theorem (Theorem 4-3.2). It is also true that a surjective linear map
A:R"—>R" is injective and hence invertible.

(¢) Consider (3) above with m = n written in the form [Y] = [4][X]. If the inverse
matrix [4]" exists, then
[A]'[Y] = [4]'([4][X])
= ([A]'[AD[X] using associativity
= [X].

Thus (3) has a unique solution [X] = [4]'[Y] for every given [¥]. On the other
hand, suppose we know that (3) has a unique solution [X] for every given [Y].
This is the same as saying that it has a unique solution x for every given y. As in
(b) above, this implies that A is invertible, and hence by (a), [4] is an invertible
matrix. Once again, the unique solution is given by [X] = [4]'[Y].

2-3.4 Remarks. If a linear map 4 of R"into itself merely multiplies the kth
component by some nonzero a, i.c.,

A(xl9---s-xn):(yl’~~~syn)a

Y forj#k
Ji ax; forj=k,

where

then its matrix is the one obtained from the identity matrix by replacing the entry
ax by a. Thus it is an elementary matrix; moreover, its determinant is a.

If A merely interchanges two components, i.e., A(x1, ..., X,) = (V15 - > V),
where
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x, ifj=k
yi=13x, ifj=l
x, if k#j#l

where k # [, then its matrix is the one obtained from the identity matrix by inter-
changing the kth and /th rows. Thus it is an elementary matrix; moreover, its
determinant is —1.
If 4 merely adds one row to another row, i.e., there exist distinct indices &, /
such that
A(xl PR ,x,,) = (J/1 tRR] ayn)a

X forj#k
%= x; +x, forj=k,

where

(so that y; = x; +x,), then its matrix is the one obtained from the identity matrix
by adding the /th row to the kth row. Thus it is an elementary matrix; moreover,
its determinant is 1.

Since every invertible matrix is a product of elementary matrices of the
above type (see last part of Chapter 1), it follows that every invertible linear map
is a product of linear maps having elementary matrices of the type mentioned
above. We shall make essential use of this fact in Proposition 7-4.1.

Problem Set 2-3

2-3.P1. Let A:R—R satisfy A(cx) = cA(x) for any x and ¢ € R. Set @ = A(1). Show
that A(x) = ax whenever x € R. Is it true that A(x + y) = A(x) + A(y) whenever x €
Rand ye R?

2-3.P2. Define 4:R*—R by A(x;,x,) = (x> +x,°)",0). Show that, for any x =
(x1, x2) € R*and c € R, we have A(cx) = cA(x). Is it true that

A(x+y)=A(x)+A(y) whenever x and ye R*?
2-3.P3. Define A:R*— R? by A(x;, x) = (3x; — 2x,, 6x; +x»). Show that
Ax+y)=A(x)+A@y) and A(cx)=cA(x) Vx,yeR andceR

2-3.P4. Find the range of the map f: U—R, where U = {(x,y) € R : (x,y) #
(0,0)} and

2.2
f(x,y)—(ﬁ(x,y),ﬁ(x,y))—[x A JeRZ.

x2+y2 x2+y2

2-3.P5. Let f:R—R have a continuous derivative everywhere and let ¢:R*—R?

be the transformation
u=f(x), v=-y +xf(x).
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If f'(xo) # 0, show that the transformation is invertible on a subset of the form
IxR, where [ is a open set in R containing x, and that the inverse has the form

x=g(u), y=-v+ugu).

2-3.P6. Let A:R'xR"—>R be a linear map. Show that the maps B:R'—R* and
C:R" R defined by B(x) = A(x,0) and C(y) = 4(0, y) are also linear.

2-3.P7. Let A:R'->R and B:R">R be linear maps. Show that the map
C:R'*xR"—RF defined by C(x,y) = A(x) + B(y) is linear.

2-3.P8. The Cartesian product R'xR" can be regarded as R"™. Show that the
map A:R""—>R'"™ defined by A(a,b) = (0,b) is linear, and find its matrix when
m=2,n=3.

2-3.P9. The equations x; + x, + x3 = 5, 2x; — x, + 4x3 = 8 can be expressed in
terms of standard bases u; ,u,,u; of R and v;,v, of R as a single equation f(x;u;
+xpuy + x3u3) = Svi + 8v,, where f ‘R*>R is the function such that
SO+ xauy +x3u3) = (X1 + 20 Hx3)vp +(2x0 = xp + dxs)vy.

One can also use coordinate language and avoid bringing in the standard basis
explicitly by writing f(x1,x,,x3) = (5, 8), where f(x;,x,,x3) is defined as (x; + x,
+ x3,2x1 — X + 4x3). Now express the equations p = ¢"cosy, g = ¢'siny as a sin-
gle equation using a suitable function; also rewrite the single equation in
coordinate language.

2-3.P10. Eliminate the variable x; from the second and third equations in the
system by using the first equation

X1+SX2+6X3:9

2x1 + 11)C2 + 13X3 =38

3x1 + 12X2 + 14X3 =2027.

(a) Now answer the following questions regarding the new system consisting of
the two equations just obtained by eliminating x; together with the first of the
three given equations: Must every solution of the new system be a solution of
the given system (Yes or No)? And vice versa (Yes or No)?

(b) If a solution x, = B, x3 = v of the two equations that have been obtained by
elimination is known, what formula for x; can be derived from the first of the
three given equations in terms of B and y?

2-3.P11. In R, find a common perpendicular (not 0) to the three given vectors
z1=(1,3,2,-1), z,=(3,10,4,0), z;=(4,13,7,4).
In other words find x € R* such that x-z; =0 for i = 1,2, 3.
2-3.P12. The range of the function f defined on the subset
D= {(x1,x2,x3) : xit X+ (65— %)2 = %}\ {(0,0,1)}
of R by
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X, _ X
1 S = 2

e 1—x; I—x;

is the whole of R®. The map is called the stereographic projection.

2-3.P13. Let D = {(x;,x,,x3) e R : x> + x> + x5 > 1} and R = {(y;,12,y3) e R :
0 <y> + > + 33> < 1}. The function 1 defined by
X, X X
V= 0= F,03= 5
L 2
is called an inversion mapping of a part of R’ to another part. Show that the

range of the mapping is R.

2-3.P14. Given any & > 0 and a € R, show that the function F:R*—R defined by
F(x,y,z) = xyz(x + y + z— 1) takes positive as well as negative values in the &-
ball centred at (a,0,0).

2-3.P15. Given any & > 0 and b,c € Rsuch that b # 0 # c and b + ¢ = 1, show
that the function F:R*—R defined by F(x,y,z) = xyz(x +y + z — 1) takes positive
as well as negative values in the d-ball centred at (0,5, ¢).

2-3.P16. Let A:R*>R be the linear map A(x;,x;) = (x; + x,0). The vectors
(1,0), (0,1), (3/5,4/5), (12/13,5/13) and (1/N2, 1N2) all have norm 1. Compute
the norms of their images under 4, i.c.,

A(1,0), A(0,1), A(3/5,4/5), A(12/13,5/13), A(1N2,112).

Which is the largest?
Show that: ||x|| < 1 = [|4x|| < V2, ie., that x°+x><1= (x; +x)° +
0*<2.

2-3.P17. Let A:R>—R be the linear map A(x;,xp) = (x; +x2, 2x; — x»). Compute

1ACL, 0%, (|40, DI, A2, IN2)|P, [ 4(12/13, 5/13)]1.

(a) Show that || 4(x;, x2)|]* = 5x; + 2x57 — 2x1x5 .
(b) Using (a), show that ||x|| < 1 = || x| <6 .
(c) Using (b), what can be said about sup {||Ax]| : ||x]| < 1}?

2-3.P18. Let A:R*—R be the linear map A(xy,xy) = (x; + x2,x] — Xx3). Express
A(x;, x2)* in terms of x; and x, ; hence find sup {||4x]| : ||x]| < 1}.

2-3.P19. Let A:R"—R" be linear and let  a ball in R" centred at 0 with some
radiusa > 0. If Av=0V ve V, show that Ax=0 V xe R".
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2-4 Topology of Euclidean Spaces

In elementary analytic geometry, R* and R are regarded as the plane and three-
dimensional space, respectively, and the so called ‘distance formula’ says that
the straight line distance between two points x and y is given by the Euclidean
norm ||x—y||,. So, for a given a € R or R, and a given r > 0, the subset of R or
R’ described as {x : ||x—all, < r} is visualised as the disc or solid ball of diame-
ter 2r, centred at a and not including the periphery. The reader may check
independently that {x € R* : ||x—al|. < r} represents the inside of the square with
vertical and horizontal sides of length 27, centred at @ and not including the pe-
riphery. Similarly, {x € R* : |[x—a||; < r} represents the inside of the square with
vertical and horizontal diagonals of length 27, centred at ¢ and not including the
periphery. See the figure. In general a subset of R" of this

/ \ kind is called a ball, regardless of what n is and what norm is
.a used.

K / 2-4.1. Definition. The subset {x € R" : ||x—al|| < r} of R",
where a € R" and r > 0, is called the r-ball about a (or cen-
tred at a). It is denoted by B(a,r). The point (vector) a is

called the centre of the ball and the positive number r is
called its radius.

<« 2r—>

The assertion x,—x about a sequence {x,},>; in R” can now be reformulated
as: For any € > 0, the nth term x, belongs to the e-ball about x for sufficiently
large n. More succinctly, all terms eventually lie in any given ball about x.

2-4.2. Definition. 4 subset U c R" is said to be open if every u € U has some
ball about u that is contained in U, in symbols:

Y ueU,38>0suchthat EeR", [|E—ul|<d=Ee U.

The entire space R” is easily seen to be an open subset of itself. The empty
subset is open ‘by default’ because there exists no element in it. The trivial ob-
servation that 0 < » < s = B(u,r) < B(u,s) leads to the conclusion that an
intersection of two open subsets is again an open subset and hence so is the in-
tersection of any finite number of open subsets. Indeed, if U; and U, are open
and u € U;NU,, then there exist §; > 0 and d, > 0 such that B(u,,) < U, and
B(u,d,) < U,, which implies that B(u,min {8;,8,}) < B(u,d;)NB(u,d,)
U NU,. That the union of any number (even uncountable) of open subsets is
again open hardly needs any argument.

An open subset of R' = R in the sense defined above is the same as an open
set of real numbers.

By Proposition 2-2.6, whether a subset is open or not does not depend on
which norm is used: If a positive number that serves as the appropriate & for one
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norm does not work with a different norm, then some other positive number
will.

Example. The subset (0,1)%(2,7) € R? can be shown to be open. Any element u
of it satisfies 0 <u; < 1,2 <u, <7. Let &; = min {u;,1—u;} > 0. Then

& —u| <8, =& —u <l-uy =& <I
and

Thus, & —u| <= u—& <u =0<E,.

€1~ <8 =0<E <1 )
Similarly, &, = min {#; —2,7 —u,} > 0 has the property that

|§2—u2\<52:>2<§2<7. (2)
It follows from (1) and (2) that, for & = min {8;,8,} > 0, we have

1§ —ull. = max {|& —ui,|& —us |} <& = Ee(0,1)x(2,7).

The existence of such a positive number & for every u € (0,1)%(2,7) means by
definition that (0,1)x(2,7) is open.
2-4.3. Proposition. 4 ball is an open subset.
Proof. Consider a ball B(a,r) c R" and let u € B(a,r). Then ||a—ul| <r. Let & =
r—|la—u|| > 0. This positive number has the property that

lx—ull| <8 = |lx—ul| <r—lla-ul| = x—ull+la—ul| <r.
But || x—al| < ||x—ul| +||a—u|| by the triangle inequality. Therefore ||x—u|| < J
= ||lx—al| < r. Thus B(u,8) < B(a,r). The existence of such a positive & for
every u € B(a,r) means by definition that B(a, r) is open. O

2-4.4. Definition. 4 subset F C R" is said to be closed if its complement is open.

2-4.5. Proposition. 4 subset F C R" is closed if and only if whenever all terms
of a convergent sequence {x,} > belong to F, its limit also belongs to F.
Proof. First suppose F' — R" is closed and {x,} > is a convergent sequence such
that x, € F’ for every p € N. We shall show that ll)l_r}rolo X, € F. If not, then the limit,
which we shall denote by x, belongs to the complement of /. But the comple-
ment is given to be open and therefore some ball centred at x is contained in the
complement. This means that no terms of the sequence can ever belong to the
ball, which contradicts the fact that x,—x. Therefore the limit of the sequence
has to belong to F.

For the converse, suppose F < R” is not closed. We shall show that some
convergent sequence with every term belonging to F has a limit that does not
belong to F. Since F is not closed, the complement F* is not open and therefore
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some x € F* fails to have a ball centred at x and contained in F*; this means every
ball centred at x fails to be contained in F° and thus has a nonempty intersection
with F. In particular, for each p € N, the %-ball centred at x must contain some
element x, € F. Therefore the sequence {x,},> not only has each term in F but
also satisfies ||x, —x|| < % for each p € N, so that x = ;grolq x,. Thus {x,},s is a
convergent sequence with every term belonging to F but having limit x that does
not belong to F. O

2-4.6. Examples. (a) Since R" is an open subset of itself, its complement, the
empty subset is closed. Similarly, since the empty set is an open subset of R”, its
complement R” is closed. Thus each of the subsets & and R" is open as well as
closed.

(b) Given any a € R" and any » > 0, the set {x € R" : |[x—a|| < r} is a closed sub-
set of R". To see why, consider any convergent sequence {x,},» with each x,
belonging to {x € R" : ||[x—a|| < r}. That is to say, ||x,—al| < for each p € N. In
view of Proposition 2-4.5, we need only show that [lgxl x,e{xeR":[x—al <
r}, ie., ||;i§01° x,—a|l < r. Consider any € > 0. By definition of limit of a se-
quence, there exists ¢ € N such that H;i_l}l, x,—x,|| <& Now,

i —all < ||l - —all<
Ilim x,—all < lim x,—x, | + |x, —al| <&+ 7.
Since this holds for any arbitrary € > 0, we have H;i_{n xX,—all<r.

The set {x € R": ||x—a]|| £ r} is often called the closed r-ball about a; a ball
will be understood to be open unless mentioned otherwise. A subset X < R" is
said to be bounded if there exists some M > 0 such that ||x|| < M for every x € X.
Since ||[x—al|| <r = ||[x—al| £ r = ||x|| £ ||a||+r, we find that every ball is
bounded.

2-4.7. Definition. For a subset X C R", a point u € R" is called an interior point
of X if some ball about u is a subset of X. The set of all interior points of X is
called the interior of X and is denoted by X°.

2-4.8. Examples. (a) The interior of the closed ball By = {x e R" : ||x—a| < r} is
the open ball {x € R" : |[x—a| <r}. Indeed, let u € {x € R" : ||x—a| <r}. By
Proposition 2-4.3, this ball is open and hence there exists o > 0 such that B(u, o)
C By. So, u is an interior point of B;. Also, no point u satisfying ||u —a|| = r is an

interior point of By, because for any o > 0, the point z = u + %OL—GH belongs to

|[u—a

B(u,0) but not to By, as the following easy computation shows:
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1l  u-—a o
[z-ull =lFa——=l=F <o
lu—al™ 2
but
1
lz=all=llu-a+ZJo——=| = [[(1+5——=)u—d|
2 H || 2H all
I o 0]
=(l+z——)u—al|=||lu—-al++ >r.

(b) The interior of a set consisting of finitely many points is empty, because a
ball always contains infinitely many points and cannot be a subset of any finite
set.

It is clear from Def. 2-4.7 that, an interior point of a set belongs to that set;
but not all points in a set are interior points. Also, an open set is one for which
every point of it is an interior point; in other words, X ¢ R" is open if and only if
X =X°. This is immediate from Def. 2-4.2 and Def. 2-4.7.

2-4.9. Proposition. The interior of any set is open.

Proof. Let X < R". Proposition 2-4.3 shows that, if u € X°, so that some ball B
about u is contained in X, then for every y € B, there is a ball about y that is con-
tained in B and hence in X, thus making every y € B an interior point of X. This
shows that, whenever u € X°, some ball B about u is contained in X°. Thus X° is
an open set. ]

2-4.10. Definition. For a subset X C R", a point u € R" is called a closure point
of X if every ball about u contains some point of X. The set of all closure points
of X is called the closure of X and is denoted by X.

Clearly, a point of a set must be a closure point of it (X < X) but not con-
versely: In R?, the point u = (0,1) does not belong to the ball X = {x e R* : ||x|| <
1} because ||u|| = 1. Now, any ball {x € R* : ||x—u|| < r} about u contains the
point v = (0,1—s), where 0 <s <min {1, 7}, because ||v—u|| = [|(0,s)]| =|s| =5 <
r. But this point v also belongs to the set X, because ||v|| = |[l-s| = 1-s < 1.
Thus any ball {x € R*: ||x—u|| < r} about u contains a point of X, whereby u is
seen to be a closure point of X, though it does not belong to X.

A closed set is one that contains each of its closure points. To see why, sup-
pose first that X < R" contains each of its closure points. We shall demonstrate
that the complement X is open. With this in view, consider any ve X*. Then v is
not a closure point and hence there exists a ball about v containing no point of X,
i.e., is a subset of X*. This means X“ is open. Suppose next that X is open and u
is a closure point of X. We shall demonstrate that # € X. If not, then some ball
about u is contained in X“ and therefore contains no point of X; this contradicts
the hypothesis that « is a closure point of X.
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As noted before, it is always true that X X ; we have just proved that X is
closed if and only if X2 X. Therefore X < R" is closed if and only if X = X.

2-4.11. Proposition. The closure of a set is closed.

Proof. Let X  R". We must show that the complement of the closure X is open.
Accordingly, consider any u € ()? ). Then u is not a closure point and therefore
some ball B about u contains no point of X, which means B is a subset of X*.
Proposition 2-4.3 shows that, for every y € B, there is a ball about y that is con-
tained in B and hence in X°, thus ensuring that no y € B is a closure point of X,
i.e.,ye B= ye (X)°. This shows that, whenever u € (X)°, some ball B about u is
contained in (X)°. Thus (X)° is an open set. d

2-4.12. Definition. The boundary 0X of a subset X  R" is the set X\X° of all
points in the closure of X that do not belong to its interior.

It is immediate from this definition that x € dX if and only if every ball
about x contains a point of X as well as a point of the complement X*.

2-4.13. Example. As noted in Example, 2-4.6(b), X = {x € R @ ||x|| < 1} is
closed and hence is its own closure X. It has also been recorded in Example 2-
4.8(a) that X° = {xe R*: ||x|| < 1}. Therefore, the boundary is X = {x € R* : ||x||
=1}.

2-4.14. Proposition. The boundary of any set is closed.

Proof. For any X < R", the closure X is closed [Proposition 2-4.11] and the inte-
rior X° is open [Proposition 2-4.9]. By 2-4.P4, the difference dX = X\X° is
closed. O

It follows from this Proposition and Example 2-4.13 that {x € R : ||x|| = 1}
is closed. A direct proof using Proposition 2-4.5 is left to the reader in 2-4.P7.

Problem Set 2-4

2-4.P1. Show that a union of two closed sets is closed and that the intersection
of any family of closed sets is closed.

2-4.P2. Show that a ball {xe R": ||x—a|| <r} is not a closed subset of R".

2-4.P3. Suppose X < R" is a subset for which there exists some u € R" and some
M > 0 satisfying ||x —u|| < M for every x € X. Show that X is bounded.

2-4.P4. Let U < R" be open and F < R" be closed. Show that the difference set
U\F c R" is open and the difference set F\U is closed.
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2-4.P5. Show that the interior of a set is the union of all open sets contained in
that set and that the closure is the intersection of all closed sets containing that
set.

2-4.P6. Show that x € R" is a closure point of a subset X < R" if and only if some
sequence in X converges to x.

2-4.P7. Using Proposition 2-4.5, but not concepts of interior, closure or boun-
dary, show that {xe R?: ||x||= 1} is closed.

2-4.P8. Show that (~1,0) is a boundary point of £ = {(x;,x;) € R? : =1 <x; <2}
and that (1,0) is an interior point of {(x;,x;) € R*: 0 <x; <2}.

2-4.P9. For any F ¢ R”, show that F = FUJF = F°UJF.

2-5 Compact and Connected Subsets

The notion of compactness, which plays a significant role in analysis, was
introduced into mathematics by M. Fréchet. However, he was working in a
much more general framework of ideas than of Euclidean spaces.

One of the distinguishing characterisations of a bounded closed subset of R
is that any sequence in it has a subsequence converging to a limit belonging to
that subset. Another characterisation of such a subset is that any ‘open cover’ of
it contains a finite subcover. In this section we shall prove the above characteri-
sations for any bounded closed subset of R”. We begin with the following
lemma.

As in Proposition 2-2.8, we shall denote the jth component of the pth term
x, of a sequence {x,} = by x'*).

2-5.1. Lemma. Let X € R" be bounded and suppose all terms of the sequence
{x,} 21 belong to X. Then the sequence has a subsequence which is convergent,
though its limit may not belong to X.

Proof. For each j, 1 <j < n, consider the real sequence formed by the jth compo-
nents of the terms x,,, i.e., {x’} . Since [x”}| < ||x, ||, we know that each of
them is a bounded sequence in R. By the Bolzano—Weierstrass theorem (see
Berberian [3; Proposition 3.5.9]), the first sequence, namely {x'” )1}1,21, has a
subsequence {x'” q)l}qzl that converges to some limit in R. Now, considering
only those points of the original sequence {x,} which are numbered by p,, we

obtain a subsequence {qu} of the original sequence, in which {x/#

1}g21 1S con-
vergent. Next, consider the sequence {x'* 4)2}q21, that is, the sequence of second

components of the latter sequence {qu}. We can find a subsequence of the sub-
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sequence {qu} for which the sequence formed by its second components con-
verges. Note that the sequence formed by its first components is a subsequence
of {x” q)l}qZI and therefore converges; thus the sequences formed by its first
components and by its second components both converge. Repeating this proce-
dure successively n times, we arrive at a subsequence of the given sequence {x,}
for which all the sequences of the components of its points are convergent. Since
convergence in R" is equivalent to componentwise convergence [Proposition 2-

2.8], the last mentioned subsequence of {x,} > has a limit in R". O

2-5.2. Theorem. For a subset K — R" to be bounded as well as closed, it is ne-
cessary and sufficient that every sequence with all its terms belonging to K have
a convergent subsequence, the limit of which also belongs to K.

Proof. First suppose K = R" to be bounded as well as closed, and consider any
sequence with all its terms belonging to K. Since K is bounded, the sequence has
a convergent subsequence [Lemma 2-5.1], and since K is closed, the limit be-
longs to K [Proposition 2-4.5].

Conversely, suppose K < R" is either not bounded or not closed. In the lat-
ter case, there exists a convergent sequence with all terms belonging to K but the
limit is not in K [Proposition 2-4.5]; in particular, there is a sequence with all
terms belonging to K but having no convergent subsequence whose limit be-
longs to K. In the former case, for each p € N, there exists some x, € K such that
|lx,]| = p. The sequence {x,},»1 then has all terms belonging to K, but no subse-
quence {x, }.1 can be convergent because it is not bounded; in fact, it satisfies
1%, 1 2 g = q- U

2-5.3. Proposition. Let K < R" be bounded and € be any positive number what-
soever. Then there is a finite number of €-balls centred at points of K such that
their union contains K.

Proof. Suppose this is not so. Then the union of a finite number of e-balls cen-
tred at points of K can never contain K. So, take any vector x; € K. The €-ball B,
about x; cannot contain K and so there exists x, € K such that x, ¢ By, i.e.,
|lx2—xi|| = €. Let B, be the e-ball about x,. Then the union B;UB, of finitely
many (two, of course) e-balls cannot contain K. So, there exists x; € K such that
X3 & B1UBy, ie., ||x3—xi|| 2 €, ||[x3—x;|| = €. We can keep proceeding in this
manner and obtain a sequence {x,},>; of points in K having the property that

P> q=x,—x4l[ 2 €.

But this property guarantees that no subsequence can be a Cauchy sequence and
hence that no subsequence can converge. Since all terms of {x,},-; belong to the
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bounded set K, Lemma 2-5.1 is contradicted. Therefore we are led to the conclu-
sion that our supposition is false, i.e., there exists a finite number of e-balls
centred at points of K such that their union contains XK. O

The phenomenon of a family of sets, finite or otherwise, whose union con-
tains a given set needs to be studied further. Although the considerations we are
about to enter into may seem outlandish at first, they are intimately connected
with other ideas here and will be needed in Proposition 7-4.9. We introduce
some terminology.

2-5.4. Definition. For any subset X C R", a family ¥ of subsets of R" whose un-
ion contains X is called a cover of (or covering of) X. If every set in the family
is open, then the cover is said to be an open cover (or open covering). 4 sub-
Sfamily of « whose union also contains X is called a subcover of ¥ (or
subcovering of %).

It is convenient to rephrase ‘% is a cover of X’ by saying ‘@ covers X’. Also,
the phrase ‘there is a subcover of ¢/ is usually recast as ‘% contains a subcover’.

2-5.5. Examples. (a) Let X = R". Then the family % consisting of the sets

{reR":|lx| <p}.peN,

is a cover of X. The subfamily {x € R" : ||x|| £ 2p}, p € N, also covers X and is
therefore a subcover of ¢. The family {x € R" : ||x|| <p}, p € N is an open cover
of X and its subfamilies

{xeR": x| <7p}, peN, and {xeR":|x||<p’, peN,

are subcovers because they also cover X.
(b) Let X= {xe R" : ||x|| £ 1}. Then the family % consisting of the sets

n 1
ele 1oL
treR': [l < 1=l ). pel,

is not a cover of X because their union does not contain the points of X for which
[[x]| = 1. If we enlarge the family by including the set

9 101

{xeR": 100’

<llxll <350

then the enlarged family is an open cover (union contains all elements of X and
more). The open cover contains a finite subcover, for instance, the subfamily
consisting of the two sets

9 101

n, _L n.,
{xeR": x| <1 11} and {xeR": 100’

<llxll <9
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(c) Let X= {xeR":||x|]| < 1}. Then the family % consisting of the sets
n 1
: T
xeR": x| <1 p+1}’pEN’

is an open cover of X. This open cover contains no finite subcover. The open
covers in part (a) also contain no finite subcovers.

2-5.6. Definition. 4 set K < R" is said to be compact if every open cover of it
contains a finite subcover-.

2-5.7. Theorem. Heine-Borel: 4 set K < R" is compact if and only if it is
bounded as well as closed.

Proof. We prove the ‘only if> part first. Let K  R” be compact and {x,} > be a
sequence with all its terms belonging to K. We shall show that it has a subse-
quence converging to a vector belonging to K.

Suppose this is not so. Then no vector x € K is the limit of a subsequence.
By Proposition 2-2.11, given any x € K, there exists € > 0 and some N € N (both
depending on x) such that no integer p satisfies p > N as well as ||x,—x|| <&. In
other words, the e-ball about x can contain x, only if p < N; thus it contains x,
only for finitely many p (perhaps none). The family of all such balls about x
with x € K is an open cover of K and, since K has been assumed compact, the
cover must contain a finite subcover. This means the union of a finite family of
the balls must contain K and hence contain x, for all p € N. But this is a contra-
diction because each of the finitely many balls contains x, only for finitely many
p. Therefore our supposition that {x,},-; has no subsequence converging to a
limit in K must be false.

It follows by Theorem 2-5.2 that K is bounded as well as closed.

We now prove the ‘if” part by contradiction. Assume K to be bounded as
well as closed and suppose that it has an open cover % containing no finite sub-
cover. By Proposition 2-5.3, there exists a finite family 7, of 2-balls centred at
points of K that covers K. If the intersection with K of each of the finitely many
2-balls in 7 can be covered by a finite subfamily of @ , then all these finite sub-
families taken together make for a single finite subfamily of ¢ that covers
KN(Uz,) = K, which is ruled out by what we have supposed. Therefore, the
intersection with K of at least one of the 2-balls in 7, call it B;, cannot be cov-
ered by a finite subfamily of ¢. Being bounded, KNB, can be covered by a finite
family 7, of %—balls centred at points of KNBy, according to Proposition 2-5.3.
By the same argument again, if the intersection with K of each of the finitely
many %-balls in 7, can be covered by a finite subfamily of ¢ , then all these
finite subfamilies taken together make for a single finite subfamily of ¢ that
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covers KN(U%,) 2 KN(KNB) = KNBy, contrary to our choice of B;. Therefore
the intersection with K of at least one of the %-balls in 7%,, call it B,, cannot be
covered by a finite subfamily of ¢. It follows that B, cannot be covered by a
finite subfamily of . Being bounded, KNB, can be covered by a finite family of
%-balls centred at points of KNB,, according to Proposition 2-5.3.

Continuing in this manner, we obtain a sequence of 2;,, -balls B, such that,

for each pe N,
q B, cannot be covered by a finite subfamily of (1)
an
B, is centred at a point of KNB,,. ()
Let {x,},21 be the sequence of their centres. By (2), each x, belongs to K and
[|x,01 = x| < # . Therefore, for p > g, we have

p-1 p-1 1
X=X < X (IX1—x, || < X 7T < a2,
r=q r=q
which shows that {x,},> is a Cauchy sequence. By Theorem 2-2.10, it con-
verges and its limit x belongs to K, as K is closed. But ¢ is an open cover of K
and therefore x € U for some U € %. Since U is open, for some € > 0, the e-ball
centred at x is a subset of U. Now select some p, € N such that

[0 = < % aswellas  Hpy < 3
This integer p, has the property that
L e € _
1y =2pll < 20T |y =xll < |y =2pl[ + 15 =Xl < S+5 = € = yeU.
2

2

Consequently, the ball B, is covered by the subfamily {U} of # consisting of
the single set U, which is not possible in view of (1). This contradiction proves
the converse. O

The following concept will be needed in Sections 3-3, 3-5 and 4-4.

2-5.8. Definition. A subset E of R" is called convex if, whenever a and b are in
E and A is any real number such that 0 < A < 1, the vector b+ Ma —b), or what
is the same thing, Aa +(1—A)b is also in E.

It is an elementary argument in R" that any ball is a convex set.

The following proposition will be needed in Section 4-4.

2-5.9. Proposition. [f'a convex set is a union of two disjoint open sets, then one
of the open sets must be empty.
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Proof. Let B < R" be a convex set. Suppose, if possible, that there exist open
sets U and V such that

UUV=B, UnV=0, U%#D, V. (1

Since U and ¥V are both nonempty, there exists some a € U and some b € V. By
convexity of B, we have Aa+ (1-A)b € B whenever 0 <A< 1. When A =1, we
have Aa+(1-A)b = a € U. Therefore, {A € [0,1] : Aa+(1-A)b € U} is
nonempty and bounded below by 0. Let Ay be the infimum of this set. Then

0<A<ho=Aa+(1-N)be U @)

Also, Ly €[0,1], so that c =Aga + (1-Ay)beB.
Suppose ¢ € U. Since b € V and UNnV = O, it follows that ¢ # b, and hence
Ao > 0. Since U is open, there exists some & > 0 such that

[x—c||<d=xeU. 3)

When A = ko—min{%,ﬁ},wehaveOSk<ko <1 and

[ha+ (1= b—c||=||(A=ho)a—(A—=No)b]
=l (A =Ro)a—b)| = A=Al la=b]

<%<8,

Therefore by (3), we have Aa+(1-A)b € U. But by (2), this is not possible,
because 0 < A < Aq. This contradiction shows that c¢ U.

Now suppose ¢ € V. Since a € U and UnV = O, it follows that ¢ # a, and
hence Ao < 1. Since ¥ is open, there exists some &'> 0 such that

lx—cl| <&'= xeV. @)
By definition of infimum, there exists some A such that

xosx<xo+ﬁ, 0<A<1 and Aa+(I-A)be U. (5)
Arguing as before, we can show ||Aa+(1-A)b—c|| < &' Therefore by (4), we
have Aa+(1-A)b € V. In conjunction with (5), this implies Aa+(1-A)b €
UNV, which is not possible, because UNV = . This contradiction shows that ¢
¢ V. Since it was already shown that ¢ € B and ¢ ¢ U, the equality UUV = B

stands violated, thereby establishing that (1) can never hold. O
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The convex sets that come within the purview of the above proposition are
necessarily open, because a union of open sets is open. However, the basic idea
carries over to other kinds of sets. The formal definition is as follows:

2-5.10. Definition. A subset E of R" is called connected if, among any two
intersections of open sets with E that are disjoint and have union equal to E, one
must be empty.

For an open set E, this is obviously equivalent to saying that among any two
open sets that are disjoint with union equal to £, one must be empty.

Problem Set 2-5

2-5.P1. Show that the union of a finite number of compact subsets of R" is com-

pact.

2-5.P2. Show that any ball in R" is a convex set.

2-5.P3. Let K < R" be compact and {x,},>; be a sequence in K. If x € R" has the
property that any subsequence of {x,},»; either converges to x or does not con-
verge at all, show that {x,},> converges to x. Show also that the hypothesis that
K is compact cannot be dropped.

2-5.P4. Show that the set of all points in R” for which every component is an
integer is not compact.

2-5.P5. Show that if a sequence {x,},» in R" converges to x, then the set
{x}U{x, : pe N} is compact.

2-5.P6. Show that 4 = {(x,y)e R? : x*—)* > 1} < R? is disconnected.

2-6 Continuity

So far we have seen how the concepts of convergence, open set and compact-
ness can be extended from R to R” by replacing the absolute value by the norm.
In this section we shall see that the same can be done with continuity and limits
of functions defined on subsets of R” with values in R".

A precise description of continuity of a real-valued function f at a point x of
its domain S R, with which the reader is undoubtedly familiar, is as follows:

Ve>0,38>0suchthat &S, |E—x|<d=|f(§)—f(x)|<e.

The definition of continuity when S is a subset of R” and the range is a subset of
R™ is the same except that absolute value is replaced by norm:



52 Functions Between Euclidean Spaces

2-6.1. Definition. For any subset S € R", a map f: S—>R" is continuous at a
point xe S if:

Ve>0,38>0such that E€ S, ||E—x|| <8 = ||f(E)— ()| <e.

If we denote § — x by 4, so that & = x + h, then continuity of fat x can be re-
formulated as

Ve>0,38>0suchthat x+heS, ||h]|<d=|flx+h)—fx)|<e.
It is understood of course that the same symbol || || is being used for the norms
in R" and R™. By Proposition 2-2.6, it makes no difference which norms we use.
It is useful to reformulate continuity of f at x in terms of balls as below:

Given any e-ball B, about f(x), some 8-ball B, about x satisfies f(SNB;) <
B,.

A map f: S—>R" which is continuous at each point of its domain S is said to
be simply continuous, or for emphasis, continuous everywhere.

Remark. If f is continuous at a point x, so are || f]| and o.f, where o is any real
number; if g is also continuous at x, then the sum f+ g and inner product f*g are
continuous at x. Also, if the composition gof is defined, f is continuous at x and
g is continuous at f(x), then gof is continuous at x. These easily proven facts are
called ‘elementary properties’ of continuous functions and will be used freely
without reference.

2-6.2. Examples. (a) Perhaps the simplest example of a continuous map from R”
to IR, other than a constant, is f(x) = x;, the jth component of x € R". To prove its
continuity formally at a point x € R”", consider any € > 0. We must show that
some 0 > 0 has the property that

[All <8 = |(x+h);—x;| <€,
ie., [|A]| <& = |hy|<e.

One such & is none other than & = €, which is to say that
|7 <e=|h| <e.
This is true in view of the fact that
[l < 2ll-

(b) Consider the map from R* to R defined by f(x,y) = xy. We shall use the
norm || [l on R, so that ||(h, k)|| = N(h* + ). Since |hl,|k| < N(h* + K?), we have

G+ hyy + k) = fp)| = ke + hy + hk| < (x| + |y ] + [ KNG + 1),
For ||(h, k)|| = (h* + k*) < 1, we have |h| < 1 as well as |k| < 1, and hence
|f0r+ oy +B) = fGe )| < (x| + ]+ DVG? + 8).

Therefore, the positive number
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0=min <1, S
|x[+]y]+1

has the property that ||(4,k)|| = V(4> + i*) <& = |f(x + h,y + k) — f(x,y)| <Ee.
Note that & depends upon (x,y) and €.

(c) By (a), the functions from R* to R that map (x,y) into x or into y are both
continuous. It follows from ‘elementary properties’ of continuous functions that
the function f discussed in (b) is continuous, as are functions described by poly-
nomials in x and y or by expressions such as e*sin (x +)?).

(d) The function f on R? defined by f(x,y) = xy/(x* + %) for (x,) # (0,0) and
£(0,0) = a (any real number) is not continuous at (0,0). In other words, there
exists some 1 > 0 such that no matter what positive & we take, some (A, k) € R
satisfies

We shall use the norm || ||; on R% so that ||(4,k)|| = | k| + |k|. To begin with, let b

be a real number such that »/(1 + b%) # a and let
_|_b
21] = ‘ sz— a | > 0.
For (h,k) = (h,bh), we have

l|(h, k) = (0,0)[| = [|(h, O = [|(h, bh)]| = (1 + [b]) | A|
and

W)~ f0,0) = |fthk) —al=| =L —a|=|—b__4|-2
(k) = 0,00 = |f(hk) = al = | 52 —a| = | {5 —a| = 2.

This shows that, if (h, k) € R* is such that k = bk and 0 < | k| < 8/(1 + |b|), then it
has the property claimed for it.

2-6.3. Definition. 4 limit point of a nonempty subset A  R" is an element x €
R" (Which may or may not belong to the subset) such that, for every & > 0, the
ball {te R": ||t —x|| < 8} contains at least one element that belongs to the set A
but is different from x; in alternative formulation: for every & > 0, there exists t
€ A for which 0 <||t —x|| <.

An isolated point of a nonempty subset A < R" is an element of R" which
belongs to A but is not a limit point of it.

Examples of limit points when n = 1 are given in Shirali and Vasudeva [23,
9-1.2]. Here we mention three examples when n > 1.

2-6.4. Examples. (a) Let 4 contain the set obtained from a ball of radius » by
deleting the centre x, i.e., A D {t€ R": 0 <||¢—x]| <r}. Then x may or may not
belong to A but is a limit point of 4. This is so because the ball {r € R" : || — x]|
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< 8} contains the element ¢ = x + sh, where 4 is any element of R" with ||| = 1
and s is any real number such that 0 <s <min {r,d}. Here || — x|| = ||sh|| = s.

(b) Let 4 be either the ball {e R": ||#]| <r} or the ball {re R": ||#]| <r}. Any x
such that ||x|| = r is a limit point. To see why, consider any 6 > 0 and let 0 < s <
min {1,% }. Then the element ¢ = (1 — s)x satisfies ||¢|| < r while || — x|| = ||sx]|| =
srsothat 0 <|[f—x||<9d.

(c) Let A= {(x,y) € R? : y# 0}. Then for any a € R, (a,0) is always a limit point.
In fact, the ball {(x,y) € R*: ||(x,y) — (a,0)|| < 8} contains the point (a,% ), which
is different from (a, 0) and belongs to 4.

2-6.5. Definition. Let x be a limit point of the domain A < R" of a function f
with values in R™. An element . € R"™ is called a limit of f at x if and only if for
every € > 0, there exists &> 0 such that

fGx+h)—A|<e whenever 0<|h||<d and x+heA.

In symbols,
Ve>036>0 > heR",0<||h||<dandx+hed = | f(x+h)—A|<e.

The limit of f at x is also called the limit of f(7) as t—x.

As in the elementary case, there cannot be two distinct A with this property,
the reasons being analogous to why a sequence cannot have two different limits.
Details are left to the reader, but we note here that the argument uses the fact
that x is a limit point of 4. Thus the limit, if it exists, is unique. Therefore we
shall henceforth refer to it as the limit of /at x, and shall denote it by lim f(2).

As is customary, we also write f(f)—A as t—x, if it is convenient to do so.

It is sometimes more convenient to express the above definition without ex-
plicit reference to /4 by introducing ¢ = x + A:

Ve>0 36>0 5> Vied, 0<|t—x||<d = |f(H)—A|<e.

2-6.6. Examples. (a) Let f be defined on the domain {(x,y) € R* : y # 0} as
f(x,y) =xsin(1/y). As seen in Example 2-6.4(c), (0,0) is a limit point of the do-
main. We shall show that the limit of f'at (0,0) is 0. Indeed,

[[/(x,y) = 0l = [xsin (1)) < |x[ < [|(x, ) = (0,0)]].
Therefore, for any € > 0, the positive number 6 = § has the property that
IGe,») = (0,0)]| <& = || f(x,y) - 0| < & <e. So, the limit is 0, as claimed.

(b) The real function f defined by f(x,y) = xy/(x* +)?) for (x,y) # (0,0) has no
limit at (0,0). In other words, for any real number «a, there exists some 1 > 0
such that no matter what positive 8 we take, some (A, k) € R? satisfies
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||(h>k)_ (OyO)H <98 but |f(hsk)_ a| 2 n.
The argument is exactly as in Example 2-6.2(d).
Note however that for each y # 0, )1[1_1’)13 f(x,y) =0, so that the ‘repeated limit’
lim [lim /()]
exists and is 0. The same is true of the other repeated limit in which the limit as

y—0 is taken first. [Cf. 2-6.P2].

2-6.7. Proposition. Let x be a limit point of the domain A < R" of a function f
with values in R". Denote the component functions of f by f;, 1 <j < m, which is
to say,

f(ll,tz,...,[n):(ﬁ(ll,tz,...,[n),fz(l‘l,l‘z,...,tn),...,ﬁ,,(tl,tz,...,[n)).
Then lim f(¢) = Le R" if and only if lim f{(?) = A, for each j.

=X

Proof. For any choice of norm in R", we have |f(¢) — Aj| < || f(¢) — Al|. Therefore,
if lim f(#) = A, it follows that lim f(#) = A, for each j.

For the converse, suppose lim fi(#) = A, for each j and consider any € > 0.
For each j, there exists §; such that

0 <lt— x| <& =1 £ (0~ lim (0] <e.

I—x

Set 8 = min {9y, ...,0,} > 0. Then
0 <|[t—x|| <& = |f (1) - lim fi(t)| < & for each j
= max {|f,()) - | : 1</ <m} <e
= I/ - M. <e.

By Proposition 2-2.6, such a § exists for the other two norms as well. O

2-6.8. Examples. (a) Let f map {(x,y) : y # 0} into R” as follows:

fx,) = (xsin(1p), 1 +y7 exp(-157)).

Since x sin(1/y) and 1 + y~ exp(—1/y*) have limits 0 and 1, respectively, at (0,0),
it follows by the first part of Proposition 2-6.7 that / has limit (0,1) at (0,0). In
other words, f(x,))—(0,1) as (x,)—(0,0).

(b) Let f map {(x,y) : (x,») # (0,0)} into R? as follows:

fx,p) = /(¥ + 7). ).
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Here xy/(x* + y*) has no limit at (0,0), as seen in Example 2-6.6(b). Therefore it
follows by the second (converse) part of Proposition 2-6.7 that /" has no limit at
(0,0).

2-6.9. Remark. Suppose f is a function with domain 4 having a limit point x,
and lim f(#) = L. Let f3 denote the restriction of / to a subset B of 4, and sup-
pose x is a limit point of the subset B as well. Then it is clear that lim f5(7) = A.
Indeed, for every € > 0, there exists & > 0 such that

O<|lhl|<dandx+hed = ||f(x+h)—A||<e.
Since B C A4, it is certainly true that

0<||h||<dandx+heB=|f(x+h)—Al|<e
and hence that
0<||h||<dandx+heB=| fas(x+h)—A|<e.

Since x is a limit point of B, this means that lim f3 () = A. In practice, it is too
cumbersome to introduce the notation for the subset B and the restriction f5.
These will be taken as understood and no explicit reference to the content of this
remark will be made.

2-6.10. Proposition. Suppose that x is a limit point of the domain A C R" of an
R™ valued function f and that x € A. Then f is continuous at x if and only if
lim f(¢) exists and equals f(x). In case x is an isolated point of A, every R" val-
ued function f with domain A is continuous at x.

Proof. The first part is an immediate consequence of the definitions of continui-
ty and of limit. Suppose x is an isolated point of 4. Then x € 4 and there exists &
> ( such that the ball {re R": || —x|| < 8} contains no element of A that is dif-
ferent from x. Therefore ||A]| <&, x+he A=>x+h=x=|f(x + h) - f(x)|=0.
Consequently, for any € > 0,

[l f(x + ) — f(x)|| <& whenever ||h]| <& and x+heA.
Thus, £ is continuous at x. (|
While working with the definition of limit, we can usually omit writing

‘x+he A’, because the subsequent reference to f(x + /) makes it clear that x + 4
is intended to be in the domain of /.

Remark. If }g‘g f(?) exists, then so do }g‘g |l./(®)]| and }213 (o), where o is any
real number; moreover }er; LD = ||}i£r; f(®)|| and pﬁn} (af) = Ocliﬁn} f(). If
}g‘g 2(?) also exists, then }1_1)1}( f+g)and }1_1}1)3( fg) exist as well; moreover,

lim(f+g) = lim f()+limg() and  lim(/-g) = (lim f(0)-(lim g(1)).
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These results about limits of sums, products, dot products and so on, are proved
Just as easily as in the case of R. So also the results that (a) if lim f(7) exists,
then /" is bounded near x, and (b) if the lim f(¢) # 0, then || f]| is greater than
some positive number near x except possibly at x. They will therefore be taken
for granted and used without further ado. Proofs in the case of R may be found
in Shirali and Vasudeva [23, Propositions 9-1.7 and 9-1.9].

A function f defined on a subset S ¢ R" with values in R™ is continuous at x
€ § if for every € > 0, there exists a 8 > 0 such that || f(§) —f(x)|| < € whenever
|IE—x]|| < &. In general, we cannot expect that for a fixed € the same value of &
will serve equally well for every x in S. This might happen. If it does, the func-
tion is said to be uniformly continuous on S. More precisely, we have the
following definition.

2-6.11. Definition. For any subset S C R", a map f: S—>R" is uniformly conti-
nuous on S if:

Ve>0386>0 > eS8, xS, |E—x][<d = |[/()—fv)| <e.

2-6.12. Examples. (a) Any constant function is trivially uniformly continuous. It
is just as trivial to argue that the identity map 7 such that /(x) = x for all xe R" is
uniformly continuous (take d = €).

(b) The function f on § = R" given by f(x) = ||x|| is uniformly continuous. This
follows from the fact that |||x||—|[y||| < ||x—y|/, whichever norm || | we may
use.

(c) Functions that are not uniformly continuous on R" can be made up at will
from the known instances in the single variable case by employing 2-6.P9.

2-6.13. Theorem. 4 function continuous at each point of a compact subset of R"
is bounded. If real-valued, it has a maximum value and a minimum value.

Proof. Let K < R" be compact and f/: K—R"™ be continuous at each point of K. If
/ is not bounded, then for each p € N, there exists x, € K such that || f(x,)|| > p.
The sequence {x,} > then satisfies

x,eK foreachpeN (1)
and

| fGx,)|>p  foreachpeN. )

By (1), Theorems 2-5.2 and 2-5.7, the sequence {x,},>; has a convergent subse-
quence {qu}qzl with limit x belonging to K. Since f'is continuous, it follows that
the sequence {f1 (x,,q)}q21 converges to f(x) [see 2-6.P7] and is therefore bounded.
But this contradicts (2). Therefore / must be bounded.

Now let M = sup {f(x) : x € K}. If f(x) <M for all x € K, then 1/(M—f(x))
defines a continuous function on K that has no upper bound, in contradiction
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with what has just been proved. Therefore f(x;) = M for some x, € K, so that f
has a maximum value, namely, M. Similar considerations show that f'also has a
minimum value. U

2-6.14. Theorem. A function continuous at each point of a compact subset of R"
is uniformly continuous on it.

Proof. Let K  R" be compact and f: K—R" be continuous at each point of K. If
£ is not uniformly continuous, then

3 &> 0such that V 8 >0, some & € K, x € K satisfy

[E—x[| <8 and [f(C) /().

Taking 0 = % , where p € N, we get sequences {x,},> and {&,} > such that

x,eK foreachpeN, (1)
E,eK foreachpeN, )
1&,~x /<L foreach peN 3)
p
and
I/, —f(x,)| =€  foreachpeN. 4)

By (1) and Theorems 2-5.2, 2-5.7, the sequence {x,},> has a convergent subse-
quence {qu}qzl with limit x belonging to K. By (2) and Theorems 2-5.2, 2-5.7,
the sequence {épq} 41 has a convergent subsequence {épqr}rzl with limit  belong-
ing to K. The corresponding subsequence {qur}rZI of {x,,q}qZ, then also converges
to x. It follows from (3) that

x=& (5)
and from the continuity of / that the sequences {f(ﬁpqr)}@ and {f(qur)}rél con-
verge to f(§) and f(x), respectively [see 2-6.P7]. In view of (4), we have

Hf(ipqr) —f(qur)H >¢ foreachreN

and hence || f(§)—f(x)|| = €, contradicting (5). Therefore /" must be uniformly
continuous. O
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Problem Set 2-6

2-6.P1. Let x be a limit point of the domain 4 < R" of a function f with values
in R"™. Suppose y € R™ and §, Kare positive numbers such that ||f{t)—y|| < K
whenever 0 < [|7—x|| <8 and t€ 4. If lim f(#) exists, show that [[lim f(#) -y < K.

—>x

2-6.P2(a). Suppose x = (a,b) is a limit point of the domain § < R"<R" of an R*
valued function f'and that lim f(7) exists. Since € R"<R", it will be convenient
to denote 7 by (u,v), where u € R" and v € R". Assume there exists a positive
number W such that 1V1_r)rg f(u,v) exists whenever |u—al|| < Q. Show that
}ll_rg [lvl_r)rg S(u,v)] exists and is equal to lim f(7). Is it true that if there also exists a
positive number v such that Lgn; f(u,v) exists whenever ||[v—b| < v, then the
‘repeated’ limits 1i_r>n [1i_r>rg f(u,v)] and li_r)rg [1i_r>n f(u,v)] both exist and are equal
to lim f(#)?

(b) Verify the result of part (a) for

%sin(xy) x#0,y#0

foey) =
0 x=0o0ry=0.

2-6.P3. For the function f of Example 2-6.6(a), show that il_r)% [}Cl_r)r& f(x,)] does

not even make sense even though the other repeated limit exists and agrees with
the limit as (x,))—(0,0).

2-6.P4. Show that any function /: R>>R such that

X5 1 9xp? —9x2yt _ 3
(o +5%)

foy) = when (x,y) # (0,0)

cannot be continuous at (0,0), whatever the value of f(0,0) may be.

2-6.P5. For the function /:R* >R defined by f(x,y) = x’y, prove continuity at
(xv,») by showing how to find & > 0 for a given € > 0 so as to ensure that ||(4, k)|
=N+ ) <8 = | flx+ by + k)~ flxy)| <e.

2-6.P6. Let f: R*>R be defined as follows:
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3

o x;_i = (x,») #(0,0)
x,y =
0 (x,5)=(0,0).

Show that f'is continuous.

2-6.P7. Show that a map f:S—R", where S ¢ R”", is continuous at a point x € S if
and only if for any sequence {s,},> in S converging to x, the ‘image’ sequence
{f(s,)} 21 converges to f(})i_r}l;lc Sp)-

2-6.P8. (a) Show that the map f:R*>R? given by f(x,x;) = (Ixi|,X,) is conti-
nuous.

(b) For the (continuous) map f:R*—R* given by f(x;,x,) = (|x],x2), give an ex-
ample of a boundary point u of £ = {(x;,x,) € R? : =1 < x, <2} such that f(u) is
an interior point of f(E).

(¢) Let E ¢ U < R”, where U is open, and let f/:U—R" be continuous. If f is
injective, show that u € UNJE = f(u) € I(f(E)), i.e., f(UNIE) C I(f(E)).

2-6.P9. Show that a map f:S—R", where S < R”, is uniformly continuous on §
if and only if each component function f; is uniformly continuous on S.

2-6.P10. Let g:R— R not be uniformly continuous. Show that the function
f:R">SR" defined by f(xi,...,x,) = (g(x),0,...,0) is also not uniformly conti-
nuous.

2-6.P11. Show that a map f:S—R", where § < R”, is continuous everywhere if
and only if for any open set ' R”, the inverse image

F(V)=1{xeS: f(x)eV} (by definition)
is the intersection of S with some open set U < R".
2-6.P12. Let K < R” be compact and /:K—R"™ be continuous at each point of K.

Show that f(K) < R™ is compact. (This is usually paraphrased as: A continuous
image of a compact set is compact.)

2-6.P13. Let X < R” be bounded and f: X—R"™ be uniformly continuous on X.
Show that f'is bounded.

The result of the next problem can be obtained as a consequence of the follow-
ing two results: (1) A continuous image of a connected set is connected (2) A
connected subset of R is an interval. But here we ask for a direct proof. The re-
sult will be needed for 6-4.P7.

2-6.P14. Let X < R" be connected and f/: X—R be continuous. Show that f{X) is
an interval.

2-6.P15. If the function f:[a,b]x[c,d]—R is continuous and g:[a,b]—R is Rie-
mann integrable, then
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F(y)= [0 g f(x,) dx

is defined for every y € [c,d] and the function F thus defined is continuous on

[c.d].

2-6.P16. Let x be a limit point of the domain 4 < R" of a function f with values
in R™. Show that f cannot have two distinct limits at x.

2-6.P17. [Needed in Proposition 7-4.13] The distance of a point x € R" from a
nonempty subset S ¢ R" is defined as d(x,S) = inf {||x —s|| : s € S}. Show that it
is a continuous function of x.

2-6.P18. [Needed in 3-4.P23] Let 0 < 0. < 1 and ®:[0,1]x[0,1]—R> be defined as
D (u,v) = (1-0(2u—1)sinmv)cos2nv, Dy(u,v) = (1—o(2u—1)sinmv)sin 27y,
D3(u,v) = a(2u—1)cosmy.

The range of ® is known as the ‘Mdbius band’. Show that
(a) D(u,1)=D(1-wu,0) for all ue[0,1];

(b) if (u,v) # (u',v") but ®(u,v) = ®(u',v"), then u = 1—u' and one among v,v"is
0 while the other is 1.

2-7 Norm and Invertibility of a Linear Map

So far, we have discussed limits and continuity in R” on the basis of the norm,
which played a role analogous to that of absolute value in R. In this section we
introduce a similar concept in the set &R",R™) of all linear maps from R" to R".
Although it is defined in a manner that bears little resemblance to the definition
of norm in R”, it is denoted by the same symbol and plays a similar role. In par-
ticular, we can speak of convergence, open set, continuity and the like in the set
of all linear maps. What is more, the norm in £R",R™) has a relation to compo-
sition of linear maps, because of which its usefulness extends beyond being a
mere analogue of the norm in R".

We shall obtain a few facts about the set R",R™); for example, that each
element of it is bounded on the set {x € R": ||x]| < 1}. As discussed earlier, an
element of £R",R") can have an inverse in the same set. We shall show, among
other things, that the subset consisting of elements having inverses is open. One
of the results below is that, not only does the identity have an inverse (namely,
itself) but also elements ‘close to’ the identity have inverses. We shall also prove
that inversion is continuous.

2-7.1. Theorem. For any linear map A:R"—R", sup {||4x|| : ||x|| < 1} is finite

i . .
and does not exceed > || 4e;||, where ey, e, ..., ey is the standard basis of R".
= )
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Proof. For any x = xje; + xpes + - + x,e, € R" (where x1,x5,...,x, € R, of
course), we have [x| < ||x|| for 1 </ < n regardless of which of the three equiva-
lent norms is used. It follows that

x| <12 5 (e < 2, Py el < 2, Il gl =[xl (E e ).
Therefore, ||x]| < 1 = || 4x|| Sé] ||4e;||. It follows that

sup {{lAx] = [lxf| = 1} < 2 |l 4e]- O

2-7.2. Definition. 7he norm of a linear map A:R"—>R" is

sup {||4x]| : [|x[l = 1}
and is denoted by || A|).

Since x/||x|| has norm 1 when x # 0, it follows from the above definition that

()

holds trivially when x = 0. Therefore, we conclude that

< ||A|| and hence that || 4x|| <||4]|||x|| for x # 0. However, this inequality

[[Ax|| < ||4]]]|x|| whenever xe R".

This inequality will be used without quoting any reference.

One can now reformulate Theorem 2-7.1 as saying that the norm of a linear
map A is always a finite real number, which is nonnegative of course, and that it
n . .

does not exceed /21 ||4e;||, where e, e, ..., ey is the standard basis of R".

Note that ||4]| =0 if and only if 4 = O.

2-7.3. Examples. (a) Recall the example of a linear map 4:R"—>R"” with n=m =
1 given in Example 2-3.2(a), which was x— ax, where a € R is fixed. Since ||ax]||
= |ax| =|a||x| = |al||x]||, the norm of this linear map, which by definition, is

sup {[|ax]| : [[x[| <1},
works out to be |a].
(b) For the linear map of R into R” given by x— xb, where b € R" is fixed (Ex-
ample 2-3.2(b)), the norm is ||»||. This can be seen from the equality ||xb|| =
[x][|b]] = ||x]|||&]|, which has the immediate consequence that sup {||xb|| : ||x]|| <
1} =|o]].
(c) For the linear map from R" to R given in Example 2-3.2(c), which was
x—z-x (dot product), where z € R" is fixed, the norm is ||z||, provided that we
use the norm || ||, in R”. To see why, note that ||zx|| < ||z|2||x||», by the Cauchy—
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Schwarz inequality, and that when x = z/||z||,, assuming z # 0, we have ||x|, =1
while ||zx|| = ||z||2. In case z = 0, it is clear that the norm of the linear map
x—z-x is 0, while ||z||, is also 0.

(d) Let A:R*—>R? be the linear map A(x;,x,) = (x; + x2, 0). Suppose that in R?
we use the norm [0, x)| = [xi| + |xal. Then [14(x, %) = | + x| + 0% x| +
[x2] = ||(x1,x2)||. Therefore ||4|| = sup {||4x|| : ||x]| < 1} < 1. But since ||4(1,0)|| =
[l +0|+0=1=]|(1,0)||, we actually have || 4|| = 1. Next, suppose instead that we
use the norm |[|(x;,x,)|| = max {|x;|,|x2|}. Then ||4A(x,x,)|| = max {|x; + x,],0} =
[x1 +x2] < 2max {|x1],[x2]} = 2|(x1,x2)||. Therefore ||4|| = sup {||4x|| : [|x]| < 1} <
2. But since ||A(1,1)|| = max {|1 + 1|,0} =2 = 2J|(1,1)||, we actually have ||4]|| = 2.
This illustrates how the norm of 4 can depend on which norm is being used in
the domain and which in the range space.

(e) Let A:R*>SR? be the linear map A(x;,x;) = (x; + x2,x; — x3). In the domain
RR? we shall use the norm ||(x;,x,)|| = max {|x;|,|x2|}, but in the range space R,
we shall take [|(y1,),)]| to be V(1> + y2°). Then [|[A(x, x| = (x + x)* +
(61— x2) = 20617 + x22) < A(max {| x|, |xal})>. Therefore [|A] = sup {[|4x]] : [|x]| <
1} <2. Butsince [|A(1,1)|| =+[(1 + 1)*+ 0] =2 =2||(1,1)||, we actually have || 4|
=2.

2-7.4. Theorem. A4 linear map A:R"—R™ is uniformly continuous.

Proof: If ||4|| = 0, then 4 = O and is therefore uniformly continuous. So, suppose

|4]] > 0 and consider any two points & and x of R”. By linearity of 4,

[ 4(E) = A = [[AE = x)|| < | 4][[|E — x|
For any given € > 0, choose & = €/||4||. Then
€= x| < 8= [14() — A(x)I| < [|4]|&/||4]| = &.

Thus 4 is uniformly continuous. O

We have noted before that, with regard to addition and multiplication by
scalars, linear transformations behave like vectors. The next theorem shows that
they behave like vectors even with regard to the norm.

2-7.5. Theorem. Suppose A and B are linear maps from R" to R™ and that A €
R. Then

[4]| =0 A4=0;||4+B|| < ||A[l+]Bl; [IA4]| = [A]|4]].
Proof. That ||4|| = 0 & 4 = O has been noted before and is trivial to prove.

For any x € R" with ||x]| <1,
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(4 + B)x|| = || Ax + Bx|| < [|Ax|[ + [|Bx|| < [|4]| +[| B|.
Therefore ||A||+ || B|| is an upper bound of the set {||(4+ B)x|| : ||x|| < 1}. Thus
4+ B| <[l 4][+B]|.

Since ||(A4)x|| = |A|||4x||, then the set {|[(A4)x]| : ||x|| < 1} is obtained from
{||4x|| : ||x]] £ 1} by multiplying each number in the latter by |A|. It follows that
the sup of the former set is |A| times that of the latter set (this is an elementary
consequence of the definition of sup and should have been encountered by the
reader while studying the concepts of sup and inf). But the two sups are, respec-
tively, ||A4|| and |A|||4]|, by definition of the norm of a linear map. Therefore

A4 =114 O

As mentioned in the opening paragraph of this section, the set of all linear
maps from R” to R” will be denoted by the symbol £R",R™).

For a sequence {4,},> of linear maps, convergence to a limit and the
Cauchy property are defined analogously to Def. 2-2.7 and Def. 2-2.9. The ele-
mentary properties mentioned for vectors just after Def. 2-2.7 carry over to
linear maps exactly as they do for vectors. In particular, a convergent sequence
of linear maps is ‘bounded’. The analogue of Theorem 2-2.10 (Cauchy com-
pleteness) can be obtained without going through anything similar to Proposition
2-2.8. The following result can be phrased as ‘§(R",R™) is Cauchy complete’.

2-7.6. Theorem. Any Cauchy sequence of linear maps converges to some linear
map.

Proof. Let {4,},1 be a Cauchy sequence of linear maps 4,:R"—>R". We shall
define a map A:R"—R" and argue that it is linear and that 11m A, = A, which is
to say, for any € > 0, there exists a natural number N such that

p=N = |4,-4||<e
In order to define 4, consider any x € R". The sequence {4,(x)},>; in R" is
Cauchy because ||4,(x)—A4,X)|| = [[(4,—A4)®)|| < [|4,—4,|lx|l. But R is
Cauchy complete by Theorem 2-2.10. Therefore {4,(x)},>1 converges to some
limit in R™. We define A(x) to be this limit. We have A(x +y) = A(x) + A(y), be-

cause
Alx+y) = }E’E{, Ax+y)= ;131, (Ap(x) + 4p(»))

= lim A,(x) + lim 4,0) = AG) + A,

A similar argument shows that A(cx) = cA(x). Thus, 4 is linear. It remains to
show that ;151010 A,=A.

For any € > 0, there exists a natural number N such that
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p2N,g2N = |4,-4)<5 = [(4,~4)®)| <5 for|x|]|<1
= 4,00~ A4,0)l| <5 for x| <1,
whence, by taking the limit as g—oo, we find that
p2N = [40)-A®|<5  for|x(|<1
= ||Ap—A||S% by Def. 2-7.2.
Thus, ;1330 4,=A4. O

Since it follows by the usual argument from Theorem 2-7.5 that
|14l =114l < ||4,—A]|, we can further obtain that ;iLI}eA!’ =4 = ;15130 4, =
4]

2-7.7. Theorem. Suppose A:R"—R" and B:R"—R” are linear maps. Then
1BA[l < || Bl[[4]]-
Proof. Consider any x € R” with ||x|| £ 1. If 4x = 0, then (B4)x = B(Ax) = B0 =

0 and ||(BA)x|| = 0 <||BJ|||4]|. If A4x # 0, then ||Ax|| > 0 and the vector Ax/||Ax||
has norm equal to 1. Therefore,

1B(Ax/||Ax|DII < [|B][

so that, from the linearity of B, it follows that ||B(4x)|| < || B||||Ax||. But (BA)x =
B(A4x) and || 4x|| < ||4]| (because ||x|| < 1). Therefore,

[(BA)x[| <[ BI[| ]
This shows that || B]|||4]| is an upper bound for {||(BA)x]|| : ||x|| < 1}. It follows
from here that || BA|| < || B||||4]|. O

The preceding theorem is used frequently and it is customary to use it with-
out quoting it or giving any reference.

2-7.8. Theorem. If {A,},>1 and {B,},» are convergent sequences of linear
maps, then}i_}rl}m (4,8,) = (;L}mn Ap)(’}i_r)go B,).
Proof: This is proved exactly as in the real case by using the fact that a conver-

gent sequence of linear maps is bounded, together with the following
consequence of Theorem 2-7.7:

14,8, = AB|| < [|4,|[IB, — B[ + || BIlI4, ~ Al O

2-7.9. Remarks. (a) Suppose the linear map 4 € £R",R™) has matrix [a;;]. As
noted after the definition of the norm of a linear map, ||4|| < %;||4e;||, where
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e, e, ..., ey is the standard basis of R". In terms of the matrix [g;;] and stan-
dard basis f;, ...,f, of R", we therefore have

14 < ZZi a1 fill = X% |-
Moreover, by definition of matrix of a linear map, we have a;; = (4e;); for any
i,j (1 <i <m, 1<j <n). Therefore,
|aij| = [(Aepil < [|dejl| < |4l lle:l] = |4l

The two inequalities displayed above have the following consequence: Suppose
that 4 is a mapping from a subset £ of R" into &R", R™), not necessarily linear,
and that 4(x) has matrix [a;;(x)]. Then A4 is continuous at a point of £ if and only
if all the mn R-valued functions a;; are continuous there. Indeed, the hypothesis
that 4 maps into £R",R™) implies that A(x)—A(y) € &R",R™) and has matrix
[a;;(x)—a;;(y)]; therefore, for any x,y e E,

[AG) =AW < X, Zi | ai;(x) —a;;(v)|
and

laij(x)—ai;(y)| < [[A(x) = A
This is so, irrespective of which norm is used in R” and R”. (The norm ||4|| of a

linear map A4 is defined in terms of the norms in R" and R™ and its value there-
fore depends upon the norms chosen in the latter.)
(b) Now suppose A:E—>KR",R™) is continuous and B € LR",R”). Then there is
a map C:E—>LR",R”) given by C(x) = Bo(A(x)). Since the linearity of B and
A(x) implies

1CC) = COI < [|B][[|[Ax) —A(y)l| ~ forany x,y€ E,

the map C is seen to be continuous. The reader is cautioned that C is not a com-
position of the continuous map A4 with B, because such a composition is not even
possible, considering that the domain of B is R” while the range of 4 is a subset
of &R",R™). Therefore the reason for the continuity of C is not that a composi-
tion of continuous maps is continuous.

The following proposition shows that linear maps which are ‘close to’ the
identity map have inverses.

2-7.10. Proposition. Suppose 4 € &R",R") satisfies || A|| < 1. Then the map I—
A, where I denotes the identity map given by I(x) = x for all x € R", has an in-
verse. Moreover, its norm satisfies ||(I—A)™"|| < 1/(1—||4])).

Proof. Consider the sequence {B,} s in £(R",R") given by
B,=I+A+ - +4"". (1)
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It satisfies B,(/—A4) = (I—A)B,=1—A”. By Theorem 2-7.7, ||A”|| < || 4| and we
know from elementary analysis that || A|’—0 as p—eo, because ||A|| < 1. It fol-
lows that 11m A? = O. Therefore, if {B,},> converges, then its limit B must be
the i mverse of I—A. In order to show that {B,} > converges, it is sufficient, in
view of Theorem 2-7.6, to argue that it is a Cauchy sequence. But this is a con-
sequence of the following computation for p > ¢, in which we use both (1) and
Theorem 2-7.7:

1By = Byll = [|47 + -+ A7 S [IA°)| + - + 47
YA+ -+ AP < A= (1AL
A similar computation yields ||B,|| < 1/(1 —||4]|). Therefore
IZ—4)"|| = Iim B[] = lim [|B,]| < 1/(1 —|4]))- O

The theorem below, which shows that the collection of invertible maps in
KR", R") is open, will be required later for proving the inverse function theorem
(Theorem 4-2.1).

2-7.11. Theorem. Let Q be the subset of R",R") consisting of invertible maps.
IfAeQand||B-A| <1/||47Y)|, then B € Q and

-1 47l
187 < - : (A)
(I=[[ 47| 4= BI])
Moreover, the map A—A"" of Q into itself is a continuous map.

Proof. First of all,

B=B-A)+A=AA4"(B-A4)+]). (1)
Moreover,

|4 (B=A)|<||A"|||B-4]|<1, by hypothesis.

Since ||-4'(B—A4)|| = ||[4”'(B—A4)|, it follows by Proposition 2-7.10 and from
the inequality above that A '(B—A4)+1 is invertible, and hence by (1), B is also

invertible.
Once again by Proposition 2-7.10, we have

1A B-A)+ D)7 <114 (B-A)]). (2
But 1 —||4(B—A4)||=1-||A""|||IB—A] > 0 and hence by (1) and (2), we have

BN <147 IA™ B=A)+ D)7 <147 =147 1B= A,
thus establishing (A).
It remains to prove that the map 4—4"' of Q into itself is continuous.
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Consider any 4 € Q and let | B — A|| < 1/2||4”"||. Then on the one hand, we
have ||B—A||[|47'|| <+ and hence 1 —||A'[||B—4| > 1, so that
1

<2 3)
(=47l 4= BI)
On the other hand, we have ||[B—A|| < 1/||47"]|, so that (A) holds. Now,
1B =47 =B~ B)A”| < || B|[I1B-Alll47
< A7 |B—A|||l47"|| because (A) holds
(1= 47l 4=B])

<2|B-All|4P by (3).

This implies the desired continuity. In fact, for a given € > 0, the number
& =min {1/2/|47"|,e/2]| 47"} > 0

is now seen to satisfy [|[B—A| <8 = |[B'-A4"|<e. O

For certain purposes, it is necessary to know the relation between the norm
|l4]|, when the norm of an element x of R" or R™ is taken as || x|, and the norm
||4].. when the norm of an element x of R" or R is taken as ||x||... In this direc-
tion, we have the following result:

2-7.12. Proposition. Let A:R"—>R"™ be a linear map and

= sup U e < 1Al = sup < 1
en
Al <m"™| Al and  [|A]l.<n"?|A],.
Proof. From Proposition 2-2.6, it follows that
[ Axlb <m'?dxl..  and  lx]le < [lx]2. (1
Let ||x||, < 1. Using both inequalities in (1), we get
1 4x]lo < m' || Axfl < " Al x ]l < "2 ALl x| < 2 Ao,

which implies that || 4|, < m"?|4]|... The other inequality follows by a similar
argument. (]

Problem Set 2-7

In the first four problems here, take the norm to be || ||, .
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2-7.P1. For the linear map A:R*>R? defined by A(x1,x2) = (x1 + x2,x] —Xxp), find
41
2-7.P2. For the linear maps 4:R*—R? and B:R*—>R?, defined by
A(x1,X2) = (X1 + X2, X1 — X2) and B(x1, x2) = (x1 +x2,0),

verify (by finding the norms involved) that || BA|| < ||B||||4]|.
2-7.P3. For the linear maps 4:R*—R* and B:R*—R?, defined by

A(xy, x) = (x1, —x;) and B(xy, xp) = (x; T x2, 0),
verify (by finding the norms involved) that || BA|| < || B||||4 |-
2-7.P4. Find the norm of the linear map of 2-3.P8.

2-7.P5. Let 4 be an invertible map in R” and ||4"'(B — 4)|| < 1. Prove that B is
invertible and that ||B7'|| < ||47'||/(1 - ||4'(B — A)|).

2-7.P6. If 4 and B are invertible linear operators in R” such that ||(B — 4)4'|| <
1, prove that ||B™'|| <||BA™'B7'||/(1 — ||(B — A)47"|)).

2-7.P7. Prove that, to every 4 € &R",R) there corresponds a unique y € R" such
that 4x = x-y V x € R". Note that, in view of Example 2-7.3(c), when we use the
norm || [l in R”, we have ||4]| =[]l

2-8 Double Sequences and Series

Given two series X, a,, and Z,b,, one can set up the ‘double series’ %, , f(m,n),
where f(m,n) = a,b,. Since the ordered pairs (m,n) can be arranged in a se-
quence in a variety of ways, each of them provides a way of converting the
double series into an ordinary series. The convergence and sum of the resulting
series generally depend on the manner in which the ordered pairs have been ar-
ranged in a sequence.

In this section we propose considering double series %, , f(m,n) that are not
necessarily derived from separate series X,a, and X,b,, and the question of
their ‘repeated’ limits. The material will not be used in the sequel and can there-
fore be omitted without loss of continuity.

2-8.1. Definition. By a double sequence we mean a function f defined on NxN
to some set X. If f(m,n) = a,, ,, (m,n) € NxN, it is customary to denote the se-
quence f by {am n}m>1.0>1. The values of f, that is, the elements a,, , are called
the terms of the sequence.

We shall be interested only in real or complex-valued double sequences.
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2-8.2. Definition. /f'/ € C, we write lim,, , f(m,n) = I and say that the double
sequence converges to [ if the following condition holds: For every € > 0, there
exists an integer ny such that

| f(m,n)—1| <e whenever both m = nyandn 2 ny.

It may be verified as usual that / is unique if it exists; it is called the double
limit of f(m,n).

In addition to the notion of double limit, there is the notion of repeated limit
(or iterated limit) as described below:

For each fixed m, assume that lim, f(m,n) exists; then the limit
lim,, (lim,, f(m,n)), if its exists, is called a repeated (or iterated) limit. In like
manner, one can consider the other repeated limit lim, (lim,, f(m, n)).

2-8.3. Example. Let f(m,n) = ﬁ , m,n>1. Then lim,, f(m,n) = 0 and hence

lim,, (lim,, f(m,n)) = 0. Also, lim,, (lim, f(m,n)) = 0. But f(m,n) =+ if m = n and

f(m,n) = % if m = 2n. So, lim,, , f(m,n) does not exist.

2-8.4. Proposition. If lim,, , f(m,n) = [ and the limit lim, f(m,n) exists for each
m, then the repeated limit lim,, (1im,, f(m,n)) also exists and has the value I.
Proof. Let I(m) = lim, f(m,n). For every € > 0, there exists n, such that

|f(m,n)—1| <% whenever both m >ngand n > ny. (1)
For each m, choose n(m) such that
|l(m) — f(m,n)| < % for n > n(m). (2)
Consider an m > n, and the corresponding n(m) as in (2) and choose n >
max {ng,n(m)}. Then the two inequalities (1) and (2) hold and hence
|l(m) — 1| < |l(m) — f(m,n)| + | f(m,n) — | <&, provided m = ny.
Thus, lim,, I(m) = 1. O

2-8.5. Remarks. (a) A similar result holds if we interchange the roles of m and
n.

(b) The existence of the double limit lim,, , f(m,n) and of lim, f(m,n) for every
m implies the existence of the repeated limit lim,,(lim, f(m,n)). Example 2-8.3
shows that the converse is not true.

We list below examples to illustrate various situations where the double
limit and the two repeated limits may not all be equal or where some of the lim-
its exist while others do not.
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1 ifnzm
2-8.6. Examples. (a) Let f(m,n) = )

0 ifn<m.
Here lim,, f(m,n) = 0 and therefore lim, (lim,, f(m,n)) = 0. But lim, f(m,n) = 1
and therefore lim,, (lim, f(m,n)) = 1. So, the double limit cannot exist in view of
Proposition 2-8.4.

" 2 ..
1-(-1 = if dd
(b) Let f(m, n) = % _ o ifmiso
0 ifniseven.
Then lim,, f(m,n) = 0 and therefore lim, (lim,, f(m,n)) = 0. On the other hand,

lim, f(m,n) does not exist. So, the double limit cannot exist in view of Proposi-
tion 2-8.4.

0 if [m —n| is odd
(c) Let f(m,n) = 1 . .
————— if|m—n| is even.
min{m,n}

Then lim, ,f(m,n) = 0. But lim,f(m,n) does not exist and hence
lim,, (lim,, f(m,n)) cannot exist. Also, lim, f(m,n) does not exist and hence
lim, (lim,, f(m,n)) cannot exist.

2-8.7. Definition. Let f be a double sequence and let s be the double sequence
defined by

p g
s(p.q) = mz::l nz::lf(m’n)

The double sequence {s(p,q)},>1,4-1 of partial sums is denoted by %, , f(m,n)
and is called a double series. If it has limit [, that is, if lim, , s(p,q) = [, then the
double series %, , f(m,n) is said to be convergent; [ is called the sum of the
series and we write | = %, , f(m,n). Each number f(m,n) is called a term of the
series. The double series X, ,f(m,n) is said to converge absolutely if
Zo.n | f(m,n)| converges.

It may be noted that the symbol %, , f(:m,n) may denote either the double
series or its sum, depending on context.

2-8.8. Examples. (a) Consider the double series %, , f(m,n), where f(m,n) is
described by the array, or ‘infinite matrix’

11 1 1

I -1 -1 -1 -
1 -1 0 0

1

-1 0 0
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All the terms are zero except in the first two rows and first two columns. Here
s(p,q) =2, p,q > 1, and so the double series has sum 2.

(b) The partial sum s(p, q) of the double series %, , m “nP can be represented as
P q o o

the product ( ’El m"o‘)(nE:1 n"B). Since the series mz=1 m * and nZ:.l nP are convergent

when o, 3 > 1, the double series has sum equal to the product of the sums of the

aforementioned series.

Since f(p,q) = s(p,q)—s(p—1,9)—s(p,g—1)+s(p—1,g—1), it follows
that when {s(p,q)} 1,41 converges, we can find [ so that | f(p,q)| <€ forp >,
q > . In fact, if W is so chosen that |s(p,q) — /| < €/4 when p and ¢ are both lar-
ger than |, then

[l <|s(p.q)—I| +[s(p-1,9) -1
+s(pag— D)= 1] +[s(p - l,q—l)—l|<4(%J e

This does not imply that lim,, , f(p,q) will necessarily be zero when the repeated
limits lim,(lim, s(p,q)) and lim,(lim, s(p,q)) both exist. For instance, consider
the series %, , f(m,n), where
1 ifm=n+1Ln=12,...
flmn)=<-1 ifm=n-1,n=2,3,...

0 otherwise.

Then lim,(lim, s(p,q)) = —1, lim,(lim, s(p,q)) = 1 and f(m,n) does not have
double limit zero. The reader may list the elements as an infinite matrix to see
the validity of the above assertions.

2-8.9. Proposition. A necessary and sufficient condition for the convergence of

the double series X, , f(m,n) is that for every € > 0, there exists an integer |1
such that

|s(p,q)—s(m,n)|<e for p=2m=2W and g=2n=>\.
Proof. The condition is obviously necessary. We need only show that it is suffi-
cient. Denote by 6, the value of s(m,n) when m = n. Then our condition yields

lo,—0u <eifg=n=p.
Hence 6, approaches a limit s, and so we can find L, such that

|s—c5n|<% ifnzp.
Now the general condition also gives an integer L, such that
15(p.q) — 0 <5 ifp.g2n>p,.
Let 13 = max {W;,}. Then
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|S(paQ)*S|<8ifPaQZH3- O

It is now easy to show that a double series is convergent if it is absolutely
convergent.

We end this section with the following results on double series with non-
negative terms.

2-8.10. Proposition. Suppose {s(p,q)}},=1,421 is the double sequence of partial
sums of a double series with nonnegative terms. Then lim, ,s(p,q) = s if and
only if lim, s(p,p) = s.

Proof. That lim, ,s(p,q) = s implies lim, s(p,p) = s is obvious. Assume that
lim, s(p,p) = s and consider an arbitrary € > 0. There exists an integer L such
that

s >s(p,p) > s — € whenever p > L.

Since the terms of the double series are positive, it follows that
s>s(p+tq,p+q)=>s(p,q)>s—eprovided that p,g > L.

Thus lim, , s(p,q) =s. U

2-8.11. Proposition. (a) If the double series %, , f(m,n) with nonnegative terms
converges, then for each m (respectively, n) the series %, f(m,n) (respectively,
2. f(m,n)) converges and the following equality holds:
5 5 fommy =3, fmn) =% S fim.n).
(b) Suppose that f(m,n) >0, m,n=1,2,.... If either of repeated limits
lim,, (lim,, s (m, n)), lim, (lim,, s(m, n))
exists, so does the double limit and all three are equal.

Proof. (a) If %, , f(m,n) = s, then it is clear that s(m,n) < s; and consequently for
any fixed value of m, the sum of any number of terms is less than or equal to s,
which in turn, implies that the limit lim, s(m,n), for any fixed m, is less than or
equal to s. Now there exists an integer | such that s(m,n) > s —¢ if m,n > L.
Consequently,

s >lim, s(m,n)>s—¢eifm=>L.
Hence
lim,, (lim,, s (m,n)) =s
or

mzl rgl f(m,n) -

In a similar way, we see that
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rglmi;lf(m’n) =S

(b) Suppose that lim,, (lim,, s (m,n)) = s. Then

s(m,m) <s(m,n)if n>m
and so,
s(m,m) <lim, s(m,n) <s.

Hence the sequence {s(m,m)} converges to a limit G, say. It now follows from
Proposition 2-8.10 and (a) above that s = ¢ and that lim,, (lim,, s(m,n))=c. 0O

The restriction in the above proposition that the terms of the series be posi-
tive cannot be dropped. See 2-8.P2.

2-8.12. Example. X, , (m + n)™* is convergent if o > 2. One way to obtain this is
to use the integral test (see Shirali and Vasudeva [23, Theorem 12-2.4]) twice.

For each m, the function on [1,e0] given by (m +x)* is nonnegative and de-

(m+1)~*

creasing; moreover, its (improper) integral over [1,ec] is ~——=— . Therefore,

(m+1)!™* (e
o-1 - o-1

2-o
+m . It follows that

S.m+n)*<(m+1)*+ Now, (x +1)*+

2]70(
-1

is nonnegative and
decreasing on [1,e], with integral equal to
%, (Z,(m+n)™*) is convergent. By Proposition 2-8.11, %, ,(m + n) * is conver-

gent.

A second way to arrive at the same conclusion is via Proposition 2-8.10. In
the finite sum s(p,p), we can rearrange terms to get
s(pp)= 2, 2 (m+n) .
2<g<2p mtn=q
1<sm<p
1sn<p
In the inner summation, there can be at most ¢ terms because of the restriction
that m + n = ¢. Therefore the sum is no greater than ¢ . Hence

sp.p) < Y g
2<q<2p
Since 1-o < -1, the series X, g'™* is convergent and the above inequality im-
plies that s(p,p) < X, ¢'™* Thus the increasing sequence s(p, p) is bounded above
and hence converges. Now Proposition 2-8.10 shows that that the double series

%, »(m + n) ™ is convergent.
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Problem Set 2-8

2-8.P1. Consider the double series X, , f(m,n), in which f(m,n) is described by
the array (or ‘infinite matrix”) below:

rP ot r 1 1
2 4 4 8 8 16 16
lro 33 7 7 15 15
2? 42 42 8 8’ 16 16*
32 32 7? 7? 152 152

28 p g 8§ 16 16°

L S Y A 15> 15°
24 4* 4* g* 8! 16* 16*

Show that the double series is not convergent, but ngl(;g flm,n)) = 1 while
nﬁj.l( mﬁj.l f(m,n)) is undefined.

2-8.P2. For the convergent double series of Example 2-8.8(a), show that the
‘repeated series’ ’gl( 21 f(m,n)) and 21(,21 f(m,n)) are undefined.

2-8.P3. Show that the series Z,, , (m2 + nz)’“‘/2 converges if o0 > 2.






3

Differentiation

3-1 Background

In the calculus of a function f of two real variables, i.e., of a two-dimensional
vector variable (x,y), one usually works with the two partial derivatives df/dx
and 9df/dy (to be formally defined in 3-4.1 below). The first of these is the limit
of a certain quotient with numerator f(x+¢,y)—f(x,»). In the terminology of
vectors, this numerator may be written as f((x, y) +#(1,0)) —f(x, y). If we now
write simply x for (x, y) € R? and simply % for (1,0) € R? then the numerator can
be expressed quite compactly as f(x + th)—f(x). With this notation, it becomes
clearer that the partial derivative
&~ i S+ [
is the rate of change of f'in the direction of /2, where we have taken 4 as (1,0). If

we change 4 to (0, 1) instead, then the limit is the rate of change in the direction
of 4= (0, 1), and this rate of change is usually denoted by Jf/dy.

Now, what about the same limit with some other (nonzero) 4, the so called
directional derivative in the direction h? There are infinitely many other possi-
bilities for /, but one works only with 4 = (1,0) and /# = (0, 1), which lead to the
two familiar partial derivatives. This is because, in most situations (but by no
means all!), the derivative in a general direction 4 = (o, B) works out to be

oc%ﬂi%. ()

Thus, although each partial derivative is the rate of change in one coordinate
direction only, the two partial derivatives when taken in combination reveal eve-
rything about the rate of change in all possible directions. This is what makes
the vector with components equal to the respective partial derivatives, known as
the gradient in Calculus, such a useful tool. Being a single object that tells all
about the rate of change in any direction whatsoever, it is the natural two varia-
ble analogue of the elementary one variable derivative.

Since the gradient allows us to start with a direction # = (o, ) and, in most
situations, compute the rate of change in that direction via (1), it maps (o, 8) into
a number. In other words, it is a map from R? to R. Besides, it is a /inear map
from R? to RR.

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 3, © Springer-Verlag London Limited 2011
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In the n variable case, the analogue of the single variable derivative is a li-
near map from R” to R. One therefore expects that for a function f'with values in
R™, the analogue is a linear map from R” to R™. We shall soon define the deriva-
tive of such a map f to be a linear map from R" to R" related to f in a certain
way. However, the relation will not be that it maps each direction / into the de-
rivative in that direction, because the existence of such a linear map does not
imply continuity, as we shall see later in 3-2.P3. We shall instead define the de-
rivative to be a linear map that generalises another aspect of the derivative in the
one variable case, one that does imply continuity. We discuss this aspect and
present the definition in the next section.

3-2 Derivatives of Functions Between Euclidean Spaces

Suppose f'is a real-valued function of a single real variable x. The familiar defi-
nition of the derivative at some x in the interior of the domain of f'is that it is the
limit as 7#—0 of the quotient [ f(x +/4)—f(x)]/h. Since there is no division by
vectors, such a quotient makes no sense when / is a vector. So we rephrase the
definition without denominators in the following manner.

For i # 0, let o(h) = [ f(x +h)—f(x)]/h — a, where a is some number, and let
®(0) be any number. Then «a is the derivative if and only if w(#)—0 as 2—0.
Since it is immaterial what value ®(0) has, we shall say nothing about it. The
description of ® can be rearranged without denominators as

SO+ h)=f(x) = ah + ho(h).

Thus the number a is the derivative f"(x) if and only if there exists a function ®
defined on a sufficiently small ball centred at 0 such that

Sx+h)—f(x) = ah+ ho(h) and (h)—0 as 1—0. (1)

This equivalent description of /'(x) as being such a number a has no reference to
any division by /; however, there is a reference to the product 2w(%). So we now
set u(h) = (h/|h|)w(h) for h # 0, so that (1) can be rephrased as

fec+h)—f(x)=ah+|hlu(h)y  and  u(h)—0 as h—0.

Stated in this form, we can carry it over to the situation when f maps a subset of
R" to R™.

For reasons discussed in Section 3-1, the derivative in this general setting is
a linear map 4 from R” to R", and the above term a/ appears as the A-image of
h,i.e., as Ah.

3-2.1. Definition. Let x be an interior point of the domain U C R" of a function
f:U—>R". If there exists a linear map A:R"—R"™ and an R"-valued function u on
a ball H centred at 0 € R" such that
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fe+h)—f(x)=A4h+ ||h|ju(h) forheH and u(h)—0 as h—0,

then A is the linear (or Fréchet) derivative of f at x; it is denoted by f'(x). When
f'(x) exists, we say that f is (Fréchet) differentiable at x.

It should be noted that f'(x) € R",R™). We shall often refer to the Fréchet
derivative as simply the derivative. The name distinguishes it from the Gateaux
derivative [see 3-3.P1], which will play only a minor role.

Observe that altering the value of u(0) makes no difference. In a proof of
differentiability, it is therefore sufficient to define u for nonzero / and establish
that u(h)—0 as h—0.

3-2.2. Remarks. (a) There cannot be two distinct linear maps satisfying the
conditions of Def. 3-2.1. To see why, suppose 4 and B are both linear maps of
this kind with associated balls H and J and functions » and v. Then

Ah + || hl|u(h) = Bh + || h||v(h)
for all 4 in HNJ, which is again a ball centred at 0. Then

(A= B)h = || hl|(A(h) = u(h)).

Let /4 be any nonzero vector in HNJ. Then, for e R, 0 <|¢| < 1, we have

(4 = B)(th) = [t|[| A || ({2 h) —u(zh)), so that [|(4 = B)(R)I| = [[A][l|(«(th) —u(zh))]].

Taking the limit as —0, we find that (4 — B)(#) = 0. But this holds for every h
in the ball HNJ centred at 0. Therefore A — B = O [2-3.P19], and hence 4 = B.

(b) If f is a constant, then the equality displayed in Def. 3-2.1 holds for any x
with 4 = O and u(h) = 0 for all 2 € H. Therefore, f is differentiable with deriva-
tive O.

(c) When n = 1, the linear map A = f"(x) must be of the form described in Exam-
ple 2-3.2(b); that is, there must exist b € R™ such that Ah= hb (product of the
scalar # with vector b). Upon dividing by the scalar / in the equality displayed in
Def. 3-2.1 and then taking the limit as 2~—0, we find that

h=lim S+ - f(x)

h—0 h

Thus f(x) can be described as the linear map h—hb, where b is given by the
above limit.

(d) When f'is a linear map, the requirement of Def. 3-2.1 holds with 4 = f, u(h) =
0 and H any ball whatsoever. Therefore the derivative at any point x is none
other than the map f itself, which is to say, f'(x) = f for every x. In case f is of
the form f(x) = Ax + b, where b is a fixed vector in R, then again f'(x) = 4. In
particular, when 4 = O, which is to say, f is a constant map f(x) = b, the deriva-
tive is f"(x) = O for every x.
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(e) If f'is differentiable at x, then it is also continuous at x. This follows from
Def. 3-2.1 above, because

4R+ || Rl < [|2]I([A]] + (B

and ||4|| + ||u(/)|| remains bounded as #—0. The converse is not true. For exam-
ple, the function /:R*—R given by f(x,y) = |x| is clearly continuous at (0,0);
however, it is not differentiable there, as will be shown in Example 3-2.3(c).

(f) If fand g are both differentiable at x, then f+ g and f*g are both differentia-
ble at x and

(f+e) () =) +g'kx),
(/*8)'(x) =f(x)-g(x) + f(x)-g'(x),
where the right hand side in the second equality is the real-valued map
h—[f(x)(M)]-g(x) + f(x) - [g'(x)(h)].
In conjunction with Remark 3-2.2(d), this shows that, if g(x) = Ax + b — f(x),
where A4 is a linear map and f'is differentiable, then g'(x) = 4 — f'(x).

We now present two illustrations of how to compute the derivative as a ma-
trix directly from the definition (i.e., from ‘first principles’) and one example
when the linear derivative does not exist. In Def. 3-2.1, the linear map 4 and the
function u are specific to the x in question; therefore, they are functions of x as
well, although our notation there may seem to suggest otherwise. The computa-
tions below will clarify this.

3-2.3. Examples. (a) Suppose we wish to find the derivative of the function f

whose value at (x, y) € R* is x* +*. Denote the ‘increment’ vector by (A, k).
Then
SO+ by + k) = f0p) = (c+ b+ (y + 5 = (2 +)7)
=2xh + 2k + h* + 12 = A(h, k) + ||(h, k)| u(h, k),
where 4:R*R is the map for which
A(h,k)=2xh+2yk and wu(h,k)=||(h,k)|| =N + k).

Since A4 is linear and u(h,k)—0 as (h,k)—0, the map A is the linear derivative of
fat (x,y). It has the 1x2 matrix [2x 2y].

(b) Now suppose we wish to find the derivative of the function f'whose value at
(x,y) € R?is x*y. Denoting the increment vector by (4, k) we have

SO+ by + k) = f(x,p) = (c+ B+ k) —xy
= 2xyh + X’k + 2xhk + by + i’k
=A(h, k) +|(h, )l [u(h, k),
where 4:R*R is the map for which



3-2 Derivatives of Functions Between Euclidean Spaces 81

2xhk + yh* + kh*
Vi + K
Since 4 is linear and u(h, k)—0 as (h,k)—0, the map 4 is the linear derivative of

fat (x,y) despite the fact that we have not defined u(h, k) for (h,k) = (0,0). The
linear derivative has the 1x2 matrix [2xy x°].

A(h,k) = 2xyh +xk and u(h,k) = when (1, k) # (0, 0).

(c) Consider the map f:R*—>R defined as f(x,y) = |x|. Suppose f were differenti-
able at (0,0) with derivative 4, say. Taking (%, 0) as the increment vector (where
heR), we would then have
| 2] = f(1,0) = (0,0) = A(h,0) + | 2| u(h,0)

for sufficiently small /4, positive as well as negative, and u(h,0)—0 as h—0.
Since |-A| = ||, this implies

|7 =f(=h,0) = f(0,0) = A(=h,0) + [ h]-u(=h,0).
Adding the above equalities and using the linearity of 4, we get

2|h|=1h|-[u(h,0) + u(=h,0)].

In particular, for nonzero 4, we would have u(h,0) + u(—h,0) = 2, contradicting

the requirement that u(%,0)—0 as 7—0.

(d) This example is relevant to Theorem 3-4.4; see Example 3-4.6(b). Let ¢ and
v be real-valued functions defined on open intervals, which are differentiable at
points o and B in their respective domains. Consider the real-valued map f de-
fined on the Cartesian product of the intervals as f(x,y) = &) +wy(y).
Differentiability of ¢ and  at the respective points o and 3 means

o(o+ h) — (o) = d'(o)h + | h| - u(h) where u(h)—0 as h—0
an

WB+H) —wB) = WK+ [k vk)  where  v(k)—0 as k0.
It follows that
S+ hB+ k)~ fe B) = (kB + [ || ulh) + [K-v(k)]
= 0k + B+ I + K wih, ), (1)

where

h
w(h, k) = \/h2| .||.k2 u(h)+

|k| v(k)|.
N
Since [w(h, k)| < |u(h)|+|v(k)|, we see that w(h,k)—0 as (h,k)—0. Therefore by

(1), 1 is differentiable at (o, ), the derivative being the linear map 4 given by
A(h, k) = 0'(0)h + ¢'(B)k. Thus, it has the matrix [0'(c)) W' (B)].
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We now formally define a concept that has been mentioned informally ear-
lier in this chapter.

3-2.4. Definition. Let x be an interior point of the domain U < R" of a function
f:U->R". When 0 # h € R”, the directional derivative at x in the direction /4 is
defined to be

D, f(x) = lim PACSR/)ENACIN
i— t

3-2.5. Remarks. (a) The directional derivatives at x in the n ‘coordinate direc-
tions’ & = ¢;,1 <j < n, are known as the partial derivatives (D;f)(x). They will
be studied in a later section with m = 1.

(b) If f is differentiable at x, then its directional derivative at x in any direction %
# 0 exists and is given by f"(x)A. This is because, for sufficiently small nonzero ¢
€ R, we have

SO+ th) = () = f00)(th) + || th[u(th) = tf (x)(h) + [¢]-|| 2]l u(zh)

where u(k)—0 as k—0, which implies that
+th)— ,
M =f'(x)(h) + ||| h]|u(th)/t,

where the second term on the right is easily seen to have limit 0 as r—0.

(c) The reader may note the consequence of part (b) above that, in the event of f
being differentiable, the derivative in the direction /4 is linear in 4.

3-2.6. Example. Part (c) of the foregoing remark can sometimes be used for
establishing the nonexistence of a linear derivative. For example, let the function
f:R* >R be defined as

£(0,0)=0 and f(x,y)=x/(x*+y*) when (x,y) # (0,0).

Then [f(th, tk) — £(0,0)]/t = h*/(h* + k*) and therefore the derivative in any direc-
tion (h,k) is 1°/(h* + k?). Since this is not linear in (4, %), the function cannot be
differentiable at (0,0) by Remark 3-2.5(c). It may be noted that, since |x’| <
|x|(x* + %), we have |f(x,y)| < |x|, which shows that f is continuous at (0,0). In
this connection, see 3-2.P3.

3-2.7. Proposition. (a) Suppose f: E—R™ is differentiable at x € E c R" and B:
R"—>R? is linear. Then the composition Bof:E—R? is differentiable at x with
derivative Bo(f'(x)), i.e., the composition of the linear maps B and f'(x).

(b) Suppose B:-R"—>R" is linear and g:E—R’ is differentiable at Bx € E  R".
Then the composition goB is differentiable at x with derivative g'(Bx)oB, i.e., the
composition of the linear maps g'(Bx) and B.

Proof. (a) Since f'is differentiable at x, there exists some ball A centred at 0 € R”
such that
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Jx+h)—f(x)=Ah+ ||h|ju(h) forheH and u(h)—0 as h—0,
where 4 = f"(x) by definition. Applying B to both sides and using the linearity of
B, we get

(Bof)(x + h) — (Bof)(x) = (BoA)h + || h||B(u(h)) for he H.
Since ||B(u(h))|| < ||B]|||u(h)|], the function v(h) = B(u(h)) has the property that

v(h)—0 as h—0. Therefore, in view of the foregoing equality, BoA4 = Bo(f"(x))
must be the derivative of Bof at x.

(b) If B = O, there is nothing to prove. So, assume ||B|| > 0.
Since g is differentiable at Bx, there exists some ball K centred at 0 € R"
such that,

a(Bx + k) — g(Bx) = Ak + ||k|lu(k) forkeK and  u(k)—0 as k=0,

where 4 = g'(Bx) by definition. Denote the radius of K by r. If H is the ball cen-
tred at 0 € R" with radius 7/||B||, then 1 € H = Bh € K. In particular, 2 € H implies
that Bx + Bh = B(x + &) belongs to the domain of g and thus x + / belongs to the
domain of goB. Therefore, x is an interior point of the domain of goB. Further-
more, we may substitute £ = Bh with & € H in the above equality. Using the
linearity of B, the substitution leads to

(g0B)(x + h) — (2oB)(x) = A(Bh) + ||B(h)|[u(Bh) for he H.

Setting (i) = %u(m) for  # 0, we have

(goB)(x + h) = (goB)(x) = A(Bh) + ||h|[v(h).
Also, v has the two properties
V(I < |1B||||lu(BR)||  and  v(h)=0if BA=0.

Together with the fact that u(k)—0 as k—0, the above two properties imply that
v(h)—0 as h—0. Consequently, 4o B = g'(Bx)oB must be the derivative of goB at
X. ]

3-2.8. Proposition. Let x be an interior point of the domain U C R" of a function
f:U—>R". Denote the standard basis of R" by e, e, ..., e,, so that

) = £, flwe forallue U, (A)

where the m real-valued functions f; are the components of f. Then f is differen-
tiable at x if and only if each f; is differentiable at x.

Proof. First suppose that f is differentiable at x. For any j, 1 <j < m, let
P;:R"—R be the ‘projection map’ given by

Plaie, + --- taye,) =a;.
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Then by (A), f(u) = (Pof)(u) for all u € U. Since P, is linear, Proposition 3-2.7
implies that £; is differentiable at x.

Now suppose that each f; is differentiable at x. For any j, 1 <j < m, let
0;:R—R" be the ‘insertion map” given by

Then the composition Q; o f; satisfies (Q; o f))(u) = Q{(f{u)) = f{(u)e;. Therefore by

(A), f= ,é (Q;of). But each Q;0f; is differentiable at x by Proposition 3-2.7, and
hence so is f, by Remark 3-2.2(f). O

Problem Set 3-2

3-2.P1. Find the 1x2 matrix representation of the derivative of x* + y directly
from the definition (i.e., from first principles).

3-2.P2. Suppose x is an interior point of the domains of both the functions f and
g. Let 4 and B be linear maps such that the directional derivative of f'in any di-
rection 4 is Ah while that of g is Bi. Show that f+ g has a directional derivative
at x in any direction 4 and that it is given by (4 + B)h.

3-2.P3. Let ¢(x,) = y*/x when x # 0 and ¢(0,y) = 0. Show that ¢ has directional
derivative 0 in every direction at (0, 0) but is not continuous there (and hence, by
Remark 3-2.2(e), not differentiable either).

3-2.P4. Let f:R">R, n > 1, be defined as f{x) = ||x||. Prove that f is continuous
but not differentiable at 0.

3-2.P5. Show directly from the definition, i.e., from first principles, that the map
f:R*>R? defined by f(x, v) = (x>, xy, y) is differentiable at every (x, y) € R* with
derivative given by the matrix

2x 0
y X
0 1

3-2.P6. Find the 1x2 matrix representation of the derivative of f(x,y) = (x* + y)"°

directly from the definition (i.e., from first principles).

3-2.P7. Use the result of Example 3-2.3(b) and the fact that
(z+5)"=2""=102s + |s|-v(s), where v(s)—0 as s—0

to find the derivative of x*°)'°.

3-2.P8. Prove that there can be no real-valued function f with D, f(c) > 0 for
every direction / at a given point ¢, but there does exist one having D, f(c) > 0
at every point ¢ in a given direction /.
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3-2.P9. Let f,...,f, be real-valued functions on R, each differentiable in an
open interval (a,b) and let E = {(x;,...,x,) € R" : a <x;<b, 1 <k <n}. Define
S R"SR by f(x1,...,x,) = él Ji(xx). Prove that f is differentiable at each x € E
and that

SR = 3 il whenever h=(h,....h,) € R"

3-2.P10. Let f1, ..., f, be real-valued functions each differentiable in an open set
S c R". For each x € S, define f(x) = él Ji(x). Assume that for each k (1 <k <n),
the limit

a(x)= lim fk(ik):gz(x)
Yi# X

exists. Prove that /" is differentiable at x and that f'(x)(h) = k)él al(x)hy for h =
(hy,...,h,)eR".

3-2.P11. Suppose f,g are mappings from R" to R" such that g is continuous at c,
fis differentiable at ¢ and f(c) = 0. Let F(x) = g(x)f(x), the scalar product of g(x)
with f(x). Prove that F'is differentiable at ¢ and that F'(c)(h) = g(c)-{f'(c)(h)}.

3-2.P12. Show that the function /*R*—R defined by

f(xy)—{x+y ifxy=0

1 otherwise

has partial derivatives at (0,0). However, the directional derivative in any other
direction does not exist. Conclude that the function is not differentiable at (0,0).
The fact that /" is not differentiable at (0,0) can also be concluded from the ob-
servation that it is not even continuous there. Indeed, limy, ,),(,0) f(x,y)does not
exist.

3-3 The Chain Rule and a Corollary

The reader probably remembers the chain rule from a course in calculus as a rule
for computing the derivative of a composite function in terms of derivatives of
its constituents. It is also employed for computing partial derivatives for real
valued functions defined in R". The version of it that we state below is also a
rule for computing the derivative of a composite function in terms of derivatives
of its constituents, and its connection with partial derivatives will be clarified in
the next section after Theorem 3-4.2.

If the proof seems rather heavy going then it may be helpful to solve 3-2.P7
before proceeding.



86 Differentiation

3-3.1. Theorem. Chain Rule: Suppose E  R" and f maps E into R". Let g map
a subset of R" into R?. If f'is differentiable at x € E and g is differentiable at f(x)
€ f(E), then the composition gof is differentiable at x and

(gof)(x) =g'(f(x))of (x).
Proof. By definition of differentiability, x is an interior point of £ and f(x) is an

interior point of the domain of g. Therefore, continuity of f at x [Remark 3-
2.2(e)] ensures that x is an interior point of the domain of gof.

For / belonging to some ball H centred at 0 € R”,
Jx+h) —f(x) =f"(xX)h + || k|| u(h), where u(h)—0 as h-—0. (1

Again, for k belonging to some ball K centred at 0 € R”,

g(f(x) + k) — g(f(x) = g/ k + || k|| v(k), 2
where v(k)—0 as k—0. Since f must be continuous at x, the ball # may be re-
placed by a smaller one if necessary so as to ensure that 7 € H = f(x + h) — f(x)
€ K. Then we may take k£ = f(x + &) — f(x) in (2). But if we choose & in this
manner, then we have f(x)+k = f(x + &) and also k = f"(x) i + || A||u(h) by (1).
Therefore by (2),

g(f(x + h)) = g(f(x)) = g SN (h + [ hf[u(h)) + || k[ v(K)
= (') oS N + || Al g (f))ulh) + | k[ v(k). 3)
By (1), [[&[l < [ ZI[CILF "Gl + [ u(A)]]), so that

|| kl|/|| 2| is bounded as h—0. 4

Since k—0 as h—0 (by continuity of f at x), it follows from (4) that
(Il k|l/I| hl)v(k)—0 as h—0. Therefore, if for h € H we take

w(h) = [g'(fe)u(h) + (|| k[|/]| All)v(k)] when A =0,

then w(h)—0 as 7—0. Besides, it follows by using this definition of w in (3) that
g(f(x + h)) = g(f(x) = (&'(f(x)of (X)) A+ | h[|w(h) whenever h e H. L]

Since it is customary to omit the composition symbol o between linear
maps, it is not necessary to write it between g'(f(x)) and f”(x) on the right side of
the equality in the chain rule. Accordingly, we shall often omit it in future.

3-3.2. Examples. (a) Let /:R*>R* and g:R> >R be given respectively by f(x,)
= (x?,»") and g(x,y) = x + y. Then

SO+ hy+ k) = fey) = (e + B0+ b)) — ()7
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= (2xh,2yk) + (h*, %)
= A(h, k) + [|(h, k)| u(h, k),

2 0
where A4 is the linear map with matrix { N Zy} and u(h, k) = (W%, 12)/||(h, k).

0

Recalling that ||(h, k)| = (B> + k)2, we have u(h, k)—0 as ||(h, k)||—0. Therefore
f'(x,y) = A. Thus,

Lf"Ce.)](h, k) = (2xh, 2yk). (1)
Also,

gxt+hy+k)—g,y)=@x+h)+@+k)—(x+y)
=h+k=B(h,k) + ||(h,k)||v(h,k),

where B is the linear map with matrix [1 1] and v(h, k) = 0. Therefore g'(x,y) =
B. Hence

[g'Ce, )]~ k) = h + k. 2
According to the chain rule, the composition gof, which is the map given by
(gox,y) = (& +)7),
must have derivative (gof)/(x,y):R>—R given by the composition
(gof)(x,y) = g'(f(x,)) of "(x, ),
[(go/) 0, )1, k) = [ (fCe, YL/ G, y) (s K)]-
In view of (1), the right side here can be written as
[ (FCe DI G, y)(h, K] = [g'(f(x, y)1(2xh, 2yk)
=2xh+2yk by (2).

Thus (gof)'(x,y) has the matrix [2x 2y]. Alternatively, we can use Remark 2-
3.3 to compute the matrix of (gof)'(x,y) as the product of matrices of g'(f(x,y))

and f"(x,y), i.e.,
|1 2x 0
(r 11, 0 2y

which works out to be [2x  2y].
(b) [Cf. 3-2.P6.] Let /:R*—>R and g:R—R be given respectively by f(x,y) =
x>+ y and g(u) = u'’. Then
SO+ by + k) — f(x,y) = 2xh + k + h* = A(h, k) + ||(h, k)| /*/||(h, k)],
where A(h,k) = 2xh +k, i.e., A is the linear map from R? to R with matrix

[2x 1]. Since 4%/||(h, k)||—0 as ||(k, k)]|[—0, the derivative of f at (x,y) is the linear
map A. Thus

which means

Lf'Ce,»)](h, k) = 2xh + k. (1)

Also, the linear map g'(u):R—R is the one for which
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[£@)](1) = 10u’r. 2
According to the chain rule, the composition gof, which is the map given by
(€of)Ey) = (¢ + )", 3)

must have derivative (gof)'(x,y):R*—>R given by the composition

(gof)'(x. ) =g'(f(x, 1)) of (x,»),
[(g2f) (e, 1A, K) = [g'(fGe, L/ (. ) (B, ).
In view of (1), the right side here can be written as
[ e, DI/ Ce,y)(h, k)] = [g'(f(x, ¥))1(2xh + k)
=10f(x,y)’@xh + k) by (2)
= 10(x* +y)’(2xh + k)
=20x(x* +y)’h + 10(x* + )’k
Thus (gof)'(x,y) has the matrix [20x(x* + y)°  10(x* + »)’]. Alternatively, we
can use Remark 2-3.3 to compute the matrix of (gof)'(x,y) as the product of
matrices of g'(f(x,y)) and f(x,y), i.e.,
1067 +y)°[2x 1],
which works out to be [20x(x* +y)°  10(x* + y)°].

The reader may recall that this agrees with the solution of 3-2.P6, in which
the matrix had to be computed directly without the chain rule for the function
given by the right side of (3).

(c) [Cf. 3-2.P4.] Let f:R"—R and g:R—R be given respectively by f(x) = ||x|*
and g(u) = u"*. Then, in terms of the dot product, we have

which means

fx+h)y—fx)=@+h)yx+h) —xx=2xh+ h-h=2xh+|h||v(h),

where v(%) = ||h||. Therefore
JCo)(h) = 2x+h. (D

Also, for u # 0, we have g'(u) = %1[1/2

g'(u):R—R is the one for which
[g'@)](®) = Fu "t ()

According to the chain rule, when f(x) # 0, the composition gof, which is the
map given by

, which means that, the linear map

(go)x) = [x[l,

must have derivative (gof)'(x):R> =R given by the composition
(gof)'(x) = g'(f(x))of (x);
[(go/))I(R) = [ SONILS )]

in other words,
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In view of (1), the right side here can be written as

[g' SO ()] = [g'(f(x)](2x k)
= Lf(x)"(2x-h) by (2), provided f(x) # 0

Thus (gof)'(x) is the linear map for which [(gof)'(x)](h) = (x+h)/||x|| when f(x)
# 0, i.e., when ||x|| # 0. Alternatively, f'(x) has matrix [2x; 2x, -+ 2x,]and
2'(f(x)) has the 1x1 matrix with entry —éf(x)’”2 and therefore (gof)'(x,y) has
matrix given by the product

22 20 w]=[n o o xlx].

The reader will note that the next result was proved independently as Prop-
osition 3-2.7. We now derive it from the chain rule.

3-3.3. Corollary. (a) Suppose E C R", fmaps E into R" and g:R"—R’ is linear.
If f is differentiable at x € E, then the composition gof'is differentiable at x and
(gof)'(x) = go(f'(x)).

(b) Suppose E c R", g maps E into R’ and f:R"—>R" is linear. If g is differenti-
able at f(x) € E, then the composition gof'is differentiable at x and (gof')'(x) =
g'(f(x)ef.

Proof. (a) By the chain rule, (gof)'(x) = g'(f(x))of"(x). Since g is assumed li-
near, it follows by Remark 3-2.2(d) that g'(f(x)) = g regardless of what f(x) is.
Consequently, (gof)'(x) = go(f"(x)), as claimed.

(b) This argument is similar to that of part (a). O

Before presenting the next result, we elaborate a step that will be used with-
out detailed explanation later in the course of the forthcoming proof. It concerns
the linear maps in Example 2-3.2(b) and 2-3.2(c).

In this paragraph, the norm is understood to be || ||,. Let A:R—R" be the li-
near map given by 4x = xb, where b is a fixed vector in R" and C:R"—R be the
linear map given in terms of the dot product as Cx = z-x, where z is a fixed vec-
tor in R™. Then, as discussed in Examples 2-7.3(b), 2-7.3(c), the norms of these
maps are ||4]| = ||b]| and ||C|| = ||z||. It follows by Theorem 2-7.7 that, when n =
m, CA:R—-R satisfies ||CA|| < ||C||||4]| = ||b||||z]|. In other words, the number a €
R such that (CA)x = ax for every x € R satisfies |a| < ||b||||z]|. Furthermore, if
B:R"—R" is linear, then the number o for which
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(CBA)x = ox for every xe R
satisfies
Lo < [bll[1B][1l=]-

Recall from Def. 2-5.8 that a subset £ of R" is called convex if, whenever a
and b are in £ and ¢ is any real number such that 0 <¢< 1, the vector a + #(b—a),
or what is the same thing, b + (1—#)a, is also in £. Any ball is convex according
to 2-5.P2.

The next few results are corollaries to the chain rule, all of which use the
mean value theorem for functions of one variable. The exact form of the inequa-
lity asserted in any one of them depends on the norms used, but the essential
substance is the same. However, we shall take cognisance of whether the norm
used is || [|2 or [[ [|...

3-3.4. Corollary. Let E be a convex subset of F € R" and f: F—R" be differen-
tiable at each x € E, with " bounded above by M > 0; i.e., || f'(x)|, < M for each
x€E. Then for any a, b € E, we have

A®B)~fl@)ll. < M|[b—al,
L/®)~f (@)l < n'*M]|b - all...

Proof. We need prove only the first inequality because the second follows from
it upon using the inequalities ||x|.. < ||x|, and ||x|, < n"?||x]|.. of Proposition 2-
2.6. Since the argument for the first inequality involves working exclusively
with the norm || ||, the subscript will be omitted.

Denote f(b)—f(a) by ¢, and let ¢:[0, 1]>R be defined by

0(0) = c-fla+H(b—a)).

Since E is convex, therefore a + #(b—a) € E when ¢ € [0,1] and ¢ is defined on

and

[0,1], as claimed. Also, ¢ is the composition of the maps

t—a+tb—a), x—>f(x) and x—cwx,

in that order. Consequently, ¢ is continuous. Moreover, the first map is differen-
tiable on (0, 1), with derivative

h—h(b—a) for he R
by Remark 3-2.2(c), and the third has derivative
h—c*h for he R"™

by Remark 3-2.2(d). Their norms are, respectively, ||b — a|| and ||c|| [see Exam-
ples 2-7.3(b)and 2-7.3(c)]. By the chain Rule, the derivative ¢'(¢) exists for 0 < ¢
<1 and equals the composition of the linear maps
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h— h(b—a) for he R,
h—[f(a+ub—a)l(h) forhe R”
and
h—c+h for he R",

in that order. Using the property that ||ST'|| <||S|||| 7|| for any linear maps S and
T for which the product ST is defined, we find that
1D <llb—allllc|M ¥V 1e(0,1).

However by the mean value theorem,

(1) — ¢(0) = [o'()|(1-0)  for some 7€ (0, 1)
=10 =1o'@Il-
Moreover, ¢(1) = c+f(b) and $(0) = ¢+ f(a). Hence

le-(fb)=f@) <Ib —allllc|| M,
ie,|lc|P<|lb—all|lc]| M (because ¢ = f(b) — f(a)).
So,
lell<llb—allM.

Since ¢ = f(b)—f(a), this is the same as || /(D) —f(a)|| < M||b—a]||. Therefore the
first inequality is established and thus also the second. O

3-3.5. Corollary. Let E be a convex subset of F  R" and f:F—R" be differen-
tiable at each x € E, with f'(x) = O for each x€ E. Then f is constant on E.

Proof. This follows immediately for Corollary 3-3.4 with M = 0. O

3-3.6. Example. Let £ be a convex subset of F ¢ R”, 4:R">R" a linear map
and f: F—>R" be differentiable at each x € E with f(x) = 4. In other words, the
derivative of f is constant. One can then show that there is a constant » € R"
such that f{(x) = Ax + b for all x € E. To see why, consider the map g:F—R"
given by g(x) = Ax. It has the property that g'(x) = 4 for all x € E. Therefore f— g
has derivative O on E. Apply Corollary 3-3.5.

For the next Corollary (which we need only in Proposition 7-2.5), it is
worth bearing in mind that, in view of Proposition 2-7.12, a subset of &R",R™)
is bounded in the sense of || ||, if and only if it is bounded in the sense of || ||...

3-3.7. Corollary. Let E be a convex subset of F C R" and f: F—R" be differen-
tiable at each x € E, with f" bounded above; let a € E and

ILf'Gx) — (@), <M for every xeE.
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Then for any b € E, we have
1/(b)—fla)—f(a)(b—a)ll, <M||b-al,
I1f(b)—fla) - f(a)(b—a)|..<n'"*M||b-al..

and

Moreover, if
/') = f(@l. < M. for every xe E,

1/(B) ~fl@) —f (@) (b ~a)|l.. < n"*m'"* Mc||b~a]...

then

Proof. We need prove only the first inequality because the second follows from
it upon using the inequalities ||x|l.. < ||x|| and ||x||, < n"?||x||.. of Proposition 2-
2.6, and the third follows upon using Proposition 2-7.12.

Denote f(b) — f(a) —f(a)(b—a) by ¢, and let ¢:[0, 1] >R be defined by

0(1) = c-[[fla+ ub~a)~f(@)] ~f(a)(b~-a)].
Since E is convex, then a +#(b—a) € E when ¢ € [0, 1] and ¢ is defined on [0, 1],

as claimed. Also, ¢ is the composition of the maps

t—a+tb-a), x=f(x)—fla)—f(a)(b—a) and x—c=u,

in that order. Consequently, ¢ is continuous. Moreover, the first map is differen-
tiable on (0, 1) with derivative

h— h(b—a) for he R
by Remark 3-2.2(c), and the third has derivative
h— ch for he R"

by Remark 3-2.2(d). Their norms are respectively ||b—a|| and ||c|| [see Exam-
ples 2-7.3(b) and 2-7.3(¢c)]. By the chain rule, the derivative ¢'(¢) exists for 0 < ¢
< 1 and equals the composition of the linear maps

h— h(b—a) for he R,
h—[f(a+tb-a))](h) for he R"
and
h—c-h for he R,

in that order. Thus, for any Z€ R,

(D)) = c+[f (a + (b — a)](h(b — a)
= he*[fa+ b~ a))(b - a),

which means that
¢'())=c-[f(a+1b—-a)lb-a).

By the mean value theorem,
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o(1) — 0(0)=0'() (1 —0)=09'(r) for some te(0,1).
But  0(1) = c-[[/(b) - fl@)] - f(@)(b - @)] and &(0)=c-[~f(a)b - a).

Therefore
c-[f(b)—fla)=c[f(a+tb—-a)l(b—a) forsomere(0,1).
Adding c+[~f'(a)(b — a)] to both sides and recalling that
c=/(b) - fla) = [(a)(b - a),
el = e+ [f(a + tb - a)) = f(@)](b - a).

we get

This leads to
el < llcll. M|b - all,

from where it follows that ||c||, < M||b — a|,. In view of our definition of ¢, this
is the same as || f(b) — f(a) — f(a)(b — a)|l, < M||b - al|,. Therefore, the first

inequality is established and thus also the second and third. ]

3-3.8. Remark. The following consequence of the chain rule will be used in the
sequel while proving the inverse function theorem (Theorem 4-2.1). Suppose a
function ¢ is a composition of the form ¢(x) = B(4x + b — f(x)), where 4 and B
are linear maps and fis differentiable. By Remark 3-2.2(f) the function g(x) = Ax
+ b — f(x) has derivative g'(x) = 4 — f"(x), while by Remark 3-2.2(d), the func-
tion x—Bx has derivative B. Now it is a consequence of the chain rule that the
composition ¢ has derivative ¢'(x) = B(4 — f'(x)).

Problem Set 3-3

3-3.P1. By Gateaux derivative of a function at an interior point of its domain,
we mean a linear map 4 such that the directional derivative at that point in every
direction 4 exists and equals AA. Thus, when the derivative exists, it is also the
Gateaux derivative.

(a) Let ¢(x,y) = y*/x when x # 0 and ¢(0,y) = 0. Show that ¢ has a Gateaux de-
rivative at (0,0). (We have seen in 3-2.P3 that this function is not even
continuous at (0,0).)

(b) Suppose E < R" and f'maps E into R™. Let g map an open subset of R” con-
taining f(E) into R”. If /'is continuous and has Gateaux derivative 4 at x € E and
if g is differentiable at f(x), show that the composition gof has Gateaux deriva-
tive g'(f(x))o4 at x.

3-3.P2. Suppose E < R" and f: E—R" is of the form f(x) = Ax + b, where 4 is a
linear map and b € R" is fixed. If x is an interior point of E, g maps an open set
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containing f(x) into R” and has Gateaux derivative G (defined in 3-3.P1) at f(x),
then show that gof has Gateaux derivative GoA at x.

3-3.P3. Let E be a convex subset of F < R" and f: F>R" have a Gateaux deriva-
tive G(x), in the sense defined in 3-3.P1, at each x € E. Let G(x) be bounded
above by M > 0; i.e., ||G(x)|| < M whenever x € E. Prove

1/(b) = fla)l| < M||b —all Va,beE.
3-3.P4. Let f:R">R (n > 1) have Gateaux derivative G # 0 at ¢ € R" in the sense

defined in 3-3.P1. Then G is a linear map from R” to R and therefore has a norm
||G||, which depends upon the norm used in R”.

(a) Suppose the norm used in R" is ||x||, = \/élx_,-z. Show that there are precisely
two elements /4 of norm 1 in R" such that ||G|| = |G(h)|.

(b) Show that if the norm used in R" is ||x]||, = él |x;|, then there must be at least
two elements /4 of norm 1 in R” such that ||G|| = |G(h)|, but there can be

more than two.

3-3.P5. If F is a continuous mapping of [a,b] into R* and is differentiable in
(a,b), then show that there exists ¢ € (a,b) such that ||F(b)— F(a)| <
(b—a)||F'(c)||.- (Note: This is to be proved not by using Corollary 3-3.4, but by
modifying its proof.)

3-3.P6. Let a;,b;, where 1 <j <n, be 2n numbers with a; < b; . The set

{x:jéxjej eR"a; <x; <b; forl <j<n}
where e, e,, ..., e, is the standard basis of R”, is called a cuboid.

(a) Show that a cuboid is a convex set.
(b) If x and x + % both belong to a cuboid, where & = hye; + ... + h, e,, show that

x+he+..+hj_je_, +thje;,where0<tr<land1<j<n,

also belongs to the cuboid.
(c) Does (b) hold if ‘cuboid’ is replaced by ‘ball centred at x’?

3-3.P7. Letx,e € R", ue R, and f'be a real-valued function defined on an open
subset of R” containing {x + #(ie) : 0 <z < 1}. Let ¢:[0, 1]>R be the function
O(¢) = f(x + t(ne)). The derivative of ¢ at z € (0, 1) is the limit of a quotient and
the derivative of f at x + #(lLe) in the direction of e is the limit of some other quo-
tient. Find the two quotients and relate them with each other in order to

(i) show that, when L # 0, one of the derivatives exists if and only if the
other one does;

(i1) find a relation between the derivatives that is valid even if L = 0 but as-
suming that the directional derivative exists;
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(iii) express f(x + He) — f(x) in terms of the derivative of /" in the direction of
e at some x + O(Ue), 0 <0 < 1, by applying the mean value theorem to ¢.

3-3.P8. Suppose that f;: E—>R is differentiable at xo€ £ € R”, and u;, u,, ..., uy
is the standard basis of R". Show that the map x—f1(x)u; from E to R" has de-
rivative at x given by A— [ f1'(xo)(h)u, . If f,: E-R is also differentiable at x, €
E, then show that the map ¢:E—R™ such that ¢(x) = fi(x)u; + fo(x) us is differen-
tiable at x,, and find ¢'(xo)(%) in terms of A, f1'(xo), f>'(x0), u1 and u;.

3-3.P9. (a) Let /:R—R? be defined by f(¢) = (cost,sinf). Show that there is no 6
€ (0,2m) such that f(2m) — f(0) = 2w f(0).

(b) Prove the following mean value theorem: Let £ be a convex open subset of

R" and f/: E-R™ have a derivative in every direction at each x € E. Then for any
ceR"and any a, b € E, we have

(f(b) — fla))c=[(Dyp_of)a+06(b—a)c forsomeBe(0,1).
(c) For a general nonzero ¢ = (¢1,¢,) € R%and a = 0, b = 27, find the ‘0’ of part

(b) in terms of ¢ for the function f of part (a).

(d) For the function /:R—R? defined by f(¢) = (1 — £, — £), show that there is no
0 € (0, 1) such that f(1) — f(0) =£"(0). With a = 0 and b = 1, determine the nonze-
1o ¢ = (¢;,¢,) € R? for which the @’ referred to in (b) fails to be unique.

3-3.P10. (a) Let B be an open ball in R" and /:B—R"™ have the property that the
directional derivative D, f(x) exists and is 0 for every x € B and every nonzero u
€ R". Show that /' is constant on B.

(b) What can you conclude about 1 if D, f(x) exists and is 0 for every x € B but
for a fixed (nonzero) ue R"?

3-3.P11. Let S be an open connected subset of R” and f:S—R" be differentiable
at each point of S. If f'(s) = O V s€ S, then prove that f is constant on S.

3-3.P12. Let f(x,7) be a continuously differentiable function on R* such that

g—]; = % . Suppose that f(x,0) > 0 for all x. Prove that f(x, ) > 0 for all (x, 7).

3-3.P13. Let /: R">R have the following properties:
(i) f'is differentiable except perhaps at 0 € R";
(i1) f'is continuous at 0;

(iif) ;l (p)=0as p—0, 1 <i<n.
X;
Prove that f'is differentiable at 0.

3-3.P14. Show that each of the functions
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xtax?yr—yt

(rayry  hen ()= (0.0)and 6(0,0)=0

o, =y

4

4 422
X ZATVTIVT hen (x,) # (0,0) and yi(0,0) = 0

and X, V) =X
W(x,y) (2 4y2)?

is continuous on R?, has a directional derivative in every direction at (0,0), but is
not differentiable there. Does it have a Gateaux derivative at (0,0) in the sense
of 3-3.P1?

3-3.P15. Show that the function /:R*—R defined by
xy?

Sl,y) = qx2+p4
0 if x=0

if x20

has a finite derivative in every direction & = (a;,a,) # (0,0) but is not continuous
at (0,0). Does f have a Gateaux derivative at (0,0) in the sense of 3-3.P1?

3-4 Partial Derivatives

The reader who has solved 3-2.P1 and 3-2.P5 may have noticed that the entries
in the matrix representing the derivative of a function are precisely the partial
derivatives of the components of the function. So, one may ask whether a short-
cut to finding the matrix of the derivative is to calculate partial derivatives. This
turns out to be true if the function is independently known to be differentiable.
In case the function is not differentiable, it can happen that the matrix of partial
derivatives can nevertheless be formed, although the matrix formed in this man-
ner obviously cannot represent a nonexistent derivative. Examples of such
functions are given in 3-2.P3 and 3-4.P2.

Here we clarify the relationship between the matrix of partial derivatives
and the matrix representing the derivative. The relationship between the chain
rule and partial derivatives is also investigated.

Partial derivatives are directional derivatives of real-valued functions in the
coordinate directions.

3-4.1. Definition. The partial derivative D;f’, if it exists, of a real valued func-
tion fis its directional derivative in the jth coordinate direction:

(D) = lim w

where ey, ey, ..., e, is the standard basis of R".
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When n = 2 or 3, it is more convenient to denote an element of R” without
subscripts, for instance as (x,y) or (x,y,z); correspondingly, x + te; will be de-
noted by (x+¢ty) or (x+ty,z). When this notation is used, partial
differentiation is often indicated by aa_x or by a subscript, as in f;. Thus 3_121 , D-
and D, p all mean the same thing. We shall use the alternative notation whenever
convenient, especially for discussion of concrete examples.

Examples. (a) Let /: R’>R be given by f(x,y) = |xy|"% Then
[0 -f(0,0) _,_ f(0.)-7(0,0)
t t

9 Jf
and consequently, 3—2(0,0 = %(0,0) =0.

(b) Let /:R*—>R be given by

3 3
x =y .
—— if (x,y) # (0,0)
Sy = x> +y?

0 if(x,y) = (0,0).

S(6,0)-f0,0) _18-0 _ fO0,H-/0,00 _10-8 _
Then 7 sy 1 and 7 =050 = -1

) )
Therefore 2-(0,0)= 1 and L0.0)=-1.

If f takes values in R", then the m components of f(x) provide real (i.e.,
scalar)-valued functions fi, f5, ..., f,,. One can therefore speak of mn partial
derivatives D;f;(x) (1 <i<m, 1 <j < n). Their relation to the derivative f'(x) is
the focus of the next result.

3-4.2. Theorem. Let the subset E C R" be open and - E—R™ be differentiable at
x € E. Then the mn partial derivatives D;f;(x) (1 <i<m, 1 <j<n) all exist. If

er, e, ..., ey is the standard basis of R" and uy, u, ... , uy, is the standard basis
of R", then

S @e = 2 (Df)@u, 1<j<n.
That is to say, the matrix of '(x) is the matrix whose (i, j)th entry is the partial
derivative (D, f;)(x).
Proof. Consider any j, 1 <j <n. Since f'is differentiable at x, therefore
S+ 1e) = f(x) = f'(x)(te;) + |t ulte;),

where u(te;)—0 as t—0. It follows from this and the linearity of /'(x) that
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Since
flz)= gﬁ fi(2)u; foranyz € E,

the above equality can be written as

fim ﬁ": (ff(x+tejt)—fi(x))uf

t—0 ;=1

=f(x)e.

This implies that
. Silx+te;)— fi(x)
im——

t—0 t

exists and equals the ith component of f'(x)e; . Thus (D;f;)(x) exists and
E] (Dlﬁ)(x) U; :‘f',(x) €.

This has been shown to be true for any ;j from 1 to n. O

The preceding theorem justifies computing partial derivatives and present-
ing the matrix formed by them as the derivative, provided the existence of the
derivative can be ascertained independently. It also justifies computing the ma-
trix of the derivative directly and then presenting its entries as the partial
derivatives. The matter of ascertaining the existence of the linear derivative in
addition to computing partial derivatives will be taken up in Theorem 3-4.4.

The matrix of partial derivatives [D;f;(x)] is called the Jacobian matrix of
fat the point x. When it is a square matrix, its determinant is called the Jacobian
of f'at x. By Theorem 3-4.2, for a function known to be differentiable the Jaco-
bian matrix represents the derivative.

For instance, the function f:R*—R? given by f(x,y) = (x%,)") has been

2 0
shown in Example 3-3.2(a) to have derivative with matrix { Ox Zy] It follows

that this is the Jacobian matrix, i.e.

0 2 _n. 0,2 _ 0 o _ d 2 _
a(x)—?.x, ay(x) 0, ax(y) 0 and ay(y) 2y.

Of course, this does not mean that the partial derivatives are to be computed by
following the procedure of Example 3-3.2!

Theorem 3-4.2 also enables us to clarify the relation between the chain rule
(Theorem 3-3.1) and partial derivatives, of which there is no explicit mention in
the latter. Suppose fand g are as in the chain rule. Then by Theorem 3-4.2,

(gf)'(x) has a pxn matrix whose (£, j) th entry is (D;(gof),)(x);
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J'(x) has an m>xn matrix whose (7, ) th entry is (D;f; )(x);
g'(f(x)) has a pxm matrix whose (k, i) th entry is (D; gy )(f(x)).

The chain rule, when taken with Remark 2-3.3 as was done in Example 3-3.2(b),
states that the first of the three matrices described above is the product of the
latter two in the appropriate order. By the definition of matrix product, this
amounts to

(D;(goNi)) = E(Dig ) (fENDf ).

This equality is nothing but the usual version of the chain rule for computing
partial derivatives, which the reader must have encountered in a course on the
calculus of two or more variables. By Theorem 3-4.2 and the chain rule, the
above procedure for computing partial derivatives is applicable when the func-
tions concerned are differentiable.

The next theorem makes it possible to ascertain the existence of the deriva-
tive by examining partial derivatives. But it works only when the derivative
exists in an open set and is continuous as well. On the other hand, this is most
often so, hence the theorem turns out to be adequate in most situations. See Ex-
ample 3-4.6(b) for a situation when it is not adequate.

In the notation of Theorem 3-4.2, f'(x) is a linear map from R" to R”. If
f'(x) exists for each xe £ , then f” is a map from E to the space of linear maps
from R" to R”. Since £ < R”, it is clear what || —x|| means when § € E, x € E.
Moreover, since f(§) —f'(x) is a linear map from R" to R”, || /(§) — f'(x)|| denotes
its norm in accordance with Def. 2-7.2. Thus it makes sense to speak of /” being
continuous.

3-4.3. Definition. 4 function f with values in R™ and domain E c R" is said to
be continuously differentiable (or belong to class C") at an interior point x of
E if the derivative ['(z) exists at every z in some open set containing x and the
resulting map from that open set into the space &R",R™) of linear maps from
R" to R™ is continuous at x. One also speaks of f being a C" function (or a C'
map).

3-4.4. Theorem. Suppose E = R" is open and [ is a map from E to R™. Then f is
continuously differentiable on E (i.e., at each point of E) if and only if each of
the mn partial derivatives D;f; (1 <i < m, 1 <j < n)exists on E and is conti-
nuous there.

Proof. Assume f" to be continuous on E. By Theorem 3-4.2, D; f; exist on E
and /" has matrix with D; f; as its (7,j)th entry. Therefore for any x and x + 4 in E,
the matrix of f'(x + &) — f'(x) has (D, f)(x + h) —(D;f,)(x) as its (i,j)th entry. By
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Remark 2-7.9(a), [(D;f)(x + h) —(D;f)(x)] < ||f(x + &) —f'(x)||. This immediate-
ly leads to the continuity of each partial derivative D; f;.

To prove the converse, assume that each D;f; is continuous on E. Consider
any i, | <i<m and any x € E. For ease of notation, we denote f; by g. We shall
prove first that g:E—R is continuously differentiable, that is to say, the map
g E—>&R",R) is continuous.

Lete;,e,, ..., e, be the standard basis of R".

For h = hje; + -+ + h,e, e R" sufficiently small to ensure that x + 4 € E, let

u(h) = [g(x + h)—g(x) —ji; (D;@)x)h; /|| || if h #0.
We shall show that u(4)—0 as h~—0, so that g has derivative with matrix

[(D19)x) (D2)(x) -+ (DpQ)X)].

Consider any € > 0. By the continuity of D; g for 1 <j < n, there exists & > 0 such
that the ball B of radius 0 centred at x is contained in £ and every y € B satisfies

|(D,~g)(x)—(D,g)(y)|<% for 1<j<n. )
n

Let h = hie; + -+~ + h,e, satisfy || k|| <98. Setzy =0 and z; = hye; + - + h;e; for 1
<j <n. Then z, = h. Also, for any 7€ [0, 1],

|20+ thie]| = |thi| <[] <Al <
and, when j > 1,

Iz + thigj|| = (h+ -+ >+ £ 122 <[] < 8.

Therefore x +z;_, + th;e; belongs to the ball B (including j = 1). It follows firstly
that the map

(—>gx+zi1+the)

is defined on [0, 1], and secondly that (1) is applicable with y = x+z,_, + th;e;.
Therefore, the mean value theorem applied to the function
G(t) = gxtzi1+thie), 1€[0,1],
yields
gx+z)—glx+z_)=G(1)-G0)=G'(0;), where0<0; <1.

But by definition of D;g, we have,

G'(0) = hi(Djg)(x+z_1+06;he).
Therefore ©) j (D)0 21+ O yey)

g(x-i—zj)fg(x-i-zj_l ) = hj(ng)(x+zj_| + Gjhjej), where 0 < 9j <1.
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Now,

gleth)—g() = g +2,) ~glr+20) = 2 (glr+2) ~glr +21-1)

:él hi(D;g)(x + z;-1 + 6;h;¢;).
Therefore
|12l u(h) | = g(x+ h) - g(x) — 2 D))h|

= [Z (D) + 211+ 8;¢) — (D @)y

<> L | by (1)

<II(())" (Canchy-Schwars)

This shows that |u(h)| < € when 0 < || 4|| < . Thus u(h)—0 as h~—0, and g’ has
the matrix

[(D1g)x) (D28)(x) - (Dyg)(¥)]-

Since each D;g is continuous on E, so is the map g"E—&R",R) [Remark 2-
7.9(a)]. Since g can be any f;, we conclude that every f; is continuously diffe-
rentiable.

Finally, we argue that f is itself continuously differentiable. Since each f;
has been shown to be differentiable, it follows by Proposition 3-2.8 that £ is dif-
ferentiable. It further follows by Theorem 3-4.2 that f"(x) has matrix with (7, j)th
entry given by the partial derivative (D, f;)(x). Now by Remark 2-7.9(a),

/e + 1) =l < 2 Zi (D f)(x + ) = (D f ()]
when x and x + 4 both belong to E. Since the partial derivatives have been as-
sumed continuous, it is immediate from this inequality that /" is continuous. [

3-4.5. Remarks. (a) The assumption of continuity of D;g could have been
avoided in proving the existence of g’. The existence result, without continuity
of ', therefore remains valid if continuity is assumed for all the other partial
derivatives. By rearranging the variables if necessary, we can work with the
hypothesis that all partial derivatives with at most one exception are continuous.

(b) Since the equality
glr+h)—g) = 2 hy(Drg)x + 221 + O,y ¢7)

was derived in the proof of the theorem by using only the existence of partial
derivatives, it can be used for establishing that (i) if the partial derivatives are
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bounded on E, then f is continuous on E [see 3-4.P7] and (ii) if the partial deriv-
atives are continuous at x, then f'is differentiable at x.

3-4.6. Examples. (a) We shall now show that the map of R? to R? given by
p=e¢ cosy, g=¢'siny
is differentiable by using Theorem 3-4.4 and find its Jacobian matrix.

(Although we shall avoid introducing the standard basis e, e, for R% it
should be understood that the given map f can be expressed in terms of the stan-
dard basis as

flxe; + yey) = (€ cos y)e; + (¢ sin y)e, )

Here fi(x,y) = p = €' cos y and f5(x,y) = g = €"sin y. Therefore, the partial
derivatives are Dy f{ = €' cos y, Do fi = —€"sin y, D1 f, = €"sin y, D, f, = " cos y.
These are all continuous and therefore the given map is differentiable by Theo-
rem 3-4.4. The Jacobian matrix is

e*cosy —e'siny
X X :
e'siny e‘cosy

We note for later purposes that the determinant of this matrix, the Jacobian, is
never zero. It follows that the Jacobian matrix is invertible at every x and hence
by Theorem 3-4.2, so is the derivative.

(b) In Example 3-2.3(d), take ¢ and  to be differentiable with derivatives dis-
continuous at o and/or B. For example, ¢(7) = y(f) = £* sin% for nonzero ¢ and
0(0) = y(0) = 0. As discussed there, f is then differentiable at (0,0). However,
the partial derivatives are (D, f)(x,y) = ¢'(x) and (D,f)(x,y) = y'(y), both of
which are discontinuous at 0. So, the differentiability of f, which was proved in
Example 3-2.3(d) cannot be deduced on the basis of Theorem 3-4.4.

We now turn our attention to an application of partial derivatives for testing
whether a function, if differentiable, satisfies a certain condition that is purely
‘algebraic’ in the sense that the condition does not explicitly involve even limits,
let alone differentiation.

Functions described by such expressions as x> +xy—2y> or \(x’y—)’), as
opposed to x+)7?, are homogeneous’ in an intuitively obvious sense. A precise
definition would be as follows.

3-4.7. Definition. A function f:S—R with an open domain S C R" is said to be
homogeneous of degree p (wWhere p is a real number) if

fOx)=Nf(x) whenever xeS,A>0,AxeS.

The restriction of a homogeneous function to any open subset of its domain
is homogeneous of the same degree. Moreover, sums and constant multiples of
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homogeneous functions of common degree are again homogeneous of that de-
gree. Therefore the examples below can be used to generate several others.

3-4.8. Examples. (a) The functions given by x,y,x+y, V(x> +%), |x|,|y| on R?
are homogeneous of degree 1. It may be noted that the last three among these
would not be considered homogeneous if the definition were amended to include
(as some authors prefer) all real A.

(b) The function defined by /(xy) on {(x,y) € R* : xy > 0} is homogeneous of
degree 1.

(c¢) The functions x°,xy, x| y| are homogeneous of degree 2 on R?.

(d) V(xyz) describes a homogeneous function of degree % on {(x,y,z) € R’ : xyz
>0}

(e) The function defined on R? by x>+ y is not homogeneous of any degree. Oth-
erwise we would have A>*+ Ay = M(x*+y) for all (x,y) € R and all A > 0.
Choosing (x, y) = (1,0), we get A* = A for all A > 0; choosing (x,y) = (0,1), we
get L =27 for all A > 0. This is a contradiction.

(f) The relevance of this example to Theorem 3-4.9(b) below is mentioned in the
remark that follows it. Let .S be the union S;US,, where

Si={(x,y)eR*: ¥ +)y* <1}
S, ={(x,y)eR*: xX*+)* > 1}.

and

Define f to be x +y on S} and x—y on S,. Note that, given (x,y) € S,, there exists
A > 0 such that (Ax,Ay) € S| and therefore f is not homogeneous. However, its
restrictions to S; and S, are.

The next proof uses the chain rule for computing partial derivatives as ex-
plained above after Theorem 3-4.2.

3-4.9. (a) Euler’s Theorem. [f' S < R" is open and the differentiable function
f:S—>R is homogeneous of degree p, then the following identity (called Euler’s
relation) /olds:

jz: x;(D;f)(x) =pf(x) forall xe S. (A)

(b) Let the open subset S of R" satisfy the condition

AxeS whenever xeSandA>0.
If the differentiable function f:S—R satisfies (A), then it is homogeneous of de-
gree p.
Proof. Consider any x € R” and A > 0 such that Ax € S. Since S is open, A can

‘vary within a small neighbourhood of itself”. To put it precisely, Lx € S as long
as L e (A —9,A +9); but we avoid bringing in i and d explicitly so as to keep the
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notation simple. Now let / be any differentiable function on S. Upon applying
the chain rule to the composition ¢(L) = f(Ax), we get

000 = 23, (D). (1)

Note that this holds regardless of whether /" is homogeneous (or x € S for that
matter).

In order to prove (a), consider any x € S. Then Ax € S for A = 1. Therefore ¢
is defined on an open set containing 1. By the assumed homogeneity of f, we
have 0(A) = A’f(x). Hence it follows from (1) that

235000 = p NS,

Upon substituting A = 1 in this, we get (A).

In order to prove (b), consider any x € S and A > 0. According to the hypo-
thesis on the domain S, we must have Ax € S. Thus, ¢ is defined on (0,00) and
satisfies (1). Since (A) is assumed to hold everywhere on S, we have

£ 0 (D,)000) = pfO) for all &> 0,
But by (1), this states that Ad'(X) = p- d(A). It follows that

4
d\

[q’}(ﬁ)j = O'W)/N —p- 6N = [ p dQWYAA” — p- d/A! = 0.
Therefore, d(A)/A” is constant on (0,00) and hence O(A)/A” = ¢(1) = f(x) for all A
€ (0,00). This means f is homogeneous of degree p. O

3-4.10. Remark. The condition on the domain in part (b) of the above theorem
cannot be omitted. The function of Example 3-4.8(f) satisfies (A) on S| as well
as S, and hence on its entire domain, but it is not homogeneous.

Problem Set 3-4

3-4.P1. Solve 3-2.P5, not from first principles this time but by using Theorems
3-4.2 and 3-4.4.

3-4.P2. Show that the function defined on R? by f(x,y) = xy/(x* +?) for (x,y) #
(0,0) and f{0,0) = 0 is not continuous at (0,0) but both partial derivatives exist
there. Also, show that no directional derivative exists in any direction (%, k) for
which 2 # 0 # k.

3-4.P3. Given: f(x, y) = xy/(x* + y*)"* for (x, y) # (0,0) and £(0,0) = 0. Show that
f is continuous, possesses partial derivatives but is not differentiable at (0, 0).

3-4.P4. Show that the map of R? into itself given by
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X=pcosq, y=psing
is differentiable and that its Jacobian never vanishes except when p = 0.

3-4.P5. Find all points (p, ¢) where the Jacobian of the following map of R* into
itself vanishes:
x=cospcoshg, y=sinpsinhg.

3-4.P6. Suppose E < R" (n = 2) is open and all partial derivatives of g: E—>R
exist on E. If D, g,...,D,g are continuous at some point x € E, show that g is
differentiable at x.

(Remark. Referenced just before Remark 4-3.1. The result remains true if we
assume that, with any one exception, all the remaining partial derivatives are
continuous at x. All we have to do is to rename the components xi, ..., x, so as
to have the exceptional component appear as the first one after renaming. The
question is now reduced to the case considered in the problem above, and there
is no need to work through the argument all over again. This practice of reduc-
ing a case to one that has already been handled has given rise to the following
joke: A mathematician and a physicist are each given a lighted stove with a bowl
of water to the stove's left and asked to heat the water. Both of them pick up the
bowl and place it on the stove. Then they are each given a lighted stove with a
bowl of water to the stove's right side and asked to heat the water. The physicist
picks up the bowl and places it on the stove; the mathematician picks up the
bowl, places it on the left of the stove and declares, ‘I have reduced it to the pre-
vious case!’)

3-4.P7. Suppose E < R" is open and all partial derivatives of g: E—>R exist on E.
IfD,g,...,D,g are bounded on E, then show that f is continuous on E.

3-4.P8. Let f:R*>R* be defined by
f(xay) = (Sinx cosy, -X+y9 x2 _J’)
Find the Jacobian matrix.

3-4.P9. Show that the function f:R*—R of Example 3-2.6, which was defined
as f(0,0)=0 and
Sx,y) =x’ 1 +%) when (x,) # (0,0),

has bounded partial derivatives everywhere but no Gateaux derivative at (0,0).

3-4.P10. Compute the Gateaux derivative where it exists for the function f,
where £(0,0) = 0 and

f(x,y)=x*In(x*+)%) when (x,y) # (0,0).

3-4.P11. (a) Find a linear function of x and y which is a ‘good’ approximation

—_ x_y 3 bl
for F(x,y)= arctan( 1+xyj when x and y are ‘small’.
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(b) Find a linear function of x—3 and y — % which is a ‘good’ approximation for

F(x,y)= arctan(lx_'__xi j when x and y are ‘near’ 3 and 7, respectively.

3-4.P12. Let f'be a real-valued function differentiable on an open ball centred at
(x1,x2) € R? and let y = (y, 1) be in the ball. By considering the function

g =f(yi +(1=0x1,y2) +f(x1, 2 + (1= 1)x2),
prove that

JO1.2) = fx1,x0) = (0 =x)D, [ (2, 3,) + (1, =%,)D, [ (x1,2,)
where z; is a point on the segment {¢y;+ (1 —f)x;: 0 <t <1}.
3-4.P13. Suppose that F:S—R is differentiable on the open set S
andjéxj “(D; F)(x)=p-F(x) for all x € S. If x is a point of S for which there is an
interval (¢, 1) such that tx e S V t € (¢, ;) and also 1 € (¢,,1,), show that the rela-
tion F(tx) = t’F(x) holds for t€ (t,1,).

3-4.P14. Let x,y,z be differentiable functions of (#,v) on some open set in R?
and J(x,y), J(v,2), J(z,x) be the Jacobians of (x,y), (v,2), (z,x), respectively. Pro-
ve that

x,JW,2) + v, J(z,x) + z,J(x,y) =0 and x,J(y,z) + y,J(z,x) + z,J(x,y) = 0.

3-4.P15. For any nxn matrix 4 = [a;;], denote the cofactor of the (i, j)th entry by
A;;. Then detd = X;a;,A;; for each i. When B is also an nxn matrix, denote by
Aj' the matrix obtained by replacing the ith row of 4 by that of B. Then 4;; =
(ABl)ij .
(a) det4 is a function of the n* variables a; j; prove that %A,« « = 0 for any
ij
i,j,k and hence that a% detd =A4;; forany i,j.
ij )

(b) Let each a;; be a differentiable function on some common interval / in R and
denote by B the matrix of derivatives [a;;'(x)]. Prove by using the chain rule that

d .

2 detd =X, detdp'.
(¢) If furthermore A has an inverse 4" = [¢; (x0)] at some x, € /, show that %de-

tA =detd ¥;;a;;'c;; at xo. What does this say about %(111 (det4))?

3-4.P16. Find x% + yg—; at points of differentiability of
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7= ln[ln[xs +7x4y+86x3y2 +9y5 +(x2 +)}2)5/2 |
(x2 +y2)5/2
3-4.P17. [Needed in 3-4.P18-21] If the function f:[a,b]X[c,d] >R has a con-

tinuous partial derivative with respect to y at each point of [a, b]x[c,d], then the
function F defined on [c,d] by

F(y)= [} f(x.)dx

has a continuous derivative given by
b
Fl(y)= J g—f(x, y)dx  (Leibnitz’s formula).
a oy

Determine whether this extends to the case when [c,d] is replaced by (¢, <) or R.

3-4.P18. Use the Leibnitz Formula [see 3-4.P17] to show that

M2 (02 - sin*0)do = mIn[L (o + (0P~ 1))]  for o> 1.

3-4.P19. Show that the function u(x) = Jg cos(nh —xsind)do , x € R, satisfies
Bessel’s equation, namely: x*u" + xu’+ (x> — n*)u = 0.

3-4.P20. Suppose that f is a continuous function with continuous partial deriva-
tive D, f on the rectangle I = [a,b]%[c,d]. Further, suppose that the functions o
and B on [c,d] have values in [a, b] and are continuously differentiable. Then the
integral

F) = [50) fex.y)dx

is defined for every y € [¢,d] and F is continuously differentiable with derivative
given by

F(3) =f(B0BW) =)o) + 52 (Ds f)x.)dx.

Here the intervals [a,b], [c,d] may be replaced by any other intervals containing
more than one point.

3-4.P21. Let f be a continuous function on an interval containing 0. Consider the
sequence of functions defined on that interval by

F(x)= ﬁ [y ="' firyat, neN

Show that F,"(x) = f(x) for each ne N.

3-4.P22. (The boundary of the unit disc in the x;x;.plane of R is the entire disc
and not just its circumference. Intuition suggests that a curve that reaches a point
of the circumference orthogonally from within the disc and has a nonzero tan-
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gent at the point must exit the disc there. The next problem formulates the idea

analytically.)

Let D = {(x;,x,x3) € R* : x> + x,” < 1, x3 = 0} and :[0,2n] =R be defined by

7(0) =cosB,  v(0)=sinB,  V(8)=0.

Suppose I':[-1,1]-R” is differentiable at 0 and
(1) I'(f)e D whenever —1 <¢<0;
(i1) I'1(0) = cos 0y, I'5(0) =sin B, I'3(0) =0 where 0 < 0, < 2m;
(i) Ty(0)*+T,(0)*>0;
(iv) (I'1(0),T5'(0),15(0)) *(71'(80), Y2 '(80), ¥5(60)) = 0.
Show that some d > 0 has the property that 0<t<d = T(f)eD.

3-4.P23. Let @:[0,1]x[0,1]>R? l—u
be as in 2-6.P18. Fix any u, € N
[0,1]. Consider the maps

0

I:[0,1]-[0,1]%[0,1]
an

. l1(1[*1,1]—>[0,1]X[0,1] Y1), -1<1<0
given by

d I'(s) = (5,0) W), 0< < %
an §
W)= (4 ,—1) .if -1<¢<0
(I-uy,1-1) if O<r<1.

Then I' has a continuous deriva-
tive everywhere but 7y is

manifestly discontinuous at O.
Show that

I'(s),0<s<1
(@) P(T(ug)) = P(1(0)).
(b) (®oI)(s) = (0,0,20) for all s
e[0,1].
(c) Doyis continuously differentiable on [0,1].

(d) Neither (®oT") (1) nor (Poy)(0) vanishes but their inner product does.

Uup

Vv

In terms of the graph of the range M of @ (the Mdbius band) and the curve ®oI”
lying in it, this can be interpreted as saying that, at every point ®(I'(u)) of the
curve other than ®(T'(4)), it is crossed orthogonally by another curve, also lying
in M, namely, ®oy. How would you interpret this about the graph of ®oTI" lying

on the ‘edge’ of M?
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3-5 Second Partial Derivatives

The partial derivatives D;f, j = 1,2,...,n, of a real-valued function f defined on
a subset of R" are themselves real-valued functions defined on a subset of R"
and therefore can have partial derivatives. When they do, their partial deriva-
tives D; (D, f)are called ‘second partial derivatives’ of f. Example 3-5.2 below
shows that D; (D;f) need not always be equal to D; (D;f). We shall prove theo-
rems, one due to Schwarz and another due to Young, which assure the equality
of D; (D;f) and D; (D;f) under different hypotheses.

We shall also prove a simple case of Taylor’s theorem needed in the sequel.
We begin with a formal definition of second partial derivatives.
3-5.1. Definition. If a partial derivative D;f of a function f:S—R, where S

R", has a partial derivative D;(D;f)at some point x € S, then it is called a
second partial derivative of / at x and is denoted by (D; ;f)(x) or D; ; f(x).

In contrast, a partial derivative D; f"is called a first partial derivative.

When i # j, the second partial derivatives D;;f and D;;f need not be equal
everywhere even if the function f'is differentiable everywhere. We present an
instance of this before proving two sets of sufficient conditions for equality to
hold.

3-5.2. Example. Define the function fon R? as

2.2
f.y) = xyi%yy) e 7 0.0
0 if (x, ) = (0,0).

A routine computation shows that its partial derivatives are given by

xt +4xtyt -yt

Dif)xy)=y 1) when (x,y) # (0,0) and (D, /)(0,0) =0
Xt —dx?y? -yt
and (Df)(x,y) = x R when (x,») # (0,0) and (D, £)(0,0) = 0.

Continuity of these partial derivatives follows from 3-3.P14. Thus f is differen-
tiable everywhere. Furthermore, (D, f)(0,y) =—y when y # 0 and (D, f)(x,0) = x
when x # 0. Hence (D, 1 £)(0,0) =—1 while (D; ,/)(0,0) = 1.

For later purposes, we note that
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x8+9xty? —ox?yt —y°
(o +y%)

(D21 /)(x,y) = when (x,y) # (0, 0).

The hypotheses of the next theorem do not imply that f'is differentiable; so
we cannot use the chain rule proved in Theorem 3-3.1.

3-5.3. Schwarz’s Theorem. Let x be a point in the domain S < R" of a real-
valued function f such that, in some ball centred at x, the derivatives D;f, D, f
and D;;f exist and D;;f is continuous at x. Then D;,f(x) exists and equals

D f(x).
Proof. For convenience of notation, we take n =2, i =1 and j = 2. Also, we de-
note x by (a,b), where a,b € R. Thus D, fis assumed continuous at (a,b) and
we must prove that D, f(a, b) exists and equals Dy, f(a, b).

Consider any € > 0. Since D, , f/ has been assumed continuous at (a, b), there
exists a positive & (less than the radius of the ball mentioned in the hypothesis)
such that for any 6,0’ (0,1), we have

|h| <8, |k| <8 = |Di2f(a+0h, b+6k)-Dirf(a,b)| <5. (1)
Let ¢ be the function with domain [b, b + k], defined by

q)(y) :f(a + hay) _f(aay)'

Then by the mean value theorem, ¢(b + k) — ¢(b) = k- 0'(b + 0k), where 6 € (0,1).

Now, 0'(y) = D, f(a+h,y) — D,f(a,y) by definition of partial derivative. There-
fore,

Ob+k)—¢(b)=k-[D,f(a+h,b+0k)— D,f(a,b+0k)], where08e(0,1).
By a similar use of the mean value theorem again, we further have
Ob+k)—ob)=k-[h-Dy,f(a+0'h,b+6k)], where6'e (0,1). 2)

However, 0(b+k)—0(b) = fla+hb+k) —fla+hb)—fla,b+k)+f(a,b). It
therefore follows from (2) that when 4 # 0 # £,

ll:f(a+h,b+k)—f(a,b+k)_f(a+h,b)—f(a,b) ] = Dyaf(a+ 0, b+ 0k).

k h h

In view of (1), this has the consequence that whenever 0 < |A] <8, 0 < |k| < 9,
we have

‘1 [f(a+h,b+k)—f(a,b+k) fla+hb)— f(a,b)
k h a h

] —D12f(asb)‘<%~

By hypothesis, the two quotients here have respective limits D, f(a,b+ k) and
D, f(a,b) as h—0. Therefore
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D, f(a,b+k) =D, f(a,h)

0<[k|<8 = | Di>f(a,b)| < § <e.

k
Since such a positive & has been shown to exist for an arbitrary positive €, the
second partial derivative D, | f(a, b) exists and equals D , f(a, b). O

Remark. The hypotheses of continuity in Schwarz’s theorem cannot be
dropped. For the function f of Example 3-5.2, the second partial derivative
(D> 1f)(x,y) was computed there and is seen to satisfy )lcl_r)l(l) D1 )x,0)=1=
711_1)% (D7 11)(0,y), which means it is not continuous at (0,0); recall that its mixed
partial derivatives D,f(0,0) and D,,f(0,0) were shown to be unequal. The
same example shows that the hypothesis of differentiability in the next theorem
cannot be dropped: D, f is not differentiable, as can be deduced from 3-3.P14,
and the mixed partial derivatives D, 1 £(0,0) and D, f(0,0) are not equal.

3-5.4. Young’s Theorem. Let x be a point in the domain S c R" of a real-valued
Junction f such that, in some ball centred at x, the derivatives D; f, D;f exist and
are differentiable at x. Then D; ; f(x) = D; ; f(x).

Proof. As in the preceding proof, we take n = 2, i = 1, j = 2 and denote x by
(a,b), where a,b € R. Since the partial derivatives D, f and D, f are assumed
differentiable at (a, b), there exist u; and u, such that, for p = 1,2, we have

(D, Na+hb+k)—(D,f)a,b)
= h(D,, [)a,b)+k(D,, f)a,b)+(h*+ k*)>u, (h,k), (1)
where
u,y(h,k)—0 as (h,k)—0. 2)
It is understood of course that (4, k) lies within a sufficiently small ball centred
at (0,0).

In what follows, we work with 4=k # 0. For each sufficiently small %, con-
sider the functions

Y(x) =f(x,b + h) = f(x,b) and §(y) = f(a + h,y) = f(a,y).

By the mean value theorem and by definition of partial derivative (applied to f),
we have
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Y(a+h)—y(a)=hy'(a+06h) forsomeBe(0,])
=h-[(D.f)(a+Oh,b+h)— (D, f)(a+ 0h,b)]
=h-[8h-(Dy1/)a,b) + h-(D21f)(a,b)

+ |- (1+ 6% 1,(Oh, )

—0h-(Dy1/)(a,b) —|1]0-ui(8h,0)] by (1)
=h:[h(Dy1/)(a,b) + || (1 + 6%)"-u,(0h, h)

—[h16-ui(6h,0)]. A3)

A similar argument applied to ¢ leads to,

O(b+h)—0(b) = h-[h-(D:2f)a,b)
+ 1] (140'%) - us(h, 0'h) — | 116" ux(0,0'h)]. @
But
y(a+h)—y(a)=f(a+h,b+h) —fla+h,b) — f(a,b+h) + f(a,b) = &(b+h) — O(b).
Therefore, it follows from (3) and (4) that

D2 @)+ L1+ 6220,y - DL o, 0,0)

Db+ L1 o2y ey - g0, 0m)

Since this holds for all sufficiently small nonzero 4, we may take the limit as
h—0, which yields the desired equality in view of (2). O

A function £ is said to be twice continuously differentiable on an open set
if all the second partial derivatives D;;f, of every component function f, are
continuous on the set. It is a consequence of either one of the preceding two
theorems that D; ;f, = D; ; f,.

We now prove a simple case of Taylor’s theorem, which will be adequate

for our purposes. It will be used in the proof of Theorem 5-2.1.

3-5.5. Proposition. Let x be a point in the domain S C R" of a real- valued func-
tion f such that the derivatives D;f (1 < j < n) exist and are differentiable
everywhere in some open convex subset B C S that contains x. Then for any h
such that x + h e B, there exists 6 € (0,1) such that

St iy =f0+ By Df(e) + 2 by[E by fox + 0]

Proof. Since D;f are differentiable, they are continuous and hence f'is also dif-
ferentiable in B. Consider any 4 € R" with x + h € B. By convexity of B, we have
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x+th € B for all ¢ € [0,1]. Therefore, there is a function ¢:[0,1]—>R defined by
O(2) = f(x + th). It follows by the chain rule that it satisfies

O =2y Diftc+ih) and 0" = Z M hDf(x+ )] (1)
By making use of Taylor’s theorem for functions on an interval, we can assert

that ¢(1) = ¢(0) + ¢'(0) + %(])”(9) for some 6 € (0,1). In view of (1), this is pre-
cisely the conclusion that was to be obtained. O

We now derive the consequence that, if second partial derivatives of all
component functions are bounded in a ball about a point x, then in Def. 3-2.1 of
linear derivative, u satisfies the stronger condition that ||u(h)|| < M|| k||, where M
is some constant. We shall appeal to it only in Remark 4-2.5.

3-5.6. Corollary. Let x be a point in the domain S < R" of a function f:S—R"
such that, in some open convex set B C S that contains x, the mn derivatives
Difi (1 <j<n,1<k<m)exist and are differentiable everywhere in the entire
ball. Suppose also that there exists K > 0 such that the n°m second partial deriv-
atives satisfy |D; i fil <Kon B (1 <i<n,1<j<n,1<k<m). Then for any h such
that x + he B,

7+ )~ f) @)k <5 Knm | ]2

If either of the other two standard norms is used, then a similar inequality holds
with some other constant on the right side.

Proof. By Proposition 3-5.5, there exist 0, € (0,1), 1 <k <m, such that
Sile+ By = fux) + B by Difix) + 4 B TE Dy filx + 8], L <k <m.
The equality may be written as
e+ By ~fi) = 2y Dy fe)] = 14 T WDy fulx + Och)] .

From the inequality fulfilled by second partial derivatives and the Cauchy—
Schwarz inequality, we now get

e+ ) ~fil) =y D) | < SKCE I i) < SKnlall?, 1<k <m.

In conjunction with Theorem 3-4.2, this leads to the desired inequality. The last
part is an immediate consequence of Proposition 2-2.6. O

Problem Set 3-5

3-5.P1. In the proof of Schwarz’s theorem, can one infer the existence of the
limit as ~—0 of Dy, f(a + 0'h, b + 6k) from the continuity of Dy, f?
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3-5.P2. Show that it is possible to have (D, ,f)(a,b) = (D, f)(a,b) even when
D, f and D, | f are not continuous at (a, b) by considering the function

Sx,p) = {xzyz/(xz +y?) if (x,3) #(0,0)
0 if (x,)=(0,0).

3-5.P3. Show that it is possible to have (D, ,f)(a,b) = (D, f)(a,b) even when
D, f is not differentiable at (a, b) by considering the function
Sy = [FYE ) i 0200
if (x, y) =(0,0).

3-5.P4. Let f'and g be real-valued functions defined on R, possessing continuous
second derivatives /" and g". Define

F(x,y) = f(x + g(»)), (x,y)eR’.

Determine D\ F, D, F, D, F and D, F and show that (D, F)(D|,F) =
(D2 F)(Dy 1 F).

3-5.P5. If F' is homogeneous of degree p and its partial derivatives are differen-
tiable, then show that the equation

X*(DyF) +2xy(Dy 2 F) +y (D2, F) = p(p— DF
is valid.

3-5.P6. A weaker version of Schwarz’s Theorem 3-5.3 is the following: Let x be
a point in the domain S ¢ R” of a real-valued function f such that, in some ball
centred at x, the derivatives D;;f and D;;f both exist and are continuous at x.
Then D;,;f(x) = D;;f(x). Prove this weaker version directly without using
Schwarz’s Theorem.

3-5.P7. Prove that D, | f(0,0) # D, ,£(0,0) for the function on R? such that £(0,0)
=0 and f(x,y) = x° arctan% —y arctanf for (x,) # (0,0). Here u*arctan is
understood to mean 0 when u = 0 # v.

3-5.P8. Let f be a homogeneous function of degree n with continuous second

partial derivatives on an open subset of R and suppose (x,y,z) is a point where z
# 0 and the determinants H and 4 of the respective matrices
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Dyf Dnf Dsf D,f D,f Df
Dy f Dynf Dyf and Dy f Dyf Dyf
Dy f Dyf Dyf Df Df &5F

(n—=1)*
are also nonzero. Show that H = Q- A.

3-5.P9. Let B be the determinant of the matrix

Dllf DlZf le
D21f D22.f DZf 5
D31f D32f D3f

where f is a homogeneous function with continuous second partial derivatives
on an open subset of R* and let A and 4 be the determinants as in 3-5.P8. Show
that B* = 4H (although nothing is guaranteed to be nonzero!).

3-5.P10. Suppose the functions x,y,z of 3-4.P14 have continuous second partial
derivatives. Then show that

J(x,J(y,2)) + J(,J(z,x)) + J(z,J(x,y)) = 0.

3-5.P11. Let y = y(x) be a twice continuously differentiable function satisfying
F(x,y) =0, where F has continuous second partial derivatives. Prove that, if F, #
0, then

Fxx ny Fx
F,’y"=det F, F, F,|
F. F, 0

3-5.P12. Let / be a continuous function on the cuboid [a,b]x[c,d] in R®. For
each interior point (x,y) of the cuboid, define

Fx,p) = [; (7 f(s.0)dt) ds.
Show that Dy » F(x,y) = Dy 1 F(x,y) = f(x,y).

3-5.P13. Let x be a point in the domain S < R" of a function f: S—R" such that,
in some open convex subset B c S that contains x, the mn derivatives D; f; (1 <j
<n,1 <k<m) exist and satisfy the following Lipschitz condition:

ID;fi (x + ) — D;fi (x)| <L||h|l, whenever x+hebB.
Then show that
ILfCx + k) — f(x) — f'(x) |}, < Ln'?m"?|h|l,> whenever x+heB.






4

Inverse and Implicit Function Theorems

4-1 Contraction Mapping Theorem

So far we have been concerned with maps from an open subset of R” into R".
Soon we shall be considering maps from a set that is a subset of R” into that
very set, what are often called self maps of a set. For example, the map
T:[0, 1]-][0, 1] given by Tx = 1 —x is a self map. A trivial example would be the
identity map 7 given by Tx = x on any set X whatsoever. What we shall need is a
property of a special kind of self maps called contractions or contraction maps
of a closed subset of R” (Theorem 4-1.6 below). Before proceeding to the theo-
rem, we illustrate the ideas involved.

To begin with, we give some examples of self maps.
4-1.1. Examples. (a) X=[0, 1], 7x = 1 —x”, p some positive integer.
b)Y X={xeR:x#0}, Tx=x+ (1/x).
() X={xeR:x>1}, Tx=x+(1/x).
(d) X=1[3,5], Tx = integer part of x.
(e) X=11,2], Tx =x— (x’ — 2)/16.
It is a simple matter to verify that the maps described in (a)—(d) above are
self maps. That (e) also describes a self map can be checked as follows: T"(x) =

1—% is positive for x € [1, 2] and so 7(x) is an increasing function of x. There-

fore, £ <T(x)< .

4-1.2. Definition. 4 fixed point of a map T:X—Y is an element x € X such that
Tx = x. (Obviously, any such x, if it exists, must also belong to Y.)

4-1.3. Examples. For the identity map 7x = x, obviously every x in the domain
is a fixed point. For the examples in 4-1.1, taken in reverse order, it is easily
checked that fixed points are respectively 213, {3,4,5}, none, none, and any root
of the equation x” + x — 1 = 0 that may belong to [0, 1]. Such a root exists; in-
deed, with f(x) =x” +x — 1, we have f(0) =—1, f(1) = 1, so that an application of
the intermediate value theorem yields the conclusion.

4-1.4. Definition. When X c R", a map T:X—X is called a contraction (or con-

traction mapping, contraction map, shrinking map) in X if there exists some
ce[0,1) such that

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 4, © Springer-Verlag London Limited 2011
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ITx =D < cllx=yl  x,yeX.

Although the constant ¢ cannot be unique, it is convenient to refer to it as
the contraction constant. The same map can be a contraction in the sense of one

norm in R” but not another [see Example (c) below].

As the reader can easily see, every contraction is uniformly continuous.

Examples. (a) A constant self map is clearly a contraction, with any number ¢
between 0 and 1 serving as the contraction constant.

(b) Let b € R" and T:R"—>R" be defined by Tx = %x + b. Then T is a contraction

with any number between % and 1 serving as the contraction constant.

(c) A linear map T:R"—R" is a contraction if and only if for some c € [0,1) we
have ||7x|| < c||x]| for all x € R”, because Tx— Ty = T(x—y). Take n = 2 and con-
sider the map T:R*—R? defined by

Tx= T(xl,xz) = (%X]"‘%Xz, %X]"‘%Xz).

We shall show that || Tx||.. < %||x||m but there exists x € R? such that || Tx||; > ||x]|;.

The former inequality follows from the observation that

1 1 1 1 1 1 3

x| < = x|+ = < = +— =2

gl S g+ ol S S+ g Il = Skl
and

2 1 2 1 2 1 5
L=< Elxl+ =0 << += =2
|23+l € Fal+ ¢ lal < St ¢ k= 2 ..

For the other inequality, choose x = (x;,x;) = (1,0); then ||x||;, = 1 and ||Tx||; =
1 2 _ 7 —
s t5=5>1=lxl.

(d) Among the self maps illustrated in Examples 4-1.1, the last one is a con-
traction. This follows by applying the mean value theorem and noting that 0 <

1 —3x%16 < 13/16 when x € [1, 2]; so we may take ¢ = 13/16. In fact, the follow-
ing general result holds.

4-1.5. Proposition. Let I be an interval and f:.1—1 be differentiable. Assume that
there exists a constant K < 1 such that |f'(z)| < K for all z € 1. Then f is a con-
traction.

Proof. If x,y € I, x <y, then (f(x)—f(»))/(x —y) =f"(c), where x < ¢ <. Since
| f(z)| <K for all ze [, it follows that | f{x) — f(¥)| < K|x — ). O

As another illustration of this result, we consider Tx= 5 (x + %), x € [1,00).

Since x+% > x+% > 2, we see that T is a self map. Moreover, |T'(x)| =

|% — 1< % . So, by the above proposition, 7 is a contraction.



4-1 Contraction Mapping Theorem 119

The first four self maps listed in Examples 4-1.1 are not contractions: in (a),
we have |70 — 71| = 1 = |0 — 1], while in (b), we have |T(-1) — T(1)| = |(-2) — (2)]
=4 whereas |(—1) — (1)| =2. In (¢),

x>y > 1= (T Ty| = | —p) + (1x— 1) = ()1~ 1)

and therefore |7x — Ty|/(x — y) can be as close to 1 as desired. In (d), the map T
is not even continuous.

We now come to the main theorem in R” about contraction mappings. In a
more general context than R”, the result is variously known as contraction
mapping theorem, shrinking lemma, Banach—Cacciopoli principle, contrac-
tion principle and so forth. We shall refer to it as the contraction principle,
although we restrict attention to R”".

4-1.6. Contraction Principle (in R"). If T is a contraction map in a closed sub-
set X C R", then T has a unique fixed point.

Proof. Since 7 is a contraction map, there exists c € [0, 1) such that
|[Tx—Ty|| < c||lx—y| whenever x,yeX (1)

Now |c| = ¢ < 1, and hence ¢"—0 as p—> oo,
Uniqueness is easily seen as follows. If Tx, = x, and also Ty, = y,, then by
(1), llxo=oll < ¢llxo—yoll. But ¢ < 1. Hence [|xo—yol| = 0 and xo = yo.

To prove existence, take any element x; € X. Define a sequence in X induc-
tively by setting x,,.; = Tx,,. For p = 1, it is trivial that

11 =251 < €l =20 )
because the two sides are equal. Assume (2) holds for some p € N. Then
%42 =Xpall = [ T%p1 = T | S €lltpir =21 < (@ =1l = &l =i
Therefore (2) holds for all pe N.
Now, for ¢ > p, we have
[y = Xp 1| < Mg =g all + (1% 1= Xg 2 ||+ H{[xp41 =X,
<@+ T x| by (2)
<@ '+ x|

= [ A= O)llx =20l

Since ¢ '/(1—¢) tends to 0 as p tends to infinity, it follows that {x,} is a
Cauchy sequence. By Theorem 2-2.10, the sequence must converge to some
limit, say x,, and by Proposition 2-4.5, xo€ X. Then for any p € N, we have
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30— Tl < [lx0 =5, + 13, — T+ 1 o, T
< lxo =5+ 13 =%y all + €1~
< Ixo=xll+ &l —xill + el —xol by ).

Since [|xg—x,||—0 and ¢’ ~150 as p tends to infinity, it follows that ||xo— Tx,|| =
0. Therefore Tx, = xq. O

The proof of the theorem not only guarantees the existence of a fixed point
but also provides a procedure for approximating it, because the sequence {x,}
can be explicitly computed in terms of 7" and a chosen x. In the case of the con-
traction map 7 in [1,2] given by Tx = x—(x’—2)/16, which was mentioned
above, the sequence would be

1,1-(1°=2)/16 = 17/16, (17/16) + [(17/16)° — 2]/16 = 66353/65536, ... .

The first term could have been taken as any element of [1, 2] instead of 1; the
resulting sequence would still converge to the unique fixed point, which is 2'7,
as already observed.

Similarly, the self map of [1,e0) given by Tx = %(x + %), which has already
been shown to be a contraction, is now seen to have a unique fixed point. It is
easy to verify by an independent computation that the fixed point is v2.

The following corollary gives an estimate of the distance between x,, and x;.

4-1.7. Corollary. Let T:X—X be a contraction map in a closed subset X — R"
and

| Tx—Ty|| < c||x—y]| x, ye X, where ce [0, 1).

If x1€ X and {x,} >\ is the sequence defined inductively by x,+\ = Tx,, then
120 — 2, || < [ Y(1 = ©)]||x2 —x1]|, where X, is the fixed point of T.

Proof. In the proof of Contraction Principle 4-1.6, it was shown for ¢ > p that
[lx,—x,|| <[ “1/(1- )] ||x,—xi||. The inequality in question follows upon tak-
ing the limit as g—oo0. O

Examples. (a) In the case of the contraction map 7 in [1, 2] given by Tx = x —
(x> = 2)/16, we have 0 < T"(x) = 1 —3x%/16 < 13/16; so we may take ¢ = 13/16.
Then with x; = 1, we have
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10 =26, | < [ (1 = [z =xil| <[ )” 1/(1* 1oz =24l
=5 —)” ( )——( )’37

(b) For the contraction map 7'in [1,0) given by Tx= 5 (x + %), we have |T"(x)| =
|% — 17 < % ; so we may take ¢ = % . Then with x; = 1, we have

-1 1yp-1

2

p-1 p-1
(Y3 ) ()
2 2 2
For the purpose of the inverse function theorem however, what matters is

only the existence of a unique fixed point for every contraction map in a closed
subset of R".

We now present a generalisation of the contraction principle, which is use-
ful in some situations; however, we shall have no occasion to use it later in this
book and the reader may wish to omit it.

4-1.8. Corollary. Let X be a closed subset X € R" and T:X—X be a self map
such that T* is a contraction in X for some positive integer k. Then T has a
unique fixed point. (Note that T is not even assumed continuous!)

Proof. By the contraction principle, 7* has a unique fixed point; denote it by x,.
Then T*x, = x, and hence T k(Txo) =TT kxo) = Txy, which means that Tx, is also
a fixed point of 7*. But T* has a unique fixed point and therefore Tx, = x,. Thus
X is also a fixed point of 7. Since any fixed point of T'is also a fixed point of T*,
then T cannot have another fixed point. O

Example. Under the hypotheses of the above corollary it can happen that 7 is
not continuous. Indeed, let 7:R— R be defined by 7x= 0 or 1 according as x is
rational or irrational. Then T'*(x) = 0 for all x € R, which ensures that 77 is a
contraction. But 7 is discontinuous everywhere.

Problem Set 4-1

4-1.P1. Show that Contraction Principle 4-1.6 is not valid if the subset X of R" is
not closed. Determine the fixed points, if any, of the following maps:

(i) T:R—R defined by T(x) = x*

(i) T7:R—R defined by T(x) =x + o
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(iii) T:R’>R defined by T(x, y) = x.

4-1.P2. Show that if a self map 7:X—X has the property that 7° has a unique
fixed point, then 7 has the same property.

4-1.P3. (a) Show that if a self map 7: X—X < R” satisfies the condition that

|I7x—Ty|| <||x—y|| whenever x # y,
then it has at most one fixed point.
(b) If the self map T: X—X < R” satisfies

ITx—Ty]| < llx—yl| forall x,y € X,
show that it has at most one fixed point.
4-1.P4. (a) Show that the map 7:[1, 00)—[1, o) such that 7x = x + 1/x satisfies

[|Tx — Ty|| < ||x —y|| whenever x # y,

but has no fixed point.
(b) Show that the map f:R—R such that f(x) = x + (1 + €)' satisfies 0 < [ f'(x)|
< 1 everywhere but has no fixed point.

4-1.P5. Let T: X—.X be a self map of a set X ¢ R" and suppose
|I7x—Ty|| <||x—y|| whenever x # y.
If X is compact, show that 7 has exactly one fixed point.
4-1.P6. Show that the map T:[1,2]— R such that Tx =x — (x’ — 6)/500 is a con-
traction map in [1,2]. What is the limit of the sequence
1, T(1), T(T(1)), T(T(T(1))), ... ?

4-1.P7. Define T:[0,3]—>[0,3]as Tx =1if 0 <x <2 and Tx =2 if 2 <x < 3. Find
T2 (This provides an example of a discontinuous self map with a unique fixed
point.)

4-1.P8. Let X < R" be closed and T: X—X be a self map. Assume that there is a
real sequence {a,,} and a positive integer N such that

1) |ITx—T"| < o,||x—y| for all x,y € X and all n > N; and
(i) {o,} has a subsequence converging to a limit < 1.

Show that T has a unique fixed point.

4-1.P9. For the self map f/: R—R given by f(x) = 5(1 + x°), show that
(a) there are three fixed points u <v <w;

(b) £ maps the open interval (uz, w) onto itself;

(c) for any x € (u, w), the sequence f"(x) converges to v;

(d) f'is not a contraction map in (u, w).
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4-1.P10. For the self map f:R—R given by f(x) = 1/(x* + 1), it can be shown by
direct computation that (i) f3(3) = f(f(3)) > 3 (i) f(3) = 55 < 35; and
(iii) | £'(1%)[ < 1. Show that

(a) f has a unique fixed point o.€ R and that a.e [% ,11;
b)0<x<o<y=0<f(y)<a<flx);

(©) % < f(%) and f'is a contraction in the interval [% , f(% )].

4-1.P11. Let S be a compact subset of R” such that 0 <r<1,xe S=>mxe S. If
T:8—S satisfies [|Tx — Ty|| < ||x—y|| V x,y € S, show that T has a fixed point.
Give an example to show that the fixed point need not be unique.

4-1.P12. Let T be a contraction map in a closed subset X of R". For the case
when X is also bounded, use Theorem 2-5.7 and Theorem 2-6.13 to show that T’
has a fixed point. Then extend to the case when X is unbounded. Finally, use the
existence of a fixed point x, to show for any element x; € X that the sequence in
X defined inductively by setting x,., = Tx, converges to x,. This proof due to
Drager and Foote [9].

4-2 Inverse Function Theorem

Consider the question of expressing x in terms of y from y = x* + 1. This is ask-
ing for the inverse of the function f:x—x” + 1. Since f is not injective, there is
no inverse and one has to make do with either x = g(y) = ( y—l)% orx =gy =
—(y- l)% , depending on whether one wants x > 0 or x < 0. In other words, with x
restricted to either one of two suitable subsets of the domain of £, one can get a
continuous inverse for the restricted function. Unless a restriction is imposed on

x, there can be no inverse, since f is not injective.

One thing that the inverse function theorem does is to provide a sufficient
condition for such a restriction to be possible when the domain and range of f
are both subsets of R”, which is to say x,y € R". Since we shall consider func-
tions that are differentiable in the sense of Def. 3-2.1, the subset to which x is
restricted must be open.

It may be noted in passing that discontinuous inverses are also possible:
Take g(v) = ( y—l)% for rational y and g(y) = y—l)% for irrational y, the re-
striction on x being that it should belong to the range of this discontinuous
function, whatever it may be!
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A familiar two-dimensional situation occurs when one wants to express the
polar coordinates (r,0) of a point in R?, other than the origin, in terms of its rec-
tangular coordinates (x,y):

x=fi(r,0)=rcos8,y=£(r,0)=rsinf, r#0.

One cannot blithely take 6 = tan ™' (y/x), because this will restrict 0 to lying be-
tween —7t/2 and 1/2. If one takes » > 0 and —t < 0 < &, then f becomes injective
and an inverse g for the restricted f can be obtained, albeit a discontinuous one.
Details are left to the reader in 4-2.P16. With a further restriction on (r,0), such
as —T < 0 <, the inverse described therein can be shown to be continuous. Of
course, any stronger restriction will also do, because if a function is injective on
a subset of its domain, then it is injective on any nonempty subset of that subset.

For the function f(x) = x> + 1 discussed above, both instances of the restric-
tion imposed on x in order to make the function injective were special for that
function. If such a restriction were wanted for the function /: R*—R?* given by

yi =fi(x,x) =x tcosxy, ¥y =fr(x1,X%) =x1X3,
it would not be easy to find one, or even to check whether it is possible in the
first place.

Returning to the function f(x) = x* + 1, recall that there can be two different
open subsets to which x can be restricted. When one restricts x to the open set x

1
> 0, the inverse g(y) = (y—1)? ‘accommodates’ the value x = 2 and also any
other value x = @ > 0. Similarly, when one restricts x to the open set x < 0, the
inverse accommodates any a < 0.

Thus the theorem is about a given a in the domain, which is to be accom-
modated in an open set U on which f'is to be injective.

4-2.1. Inverse Function Theorem. Let E be a subset of R" and f: E—R" be con-
tinuously differentiable on E. Let a € E and f"(a) be invertible. Then there exist
subsets U C E, V < R" such that

(@) Uand V are open, ac U, f(U) =7V, fis injective on U and f'(x) is invertible
whenever x € U; moreover,

(b) the inverse map g: V—U is continuously differentiable and satisfies

gy =f ’(g(y))f1 whenever ye V

2(fx)=fx)" wheneverxe U.

Proof. (a) Denote the linear map f"'(a) by A. Since f"'is continuous at a, there
exists an open ball U c F centred at a such that

or equivalently,
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1
201471l

Then f'(x) is invertible whenever x € U (by Theorem 2-7.11).

xeU= [|fx)-4| < = (4711 )~ 4l <%' )

For any ye R" and xe U, define

0,(x) =x+ 47 (y—/(x)) (2a)
= A7\ (Ax+y—f(x)). (2b)

Then by (2a),
x is a fixed point of ¢, < y = f(x). (3)

By (2b) and Remark 3-3.8, ¢, (x) = A (A —1'(x)). Together with (1), this equali-
ty implies that [|¢,'(x)|| < 3 forxe U. It follows by Corollary 3-3.4 that

160, @) =0, )l < Hxi—x2]| Vxi,xeU.iiiiiinn, (4).
(Caution: This is not enough to guarantee that we have a contraction map, be-
cause we do not yet have a set that it maps into itself! We shall arrange for that
later.) The inequality (4) shows that ¢, can have at most one fixed point, so that
by (3), f(x) = y for at most one x € U. This further implies that f is injective on
U. Let V'=f(U). Then f maps U injectively onto V, and a € U. Therefore, there
exists an inverse map g: V—U, as illustrated in the accompanying figure. In or-
der to complete the proof of part (a), it now remains only to show that J is open.

Consider an arbitrary yy € V. Then y, = f(x,) for some xo € U. Lete >0 be
arbitrary but small enough to ensure that ||x —x,|| < € = x € U, so that the closed
ball B of radius € centred at x, is a subset of U i.c.,

B={xeR":||x—x| <e} cU.
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We claim that the open ball of radius €/2||4”"|| centred at ¥, 1s contained in V; in
other words,

n €
yeR, [[ly—wll < = ye f(U).
2047l

In order to prove this, let ||y — yo|| < €/2]|47"||. Then for x € B, we have
||¢}(x) _XOH < ||¢y(x) - ¢y(x0)|| + H(I)y(XO) _XOH

< 3 le=xoll +[147'(y=f(x) ||, by (4) and (2a)
< S+ 147y =yl

<Eq -
2 2047

<eg,

so that ¢, (x) € B. Consequently, ¢, maps B into itself. Now by (4), ¢, is a con-
traction in B, which is a closed subset of R". By the contraction principle in R",
¢, has a fixed point in B ¢ U. Therefore by (3), y € f(B) < f(U). This completes
the argument that /" is open, and (a) is established. Observe that a little more has
actually been proved, namely, that for any € > 0,

€
211471l

ly—yoll < , VeV = yef(B) = y=flx) forsomexe B = g(y)eB

= gl —xll <e,
and therefore, continuity of the inverse map g has also been established.
(b) We know
S+ h)—1(e) = f(g0))(h) + || Allu(h) for sufficiently small A )
and u(h)—0 as ||4]|—0. Observe that f"(g(y)) is invertible because g(y) € U. Now

g has been proved continuous and we can therefore take k& small enough to en-
sure that (5) holds for & = g(y+k)—g(y). Then for every such k, we have

fley+k)—f(g) = f(g()(h)+ || h|lu(h). But the left side of this equality is
just k; so k= f(g(y))(h) + || hlju(h). Applying f'(g(y))" to both sides, we obtain

h =) 'k~ [lAll /() (uh)), (6)

which is the same as

g +k)—g() =1 kAl /() (uhy).
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Therefore, in order to arrive at the existence of g'(y) and the equality g'(y) =

g(»)", we need only show that L. £(g(1)) (u(h))—0 as ||k||—0. By continui-

[I&l|
ty of g, we have ||4]||—0 as ||k||—0. So it is sufficient to prove that % remains

bounded. Now (6) implies
(111 < 117 NI+ Wl (@)Y A,

which further implies

A= 1L£ 0N Bl < 11£(0)) 1Kl

Since u(h)—0 as ||4]|—0, it follows that % remains bounded. We have thus

proved, for all y € V, the existence of g'(y) and the equality g'(y) = f(g(»)) .

Now, the equality shows that g’ is the composition of g, /*, and inversion of
linear maps. All these are continuous maps (inversion is continuous by Theorem
2-7.11) and therefore g’ is continuous. This establishes (b). O

The conclusion of the above theorem is often summarised as ‘f'is locally in-
vertible at a with a continuously differentiable local inverse’ or ‘f has a
continuously differentiable local inverse at a’. The term ‘local inverse’ here
refers to the function g.

It is possible to prove the inverse function theorem without using the con-
traction principle. Such proofs usually use the compactness of a closed ball in R”
(see Apostol [1]). However, proofs using compactness of a closed ball cannot be
extended to the situation when R" is replaced by an infinite-dimensional space,
but the above proof can be (see Lang [17] or Brown and Page [4]). The treat-
ment given above most closely resembles that of Rudin [22].

We shall now apply the above theorem to the examples discussed at the be-
ginning of this section.

4-2.2. Examples. (a) For the function f defined on R by f(x) = x* + 1, the deriva-
tive is f'(x) = 2x, which is nonzero when x # 0. Therefore, by the inverse
function theorem, every a # 0 lies in some open set U on which f is injective.
Besides, f maps U onto an open set V' and the inverse g:/—U is differentiable.
Also, g'v) = (f(g(»)) ' = 1/2g(y) V y € V. Thus fis locally invertible at every
nonzero a € R with a continuously differentiable local inverse.

(b) For the function f defined on & = {(x,, x,) € R* x; # 0} by
V1 :f] (xl, )Cz) =X1C08X2, ) :fz()ﬂ . Xz) =X Sil’l)C2, X1 * 0,
the Jacobian matrix is

{cos X, —xsinx, }

sinx, X, COSX,
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This is invertible when its determinant, which equals x,, is nonzero. Therefore,
by the inverse function theorem, every point of & lies in an open subset U of &,
on which f'is injective. Besides, f maps U onto an open set " and the inverse
map g:V—U is differentiable. Thus f has a continuously differentiable local
inverse at every point of &.

(c) For the function f defined on R* by

2 2
ﬁ(xlst):xl +Cosx29 ﬁ(xlaxz):xle v(xlaxz)ERa

{le —sin x, }
X2 X

This is invertible when its determinant, which is equal to 2x;% + x, sin x;, is non-

the Jacobian matrix is

zero. Therefore, by the inverse function theorem, every point (a;,a,) of R* for
which 2a,> + a, sina, # 0 lies in an open subset U of R? on which fis injective.
Besides, f maps U onto V and the inverse function g:V—U is differentiable.
Thus, f'is locally invertible at every point (a;, a,) of R? for which 2a,> + a, sin a,
# 0 and the local inverse is continuously differentiable.

(d) For the function £ defined on R? by

p=¢ecosy, qg=e¢siny,
the Jacobian matrix is

e*cosy —e'siny
e'siny e‘cosy

This is invertible when the determinant, which is equal to ', is nonzero. But
this is so for all x. Therefore, by the inverse function theorem, every (a, b) in R?
lies in an open subset U of R? on which fis injective. Besides, the inverse func-
tion g:V/—U is differentiable. Thus, f has a continuously differentiable local
inverse at every point of R?. Nonetheless, fis not invertible on R [see 4-2.P3].

4-2.3. Remark. In the proof of Theorem 4-2.1, we used the continuity of /" at a
right at the outset. One may well ask whether the requirement of continuity at a
could have been avoided in the simple case when the dimension # is 1. The an-
swer is that it cannot be avoided even in this simple case: The function f defined
as

fx)=x+2x*sin(1/x) forx#0 and f(0)=0

can be shown to have the properties that f*is bounded on (-1, 1), f/(0) = 1, but /'
is not injective on any open interval containing 0 [see 4-2.P8]. Of course, the
trouble is that f” is not continuous at 0 and Theorem 4-2.1 is therefore not appli-
cable.

4-2.4. Example. During the proof of Inverse Function Theorem 4-2.1, it was
asserted in (3) that x = g(y) is the fixed point of the contraction described in (2a)
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or (2b). As emphasised in Section 4-1, the contraction principle not only guaran-
tees the existence of a fixed point but also provides an explicit sequence
converging to it. Therefore, the proof also enables us to generate an explicit se-
quence converging to the required x, but valid in some sufficiently small ball
about the ‘accommodated’ point (which has been designated as a in the state-
ment of the theorem). We compute the first three terms of such a sequence for
the simple example f(x) = x>+ 1, a = 2, which was mentioned earlier and for
which the inverse map can be written down explicitly as

x=g()=(y-1).

Here f'(a) = 4 and hence ¢,(x) = x + +(y - f(x)) =x + +(y — (o + 1)). By apply-
ing the argument of the theorem with @ = 2 and f(a) = a* + 1 = 5, we find that
g(y) is the fixed point of ¢,, and that ¢, is a contraction as long as y is in a suita-
ble ball (interval) centred at f(a¢) = 5. For the approximating sequence that
begins with the constant x;(y) = 2 as the initial term, the next three terms are

() =x() + 4(r— () 2+ 1)) =2+ 3(y-3),
x3(0) =50+ 5(y— 0+ 1) =2+ 5 (r=5) -y -5,
() =x3(0) + (= () >+ 1)

=2+ 4= -5z (r =5 330 = 5’ ~ g (v = 5"

The reader may note that the fourth degree term in x4(y) does not agree with the
Taylor expansion of g at y = 5, but the other terms do.
4-2.5. Remark. In the proof of Theorem 4-2.1, the value f'(y) is obtained as

the fixed point of the contraction ¢, given by ¢, (x) = x + A (y—f(x)), where 4
=f"(a). In other words, as the limit of the sequence {x,},-| generated by

X1 (1) = 5(0) + 1@ (7 = fx(»))-
A modification of this way of generating the approximating sequence is to re-
place /(@) by f(x,(»))"', which means we take

X1 (1) = 3(0) +L15(0)) " (1= fOo(0)).

Since we shall work with a fixed y, we shall keep the notation uncluttered by
writing x,() as simply x, from now on. Then the above equation becomes

Xpi1 = Xp + f1(x,) B (y—=fx)). (D
The one-dimensional version of this is easily recognised as Newton’s method
for solving f(x) —y = 0. In fact the multidimensional version is also known by
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the same name. We enter into an informal discussion of the following features it
shares with the one-dimensional version:

(a) It converges if all the x, lie in some open ball about f () on which all the
second partial derivatives of the components of f as well as || /|| are bounded.

(b) When it converges, it does so much faster than the sequence generated by the
contraction. This explains why the convergence in 4-1.P10 is slower than that of
Newton’s method.

We work with the norm || ||, in R". Applying Corollary 3-5.6 to the function
f(x) —y with the ball mentioned in (a), we find that there is some constant § > 0
such that

() = ») = (fx,) = ») = 1) (x = x,)I| < Blx — x|

as long as x lies in the ball. Choose x = f'(y), so that f(x)—y = 0. Then the
above inequality becomes

1= (/) =) =110 = )l < Bllox =5,

By (a) above, there exists some 0. > 0 such that || f'(x,) || < o for all p. There-
fore,

1=£"06) " (f06) = 1) = (= 25)]| = [17Cep) " (= (f05) = ») =S (o) = %))
< af|lx — x|
But ff'(xp)fl (f(x,) —») = xp11 — x,, in view of (1). Therefore,

10651 =2%,) = (¥ = x,)I| < @Bl|x = x, 1,
which simplifies to

2
[l = xpeall < aBflx = x|

This inequality shows that, if || x —x,|| ever becomes less than 1/af}, then the se-
quence converges to x = /' (1), because

-1 29
1% = Xpiqll < (0B) (0| x —x,[1)" -
Contrast this with the estimate ||x —x,.,|| < ¢||x —x,|| in the case of a contraction
with contraction constant c.

The kind of ball we have assumed above can be shown to exist; the interest-
ed reader is referred to more advanced texts such as Chaudhary and Nanda [7],
Kantorovich and Akilov [15] or Loomis and Sternberg [19].
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Problem Set 4-2

4-2.P1. The point (2,4) in the plane lies on the graph of = f(x) = x*. Find an
open set containing y = 4 such that the function g(y) = y"
is defined on that open set, and show that

x=g0) = y=x3 g®=2. |

The point (-2,4) also lies on the same graph. Find an open
set containing y = 4 and a function g, defined on that open
set such that

O P ————

x=g() = y=x5 a@=-2
The point (0,0) also lies on the same graph. Is there an
open set containingy = 0 with a function g, defined on it such thatx
g(y) = y=x"and g(0)=0?

4-2.P2. The point (1,e) lies on the graph of y = xe". Find an open set containing
v = e such that there is a continuous function x = g(y) defined on it, for which x
= g(y) >y = xe" and g(e) = 1. Formulate the corresponding question for the
point (-2, —2/¢%) and answer it.

4-2.P3. Let /:R*>R? be defined as f(x, y) = (€' cos y, € siny). Show that every
point in R? belongs to an open set on which f is one-to-one and that f is not in-
jective on R%.

4-2.P4. Show that the Jacobian of the transformation
u=éecosy, v=esiny

from R* to R? is never 0. Does the inverse function theorem say that this trans-
formation is invertible? Support your answer.

4-2.P5. [Needed in Proposition 7-2.4] If f is a continuously differentiable map-
ping of an open set £ < R" into R” and if /() is invertible for every x € E, then
prove that /" is an open mapping of E into R". (Note: The phrase ‘f is an open
mapping of £ into R"” means that / maps every open subset of E into an open
subset of R".)

4-2.P6. Let U and V' be open subsets of R” and let /: U—V be continuously diffe-
rentiable and bijective (i.e., injective as well as surjective), so that the inverse
map g:V—U exists. Suppose f(x) is invertible for every x € U. Show that g’ ex-
ists on the entire given set V.

4-2.P7. Let U be an open subset of R" and f: U—R" be a continuously differenti-
able map such that f(x) is invertible for every x € U. Suppose V is an open
subset of U such that its closure ¥ is bounded (hence compact) and contained in
U, and fis injective on the closure. Show that the image f(7) is the closure of an
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open set. The result of this problem is useful in the study of integration of diffe-
rential forms; see Rudin [22, p. 270].

4-2.P8. Show that the function f defined on (-1, 1) by
f(x)=x+2x*sin(1/x) forx#0 and £(0)=0

has the property that /(0) = 1 and that f is not injective on any open interval
containing 0.

4-2.P9. Let X be any nonempty set and ¢:R"—>R", y: X—R" be any maps. De-
fine the map ®:R"xX—>R"<X by P(s,x) = (¢(s) + y(x), x). Prove (a) if ¢ is
injective, then so is @; and (b) if ¢ is surjective, then so is P.

4-2.P10. Let /:R*—>R’ be defined by

— 9,4
1= 2X +X3C08X, — X X5,
- 2 :
= (x;+x5)" —4sinx,,

3= In(x, +1)+5x, +cosx; —1.
Show that the Jacobian matrix has rows

[8x°—x; —xysinx, cosx,—x 1, [20x +x;) —4cosx, 2(x;+x;)]

and [5 ﬁ —sinx; |,

and that f has a continuous local inverse at (0, 0,0).

4-2.P11. State conditions on f and g under which the equations x = f(u,v), y =
g(u,v) can be solved for u,v in an open set containing (x,)o). If the solution is u
= F(x,y), v = G(x,y) and if J is the determinant of the Jacobian matrix of the
map (u,v)—>(f(u,v),g(u,v)), show that

oF _ 1 og oF _ 1 Jf oG _ 1 og 9G
dy

I
o J v’ dy  J ov’ ox  J ou’ Ju

1
J
4-2.P12. Show that the mapping f:R*—>R? defined by f(x,y) = (x* — )% 2xy)
maps the open set U = {(x,y) € R?: (x,y) # (0,0)} ‘two-to-one’ onto itself and is
hence not invertible. Verify that every point of U belongs to an open set on
which the mapping has a differentiable (local) inverse.

4-2.P13. Let f: U—R? be the map described in 2-3.P4. Using the range of the
map derived there and the fact that x* + 17, x* —1” and xy describe continuously
differentiable functions, but without computing the linear derivative f’, show
that /" is not invertible at any point of U.

4-2.P14. Suppose f1,fi,...,f, and h are continuously differentiable real-valued

homogeneous functions of the same degree on an open set U < R". Suppose also
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Si(x) Jn(®¥) -
ORE .,% with

respect to (xi,...,x,) is zero everywhere. Deduce the result of 4-2.P13.

that /# vanishes nowhere on U. Show that the Jacobian of

4-2.P15. Forx>0, y>0, z> 0, let
x+y+z o x2—yz+z2

72 VT

_ X +6xty-7y°
! (x* +y*+2%)

and z= 5

x> +2y* + 6527 (x* + %)

A(u,v,w) .

Show that the Jacobian is zero everywhere. Formulate a result that in-

a(x,y,z2)

cludes this problem as well as 4-2.P14 special cases.

4-2.P16. Consider the map g of {(x, y) € R?: (x, y) # (0,0)} into itself given by
g(x,y) = (r,0), where

r=0*+H)", 0=cos (x/(x* +1%"?) ify>0
and 0=—cos ' (x/(x*+)H)")  ify<o0.

Show that

(a) (r,0) € (0,00)%(-Tr,];

(b) x = rcosH, y=rsinb;

(c) if (r,0) € (0,00)x(— m,mt] and x = rcos 0, y = rsin6, then g(x,y) = (r,0);
(d) g is not continuous at (-1, 0).

4-2.P17. The map f(x) = xe" of E = (—1,0) into R has a positive derivative eve-
rywhere on its domain and therefore has an inverse. Choosing a = 1 in Theorem
4-2.1, describe the map ¢,. For the approximating sequence for f “I(y) starting
with x1(y) = a as the first term, compute the next two terms. Which of them, if
any, are partial sums of the Taylor series of /' at y = ? According to the theo-
rem, the sequence converges to /(1) for all y in a suitable ball centered at some
point; what is that point?

4-2.P18. Show that the map (u,v) = f(x,y) = (x +y*, x’ + ) of R? into itself has a
local inverse at (0,0) and find the second and third terms of an approximating
sequence for the local inverse, valid in some ball centred at (0,0).

4-3 Implicit Function Theorem

We now return to the type of question discussed in Section 2-1, which is to ex-
press (i.e., solve for) some variables in terms of the remaining from a system of
equations, e.g.,

pPrHg —rmp+sin(s+p)=0, p’g+cos(p+2g+r—s)—qg—1=0.
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In this example, we have two equations in four variables. From past experience,
the reader will surely recognise that one can at best expect to solve for two va-
riables in terms of the rest, because there are two equations. In general, if there
are n equations in n + m variables, one hopes to solve for n variables in terms of
the other m. Of course, this is not always possible (see the linear example in
Section 2-1). To ignore such exceptions and proceed until one is forced to take
them into account may be entirely appropriate for some other intellectual pur-
suit, but in mathematics the tradition is that one makes as sure as possible before
proceeding.

In the same spirit as the inverse function theorem, one can address the ques-
tion of the existence and uniqueness of a local solution, and its differentiability
and try to obtain an answer with a degree of certainty and precision.

For an equation f(x,y) = 0, where x € R”, y € RY, a solution for x in terms
of y is a function g on some domain in R? (usually consisting of more than one
point!) such that f{(g(y),y) = 0 for every y in that domain. Often one seeks a solu-
tion satisfying some additional requirement such as continuity and/or g(b) = a,
where ¢ and b are given. The latter kind of requirement is often expressed as
x(b) = a when one wishes to avoid introducing a letter to denote the solution
function.

The distinction between a solution in the genuine mathematical sense of a
function that fulfills a prestated requirement as opposed to an ‘expression’ ob-
tained by skillful use of established computational procedures is illustrated by
the following example: Solve the equation x = x¢ for x as a continuous function
of ¢ such that x(0) = 0 and state the largest possible interval on which a solution
is possible. According to received wisdom, one reacts to the given equation x =
xt by saying that = 1 or x = 0. Therefore the demand for a solution for x in
terms of # may seem perverse at first sight; nevertheless, the demand is perfectly
legitimate and it takes one step from the observation that # = 1 or x = 0 to arrive
at the solution x(¢) = 0, ¢ € R. This final step requires some imagination, not
computational skill. For a generalisation of this example, see 4-3.P8.

The implicit function theorem(Theorem 4-3.2) below will provide a suffi-
cient condition in order that a continuous solution g of f(x,y) = 0 for x in terms
of y satisfying the requirement that g(b) = a should exist and be unique. How-
ever, our formulation of the theorem does not explicitly mention the word
‘solution’.

With the notation introduced in the opening paragraph of this section, when
n=2and m =1, we have a system of two equations in three variables:

ﬁ(xlsXZay)zoa f2(x1,X2,J/):O-

Expressing x;,x; in terms of y from here is the same as expressing x;, x,, y in
terms of zy, z,, z3 from

fl(xbxz’y):Zl, f2(xlax23y):22, y=2z;
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and then substituting z; = 0 and z, = 0. It may seem as though this makes the
question more complicated, but this seemingly more complicated question calls
for the inverse of the mapping (x;,x,,y)—(z1, 22, z3) just described. Since the
vectors (x;,x,, y) and (z1, z5, z3) are of the same dimension, the question of the
inverse of such a mapping has been tackled already in the inverse function theo-
rem, and one can therefore reasonably expect to answer the present question in
terms of that theorem.

For general n and m, we can think of the system of equations in vector form
as the single equation f(x, y) =0 € R", where x € R" and y € R™. For a given y in
an open subset of R”, we seek to find some x such that f(x, y) = 0. Now,

S, ) =0 (flx, ), ») = (0, y).
This can be expressed in terms of the map F: (x, y)—>(f(x, »), y) as

fx,y)=0& Fx, y)=(0, )
or as f(x,y) =0 (x,y)=F(0,y), butprovided that ' exists.

If this inverse exists (perhaps only a local inverse), then the x that we seek to
find is the first component (n-dimensional) of (x, y) = F (0, y). Since (x, y) and
(f(x, y), ) both lie in R"xR™ = R"", the existence of F' can be handled
through the inverse function theorem. Another instance of ‘reducing a case to
one that has been already handled’ (see the Remark after 3-4.P6).

4-3.1. Remark. Let the map ¢ from an open subset E of R" to R™ be differentia-
ble at some point x, € £, and let 4 be a linear map from R" to R*. Then the map
®:E—R"<RF defined by ®(x) = (d(x), Ax) can be shown to be differentiable at
xo with derivative given by

@ '(xo)(h) = (¢'(xo)(h), 4h),  heR".

This is usually regarded as obvious, but a proof is given here:

@ is the sum of the two mappings x—({(x), 0) and x—(0, Ax). The second
of these is a linear map while the first one is the composition of ¢ with the linear
map y—(», 0). Using the chain rule and the fact that the derivative of a linear
map is itself [Remark 3-2.2(d)], we find that the two mappings have the respec-
tive derivatives

h—(0'(xo)(h),0)  and  h—>(0, Ah).

Since the derivative of a sum of two functions is the sum of their derivatives
[Remark 3-2.2(f)], therefore

@ (x0)(h) = (0'Cx0)(1), 0) + (0, AR) = (9'(x0)(h), 4h).

The proof given above involves only a straightforward use of the chain rule
and what are called ‘elementary properties of the derivative’, i.e., Remarks 3-
2.2(b)—(d),(f). Details are therefore not normally expected to be given, and it
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suffices to say instead ‘by elementary properties of the derivative and the chain
rule’.

4-3.2. Implicit Function Theorem. Let f: E5R" be a continuously differentia-
ble map from an open subset E < R"<XR"™ into R" such that f(a, b) = 0 for some
(a,b)€ E. Let Ay and A, be linear maps of R" and R™ respectively into R" defined
by Aih = f'(a,b)(h, 0) and Ak = f'(a, b)(0, k), so that f'(a,b)(h, k) = A\h +
Ak Y heR", ke R". Suppose A, is invertible. Then

(a) there exist open sets U < E, W < R"™ with (a,b) € U, b € W and a unique
map g: W—R" such that

€.y e U, figl). »=0VyeW;

(b) for every (x,y) € U such that f(x,y) = 0, we have y € W and x = g(y);
(¢) moreover, g is continuously differentiable and

gb)y=a, g(b)=-4;'4,.

Proof. (a) Define F: E-5R"'<R™ by setting F(x,y) = (f(x, ), ¥). Then by elemen-
tary properties of the derivative and the chain rule, F is differentiable on £ and
F'(x, y) at any (x, y) is given by

F'(x,p)(h, k) = (f'(x, p)(h, k), k) V (h, k) € R"™R™.
It follows from this that F is continuously differentiable. (In fact, ||F'(x;, y1) —
F'Co, v S x1, v1) —f'(x2, w2)||.) It also follows that

Fla,b)(h, k)= (A1 h+ A2k, k) ¥ (h, k) € R"<R".

Hence F'(a,b)(h, k) =0 = (A1 h + A2k, k) =0 => A h+ A k=0,k=0

=A41h=0,k=0

=h=0,k=0 because 4, is invertible.
Therefore, F'(a, b) is injective and thus invertible (by Remark 2-3.3(b); surjec-
tivity can also be proved directly, i.e., without using Remark 2-3.3(b) but instead
using the simple idea in 4-2.P9.) By the inverse function theorem, 3 open sets U
C E, V < R"<R" such that (a,b) € U, F maps U injectively onto V and the in-
verse map F':V—U is continuously differentiable. Now F(a, b) = (f(a, b), b) =
(0,b). So (0,b)e V.Let W= {yeR":(0,y)e V}. Then b € W and W is open.
For any y € W, we have (0, y) € V and hence 3 (x, z) € U such that F(x, z) = (0, ).
But F(x, z) = (f(x, 2), z). Therefore (f(x, z), z) = (0, ), so that y =z and f(x, y) =
0. If f{x', y) = 0 with (x, y) € U, then (f(x',y),y) = (0, y), i.e.,, F(x',y)=(0,y) =
F(x, y). But F is injective on U. So x' = x. Hence, there exists a unique x for
which f(x, y) = 0 and (x, y) € U. Call this x as g(y). Then (a) is established.
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(b) Let (x,y) € U and f(x,y) = 0. Then F(x,y) € V. But F(x,y) = (f(x, y), y) and
f(x,y)=0. This means (0, y) € V, so that y € W. By definition of g above, g(y) is
the unique & such that f(€, y) = 0 and (&, y) € U. Therefore x = § = g().

(¢) Since f(a, b) =0, (a,b) € U and b € W, therefore g(b) = a. Now, for any y € ¥,
we have f(g(y), v) = 0 by (a), so that F(g(y), y) = (0, y), from which it follows
that (g(»), v) = F (0, y). Thus g is the composition of the maps

y-(0,), (L »)-F (), (% p)-o.

The first and third are linear while the second is continuously differentiable. It
follows that g is continuously differentiable. Since f(g(y), y) =0 V y € W, the
mapping y—f(g(y), y) must have derivative 0 everywhere. On the other hand,
using elementary properties of the derivative and the chain rule once again, we
find that the derivative of the mapping y—f(g(y), v) at b maps k€ R" into

1(g(b), b)(g'(b)k, k) = f'(a, b)(g'(D)k, k) (because g(b) = a)
=A,g'(b)k+ Ak (by hypothesis).

Since this must be equal to 0 for all k€ R”™, then g'(b) k =—A;' A, k for all k€ R™.
This completes the proof of (c). O

The conclusion of the above theorem is often summarised as ‘the equation
f(x,y) =0 is locally solvable uniquely at (@, b) with a continuously differentiable
local solution’ or ‘f'has a continuously differentiable unique local solution at a”’.
The term ‘local solution” here refers to the function g.

4-3.3. Remark. For application to concrete cases it is necessary to know how to
compute the maps 4; and 4, from f. By Theorem 3-4.2, the linear map f"(a, b)
from R"xR™ into R" is represented by the nx(m + n) matrix of partial deriva-
tives D;f;(a,b), 1 <i<n, 1 <j<m+ n. Consider any linear map 4 from R"xR"
into R" with matrix [o;;], and its associated linear maps 4, and 4, as described
in the above theorem. The matrix of 4, consists of the n” entries o ;jwith1 <i<
n, 1 <j < n, while the matrix of 4, consists of the remaining entries ;. There-
fore, when A4 = f"(a, b), the matrix of 4, has entries D;f;(a,b), 1 <i<n,1<j<n.
The invertibility of 4, is equivalent to its determinant being nonzero. The matrix
is called the Jacobian matrix of fwith respect to x (or with respect to xi, ..., x,,),
and its determinant is known as the Jacobian of f (or of its component functions
fis---, fn) with respect to x (or with respect to xy, ..., x,,). When component no-
tation is being used, it is standard practice to denote it by

O(fis.e s J)O(X1, ..., Xp).
Thus (/R () CICIPRR )
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of1/ox; dfi/dx, - df;/ox,
fis oo s fi) .

a(xl IR axn)

ofy/ox; df,/dx, -+ df,/ox,

Some authors express the hypothesis of invertibility of 4; by saying that this
determinant should be nonzero, e.g., Apostol [1]. (The theorem stated in [1, p.
374] differs from Theorem 4-3.2 and is a variant of Theorem 4-4.1 below.) Al-
though there is no standard name or notation for the linear map 4,, a symbol
such as df/dx or f, could be used. The latter is found in Graves [13], where
Theorem 2 on p.138 is essentially the same as Theorem 4-3.2 above. Since f'is a
function of two vector variables, the symbol D, f can also be used, but prefera-
bly with explanation. This is the notation used in Burkill and Burkill [5], where
the theorem stated on p. 216 is a variant of Theorem 4-3.2 above.]

In particular, if n =m = 1, so that f'(a, b) has the 1x2 matrix

[(9f/ox)(a, b)  (9f1dy)(a, b)],

then 4, has the 1x1 matrix with entry (df/dx)(a, b) and A, has the 1x1 matrix
with entry (df/dy)(a, b). Therefore 4, is invertible if and only if (df/dx)(a, b) # 0.
Besides,

A1_1A2 = M,
(9f / ox)(a,b)

This makes it possible to state the implicit function theorem in this case without
explicit reference to linear maps. Also, it is possible to give a simple proof with-
out using the inverse function theorem or the contraction principle. See Theorem
4-4.4 below. The reader will also find the article by Kumaresan [16] very useful.

These facts regarding 4, and 4, may be taken for granted in presenting any
discussion of concrete examples, and no explanation is required as to why 4,
and 4, are represented by matrices formed by partial derivatives in the manner
described above.

4-3.4. Examples. In order to gain a better understanding of the implicit function
theorem and appreciate the rather complicated nature of its hypotheses and con-
clusion, it is useful for one to consider applications to a few simple concrete
examples. However, it should not be inferred that applications to these kinds of
examples constitute the only raison d’étre of the theorem. The result is needed
for validating a computational procedure, known as ‘method of Lagrange mul-
tipliers’ to be discussed in another chapter.

Consider the problem of solving for one variable in terms of the other in
each of the following cases:
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@x*+y"+1=0

by x> +y*—1=0
(©)x*+y*—1=0,x(1)=0
(d)x*—1y*=0,x0)=0

(e)x*+1 —1=0,x0)=1

(f) x*—y* = 3xy -y =0,y =g(x) near (2, 1)
(g)sin(x+y)—e” +1=0,x0)=0

(h) x* —y* =0, x(0) = 0.

These examples serve to highlight various aspects of the implicit function theo-
rem and we shall take them up one by one.

(a) Since no pair of real values of x and y can satisfy this equation, the need to
solve it should not arise in practice. If it ever does, one would conclude that
something went wrong before one arrived at it! This illustrates why the require-
ment that the equation be satisfied at some point is needed.

(b) No pair of values of x and y satisfying the equation has been specified. Here
are some solutions for x in terms of y:

20 =(1-p)"for0<y<1;g(0)=—(1-y)"*for0<y<1;

g =0-H"for0<y<1/2and (1 —y»)"for 12<y<1;

g =(0-y)"for0<y<1/47,—(1 —y»)"* for 1/47 <y < 1/21
and (1 —y»)" for 1121 <y <1;

2(») = (1 —yH)" for rational y and —(1 — %)

"2 for irrational y.

The first two are continuous and the rest are discontinuous. The reader is invited
to add to this mélange of solutions. If no specific point (a, b) satisfying the equa-
tion is required to be ‘accommodated’, then the solution may not be unique.

(c) The given values (a = 0, b = 1) do satisfy the given equation. Since they are
stated in the form x(1) = 0, the solution required is for x as a function of y. The
first two solutions listed above under (b) both satisfy the requirement that x(0) =
1, and both are continuous. Neither is differentiable when y = 1 and neither is
defined on an open set containing 1. Thus the conclusion of the implicit function
theorem that there exists a unique solution in an open set containing » does not
hold. But the theorem is not contradicted, because the hypothesis about the li-
near map A4 represented (as discussed above in Remark 4-3.3) by the partial
derivative of x* + y* — 1 with respect to x when x = 0, y = 1 being invertible is not
fulfilled, as the value of this partial derivative when x =0, y = 1 is found to be 0.

(d) The given values (a = 0, b = 0) satisfy the given equation. Here are two con-
tinuous solutions:

2(y) =|y| and g(y) = —|y| both for all real y.
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Neither is differentiable when y = 0, but — in contrast to (c) — both are defined
on an open set containing 0. Thus the conclusion of the implicit function theo-
rem that there exists a unique solution in an open set containing » does not hold.
But the theorem is not contradicted, because the hypothesis about the linear map
A, represented (as discussed above in Remark 4-3.3) by the partial derivative of
x> —y? with respect to x when x = 0, y = 0 being invertible is not fulfilled, as the
value of this partial derivative when x = 0, y = 0 is found to be 0.

(e) The implicit function theorem is applicable. The function of (x, y) given by
the left hand side of the equation, i.e., f(x, y) = x*+)*— 1, is differentiable and
its partial derivative with respect to x (the variable for which we have to solve)
is found to be 2x, which is nonzero for the given values x = 1, y = 0. Also, the
given values x = 1, y = 0 satisfy the equation. Therefore, by the implicit function
theorem, there is an open subset of R* containing (1,0) and an open interval
containing 0, on which there is a unique function g such that (g(»), y) lies in the
aforementioned open subset of R? and g(y)* +y* — 1 = 0; moreover, this g is con-
tinuously differentiable and satisfies g(0) = 1. Its derivative when y = 0 is (see
Remark 4-3.3 for explanation of the quotient)

(9f /ay)(1,0) _ 0
(9f /9x)(1,0)
12

In this simple case, g can be explicitly computed as g(y) = (1—y%)"2.

(f) The implicit function theorem is applicable. The function of (x, y) given by
the left hand side of the equation, i.e., f(x, y) = x’ =y’ —3xy—y, is differentiable
and its partial derivative with respect to y (the variable for which we have to
solve) is found to be

3y =3x—1,

which is nonzero for the given values x = 2, y = 1. (As explained in Remark 4-
3.3, this means that the linear map denoted by 4, in the implicit function theo-
rem is invertible.) Also, the given values x = 2, y = 1 satisfy the equation.
Therefore by the implicit function theorem, there is an open subset of R* con-
taining (2, 1) and an open interval containing 2, on which there is a unique
function g such that (x,g(x)) lies in the aforementioned open subset of R* and
x* — g(x)* - 3xg(x) — g(x) = 0; moreover, this g is continuously differentiable and
satisfies g(2) = 1. Its derivative when x = 2 is (see Remark 4-3.3 for explanation
of the quotient)

(9f/ox)2) _ 9
(9f79y)(2,1) 10

(g) In this case, computing x in terms of y explicitly, as one tries to do in ele-
mentary calculus, is no joke. In fact, it is a hopeless undertaking. It is not even
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clear from computational procedures whether the required function for x in
terms of y exists, let alone calculating an expression for it in the elementary
sense. However, the given values x = 0, y = 0 do satisfy the equation and the x-
partial derivative of f(x, y) = sin(x + ) — ¢"” + 1 when x = 0 and y = 0 has the
nonzero value 1. (As explained in Remark 4-3.3, this means that the linear map
denoted by 4; in the implicit function theorem is invertible.) Therefore, by the
implicit function theorem, there exists an open subset of R* containing (0,0) and
an open interval containing 0, on which there is a unique function g such that
(g(y), v) lies in the aforementioned open subset of R” and x = g(y) is a solution
of the given equation; moreover, this g is continuously differentiable and satis-
fies g(0) = 0. Its derivative when y = 0 is (see 4-3.3 for explanation of the
quotient)

(00,0 _

(9f/9x)(0,0)

(h) When £(x, y) = x’ — )°, the partial derivative df/0x vanishes at (0,0) and the
implicit function theorem does not apply. However, there is a unique solution
given by g(y) =y, and it is differentiable. [Cf. 4-4.P3.]

For another discussion of concrete examples that help gain a better under-
standing of the implicit function theorem see the article by Kumaresan [16]
quoted above.

4-3.5. Remark. In (e), (f) and (g), the value of dx/dy = g'(y) that has been com-
puted is, of course, the same as what one would have obtained by ‘implicit
differentiation’ in elementary calculus. However, implicit differentiation simply
assumes that a differentiable solution for x in terms of y exists; the new element
introduced by the implicit function theorem is that the existence of a differentia-
ble solution is assured before one rushes in to compute. As already mentioned in
the first two paragraphs of Section 4-3, such caution is the stuff that mathemat-
ics is made of.

4-3.6. Examples. (a) We now take up the question stated at the beginning of this
section:

pPrHq —rmp+sin(s+p)=0, p’g+cos(p+2q+r—s)—qg—1=0.
These equations hold when each of the four variables is 0. Can we solve for p
and ¢ in terms of » and s ‘near’ (0, 0, 0, 0)? Setting
£, q, 1, 8)=p*+q° —rp+sin(s + p),
L p.g,rs)=piq+cos(p+2q+r—s)—q-1,

we find that d(f, /2)/d(p, q) has the value —1 when (p,q,r,s) = (0,0,0,0). Since
this value is nonzero, it follows by the implicit function theorem that there exists
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a local solution for p and ¢ in terms of 7 and s. We can also find the matrix form
of the linear derivative at (0,0) for the solution. In the notation of the theorem,
the required linear derivative is —4; '4,, where

df,/dp  df;/9q df,/or  df,/0s
A= and Ay = .
df,/dp  df,/9q df,/or  9f,/0s

Upon computing the partial derivatives and substituting (p, q,,s) = (0,0,0,0), we

obtain
1 0 0 1
At =4, = and 4, = ,
0 -1 0 0

so that the required value of the linear derivative at (0,0,0,0) is

» 0 -1
*A] Az = .
0 0

(b) The following equations hold when (x, y,#) = (0,0,0):
xcos(x+y)—t=0, xe' +ye’ —sint = 0.

The question is whether there exists a (local) differentiable solution for x,y in
terms of ¢ near ¢ = 0 such that x = y = 0 when ¢ = 0 and, if so, what the values of
x'(0) and y'(0) are.

To find 4;, we compute

%(xcos(x+y)—t)=cos(x+y)—xsin(x+y)= I whenx=y=¢=0
%(xcos(ery)ft):fxsin(ery):OWhenx:y:t:0
%(xe“ryeyfsint):(lv“x)e”: I whenx=y=¢t=0
g—y(xex+yey—sint)=(l+y)ev= 1 whenx=y=1¢=0.

1 0 1
Consequently, 4, = L J and hence 4, = { .

0
J . Therefore the local solu-
tion in question exists and is unique. Also,

9 ad .
3(xcos(x +y)—1)=—1and 3, (xe" + ye’ —sint) = —cost=—1 when x=y=¢=0.

-1 1
Consequently, 4, = { 1} and -4, '4, = {0} . This means x'(0) = 1 and y'(0) = 0.
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The open set W of Theorem 4-3.2 is by no means the largest open set on
which a function g of the required kind is defined, and one can seek to extend
the domain of g to see if one can obtain a maximal domain. Such matters are
discussed by Graves in [13].

Problem Set 4-3

4-3.P1. Determine whether the solvability near (0,0, 0, 0) of the equations dis-
cussed in Example 4-3.6 for ¢ and 7 follows from the implicit function theorem.

4-3.P2. Show that the system of equations:
x+y—z—u'=0
xX—y+2z+u=0
2x+2y—-3z+2u=0

can be solved for x, y, u in terms of z but not for x, y, z in terms of u.

4-3.P3. Let f: R’xR*>R? be defined by

SO,y) =@yt xop = 1, xix = yi1)2),
where x = (x1,x,) and y = (y1,)»). Show that £(1,0,0,1) = (0,0). Verify that the
linear derivative (D, f)(1,0,0,1) is represented by the matrix { | 0} Use this and
the implicit function theorem to show that y is a function of x near (1,0). Com-

pute the (matrix of the) linear derivative of this function at (1,0).

4-3.P4. Suppose the equation f(x,y,z) = 0, where f is differentiable, can be
solved for each of the three variables x,y,z as a differentiable function of the

other two. Show that at any point where f{(x,y,z) = 0 and at least one of the par-
o of o

tial derivatives PRl is nonzero, the other two are also nonzero, and we
have

Oxdydz _

dy dz dx

4-3.P5. The function f(x,y,z,u) = x> + y* + 22 + u* — 1 satisfies (%4, %, 4, ") = 0.
Solve for each of the variables in terms of the other three in an open set contain-
ing (',%, %) and check whether the four solutions satisfy ai ?)ﬁ gi 3Z = -1 at
(72,2, Y2, 2).
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4-3.P6. Let Jr(x) denote the Jacobian of a map F at x. Suppose the maps
f:R">R" and g;:R—R are all continuously differentiable. Define /: R"—R" by

hi(x) = fi(g1(x1), g2(x2), ... , (X)) for x=(x;,....x,)eR", 1<i<n,
where fi,..., f, are the components of /. Show that

(%) = [T (1(x1), g2(x2) -, 8ulxa)) ] &1’ (01) 82 '(02) -+ - 84/ (xn).

4-3.P7. Let f(x,y1,15) = x’v; + €'+ y, on R’. Show that there exists a differenti-
able function g on some open set containing (1,—1) in R? such that g(1,—1) = 0
and f(g(y1,»2),y1,02) = 0 on that open set. Find the partial derivatives
(D1 g)(1,-1) and (D, g)(1,-1).

4-3.P8. Let f and g be functions on R with continuous derivatives, f{(0) = 0 and
1"(0) # 0. Consider the equation f(x) = tg(x), t € R. Show that in a suitable inter-
val |¢| < §, there is a unique continuous function x = x(¢) that solves the equation

and satisfies x(0) = 0. Find the derivative x'(0). When g(0) = 0, what is the larg-
est possible interval on which a solution is defined?

4-4 Implicit Function Theorem in Another Form

In applying the implicit function theorem in examples like (e), (f) and (g) in Ex-
ample 4-3.4, the reference to an open set containing the given point is
cumbersome and appears to complicate the matter rather than clarify it. Howev-
er, it is unavoidable if the version given in Theorem 4-3.2 is to be used, because
the uniqueness of the solution g is contingent upon (g(y), ) belonging to that
open set (denoted by U in the statement).

What one can do in order to avoid the reference to the open set is to estab-
lish another form of the theorem, in which the uniqueness of the solution g is
contingent upon its being continuous and satisfying g(b) = a.

Establishing this version of the theorem requires Proposition 2-5.9.

4-4.1. Implicit Function Theorem. Let /: E—R" be a continuously differentia-

ble map from an open subset E < R"<R"™ into R" such that f(a, b) = 0 for some

(a,b) € E. Let Ay and A, be linear maps of R" and R™, respectively, into R" de-

fined by A1h = f'(a, b)(h,0) and A>k = f'(a, b)(0,k), so that f'(a, b)(h, k) = A\h +

Ak Y heR", ke R". Suppose A, is invertible. Then

(a) there exists an open ball B  R" centred at b and a unique continuous map
G :B—>R" such that

Gb)y=a and f(G(),y)=0V yeB;

(b) moreover, G is continuously differentiable and G'(b) =—-A;'A,.
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Proof. By Theorem 4-3.2, there exist open sets U < R"<R" and W < R" with b
€ W and (a, b) € U and such that there exists a unique map g: W—R" for which

&), nel, flgh),»=0 Vyew.

Moreover, g(b) = a, g is continuously differentiable on W and g'(h) = —4;'4,.
Since W is open and b € W, therefore there exists an open ball B W centred at
b. Let G be the restriction of g to B. Then, except possibly for the uniqueness
part, all other statements in (a) and (b) are true.

To prove uniqueness, suppose G is any continuous map from B to R” for
which G(b) = a and f(G(y), y) = 0 ¥V y € B. Consider the subsets Y and N of B
defined as

Y={yeB:G() =G} and N= {ye B: G\(y) # G»)}.

It is sufficient to show that N is empty. Since G(b) = a = G(b), we have b € Y, so
that Y is not empty. Also, YUN = B and YNN is empty. Since G, and G are both
continuous, the set NV is open. It will now be shown that Y is also open.

Consider any y, € Y. Then G (1) = G()). But (G(yo), vo) = (g(10), yo) € U.
Therefore, (G1()0), o) € U. By continuity of G, there exists an open ball B, c B
C W centred at y, such thaty € B; = (G(), y) € U. Now define G,:W—R" to
agree with G, on B and to agree with g on the rest of . (It does not matter that
this function could be discontinuous.) Then (G,(y), y) € U and f(G»(y), y) = 0
V y € W. By the uniqueness in (a) of the statement of Theorem 4-3.2, G, must
agree with g on the whole of . Hence, G| must agree with g on the set B (G,
was defined as agreeing with G on B)). But g agrees with G on B (G was de-
fined as the restriction of g to B) and B, c B. Thus, g agrees with G as well as
G, on the set B;. Therefore, G agrees with G| on By, so that B; Y. It has been
shown that any y, € Y is the centre of an open ball contained in Y. In other words,
Y is open.

This shows that the open ball B is the union of the disjoint open sets ¥ and
N. By Proposition 2-5.9, it follows that one among the sets ¥ and N must be
empty. However, Y is not empty (recall that b € Y'). Therefore, N must be empty.

As observed earlier, this completes the proof. ]

4-4.2. Remark. If the examples such as (f) or (g) of Section 4-3 are discussed
in the light of Theorem 4-4.1, then the conclusion obtained is that on a ball
about the given point there is a unique continuous solution g of the given equa-
tion which takes the given value at the given point; the solution is also
continuously differentiable.

4-4.3. Remark. It is not possible to replace the ball B in Theorem 4-4.1 by a
more general open set W that may not have the ‘connectedness’ property of a
ball assured by Proposition 2-5.9. Consider f(x, y) = x> + > — 1, E=R?, (a,b) =
(1,0).

On the open set
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1 1 2
W= (—3 s §)U(§’ 1),

(shown along the vertical axis in the figure below) which contains b, there are
two continuous solutions x = G(y) of the equation f(x,y) = 0 (shown along the
circle), both satisfying the requirement that G(b) = a, namely,

. 11
1—)’2 ifye (—3,5)
Gy =

=) ifye (%,1).

Note that (—%, %)u(%, 1) is the union of disjoint open sets (—%, %) and (%, 1)
and neither of these open sets is empty.

However, if we consider this example in the light of the previous version of
the implicit function theorem (Theorem 4-3.2), the open sets U = {(x, y) : x > 0}
and W = (-1,1) together have the property that the only solution x = g(y) of the
equation f(x, y) = 0 which is defined for y € W and satisfies the requirement that
(g(), y) € U (i.e., that g(y) > 0) is given by g(y) = V(1 — 7). Moreover, it is con-
tinuously differentiable and satisfies g(0) = 1.

We now present the implicit function theorem in two dimensions.

4-4.4. Theorem. Let E  R? be open and F:E—R be continuous with a partial
derivative D,)F that is positive (or negative) everywhere. Suppose (a,b) € E and
F(a,b) = 0. Then there exist intervals (a — d,a + 8),(b—m,b + M) with a unique
function f:(a—8,a + 8)—>(b—m,b + ") such that
Flx,f(x))=0forallxe(a—08,a+9d) and b=f(a). (1)

This function f is continuous everywhere. Moreover, if ¢ belongs to (a — d,a + d)
and F is differentiable at (c, f(¢)), then f is differentiable at ¢ and
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(D1F)(c, () + (D2F)(e, () -f(¢) = 0. 2
Proof: We shall work with the case when D,F is positive because the contrary

case is similar.
Since (a,b) € E, an open subset of R* there exists 1 > 0 such that

|x—al<m,|y-bl=n = (x))€E,

so that, for each x € (¢ —m,a + 1), the function y—F(x,y) is defined on the inter-
val [b—m,b +n]. Now, this function has derivative (D,F)(x,y) and therefore it
has a positive derivative on its entire domain [ —n,b +1n]. When x = q, it va-
nishes at b and it follows that it is negative at b — 1 and positive at b + n:

F(a,b—m)<0<F(a,b+n).

By continuity of F on E, there must exist a positive & <1 such that

F,b—-Mm)<0<F(x,b+m) for a—d<x<a+3d.

In other words, for each x € (a — d,a + 9), the function y—F(x,y) is negative at
b —m and positive at b + 1. But this function is continuous and so, the interme-
diate value theorem yields at least one y € (b—m,b +m) where the function
vanishes: F(x,y) = 0. However, there can be at most one y € R satisfying F(x,y)
= 0, because the derivative of the function y—F(x,y), namely (D,F)(x,y) is posi-
tive everywhere. Define f(x) to be the unique such y and we have a function f'on
(a—98,a + ) that fulfills (1). Since, the element y € R where F(x,y) = 0 is
unique, the function f'is also unique.

Observe that, in view of the fact that the aforementioned y obtained by us-
ing the intermediate value theorem lies in (b —1,b + 1), we have

b-m<f(x)<b+mn for a—8<x<a+3d. 3)

To prove the continuity of f, consider any o € (a — J,a + 8) and any € > 0.
We need to show that there exists a &; > 0 such that

flo)—e<f(x)<flo)+e for aa—08 <x<o+9.
Since 0. € (a —6,a + 8), we have b —1 < f(cr) < b +1 by (3). We may therefore
assume that

e <min { f(a) = (b—m),(b + M) - f(o)}

Then we have
b—-n<fla)—e<flo)+e<b+nm,

so that the function y—F(0,y) is defined at f(or) — € and at f(or) + €. Since
F(o,f(a))) = 0, the function vanishes at y = f(or) and has a positive derivative
everywhere on its domain. Therefore it is negative at f(o) — € and positive at
fla) + ¢, ie., F(o,f(o)—€) < 0 < F(a, f(0) +€). As before, it follows by con-
tinuity of F that there exists a positive &; such that (o.—9;,a+ ) <
(a—90,a+d)and
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Flx,f(o)—€) < 0 < F(x,f(o) +€) for oo—&; <x<a+39.
In other words, for each x € (0. — 8;, o + &), the function y—F(x,y) is negative at
f(a) — € and positive at f(a) + €. Therefore, the unique y where the function
vanishes must lie between f{(o) — € and f(o) + €, i.e.,
flo)—e<f(x)<fla)+e for a0—& <x<a+9.
Continuity of f'at o is thus established.

We proceed to prove (2). For any sufficiently small 7 # 0, the number ¢ + &
belongs to (a — 8,a + 8). Denoting f(c + h) — f(c) by k, we have

0="F(c+h,flcth)—Fc,[f(e)=F(c+h,f(c) + k) - Fc,f(c)
= h[(D\F)(c, f(e)] + k(D2F)(e, f(e)] + uh, k)(| 7| + |k]),
where u(h, k)—0 as (h,k)—(0,0). Dividing by % and regrouping terms, we have

0=DiF)ef) + K [OF e )+ uh b Ey+u L @)

where ‘kﬂ can be taken to be any real number in the event that £ = 0. By the
continuity of f'at ¢, we have }gré k= 0. It follows from this that the first and third
terms in (4) each have a limit as #—0 and therefore so does the second term. But
in the second term, the factor that is multiplied to % has limit (D,F)(c, f(c)),
which is nonzero. This implies that % has a limit, so that f"(c) exists. The exis-
tence of f"(c), together with (4), leads to (2). O

The following consequence is known by the same name as the foregoing
theorem.

4-4.5. Corollary. Let E c R? be open and F:E—R be differentiable with a posi-
tive (or negative) partial derivative D,F everywhere. Suppose F(a,b) = 0, where

(a,b) € E. Then there exists an interval (a — 8,a + d) with a unique rea- valued
function f defined on it such that

F(x,f(x))=0forallxe (a—06,a+08) and b=f(a). (1
This function f'is differentiable with derivative f'(x) satisfying
(D1F)(x, f(x)) + (D2F)(x, /(X)) -f(x) = 0 2

everywhere on its domain.

1
4-4.6. Example. Let E = R?, F(x,y) = ye’ — x| and (a,b) = (0,0). Since F is not
differentiable at (a,b), none among Theorem 4-3.2, Theorem 4-4.1 and Corol-
lary 4-4.5 is applicable. However, Theorem 4-4.4 does show that a unique
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continuous solution y = f(x) such that b = f{a) must be valid on some interval
containing 0.

Problem Set 4-4

4-4.P1. Given the equation x* + y* = 1 and the point (1, 0), find three open sub-
sets W of R, each containing 0, and satisfying the respective conditions:

(i) there exists a unique solution x = g(v) of the given equation having domain
W and satisfying the condition that g(y) > 1A2;

(i1) there exist several solutions x = g(y) of the given equation having domain W
and satisfying the condition that g(y) > ~1A2; do they satisfy g(0) = 1?

(iii) there exists a unique solution x = g(y) of the given equation having domain
W and satisfying the condition that g(v) > 0, but four continuous solutions
having domain W and satisfying the condition that g(0) = 1.

4-4.P2. State a theorem that includes Theorem 4-3.2 as well as Theorem 4-4.1,
and then prove it, starting from the inverse function theorem.

4-4.P3. (a) The implicit function theorem 4-4.4 gives only a sufficient condition
for solvability. Example 4-4-4 (h) shows that nonvanishing of the partial deriva-
tive is not necessary. Give an example of a function £ on R? such that g—f; (0,0)=
0, f is not differentiable at (0,0), but the equation f{x,y) = 0 has a unique solu-
tion y = g(x) near 0 such that g(0) = 0.

(b) Give an example of a function fon R such that g—{ (0,0) = 0 and the equation
f(x,») = 0 has two (not more) differentiable solutions y = g(x) near 0 such that
g(0)=0.

(c) Give an example of a function / on R? such that g_; (0,0) = 0 and the equa-
tion f(x,y) = 0 has at least four differentiable solutions y = g(x) near 0 such that

2(0) = 0.

4-4.P4. Prove the following variant of Theorem 4-4.4: Let E < R* be open and
F: E—>R be continuous with a positive partial derivative D,F at (a,b) € E, and let
F(a,b) = 0. Then there exists an interval (a — §,a + 8) with at least one real va-
lued function f'defined on it such that

F(x,f(x))=0forallxe(a—08,a+3d) and b=f(a). )
If f'is continuous at ¢ € (a—08,a +9) and F is differentiable at (c,f(c)) with
(DyF)(c, f(c))#0, then f'is differentiable at ¢ and

(DiF)(c, f(0)) + (DaF)(e, () -f(e) = 0. 2
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4-4.PS. Prove the version of Theorem 4-4.1, in which (1) is altered as follows:

3 an open set W < R™ containing » and such that, on any open subset B of W
that contains » and is not a union of two nonempty disjoint open sets, there ex-
ists a unique continuous map G:B—R" for which G(b) = a and f(G(y), y) =0 V

yeB.



5

Extrema

5-1 Necessary Conditions

In an optimisation problem, the objective is to locate a maximum or minimum
(or extremum) of some function, often called the objective function. The tech-
niques of solving problems where the objective function depends only on one
variable are introduced in an elementary calculus course soon after the concept
of derivative of a function of one variable is discussed. The optimisation of
functions of several variables is discussed after the concept of partial derivatives
of such functions has been introduced. Sometimes, the chosen variables may
have one or more quantitative relations between them in the form of equations,
usually referred to as constraints. The method of Lagrange multipliers, which is
used to deal with such problems, is also discussed in multivariable calculus. The
reader is presumed to be adept at implementing the method in specific instances.

The purpose of this chapter is to discuss from a theoretical perspective the
methods of optimisation, constrained as well as unconstrained, of functions of
several variables. We shall begin with a formal definition of local maximum and
minimum.

5-1.1. Definition. 4 real valued function f on a domain S c R" is said to have a
local maximum at a point x € S if there is some & > 0 such that

y—x<d = yes, f(y)<f).
If the stronger condition that
yesS = f=/

holds, then f is said to have an absolute maximum at x. Similarly for local and
absolute minimum. As is customary, the word extremum will be understood to
mean maximum or minimum.

In case the stricter condition that 0 < |ly —x|| <8 = y € S, f(y) <f(x) holds,
we speak of a local strict maximum at x. Similarly for local strict minimum.

Suppose f has a local extremum at x and /4 is any nonzero element of R”,
which we wish to take as a direction vector. The function ¢:(—5/|| hl|» 0/ [ hH)—)R
defined by ¢(&) = f(x + &h) then has an extremum at & = 0. Now suppose further
that f'has a derivative at x in the direction %, which we shall denote by (D, f)(x).
Since

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 5, © Springer-Verlag London Limited 2011
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d)(t);(I)(O) _ f(x'*'tht)_f(x) f01‘0<‘l‘|<8/||h“>

0'(0) exists and equals (D, f)(x). By an elementary result about functions on
intervals (see, e.g., Shirali and Vasudeva [23, Proposition 9-5.2] or Berberian [3,
Theorem 8.4.4]), ¢'(0) must be 0; therefore (D, f)(x) must also be 0.

In summary, if a function has a directional derivative at a point where it has
a local extremum, then that derivative must be 0. In particular, a partial deriva-
tive that exists at a point of local extremum is always 0. The same is then true
regarding the linear derivative.

Vanishing of partial derivatives is thus a necessary condition for a local ex-
tremum; however, it is far from being sufficient, as is illustrated by the function
f(x,y) = xy, which has no local extremum at (0,0) although its partial derivatives
vanish there. Sufficient conditions are discussed in the next section.

We go on to consider what are called ‘constrained extrema’.
Suppose it is required to find a point of extremum of a real valued function

¢ on some open set S < R subject to n ‘constraints’

Silxr,ox) =0, Hlx,.x0 =0, fixn,..,x0 = 0.
What this means is that a point of extremum is to be found for the function ob-
tained by restricting ¢ to the subset of S described by the n equations called
constraints. The number of constraints 7 is taken to be less than the number of
variables k, so that the subset described by them does not reduce to a single

point or the empty set. Thus n < k.

Y ) As an example with k=2 and n = 1,

we consider minimising ¢(x,y) = x2 + )2
subject to the single constraint fi(x,y) =
x2—3)2—1 = 0. In terms of analytic ge-
ometry, this asks for the point on the
hyperbola x2—32—1 = 0 that is nearest
to the origin. From the adjoining graph,
the reader can see that the nearest points
are (+1,0). Note that the set described by
the constraint, to which ¢ is restricted, has no interior points and therefore one
cannot speak of a local maximum or minimum of ¢ in the sense discussed so far.
A modified definition is as below.

X

\/

5-1.2.Definition. Let ¢:S—R and f:S—R" be functions on a subset S < R* and
T={xeS:f(x)=0}. Then ¢ is said to have a constrained local maximum at a
€ T if there is some & > 0 such that

Ix—al| <8, xeT = da)>d(x).
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Similarly for constrained local minimum. As is customary, the word extremum
will be understood to mean maximum or minimum.

When we speak of a constrained local extremum, some constraint f{(x) = 0 is
taken as understood from the context even when none may be stated explicitly.

A glance at the graph of the hyperbola in the example above will convince
the reader that a number 0 as in Def. 5-1.2 indeed exists for each of the points
(1,0) and (-1,0).

Presumably, the reader is aware of the method of Lagrange multipliers for
solving such constrained extremum problems in calculus, e.g., as in Thomas and
Finney [27], and can independently verify that a straightforward use of the
method yields both the solutions of the above problem.

Our purpose here is to give a theoretical justification why the Lagrange
multiplier equations constitute a necessary condition. Some observations would
be in order before we proceed.

The constraint in the foregoing example requires that x2 = 2+ 1, which
leads to ¢(x,y) = 2y>+1 = ®(y), say. Since the equality x2 = 2+ 1 puts no re-
striction on y, the function @ is to be minimised on the domain R. Therefore, if a
minimum exists, it must be a local minimum and we can find it by setting ®'(y)
equal to 0, whereby we obtain y = 0. The constraint then shows that x = £1.

At first sight, it may seem that we could just as well have rephrased the
constraint as y2 = x2 — 1, which leads to ¢(x,y) = 2x2— 1 = ®(x), say. The equal-
ity »2 = x2 — 1 restricts x2 to be greater than or equal to 1 and @ is therefore to be
minimised on the domain {x € R : x2 > 1}; the minimum occurs when x = %1,
which is not an interior point of the domain. Thus, we do not have a local mini-
mum, and mindlessly setting the derivative equal to O results in the disaster that
x = 0 is the critical value. The present rephrasing of the constraint has brought
about a situation in which the first derivative test for a local extremum is not
applicable.

Although the Lagrange multiplier avoids solving the constraint equations
and obtaining the function @, its theoretical justification will nevertheless be in
terms of this function. In order to ensure that we do not have the situation illus-
trated in the preceding paragraph, care has to be taken that the constrained local
extremum of ¢ corresponds to a local extremum of ®. In the next two para-
graphs, we indicate how this is going to be done.

Suppose that from the » constraints
Silxrs . x0 =0, Hlx, . x) =0, fulxrs.x0 =0,

one can express n variables, the first # say, in terms of the remaining k — n vari-
ables as
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X1 = gl(x,,ﬂ yaes ,)Ck), Xy = gz(x,,ﬂ R ,Xk), ey X T g,,(an yeen ,Xk).
What this means is that the point
(gl(xn+l PR sxk)agz(anr] LR 9xk)s oo 5gn(xn+l LR 9xk)axn+1 LR ,Xk)

always belongs to the set 7" defined by the constraints. As was seen in connec-
tion with the implicit function theorem, one can at best expect such a thing to be

valid in some open set W R containing (@,+1, -..,ay), where (a,,...,a;) is a
given point of 7. If g = (g1, ..., g,) is continuous, then so is the map

(xn+1 PR 5xk)_>(gl(xn+l 9 e ;xk)agZ(anrl ERR] ,Xk), oo 7grl(xn+l PR 5xk)5xn+l LERR] ,Xk).
This continuity has the consequence that for any open ball B centred at
(ai,...,a;), a sufficiently small open subset of W that contains (@,+,...,a;) 1s

mapped into BNT. Hence, if B has the property that 0(xy,...,x;) > &(ay,...,q)
for every (xy,...,x;) € BNT, then the function ® defined on ¥ by

q)(-xn+l PR sxk) = ¢(gl(xn+l PR 7xk)7g2(xn+l PR sxk)s oo sgn(-xn+l PR sxk)yxn+l PR sxk)

has a local minimum at (@,+1, ...,a;). This will play a role in the proof below.

Now suppose further that the ball B can be so chosen that every (xi,...,x;) €
BNTis of the form

(gl(x,,ﬂ yaee ,xk),gz(an yaes ,Xk), cee ,gn(xnﬂ b ,xk),x,,ﬂ yees ,Xk).
Part (b) of Theorem 4-3.2 assures us that B can indeed be chosen in this manner.
Then the converse of the conclusion of the previous paragraph holds: if ® has a
local minimum at (a,+,...,a;), it follows that 0(xy,...,x;) > &(ay,...,q) for
every (xi,...,x;) € BNT, which means ¢ has a constrained local minimum at
(ai,...,qa). This will play a role in a subsequent proof [see Theorem 5-2.9].

It should be noted that corresponding features are true for a local strict
minimum. Moreover, similar statements are true about @ having a local (strict)
maximum when the inequalities above are reversed.

The function g is going to be obtained by an application of the implicit
function theorem and it will therefore be convenient to switch to the notation we
have already used there. Accordingly, we denote (xi,...,x,) € R" by x and
(Xps1s.e-5Xp) € R by y. Also, m will denote k—n and we are free to use the
symbol k to mean something else.

Before proceeding further, the reader would do well to review the statement
of Implicit Function Theorem 4-3.2 and check out what 4, and 4, denote there,

especially the relation between them. Remarks 4-3.1 and 4-3.3 are crucial to
what follows.

5-1.3. Theorem. Let ¢:S—R and f:S—R" be continuously differentiable func-
tions on an open subset S € R"<R" and T = {(x,y) € S : f(x,y) = 0}. Suppose ¢
has a constrained local extremum at (a,b) € T, the constraint being that f(x,y) =
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0. Assume the linear derivative A, of | with respect to x at (a,b), i.e., the map
A R"—>R" such that A1h = f'(a, b)(h,0), to be invertible. Then there exist n real
numbers Ay, ..., N, such that

(D; 0)(a.b)+ ENDifp)ab) =0 for I<j<n+m. )

Proof. We shall need not only the linear map 4,:R"—R" but also the associated
map A,:R"—>R" defined as 4>k = f'(a, b)(0,k), and the corresponding maps
Bi:R"->R and B,:R"—R with ¢ in place of f. Besides, we shall need the fol-
lowing property of By and B,:
[0'(a, b)](h, k) = [¢0'(a, b)][(2,0) + (0,4)]
=B\h+Byk for (h,k) e R"<R". 2

Since A4, is invertible, the implicit function theorem provides a continuously
differentiable function g on some open set ¥ containing b such that

gb)=a, yewW=(gy).neTl 3)

g'(b) =414, “

and

By the chain rule, the map ®:W—R given by

Q) = 0(g(»),¥)

has linear derivative at b given by ®'(b) = 0'(g(b), b)P, where P is the linear de-
rivative at b of the map y—(g(y),»). By Remark 4-3.1, P is given by

P(k) = (g'(b)k, k) for ke R”,
and hence ®'(d) is given by
@(b)(k) = 9'(g(b), b)(g(b)k, k)
= 0'(a,b)(g'(D)k, k)
= Bi(g'(b)k)+ Bk, inview of (2).
Thus, ®'(b) = B, g'(h) + B, and it follows from (4) that

®'(h) =—(B14; )4, + B,. 5)

Now, it is a consequence of (3), the continuity of g and the hypothesis of a
constrained local extremum at (a,b) that ®@ has a local extremum at b, so that
@'(h) = 0. By (5), this means

~(B 1414, + B, =0. (6)

If we set A =—B,4;", we have
M1+Bl =0 (7)

by the very definition of A, and from (6), we also have



156 Extrema

M2 + BZ = 0. (8)

Since A is a linear map from R" to R, it is represented by a 1xn matrix
[A1,...,A,]. Also, A, and A4, are represented by the respective matrices [see Re-
mark 4-3.3]

Dlﬁ ani Dn+1fi Dn+mJ{1
leZ Dn-fZ Dn+l/{2 Dn+mf‘2
. and . ,
le;’l Dn/[n Drt+1f;1 Dn+mf;1
while
[qu) Dn¢j| and [Dn+l¢ Dn+m¢]!

respectively represent B, and B,, all partial derivatives being understood as
taken at (a,b). Using these matrix representations, we find that (7) asserts the
first n equations in (1) and (8) asserts the remaining ones. O

5-1.4. Remarks. (a) Since the order of variables can be changed in an extremum
problem, we can choose any n variables as constituting x in the above theorem,
not necessarily the first . If some other n variables are chosen, then the matrix
of A; will consist not of the first » columns of the Jacobian matrix of f'(a, b) as
in the above proof, but the n columns corresponding to the variables chosen.
Therefore the condition that A4, is invertible effectively says that the nxn matrix
formed by some n columns of the nx(n+m) Jacobian matrix of f"(a, b) is inverti-
ble. It can happen that no matter which n columns we select, the nxn matrix
formed by them fails to be invertible. One of the examples below will illustrate
what can happen in that event.

In the actual instances we discuss, the number of constraints will be either
one or two, and correspondingly, n will be either 1 or 2. Therefore we shall be
able to check the above condition on the Jacobian matrix without recourse to the
methods that are available in linear algebra.

In fact, when n = 1, the Jacobian matrix is 1x(1+m) and the condition is
simply that some entry in the matrix, i.e., some partial derivative, is nonzero.
When n = 2, the Jacobian matrix is 2x(2+m) and the condition is that some 2x2
‘submatrix’ is invertible; this can easily be seen to be equivalent to the two rows
of the Jacobian matrix not being proportional to each other.

(b) Let us consider the example discussed just before Def. 5-1.2, namely, the
problem of minimising ¢(x,y) = x2+)?2 subject to the constraint fi(x,y) =
x2—3»2—1=10. We can choose either x or y to play the role of x in the theorem,
as long as the conditions are satisfied. At the points of minimum (£1,0), we find
that df/dx is nonzero but df/dy is zero. Therefore, the condition of invertibility
is not fulfilled if the present y is chosen to play the role of x in the theorem. This
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is what was behind the failure of the attempt to find the extremum by expressing
yin terms of x from the constraint, which had led to ¢(x,y) = 2x2—1 = O(x).

When we discuss a concrete example or problem, it will be convenient to
use the following standard terminology:
e  The functions f'and ¢ will be called the constraint function and objec-
tive function, respectively.
e The set Tof the theorem will be called the constraint set.
e The equations (D; 9)(x,y) + ,,21 A(Dif)(,») = 0 (1 <j < n+ m) will be
called the Lagrange equations.

e The equations f,(x,y) = 0 (1 < p < n) will be called the constraint equa-
tions.

o  The A, will be called the Lagrange multipliers.
e  The function ¢+ pé Auf, will be called the Lagrangian.

We shall use the phrase ‘invertibility condition holds at’ a point of the constraint
set to mean that for some choice of x (i.e., for some n variables of the problem),
the linear derivative of the constraint function with respect to x is invertible at
the point. This means that the ‘invertibility condition fails at’ a point of the con-
straint set if, for every choice of n variables of the problem, the linear derivative
of the constraint function with respect to x fails to be invertible at the point.

Using this terminology, Theorem 5-1.3 can be summarised as saying that if
a local extremum occurs at a point where the invertibility condition holds, then
the Lagrange equations are satisfied at that point. This leaves open the possibil-
ity that an extremum occurs at a point where the invertibility condition fails and
the Lagrange equations are not satisfied. Then it would be futile to check for the
condition affer solving the Lagrange equations. We recommend that the points
(if any) of the constraint set at which the invertibility condition fails, be checked
first to see if any of them is an extremum. Usually textbook problems do not
have such points, because authors are not so sadistic as to include problems that
do. There are exceptions, though.

5-1.5. Examples. (a) Consider the problem of finding all constrained local ex-
trema of ¢(x,y) = 1 —(x+y)+xy (objective function) subject to the constraint
f(x,y) = x*+1y*—1 = 0. The Jacobian matrix of the constraint function is
[2x  2y]. Since the entries cannot both become zero at any point where the con-
straint is satisfied, the invertibility condition holds on the entire constraint set.
Therefore the Lagrange equations must be satisfied at any point of local extre-
mum. Let us solve the Lagrange equations

—1+y+A2x)=0, —1+x+AM2y)=0
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together with the constraint
X +y —1=0.

The Lagrange equations lead to 2A(x— y)—(x—y) =0, from which we deduce
that x = y or L = 4. In the former case, the constraint equation leads to x =y =
+1/42. In the latter case, the Lagrange equations leads to x +y = 1, which along
with the constraint equation, yields xy = 0, so that eitherx=1,y=0o0rx=0,y =
1. Thus we get the four points P; = (1/72,1/42), Py = (-1A2,~1A2), P; = (1,0)
and Py = (0,1). (It may be noted that P, P, correspond to A = 1(v2—1) and
P3Py correspond to A = %) Evaluation of ¢ at these points shows that ¢ attains
its minimum at P; and P, and maximum at P,. It remains to determine whether
P is a point of constrained local extremum. To this end, we note that P; satisfies
x >0, y >0 and consider the related problem of finding extrema of 1 — (x +y) +
xy subject to y =~/(1 —x?), 0 < x < 1. This is precisely equivalent to the problem
of extrema of ®(x) = 1 — [x + V(1 —x%)] + xv/(1 —x?) on the interval [0,1]. Rou-
tine computations show that @ attains its maximum value at x = 1/4/2. While we
know that, if ¢ has a constrained local maximum at (1/4/2,1/4/2), then @ has a
local maximum at 1/+/2, we shall now argue the converse. [But see 5-1.P2.] The
just proven fact that @ attains its maximum value at x = 1/y2 means that 0 <x
<1 = ®(x) <D(1A42). In view of the aforementioned equivalence,

0sx<1,y20, y=V(1-x) = 0(x,y) =1~ (x+y)+xy < DO(1A2).
When y > 0, the function y = (1 —x?) provides the unigue solution of the con-
straint equation. Therefore, the statement displayed above can be rephrased as

0<x<1,y>0, ¥+’ —1=0 = 0(x,»)=1—(x+y) +xy <D(IA?2).
Now consider the open ball of radius 1—1/2 centred at P, = (1/42,1A+2). If
(x, ) lies in this ball, it satisfies 0 <x < 1, y > 0; if it also satisfies the constraint,
then it follows that ¢(x,y) < ®(1/42) = ¢(1/72, 1/72). Thus, ¢ has a constrained
local maximum at P, .
(b) The constraint y°z + 2°x + x’y = 3(% )® holds at (%,%,%). If one attempts to
maximise or minimise tanx + tany + tanz (locally) subject to the constraint, the
point (%,%,%) immediately presents itself as one solution of the constraint and
Lagrange equations, with A = —1/3(%)5. However, settling its status (whether
maximum or minimum or neither) by the sort of procedure adopted in the pre-

ceding example is not a realistic option. More on this in the next section.
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(¢) The Lagrange multiplier method furnishes those points of extremum where

the invertibility condition holds. However, an extremum can occur at a point

where the condition does not hold, as the following example shows. Suppose we

wish to minimise x> + (y + 1)* subject to y* —x* = 0.

y=x (Graphically, this amounts to minimising the dis-

tance from the point (0,—1) on the y-axis to the curve

y = x*3; see the accompanying figure to guess the

z solution right away.) The Jacobian matrix of the

constraint function is [-2x 3y”]. There exists one

point in the constraint set, namely (0,0), where both

entries of the matrix are zero. At any other point

where a local extremum occurs, the Lagrange equations must hold: 2x — 2Ax = 0

and 2(y + 1) + 34" = 0. It follows from these equations and the constraint that x

# 0 and hence that A = 1 and 3y* + 2y + 2 = 0. However, there is no such real

number y! Therefore, if at all there is a minimum, it must occur at (0,0). Al-

though the Lagrange equations did not yield this point, one can directly verify

by elementary methods that an absolute minimum indeed occurs there. To wit,

P-xX=0=y>20=>x+@+ 1) =y +(+1)*>1=0"+(0+1)>. What the

Lagrange multiplier method has done for us is to guarantee that there is no local
extremum other than (0,0).

(0’71)

Problem Set 5-1

5-1.P1. Vanishing of the first derivative is not a sufficient condition for an ex-
tremum, e.g., y = x° has no extremum at 0 although its derivative vanishes there.
Use this to show that the Lagrange equations can hold when there is no local
extremum.

5-1.P2. Let S < R"<R" be open and T'= {(x,y) € S : f(x,y) = 0}, where f'is a map

from S to R". Suppose (a,b) € T, W < R" is open, b € W and g:W—R" is the

unique map such that (g(y),y) € T whenever y € W. Then prove the following:

(a) yeW,(x,y)eT = x=g(y). In particular, a = g(b).

(b) If 0:S—R has the property that the map ®:W—R defined by ®(y) =
0(g(»v),») has a local minimum at b, then ¢ has a constrained local minimum
at (a,b) € T, the constraint being that f{x,y) = 0.

5-1.P3. Minimise x* + y* + z* subject to x — y + z = 2 and 2x + y + 4z = 16, given
that a minimum exists.

5-1.P4. Use the Lagrange multiplier method to find
(a) the point on the line x + y = 4 that is closest to the circle x* +1* = 1;
(b) the point on the circle x* + y* = 1 that is closest to the line x + y = 4.
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5-1.P5. Find all solutions to the Lagrange equations for minimising the (square
of the) distance between two points (x,y) and (u,v), subject to the two con-
straints that (x,y) lie on the circle x*+y* =1 and (u,v) lie on the line u + v = 4.
Check whether there are any points of extremum other than the solutions ob-
tained.

5-1.P6. Find the absolute maximum and minimum values of x* + y* + z* subject

to the constraints
X2 y2 2
—t—t-=1
4

5 and z=x+y.

)
&

5-1.P7. Solve the problem of finding all absolute minima of x? + y? +(z—1)2
subject to the constraint 3x> —2xy+2y*—2x-6y+7 = 0 by (a) the Lagrange
multiplier method and (b) converting it to an unconstrained problem.

R

5-1.P8. Choose polar coordinates (7, 0) in the plane so as to have — % <0<
and r positive, zero or negative. Define f: R*—>R as
o ife=0
S(r,8) =

rzcosg if0=0

Show that

(a) f is continuous at the origin;

(b) fdoes not have a local minimum at the origin;

(c) the restriction of f to a line through the origin has a local strict minimum
there.

5-1.P9. Define f: R*>R as

6_ 2
X’ +y? —2x2y—%
S,y) = (x"+y7)
0 if (x,») =1(0,0).

if (x, ) #(0,0)

(a) Show that f"is continuous at (0,0).

(b) For —% <0< % and 7 € R, define gg(¢) = f(¢ cos 0, ¢ sin B). Show that g¢(0) =0,
26'(0) = 0 and g¢"(0) = 2. Thus the restriction of f to a line through (0,0) has a
strict local minimum at (0,0).

(c) Show that (0,0) is not a local minimum for / by considering f(x,x%).

5-1.P10. Define /:R*>R as
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x*+y? ify=0
2, .2
_ 2 2 +y .
= —_— f
S,y)= (x" +y")cos prereysyre il x#z0#y
2, .2
2 2 X +y e
(x*+y7)cos = ifx=0=#y.

Show that

(a) fis continuous at (0,0);

(b) the restriction of f to any line through (0,0), i.e., y = kx or x = 0, has a local
strict minimum at (0,0);

(c) f does not have a local minimum at (0,0).

5-2 Sufficient Conditions

Recall the second derivative test for local extrema in a single variable. It asserts
that a sufficient, but not necessary, condition for a function f to have a maxi-
mum (respectively, minimum) at a point x of its interval of definition is that /" be
differentiable on an open subinterval containing x with derivative 0 at x and that
the second derivative at x be negative (respectively, positive) [see, e.g., Shirali
and Vasudeva [23, Proposition 9-5.12]]. We begin by establishing the analogue
for local extrema in R".

5-2.1. Theorem. Suppose that x is a point in the domain S C R" of a real-valued
Sunction f such that the derivatives D;f (1 < j < n) are differentiable at each
point of some ball centred at x, while D, f(x) = 0 (1 <j < n) and the second par-
tial derivatives D, ;f are continuous at x. Let

O(h) = £ 1 Z hDi;/(x)]  forheR".

(a) If Q(h) > 0 for all nonzero he R", then f has a local strict minimum at x.

(b) If OQ(h) < 0 for all nonzero he R", then f has a local strict maximum at x.

(c) If there exist nonzero h' and h" in R" such that Q(h') > 0> Q(h"), then f has
neither a local minimum nor a local maximum at x.

Proof. We begin by noting the property of Q that, for any A € R and any 2€ R",
O(Mh) = 12Q(h). 1)
Since Q is continuous, it has a minimum value m and a maximum value M on

the compact set {# € R" : ||| = 1}. Then for any nonzero & € R", we have m <
O(h/||h|) £ M, from which it follows by using (1) that

m||h|* < O(h) < M||h|]* for any he R". )
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Let » be the radius of the ball mentioned in the hypothesis. By Proposition
3-5.5, for any h € R" with || ]| <, there exists 6 € (0,1) such that
SGehy = ) = 2 by D) + 5 E L2 D f(x+ Oh)]

n

= 3 Z W E (D +8h) = Dy f)] + 0. (3)

(a) Under the hypothesis here, m > 0. By continuity of D;;f, there exists a posi-
tive & < r such that

]g 3 Dy f(x + h) = Dy f(x)| < + m whenever || <.
Since 6 € (0,1), we have ||0/4]] <|| /]| and hence

;1 31D, 1f(x + Oh) — Dy 1f(x)] < & m whenever || 1] <38.
Now, | A;| <||&|| for all i. Therefore

m|h|P

|2 LE (D + Oh) = Dy f]| < 4

and hence from (3) and then (2), we obtain
SO+ h) ~f(0) = 3 ml|h|? — g m| k| = 5 m||A|* for ||A||<8.

This shows that f has a local strict minimum at x.

(b) This argument is similar but M < 0 and % m is to be replaced by —% M.

(c) In view of (1), we may assume that ||4'[| = 1 = ||2"||. By continuity of D, f,
there exists a positive & < r such that él é} |D;jf(x + h) = D;; f(x)] < O(h") when-
ever || 4] < 8. Then

£ mUE Dy ifc+ ) = Dy fOD| < QU |AIP - whenever 0 < 4[] <3,

Therefore, when 4 = Ah', 0 < A < §, we have ||| = A* and it follows from (3)
and (1) that

SO+ h) = f(0)> 5 O(h) = 5 Q|| AIP =5 MO(h') = 5 O(h)* = 0.

This shows that f does not have a local maximum at x. A similar argument
shows that f also does not have a local minimum at x. O

5-2.2. Remark. In the preceding section we mentioned vanishing of first partial
derivatives as a necessary condition for a local extremum; second partial deriva-
tives were not involved and were not even assumed to exist. When the latter
exist, the argument of part (c) of the above theorem can be used for obtaining an
additional necessary condition for a local maximum (respectively, minimum),
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namely, that Q(h) < 0 (respectively, Q(#) > 0) for all nonzero 4 € R”, provided of
course that the conditions therein about differentiability and continuity are ful-
filled. Indeed, if Q(#") > 0 for some nonzero /', then one can reason exactly as in
(c) above that f'does not have a local maximum at x.

In concrete applications, the conditions stipulated within (a), (b) or (c) have
to be verified for the function at hand. Methods for doing so are available
through linear algebra, but we shall not discuss them. The verification is easy to
carry out in some instances, as we now illustrate:

Example. We seek the extrema of

F0,X2,x3) = 37 + 2x57 + 4xs” + doeax; — 10x; —4x, — 12x3 on R,
The first partial derivatives are

D, f=6x;+4x;— 10, Dy f=4x,—4, Ds f=8x3+4x,—12.

It is immediate that all three vanish at (x;,x,,x3) = (1,1,1) and nowhere else. So
a local extremum, if any, must occur at this point. In order to apply the theorem,
we compute second partial derivatives, which happen to be constants:

D1 f=6 Dy f=0 Di . f=4

D, f=0 Dy, f=4 D3, f=0

Disf=4 Dysf=0 Dysf=8
Hence Q is given by

O(hy,hy,h3) = 6hy” + 4hy” + 8hs® + 8hs hy .
Upon recasting this as

O(hy,hy hs) = 2(hy + 2h3)* + 4h)* + 4y,

we see that QO > 0 unless (4,4, ,43) = (0,0,0). From the theorem we can now
conclude that f has a strict local minimum at (x;,x,,x3) = (1,1,1).

We have obtained this conclusion by routine computation. A skillful but
elementary computation shows that

S@1,x2,53) = (e = x2)° + (o + %2 = 2)7 + (x + 203 - 3) 13,
whereby the same conclusion can be obtained without any differentiation.

The verification is even easier if either [D;;f(x)] is a diagonal matrix
(which means D; ;f(x) = 0 for i #j) or n = 2. In the former case, we have O(h) =
lé D; ;f(x)h, from which it follows that the condition of (a) (respectively, (b)) is
fulfilled if each diagonal entry D;,f(x) is positive (respectively, negative) and
that the condition of (c) is fulfilled if some diagonal entry is positive and another
is negative. We first present an instance when this situation occurs and then go
on to discuss the case when n = 2.

Example. Let a > b > ¢ > 0. For the function



164 Extrema

fx,p,z)= (ax* + by2 +c¢2%) exp (= — y2 -z onR’

we show that there are seven points where all partial derivatives vanish. We also
show that the function has a local maximum at two of the seven points, a mini-
mum at one and neither a maximum nor a minimum at the remaining four.

Since g—i = 2xexp(=x* -y’ — 2)[a— (ax* + by’ + ¢z%)], and similarly for

I the points where all three partial derivatives vanish are precisely the

oy 20z

sélutions of (1)—(3) below:
x=0 0ra=ax2+by2+022 (1)
y=0 or b=ax’+ by’ + cz* 2)
z=0 or ¢c=ax’+ by’ + ¢z’ 3)

Now (0,0,0) is a solution, where f obviously has a minimum. We shall obtain six
others. If a solution (x,y,z) has two nonzero coordinates, say y and z, then (2)
and (3) lead to b = ¢, which contradicts the hypothesis. Therefore a solution of
(1)~(3) can have at most one nonzero coordinate. So, a solution with x # 0 must
satisfy y = 0 = z and hence by (1) must also satisfy @ = ax’, so that x = +1. We
conclude that (£1,0,0), (0,£1,0), (0,0,£1) are the only solutions of (1)—(3) be-
sides (0,0,0), thereby making a total of seven solutions.

It will now be shown that (+1,0,0) are points of maximum while (0,£1,0),
(0,0,£1) provide neither a maximum nor a minimum. The second partial deriva-
tives are given by

2
g j: = 2exp (—)c2 —y2 - zz)[a - (Sax2 + by2 + czz) + 2)(2(61)62 + by2 + czz)],
X
2,
IS ayexp( -3 D+ b - (@ + b+ ),
dyox

and correspondingly for the others. Upon evaluating them at (£1,0,0), we find
that the Hessian matrix at both points is a diagonal matrix with entries
—4ale,2(b—a)le,2(c — a)le. All these are negative in view of the hypothesis that
a>b>c>0. As noted above, the condition stipulated in (a) of Theorem 5-2.1 is
fulfilled and thus (x1,0,0) are points of maximum. Upon evaluating at (0,£1,0)
however, we find that the Hessian matrix at these points is a diagonal matrix
with entries 2(a — b)/e,—4b/e,2(c — b)/e, which are, respectively, positive, nega-
tive and negative. Thus the condition stipulated in (c) of Theorem 5-2.1 is
fulfilled and (0,£1,0) are points of neither maximum nor minimum. At the re-
maining points (0,0,£1), the Hessian matrix turns out to be a diagonal matrix
with entries 2(a — ¢)/e,2(b — c)/e,—4c/e, which are respectively positive, positive
and negative. Once again by (c) of Theorem 5-2.1, (0,0,£1)) are points of neither
maximum nor minimum.

We go on to discuss the case when n = 2.
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First of all, Q(h) simplifies to ;4 + (a1, + az) iy + anhy’, where a;; =
D;;f(x), i,j = 1,2. By Young’s theorem (Theorem 3-5.4), a;, = a,; and therefore
O(h) further simplifies to a, V2 + 2a0 by + axhs’. When ay; # 0, an elementa-
ry computation gives

2
anh’ +2aphhy +anhy’ = ay [(}h +%h2)2 - ana#hzz ]=

11
from which it follows that a sufficient condition for Q(%) to be positive for all
nonzero (hy,h,) is that ap’ < ayaxn and ajy; > 0. Obviously, the condition a;; > 0
can be replaced by a,, > 0. Similarly, a sufficient condition for Q(%) to be nega-
tive for all nonzero (4, h,) is that a2 < aj1ax and either a;; < 0 or ay < 0.

Next, suppose apn’ > ajan. Then if a;; # 0, the equality displayed above
also shows that O(#) can take positive as well as negative values; this happens
even if a;; = 0, because in this situation, a;® >0 and Oh) = hyQayhy + anhy),
where a;; # 0. Let us summarise all of this as a theorem, keeping in view that a;

= Dz‘jf ().

5-2.3. Theorem. Suppose that x is a point in the domain S  R* of a real valued

function f such that the derivatives D, f and D, f are differentiable at each point

of some ball (disc) centred at x, while D, f(x) = 0 = D, f(x) and the second par-

tial derivatives Dy f, D1 ,f and D, f are continuous at x.

(@) If D12f@) < [D1 1 /@] [D22/(0)] and Dy f(x) > 0 (or Dy f(@) > 0), then f
has a local strict minimum at x.

(6) If D2 /() < [Dy1 /()] [D2/()] and Dy, f(x) < 0 (or Da2 f(x) < 0, then
has a local strict maximum at x.

() If Dy » f(x)* > [Dy 1 f(x)] - [D22./(x)] then f has neither a local minimum nor a
local maximum at x.

In the sufficient condition of Theorem 5-2.1, a crucial role is played by
Q(h). Note that Q is a special kind of a map from R” to R, which is closely re-
lated to a linear map without itself being linear. Such maps have a name:

5-2.4. Definition. 4 map Q:R">R is called a quadratic form if there exists an
nxn matrix [a;;] such that

O(h) :El hj[iz::1 hia[j] for he R".

QO is said to be positive definite if Q(h) > 0 whenever h # 0 and positive
semidefinite if O(h) > 0 for all h. Similarly for negative definite and negative
semidefinite.

When f'is a real-valued function having second partial derivatives D; ;f(x),
the quadratic form given by the matrix [D;;f(x)] is called the Hessian form of f
at x. The matrix is called the Hessian matrix of f at x.

Thus, what we have called Q(#) in Theorem 5-2.1 is in fact the Hessian
form of f at the point x. We recount in terms of the concepts just defined what
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the three parts of the theorem say under the stated hypotheses. Part (a) says that
if the Hessian form is positive definite at the point in question, then there is a
local strict minimum, while part (b) says that if the Hessian form is negative
definite, then there is a local strict maximum. Part (c) says that if the Hessian
form is neither positive semidefinite nor negative semidefinite, then there is nei-
ther a local minimum nor a local maximum. The necessary condition for a local
maximum in Remark 5-2.2 was that the Hessian form be negative semidefinite.

5-2.5. Examples. (a) Let [a;,] be the 3%3 matrix whose rows are, respectively,
2 1 4] [t 1 3] 4 3 11].
It is a simple computation that the associated quadratic form Q is given by
O(hy by, h3) =202 + hy* + 11hs® + 6hyhy + 8hy by + 2hy by .
One can verify that this can be put in the form
O(hy1 iy, h3) = (hy + by + 3hs) + (hy + hs)* + hy™.

It follows that Q is positive definite. If the 11 is changed to 10, then the last term
hs* will have to be deleted and QO will be positive semidefinite.

(b) Let [, ;] be the 2x2 matrix whose rows are, respectively,

[2A 1] and [1 2A]
The associated quadratic form Q maps (%, 4,) into 27»(}112 + h22) + 2h1h,. When
the value of A is 1(2 — 1), this becomes

O(hy,hy) = (N2 = 1)(hy* + ) + 2hihs .

We find that Q is neither positive semidefinite nor negative semidefinite. How-
ever, when restricted to those (4, 4,) for which A, = h,, it will behave as though
it is positive definite; when restricted to those (4;,4,) for which 4, + h, = 0, it
will behave as though it is negative definite.

Now suppose 0:R—R?” is a linear map such that every (4, ,4,) in the range
of o satisfies i, + &, = 0; for instance,

(k) = (k,=k).

Then a consequence of the fact observed above is that in case the composition
Qoo—which surely maps R into R—turns out to be a quadratic form in R, then
it is negative definite. Similarly, for ouk) = (&, k), the composition Qo is posi-
tive definite if it is a quadratic form.
(c) Consider the 3x3 matrix whose rows are, respectively,

[4 B Bl [B 4 B, [B B A],
where 4 and B are distinct real numbers. The associated quadratic form Q is

O(hy1,hy, h3) = A(hy® + hy” + h3®) + 2B(hyhs + hshy + hyhy)
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=B+ by + s) + (4 = BY(h* + b’ + ).

This shows that Q need not be positive (or negative) definite. However, when
restricted to those (4,4, ,h;) € R? for which Ay + hy + hy = 0, it will behave as
though it is positive or negative definite according as 4 > B or 4 <B.

Now suppose o:R*—>R? is a linear map such that every (f;,%,,k3) in the
range of o satisfies &, + &, + h; = 0; for instance,

(X(k] ,kz) = (k] ,kz ,*(k] + kz)) or (2k1 . 3k2 ,*(2](1 + 3](2))

Then a consequence of the fact observed above is that in case the composition
Qoa, which surely maps R? into R, is a quadratic form in R?, then it is positive
or negative definite according as 4 > B or 4 < B. That the composition will al-
ways be a quadratic form follows from the next result.

5-2.6. Proposition. Let O be a quadratic form in R" with matrix [a;;] and
ouR"—>R" be a linear map with matrix [b;,), 1 <i<nand 1 <p < m. Then the
composition Qo:R"—R is a quadratic form in R" with matrix [c,,), | <p,q <
m, where i .

Cpq :El b, q( El dij bip)- (A)

Proof. Consider any k € R™. Since o has matrix [b;,], the jth component of k)
is

ok); = ,12:’1 bjgky.
Therefore

(Qoo)(k) :El ok [ E] ouk); aij] :El (qz:'1 bigky) [ El (pzz1 biyky)aij]
=2 k[ 2 L2 (2 a,0,)1] O

The above proposition can be reformulated as saying that Qoo is a quad-
ratic form given by the matrix product [5; p]T[a,- i[bip], where the superscript 7'
indicates transpose.

It may be recalled from the proof of the necessary conditions for a con-
strained extremum [Theorem 5-1.3] that we used the composed function called
@ in the argument, although the point of the Lagrange multiplier method is to
circumvent an explicit computation of ®. Since sufficient conditions for an un-
constrained extremum involve the Hessian form, one may anticipate that any
proof concerning sufficient conditions for a constrained extremum would in-
volve the Hessian form of the composed function ®. Therefore it is useful to
express the second partial derivatives of a composed function ¢oG in terms of
second and first derivatives of ¢ and G. We do so in the next proposition, by
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employing the chain rule with respect to partial derivatives as explained in Sec-
tion 3-4.

5-2.7. Proposition. Let U and V be open subsets of R" and R", respectively, and
G:U-V, ¢:V->R be functions such that ¢ as well as all the n component func-
tions G; (1 <j < n) of G have differentiable first partial derivatives everywhere.
Then oG has differentiable first partial derivatives and at any x € U, and for
any p,q with 1 <p <m, 1 <gq <m, we have

[D, (00 O() = Z [[Z,(Di; (G (D, GYNID, Gi)(x))
+ (DG (D, 4G (3)) ], (1)

where all multiplications of numbers are indicated by a dot -. In particular, if
the second partial derivatives of ¢ as well as of all the n component functions G;
are continuous at G(a) and a respectively, then the second partial derivatives of
0o G are continuous at a.

Proof. By the chain rule, we have
[Dg(9°G)](x) = jé (D; O)(G(x))(Dg G))(x)).

Since all first partial derivatives on the right side have been assumed differenti-
able, those of ¢po G are also differentiable; besides, we can apply the chain rule
once again and a routine computation leads to (1), which then implies the last

statement. O

5-2.8. Remark. Continuing with the notation of the above proposition, we note
that:

(a) The Hessian form Hy.,¢ at x of the composition ¢poG is given by the matrix
with (p,g)th entry [D, ,(¢o G)](x), which is the left side of (1).

(b) The Hessian form Q at G(x) of ¢ is given by the matrix with (i,/)th entry
aij = (Di; 9)(G(x)).

(c) Lastly, the linear derivative oo = G'(x) at x of G is given by the matrix with
(i,p)th entry
bi = (D), Gi)(x).

Therefore it follows from Proposition 5-2.6 that on the right side of (1), the first
term (after implementing the double summation) is the (p, ¢)th entry of a matrix
that gives the quadratic form Qoo. In other words, (1) asserts that the Hessian
matrix Hy. at x of the composition ¢o G differs from a matrix that gives the
quadratic form Qoo by
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jzi: (D, 0)(G(x)) (D 4 Gy ().

In particular, if this sum happens to be 0 for all p and g, then the Hessian form of
¢0oG is the same as the composition Qoo where Q is the Hessian form of ¢ at
G(x) and o is the linear derivative of G at x.

It may be pertinent here to note that for a twice differentiable function L de-
fined on an open subset S ¢ R"xR", the Hessian form at a point (a,b) € S is the
quadratic form given by the matrix [(D;; L)(a,b)] of dimension (n + m)x(n + m).
Also, it may be recalled that the function L = ¢+ p’z;?u,, ,, the Hessian form of

which will play a crucial role in the next result, is called the Lagrangian.

5-2.9. Theorem. Let ¢:S—R and f:S—R" be differentiable functions on an open
subset S < R"<R™ such that all the partial derivatives of ¢ and of every compo-
nent function of f are differentiable. Let T = {(x,y) € S : f(x,y) = 0}. Assume that

(a) all second partial derivatives are continuous at (a,b) e T,
(b) the linear derivative A, of f with respect to x at (a,b), i.e., the map A;:R"—>R"
such that A\h = f"(a, b)(h,0), is invertible;
(¢) there exist n real numbers Ay, ..., \, such that

(D; 0)(a,b) + rZi',l M(D;f)a,b)=0 forl<j<n+m. 1)
If the Hessian form H at (a,b) of the function L defined on S by

L(x,y) = 0(x,y) + Z A, fi(x,))

satisfies

H(u)>0 whenever 0#ueR"™<R" and f'(a,b)(u)=0,
then ¢ has a constrained local strict minimum at (a,b), the constraint being that
f(x,y) = 0. If the inequality is reversed, then O has a constrained local strict
maximum at (a,b).
Proof. We shall need not only the linear map 4,:R"—R" but also the associated
map A,:R"—>R" defined as A,k = f'(a, b)(0,k), and the corresponding maps
B:R">R and B,:R"—R with ¢ in place of /. We shall use the following prop-
erty of By and B;:

[0(a, D)](h, k) =[0'(a,b)][(,0) + (0,/4)]
=Bh+Byk  for (hk)e R'xR". ©)

Since A4, is invertible, the implicit function theorem provides a continuously
differentiable function g on some open set ¥ containing b such that
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gb)y=a,  yeW=1(0).»el (€)

g'(b)=—Ar"4,. “4)

According to part (b) of the theorem just quoted, g maps into an open subset U
of R"XR™ such that every (x,y) € TNU is of the form (g(y),y) with y € W. This
has the consequence that if the map ®:W—R given by

() = 0(g(»),»)
has a local strict minimum at b, then ¢ has a constrained local strict minimum at
(a,b), the constraint being that f(x,)) = 0.
Therefore we need only show that @ has a local strict minimum at . With
this in mind, we show first that ®'(b) = 0.
By the chain rule, the linear derivative at b of the map @ is given by ®'(b) =
0'(g(b),b)G'(b), where G is the map

G =gy, VyeW. ®)
By Remark 4-3.1, G'(b): R"—>R"xR" is given by
G'(b)(k) = (g'(b)k, k) V ke R"™

Note that it follows from this equality that G'(b) is injective, something that we
shall need only towards the end of the proof. It also follows from this equality
that @'(b) is given by

and

D(b)(k) = 0'(g(b), b) (g (b)k, k)
= 0'(a,b)(g'(b)k, k)
= Bi(g'(b)k) + Bok, inview of (2).
Thus ®'(b) = B, g'(b) + B, and it follows from (4) that

®'(b) =—(B14; )4, + B,. (6)

Let A be the linear map from R” to R represented by an 1xn matrix [A,...,A,].
We shall argue that

A +B; =0 (7
and
M2+32:0. (8)

To see why, observe that 4, and A, are represented [see Remark 4-3.3] by the
respective matrices

lel Dn-fl Dn+lfi Dn+mfi

Dl](2 an‘Z D}1+lﬁ Dn+mJ{2
. and . >

D]f;’l Dnjrn Dn+lf;1 Dn+mf;1
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while
[qu) an)] and [Dn+l¢ Dn+m¢]9

respectively, represent B, and B,, all partial derivatives being understood as
taken at (a,b). Using these matrix representations, we find that the first n equa-
tions in (1) assert (7) and the remaining ones assert (8).

Now (7) can be rephrased as A =—B,4; . Together with (8), this yields

~(B 1414, + B, = 0. 9

By virtue of (6), this means ®'(b) = 0, as claimed.

In the light of Theorem 5-2.1, it remains only to prove that @ has differenti-
able first partial derivatives, its second derivatives are continuous at b and that
its Hessian form Hy at b is positive definite.

Since @ is the composition ¢oG, where G(y) = (g(»),y), it follows by
Proposition 5-2.7 that firstly, it has differentiable first partial derivatives with
second derivatives continuous at b and secondly, that

[D, (02 GN) = 2 [ 2, (D1 0XG0) (D, GNP, GY») +

(D OGO (Dy G ].

The same argument applies with the n components £, in place of ¢. This leads to
n more equations like the one above, which the reader may choose either to
imagine or to write down (without defacing this book!). However, in these n
equations, the left sides will be 0 because f((g(v),y) = 0 everywhere. Therefore,
upon multiplying them by Aq,...,A,, respectively, and adding to the equation
displayed above, we get

ntm

D, 0°GN0) = [ (D, LG, GYONIHD, G)) ]

Jj=1
+ 2 (DL(GO) D, GO

Now the given equality (1) of the hypothesis implies that the second summation
on the right side here is 0 when y = b. Consequently,

[D, (00 ONB) = %, [, (D GBI (D, GYENHD, G)(B)]
=3 (D, G)B)) [ Z, (D LGN (D, GBI

By Proposition 5-2.6, this means that, at the point b, the Hessian form Hg of @ =
0oG is the composition Hoo, where the linear map o:R"—R"<R" is
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represented by the matrix having (D, G;)(b) as its (i,p)th entry. But this matrix
represents precisely the linear derivative G'(b). Thus

Hg=HoG'(b).
With a view to checking the positive definiteness of Hg, consider any 2 € R", &
# 0. The element u = G'(b)(h) € R"XR™ has the property that
Sa, b)(w) = f'(a, bYXG'(b)(h)) =0,

because
Sa, bY(G'(b)(h) = [f(GB)GB)(h) = [(foG)(B)](h) and foG =0 on IV.
As already noted above, G'(b) is injective, and therefore u # 0. The hypothesis

about H now implies that H(«) > 0, so that Hg(h) = [HoG'(b)](h) = H(u) > 0,
confirming the positive definiteness of Hg. O

5-2.10. Examples. (a) In 5-1.5(a), we settled the status of the point P, =
(1/42,1/4/2) by using an explicit solution of the constraint equation, which seems
such a shame because that is precisely what the Lagrange multiplier method is
meant to avoid. By means of the above theorem we can now handle the matter
without resorting to an explicit solution (which may be considered the shameless
way to do it!). The Hessian matrix of the Lagrangian L(x,y) = 0(x,y) + A f(x,))
has rows
[2A 1] and [1 2A].

Therefore the Hessian form Q maps (/4,,h;) into 27L(h12 + h22) + 2hih,. For Py,
the value of A is S (V2—1). So, as seen in Example 5-2.5(b), O(h,h,) =
(N2 = 1)(hy* + hy®) + 2hh, and it is negative for all nonzero (hy,h,) satisfying A,
+ hy = 0. We wish to know whether it is positive (or negative) for all nonzero
(hy1,hy) satisfying f(1/72, 1N2)(hy,h,) = 0. The linear derivative f'(1/4/2, 1/2) has
the 1x2 matrix

(DL HAN2,IN2) (D )AN2,IN2)]=[N2 2],

Therefore, f(1/72, 1N2)(h1,hy) = 0 = hy + hy = 0. As already noted, the quad-
ratic form Q is negative for all such nonzero (h,h,). Since (D, f)(1/N2,1~2) =
N2 # 0, the invertibility condition of the above theorem holds, and it follows
thereby that ¢ has a local (strict) maximum at P; .

(b) Let f be a twice continuously differentiable function on an open subset U of
RR? that includes the point (a,a, a), having the cyclicity property that

fx,y,2) =f,z,x) =f(z,x,y) whenever (x,y,z), (,z,%), (z,x,y) € U.
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Observe that if one among (x,y,z), (1,z,x), (z,x,y) belongs to any ball that is
contained in U and centred at (a,a,a), then so do the other two. Suppose that
D, f(a,a,a) # 0. Also, let F be a twice continuously differentiable on an open
interval containing a. We shall show that, subject to the constraint

Sx.y,2) = fla,a,a),

0(x,,2) = F(x) + F(y) + F(2)

has a local strict maximum or minimum at (@, a,a) according as

the function

" v~ Jula,a,a)— fi,(a,a,a)
F"(a) < F'(a) (@ aa)

or
F"(a)> F'(a) fila,a,a)— fi,(a,a,a) ’
fila,a,a)

where the subscripts indicate partial differentiation ( f; means D, f'and so on).

In view of the cyclicity property and the observation about it, fi(a,a,a) =
fia,a,a) = fi(a,a,a) and f1,(a,a,a) = fro(a,a,a) = f33(a,a,a); also all other second
partial derivatives are equal to each other. Therefore, firstly, the linear derivative

f'(a,a,a) is represented by the 1x3 matrix with each entry equal to fi(a,a,a). As
this is given to be nonzero, the invertibility condition of the above theorem is
fulfilled. Since the entries of f"(a,a,a) are equal and nonzero, the elements
(hy,hy,h3) € R? such that f"(a,a,a)(hy,h,y,h3) = 0 are those for which &, + hy + hy
= 0. Secondly, the Hessian matrix of the Lagrangian ¢ + Af at (a,a,a) is as in
Example 5-2.5(c), with

A=F"(a)+ Afii1(a,a,a) and B = A fi2(a,a,a).

As discussed there, the associated quadratic form is negative or positive for the
relevant nonzero elements (h;,h,,h3) € R? according as 4 < B or A > B. Now,

F'(a)

o0fa,a,a) + \fla,a,a) =0 fori=1,2,3 if}h:i—f](a,a,a) .

Hence 4 = F"(a) — F'(a) fi1(a,a,a)/fi(a,a,a) and B = —F'(a) fi»(a,a,a)/fi(a,a,a).
This shows that 4 < B or 4 > B according as

" l/ f11(aaaaa)_f12(a’a’a)
F"(a) <F'(a) T(@aa)

or
F"(a)> F(a) Sula,a,a)— fi,(a,a,a) .
fila,a,a)

The theorem now yields the required conclusion.
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We can now determine whether the point (/4, /4, /4) in Example 5-1.5(b)
is a local strict maximum or minimum [see 5-2.P9].

For a treatment of the theorem that gives formal recognition to its differen-
tial geometry aspects, the reader may consult Edwards [10]. Another discussion
is available in the Internet article by Cheng [6].

Problem Set 5-2

5-2.P1. Find all points of local maxima and minima of the function /" defined on
R? by
fOy) =2x" = 3x% +2y° + 3y~

5-2.P2. (a) Find all local maxima and minima of

f(xl,xz,x3) :X14 +X24 +X34—4XIX2X3 on R3

by using Theorem 5-2.1.

(b) Obtain the final conclusion of part (a) without any differentiation by recast-
ing f(x1,x2,x3) as a sum of squares plus a constant.

(c) Use your answer to (b) to suggest a fourth degree polynomial g(x;,x,,x;3), for
which the final conclusion is the same but g is not of the form of+ B, with o
and P constant.

(d) Show that a search for the local extrema of the function F(x;,x;,x3) =
X170+ x0," 4+ 23! — 10x,x00x; on R? leads to the same final conclusion as for the
function f of part (a).

5-2.P3. Leta > b > 0 > c. For the function
fx,y,z) = (ax* + by2 +¢2%) exp (= — y2 -z onR’

show that there are seven points where all partial derivatives vanish. Also show
that the function has a local maximum at two of the seven points, a minimum at
one and neither a maximum nor a minimum at the remaining four.

5-2.P4. Find all extrema of F(x,y,z) =xyz(x + y+z—1) on R’
5-2.P5. For the quadratic form Q in R? associated with the matrix with rows
(1 2 -1,[2 13 -5] and [-1 -5 4],

write Q(h) as a sum of squares and determine whether Q is positive definite.
You may denote % by (a,b, ¢) instead of (4, h,,h3).

5-2.P6. For the quadratic form Q in R’ associated with the matrix with rows

M1 -1 -1, [-1 5 -5] and [-1 -5 10],
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write Q(/) as a sum of squares (if possible) and determine whether Q is positive
definite. You may denote / by (a, b, c) instead of (h,h,, h3).

5-2.P7. Let O be the quadratic form in R® associated with the matrix having
rows

[4 B -Bl,[B 4 -B] and [-B —-B A], whered#B.

Let o:R*—R’ be the map o, b) = (a,b,a + b). Determine whether Qoo is posi-
tive definite.

5-2.P8. Let O be as in 5-2.P6 above and o be as in 5-2.P7. Determine whether
Qoo is positive definite.

5-2.P9. The point (n/4, /4, 7t/4) satisfies the Lagrange equations for the function
tanx + tany + tanz subject to the constraint y°z + z°x + x’y = 3(n/4)°. Determine
whether it is a point of constrained local strict maximum or minimum.

5-2.P10. The point (/6,1/6,1/6) satisfies the Lagrange equations for the func-
tion sinx+siny+sinz subject to the constraint yz+zx+xy = 3(n/6).
Determine whether it is a point of constrained local strict maximum or mini-
mum.

5-2.P11. The point (n/4,/4,m/4) satisfies the Lagrange equations for the func-
tion tanx+tany+tanz subject to the constraint yz+zx+xy = 3(m/4)%
Determine whether it is a point of constrained local strict maximum or mini-
mum.

5-2.P12. If the hypothesis about /A in Theorem 5-2.9 is changed to:
Fu',u"e R"xR" such that f(a,b)(u') =f"(a,b)(u") =0 and Hu') > 0> H(u"),

will it be true that on every open set containing (a, b), ¢ takes values greater than
as well as less than ¢(a, b) while satisfying the constraint? Justify.

5-2.P13. Lagrange equations for the function x*+ y* +z* subject to the con-
straint z = xy +2 have (x,y,z) = (0,0,2), A = —4 as one solution. Determine
whether this is a local extremum without converting it to an unconstrained prob-
lem.

5-2.P14. (This is the one-dimensional analogue of 5-2.P13.) Lagrange equations
for the function x* + y* + z* + u* subject to the constraint f(x,y,z,u) = u — xyz — 2
= 0 have (x,y,z,u) = (0,0,0,2), A =—4 as one solution. Determine whether this is
a local extremum without converting it to an unconstrained problem.

5-2.P15. Lagrange equations for the function x’ + * + z° + u” subject to the con-
straint f(x,y,z,u) = u— (yz +zx + xy) — 1 = 0 have (x,y,z,u) = (0,0,0,1), A =-3
as one solution. Determine whether this is a local extremum. Conversion to an
unconstrained problem is acceptable.
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5-2.P16. Let F and g be twice continuously differentiable functions on R, g(0) =
0 = F'(0) # F"(0). Lagrange’s equations for a local extremum of F(x) + F(y) +
F(z) with constraint f(x,y,z) = z — g(x)g(y) — C = 0 (where C is some constant)
have (x,y,z) = (0,0,C), A = —F'(C) as one solution. Show that this solution is a
local extremum if |F"(0)| > |F'(C)|-g'(0)>. Under what further condition is it a
maximum?

5-2.P17. Lagrange equations for the function x*+y*+z* subject to the con-

straint f(x,y,z) = z¢" — xy(x* + y*) —e = 0 have (x,y,z) = (0,0,1), A =—1/e as one
solution. Determine whether this is a local extremum.

5-2.P18. Lagrange equations for the function xyz subject to the constraint

f(x,y,2) = z& — xp(x* + ) — e = 0 have (x,y,z) = (0,0,1), A = 0 as one solution.
Determine whether this is a local extremum.

5-2.P19. In 5-1.P5, two solutions were found for the Lagrange equations. For
each of them determine whether the point corresponds to a local maximum or
minimum or neither.

5-2.P20. Find the local extrema of x subject to the constraint
¥ 22 D)+ (0 - ) =0,

where @ and b are given positive constants satisfying b > a. (The constraint
represents a torus and the reader may find it instructive to visualise what the
solution means.)

5-2.P21. Find the smallest possible area for a hexagon circumscribing a unit
circle.
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Riemann Integration in Euclidean Space

6-1 Cuboids and Pavings

A straightforward analogue of a closed interval in higher dimensions is a Carte-
sian product of closed intervals. Although many authors prefer to call them
‘intervals’, we shall refer to them as cuboids. They are best visualised as rectan-
gles in R? and as ‘boxes’ in R>.

In this chapter and the next, we shall use the norm ||x|| = ||x||.. = max {|x;]| :
1 <i < n}. Consequently, the closed ball of radius » centred at a € R” consists of
all x € R" such that max {|x;, —q;| : 1 <i<n} <r. This is the same as {x € R":
ai—r<x;<a;+rforl<i<n};in other words, the Cartesian product of the

intervals [a; — r, a; + r], each of which has length 2r.

6-1.1. Definition. 4 subset I of R" is called a closed cuboid if there are closed
intervals [a;,b;], where a;<b;, 1 <i<n, such that

I= [alabl]x.ux[ansbﬂ]‘

An open cuboid is defined analogously. The interval [a;,b;] will be referred to
as the ith edge and will sometimes be denoted by I;. In case the lengths of all
the edges are equal, we speak of a cube. The product of the lengths of the edges,

(bl - al) (bn - an)
is called the volume of the cuboid (whether open or closed) and is denoted by
vol(Z).

When n = 1, a closed cuboid is just a closed bounded interval and its vol-
ume is the length.

There will be little occasion to work with open cuboids and we shall under-
stand a cuboid to be closed unless specified as open. It is easy to check that what
was called a cuboid in 3-3.P6 is the same as a closed cuboid in the sense just
defined. This fact will play no role in our considerations.

6-1.2. Remarks. (a) A cuboid [a,b]x---x[a,,b,] with b, — a, =r for each i is
the same as a closed ball of radius 7/2 centred at ¢, where ¢; = (a; + b;)/2 for each
i. However, we shall usually describe it as a cube, or even as a cuboid. Similarly,
an open cuboid with each side equal to » is an open ball of radius 7/2.

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 6, © Springer-Verlag London Limited 2011
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(b) For a cuboid 7 = [a,,b]*x"*-%[a,,b,], we have

li=[a;,bi] = {x;: xel}
and
a;=min{x;: xel} and b;=max {x;: xel}.

(c) The interior /° of the closed cuboid / = [a;,b]x---x[a,,b,] is the open cuboid
formed by the corresponding open intervals, namely, (a;,b;)x---x(a,,b,). To see
why, consider any x in the latter (open) cuboid. By definition, a; < x; < b; for
each i. If we take & to be a positive number less than each of the 2n positive
numbers b; — x;,x; — a;, then ||y — x|| < & implies y € I. This shows that x € I°.
Conversely, suppose such a positive number d exists for some point x € R”, i.e.,
x € I°. Then the point y for which y; = x; — &/2 for each i satisfies ||y — x|| < 8 and
therefore y € 1, from which it follows that a; < x; — 8/2, so that a; < x; for each i.
Similarly, we can show x; < b; and thus x € (a;,b,)x---x(a,,b,). The simple
proof that the closure of the open cuboid (a;,b;)x---x(a,,b,) is the correspond-
ing closed cuboid [a;, b ]x---x[a,,b,] is left as 6-1.P4.

(d) Given a closed cuboid / = [a;,b]x---x[a,,b,] and € > 0, there exists an open
cuboid J such that / < J and vol(J) < vol(/) + €. Consider the cuboid J =
(a; — 8,by + Ox---x(a, — 8,b, + 8), where & > 0. Surely it contains / and its vol-
ume is vol(J) = (b, — a; + 28) --- (b, — a, + 28), which tends to vol(I) as 6—0.
Therefore, it is possible to choose 6 small enough to ensure that vol(J) < vol(/)
+E.

For example, if 7 = [1,2]x[3,5] < R? which has volume vol(/) =
(2-1)(5-3)=(1)2) = 2, then the open cuboid J = (1 —§,2 + 8)%(3 — 3,5 + J)
has volume vol(J) = (1 +28)(2 +28) = 2+ 63 + 48 < vol(I) + 108 if & < I;
now, this is guaranteed to be less than vol(/) + € provided that 8 < min {1,&/10}.

Similarly, given an open cuboid / and € > 0, there exists a closed cuboid J
such that

Jc land vol(/) <vol(J) +¢.
Consider the cuboid

J= [a1 + 8,b1 - 8]x--~><[a,, + a,b,, - 8],

where 0 <8 < %min {b;—a;: 1 <i<nj}.Itis contained in the given cuboid / and
its volume is vol(J) = (by — a; — 28) - (b, — a,, — 20), which tends to vol(/) as
0—0. Therefore, it is possible to choose & small enough to ensure that vol(/) <
vol(J) + €.

For example, if I = (1,2)x(3,5) — R, which has volume vol(/) =
(2-1)(5-3)=(1)(2) =2, then the closed cuboid

J=[1+82-8]x[3+8,5-38], whered<<,
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has volume vol(J) = (1 — 28)(2 — 28) = 2 — 63 + 48" > vol(I) — 63; now, this is
guaranteed to be greater than vol(/) — € provided that § < min {% , % }.

(e) [Required in Proposition 6-1.11 below] For I = [a;,b,]x---x[a,,b,], we have

sup{lly —x|[:yelL,xel} =sup{lly —x[|: ye I°,xe I°}

=max{bh;—a;: 1 <i<n} =M, say.

It is clear that neither of these sups can exceed M. To prove the reverse, let M =
by — ai, where 1 < k < n. Then for a given positive € < M/2, any pair of points y
and x of /° such that x; = a; +% and y, = b, — % satisfies ||y — x|| = (by —ay) —€=
M—¢.

(f) Suppose n > 1. If we delete [a,,b,] in the Cartesian product / =
[a),by]x---x[a,,b,], we get a cuboid in R with volume vol(/ )/(b,,— a,)- We
introduce no special name for this cuboid in R but shall denote it by I~I,. Thus

vol(I~1,) = vol(/ Wb, - a,)-

When n = 1, there is only one edge to begin with, and deleting it results in an
empty Cartesian product. So there is no such cuboid as /~[,; however,
vol(/ )/(bp — a,) = | and it will be convenient to make the convention that the
symbol vol(/~/,) means 1 when n = 1.

6-1.3. Definition. For any closed cuboid I = [a,,b||x---x[a,,b,], the 2n subsets
{xel:x,=a,}and {xel:x,=b,}, 1<p<n
are called its lower faces and upper faces, respectively.
When n =2 or 3, a cuboid is a rectangle or a ‘box’ and its faces in the sense
defined above are what are called sides. When n = 1, a cuboid is an interval and
the left endpoint is the only lower face, while the right endpoint is the only up-

per face. When n = 2, the lower and left sides are the two lower faces and the
upper and right sides are the two upper faces.

In one, two and three dimensions, it is obvious from a
Q visualisation that when the lower face of a cuboid coincides

with the upper face of another, one pair of corresponding
edges consists of consecutive intervals and the remaining
pairs (if any!) consist of identical intervals. The next result formalises this in 7
dimensions.
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6-1.4. Proposition. Suppose
I=1ay,bi]x---x[ay,b,] and J=[c;,d\]x---x[cy,d,]

are cuboids and the lower face {x € I : x, = a,} of I is the same set as the upper
face {xe J:x,=d,} of J. Thenp = q, a, = d, and [a;,b;] = [c;,d,] for i # p. Also,
an interior point of either cuboid cannot belong to the other. Lastly, [\LJ is the
closed cuboid K\x--xK,, where K, = [c,,b,] and K; = [a;,b;] = [c;,d;] for i # p.

Proof. If p # g, then the points x and x’ with x; = x;= g, for i # g and x, = a,, x/,
= b, both belong to the first mentioned face; however they cannot both belong to
the second, because otherwise a, = x, = d, = x';, = b,, contradicting the stipula-
tion [see Def. 6-1.1] that a, < b,. Thus p = g. The point x with each x; = a;
belongs to the first mentioned face and therefore to the second, which means x,
=d,, and hence a, = d,. The proof that [a;,b;] = [c;,d,] for i # p is left as 6-1.P1.

An interior point x of / must satisfy a, <x,. Since a, = d,, it cannot satisfy
x, < d,, which rules out the possibility that it belongs to J. A similar argument
shows that an interior point of J cannot belong to /.

For the last part, suppose x € /UJ. Then x, € [a,,b,]U[c,,d,] while x; €
[a;,b;] for i # p. Since a, = d,, we have [a,,b,]U[c,,d,] = [c,,b,]. Therefore, x
has been shown to lie in the closed cuboid K*---xK,, where K, = [c,,b,] and K
=la;,b;] = [c;,d;] for i # p. The converse is just as easy. O

The n-dimensional analogue of a partition will be defined in terms of parti-
tions of intervals in one dimension, the properties of which we take for granted.
In order to avoid the appearance of giving a circular definition, we prefer to call
the n-dimensional analogue by another name, namely, paving.

6-1.5. Definition. If [ = [a,,b||x  -X[a,,b,] is a closed cuboid, any set P of n
partitions

Piiai=xi0<xi1 < <Xim=b, 1<i<n,

of the respective edges [a;,b;] is called a paving of the cuboid /. 4 cuboid J for
which the ith edge J; is one of the subintervals of [a;,b;] formed by P;, i.e.,

J=Jx--xJ, , where each J; is a subinterval formed by P;
or

J=1x % X X jz]x---x[xnj”_,,xn o1 1<jism, 1<i<n,
is called a cuboid formed by (or of) the paving P. An open cuboid
(0 1 X X0 5 s Xy )Xo X (X, 5 %, ), LS jismy, 1<i<n,
is called an open cuboid formed by (or of) the paving. For clarity, we may
sometimes speak of the former as a closed cuboid formed by (or of) the paving.

6-1.6. Definition. 4 family of cuboids is said to be nonoverlapping if no inte-
rior point of any one of them belongs to any other cuboid of the family.
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A subfamily of a nonoverlapping family of cuboids is clearly nonoverlap-
ping.
6-1.7. Remarks. (a) By Remark 6-1.2(c), the open cuboids formed by a paving

are the interiors of the (closed) cuboids formed by it. Likewise, the (closed) cu-
boids formed by a paving are the closures of the open cuboids formed by it.

(b) Given a partition of an interval (in R), it is trivial that every point of the in-
terval belongs to some subinterval formed by the partition. In higher
dimensions, this has the consequence that, given a paving of a cuboid, every
point of the latter belongs to some cuboid formed by the paving. Thus a cuboid
is contained in the union of the cuboids formed by a given paving of it. The re-
verse inclusion is obvious and we conclude that any cuboid is precisely equal to
the union of the family of all the cuboids formed by a given paving.

(c) Let n > 1. Consider the cuboid I~J, in R obtained by deleting the pth edge
I, of a cuboid 7 in R". In other words,

[ij :IIX.”XIple]erlX'”X]n'

If P is a paving of / consisting of the partitions Py, ..., P, of the respective edges
Ii,....1,, then deleting P, leads to a paving of /~/,, which we shall denote by
P~P,. Fix any subinterval [o., B] of 7, formed by P, and, as illustrated in the fig-
ure for two dimensions with p = 1, consider any cuboid K formed by P, for
which the pth edge is [, B].

A

Other possi-

| __—| bilities for K

‘s i g
> P
A

<€ I=1IxI,

v

[asﬁ]:Kl

<+ A >
That is,

K = K;x:--xK,, where each K; is a subinterval formed by P; and K,, = [o., B].

Obviously, K~K, is a cuboid formed by P~P, and this provides a bijection be-
tween such cuboids formed by P and all the cuboids formed by P~P,. This is
reflected in the figure by the fact that the vertical sides of all the four different
shaded rectangles correspond to all the four different subintervals of the parti-
tion of the vertical side of the main big rectangle /.
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(d) The total volume of the cuboids formed by a paving of a cuboid / is equal to
vol(/). This follows by a straightforward induction on n using (c) above, the
initial case n = 1 being simply the well known fact that when we have a partition
of an interval in R, the total length of the subintervals agrees with the length of
the whole interval.
(e) The family of cuboids formed by a paving of a cuboid is nonoverlapping,
and hence so is any subfamily. In order to prove this, it is sufficient to show that,
if J and K are distinct cuboids formed by the same paving P, then an interior
point of either of them cannot belong to the other. In symbols, J°NK = & =
JNK°. By definition of cuboid, J # K implies that J, # K, for some p (1 <p <n).
Since the intervals J, and K|, are formed by the same partition of the pth edge,
they can have only an endpoint in common. Thus if x € J°, its pth component, x,
belongs to the interior of J, and therefore cannot belong to K,,, which implies
that x¢ K.

It now follows from the definition of ‘face’ that any common point of J and
K must belong to a face of J and also to a face of K.

The next proposition deals with a situation which is depicted in the two fig-
ures below for two dimensions. Suppose we start with a cuboid 7 = [;x/,, and
partitions Py, P, of the edges /;,1, respectively [see the left figure]. Then Py, P,
constitute a paving of /. Consider a cuboid J (drawn shaded) such that the end-
points of its edges occur among points of the partitions Py, P,. Then J must have
a paving Q [now see the figure on the right] such that the family JF of all cuboids
formed by Q is a subfamily of the family G of all the cuboids formed by the giv-
en paving P;,P, of I. Moreover, J cannot be the union of any other family of
cuboids formed by the given paving of /. And, of course, the total volume of the
cuboids in F is equal to the volume of J.

A A
Lo ’ [ :
< I, > “— | —> "

6-1.8. Proposition. Suppose I = [a;,b|]x---x[a,,b,] is a closed cuboid, and the
partitions

Piiai=xi0<xi1 < <Xim=b, 1<i<n,

provide a paving of I. Let J = [0y, B1]x -+ %[0, B,] be a cuboid such that each of
the o; and B; are points of P;. Then there exists a paving Qi,...,Q0, of J such
that the family F of all the cuboids formed by this paving is a subfamily of the
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Jamily G of all the cuboids formed by the given paving P\, ...,P,. Moreover, F
is the unique subfamily of G having union J, the total volume of all the cuboids
of F is equal to vol(J), and an interior point of J cannot belong to a cuboid of G
that is not in F.

Proof. By hypothesis, for each i, there exist p; and ¢, such that

O =Xip,, B =Xig;s Pi<q:-
Now the points

0110 =x;p, < " <Xy, = Bi
furnish a partition of [o,B,], so that Qy,...,Q, is a paving of J. Besides, the
subintervals of [o;, B;] formed by Q; are among the subintervals of [a;, b;] formed
by P;. It therefore follows from Def. 6-1.5 that the family J of all the cuboids
formed by Oy, ..., 0, is a subfamily of the family G of all the cuboids formed by
the given paving Py, ...,P,.

By Remark 6-1.7(b), UF = J. For the uniqueness, first observe that, given a
partition of an interval (in R), the midpoint of any subinterval formed by the
partition belongs to none of the other subintervals. In higher dimensions, this has
the consequence that the ‘centre’ of any one of the cuboids formed by a paving
belongs to none of the other cuboids. Now consider any subfamily JF; of the
family of all the cuboids formed by given paving such that UF, = J = UF. If
some cuboid were to be in F but not in F; (or vice versa), then its centre would
belong to UF but not to UF; (or vice versa), a contradiction. Consequently, F; =
F.

Since F is the family of all the cuboids formed by a paving of J, it follows
by Remark 6-1.7(d) that the total volume of all the cuboids of F is equal to
vol(J).

It remains to prove that an interior point of J cannot belong to a cuboid of G
that is not in F. For this purpose, we first observe from the above definition of
Q; that, if a subinterval [x; ;,x; ;+;] formed by P; satisfies both the inequalities

x ;<P and x>0, (1)

then it is also a subinterval formed by Q,. Now consider a cuboid K = K;x---xK,
in G that is not in ¥, and an interior point x = (xy,...,x,) of J. We have to show
that x ¢ K. Since K is not in 7, then for some i, the interval K; = [x; ;,x; ;11] is not
a subinterval formed by the partition Q;, so that (1) does not hold. Since x is an
interior point of J = [0y, Bi]x---x[ot,, B,], we must have o, < x; < B;. If it were
also the case that x;; < x; <Xx; 41, then (1) would hold. Therefore, x; & [x; ;,x; 1]
= K;, from which it follows that x ¢ K. O

In R, if one has a finite number of rectangles, possibly overlapping, inside
a single rectangle 7, the sides of the inner rectangles can be ‘produced’ to gener-
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ate a paving of /. When this is done, each of the inner rectangles will be a union
of some family of rectangles formed by the paving; this will continue to be so
even if the paving is refined. There is of course a similar phenomenon in R® but
one has to ‘produce’ the faces. The next proposition describes the matter in R’
but without introducing any formal definition of ‘producing’.

6-1.9. Proposition. Let K, ..., K, be cuboids contained in a single cuboid I and
let 8> 0 be given. Then there exists a paving of I such that

(a) each K is the union of some subfamily F; of the family of all the cuboids
formed by the paving; moreover, vol(K}) equals the total volume of all the cu-
boids of Fi;

(b) the total volume of the cuboids in the subfamilies F; does not exceed the
total volume of the K;

(¢) an interior point of K; cannot be in any cuboid formed by the paving that is
not in Fy;

(d) for any cuboid J formed by the paving, max {||x — x'|| : x,x'e J} <J.

Proof. Since all the K, are contained in /, their ith edges are subintervals of the
ith edge of I. Therefore, the endpoints of these edges give rise to a partition of
the ith edge of /. Take any refinement of it such that every subinterval has length
less than d, and denote it by P;. Then Py, ..., P, constitute a paving of / satisfy-
ing (d). By Proposition 6-1.8, for each £, there is some subfamily F; of the
family of all the cuboids formed by the paving such that (c) holds and K} is the
union of F; while the total volume of the cuboids of F; equals vol(K}), so that
(a) also holds. Taking the sum over all & and noting that some cuboids may oc-
cur in more than one F;, we get (b). (]

It is easy to conjecture on the basis of
some figures that an intersection of two
(closed) cuboids is either a cuboid or is a sub-
set (perhaps empty) of a face of each. The
next proposition establishes this in general.

6-1.10. Proposition. Let I and J be (closed) cuboids such that InJ is not a cu-
boid. Then INJ is a subset (perhaps empty) of a face of I as well as of a face of
J.

Proof. Let [ =[ay,bi]x---x[a,,b,] and J = [0, B1]x---x[0t,, B,], where a; < b; and
o; <P, for 1 <i<n. Then xe InJ if and only if

max {a;,0;} <x <min {b;,B;} forl1<i<n.
If max {a;,0,;} <min {b;,[;} for every i, then InJ is a cuboid. So, suppose

max {a;,0;} > min {b;,;} for some i.
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In case max {a;,0,} > min {b,,B;}, the intersection InJ is empty. We need con-
sider only the case when .
max {a;,0;} = min {b;,B,}.
This equality implies that every x € InJ satisfies x; = max {a;, o;} = min {b;,[,}.
Two possibilities can arise (not mutually exclusive): max {a;,0;} = a; and
max {a;, 0} = 0.

Suppose max {a;,0;} = a;. Then INJ is a subset of the face of / given by x; =
a;. Besides,

min {biaﬁi} = max {a,-,OL,-} =a; < bi so that min {bi,[.))i} = Bi'

Therefore, InJ is a subset of the face of J given by x; = ;. The possibility that
max {a;,0;} = o is argued along similar lines. O

We conclude this section with a preview of some of the other tedious con-
siderations that will be required in the sequel [e.g. Lemma 7-2.1, Proposition 7-
2.2, Proposition 7-3.5]—but stay with us!

6-1.11. Proposition. Let H C W C R’, where H is compact and W is open. If F is
a finite family of closed cuboids that cover H (i.e., the union of the cuboids in
the family contains H), then there exists a family of closed cuboids G that also
covers H and:

(a) each cuboid in G is contained in W

(b) G is finite and the total volume of the cuboids in G is no greater than the total
volume of the cuboids in the family F;

(¢) G is a nonoverlapping family.

Proof. [See figure below, where W is oval shaped, H is a segment and F consists
of two cuboids.] First we argue that there is a positive lower bound to the dis-
tances between points of A and points of the complement W* of W, which is to
say, there exists & > 0 such that

heH, |h—x|<8=xeW.

If this were not so, then there would exist sequences {#,} in H and {x,} in W*
such that ||4, — x,[[—0. Since H is compact, some subsequence {/, } would
converge to a limit & € H. Since H < W, we would have & € W, an open set, and
hence there would exist some 1 > 0 such that ||z — x|| <1 = x € W. By choosing
k € N large enough to make thk—xnkH <mn/2 as well as ||h,,k— Al < /2, we
would have the contradiction that |2 — x,,kH <m even though X, & W. This estab-
lishes the existence of a positive 8 of the kind indicated above.

Now let F be a finite family of closed cuboids that cover A and consider
any one cuboid / in the family. There is a paving Py, ..., P, of I,

Piiai=xi0<x;1 <" <Xim,=bi, 1<i<n,
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such that max {|x; , —x, , ;| : 1 <ji<m;, 1 <i<n} <3d. It follows by Remark

6-1.2(e) that for any cuboid

J=Ix X Xy X XXX, ux, s 1, T<jismg, 1<i<mn,

formed by the paving, we have

(] sup {|ly —x|| : yeJ,xeJ} <8.
Now select only those cuboids

_____ ) formed by the paving which con-
tain at least one point i of H.

/ Clearly, they cover the intersection
3 INH. Also, every point x of such a
cuboid satisfies ||z —x|| < & and

F consists of two cuboids therefore, belongs to W. Thus all

the selected cuboids are subsets of

Sides shorter than 5 W. Moreover, by Remark 6-1.7(d),

4 \\ their total volume is no greater than

that of /. If we form the family H of

7 cuboids selected in this manner for

all the various I € F, it will not

only cover H but will also satisfy
(a) and (b) with H in place of G.

To obtain a family G that also
satisfies (c), we apply Proposition 6-1.9 to the cuboids Kj,...,K,, of the finite
family ‘H, and thereby obtain families F,..., F, as in that proposition. By (a)
and (b) therein, the family G = Fu--- U F,, satisfies (a) and (b) of the present
proposition. That it also satisfies (c) follows from Remark 6-1.7(e) and the fact
that, according to Proposition 6-1.9, all the cuboids of G are formed by the same
paving of a certain cuboid. O

Problem Set 6-1

6-1.P1. Complete the proof that [a;, ;] = [¢;,d;] for i # p in Proposition 6-1.4.

6-1.P2. Suppose I = [a;,b(]% " X[a,,b,| and J = [c|,d,]* - X[c,,d,] are cuboids
and the lower face {x € /: x, = a,} of ] is the same set as the lower face {x € J: x,
=c,} of J. Then p =g, a, = ¢, and [a;,b;] = [c;,d;] for i # p. Also, either / < J or
J c I Lastly, 7 and J have interior points in common.
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6-1.P3. Prove the following converse of Proposition 6-1.4: If a union of two
(closed) cuboids is a cuboid and they have no common interior points, then there
is one dimension in which the lower face of one is the upper face of the other,
and their edges in the remaining dimensions coincide.

6-1.P4. Prove that the closure of the open cuboid I = (a;,b)x --x(a,,b,) is the
corresponding closed cuboid J = [ay, b )% %[a,,b,].

6-1.P5. Suppose I = [a,,b]*x" -*[a,,b,] is a closed cuboid, and the partitions
Piiai=xi0<xi1 <" <Xim= b, 1<i<n,

provide a paving of /. Let F be a subfamily of the family of all the cuboids
formed by the paving. If the union UF is a cuboid J, show that there exists a
paving Oy, ..., 0, of J such that the family of all the cuboids formed by this pav-
ing is none other than F. Moreover, the total volume of all the cuboids
belonging to F is equal to the volume of J.

6-2 Riemann Integral Over Cuboids

The definition of Riemann integral over a cuboid and the proofs of most basic
properties are direct analogues of the one-dimensional case, with pavings play-
ing the role of partitions. We shall therefore restrict ourselves to formal
definitions and comment on some proofs.

6-2.1. Definition. Let I — R' be a cuboid and f:1-R be a bounded function.
Given a paving P of I, let K1, ... ,K,, denote the cuboids formed by P and for j =
1,....m, let

my, = inf {f(x): xeK;} and My, = sup x):xe K}

Then the lower sum of f over the paving P is

L(f,P) = £ mgvol(K;)
and the upper sum is = J

U(f,P) =j§1 Mg, vol(Kj).
It is trivial that L( f, P) = -U(-, P).

Sometimes one may need to take the sum only over some cuboids. It is then
convenient to introduce a name, such as F, for the family of cuboids involved in

the sum and write j}'; m;vol(K;) and j_)';]\/ljvol(Kj) respectively as

EKE FMg VOI(K) and ZKE F MK VOI(K)
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It is easy to prove that L(f + g,P) > L(f,P) + L(g,P) and U(f + g,P) <
U(f,P) + U(g,P). Also, L(cf,P) = cL(f,P) and U(cf,P) = cU(f,P) for any
nonnegative constant c. If ¢ <0, then L(cf, P) = cU(f, P) and U(cf, P) = cL(f, P).

Recall that a partition Q of an interval is called a refinement of a partition P
of the same interval when Q includes every point of P.

6-2.2. Definition. 4 paving Q of I = [a,,b(]%"*-X[a,,b,] consisting of
Qi:ai:§i0<§il<“'<E.:ipi:bia 1<i<n,

is a refinement of a paving P consisting of
Pirai=xi0<xi1 < <Xim=b, 1<i<n,

if each x; ;, is also a point of Q;. In other words, if each partition Q; is a refine-
ment of the partition P;in the usual sense in one dimension.

As with partitions, any two pavings have a common refinement. If the parti-
tion P; is refined by adding a point ¢ to it, which means x; ,.; < <x;, for some
p, 1 < p < m;, then we obtain a refinement of P; call it P". Among the cuboids
formed by P, those having [x;,1,x;,] as the ith edge are not among the ones
formed by P'. However, each such cuboid C is the union of two cuboids formed
by P', which have [x; ,;,#] and [#,x; ,] as their respective ith edges and have all
other edges the same as C. Those not having [x;,,x;,] as the ith edge are
among the cuboids formed by P’ Also, P’ forms no cuboids besides the
aforementioned ones.

Using what has been noted in the preceding paragraph, one can easily adapt
the one-dimensional arguments about partitions to prove that refining a paving
does not decrease the lower sum and does not increase the upper sum, and that
L(f,P)) < U(f,P,) for any pavings P, and P,.

6-2.3. Definition. For a bounded function f: 1R, where I is a cuboid in R', the
supremum of the set of all lower sums L(f,P) is called the lower Riemann
integral of f over I and is denoted by [, f. The infimum of all upper sums
U(f,P) is called the upper Riemann inteéral of fover I and is denoted by T 1 1

It is trivial to see that

[iU+r9z],f+] e
L (ftg =< Lf*‘Lg
[1f=~1, &N

and that
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From the fact that L(f,P,) < U(f,P,) for any pavings P, and P,, one can
easily obtain the inequality |, /< [, f Like the previous two, the next defini-
tion is also a direct analogue of the one in R.

6-2.4. Definition. A bounded function f:I->R, where I is a cuboid in R", is
called Riemann integrable if [, f= T ; J- The common value of the upper and
lower integrals is denoted by L fand is called the Riemann integral of the
function f.

We shall usually drop the word ‘Riemann’ in this connection, as we do not
intend to discuss any other type of integral.

When n = 1, a paving is simply a partition and all the concepts defined in
this Section so far reduce to the ones known by the same name in one
dimension.

The following criterion of integrability is proved the same way as in R and
is equally useful:

6-2.5. Proposition. A bounded function f:1—>R, where I is a cuboid in R", is
integrable if and only if, for every € >0, there exists a paving P of [ such that

U(f,P)—L(f,P)<£. (A)
Such a paving satisfies

[ f[~e<L(f,P) S U(f.P)<], f+e. (B)

It can now be proved by imitating the one-dimensional case that, whenever
functions f and g on a cuboid are both integrable, the following are also inte-
grable: f+ g, fg, | f] and c¢f (where c is a constant); moreover the usual equalities
and inequalities concerning them hold.

6-2.6. Example. Let /:[0,1]%[0,1]—>R be defined as
3 ifyeQ

2

f(x,y)—{ ,
x* ifyeQ.

We shall show that f is not integrable. On any cuboid K < [0,1]%[0,1], we have
My =3 and also my < 1, the latter because y ¢ Q = f(x,y) = x* < 1. Conse-
quently, Mx—myx > 2 for every K. It follows that U(f,P)— L(f,P) >

2-vol([0,1]x[0,1]) = 2 for every paving P. By Proposition 6-2.5, f cannot be in-
tegrable.

6-2.7. Proposition. Suppose J C I, both cuboids, and f:I—R is integrable. Then
the restriction g of the function f to the cuboid J is also integrable.

Proof. Denote the ith edges of / and J by /; and J; respectively. Since J I, each
J; is a subinterval of [, i.e., has its endpoints lying in the latter. Therefore, given
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any paving of /, its partition of /; has a refinement P; which is obtained by add-
ing only the endpoints of J; (unless already present). Those points of P; that lie in
J; form a partition Q; of the latter and the subintervals formed by Q; are precisely
those among the ones formed by P; that are subsets of J;. From the definition of
cuboids formed by a paving [Def. 6-1.5], it now follows that the family G of
cuboids formed by the paving O = {Qy,...,0,} of J is a subfamily of the family
F of cuboids formed by the refinement P = {Py,...,P,} of the given paving of /.

Now consider any € > 0. Using Proposition 6-2.5, we find that there exists a
paving P, of I such that U(f,P,) — L(f,P;) < €. Note that any refinement must
also satisfy the same inequality. In particular, if P is its refinement obtained by
adding only the endpoints of J; to the partition of the /;, then we have
U(f,P)— L(f,P) <e.For Q, F and G as in the preceding paragraph,

d 0<U(g,0) - L(g,0) = Zke g (Mg — mg) vol(K)
an
ke r (Mg —mg) vol(K) = U(f,P) — L(f,P) <e.

Since G < F and My — myg > 0, we also have
2[(6 g (MK — m]() VOl(K) S E](E]: (MK — m]() VOI(K)

Together with the above two inequalities, this implies that 0 < U(g, Q) — L(g,0)
< g. The existence of such a paving Q of J proves the integrability of g by
Proposition 6-2.5. O

6-2.8. Example. Let Let /:[0,3]%[0,1]>R be defined by the same scheme as in
Example 6-2.6, which is that
3 ifyeQ

f(x,y)={ ,
x- ifyeQ.

The restriction of this function to [0,1]%[0,1] is the function of Example 6-2.6,
which was shown not to be integrable. It now follows by Proposition 6-2.7 that
the function here is also not integrable.

6-2.9. Remark. Returning to the bijection mentioned in Remark 6-1.7(c) when n
> 1, the total volume of cuboids K with pth edge [c, B] must be the product of
B — o with the total volume of the cuboids K~K,,. Since the latter are precisely
the cuboids formed by the paving P~P, of I~1,, it follows from Remark 6-1.7(d)
that their total volume is vol(/~/,). Therefore, the total volume of all the cuboids
having [0, B] as the pth edge is (B — o) vol(Z~1,). This is trivially true when n = 1
because of our convention in this case that vol(/~/,) = 1 despite the fact that
there is no such cuboid as /~/,. In view of Remark 6-1.2(f), this also equals
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(B — ayvol(/ )/(bp — a,), Where I, = [a,,b,]. What this means in terms of the fig-
ure shown earlier in this connection is that the total area of the shaded rectangles
is the product of their common width  — o with the ratio of the area of [ to the
length of its horizontal edge. We emphasise that the above conclusion is valid
even when n = 1, so that we may use it below [in Proposition 6-2.10 and Propo-
sition 6-2.11] without assuming n > 1.

6-2.10. Proposition. Let [ be a cuboid and both f-1—R g: >R be bounded. If
f(x) =g(x) for xe I°, then

Ilfzilg and T]f:T[g'

In particular, if one of the functions is integrable, so is the other and has the
same integral.

Proof. Consider any € > 0. By definition of lower integral, there exists a paving
QO of I such that

[1e2-5 <L(g,0). (1)

By definition of paving [see Def. 6-1.5], O consists of some partitions O, ...,0,
of the edges of . Let 8 be any positive number less than the lengths of all the
subintervals formed by a/l the Q;. (We are free to require at a later stage that &
be even smaller.) For 1 <i <n, each Q; has a refinement P; that has just two ad-
ditional points, one in the first subinterval at a distance less than d from the left
endpoint and one in the last subinterval at a distance less than & from the right
endpoint. Now let P be the paving of / consisting of the refinements Py, ...,P,.
Then (1) holds with P in place of Q.

The family of cuboids formed by P can be subdivided into two disjoint sub-
families, one consisting of those having an edge that shares an endpoint with an
edge of / and those having no such edge. Name these subfamilies as 5 and Z
respectively. Recall that, by definition, a cuboid K formed by P has edges that
are subintervals formed by the partitions P;, so that an edge K|, that may share an
endpoint with an edge of 7 must have length less than 8. Since the edge of [ has
two endpoints, it follows by Remark 6-2.9 that the total volume of such cuboids
is at most 28-vol(/~1,) and hence the total volume of the cuboids in B is at most
28 p’z;vol(m,,), ie.,

Txe s VOI(K) <25 'élvol(hlp). ©)

We now require that & < £/(6M péIVOI(IN]p)), where M is a common upper bound
of |f| and |g|. Then, with obvious meanings for my’ and my?, it follows from
(2) regarding f that
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Sxe 5 mx’ VOI(K)| < MZxe 5 vol(K) < 2M 3 -§1v01(1~1p) <£
and similarly, regarding g, that
[Zke s mg® vVOl(K)| < % .
These two inequalities imply that

L(f,P) = ke s mg vol(K) + Zge 7 my/ vol(K) > = § + Zge 7 mg/ vol(K)  (3)
and

L(g,P) = ZKEB ng VOI(K) + EKEI ng VOI(K) <§ + ZKEI ngVOI(K). (4)

Now, it is immediate from the definition of Z that the cuboids in it are subsets of

I°. Therefore, my’ = my? for Ke 7 and the summations on the right sides of (3)
and (4) are equal. It follows that

L(f,P) - L(g,P) > 2(-5).

As already noted, (1) holds with P in place of Q. Hence, we obtain from the
above inequality that L(f,P) > [, g—¢€ and hence that [, f > L(f,P) >
| ; &— €. As this has been establisﬂed for every positive €, weihave [, =1, 2
The reverse inequality follows by a similar argument with the roles_of f a_nd g

interchanged.

The equality for upper integrals follows either by an analogous argument or
from the observation that [, &= —[, (~¢) for any bounded 0. O

6-2.11. Proposition. Let J < I, both cuboids, and let g:J—R and f: >R both
be bounded. Suppose f(x) =0 for x ¢ J while f(x) = g(x) for xe J°. Then

Lf=1,g and Lf:TJ g

In particular, if one of the functions is integrable, so is the other and has the
same integral.
Proof. By Proposition 6-2.10, the function g;:J/—R such that g; = g on J° and g,
= felsewhere on J has the same lower and upper integrals as g. It is sufficient
therefore, to prove that f has the same upper and lower integrals as g;. Since
there will be no further occasion to refer to g;, we may as well denote g; by g.
Then the function f agrees with g on J and is 0 for x ¢ J.

In view of the equality [, ¢ = —T x (—0) for any bounded ¢ and any cuboid
K, one need consider only lower integrals.

We shall first prove [, /2 [, g
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Consider any € > 0. By definition of lower integral, there exists a paving O
of J such that

[, e-5<L(g0) (1)

By definition of paving [see Def. 6-1.5], O consists of some partitions O, ...,0,
of the edges of J. In the next paragraph, we describe a paving P of / to be ob-
tained from Q.

Denote the edges of J and I by J; = [a;,b;] and [; = [0, B;], respectively.
Since J ¢ I, we have J; C I;, and hence o, < a; < b; < B;, for each i. If J= [, there
is nothing to prove. So we assume J C /. This has the consequence that for some
i, we must have either o; < @; or b; < ;. Let 8 be any positive number less than
all those differences a; — o; and B; — b; that are positive. (We are free to re-
quire at a later stage that & be even smaller.) Then 8 has the property that, in case
o; < a;, the point a; — & belongs to the interval (o, a;), and in case b; < B;, the
point b; + & belongs to (b;, ;). Thus the partition Q, of J; gives rise to a partition
P; of I; that consists all the points of Q; and also o, a; — & in case o; < a; and
b;+ 98, B, in case b; < B;. Note that P; includes at most four additional points be-
sides those of Q;. Furthermore,

(a) subintervals formed by P; that have both endpoints in J; are
among those already formed by O;

(b) and conversely;

(c) subintervals formed by P; that have exactly one endpoint
in J; are at most two in number and have length 8, while

(d) those that have neither endpoint in J; are disjoint from J;.

We shall now work with the paving P of I consisting of the partitions Py, ...,P,.

The family of cuboids

B, formed by P can be subdi-
vided into three disjoint
subfamilies Z, B and O as
follows. Z consists of those

a cuboids K for which every
3.8 edge K; has both endpoints
in J; (so that K < J and is
one of the cuboids formed
by Q); B consists of those
ar=ou b B cuboids K for which some
bi+d edge K, has exactly one

endpoint in J, (so that K,
has length & by (c) above);

b2+6
by

Cuboids of B are partially shaded
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O consists of the remaining cuboids K, each of which must have an edge with
both endpoints outside J; (so that K is disjoint from J by (d) above). Therefore,
denoting the infimum of f'over any cuboid K by my, we have

L(f,P) = Zke 7 mgvol(K) + Zge g mgvol(K) + Zge o mgvol(K).

By (a) and (b) above, 7 is precisely the family of cuboids formed by Q; more-
over fagrees with g on these cuboids. So, the foregoing equality leads to

L(f,P)=L(g,0) + Zxep mgVol(K) + Ege o mgvol(K). 2

By (c), each K € 5 has at least one edge of length § and it therefore follows from
Remark 6-2.9 that the total volume of all the cuboids in B cannot exceed
28 pévol(mp), ie.

Sxes vol(K) <25 -pi:lvol(m,,).

We now require that & < e/4 M flvol(hlp), where M is an upper bound of | f]. It
=

then follows from the inequality just noted that
ke s myvol(K)| < MExe 5 vol(K) < 2M3 -pi;vol(w,,) <£ 3)

By (d), each K € O has an edge K, disjoint from the corresponding edge J, of J,
and therefore, is itself disjoint from J, so that f'is 0 on K. Hence, (2) becomes

L(f,P) = L(g,0) + Zke s mgVOl(K),

which, in conjunction with (3), implies

IL(f.P)~ L(g. Q)] < 5. “4)

Consequently,
L(f,P)—L(g,Q) > = %

Therefore, in view of (1), we have L(f,P) > | ; g— € and hence [, f > L(f,P)

> 1 ; & — €. Since this is true for every positive &, it follows that
[if=1;e.

as required.

The proof of the reverse inequality is similar in parts but we shall present
full details of everything that is slightly different.

Again, consider an arbitrary € > 0 and let P'= {P",,...,P’,} be an arbitrary
paving of /. As before, denote the edges of J and / by J; = [a;,b;] and [; = [0y, B;]
respectively. Since J C I, we have J; C I;, and hence o; < a; < b; < J3;, for each i.
If J = I, there is nothing to prove. So we assume J c /. This has the consequence
that for some i, we must have either o; < a; or b; < ;. Let & be any positive
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number less than all those differences a; — o; and B, — b; that are positive. (We
are free to require at a later stage that & be even smaller.) Then J has the proper-
ty that, in case o; < a;, the point a; — & belongs to the interval (o, @;), and in case
b; < B;, the point b; + & belongs to (b;,[;). Let P; be the refinement of P’; ob-
tained by including the points a;,a; — & (unless o; = a;) and also the points b;, b;
+ & (unless b; = B;). Note that P; includes at most four additional points besides
those of P’;. (It is worth bearing in mind that the subinterval of P, that begins at
b; may end before b; + §, in which case its length is less than d; similarly for a
subinterval that ends at @;.) Let the partition Q; of J; consist of those points of
the partition P; of /; that belong to [a;,b;]. Then

(a) subintervals formed by P; that have both endpoints in J; are
among those already formed by Q;

(b) and conversely;

(c) subintervals formed by P; that have exactly one endpoint
in J; are at most two in number and have length & or
less, while

(d) those that have neither endpoint in J; are disjoint from J;.

We now argue exactly as above with the paving P of / consisting of the par-
titions Py,...,P, and the paving O of J consisting of the partitions Q;,...,0,,
thereby obtaining (4). Keeping in mind that P is a refinement of P’, it then fol-
lows that

Lf,PYSLf,P)SLE Q) +5<[,g+5.

Since this has been proved for an arbitrary paving P’ of I, it follows that [, 1 <
[;g+%. Heree> 0 is arbitrary and we therefore conclude that [, /< [, ¢. O

Problem Set 6-2

6-2.P1. Let 7 = [0,1]x[0,2] < R* and the paving P consist of the partitions P; :
0,1 0of [0,1]and P, : 0,1,2 of [0,2]. If f(>x1,x2) = x; + x5, find m(K) and M(K) for
each cuboid K formed by the paving.
6-2.P2. Let 1 = [0, 1]x[0,2] < R? n be a positive integer, and the paving P con-
sist of the partitions
P :L,0<j<n and Py: 2k 0<k<n.
n n

Compute L( f,P) for f(x),x;) =x; + x5.
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6-2.P3. Let 7 = [0,1]%[0,2]x[2,3]x[1,5] < R*, n be a positive integer, and the
paving P consist of the partitions

J1 . J2
7o 0shi=n, P

P|: 2.7,05]'25271,

J3 . Ja .
Py:2+757,0<j35n, Py=1+7",0</,<4n.

For f(x1,x,x3,%4) =x; + x5 + x3 + x4, compute U(f,P) — L(f,P).

6-2.P4. Suppose in the proof of Proposition 6-2.11, one subdivides the family
of cuboids formed by P as follows: Z is as before; O consists of the cuboids K
for which some edge K, has both endpoints outside .J,; and B consists of the
remaining cuboids. Can one still carry out the proof (or are these subfamilies
perhaps the same as before)?

6-2.P5. Suppose J < I, both cuboids, and g:J—R is the restriction to J of
f:1-R. Define x:/—R as being 1 on J and 0 elsewhere on / (usually called the
‘characteristic function” of J). Show that g is integrable if, and only if the prod-

uct f is, in which case, [, g= [, (/).
6-2.P6. Let £:[0,1]%[a,b]— R be defined as

0 ifxgQoryg Q

1/q ifyeQandx=§ with minimal g € N.

Joey) = {

Prove that f'is integrable and has integral 0.

6-2.P7. (a) If /: />R is integrable, where [ is a cuboid in R”, and if f(x) >0 on /,
show that [, f >0.

(b) If f: IR is integrable, where [ is a cuboid in R”, show that |f] is integrable
andthat | [, < [, | f].

6-2.P8. Suppose f:[a;,b(]x - %[a,,b,]— R is increasing in each variable (n >
2). Show that f is integrable.

6-2.P9. Let /: />R and g: />R be integrable, where 7 < R is a cuboid. Show
that the product function fg:/—R is integrable.

6-2.P10. Let /: />R be integrable, where / ¢ R™ is a cuboid and let ¢:/xR"—R
be defined by
o(x,y) =f(x) for xel, ye R".

Show that ¢ is integrable over /xJ, where J is any cuboid in R".

6-2.P11. If f; and £, are Riemann integrable over intervals /; = [a;,b,] and [, =
[ay,by] respectively and (f1 /5)(x,y) = fi(x)f2(y) for (x,y) € [ = [,x],, prove that

o fif =y UL ). e, AA)dxdy = (], A (], A)d).
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6-3 Iterated Integral Over Cuboids

Computation of integrals over cuboids in R" is usually carried out by # itera-
tions, a procedure from multivariable calculus, with which the reader is
doubtless familiar. Although the procedure works for all continuous functions, it
can break down for more general functions. We shall illustrate this presently, but
first we take note of two examples in R that we shall need. One is the Dirichlet
function, which takes only two different values, one at rational numbers and the
other at irrational numbers. It is well known from analysis in R that this function
is not integrable over any interval. The second function on R that we wish to
note is the Thomae function, which is 0 at irrational numbers and equals 1/q at
any rational number p/g, where ¢ is the minimal possible positive integer in any
such representation of the latter. Such a function has already been mentioned in
6-2.P6, where f(x,y) becomes the Thomae function for each fixed rational y. The
solution of that problem essentially consists in showing that the Thomae func-
tion is integrable over [0,1]. Since all lower sums are 0, it follows that the
integral is 0.

Let 7 and J be cuboids in R" and R™ respectively. Then /xJ is a cuboid in
R™™_1If f:IxJ—R is bounded, then for each y € J, the function ¢:/—R defined
by 0(x) = f(x,») is also bounded. Therefore, it has upper and lower integrals,
which we shall denote by

[; f,y)dx  and [/ fe,y)ydx  respectively.

Each is a bounded function of y and we shall denote their upper and lower inte-
grals by

[,dy [, feyydx, [, dv ], fey)de and [, dy [, f(x,y)dx,
[y, fley)d
respectively. Similarly, we have the following functions of x:
[, fx,y)dy  and [ jf.y)dy  respectively

and their upper and lower integrals

[ dx [, faeydy, [pdx], feey)dy and [, dx [, f(x))dy,

11 dxijf(x’)/)dy

respectively. This notation dispenses with explicit mention of ¢ or its analogue
y—f(x,y), and we need not introduce any letters to denote them.
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6-3.1. Examples. (a) Let /:[0,1]%[a,b] >R be defined [as in 6-2.P6] thus:

0 ifxgQoryeQ
1/q ifyeQandxz% with minimal g € N.

Jx,y) = {

Here 7 =[0,1] and J = [a,b]. In order to consider JJ f(x,y)dy, fix any x € [ =
[0,1]. If x ¢ Q, then f(x,y) = 0 V y € J and therefore, the integral exists and is 0.
But if x € Q, say x = p/q with ¢ minimal positive, then f(x,y) = 0 for irrational y
and 1/g for rational y; in other words, Dirichlet’s function with the two values 0
and 1/q. This means j 7 J(x,y)dy does not even exist. And this despite the fact
that f,x ./ does exist and is 0, as seen in 6-2.P6.

Note however that | 7 f(x,y)dy = 0 for all x, so that j, dx f 7 fe,y)dy = 0.
It is also true [see Problem 6-3.P1] that ,[, dx TJ fCe,y)dy =0. -

In order to consider |, f(x,y)dx, fix any y € J = [a,b]. If y ¢ Q, then f(x,y) =
0 V x € I and therefore, the integral exists and is 0. But if y € Q, then f(x,y) is
Thomae’s function and therefore, has integral 0. Thus L fOx,»)dx =0V yeJ.
So, [y dy [; fae,y)dx=0= [y, 1.
(b) Let f:[0,3]%[0,1]—R be as in Example 6-2.8:

|3 ifyeQ
f(x’y)_{xz ifye Q.

As seen before, I[0,3]X[0,1] f does not exist. In order to consider J.[0’3] fx,y)dx,
fix any y € [0,1]. If y € Q, then f(x,y) = 3 V x € [0,3] and so f[oj] Jfx,»)dx=9.1f
y ¢ Q then f(x,y) = x* V x € [0,3] and so 1[0,3] Sx,y)dx = 5(27-0) = 9. So,
1[0,3] f(x,y)dx =9 V y € [0,1] and we therefore have j[o,u dy f[oj] fx,y)dx =9.
And this despite the fact that .[[0,3]><[0,1] f does not even exist.

We shall now show that what was noted regarding upper and lower inte-

grals in the first of the above two examples actually typifies what happens in
general.

6-3.2. Theorem. Let I and J be cuboids in R" and R™ respectively and suppose
that - IXJ—R is integrable. Then the functions ® and ¥ defined on J by

)= [, fx.y)dx  and Y= [, f(x,y)dx

are integrable and both have integral equal to le 7[>, which is to say,

[y dv ], feyydx= ., f= [, dv], fxy)dx.
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The analogous functions of x given by

[, fady and |, flx,y)dy

are also integrable and

JI dxj JJxy)dy = .‘.1><J /= J[ dx TJ SGx,y)dy.

Proof. Let P be a paving of /xJ. Then P is comprised of a paving of / and a pav-
ing of J. Denote the families of cuboids formed by the latter two by F and G
respectively. Then the cuboids formed by P are precisely those that are of the
form KxL, where K€ Fand Le G.

Set
My =sup {f(x,p) : (,y)e K<L},  Np=sup {¥(y):yeL}.

Also, for any ye J, set
My(y) =sup {f(x,y) : xeK}.
Then ye L = My, > Mg(y). It follows for each y € L that

ke r Mg VOI(K) = Zge 7 Mx(y) vol(K) = [ f(x,y)dx ="F(»).
Since this is true for all y € L, it further follows that
Tke F Myxy VOI(K) > N; .

If we multiply both sides by vol(L) and take the summation over all L € G, while
taking into account that vol(K)-vol(L) = vol(KxL), we get

%1 Zker My VOI(KXL) > 10 g Ny vol(L) > [, .

As already noted, the family of cuboids formed by P is precisely {KxL : K € F,

L € G}. Therefore, the left side in the above inequality is nothing but U( f, P).
Thus

U(f.P)z [, ¥
for any paving P. It follows that

.[I><J = TJ Y= L dy T, Sx,y)dx.

An analogous argument shows that

s fSiJ¢=ijdyi[f(x,y)dx.
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Consequently,

[y £l sdv[ fepyde< | pdy [ foapydx< [, dy [, foay)de< [, f

and also

[y £ 0] feyyde< [, dy[, feyyde< [, dv [, fey)de< f,, f.

The first of these quadruple inequalities implies that I 1 f(x,y)dx, which is ¥(y),
is integrable with integral LX ; [, and the second one implies the corresponding
thing about 1 1 fx,y)dx.

The rest follows by an analogous argument. (|

6-3.3. Remark. When f is continuous, it is continuous as a function of x alone
(for each fixed y) and therefore, in the above theorem we have

[/ feeyydx= [, fee.y)de = [, f(x,y)dx
and furthermore,

.[J dy .[] S, y)dx = .[I><J /-

Similarly, f is a continuous function of y alone (for each fixed x) and therefore

[ feyydy= [, feey)dy= [, fx,y)dy

and furthermore,

J.I dx J.J Jx,y)dy = .[1><J /-

The integrals [, dy |, f(x,y)dx and |, dx [, f(x,y)dy are called iterated (or
repeated) integrals. The double equality

.[J dy L Sx,y)dx = .[I><J /= .[1 dx Lf(x,y)dy,

which has been shown to hold when f is continuous, is sometimes known as
Fubini’s Theorem.

Problem Set 6-3

6-3.P1. For the function f of Example 6-3.1(a), show that L dx T 7 f(x,»)dy=0.

6-3.P2. For the function f of Example 6-3.1(b), determine whether
1[0,3] dx I[o,l] Sx,y)dy =9.

6-3.P3. For the function f of Example 6-3.1(b), where / = [0,3] and J = [0,1],
compute whichever of the following exist
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[y dx ] faeydy, [ dx [, feeydy, [, dv[; fxy)dx,
[y v [ fony)dx
and determine which (if any) are equal.
6-3.P4. For the function f:[0,7]x[0,1]>R defined by

cosx if y is rational

Joey) = {

show that J[O,l] dy -[[O,TI:] f(x,y)dx exists but that J[O,TC] dx .[[0’1] f(x,y)dy and

0 if y is irrational

[0, f do not.
6-3.P5. For the function f:[0,1]x[0,1]—R defined by

1/y* O<x<yx<l
fe,y)=1-1/x O<y<x<l1,
0 elsewhere

show that -[[0,1] dx J[O,l] f(x,y) dy and -[[0,1] dy J[O,l] f(x,y) dx both exist but are un-
equal.
6-3.P6. Using Fubini’s theorem and the positivity of the integral of a positive

continuous function on a rectangle with nonempty interior, give a simple proof

2, 2,
of the equality aaxgy = aay {;X for mixed partial derivatives, assuming that both are

continuous.
6-3.P7. For each i € N, let ¢; be continuous on R, vanish outside /; = (27,2"]
and satisfy [, ¢;= 1. Put

F0p) = 2[0,(0) =0 (0]0,(7) -

i=1

Show that the function is well defined on all of R” (i.e., the series always con-
verges) and

[y dv [y fGy)dx=0 but [, dx [y fx,y)dy=1.
6-4 Riemann Integral Over Other Sets

Suppose we want the Riemann integral of a bounded function over a set that is
not a cuboid. Right at the outset, we require the set be bounded, which implies
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that it is contained in some cuboid. We select any one such cuboid 7/, say, extend
the function to be zero outside the set and then take the integral (if it exists) over
1. Before proceeding any further, we must show that it does not matter which
cuboid containing the set is selected. The formal statement will be easier if we
introduce the following notation for the extension just referred to: Suppose £ is
a bounded nonempty subset of R"; for any cuboid / D E and any function
f:E—>R, we denote by f7 the real valued function on / defined as

fx) ifxeE

S = { 0 ifxgE.

6-4.1. Proposition. Suppose E is a bounded subset of R" and f:E—R is
bounded. For any cuboids I, and I, containing E,

ihf’l:ilzflz and T[lfllszf[z-

In particular, the function f;, is integrable if, and only if f1, is, in which case,
.[]1 fI] = .[12 fIZ'

Proof. Let J=I)n[, and suppose J is a cuboid. Then both the following are true:
(1) the restrictions of /7, and f, to J are both equal to f; and (2) f7,(x) = f1,(x) =
Ji(x) for x € J° while f7,(x) = f1,(x) = 0 for x ¢ J. Therefore, the equality of lower
and upper integrals follows immediately from Proposition 6-2.11.

If J is not a cuboid, then by Proposition 6-1.10, it is a subset of a face of [
as well as of a face of /,. Therefore, f; vanishes on the interior of /; while f;,

vanishes on the interior of /,. By Proposition 6-2.10, it follows that

Llf’l:Ilzf’z:():hfhzfzzflr O

With the above proposition in hand, we are almost ready to define IE f as
[, f; , except that we need to ensure that the constant function 1 will turn out to
be integrable! We restrict ourselves to sets £ for which this happens. The func-
tion on a set X D £, which equals 1 on £ and 0 on the complement (which may
be empty) is called the characteristic function of £. It will be denoted by
without explicit mention of X, which will usually be understood from the con-
text. When fis the constant function 1 on E, any extension f; to a cuboid / D E'is
obviously the characteristic function of £ on /. The constant function 1 on £ will

turn out to be integrable if we restrict £ to have the property that, for some cubo-



6-4 Riemann Integral Over Other Sets 203

id I D F, the characteristic function ¥ is integrable. The same will then be true

for any cuboid 7 D E by Proposition 6-4.1.

6-4.2. Definition. A bounded set E C R" is said to have content if for some cu-
boid I D E, the characteristic function of E on [ is integrable. Its integral is
called the content of E and will be denoted by c(E).

In view of Proposition 6-4.1, E has content if and only if for every cuboid /
D E, the characteristic function )z of E on [/ is integrable. Moreover the integral
fl Xe 1s the same regardless of the particular cuboid; so the content is indepen-
dent of 1.

Let E be the set of all those points in the cuboid 7= [0,1]%[0,1] that have ra-
tional components. It is quickly seen that £ does not have content. Indeed, every
cuboid of every paving of / contains points of £ as well as points of its comple-
ment, so that the upper and lower sums of yx are 1 and 0, respectively. This
means the upper and lower integrals are also 1 and 0, respectively.

6-4.3. Definition. Suppose E < R" has content and f: E—R is bounded. Then
the lower and upper (Riemann) integrals j g f and T g f of fare the lower and
upper Riemann integrals f f1 and f ; Ji for any cuboid I 2 E. The function f is
said to be integrable if’ j = J ; f and the common value of the lower and up-
per integrals, denoted by j g s is called the (Riemann) integral of f.

We emphasise once again that the values of the lower and upper integrals,
and hence also the integrability and value of the integral, are independent of the
choice of the cuboid containing E [Proposition 6-4.1].

6-4.4. Remarks. (a) If ¢(£) = 0, then L xe = 0 for any cuboid / D E. So, for
every € > 0, there exists a paving P of / such that U(yg, P) < €. But U(ys, P) =
Ske 7 VOI(K), where F is the family of those cuboids formed by P that have a
nonempty intersection with E. For any bounded function f: E—R, the absolute
values of the lower and upper sums cannot exceed (sup|f|)Zx <  vol(K) <
(sup|f))e. It follows that

[ef=1gf=0 when c(E)=0.

(b) It can be proved by using the corresponding results for integrals over cuboids
that, whenever functions f'and g on E are both integrable, the following are also
integrable: f+g, fg, |f| and of (where o is a constant); moreover the usual
equalities and inequalities concerning them hold.

(c) Let f:E—>R be integrable and A < £ < I, where [ is a cuboid. Denote the
restriction of f to 4 by f|,. By definition of the extension to /, it follows that
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(f10: =1 %4 - Suppose both E and its subset 4 have content. Then f; and 4 are
both integrable and hence their product (f]4); is integrable by part (b) above.
This implies by Def. 6-4.3 that /|, is integrable. In future, we shall avoid intro-
ducing the symbol f|, by using notation as in Def. 6-4.5 below.

(d) Let f:E—>R be bounded and 4 ¢ E < I, where [ is a cuboid. Suppose f is
zero outside A. Then (f|4); = f;. If both 4 and E have content, then it follows
that

i[fl :II(ﬂA)/:i[fl’XA and [, fi =], (flor =1, fi-xa
for any cuboid / D E.

(e) As in the case of integrals over a cuboid, for any set £ having content, we

have
e+ f+]re
Je+<]pf+lrg
and B
lEf: _IE(_f)-

6-4.5 Definition. Let A ¢ E C R", where A has content, and suppose f: E—R is
bounded on A. Then the lower and upper (Riemann) integrals J 4 f and T 4
of fon A are the lower and upper Riemann integrals of the restriction fla, ie,
[, (flor and T, (f1a): for any cuboid I o A. The function f is said to be in-
t_egrable on A if J G = I 4 f and the common value of the lower and upper
integrals, denoted ?Jy | /> is called the (Riemann) integral of / on A.

Using this terminology, we can rephrase Remark 6-4.4(c) as saying that if
both E and its subset 4 have content and a function f'is integrable on E, then it is
also integrable on A. Similarly, we can rephrase Remark 6-4.4(d) as saying that
if /1 E—>R is bounded and 4 ¢ E < I, where [ is a cuboid and both 4 and E have
content, and if f is zero outside 4, then [, f=[, fand [, f= [ 1.

It may be noted that in the above definition, £ need not be bounded, but 4
has to be, because it is assumed to have content.

6-4.6. Remarks. (a) It is trivial to show for characteristic functions that
ECcF=Ye<Xr;
Xenr =Xe'Xr  and  Yeor = Xe T XF— XEXF-

Also, denoting the complement of a set F' by F*, and the set difference ENF* by
E\F, we have
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XENF = XE~re = XE — XEAF -

Taken in conjunction with Remark 6-4.4, these properties have the following
straightforward consequences, which will be used in this chapter without refer-
ence:

(b) If E and F both have content, then: E C F = Yz < yr = c(E) < c(F).
() If c(F)=0and E c F, then E has content and ¢(£) = 0.
(d) If £ and F both have content, then so do ENF and EUF ; moreover
(EUF) < ¢(E) + ¢(F) in general,
c(EUF)=c(E)+ c(F) in case c(ENF) = 0.

while

(e) If ¢(E) = c(F) =0, then c(ENF) = c(EUF) = 0.
(f) If f:E—R is bounded on the subset 4 c E having content zero, then f is in-
tegrable over 4 and [, f = 0.

(g) If c(AnB) =0 and f: AUB—R is bounded, then by Remark 6-4.4(e),
iAuBf 2 1Af+18f’

Tass S <Taf+15r

If furthermore 4 and B have content and f is integrable over 4 as well as B, then
AUB has content, f is integrable over AUB and

.[AuBf: IAf+ IBf‘

(h) If £ and F have content, then so does the difference E\F, and ¢(E\F) =
c(E) — c«(ENF).

Any closed cuboid has content equal to its volume, because the integral of
the constant function 1 is the volume. For an open cuboid, the same can be seen
to be true by applying Proposition 6-2.11. We shall therefore use the terms ‘con-
tent’ and ‘volume’ interchangeably in connection with cuboids.

6-4.7. Proposition. A finite union of cuboids has content and its content does
not exceed the total volume of the cuboids.

Proof: This is immediate from Remark 6-4.6(d) and the fact that the content of a
cuboid is the same as its volume. O

6-4.8. Proposition. 4 face of a cuboid has content zero.

Proof. A face {xeI:x,=a,} of acuboid / = [a;,b]x---x[a,,b,] is contained in
the cuboid J = J,x:--xJ,,, where J, = [a, — €,a,+ €], € > 0, and J; = [a;, b;] for i #
p. The volume (or content) of J is 2e-vol(1)/(b,— a,). By Remark 6-4.6(b), the
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content of the face cannot exceed the content (or volume) of J, which is
2e-vol(1)/(b, - a,). Since this holds for an arbitrary € > 0, we conclude that the
content of a face is always 0. g

6-4.9. Proposition. Let F be a nonoverlapping family of cuboids. Then

(a) the intersection of a cuboid of F with any union of other cuboids of F has
content zero,

(b) the content of the union UF equals the sum of the contents (volumes) of the
cuboids of F.

Proof. (a) By definition of nonoverlapping [see Def. 6-1.6], an interior point of a
cuboid K of the family cannot belong to any union K’ of other cuboids of the
family. Therefore, KNK’, if nonempty, must consist of points belonging to the
faces of K. Since there are only finitely many faces and each of them has content
zero by Proposition 6-4.8, it follows by Remark 6-4.6(d) that the union of all the
faces has content zero. Therefore, the subset KNK' must have content zero.

(b) This follows from what has just been proved and Remark 6-4.6(d). [

6-4.10. Proposition. Let E c R" be bounded. If E has content, then for any € >

0, there exists a finite family F of closed cuboids such that

(i) Fcovers E;

(ii) the total volume of all the cuboids of F is less than c¢(E) + €;

(ii1) F is nonoverlapping.

Moreover, the following are equivalent:

(o) E has content zero;

(B) for any € > 0, there exist finitely many closed cuboids which cover E, have
total volume less than € and form a nonoverlapping family;

() for any € > 0, there exist finitely many closed cuboids which cover E and
have total volume less than €

(3) for any € > 0, there exist finitely many open cuboids which cover E and have
total volume less than €.

Proof. Throughout this argument, whenever / is a cuboid containing E, the sym-
bol My will denote the sup of yr on a cuboid K < /. Thus, Mg is 1 or 0
depending on whether K contains a point of £ or not.

Suppose E has content and € > 0. Let £ < 1, a cuboid. Since ¢(E) = L X by
definition, there exists a paving P of / such that 0 < U(yg,P) < c(E) + €. Let F
be the family of those cuboids formed by P that contain a point of £, and let G
consist of the rest. Then F covers E. Furthermore, since My is 0 or 1 according
as Ke Gor Ke F, we have
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Zke 7 VOI(K) = Zge s Mg vol(K) + Zxe g Mg vol(K) = U(xg,P) < c(E) + €.

Thus, F fulfills (i) and (ii). It follows from Remark 6-1.7(e) that it also fulfills
(iii).

(o)=(PB). This is immediate from what has just been proved.

(B)=(7). Trivial.

(Y)=(0). Let € > 0 and consider any m closed cuboids that cover E and have
total volume less than % By Remark 6-1.2(d), each closed cuboid K is contained

in an open cuboid with volume less than vol(K) + % Therefore, we have m

open cuboids which cover E and have total volume less than § + £ m =e.

(0)=(av). Let € > 0 and consider any m open cuboids which cover £ and have
total volume less than €. Then the corresponding closed cuboids (their closures)
Ki,...,K, do the same. Besides, any point of £ belongs to the interior of one or
more of them. Let / be a cuboid that contains their union and hence also E. By
Proposition 6-1.9, there exists a paving P of / such that (a)—(c) of that proposi-
tion hold. In terms of the notation there, (c) ensures that My = 0 whenever K ¢
Fi for every k. Therefore, it follows from (a) and (b) that

U(XE,P) < Zk(ZKe Fi VOI(K)) < ZkVOI(Kk) <E€.

Since this is true for every € > 0, ) is integrable with L xe=0. O

Recall from Def. 2-4.12 that the boundary dA of a subset A is the set of
those points that belong to its closure A but not to its interior 4°. For a point x of
a closed cuboid [a;,b(]* - x[a,,b,], the meaning of not belonging to its interior
(ar,b1)x--x(a,,b,) is simply that for some p, one of the inequalities a, <x, < b,
should be an equality, which is the same as saying that x belongs to a face. Thus,
the boundary of a cuboid is the union of all its faces.

As noted immediately after Def. 6-4.2, the set {(x,y) € [0,1]%[0,1] : x,y € Q}
has no content. Its interior is empty and therefore, the boundary is the same as
its closure [0,1]x[0,1].

6-4.11. Corollary. Suppose a bounded set E C R" does not have content zero.
Then there exists M > 0 such that, given any finitely many cuboids covering E,
those among them that have a point of E in their interior have total volume
greater than 1.
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Proof. Since E does not have content zero, it follows by Proposition 6-4.10(Y)
that there exists 1 > 0 such that any finite family of cuboids covering £ has total
volume greater than 2.

Suppose, if possible, that F is a finite family of cuboids covering £ such
that the subfamily G of those cuboids of F that have points of £ in their interior
have total volume n’, where " < 2n. The cuboids of F that are not in the sub-
family can have points of £ only on their boundary. But the boundaries have
content zero by Proposition 6-4.8 and there are only finitely many of them.
Therefore, their union has content zero and by Proposition 6-4.10(y), there exists
a finite family H of cuboids covering the union and with total volume less than
2n—-n' Now HUG is a finite family of cuboids covering £ and having total
volume less than (21 —1n') + ' = 2n. This is a contradiction, which shows that
JF cannot have the supposed property. O

The next proof uses the simple fact that if two functions agree on an open
ball, then either one of them is continuous at the centre if and only if the other
one is.

6-4.12. Lemma. Let E C J, where J is a cuboid, and f- E—>R be any function. If
the extension f; (see description above) is discontinuous at x € J, then x € E;
moreover, if x ¢ OE, then x € E° and f is discontinuous at x.

Proof. Suppose, if possible, that x ¢ E. Since E is closed, some open ball centred
at x is disjoint from £ and therefore, f; is zero everywhere on the intersection of
that ball with J. So, f; cannot be discontinuous at x. Next, suppose x ¢ dE. Then,
by definition of boundary, x € E°. Therefore, some open ball centred at x is a
subset of E. So f; agrees with f everywhere on that ball. If f/ were to be continu-
ous at x, so would f;. O

6-4.13. Theorem. Suppose [ C R" is a cuboid and the set E of points of disconti-
nuity of a bounded function f: =R has content zero. Then f is integrable.

Proof. Let J be a closed cuboid such that / — J°. Denote by f; the extension of /'
to J obtained by setting f;(x) = 0 for x ¢ /. By Lemma 6-4.12, the discontinuities
of f; are contained in E\Udl. If we can prove f; integrable, it will follow by Prop-
osition 6-2.7 that f is also integrable. Since 9/ has content zero, so does F\dl
and therefore, it is sufficient to prove the result when £ < /°.

As usual, we denote by My and my, respectively, the supremum and in-
fimum of f on a cuboid K. Also, M will denote sup {| f(x)| : xe [}.

Let € > 0. Since £ has content zero, by Proposition 6-4.10 there exists a fi-
nite family &/ of open cuboids which cover £ and have total volume less than €.
Since £ c I°, we may replace them with their intersections with /° and assume
that all of them are subsets of /°. This ensures that their closures are subsets of 7,
so that Proposition 6-1.9 is applicable.
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Now the union of all cuboids of I/ is an open subset of 7 and therefore, its
complement in /, which we shall denote by H, is a compact set. Since U covers
E, which is the set of discontinuities of f, the latter is continuous at each point of
the compact set H. Therefore, it is uniformly continuous on H and there exists &
> 0 such that

xx'eH, |[x —x'|| <8 =|f(x) - fx) <e. )

Applying Proposition 6-1.9 to the closures Kj,...,K,, of the cuboids of U/, we
get a paving P of [ satisfying (a)—(d) of that proposition. In terms of the notation
there, denote ;~, F; by F, and let G consist of the remaining cuboids formed
by P. By (c), a cuboid K of G cannot contain an interior point of any Kj and is
therefore disjoint from the union of the cuboids of &/, which means it is a subset
of H. By (d) and (1), it follows that x,x'e K = | f(x) — f(x")| < €. Therefore

0<Myg—-mg<e whenever Keg. 2)

By (b), the total volume of all the cuboids of F is no greater than the total vo-
lume of all the cuboids of I/ and hence no greater than €. That is,

Tke s VOI(K) <&. 3
Using (2) and (3), we get

0< U(f,P) — L(f,P) = ZKG]-' (MK — mK)VOI(K) + ZKG G (MK — mK) VOl(K)
< M-S 5 vOI(K) + & Zge g VOI(K) < 2Me + vol(I & = &:[2M + vol(I)].

Since this has been shown to hold for any € > 0, it follows that f'is integrable. [

Consider again the subset of [0,1]%[0,1] consisting of points with rational
coordinates. We have noted already that it does not have content and that its
boundary is [0,1]%[0,1]. Since the boundary has content 1, in particular, it does
not have content zero. The equivalence between a set not having content and its
boundary not having content zero (which includes the possibility that the boun-
dary has no content) is what the next proposition is about.

6-4.14. Proposition. 4 bounded set E C R" has content if and only if its boun-
dary OE has content zero.

Proof. Suppose oF has content zero and / D E is a cuboid. The function y is
continuous on E° and therefore, its points of discontinuity must lie on JE by
Lemma 6-4.12. Therefore, by Proposition 6-4.13, % is integrable, which means
E has content.

For the converse, suppose dF does not have content zero. As usual, we de-
note by My and my, respectively, the supremum and infimum of f on a cuboid
K. Now, there exists | > 0 as in Proposition 6-4.11. It is sufficient to show for
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any cuboid / D E and any paving P of [ that U(yg,P) — L(xz,P) > M, because it
will immediately follow that 7y is not integrable, which means £ does not have
content. So, consider any paving P of any cuboid / D E . Let F be the family of
those cuboids formed by P which have points of JE in their interior. By Proposi-
tion 6-4.11,

Zge  vOI(K) > 1.

Since each K € F has a point of JF in its interior, it follows that K contains
points of £ as well as of its complement. Consequently, yx takes the value 1 as
well as 0 on K and hence My —my = 1. Together with the inequality displayed
above, this implies

Uxe,P) — L(xe, P) 2 Zge 7 (Mg — mg) vol(K) = Zge 7 vol(K) > .

As already noted, the result follows from here. O

6-4.15. Theorem. Suppose E < R" is a bounded set having content and the set
of points of discontinuity of a bounded function f: E—R has content zero. Then [
is integrable.

Proof. Let F be the set of points of discontinuity of f, and let / © £ be a cuboid.
By Lemma 6-4.12, the set of discontinuities of the extension f; is a subset of
FUOE. Since E has content, dF has content zero by Proposition 6-4.14, while F
has content zero by hypothesis. Therefore, F'UJE has content zero and hence, so
does the set of discontinuities of f;. It follows by Theorem 6-4.13 that f; is inte-
grable. Hence f'is integrable by Def. 6-4.3. O

6-4.16. Proposition. Suppose F < R" is a bounded set having content and
[ F—>R is a bounded function such that the set E of points where f(x) # 0 has
content zero. Then f is integrable and IFf =0.

Proof. Let M = sup{|f(x)| : x € F}. Now proceed as in the proof of ‘(§)=(c)’ in
Proposition 6-4.10 but with € replaced by % The inequality displayed there will

now turn out as
|U(f1, P)| < Z4(Zke 5, M-vOl(K)) < M-Zyvol(Ky) < €.

Since —f satisfies the same hypotheses, it follows that the lower sum L(f;,P)
satisfies a similar inequality. The conclusion now follows. O

It is now straightforward to show that, if two functions on a set with content
differ only on a subset of content zero, then one of them is integrable if and only
if the other one is, in which case their integrals agree. Sometimes it happens that
a function f is defined only on a subset of a convenient set /' and the subset £ on
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which it is undefined has content zero. For example, F = {(x,y) e R*: 0 <x <1,
x <y <1} and f(x,y) = exp (—x/y). This function is undefined on the subset £ =
{(x,y) € F : y = 0}, which consists of the single point (0,0) and therefore, has
content zero. Since f is bounded, it can be extended to all of F so as to continue
being bounded; one can then work with the extended function on the set F. The
first thing to check is whether F has content. We shall leave the matter to the
next section [see Example 6-5.2(b)], where a general sufficient condition for the
purpose will be discussed.

Problem Set 6-4

6-4.P1. Suppose a bounded set £ < R" has positive content. Show that it has an
interior point.

6-4.P2. If a set E has content, show that its closure £ must also have content
and that ¢(E) = ¢(E).

6-4.P3. Let 1 <p <n and s be a fixed real number. Define a map o.:R"—>R" as
ox); = x; if i # p and oux), = x, + 5. If E — R" has content, show that o(E) also
has content and c(0(E)) = c(E).

6-4.P4. If E — R” has content and f: E—R is integrable, show that | f] is inte-
grable and that | [, /< [, | f].

6-4.P5. Justify Remark 6-4.6(f).

6-4.P6. Let /: E—>R be bounded, where E — R” is also bounded. Suppose there
exists a sequence {X, : k€ N} of subsets of £ such that f is integrable over each
EN\X; (i.e., ENX) and ¢(X;)—0 as k—oo. Show that 1 is integrable over E and
that

L;\xk f = [ ask—eo

6-4.P7. (A mean value theorem) Suppose £ < R” has content and f:E—R is
integrable. Prove that there exists W € [m, M ], where m = inf { f(x) : x € E} and M
= sup {f(x) : x € E}, such that jE f =Wwc(E). If E is also closed and connected
and if /'is continuous, show that i = f(&) for some § € E.

6-4.P8. Let £ c R" with ¢(E) # 0, and E = E°. If f 1s a continuous nonnegative
function on £ and M denotes sup {f(x) : x€ E}, show that

!”1_{1; (J‘Efm)l/m :M.

Show that the condition that £ = E° cannot be omitted.
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6-4.P9. Let E < R" have content and suppose f: E—R and g: E-R are integrable
over E. Show that fg is integrable over E.

6-4.P10. Let K be a cuboid and f: K—R be integrable. For each x € K, define the
cuboid J; to be [a;,x(]x " X[a,,x,] and let F(x) = j ; f. Show that the function
F:K—R is continuous. )

6-4.P11. Let E= {(x,y)) e R?: 0<x <1, 0<y <1, (x,9) # (0,0)}, and define
f:E—R by f(x,y) = 2xp/(x* + 7). Show that [, f exists.

6-5 Iterated Integral Over Other Sets

One frequently needs integrals over sets bounded by parts of spherical or plane
surfaces described by an equation such as z = (1 —x* —%)"? on some compact
set £ — R% In order to ensure that the sets have content, it is necessary to know
that a part of the boundary described as

2= 0(x,y), (,y)€E
has content zero. We begin by establishing this.

6-5.1. Proposition. Suppose E < R"" has content and f: E—R is uniformly con-
tinuous. Then the subset F = {(x,y) € R" : x € E, y = f(x)} of R" has (n-
dimensional) content zero.

Proof. Let € > 0. By uniform continuity, there exists 6 > 0 such that
Lf(x) —f(x")] < %8/(0(1:3 +1) whenever x,x'e E and ||x — x'|| < d.

By Proposition 6-4.10, there exist finitely many closed cuboids that cover £ and
have total volume less than ¢(£) + 1. Each of them has a paving such that every
cuboid K formed by the paving satisfies x,x' € K = ||x —x'|| < 3. Let G be the
(finite) family of all cuboids formed by all pavings. Then each K e G satisfies:

x,x'e KNE = |f(x)—f(x")| < %8/(C(E) +1). (N
Moreover,
G covers E (2)
and
Ske g VOI(K) < c(E) + 1. (3)

By (1), for each K € G, there exists an interval / ¢ R with length no greater than
€/(c(E) + 1) such that x € KNE = f(x) € I; in other words, {(x,y) e R":xe€ KNE,
y=f(x)} € KxI. Now Kx[ is a cuboid in R" with vol(Kx/) < vol(K)-e/(c(E) + 1).
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From (2), it follows that F ¢ Ugcg (K1), and from (3) that Zx g vol(Kx]) < .

Proposition 6-4.10 now implies that F has content zero. ]

6-5.2. Examples. (a) Suppose we wish to show that the disc D = {(x,y) : x> + )
<a’} ¢ R? has content (a > 0). Its boundary can be described in two parts as y =
J(@* —x%) and y = —/(a® — x*) both on the compact set [-a,a]. By Proposition 6-
5.1, each part has content zero. Therefore, the disc D has content. For any
f:D—R which is known to be integrable, one can now invoke Theorem 6-3.2 to

evaluate jD fas the iterated (i.e., repeated) integral

[“de [ ooy

In particular, the content ¢(D) is given by this iterated integral with f(x,y) = 1.
The usual elementary evaluation confirms that this works out to be na’.

(b) We return to the example briefly mentioned at the end of the preceding sec-
tion:

F={(x»)eR*:0<x<1, x<y<1}and f(x,y) = exp (—x/y).
(F is the shaded triangle in the upper figure

shown alongside.) The boundary of F is the un-
ion of the three subsets (not disjoint)

{(x,))eR*:x=0,0<y<1},
{(x,J’)ERzi()SxS l’y: 1}’
{(r,y)eR*:0<x<1, y=x}.

T (1, 1)

The first is described by the function x = 0 on the
(x,0) compact domain 0 < y < 1; the second and the
third by the functions y = 1 and y = x on the
compact domain 0 < x < 1. It follows by Proposi-
A tion 6-5.1 that each of the three subsets has
content zero and hence F has content. The func-
(1, 1) tion f is undefined at (0,0) and we may set it
equal to any value at that point. The only discon-
tinuity will be at (0,0) and therefore, [ 7 J exists
by Theorem 6-4.13. The pair of inequalities that
define F can easily be seen to be equivalent to
the pair 0 <y <1, 0 <x <y (see the figure). It
follows that the set F' can alternatively be de-
scribed as

v

0<x<
0, ===

v
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F={(xy)eR*:0<y<1,0<x<y}.

By Theorem 6-3.2, [, f can therefore be evaluated as

J'(l) dy J'o‘ exp(—x/y)dx.

It is left to the reader to check that this works out to be (e — 1)/2e.

Let o:R"—>R" be the (linear) map given by

OUXY e X)) = (X T X2,X0, .00, Xp)
and / be a cuboid [a,bi]* X[a,,b,].
A Then o(/) need not be a cuboid. In the

language of elementary geometry, it is a

‘parallelogram’ when n = 2 and a ‘paral-

\ o(l) lelepiped’ when n = 3. We shall use these

1= [12%G.5] terms only informally, without using the

concepts in any proof. A visualisation, as

in the figure shown on the left, suggests

that the parallelogram has the same base

and height as the cuboid. Therefore, on

the basis of elementary geometry, one would expect it to have the same content.

The assertion that c(ou/)) = ¢(/) makes sense within our formal framework and
we now prove that it is indeed true in all dimensions n > 2.

v

The next proposition says that a linear map which merely adds the jth com-
ponent to the ith component (i # ;) has the property that it maps a cuboid into a
set having the same content as the cuboid.

6-5.3. Proposition. Letn>2and 1 <i<n, 1 <j<n, i#). Suppose :R"—-R" is
the (linear) map given by o(x,...,x,) = (¥1, ... ,Vn), where y, = x; for k # i and
Vi =xgtx; for k=1i(i.e., y;=x;+Xx;). Then for any cuboid I, the set o(I) has con-
tent and c(o(1)) = c(I).

Proof. For ease of notation, we shall assume i = 1 and j = 2, so that a(x,,...,x,)
= (x1*+x2,...,%,). The map o has an inverse, which is given by O(l(xl y ey Xp) =
(X1 = X2,%2, ..., X). Now, (V1,...,yn) € o) if and only if o '(yy,...,y,) =
1 —y2,)25---,¥n) € 1. Denoting the edges of I by [a;,h;], 1 < i < n, this is
equivalent to

2.,y €laz,bylx-+-x[a,,b,] and a;+y, <y <b;+y,.
So,
05(1):{0/1,~~~,J/n)€Rn3(Y2,---sJ/n)e [azst]X'“x[anabn]’al +y2 S)h Sbl +J/2} (1)
In particular, o/) is a subset of the cuboid
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J= [al +a29bl +b2]>< [a29b2]x"'x[ansbﬂ]‘

Among the boundary points of au(/), those that satisfy y;, = a; or b;, 2 <i <n, lie
in a face of J and therefore form a set of content zero [Proposition 6-4.8]. The
remaining boundary points of (/) satisfy

either (2, ..., ) € [az, by]x---x[a,,b,] and y;=a; +y,
0r(y2a'~a)/n)€[aZ,bZ]X"'X[anabn] and yl:bl+y2~

Since the equalities y; = a; + y, and y; = b; + y, both define uniformly continu-
ous functions on [ay,by]%- -x[a,,b,], Proposition 6-5.1 shows that these
boundary points also form a set of content zero. Therefore, the entire boundary
of o(/) has content zero, which implies that ou(/) has content by Proposition 6-
4.14. It remains to show that c(ou(l)) = c(1).

Let f'denote the characteristic function of (/) on the cuboid J, which con-
tains it. By Def. 6-4.3, c(a(l)) = [, f. By Theorem 6-3.2, [, f is the integral
over the cuboid [as,b,]% "+ x[ay,,b,] € R"" of

g(_yz, yyn) = I[al+”2’bl+h2] f(yl 5 e ,yn) dyl .

For any (v, ..., ) € [a2,b2]% - X[a,,b,], it follows from (1) that
W5y eUl) & artym<yi<b +y.

Since f'is the characteristic function of o(/), the above equivalence implies that
the value of f(yy, ..., y,) is 1 or 0 depending on whether a; +y, <y, < b, +y, or
not. Therefore,

g()/za syn) = J.[a1+y2,b1+y2] f()/u ayn) dyl = J.[al'*'J’Z’bl"'J’Z] 1dJ/1

= laytvyabysyy L1 = b1 —a,
which is a constant function. Hence
AN = I, 1= [y bypeosay ) (01 = @) = (b1 = ar) - (b, — a,) = vol(l) = (1.
O

The above proposition can be proved without resorting to Theorem 6-3.2 on
repeated integrals. See 6-5.P1.

Problem Set 6-5

6-5.P1. Suppose n > 2, I =[ay,b|]% - ¥[a,,b,], where by — a; > b, — a, and
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S: {(xl 9 e ’xl’l)ERn : (XQ, axn)e [az’bz]X"'X[an’bn], ap +-)CZ le S bl +X2}.
[ . I .
Vo i S'is the shaded
v A4 1 | D
' & parallelogram.
1 B ¢
o A, B, D are

> triangles

1
|
1 is the rec- | J is the rec- : C is the rec-
tangle with E tangle with I tangle with _
vertical sides ! vertical sides | vertical sides | |

Prove the following without using Proposition 6-5.3:
(a) S=BuCuUD, where

B= {(xlb"'axn)ERn : (XQ,...,X,,)E[az,bz]x"'x[an,bn], a +x2§x1§al+b2}

C={(x1,...,x)eR": (x2,...,x,) € [az, b2 *[an,b,], a1 + by <x1 < b; + as}
D= {(xln--'axn)eRn . (x29"-9x71)e [a29b2]x...x[an9bn]a bl +a2§xl Sbl +x2}'
(b) The cuboid

J= a1+ ay, b1 + ax]x[az, bo] % X[a,, by]
is the union 4 UB U C, where
A={(x1,....,x) €R": (x2,...,x,) € [ar, by]x " X[a,,b,], a1+ ay <x; < a; + x2}.
(¢) 4,B,C,D all have content and that AnB, BNC, CND all have content zero.
(d) S has content and ¢(S) = (by — ay) - (b, — a,,).
(e) If the hypothesis that b, — a; > b, — a, is dropped, S need not be the union of
B, C, D but the equality of part (d) is nevertheless valid.
6-5.P2. Let T denote the triangular region {(x,y) e R* : x>0, y>0, 0< *+7 <
1}, where @ > 0 and b > 0. Assume that /" is continuous on 7 and has conctzinu%us
partial derivative D, | fon the interior of 7. Prove that there is a point (xp,),) on

the segment joining (a,0) to (0,5) such that A
[r D21f = 0.0) = f(a,0) + aDfixo, yo). A"
6-5.P3.1f 4> 0 and 0 < < 1, show that the subset ((4e)"(A(1-2)")

2

{(x.)eR*:x>0,y>0,0< <g,0<x+)y <4}

X
X y2
of the first quadrant of R* (see the figure) has content
that does not exceed Ae” .

v
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Transformation of Integrals

7-1 Special Cuboids

So far we have presumed a minimal knowledge of linear algebra on the part of
the reader. However in this chapter, we shall use basic properties of determi-
nants and the fact that any invertible matrix is a product of ‘elementary’
matrices.

The transformation formula that justifies the so called ‘substitution’ or
‘change of variables’ rule for evaluating a Riemann integral is fairly easy to es-
tablish in R. In higher dimensions however, the corresponding formula is far
more difficult to prove. This is the task we take up in this chapter.

One hurdle that can be foreseen right at the outset is that even so simple a
transformation of variables as

u=x+y v=x-y
need not map a cuboid into a cuboid. More generally, one would need to inves-

tigate whether a transformation of variables maps a set having content into a set
of the same kind.

The diameter of a nonempty bounded subset £ < R”" is understood to be
sup {||x —y]| : x,y € E}. Using this terminology, Remark 6-1.2(e) says that the
cuboid / = [ay,b]x - %[a,,b,] and its interior /° both have diameter max {b; — a;
: 1 <i<n}, where it is understood that the norm || || is || |l... We now introduce
the notation diam E for the diameter of a set £ — R”.

For the diameter of a nonempty bounded set to be zero, it is necessary and
sufficient that it contain one and only one point. In fact if the diameter is zero,
then ||x —y|| = 0 for x,y belonging to the set; i.e., x = y for every pair x,y of
points of the set.

For any cuboid /, it is easy to see that vol(/) < (diam/)". Equality holds
when all edges are of equal length, not otherwise. Now suppose n > 1. Then the
ratio (diam/)"/vol(/) can be arbitrarily large: for instance, take / = [0, a]x[0,3],
where 0 < g < 3, so that the diameter is 3, the volume is 3a and the ratio is 3/a.
As suggested by this instance as well as by other instances that the reader can
surely come up with, the ratio may be intuitively taken as a measure of how far

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 7, © Springer-Verlag London Limited 2011
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the cuboid is from being a cube (all edges equal in length). If we require that no
edge be longer than double the shortest, then the cuboid has to be reasonably
close to being a cube and, as will be seen at the beginning of the forthcoming
proof, the ratio cannot exceed 2".

Example. The cuboid [0,1]%[0, 7] in R? has its ‘vertical’ edge longer than dou-
ble the other. However, it can be ‘broken up’ into subcuboids with vertical edge
longer but not longer than twice the other. One way is to partition the vertical
edge with points 0, ©/2 and ®. Since 1 < /2 < 2, this will serve the purpose.
Instead of partitioning the vertical edge into two equal subintervals, we could
have partitioned it into three equal subintervals. We cannot go beyond 3—unless
we also partition the horizontal edge—the reason being that w/4 < 1.

Similarly, if the cuboid [0,1]%[0,4/29] is to be broken up as above, one may
partition the vertical edge into anywhere from 3 to 5 equal subintervals, because
these are the only integers n for which 1 <1429 < 2. The fact that this can al-
ways be done in at least one way is the crux of the next proof. Before reading it,
the reader would do well to solve 7-1.P1.

7-1.1. Proposition. 4 cuboid in R" always has a paving P such that every cubo-
id K formed by it satisfies (diam K)" < 2"vol(K).

Proof. When n = 1, this is trivial, because a cuboid is now an interval and its
diameter equals the length, which is the same as its volume. So we need consid-
eronly n> 1.

To begin with, note that for a cuboid K to have the property in question, it is
sufficient that there exist / > 0 such that the length L of every side satisfies / < L
< 21. For if this obtains then diamK < 2/ and vol(K) > ", which implies (di-
amK)" < 2"vol(K).

Consider a cuboid [a;,b(]* - X[a,,b,]; suppose

min{b;,—a;:1<i<n}=b—a;, wherel<j<n.

For each i (1 <i < n), let m; be the largest positive integer (easily seen to exist)
such that b; — a; < (b; — a;)/m;. Then (b; — a;)/2m; < b; — a; and hence
bi Y
bj*ajf m <2(bj*aj). (1)

i

For each i, let P; be the partition of [a;, b;] that subdivides the interval into subin-
tervals of length (b; — a;)/m; each. Then the paving consisting of the partitions
Py,...,P, has the property that each cuboid K formed by it has edges with
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lengths (b; — a;)/m;. In view of (1) and the remark in the preceding paragraph, K
has the required property. O

Given a nonempty bounded subset of R?, it is intuitively clear what is meant
by ‘circumscribing’ it in a rectangle with horizontal and vertical sides. It is a
consequence of the fact that we are using the max norm || ||.. that the circum-
scribing rectangle, generally a cuboid, has the same diameter as the given set. If
all points of the set lie on the same horizontal or vertical line, then the rectangle
reduces to a segment, but it is nevertheless contained in a proper rectangle hav-
ing the same diameter. There is cause for some discomfort when the set has
diameter zero, because no cuboid can have diameter zero. But even in this ex-
treme case, one can enclose the set in a cuboid having arbitrarily small diameter.
We now go on to formulate and prove the analogue of all this in n dimensions.
The concept of circumscribing will not be required.

7-1.2. Proposition. [Needed in Propositions 7-2.2, 7-4.2] Let E < R" be non-
empty and bounded. If diam E = 0 and € > 0, then there exists a closed cuboid K
D E such that diam K = €. If diam E > 0, then there exists a closed cuboid K D E
such that diam K = diam E.
Proof. Denote diamE by 8. If s is some point in E, then any x € E satisfies
[x;—s;| <||x—s]| <6 for every i (1 <i<n),so thats;—d <x; <s;+ 8. Therefore,
a;=1inf{x;: xe E} and b;=sup {x;: xe E}. (1)
exist.

Suppose 6 = 0. Then there is only one point in £ and a; = b; for every i. The
cuboid K with edges [a;—1€,a; + €], 1 < i < n, therefore has the required
property.

Now suppose 6 > 0. Then there are at least two points in £ and therefore, it

cannot happen that a; = b; for every i; otherwise (ay,...,a,) would be the only
point in £ and the diameter would be zero. Define
a,-' =a; and bi, = b,‘ if a; < bi (2)
and
ai'=a,«—§ and bi’:bi+g =a,»+g ifai=b,». (3)

Then K = [a,’,b,"]*---X[a,’,b,"] is a closed cuboid. Besides, it contains £ and
therefore diam K > diam £. It remains to prove the reverse inequality: diam K <
diamE = 9.

For any i such that a; = b;, we have b;'—a;’ = & by (3). It is sufficient to
prove b;'— a; < & for those i for which a; < b;. In view of (2), the inequality to be
proved is equivalent to b; — a; < 8. In order to arrive at this, consider any € > 0. It
follows from (1) that there exist x,y € E such that
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x,-<a,-+% and bi—%<y,‘.

It follows that y; —x; > b; — a; — €. Since y; — x; < ||y — x|| < 8, we conclude that &
> b;— a;— €. But this is true for any € > 0 and therefore b, — a; < 8. As already
noted, this completes the proof. O

We close this section with a sharpening of Proposition 7-1.1, which we
shall need later. The sharpening consists in replacing the factor 2 by an arbitrary
K > 1. As in Proposition 7-1.1, a cuboid K will satisfy (diam K)" < u"vol(K) if
there exists / > 0 such that the length L of every edge satisfies / < L < /. Sup-
pose, for instance, that we want such a paving of [0,1]x[0,§29] with pu = % As
before, we seek to take the length of the shorter edge as / and subdivide only the
longer edge into n equal subintervals of length L each. In the present case, / = 1
and L = ~29/n. The inequality / < L < p/ now becomes 1 < ~29/n < 3. This
holds when n =4 or 5. If we choose n = 4 (or 5), the required paving is made up
of the (trivial) partition of [0,1] consisting only of its endpoints and the partition
of [0,429] that subdivides it into 4 (or 5) equal subintervals. In this example as
well as in the two described earlier, the search for a paving in which the partition
of the shorter edge consists only of its endpoints turned out to be successful. But
it can happen that we have to subdivide the shorter edge also, as we now illu-
strate.

Suppose we want a paving of [0,5]x[0,6] with p = 1. Since 6 > 5(41),
we must subdivide the longer edge into 2 or more subintervals. If we subdivide
only the longer edge into n subintervals of length % each (n > 2), then the longer

edge of each resulting subcuboid is of length 5 > % % This makes it necessary

to subdivide both edges. In fact, if we subdivide [0,5] into 11 equal parts and
[0,6] into 13 equal parts, we shall have obtained the paving we want, because 1—51
6 5

5 <1 % In order to see how to arrive at 11 and 13, read the next proof!
7-1.3. Proposition. [Used in Proposition 7-3.5] Given |\ > 1 and a paving of a
cuboid in R", there exists a refinement of the paving such that every cuboid K
formed by the refinement satisfies (diam K)" < /" vol(K).

Proof- When n = 1, this is trivial. So we need consider only n > 1. For a cuboid
K to have the property in question, it is sufficient that there exist / > 0 such that
the length L of every edge satisfies / < L < /. For, if this obtains, then diam K <
w/ and vol(K) > /", which implies (diam K)" < 1" vol(K).
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Choose a positive integer N such that 1+ # <. Let ko be the total number

of subintervals formed by all the n partitions that make up the given paving and
denote their lengths by A;, 1 <i</k,. Let; be an index (1 <j < ko) such that A, is
least among all the finitely many positive numbers A;. Using the integer part
function [ ], set

ml:{N%} for eachi, 1 <i<k.

J

A,

Then m; = N, and by minimality of A;, we have m; > N = m;. Also, m; < Nﬁ <
m; + 1, so that !

b < Mo Lm"H?\j = [1+Ljﬁ < [1+LJﬁ <uﬁ.
m. m. m. | N N)N N

i

Thus, if 7= A;/N, we have [ < A;/m; < /. Now, refine the given partitions of the
edges by subdividing the ith subinterval into m; equal subintervals (1 < i < k),
which must then have length A;/m; each. Then the length L of any subinterval
satisfies / < L < /. It follows that the length of the edge of any cuboid K formed
by the refinement satisfies the same inequality. As observed at the beginning,

this is sufficient to ensure that (diam K)" < " vol(K). a

Problem Set 7-1

7-1.P1. For each of the following cuboids, we want a paving in which the first
edge (normally called horizontal) has the partition consisting only of its end-
points. What is the minimum and maximum number of equal subintervals for a
partition of the vertical edge if each cuboid formed by the paving is to have a
vertical edge longer than the horizontal but not longer than twice as much?

(a) [0,1]%[0, 2e]; (b) [0,2]*[0,N99]

7-1.P2. For the cuboid [0,1]x[0,2¢], we want a paving in which the first edge
(normally called horizontal) has the partition consisting only of its endpoints.
What is the minimum and maximum number of equal subintervals for a partition
of the other edge if each cuboid formed by the paving is to have a vertical edge
longer than the horizontal but not longer than % times the horizontal?

7-1.P3. Name a triplet n;,n,,n3 of positive integers such that, if the edges of the
cuboid [0,6]%[0,9]%[0,11] are respectively subdivided into n;,n,,n; equal subin-
tervals, each cuboid K of the resulting paving will satisfy (diamK)® <
(£)’vol(K).
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7-1.P4. (This Problem explains why we switched to {1 from 2 in the example

just before Proposition 7-1.3.) For 0 < a < b, let P be a paving of [0,a]x[0, 5]
consisting of the trivial partition of [0,a], i.e., only one subinterval, and a parti-
tion of [0, 5] consisting of n equal subintervals; each cuboid formed by P thus
has edges of length a and 8/,. Let [ be the smaller of these and L the bigger.

(a) If u > 2, show that it is possible to choose 7 in such a way that / < L < /.
(b) If 1 < < +/2, show that for certain values of a and b it is not possible to
choose 7 as above.

7-2 Transformation of Content

As a step towards the transformation formula, we need to establish what relation
there is, if any, between the contents of £ and o((£') when o is a map that serves
for changing variables in an integral. In other words, when « is an injective con-
tinuously differentiable function defined on some set containing E. The present
section addresses this matter of ‘transformation of content’.

Examples. Let £ = [1,3]¥[1,2] < R* and a::E—R? be defined as o(u, v) = (x,y) =

4, uv). The usual way to describe o is to write x

A = Ly =uv. Then all four of u,v,x and y are posi-
y=4x . o [y

. tive and we find that u = \(xy) and v = \/; . In

other words, o/ '(x,y) = (\N(xy), \/g ). We conclude

Xy =9 from this that (u,v) € E if and only if (x,y) satisfies

the pair of inequalities 1 <+(xy) <3 and 1 < \/g

xy=1 < 2; or equivalently, (x,y) lies in the first quadrant

v

between the hyperbolas xy = 1, xy = 9 and the
straight lines y = x,y = 4x. Thus, a(£) can be ex-
pressed as (see adjoining figure)

o(E)={(x,y))eR?*: x>0, y>0, 1 <xy<9, x<y<dx}.

As another illustration, consider £ = {(u,v) e R>: 0<u <A and 0 <v < 2m}
= (0,4)x(0,2m), an open rectangular subset of R*. For 0 < § < min {A,%‘}, the set
Es =[0,A4]x [3,2n— 9] is a closed rectangle. The transformation o defined on E
by ou,v) = (ucosv, usinv) is injective. Setting (x,y) = o(u,v) renders u,v into
polar coordinates in the (x,y)-plane. So, one can guess that o0 maps E bijectively
onto the subset
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G={(x,y)eR*: 0 <x?+)? <A eitherx<0ory=#0}.

A precise justification of why o maps E bijectively onto G is left as 7-2.P3. One
can also sketch oi(Es) in the (x,y)-plane as a subset of the disc centred at the ori-
gin and having radius 4, but with an appropriate subset removed (the latter is
shaped like a keyhole; see the figure below).

A

v

o(Es) is
shaded

Our first result here is concerned purely with open and compact subsets of
R" and its statement (i) will be used in the proposition immediately after it as
well as elsewhere. Statement (ii) will be used in Proposition 7-2.4 and Proposi-
tion 7-2.5 only. We are about to use Theorem 2-5.7, according to which, a
subset of R” is compact if and only if it is closed and bounded.

7-2.1. Lemma. Let H C W, where W is an open subset of R" and H is compact.
Then there exists an open set V such that

WHWHcVCc Ve WandV is compact
and

(i1) there exists > 0 such that he H, |h —x||<n=xe V.

Proof. As in the proof of Proposition 6-1.11, let 8 > 0 have the property that
heH, |h—x||<d=>xeW.

Define V to be the union of some finitely many open %—balls covering the com-
pact set H. Since there are only finitely many balls in the union, the closure V' is
contained in the union of the closures, i.e., the corresponding closed balls.

Therefore,
xeV = ||h—x||§78 for some he H

=xeW.
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Thus ¥ < W. Furthermore, x € V = ||x|| < ||k —x]|| + ||A]| < g +||h||, which
shows that ¥ is bounded. Since it is closed, it must be compact. This proves (i).
Since H is a compact subset of the open set V, we can once again proceed as
in the proof of Proposition 6-1.11 and obtain 1 > 0 such that 4 e H, ||h — x| <n
= x€ V. This proves (ii). O

7-2.2. Proposition. [Used in Proposition 7-2.4 and the transformation formula
(Theorem 7-4.4)] Suppose E = R" is bounded, E < W, where W is an open sub-
set of R", and o:W—R" is continuously differentiable. Then there exists My > 0
such that for any F C E having content and any € > 0, 0(F) is covered by a finite
family of cuboids with total volume less than My c(F) + €. In particular,

(a) if (F') has content, then c(0(F)) < My c(F), and

(b) if F has content zero, then 0(F') has content and c(o(F)) = 0.

Proof. Since E is compact, it follows by Lemma 7-2.1 that there exists an open
set Vsuchthat E c V< V < Wand V is compact. Since o is continuously diffe-
rentiable on W, the real-valued function which maps each x € W into ||a'(x)|| is

continuous, and is therefore bounded on the compact subset V of W. So, there
exists M > 0 such that

lo' ()| < M whenever xe V.

We shall show that My = (2M)" has the required property.

Consider any F C F having content and any € > 0. By Proposition 6-4.10,
there exists a finite family of closed cuboids that cover F and have total volume
less than ¢(F) + €/(2M)". Since their union is closed, they also cover F.Now F
is a compact subset of the open set V. So, by Proposition 6-1.11, there exists a
finite family F of closed cuboids which cover F, have total volume less than
c¢(F)+¢€/(2M)" and are contained in ¥ and hence also in V. Each cuboid may
now be replaced by the cuboids formed by any paving of it; call the resulting
family H. By selecting each paving as in Proposition 7-1.1, we may assume that
each cuboid K of H satisfies

(diamK)" < 2"vol(K).
Considering that a cuboid is convex and every cuboid of H is a subset of v,
it follows by Corollary 3-3.4 that |jou(x) — oly)|| < M||x — y|| whenever x and y
belong to the same cuboid of the family. Thus, diamo(K) < M-diam K for each

K € 'H. By Proposition 7-1.2, ou(K) is contained in a closed cuboid oK)’ having
diameter at most M-diam K. Now
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vol(o(K)") < (M-diam K)" < M"2"vol(K).

This shows that the finite family {o(K)': K € H} of closed cuboids, which cer-
tainly covers o(F), has total volume less than (M)"[c(F)+¢e/(2M)"] =
My c(F) + &, where My = (2M)". This completes the proof of the existence of M,
of the required kind.

Statement (a) is now an easy consequence. For the proof of statement (b),
note that when F has content zero, the finite family {o(K)': K € H} has total
volume less than €. Since it covers o(F), it follows upon using the equivalences
in Proposition 6-4.10 that o((/") has content and that c¢(ou(F)) = 0. O

Example. Let 7 be the open first quadrant in the plane and let o be the continu-
ously differentiable function on W defined by ou(x,y) = (1/x, 1/y). Then o maps £
={(x,y)e W:0<x<1, 0<y<1} into a subset of R” that is not even bounded
and therefore has no content. But for any & > 0 and 4 > 0, it maps {(x,y) € W :
<x<8+A4, §<y<d+A4} into a bounded rectangle, which does have content.
The closure of the latter set is contained in W, while that of £ is not. However,
the transformation given by o(x,y) = (Vx,y) does map E into a set with content,
in fact, into itself. Note that, unlike the first transformation, this one has a con-
tinuous extension to the closure of .

Note that the above proposition makes no claim that if F has positive con-
tent then o(F) has content. We shall need the fact that under certain
circumstances, such a thing does happen. Before we prove the result in this di-
rection, we establish the following corollary to the inverse function theorem.

7-2.3. Proposition. [Used in Proposition 7-4.2] Let W be an open subset of R"
and o:W—R" be a continuously differentiable injective map with an invertible
derivative 0." everywhere on W. Then

(a) o maps open subsets of W onto open subsets of R",

(b) o is continuously differentiable and

() (o) () =alo' ()" forevery ye o(W);
(i) (o) (aux))=a'(x)" for every xe W.

Proof. Let V be an open subset of . By Inverse Function Theorem 4-2.1, every
x € V'belongs to an open set W,  V such that firstly, o W) < o(V) is open in R”
and secondly, the restriction of o to ¥, has a continuously differentiable inverse

B satisfying (B)'(y) = o'(or ()" for every y € o(¥,). Now
yveo(V)=y=oa(x) forsomexe V= yeo(W,)

forsomexe V=ye J,, (W)

and
ve Uy a(W) = yea(V),  because o) < o V).

Thus,
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a(V) = Uy a(W)).

(a) Since a(¥) is the union of all the open sets o 1#,), x € V, it must be open
inR".

(b) Since B must agree with o' on its own domain, i.e., on (%), it follows
that o' has the two properties: being continuously differentiable and satisfying
(™)) = a'(o'(»)) " on o W,). Since au(¥) is the union of sets o %), it further
follows that o' has the two properties on o). But this is true for an arbitrary
open subset 7 of . Consequently, o/ ' has the two properties on the whole of
a(W). Since the injectivity of o ensures that every x € W is of the form o' (), y
€ o), it now follows that (o) (ou(x)) = ot/(x) " for every xe W. O

The result about o F') having content when F does is as follows:

7-2.4. Proposition. [Used in Proposition 7-4.2] Let W be an open subset of R"
and o:W—R" be a continuously differentiable injective map with an invertible
derivative o' everywhere on W. Then

(a) if F has content and F < W, then o(F) has content;

(b) if H < W is compact, then there exists | > 0 such that, for any subset F W
with diameter less than 1\, having content and containing a point of H, the set
Ou(F') has content

Proof. By 2-6.P8(c), continuity and injectivity of o together imply that it maps
the boundary of a set E satisfying E < W into the boundary of a((E), which is to
say 0/(0F) < d(0E)). By 4-2.P5 [or by Proposition 7-2.3(a)], ou(W) is open; in
case E is compact, o(E) is also compact and hence o(E) < o(E) < o).
Since the inverse of o is also continuous (by Inverse Function Theorem 4-2.1)
and injective, it follows when E is compact that d(o(E)) < 0(9E), so that
0(0E) = d(au(E)).

Let H < W be compact. According to Lemma 7-2.1, there exists an open set
V such that

i) HcoVc VcWandV is compact;
(1) there exists >0 such that: heH, ||h—x|[|<n=>xe V.

Consider a subset £ of 7 that has content. Its boundary dE must have con-
tent zero by Proposition 6-4.14. Therefore, by Proposition 7-2.2(b), oldE) also
has content zero. But £ < V' < W and therefore a(dE) = d(a(E)), as observed
at the beginning. Hence, by Proposition 6-4.14 again, it follows that o(£) has
content. Thus, o maps a subset of ¥ that has content into one that also has con-
tent.
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(a) Now let F have content and F c W. Since a set having content is bounded,
s0 is its closure, which must then be compact. Thus F is compact and hence we
may choose H to be F in what has just been proved, whereupon we can con-
clude that ol F') has content.

(b) Let the subset F < W contain a point of H and have diameter less than 1. By
(ii) above, F is a subset of V, so that F < ¥ < W. It now follows by (a) that
0/(F’) has content. O

The next proposition is needed in Proposition 7-4.2.

7-2.5. Proposition. Let W be an open subset of R" and o.W—R" be a conti-
nuously differentiable map. Suppose H is a compact subset of W. Then for any €
>0, there exists & > 0 such that, for any cuboid K containing a point x € H and
having diameter less than 0,

Kcw and lloub) — oa) — &' (x)(b — a)|| <el|b—da|| VabeKk.

Proof. Let V and 1 be as in Lemma 7-2.1. By compactness of V, the map
o W—LR",R") is uniformly continuous on V. So there exists & > 0 such that

xye V. llx=yll<8 = Jo)-aO)< 5. )

(As elsewhere in our discussion of integration, the norm in R” is || ||.., with the
corresponding norm understood in R",R").) If we replace & by min {5,1},
then we have

xeH |x-yll<d = yeV. (@)

Now let K be any cuboid containing x € H and having diameter less than J, and

consider any a,b € K. By 2), K V V. Therefore, K < W, and moreover by
(1),

vek = o)~ ol@)] < 5. 3

From this inequality and convexity of a cuboid, we obtain by Corollary 3-3.7
that

lloub) — au(a) — a'(a)(b - a)|| < %IIb —d|. “
Since x € K, it follows from (3) that [|o/(x) — ot((a)|| < 5, and hence that

()b —a) ~ (@)t~ a)l| < 5~ [[b—al < 516~ .

Combining this with (4), we get
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l[oud) — ou@) — o(x)(b — a)l| < €[[b —al|. 0

Problem Set 7-2

7-2.P1. Give an example of a subset F < W < R, where W is open, a:W—R is
continuously differentiable with an invertible derivative (which means nonzero
in dimension 1) everywhere, F" has content but ou(F#") does not.

7-2.P2. Show that the result of Proposition 7-2.2 holds with
Moy = (sup {[la'()] : xe E})".

7-2.P3. Show that the transformation o defined on E by o(u,v) =
(ucos v, usinv) is bijective and maps E = {(u,v) e R*: 0 <u <A and 0 <v < 2m}
onto G = {(x,y) € R*: 0 <x*+ y* < 4% either x <0 or y #0}.

7-3 Set Functions

The path that we take in proving the transformation formula involves studying
what are called sef functions, which are functions with a class (family) of subsets
of a set as their domain. As is often the case in mathematics, their usefulness
stems from the properties of the domain. Of particular importance to us is the
class of subsets having content, and we begin by proving some of its properties
that we shall need.

Throughout this chapter, the symbol 4 will denote the complement of a
subset 4 of R".

7-3.1. Proposition. Suppose E < R". Then the class € of subsets of E having
content has the properties that

(a) Dely;

(b)A4,Be €y = AUB,ANB,A‘NBe €.

Proof. (a) is trivial, because & is a subset of a cuboid of arbitrarily small vo-
lume.

(b) Let 4, B € €. By the sufficiency condition of Proposition 6-4.14, 04 and 0B
both have content zero and hence by Remark 6-4.6(¢), dAU0dB also has content
zero. But the boundaries of AUB,ANB,A°“"\B are all subsets of d4UdB and
therefore have content zero by Remark 6-4.6(c). It follows by the necessity con-
dition of Proposition 6-4.14 that AUB, ANB,A“"\B € €. O
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7-3.2. Definition. A set function in a set £ C R" is a real-valued function on the
class Cx of all subsets of E that have content. A set function G in E is said to be
additive if 6(AUB) = 6(4) + o(B) whenever c(ANB) = 0.

7-3.3. Examples. (a) A trivial example of an additive set function is 6(4) = 0 for

all A € €¢. The most obvious nontrivial example of a set function is simply c.
That it is additive is the substance of Remark 6-4.6(d).

(b) Let /: E—R be integrable on every subset A € €z. Then 64(4) = [, / defines
an additive set function in £ by Remark 6-4.6(g).

(c) Suppose E ¢ R” and o.:E—R" maps every subset of £ that has content into a
subset of 0/(E) that also has content. Let f: 0(£)—R be integrable on every sub-
set of oi(E) that has content. Then 6(4) = _fa( ) f defines a set function in E. If o0
is bijective, then it maps ANB onto a(4)NouB); if o also maps a set with con-
tent zero onto a set with content zero, then it follows that ¢ is additive. For this
example to be of the same kind as the preceding one, there needs to be an in-
tegrable function g:E—R such that [ ,g&=0(4) = Ia( 4 f for all A < E having
content. Whether such a function g exists or not naturally depends upon o and f.
Some of our initial results pertain to this matter, as it will turn out to be crucial
for the transformation formula.

7-3.4. Proposition. Let ¢ be an additive set function in E. If F is a finite non-
overlapping family of cuboids contained in E then 6(UF) = Xk c r 6(K). In
particular, if f: E-R is integrable, then jufk = Zker IK f.

Proof. Since F is finite, an induction argument using Proposition 6-4.9 leads to
the desired equality. The last part follows upon using Remark 6-4.6(g). O

If @ is a function on an interval [a,b] C R, then one can regard ®(v) — ®(u)
as defining something akin to a set function ¢ on subintervals [u,Vv] of [a,b].
Then

o(/
[@0) - D) -0 = F.
where 7= [u,v], v—u# 0, 6(I) = D(v) — D(u). Its limit as v—u—0, u <x < v, is
the derivative @'(x), and by the fundamental theorem of calculus, (/) = L (018
provided of course the derivative exists everywhere. If ®' < f, then (/) < | S
The next proposition establishes such an inequality in higher dimensions under a
hypothesis that falls short of assuming that a derivative exists and does not ex-
ceed f; what it does say has the rough consequence that ‘if a derivative were to

exist, it would not exceed /. The quaint looking hypothesis is satisfied in a situ-
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ation we shall encounter during the proof of the transformation formula (Theo-
rem 7-4.4).

7-3.5. Proposition. Let W  R" be open, G an additive set function in W that has
nonnegative values, and let f: W—R be integrable over every subset of W that
has content. Suppose H is a compact subset of W and for every € > 0, there ex-
ists a & > 0 such that, for any x € H and any cuboid I containing x and having
diam 7 <5,

IcW and o()<[sup{f(z):zel}+e](1+e)""(diamI)".

Then
o<, f

whenever A has content and A — H°.

Proof. We shall first prove the inequality when 4 = 4 < H° is a cuboid. Consid-
er any € > 0 and any U > 1. Since f'is integrable over A4, there exists a paving P,
of 4 such that U(f,P,) < jA f + €. Let P be a refinement of P, such that every
cuboid K formed by P has diameter less than 8. Then

IJ(J(;}))S U(f9P1)< J.Af-‘rsa
and by Proposition 7-1.3, we can ensure that each cuboid K also satisfies (di-
amK)" < u"vol(K). Denote by F the family of these cuboids. For each cuboid K
e F, let Mgy =sup {f(z): ze K}.
Since K € 4 C H, it contains points of H; moreover, diam K < . Therefore

by hypothesis,

o(K)< (1+&)"" (Mg + &) (diamK)"
and hence

o(K) < (1+e)"" W' (Mg + €) vol(K).
Therefore by Proposition 7-3.4,

6(A) = Zker O(K) < (1+8)"" W' g (M + ) vOI(K)
=(1+e)" W U(f,P) + (1+&)" We[vol (4)]

<(+ey"'w ([, f+e)+(1+e) ne[vol(4)].

Since this has been proved for every € > 0 and every W > 1, the required inequa-

lity holds for a cuboid 4.
In view of Proposition 7-3.4, it follows that the inequality also holds when
A is a union of a finite nonoverlapping family of cuboids.
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We go on to the general case of an arbitrary set 4 having content and such
that 4 ¢ H°.

Consider any € > 0. Since |f] is integrable on the set H, it has a finite su-
premum, which we denote by M. Since A has content, it is bounded by
definition; therefore 4 is compact. By Proposition 6-4.10, there exists a union F'
of a finite nonoverlapping family of cuboids such that

Ac Fand o(F) < c(d) + %

By Proposition 6-1.11, we can ensure that /' < H°, so that, by what has been
proved above, the required inequality holds for each cuboid in F. Now, ¢(4) =
c(A) [see 6-4.P3]. Therefore,

AcFcH® and c(F)<c(A)+%.
Using Proposition 7-3.1, and Remark 6-4.6(d) and 6-4.6(g), we have

Fod)=e(F)—c) <57 and [ f= [ f+ [ f:

Therefore, recalling that M = sup {| f(x)| : x€ H}, we have
Jef < if+ My =1,/ +e

Since ¢ is additive as well as nonnegative, it follows from the inclusion 4 c F
that
o(4) < o(F).

As F'is a union of a finite nonoverlapping family of cuboids and the required
inequality holds for each cuboid in the union, Proposition 7-3.4 and the above
inequality lead to

o)< [, f.
Together with the preceding inequalities about integrals, this implies that
o)< [, f+e.

This has been shown to hold for an arbitrary € > 0 and therefore 6(4) < f 4 d

7-4 The Transformation Formula

We shall soon come to the main result of this chapter. The first proposition of
this section can be regarded as the special case of the tansformation formula
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when the transformation of variables is linear and the integrand is identically 1,
although no integral is explicitly mentioned.

When o:R"—R” is a linear map, det o will denote the determinant of the
matrix representation of o as described in Chapter 2. Since o is its own linear
derivative everywhere, deta. is also the Jacobian of o at each point of R”.

7-4.1. Proposition. [/ 4 c R" is a cuboid and o:R"—R" is an invertible linear
map, then
(o)) = |detor| c(A).

(This is true even when « is not invertible, but the case will not arise in our con-
siderations.)

Proof. If o is of the type that merely multiplies the Ath component by some non-
zero a, i.e.,

Xy, X)) = (V1 s e 5 V0)s

x; forj#k
y=1"

where

1
ax; forj=k, M

then it maps the cuboid 4 onto a cuboid with kth edge of length || times that of
A and all other edges the same as those of A; the volume of the latter is
|a|vol(4). Since the content of a cuboid is the volume and deto = a, the desired
equality holds in this case.

If o is of the type that merely interchanges two components, i.e.

Xy, X)) =(V1s e 5 V0)s

where
x, ifj=k
yi=9% ifj=1 ()
x, itk=j#1,

J

then it only interchanges the Ath and /th edges of any cuboid and the volume
therefore remains unaltered; also, detow = —1. So, the desired equality holds in
this case.

If o is of the type that merely adds one row to another row, i.e., there exist
distinct indices £, / such that

X1y s X)) = (V1 s e 5 V0)s

X; forj#k
y; =
DX+ forj=k

where
3)

(so that y; = x; +x;), then c(o((A4)) = c(4) by Proposition 6-5.3 while deto = 1.
Therefore the desired equality holds in this case too.
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By Remark 2-3.4, every invertible linear map is a composition of linear
maps of the type (1), (2) and (3), i.e., having an elementary matrix. Also, if the
equality in question holds for two linear maps, then it surely holds for their
composition. Therefore it holds for all invertible linear maps. O

7-4.2. Proposition. Let W be an open subset of R" and o.W—R" be a conti-
nuously differentiable injective map with an invertible derivative 0." everywhere
on W. Suppose H C W is a compact subset and € > 0. Then there exists & > 0
such that, for any cuboid I that contains a point x € H and has diameter less than
S, we have I ¢ W and

c(oll)) < |deta'(x)|(1+¢€)"(diam7)".

Proof. Let the open set V' be as in Lemma 7-2.1. By Proposition 7-2.3, o(W) is
open, o/ is continuously differentiable and (or")'(0u(x)) = ov'(x) " for every x €
. Denoting the linear map o'(x) by B,, this can be written as

B. " = (o) (ox)) for every xe W.

Therefore, as a map from W to R”",R"), B, is continuous. Now ¥ is compact
and therefore there exists a real number M > 0 such that ||B, || < M for every x €
V. This means that

B '(h)|| < M||h|| forevery xe V and every he R". (1)

Now consider any € > 0. By Proposition 7-2.5, there exists & > 0 such that,
for any cuboid / containing a point x € A and having diameter less than 9,

Icw  and o)~ o@-B(b-a)| <-lb-al Vabel

Since / is closed, it follows by Proposition 7-2.4(a) that ou(/) has content. Now
consider any such cuboid /7 and any a,b € I. Then the above inequality holds and
therefore it follows from (1) that

1B (0u®)) = B (@) — (b — )| <M% |6 —al[=¢€[[b - all.

This implies that
1B (cb)) = B (@)l < (1+©)][b — al|.

Therefore, B, '(o(7)) has diameter no greater than (1+¢€)diam/. By Proposition
7-1.2, By '(a])) is contained in some cuboid J of the same diameter. So,

ofl) € BuJ) (2)
diam J < (1+¢)diam /. 3)

Now by Proposition 7-4.1, ¢(B(J)) = |detp,|vol(J) and, as already noted, o(/)
has content. The inclusion (2) implies c(0({)) < ¢(B.(J)). Consequently by (3),

and
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c(ol)) < |detBy|vol(J) < |det B, |(diamJ)" < |deto/(x)|(1+¢€)"(diam[)". [

7-4.3. Proposition. Let E C F < R”, where E has content and f: E—R is inte-
grable. Let g:F—R be the extension of f to F obtained by setting it equal to zero
outside E. Then g is integrable on any subset [see Def. 6-4.5] of F that has con-
tent.

Proof. Consider a subset 4 of F' that has content and let / be a cuboid that con-
tains F and hence also £ and 4. Denote by )4 the characteristic function of 4 on
L
Since f: E—R is integrable, its extension f; to the cuboid [ is integrable, i.e.,
[, Ji exists, where
f(x) ifxeE

= for any x e I.
fix) {0 ifxe E v

Since 4 has content, the characteristic function ¥, (domain /) is integrable.
Hence, the product f; %4 is integrable.

For the integrability of g on 4, what we need is [by Def. 6-4.5] that the re-
striction g|4 of g to the subset 4 should be integrable when extended as (g|4); to /
by setting it equal to zero outside 4. We shall prove the required integrability by
arguing that (g|4); is, in fact, the same as the product f; y4, for which integrabil-
ity has already been established in the preceding paragraph.

By definition of g, we have

20 = { f(x) ifxeE

for any xe F,

0 ifxegFE
(gl (x) = {g(x) ifxe 4 for any xe /
0 ifxe4d
and
1 ifxe 4
Xa(x) = {0 Fre A for any xe I.

From the above descriptions of the four functions, we deduce for any x € / that
xeEnd = fi(x)xa()=/i()=fx) and (gl (x)=gkx) =fx);
xed = fi)x(x)=0 and (gl (x)=0;
xedxeE =  fix)x)=f1(x)=0 and (g} (x)=g(x)=0.

This covers all possibilities for x € I and therefore f; (x))4(x) = (gl4) (x) every-
where on /. (]
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We now come to the main result. The proof begins with a special case
which is adequate for most purposes, especially when the integrand is continu-
ous. The reader has the option of focusing attention only on this case.

In the statement of the theorem, detca’ is the Jacobian of o and one may re-
place it by some such symbol as J,, if desired.

7-4.4. Theorem. Transformation Formula: Let W < R" be open and E < W,
where E has content. Suppose a:W—R" is a continuously differentiable injective
map with an invertible derivative o' everywhere on W. Then, for any integrable
function f:0(E)—R, the function (f o o)|deta’|: E—R is also integrable and

loey [ = g (fo )| detor].

Proof: We shall first prove this under the additional hypothesis that
(foa)|deta’|: E—R is integrable.

Since any integrable function f is a difference of integrable nonnegative-
valued functions, namely, + (|f] + /) and (/| —f), it suffices to prove the
formula for nonnegative f. Also, we need prove only the inequality

ey /= I (fo @] detar,
because the reverse inequality will follow from it in view of the following:

(i) o ':oW)—W enjoys the same properties as o
(i) (foa)|deta'| is integrable and nonnegative on E and
(i) |det(a'o o )||det (o)’ =1 on o).

The last mentioned equality results from the chain rule together with the fact
that ocoor”! is the identity map on o(J¥).

Since E has content, it is bounded and hence E is compact. By hypothesis, £
C W and therefore by Lemma 7-2.1 (applied twice), there exists open sets /; and

V5 such that B - -
EchchchcheocWw

and 7, is compact (hence also 7). If f is extended to ol 7>) by setting it equal to
zero outside o E), then by Proposition 7-4.3, the extension is integrable on
every subset of o/ 7;) that has content.

It is sufficient to prove the inequality in question for the extended function
and from here onwards we shall denote the extended function by f.

Let 4 be any subset of ¥, having content. Then 4 < ¥, < W and by Proposi-
tion 7-2.4(a), 0(4) has content. Also, o(4) < ol 73), so that f is integrable over
0(A). Define a nonnegative set function ¢ in ; by

o(4) = Ia(A) S
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We shall argue that ¢ is additive. To see why, let c¢(4,n4;) = 0. Then
c(o(41MnA4,)) = 0 by Proposition 7-2.2(b). However, the injectivity of o implies
that o4;NA4y) = od;)NouA4y). So, c(o(d;)Nofd,y)) = 0. It follows from Re-
mark 6-4.6(g) that G is additive.

Now let H be the compact subset 7} of V,. Consider any € > 0.

By Lemma 7-2.1, there exists &; > 0 such that if a cuboid 7 contains some x
€ Hand has diameter less than 9,, then

Icr;. €))

Since V; is compact and |deto’| does not vanish anywhere, it has a positive
lower bound on V5, which we shall call m. Also, o' and hence deta’ are un-
iformly continuous on¥, and, accordingly, there exists &, > 0 such that whenever
the diameter of a cuboid 7 is less than &, and / < 75, we have

|deto'(yy) —deta'(y,)] <me whenever y,, €l
This implies for all xe HN/ that

|[deta'(x)] < |deto'(yy)| + me < |deta'(yy)|(1+€) whenever y, € /. (2)

By Proposition 7-4.2, there exists 8; > 0 such that, for any cuboid 7 that con-
tains some x € H and has diameter less than 03, we have / < W and

(o)) < |det o'(x)|(1+€)"(diam )" 3)

Now consider any cuboid 7 that contains x and has diameter less than & =
min {8, 0,,08;}. Then [ satisfies (1),(2) as well as (3). From (1), it follows that
o(/) is defined. Besides,

o) = [y f <sup {f(2) 1 z€ o])} - c(ou))
<sup{(foo)(u) :uel}-cloUl)).

Now |deta’| is continuous on the compact set V5 and therefore bounded on it.
Let M be an upper bound. Choose y € I such that sup {(foo)(u) :uel} <
(foa)(y) + +. Then the above inequality becomes

o) <[(fo o)(y) + 571 c(eD)). “
From (2) and (3), we get

c(o(D)) < |deto(y)|(1+¢€)"" (diam 1)".

Combining this with (4), we get

o) <[(foo)(y) + 17 lideta(y)|(1+e)" (diam )"
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<sup {[(foa)z)+ %]|det(x'(z)| zel}-(1+¢)"(diam )"

<sup{(foo)(z)|deta'(z)| + € : zel}-(1+¢)" " (diamI)".

By Proposition 7-3.5, we now have 6(4) < |  (fooy|deto| whenever 4 < H°.
Since E ¢V, < V= H and V| is open, then E < H°. So,

O(E) < [, (foo)|detar],
which is the same as

loey S = [ (foo))|detor].

As noted at the beginning, this inequality is all we needed to prove in order
to establish the result under the additional hypothesis that (/o o) |deto/|: E—R
is integrable.

By Theorem 6-4.15, the additional hypothesis is fulfilled when £ is conti-
nuous. Therefore, the result has been established for continuous f, and in
particular, for any constant function.

Now let f:0(E)—R be an integrable function. As before, we may assume
to be nonnegative. Since o(E) < o(}¥), where oE) is compact and oY) is
open, Lemma 7-2.1 yields 1} > 0 such that h€ o(E), ||h —x|| <M = xe oW).

Consider any € > 0 and any cuboid / containing o((E). Then the integral of f
over o(£) is the same as its integral over /, with the understanding that 1" is ex-
tended to be zero outside ou(£). This means f o o is extended to be zero outside
E. Now, there exists a paving P of / such that

fory [~ <LUP)S UP) < [ o) fHE. )

By refining P if necessary, we may assume that the diameter of each cuboid
formed by it is no greater than 1. This guarantees that any cuboid K formed by P
that intersects ol E) lies within o(/7). This has two consequences for the family
F of such cuboids. One is that

c(o (K)o (K")) = c(o ' (KNK'")) = 0 whenever Ke F, K'e F,K#K'. (6)

This follows from Proposition 7-2.2(b) upon noting that ¢c(KNK") = 0 by Propo-
sition 6-4.9(a). Another consequence is that of '(K) < W, and hence for any
constant function & on a cuboid K,

[x k= Ty ) (ko o)|deto], (7)

keeping in mind that the result has been shown to hold for a constant function.

Denoting by F the union of all o '(K) with K € F, we have E C F. As fo o
has been extended to be zero outside £, according to the observation made im-
mediately after Def. 6-4.5,
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[r (fooldeto| = [, (foo)|deta]. ®)

Also,
L(f,P)=Zkc r (inf{ f(x) : xe K})vol(K).

Denote by my the function on / that equals the constant inf { f(x) : xe K} on K

and is extended to be 0 outside K. Then mxo 0. < foa on ol '(K). By (7), we
have

(inf {/(x) : x€ K}Vol(K) = [ mg = [ 1, (mxo o)|detor’|.
It follows that
L(f,P) = Zke 7 [y ) (mx o a)|deta’| < g s [ 1 gy (f 0 00)|detor’],

using the fact that mgoo < foa on o '(K). Therefore by (6) and Remark 6-
4.6(2),
L(f.P)< [ (foo)|deto|

= [, (fomldeta| by (8).
A similar argument shows that U( f, P) > T g (foa)|deta'|. Therefore by (5),
ja(E)f—s< JE(fo o)|deta’| < IE (foo)|deta'| < ja(E)er €.

The required integrability and equality are now immediate. O

The theorem above differs from the versions in Burkill and Burkill [5] and
in Protter and Morrey [20] in that / is not assumed continuous. It also differs
from the version in Spivak [26] in that it assumes that /" is defined on a closed
set rather than on an open set.

7-4.5. Example. Evaluate the following integral:

IF (\/%+\/E)dxdy,

where F'is the region in the first quadrant of the xy-plane between the hyperbo-
las xy = 1, xy = 9 and the lines y = x and y = 4x (as in the figure at the beginning
of Section 7-2).

The way the evaluation would be presented in calculus would be with an in-
troduction of new variables u = \/(xy) and v = \/g , or equivalently, x = % and y

= uv. The ‘uv-region corresponding to /” would then be given by the inequalities
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1 <u <3, 1< v<2. This procedure fits into the framework of the preceding
theorem, as we now describe.

First ofall, F= {(x,y) e R?: x>0, y>0, 1 <xp<9, 1 < < <4}. As noted
at the beginning of Section 7-2, by taking u = /(xy) and v = % , We can express
F as o(E), where E = {(u,v) e R*: 1 <u <3, 1 <v<2} and 0. is given by o(u, v)
= (%, uv). This map o is injective on W = {(u,v) € R?:u>0, v>0}. Also, o'

has matrix

< <=
<

which is continuous and invertible on W and the Jacobian is deto’ = 2% > 0.

With f(x,y) = \/g +/(xy), we have (fo o) (u,v) = u+v. The given integral and
the integral
IE (foa)|deta'| = IE (u+v)2% dudv

both exist. Therefore, they are equal by the transformation formula (Theorem 7-
4.4). Now the second of the integrals is easily found to be 8 +5—32 In2, which is

therefore the required value.

The most frequently used transformation in R? is the introduction of polar
coordinates to convert an integral over a disc of radius A4 centred at (0,0) to an
integral over an (r,0)-rectangle [0,4]x[0,2m] or its interior £. However, the po-
lar transformation o(r,0) = (rcos®, rsin®) is not injective on any open set
containing E. In order to accommodate the transformation to polar coordinates,
we make use of some further ideas.

7-4.6. Definition. For any nonempty subset E of R", a balloon is a sequence
{E,.} of subsets such that
(1) each E,, has content,
(i) E, cE,. CE foreachm,
(iii) U,enE, =E.

7-4.7. Examples. (a) With n = 1, the subset £ = R has no content; but the se-
quence of subsets [-m,m], m =1,2,3,... is a balloon. The subsets [-m, ) do not
provide a balloon because they do not have content.

(b) Let n = 2. The sequence of subsets E,, = {(x,y) € R" : x* + y* < 1 =L} consti-
tutes a balloon for £ = {(x,y) € R* : x* +)* < 1} and so do their closures. Note
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that we cannot select a finite number of E,, that can cover E. In this connection,
let

Ve={(x,y)eR": (1-e)* <x*+)*<(1+¢€)’} ,where 0 <e<1.

Fom Example 6-5.2(a), we have ¢(V,) = n[(1+ €)* — (1—¢€)*] = 4ne, which ap-
proaches zero with €. No matter how small € may be, we can select a finite
number of £, such that, when taken together with V¢, they can cover £. What is
at play here is the compactness of the closure of E, which is a consequence of
the boundedness of £.

(¢)Let E= {(u,v)e R*: 0 <u <A and 0 <v<2m} = (0,4)x(0,2m), an open rec-
tangular subset of R, If E,, = [+, 4]% [+,2n— L] for m > max {1/4,1} then the
sequence of closed rectangles {E,} is a balloon for E, consisting of compact
sets. The transformation o defined on £ by o(u,v) = (ucos v, usinv) is injective

and continuously differentiable, its linear derivative o’ being given by the matrix
cosv —usinv
sinv  ucosv |
Thus o(u,v) is an invertible linear map for all (u,v) € E. By Proposition 7-
2.4(a), the sets o(E,,) have content; also, they are compact. As noted at the be-
ginning of Section 7-2, oo maps E bijectively onto the subset G = {(x,y) € R*: 0

< x*+y* < 4% either x < 0 or y # 0} and therefore the sequence {o(E,,)} is a
balloon for ci(E), consisting of compact sets.

Recall from 2-4.P9 that, for any F < R”, we have F = FUJF = F°UJF. We
shall use this fact presently.

7-4.8. Proposition. Let F c R" have content. Then for any € > 0, there exists an
open set V 2 OF such that F UV is open and ¢(V) < €. In particular, c(FUV) <
c(F)+e.

Proof. Since F has content, the boundary dF has content 0. It follows by the
equivalence of (o) and (8) in Proposition 6-4.10 that there exists an open set V' 2
OF such that ¢(7') < &. We need only prove that F UV is open. This follows from
the computation
FUV=FUQ@FUYV)=(FUIF)UV = (F°CUIF)UV
=F°UQFUV)=F°UV. O

7-4.9. Proposition. Let {E,} be a balloon for E. If E has content,
then Li_}m_o c(E,) =c(E).

Proof. Since c(E,,) < c¢(E,+1) < c(E), the limit must exist and not exceed c(E).
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To prove the reverse inequality, consider any € > 0. Since £ has content, the
preceding proposition yields an open set V containing dE such that UV is open
and ¢(V) < e. Since each E,, has content, the proposition also yields open sets V,
containing dE,, such that £,, UV, is open and c¢(V,,) < €/2". Now,

Ec Uen (EnUV,) and V 2 OF,
from which we get

E=EVIEC VU, .nEnIVy).

meN

Thus, the sets ¥ and E,, UV, (m € N) constitute an open cover of E. Since E has
content, it is bounded and therefore so is its closure E. But this means E is com-
pact and the foregoing open cover contains a finite subcover. Thus there exists k
€ N such that ¥V and {E,,UV,, : | <m <k} constitute a cover of E. But E,, C E;
for 1 <m < k and therefore E is covered by V, {V,,: 1 <m <k} and E;. Conse-
quently,

(E)=c(E)<c(V) + Zi<mer (V) + c(Ey) < 2& + lim o(E,).

This implies the required reverse inequality. O

7-4.10. Examples. (a) Returning to the transformation o, v) = (ucos v, usinv)
discussed above [see Example 7-4.7(c)], we note that it is easy to sece
why Li_}m_o c(E,) = c¢(E), because E,, and E are rectangles and both ¢(E,,) and c(E)
can be computed directly. However, regarding the associated balloon a(£),), the
disc with a keyhole removed, the computation of the content calls for some ef-
fort. Nevertheless, Proposition 7-4.9 allows us to conclude painlessly
that lnl_)l’g c(0(E,)) = c(o(E)), which is of course m4>.

(b) Consider E = (0,1)x(0,4) and olu,v) = (\(uv), [(1 —u)v] on E. The se-
quence of sets E,, = [+,1—L]x[L, 4— L7, starting from a sufficiently large m,
is a balloon for E. A simple computation shows that o'(u, v) is represented by the

v u

| u %

2 v 1—u ’
1—u v

which is invertible for every (u,v) € E (the determinant is %[, /1’7” + 4 /ﬁ] ,1.e.,

< m ). The equation (x,y) = (\/(uv), \(v — uv)) is equivalent to the pair

matrix
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X = \/(uv), y= \/(V - MV),
which can be handled by elementary computation, leading to

2

X 2 2
- _ X =2+ 2
u e +y2 s v=x"+y
This shows that oo maps £ onto the subset
4 UE) = {(x,y)eR*: x>0, y>0, x*+y* <4}

of the open first quadrant of R” and has an

inverse given by

v

~1 — (2, 2 ) 2 2
o (x,y)=(x +97), X"+ Y).
o(E,,) is (6)) = (A +7) )
shaded

For interested readers, we present a figure that

depicts a representative o(£,). Without com-

puting c(o(E,)), one can deduce painlessly
from Proposition 7-4.9 that }gl}c c(oUE,)) =
c(0(E)). In terms of the figure, it means that the area of the shaded pizza slice

(once bitten) approaches %TcAz.

7-4.11. Proposition. Let {E,} be a balloon for E. If E has content and f: E—>R
is integrable (on E), then f is integrable on each E,, and

lim .[Em =1l

m—seo
Proof. That f is integrable on each E,, is a consequence of the observation re-
corded immediately after Def. 6-4.5. The same observation guarantees that f'is
integrable on E\E,,. Since E is assumed to have content, we have c¢(E\E,,) =
c(E) — c(E,,), which approaches zero by Proposition 7-4.9. It now follows by 6-
4.P6 (wherein, we take X,, = E\ E,,) that the equality in question holds. O

What makes this result useful is that transformations such as the one from
polar to rectangular coordinates, or the one in Example 7-4.10(b), do not satisfy
the hypotheses of the transformation formula on some desired domain of inte-
gration but do satisfy them on each set of an appropriately selected balloon for
the domain. This has already been illustrated in the discussions above. We pro-
ceed to ensure our freedom to select a balloon according to our convenience
provided the function is nonnegative-valued.

7-4.12. Proposition. Let f: E-R be nonnegative-valued and {E,} be a balloon
for E (not assumed to have content). If L = ’L1_>mm IE f exists, then for any other



7-4 The Transformation Formula 243

balloon consisting of sets on which f'is integrable, the corresponding limit exists
and equals L.

Proof. Let {F,} be any other balloon for £ such that f"is integrable on each set
F,. Then fis integrable on each intersection E,,NF, [see observation immedi-
ately after Def. 6-4.5] and the inequality IE,,, A, f< IE,,, f holds for each p and
m, because f > 0. Moreover, the sequence IFp f is increasing (recall that F), c

F,+, by definition of a balloon).

Now, the sequence of sets {£,,NF,}, m=1,2,..., is a balloon for F, and by
Proposition 7-4.11 and the inequality noted at the beginning, we have

'[F[’ f = lim .‘.EmﬁF}, f = ’Llll;l '[Em f =L

m—yoo
Thus, L is an upper bound for the increasing sequence jF f. It follows that
P
VLI_I}] j - J exists and does not exceed L. A similar argument establishes the re-
e p

verse inequality. ]

The next proof uses the result of 2-6.P17.

7-4.13. Proposition. Any open subset of R" has a balloon consisting of compact
sets.

Proof. To begin with, consider a bounded open subset . The first step is to
construct a sequence {H,} of compact sets contained in W such that H,, € H,+|
and W= U,,n Hn. The second step is to construct a sequence {E,} of sets pos-

sessing the same properties and also having content.

Since W is assumed bounded, its complement W is nonempty and there-
fore, by 2-6.P17, the distance d(x, W*) of a point x € R”" from W* is a continuous
function of x. Hence, the subsets H, = {x € R" : d(x, W) >L} me N, are
closed in R” and are contained in W. Since W is bounded, the sets H,, are also
bounded and hence compact. Also, H,, < H,+ because # > mIT . Because W is
open, each x € W satisfies d(x, W) > 0 and therefore belongs to H,, for some m.
Consequently, W= U, H». This completes the first step.

In view of compactness, each H,, is contained in a finite union Q,, of closed
cuboids contained in W. Such a union of cuboids is compact and has content.
Since a finite union of compact sets having content is again compact and has

content, the sets £, = U, O < W are likewise. Moreover,

W: UmeNHm c UmeN Qm c UmeN Em c W
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This means {£,,} is a balloon for ¥ consisting of compact sets. The second step
is now also complete and it has been shown that a hounded open set has a bal-
loon consisting of compact sets.

Finally, suppose /¥ is not bounded and for eachp e N, let W, = {xe W : ||x||

<p}. Then each W, is bounded as well as open, while W= {J .y W,. According

peN
to what has already been proved, for each p there is a balloon {E,, ,,} ycy for W),.
Define

En=Up<nEym. (1)

Being a finite union of compact sets having content, each E,, is compact and has
content. Since E, ,, € E,, 1, we have E,, C E,-; € W. It remains only to prove
that every x € W belongs to some E,,. With this in mind, consider any x € W.
Then x € E, ,, for some p and some m. But E,, ,, € E,, ,,+; and hence x € E,, ,, for

some m'> p. It now follows from our definition of £, in (1) that xe E,,,.. O

7-4.14. Theorem. Let W C R" be open and o. W—R" be a continuously differen-
tiable injective map with an invertible derivative o' everywhere on W. Suppose
that f:o(W)—>R is a function that is nonnegative everywhere and integrable
over every subset of its domain that has content and that the same is true of
(foo)|deta'|: W—R. Then for any balloons {E,} and {F,} for (W) and W,
respectively, if either of the limits

lim J.Em f and }1_{2 -[Fp (foo)|deto] (1

m—yoo

exists, then so does the other and the limits are equal. In case either of the inte-
grals IQ(W)fand IW (fooy|deta'| exists (possibly both), it is equal to both
limits. In particular, if both the integrals exist, then they are equal to each other.
Proof. By Props. 7-4.12 and 7-4.13, we may assume that {F,} consists of com-
pact sets. Then {o(F,)} consists of compact sets that also have content by
Proposition 7-2.4(a). It is trivial to deduce that o(F),) < o(F,+) and o( W) =
Upen OUF)). Therefore {o(F),)} is a balloon for o}¥) consisting of compact
sets. By Transformation Formula 7-4.4, we have

Ia(Fp) f= fpp (foa)|deto| for each p. ©)

If the second limit mentioned in (1) exists, then (2) implies that y_{n Ja( F) f
oo P

exists and is equal to it. Since {0u(F),)} is a balloon for al(/¥), it follows by Prop-

osition 7-4.12 that the first limit in (1) also exists and is equal to it. On the other



7-4 The Transformation Formula 245

hand, if the first limit exists, it follows by Proposition 7-4.12 that [ljlglo Ia( F,) f
exists and is equal to it. Therefore by (2), the second limit exists and is equal to
it.

The last part follows by virtue of Proposition 7-4.11. O

7-4.15. Corollary. Suppose D is the disc {(x,y) € R* : 0 <x* + > < A*}, where A
>0, and f:D—R is continuous. Let E denote the rectangle {(r,0) e R* : 0 < r <
A, 0<0<2m}, ie., [0,4]%[0,2r]. Then

[of =[], f(rcos6, rsin@)rdrdo = [2"d6 [ f(rcos8, rsin@)rdr.
= [ dr [ freos®, rsin®) rdo.

Proof. Since f is continuous, the integrals all exist, while the second, third and
fourth integrals are equal by Fubini’s theorem [Remark 6-3.3]. So, we need only
prove that the first and second are equal. Since | f] is also continuous, the corre-
sponding integrals with | f] in place of f also exist and hence, as in the proof of
Transformation Formula 7-4.4, we may restrict our considerations to nonnega-
tive f.

Let W= {(u,v) e R?: 0 <u <A and 0 <v<2m} = (0,4)x(0,2m), an open
subset of E. Since E\ W has content zero, the integral over E is equal to that
over W. Then, as seen in Example 7-4.7(c), the transformation o: W—R? defined
by o(r,0) = (rcos®, rsin®) satisfies the hypotheses of Theorem 7-4.14 and
a(W) = {(x,y) € R? : 0 < x*+)* < 4% either x < 0 or y # 0} < D. Again,
D\ o W) has content zero and so, the integral over D is equal to that over o V).
So it is sufficient to show that [, f = [[,, f(rcos®, rsin0)rdrd®. But since
we have restricted considerations to nonnegative f, the foregoing equality is
guaranteed by the last part of Theorem 7-4.14. O

A similar argument justifies the usual procedure of evaluating the integral
over the part of the disc in the first quadrant, i.e., {(x,») e R : 0<x*+)* <A, x
>0, y > 0}, via polar coordinates in the above manner, the integration with re-
spect to 0 being taken over [0,%c ].

7-4.16. Examples. (a) We shall show that [ exp(—x*)dx =1 +r. For any 4 > 0,
let S, denote the square {(x,y)eR*: 0<x<4, 0<y<A}. Then

[Jo exp(=x"ydx P =[ [ exp(=x")dx 1L ;' exp(=y")dly |

= [, exp(=x"~ y*)dxdy,
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where we have used Fubini’s theorem [6-4.P11 is an alternative] in the last step.
Therefore, we need only prove that

[s, exp (—x*=y*)dxdy— T as A—>co.
Let
0= {(x,)eR*:0<x*+y* <4’ x>0, y>0},
the part in the first quadrant of the disc of radius 4 centred at (0,0). Observe that
04 Sy < Q4 and exp (—x2 - yz) > () everywhere. It follows that

IQA exp(—x2—y?)dxdy < IS,, exp(—x*—y?)dxdy < IQAﬁ exp(—x>— ) dxdy.

Introducing polar coordinates and applying the observation recorded after the
proof of Cor. 7-4.15, we get

Jp, exp(=x*=y")dxdy = | M2a0 [ exp(—r2)rdr =E[L(1 - exp(-47)]
=11 —exp(-47)]
and similarly,
IQAﬁ exp(—x*— y*)dxdy = T[1 — exp(-24%)].
Using these values in the double inequality displayed above, we get

G —exp(A)] < [g, exp(=x"— ) dxdy < F[1 - exp(-24)].

II;[ is immediate from this double inequality that [ s, exp(—x*—y*)dy —>% as
—>oo,

(b) The evaluation obtained above can also be expressed as

1-1/m 1
1/m ’S(l _ S)

because the limit on the right here is in fact . This form of the equality makes it
possible to pretend (if one is so inclined) that trigonometric functions are still
waiting for humans to discover them. While the virtues of avoiding trigonome-
tric functions can be mathematically challenged [see the Internet article by
Gilsdorf [11]], a proof of (A) can be differently enabled via the rational polar
coordinates advocated in Wildberger [28]. For a point (x,y) in the first quadrant
excluding (0,0), the rational polar coordinates (s, Q) are given by

[[; exp(~x*)dx ] = lim | ds as m—soo, (A)

x2

0=x"+)" s= e [= cos’® — of course!].
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Note that s € [0,1] and Q € (0,0). Every (s, Q) € [0,1]%(0, o) uniquely determines
a point (x,y) # (0,0) in the first quadrant in accordance with the following trans-
formation o

x=+(s0), y=+l1-90I.

Though injective on [0,1]%(0,e0), it is continuously differentiable only on the
proper subset (0,1)x%(0, o), which is easily seen to be mapped onto the interior of
the first quadrant [see Example 7-4.10(b)]. Now Transformation Formula 7-4.4
requires the coordinate transformation o to be continuously differentiable on an
open set W that contains the closure of the domain of integration. Therefore, it
does not justify the use of rational polar coordinates for transforming an integral
over any subset o(E) of the first quadrant whose closure includes a point of an
axis. However, we can use Theorem 7-4.14, as we now show.

Since the functions involved are continuous, their integrals over bounded
domains with content always exist. The domain of integration that was denoted
by O, in (a) above can be replaced by its subset {(x,y) € R* : x>0, y >0, x* + )’
< A’}. This domain is, in turn, the image o) of the set W = (0,1)x(0,47]. If we
set E,, = [+,1--L1x[L, 4%, then {E,,} is a balloon for . Since the functions
involved are nonnegative, it follows by Theorem 7-4.14 that

J exp(—x*— y*)dxdy = lim jE exp(-Q) - |deta'(s, Q)| ds dO

nm—yoo

m—eo

= lim _[E exp(—Q) { }dsdQ

1
s(1—s)

fim [, [J,e0(-0) Q]{ : S)}ds

1-1/m 1

=lim [exp(—l/m)—exp(—Az)]%J.l/ \/7
m—yeo m S(l_s)

ds

1-1/m

=[1-exp(-4)]- Jim Jl/m m

The required equality follows upon letting A—oo.

ds .

The equality claimed in Wildberger [28, p. 268, Example 27.3] is now es-
tablished.
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Problem Set 7-4

7-4.P1. Prove the following: Let E W, c W < R", where E and W, have con-
tent, and W and W; are both open. Suppose o:W—R" is a continuously
differentiable map that is invertible on W, and such that {x € W, : deto(x) = 0}
has content zero. Then, for any integrable function f:o(E)—R such that
(foa)|deta’|:E—R is also integrable, we have

.[(x(E)f = [, (foo)|deta|.

7-4.P2. Prove Cor. 7-4.15 by using 7-4.P1 instead of Theorem 7-4.14.

7-4.P3. Evaluate [, tan ' (x + y) dxdy, where E= {(x,») e R>: x>0, y>0, x+y
<1}.

7-4.P4. Let f(x,y) = 1/(x* +y*)*and E = {(x,y) € R*: 0 <x* + »* < 1}. Consider a
balloon {E,},cn for E such that f is bounded and hence integrable on each E,,.
Show that lim |z fexists for o < 1 and it does not exist for o> 1.

7-4.P5. Show that the hypothesis that /' is nonnegative in Proposition 7-4.12
cannot be omitted.

7-4.P6. Determine real numbers a,, b, c; and a,, b,, ¢, such that the transforma-
tion T: R*>R? given by T(x,y) = (u,v) = (a; + byx + ¢1y,a» + byx + ¢;y) maps
(0,0) into (2,~1), (1,0) into (5,0) and (0, 1) into (3,-2). Compute the Jacobian of
T and use it to compute In exp (2u — v) dudv, where D is the image of [0,1]x[0,1]
under 7.
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The General Stokes Theorem
Written by Harkrishan L. Vasudeva with help from Satish Shirali

8-1 Heuristic Background

The most important formula of analysis is the fundamental theorem of calculus.
The formulas of Green, Gauss and Stokes are an extension of this theorem. They
also constitute the extensively used part of the machinery of integral calculus. A
far reaching generalisation of the above said theorems is the Stokes Theorem. In
order to prove the theorem in its general form, we need to develop a good deal
of material, known as differential forms. Much care has been taken to give clear
definitions, examples and transparent proofs to tehnical challenging results. Dif-
ferential forms also provide better insight into vector calculus, as is illustrated
by the material covered in Section 8-8. A less formal and more intuitive intro-
duction to the material covered in this chapter is available in Crowin and
Szczarba [8], Lang [18] and Protter and Morrey [20].

One version of the substitution rule for Riemann integrals in one dimen-
sion is as follows (Pugh [21; p. 177]):

8-1.1. Theorem. Let f:[a,b]—R be Riemann integrable and ®:[o.,B]—[a,b] be
a bijection with a continuous positive first derivative. Then

[iasy (DAL= [, g (fo @)D (5)ds.

Since Riemann integrability of f on [a,b] implies that of f(—) on [-b,—a]
and also implies the equality

J.[a,b] Sdt= J.[—b,—a] S(=ndt

(both integrals have the same sets of lower and upper sums), we have the fol-
lowing consequence of Theorem 8-1.1:

8-1.2. Theorem. Let f:[a,b] >R be Riemann integrable and ®:[o, Bl—[a,b] be
a bijection with a continuous negative first derivative. Then

e fO dt ==[o  (foPYS)D(s) ds.
Combining the above two theorems, we have

8-1.3. Theorem. Let f:[a,b]—R be Riemann integrable and ®:[a.,B]—[a,b] be
a bijection with a continuous first derivative that vanishes nowhere. Then

[y SO dt = [ gy (o DY) D (5)|ds.

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 8, © Springer-Verlag London Limited 2011
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It is this form of the substitution rule that the transformation formula of
Chapter 7 generalises.

Theorem 8-1.3 does not use the fundamental theorem of calculus (FTC).
However, there is another version of the substitution rule which is scarcely dif-
ferent from the FTC [Shirali and Vasudeva [23; p. 378]]:

8-1.4. Theorem. Let F:[a,b]>R and ®:[o, B]—[a,b] both be differentiable. If
F'"and (F'o®)®' are both Riemann integrable, then
(B -, , b
I ((f) Fl(tydt = [ (Fo®)(s)®/(s) ds.
The proof of this theorem consists in merely observing that both sides are

equal to F(P(B)) — F(P(a)) by the FTC. The equality of the theorem can there-
fore also be expressed as

F@(B)) — F@(0)) = | (Fo®)(s)0/(s) ds.

Written in this form, it looks more like the FTC than the substitution rule and we
shall call it the ‘substitution form of the FTC’.

Some features that distinguish Theorem 8-1.4 from Theorem 8-1.3 are
worth noting. Perhaps the most obvious one is that ®'(s) appears without abso-
lute value. Precisely for this reason, it is difficult to state the equality in terms of
integrals over intervals without distinguishing the lower and upper limits of in-
tegration. Another feature worth noting is that the interval of integration on the
left side of Theorem 8-1.4 need not be the range of the substitution function ®.

Having extended the substitution rule in the form of Theorem 8-1.3 to high-
er dimensions, it is natural to ask whether the substitution form of the FTC can
also be extended. It can, but only for the case when F” has a continuous deriva-
tive. This is the task we take up in this chapter. The n-dimensional version is
called the general Stokes theorem and resembles the well known calculus theo-
rems of Green, Stokes and Gauss when n =2 or 3.

A comparison of the equalities in Theorem 8-1.4, Theorem 8-1.3 and its ex-
tension to higher dimensions in Theorem 7-4.4 suggests that the role of @’
should be played by a Jacobian but without absolute value. This will be the mo-
tivation for Jacobians without absolute value occurring as factors within
integrands in the formulation of Def. 8-2.4 below.

Let us look at the equality in the substitution form of the FTC from a heuris-
tic viewpoint, leaving it to later sections to make the ideas mathematically
precise. First of all, the one-dimensional integral on the right side means that
‘action’ takes place over an interval in one direction, but action on the left side
takes place at points, namely ®(B) and ®(c). We can declare evaluation at a
point to be zero-dimensional integration and write the left side as a difference of
zero-dimensional integrals
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o F = Jotan F-
By a further sleight of hand, we can then rewrite it as

Jio®) - @, F-

It is to be kept in mind that whatever meaning we ultimately assign to the hither-
to meaningless symbol {®(B)} — {®(cr)}, it is certainly not the algebraic
difference of ®(P) and ®(or) nor even a set theoretic difference. All this may
sound like a joke, but precise meanings can be given to these rough ideas and a
generalisation of the substitution form of the FTC can be formulated in terms of
them and proved.

8-2 Differential Forms

In this section we give a formal mathematical meaning to the kind of expres-
sions that appear as integrands of line and surface integrals in calculus and
discuss their addition. The formal meaning will be essentially that they produce
numbers out of ‘parametrised’ paths and surfaces. It should be noted that paths
and surfaces differ only in the dimension of their parameter domains and will be
collectively named as ‘surfaces’; moreover, we shall define them as coming with
a parametrisation and there will be no question of choosing a parametrisation or
carrying out a reparametrisation. These terms will be used only for heuristic
descriptions of a link-up with what the reader already knows from calculus.

8-2.1. Definition. 4 k-surface in an open set U c R" is the restriction to the
cuboid [0,17° = {(uy,...,u) : 0<u; < 1 for 1 <i <k} of a C' map from an open
set ¢ R¥ containing [0,11" into U.

If the map is C, we shall speak of a C* k-surface or of a k-surface of class
C.
Remarks. (a) It may be emphasised that a k-surface is a map into an open subset
U of a Euclidean space and not a subset of U.

(b) The domain of a k-surface can be taken to be any closed cuboid in R* with
nonempty interior. We have chosen the so called ‘unit cuboid’ in order to avoid
introducing symbols for the endpoints of the edges. In specific examples, we
may use other cuboids and leave it to the reader to rephrase matters in terms of
the unit cuboid.

(c) It is not required that the map in the definition be injective on the interior of
[O,I]k; thus it is not necessarily a ‘parametrisation’ of its range.

(d) It is convenient to regard a map from the set {0} consisting of a single point
into an open set U < R" as a 0-surface.
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8-2.2. Examples. (a) A 1-surface in R” or R? is the same as a continuously dif-
ferentiable curve or path, as understood in calculus, provided that the
continuously differentiable function involved can be extended to an open set
containing the domain. The next two examples are special cases. It is left to the
reader to verify that the extension is possible.

(b) The function that maps every ¢ € [0,1] into (cos Tz, sinnf) € R? is a I-surface
in R?, usually visualised as the upper semicircle with radius 1 and centre at the
origin, traversed anticlockwise. It may seem more familiar to think of this as
mapping every ¢t € [0,r] into (cost,sin?). The reader will probably regard the
function that maps ¢ € [~1,1] into (~,N(1 — £)) € R? as providing an ‘equivalent
parametrisation’ of the same curve; however, this map is not a 1-surface because
V(1 - ) is not differentiable at the points 1 € [-1,1].
(c) For fixed @ > 0 and b > 0, define

¥(?) = (acost, bsinf)e R?, 0<t<2pm.
Then vy gives rise to a 1-surface, namely,

M?) = (acos (2pmt), bsin 2pnt)) € R, 0<t<1.

Its range is an ellipse whenever p > 1 or p <—1. When p is an integer, it is said to
be a ‘closed’ curve, meaning thereby that A(0) = A(1).

(d) Let u,v,w be vectors in R® with
A v and w linearly independent. As usual,
we shall denote points of R* by (x,y)
instead of (x;,x,). Put

v D(x,y)=u+xv+yw,
u 0<x<1,0<y<l1.

v

Then @ is a 2-surface in R’ and its range
is a parallelogram with one vertex at u
and sides represented by v and w. The

components of ® are

q)i(x)y):uf—"_xvi-‘rywi) l:17253

(e) The function @ that maps
(r0)€[0,1]x[0,1] into (rcos(2m),rsin(2n0)) e R?

is a 2-surface in any open subset of R” that contains its range, the unit disc (i.e.,
with radius 1, centre at the origin).

(f) Define a function ® from [0,1]x[0,1] into R* as

D(r0) = 2rcos(2mO) 2rsin(2mO) 1-r2
, 1+72 7 1472 142 )
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This is a 2-surface in R’ and its range is the upper unit hemisphere described by
the equation z = /(1 — x> —?). Indeed, the point ®(r,0) is the point of intersec-
tion of the line joining (0,0,-1) and (rcos2mB,rsin2mO,0) with the upper
hemisphere. Similarly,

1 _ 2
W(r0) = 2rcos(2m0) ’ 2rsin(210) - 1-r
1+7r2 1+72 1472
maps onto the lower hemisphere. Both are 2-surfaces in R?, because the compo-
nent functions have C' extensions to an open set containing [0,1]x[0,1]. We note
that
2(r,0) = (rcos (2m0), sin (210),N(1 — 7))
also maps [0,1]%[0,1] onto the upper unit hemisphere, but is not a 2-surface for
lack of a partial derivative when » =%1. On the other hand,

A(,8) = (cos 2nB)sin (Amy), sin (216) sin (my), cos Anw)),  (y,0)e [0,1T

does define a 2-surface with the upper unit hemisphere as its range. Here 210
and Sy are the three-dimensional polar coordinates of the point A(y,0).

(g) The function that maps ¢ € [0,1] into (cos (277), cos (4nf)) € R? is a 1-surface
or ‘path’ in R”. It is closed because it maps 0 and 1 into the same point of R”. Its
range is the part of the parabola y = 2x* — 1 between (—1,1) and (1,1). The func-
tion that maps ¢ € [0,1] into (cos (mz), cos (2mf)) € R? is also a 1-surface with the
same range but is not a closed path.

(h) Let ®:[0,1]*=R? be the map given by
D(r,0) = (3(3r—1)cos (210), T (3r— 1)sin (210)).

The reader may verify that the range is the same as in Example (e) above. None-
theless, they are two different 2-surfaces. This one is not injective on the interior
of [0,1]* and therefore does not correspond to what is understood as a ‘paramet-
risation’ in calculus.

The definition of a differential form involves formidable looking integrals
which are not all that difficult to set up. We begin with evaluation of similar
integrals before coming to the formal definition.

8-2.3. Examples. (a) Consider the 2-surface of Example 8-2.2(d). In the expres-

sion ® = x;dx; dx,, to which we have yet to assign any mathematical meaning,

we substitute x; = ®@(x,y) and dx; dx; = (P, D,)/d(x,y)dxdy to get

(P, P,)
a(x,y)

The product on the right side describes a function of (x,y) on [0,1]x[0,1], which
is continuous and therefore has an integral. The symbol [4,® will mean the value

D (x,y) dxdy = (uy + xvy + yw3)(viws — vowy) dxdy.
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of the integral. Note that, although the range of @ is a parallelogram, we do not
mention it in the symbol for the integral. This is partly because the parallelo-
gram is implicit when we mention @ and partly because we may want to make
the same substitutions using a different @ with some other range. Note that ac-
cording to the scheme by which we have substituted for dx, dx,, the order of x;
and x, matters. Therefore, it is better to denote dx dx, by dx;, and agree to dis-
tinguish it from dx;, .
The final integration will always be over the domain [0,1]x[0,1] of ®. Thus

[oX1dx12 means [y +xva + yw3)(viws — vaw) dxdy,
where the latter integration is over [0,1]%[0,1]. The value of the integral is easily

seen to be (u; + %vz + %w3)(v1wz —Vowy).

(b) In the case of a 1-surface, the Jacobian reduces to the derivative. For the 1-
surface A of Example 8-2.2(c) with p = 1, and ® = xdy, the integral [, ® will
mean I[o,u acos 2nt(%b sin2mf) dt. The reader will find that this integral evalu-
ates to mab. Similarly, [, ydx is [, bsin2mt(4acos 27r) dt, which evaluates to
—Ttab.

In the definition we are about to enunciate, ordered k-tuples (i1, i,, ..., i) are
not expected to have distinct entries.

8-2.4. Definition. 4 simple differential form of order &k > 1 (or simple k-form
for short) in an open set U < R" is a real-valued function on the set of all k-

surfaces in U for which there exists an ordered k-tuple {i\,i,, ... i,y with entries
from among 1,2, ...,n and a continuous function f on U such that the k-surface
O is mapped into
F(@) AP, , @, ,....,D;) "
[0, Uy, uty ... uy) '

The simple k-form is then denoted by f dxi1 i, ..;, and the above integral by

i
J.q) fdxiliz“-ik .

If f equals 1 everywhere, then we write the simple k-form as simply dx,

fpy ooy *

If the integers i\ ,i,, ... ,i; are distinct, the k-form abcl-l i, U called a basic
k-form.

When k£ = 1, the Jacobians are understood to be the derivatives % [see
Example 8-2.3(b) above].
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8-2.5. Remarks. (a) The definition requires the function f to be only continu-
ous. However, what we want to do with differential forms will not work unless
the function is at least of class C' and often C%. It makes little difference if one
requires them to have continuous partial derivatives of all orders.

(b) It is not assumed that the function f is unique. If the order of indices in
(iy,1,..., ity 1s changed by a permutation, then the Jacobian is affected to the
extent that it gets multiplied by the sign of the permutation. The multiplication is
undone by multiplying by the sign of the permutation again. Thus

fdx

iy iy

and (signo)fdx; . .
are the same differential form provided (i, i,, ..., is obtained by applying ¢ to
(J1+J2,---,Jr Or vice versa. In particular, interchanging two among the dx; re-
verses the sign. Thus when £ > 3, we have dx;, = (—1)dx, and so on, while dx) »3
= dx,31 = dx31,. Furthermore, when the indices i;,1,, ..., are not k distinct in-
tegers, the Jacobian vanishes and therefore the integral becomes 0. This means

the function f can be replaced by 0.

(c) When n < 3, we denote x,x,,x3 by x,y,z respectively and write dxs, as d(zy),
dx; as d(x) and so on. Accordingly, the integral [, ydx in Example 8-2.3(b)
should have been denoted by [, yd(x).

(d) If the function f is zero everywhere on U, then f dx,.] j,...;, maps every k-
surface into the real number 0. When & > 1, the same is true of any simple &-
form for which the indices ij,i,, ..., are not k distinct integers. In all these
cases, we have the zero simple k-form. In particular, when k > n, the indices
i1,0,...,i; cannot be distinct and hence we have the zero simple k-form.

(e) A 0-form in an open set U < R” is defined to be a continuous function on U.
If f'is a O-form (that is, a continuous function on U) and ® a 0-surface, then the
zero-dimensional integral [4 f is understood to mean f(®(0)). The observations
made under (b) above obviously do not apply to 0-forms.

8-2.6. Examples. (a) Consider the simple 1-form xd(y) and the 1-surface A in
R? of Example 8-2.2(c) with p = 1. The latter is given by

M?) = (acos (27tf), bsin (211)) € R?, 0<t<1.
Here a > 0 and b > 0. By Def. 8-2.4,

[,xd(y) = [ ;0.1 (acos (2m)) %(b sin (27f)) dt = mab.

Note that the value of the integral has turned out to be the Jordan content of the
subset of R? described by the inequality Z—2+2—§ <1. This may be familiar to the
reader from calculus.

(b) Consider the simple 3-form d(xyz) in R* and the 3-surface
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D(r,0,0) = (arcos (210) sin (1), brsin (21O) sin (1), crcos (1)),
(r.8,0)€ [0,17°.
Observe that @ maps the cuboid [0,1]° onto the subset of R® described by
2—2+Z—§+f—§ <1, called ellipsoid. The Jacobian of ® is

o(P,, P,, D)

= 2abem*rsin .
a(r,9,6)

Therefore by Def. 8-2.4,
[ d(xyz) = Jjo,p 2abem’r*sin o drdode,

which works out to be %nabc. Note that the value of the integral has turned out

to be the Jordan content of the ellipsoid mentioned above. Moreover, [, d(xzy) =
—%ﬂ:abc.

We proceed to define a general differential form.

Like any two real-valued functions on a common domain, simple A-forms
can be added and multiplied by constants. Thus, if ®, and , are simple k-forms
in an open set U, their sum ®; + o, is the function that maps every k-surface @
in U into the real number fq, o+ Jq;(,l)z. This is not to say that @, + ®, is a simple
k-form! A general differential form, called just differential form, is understood
to be a (finite) sum of simple diferential forms. Naturally, the same differential
form can be written as a sum of simple forms in various ways, just as a vector
can be written as a sum of vectors in various ways. However, a vector can be
written as a sum of specially chosen vectors (scalar multiples of vectors of a
standard basis, for instance) in a unique way. We shall prove that a general dif-
ferential form can analogously be written as a sum of specially chosen simple
forms in a unique way.

A sum of O-forms is a 0-form, and there is no distinction between simple
and general 0-forms.

Throughout the rest of this section and the next two, we shall be working in
an open subset U of R" for some n. However, they will not always be mentioned
explicitly.

We begin with the formal definition of a differential form in general, having
order 1 or higher. A differential form of order 0 has already been defined in Re-
mark 8-2.5(e).

8-2.7. Definition. 4 differential form of order k > 1 (or k-form for short) in an
open set U C R" is a sum of simple k-forms in U.

Thus a k-form ® (k = 1) can be represented as w = % f;dx;, where the
summation ranges over some k-indices / and each f; is a continuous function. If /
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is a continuous function, then f® denotes the k-form X;(ff;)dx;. Thus
(& frdx;) =Z,;(ff;)dx; by definition of the left side.

8-2.8. Remark. When £ = n—1 > 0, only one among the indices 1,2, ...,n fails
to occur in any given k-index /. It is then easier to index the functions f; by the
single missing index. Thus, for example, when n = 3, it is easier to write a 2-
form as

f3dX12 +ﬁd)€13 +ﬁ d)C23 instead of f]zdxlz +f]3dX|3 +f23d)€23.

When n = 2, this hardly offers any advantage, but the fact that it can be done for
n > 2 helps with notation in the proof of the main theorem of this chapter.

There will be occasions when we want every f; to be of class C' or higher.
We shall then describe the differential form as being of that class.

It is obvious that sums and multiples of 4-forms by continuous functions f
are again k-forms. Also, such familiar looking rules as

O+ =0+ 0, 0+ (0 + 03) = (0 + ) + 0,
Jlo+ ) = fo, + fon, (fi +HO=fio+ Lo, /il LO)=(fiH)o

are easily seen to hold.

A simple k-form o is itself a k-form, because w= m, + ®, where ®, denotes
the zero simple k-form. Moreover, ®, satisfies ® = ®,+ ® for any k-form .
Therefore, we shall henceforth call it the zero k-form and denote it by 0. It will
be clear from the context whether the symbol stands for a real number, a vector
or the zero k-form. For any k-form o, its constant multiple (1) satisfies
o+ (-1)®w = 0. Therefore we denote it by —. In terms of this notation, the last
part of Remark 8-2.5(b) can be expressed as

(a) dx;, =—dx,, and so on when k > 3;

(b) fdx;, .., =0 when the indices i#;,7,...,i are not k distinct integers
12 k
(i.e., when one of the indices is repeated).

As with simple k-forms, the number that a k-form ® maps a k-surface ® into
is denoted by [4®. Thus,

LD(‘DI + ) = I¢(01 + LDOJ2
and

.[cb(ca)) = c.[CD(Da

where c is any real number.

Since the ordered k-tuple (i1,i,,...,i) occurs as an index, we call it a k-
index; if we do not wish to specify &, then we speak of simply a multi-index.
The integers #; must satisfy 1 < i; < n, where n is the dimension of the space we
are working with. When we are working with Euclidean spaces of different di-
mensions simultaneously, it may become necessary to specify the range of the
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integers in a k-index, in which case we shall speak of a k-index in or from
1,2,...,n).

8-2.9. Notation. If the k-index (i, i,,...,i) is denoted by /, then dx; denotes
dx

iy iy
To every simple k-form o there corresponds a k-index / and a continuous
function f such that ® = fdx;. It follows from the definition of [4,® that

Sdxp + gdx; = (f+g)dx;.
Hence every k-form o is a sum

w= j’]ld)c]1 +f12dx,2 +---+f1pdx1p

with distinct k-indices 11,15, ..., 1,, none of which is a permutation of any other;
for instance,

V2 d(xz) + sinzd(yz) + 7 d(xx);
or what is the same thing

sin zd(yz) — y* d(zx)
or

0d(xy) + sin zd(yz) — y*d(zx).
Also, the zero 2-form can be written as
0 = 2d(xx) + 0d(xz) = 7d(xx) + 0d(xz) + 0d(xy), and so on.

If o is not 0, then the terms with k-indices containing a repeated entry can
all be omitted.

The 3-form 5d(xyz) + 8d(xyx) — 4d(yzx) is a basic 3-form, because it is the
same as d(yzx).

Suppose k£ > 1. We noted in Remark 8-2.5(b) above that even a basic k-form
can have several representations. As a first step towards having a standard repre-
sentation we note that there always exists a unique permutation that rearranges
the ordered k-tuple (iy,i,, ..., i of distinct entries i;,1, ..., in ascending order.

A k-index (iy,i,,...,i is said to be ascending if i, <i, <...<i;. The inte-
gers iy,1, ..., I in an ascending k-index are necessarily distinct. Now, a set of £
distinct integers can be arranged in increasing order in one and only one way.
Therefore, for a simple k-form f a’x,.1 by iy which is nonzero, so that ij,i5,...,i
are distinct, there is a unique rearrangement of (7,7, ...,#) as an ascending k-
index J = {jy,/2,-..,jr and

fdx,, .., =(signo)fdx,,
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where © is the permutation that rearranges (i;, i, ..., i) in ascending order as J.
We shall soon show that g = (sign ©)/ is the only function such that the above
equality holds.

Since every nonzero simple k-form can be written as fdx; with an ascending
k-index I, it follows that any k-form , the zero k-form included, can be written
as

0= f,dx, +fdx, +-~+f1pdx1p

with distinct ascending k-indices /,,1,, ...,1,. The possibility that some or all of
the functions f; are zero everywhere is not ruled out. Since there can be only
finitely many distinct ascending A-indices, it further follows that an arbitrary -
form ® can be written as above, with all possible (distinct) ascending k-indices
1,1, ..., included in the sum. In symbols,

(D:ZJf[dxu

where it is understood that / ranges over all ascending k-tuples. Thus the zero 2-
form in R? is represented as

0=0d(xy) + 0d(xz) + 0d(yz)
and in R* as
0= OdX12 + del3 + del4 + OdX23 + OdX24 + OdX34.

If (i\,i,...,i) is different from (i';,i"%,...,i"%), both ascending, then the
two sets of & distinct integers {i},i,...,i} and {i"|,i%,...,i";} must be different
from each other and hence some i; must be different from all the i’; and vice
versa. This too is a consequence of the fact that a set of & distinct integers can be
arranged in increasing order in one and only one way. We shall use it in the next
proof. The reader is reminded that the assumption & > 1 is still in force.

8-2.10. Proposition. If the continuous function f does not vanish everywhere
and I is an ascending k-index, then there exists a k-surface ® such that

(@) [ fdx; # 0 and
(b) LD gdx; = 0 for any continuous function g and any ascending k-index 1'# 1.

Proof. Let I = (i} ,is,...,i;). Suppose f does not vanish at some & € U. Without
loss of generality, we may further suppose that f(§) > 0. Since the function is
continuous, there exists a real number 4 > 0 such that every x € R" satisfying
|x;—&;| <2h fori=1,...,n belongs to U and satisfies f(x) > 0. Let ey, ..., e, de-
note the standard basis of R” and define a function ¥ on the open set (~1,2)" as

W) =&+ 3 (e,

Its restriction @ to [0,1]" is a k-surface in U and f(P(u)) > 0 for every u € [0,1]".
Observe that the Jacobian
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AP, D, ..., D,)

Uy, uty,... 1)

equals /" everywhere and, consequently, by definition we have

[o fax; = h* g f(D()) du> 0.

Let I'=i"1,i",...,i") # I be another ascending k-index. Some entry i’; must be
different from all the j;, call it i }0. Then we have <1),-j0 =E > @ constant, and
hence the Jacobian

E)((D,.{,Cl)ié,...,cl),;)

o(uy,uty,... 1)

vanishes everywhere, so that by definition,

[ogdx;=0. O

8-2.11. Corollary. Any k-form ®, where k 2 1, has a unique representation as a
sum =Y frdx; , where the summation ranges over all ascending k-tuples I.
Proof. The existence of such a representation has already been argued above. It
remains only to prove that, if @ = 2, f;dx; = 2; g;dx;, where both summations
range over all possible ascending k-tuples /, then f; = g, for each 1.

Suppose there is some ascending k-tuple J such that f = f;— g, does not
vanish everywhere. By Proposition 8-2.10, there exists some k-surface @ such
that [, fdx; # 0, i.e., [ f1d%; # [ g7dxs, and also [, frdxy = [ grdxp = 0 for
every I' # J. It follows that [o > frdx; = [ frdx; # [o grdx; = [ 2r grdx;. This
implies > frdx; # 2 grdx;. O

The unique representation of a k-form as 2 f;dx;, as guaranteed by the
above Corollary, is called its standard representation.

The only possible ascending n-index is (1,2,...,n). Therefore, any n-form

in an open subset of R” has standard representation consisting of a single term;

thus every n-form is simple.

8-2.12. Remark. If ® = 3 f;dx; in standard representation, then for any con-
tinuous function f, the standard representation of f® is 2;(ff))dx;. If ®
s frdx; and y = X, g;dx; both in standard representation, then w+y =
21 (fi + g)dx; in standard representation. This simple observation will be crucial
for some of our computations below.
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Problem Set 8-2

8-2.P1.Let o= ,-é fidx; and ®:[0,1]—=R" be the restriction of a C' map. Express
Jo® as a Riemann integral over an interval. Calculate [,®, when ®(u) =
(u,u*,u°) and © = dx + d-.

8-2.P2. Let ® = fidxy; + fodx3; + f3dx)», where f1, f>, f3 are continuous on R? and
@:[0,17 =R, O(u) = (D) (u),@(11),P+(u)) be a 2-surface in R’. Express [, 0 as a
Riemann integral over a subset of R?.

8-2.P3. For the 2-surface ® of Example 8-2.2(d) and the 2-form
= (Vyw, =W )dx;, + (Mwy — 3w, )dx 3 + (VW — VW, )dxy, ,
evaluate [4 0.
8-2.P4. Consider the 2-surface ® in R’ of Example 8-2.2(f). Evaluate [, ® when

w= X]dX23 + deX3| + X3dX12.

8-2.P5. Give an example of a 1-surface @ in R” such that for any 1-form ® in
R”, the value of [, ® is 0.

8-2.P6. Give an example of a 3-surface of class C* in R?.

8-2.P7. Let ¢ be a C' function on [0,1]. Show that it can be extended to a C'
function on an open interval containing [0,1]. Show that the mapping
®:[0,1°>R?* defined by ®(u,v) = (u,v-@(u)) is a 2-surface and describe its
range. Show also that the mapping P:[0,1]—R? defined by W(f) = ®(z,1) is a 1-
surface and describe its range.

8-3 Wedge Products

The collection of differential forms has a built-in multiplication process, called
the wedge product or exterior product, and it is denoted by A. We multiply a p-
form in R" by a g-form in R" and obtain a (p + ¢)-form, which is 0 by definition
if p+¢ > n. 1t suffices to define the wedge product of forms in standard repre-
sentation and then show that the same formula works for forms that are in other
representations.

Until further notice, only forms of order 1 or higher will be under consider-
tion.

8-3.1. Notation. If / = (i}, 1, ... ,i,) is an ascending p-index and J = (j| /2, ... ,jy)
an ascending g-index, we denote by (I,J) the (p + ¢)-index

<19'-]> :<ilsi2a~~-aipsjl 7j2a~~~7jq>~
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8-3.2. Remark. Observe that (/,J) need not be an ascending index even when /
and J are. Examples: / = (147) and J = (135) gives (/,J) = (147135), and [ =
(147) and J = (235) gives {I,J) = (147235), which is an odd permutation of the
ascending index (123457). Also, (123457) is an even permutation of {(J,/) =
(235147).

8-3.3. Definition. Let oo =Y, f;dx; and B =2, g;dx; be a p-form and a g-form,
respectively, both in standard representation. Their (wedge) product is the
(p + q)-form given by

oAB =2, figrdxg .

In R? for example, we have
dxy Adxy = (1dxy + 0dx; + 0dx;) A(Odxy + Odxy + 1dx;) = dxy3.

If we drop the terms in the standard representations of o and 3 for which f;
and g, are zero everywhere, the computation of oA 3 will not be affected. How-
ever, this option is available only when neither o nor [ is the zero form. We do
not wish to consider separate cases when one among them is the zero form. But
in a specific situation, we may drop the zero terms, as we now illustrate.

dx 15 AdXp3a3 = dxX 152343 = —dX 123458 »

dxlS/\dX16 = dX1516 =0 (the Ze1ro 4—f0rm).
Also,

(xydx;s + x5dx;5) A (2dx45 — Xy dXz45) = 2X1dX 3045 — XX, A 3345 + 2X50X 5045

=X X5 X535

= —2x,dx 5345 — X, X5 X345

—(2x; + X, X5 )dX; 5345 -

We draw attention to the fact that the right side of the defining equality for
the wedge product need not be a standard representation for two reasons. One is
that (/,J) may contain a repeated index. A second is that, if each (/,J) containing
no repeated index is subjected to a permutation that rearranges its entries in as-
cending order, the ascending multi-indices obtained after rearrangement may not
be distinct, as noted in Remark 8-3.2.

This makes it difficult to use the sum %, f; g, dx;, 5, for a further computa-
tion of a wedge product such as

(Z1s f1grdxg.n) A hg dxg).

We shall overcome this difficulty by showing that the defining equality for the
wedge product is actually valid even when the differential forms on the left side
are not in standard representation. However, in order to do this, we first work
with the definition as above in terms of standard representations.
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8-3.4. Proposition. Suppose I is a p-index and J is a g-index (neither one as-
sumed to be ascending) and f;, g; are continuous functions. Then

(frdx)A(grdxy) = (frgndxy,s .

Proof. It is clear from Def. 8-3.3 that 0OA3 = A0 = 0 for any o and [.

If 7 contains a repeated index, then so does (/,J) and what is required to be
proved reduces to 0A(gydx;) = 0, which is true. Same when J contains a re-
peated index. So, assume that neither / nor J contains a repeated index.

Let p and ¢ be the permutations that rearrange / and J, respectively, as as-
cending indices p/ and 6J. Then by Remark 8-2.5(b),

Jidx; = (signp)fidx,; and  g;dx; = (sign 6)g, dxs,.

Moreover, the standard representations of f; dx; and g;dx; are
ﬁde = ZK¢p1 deK + (Sigl’l p)ﬁ dxp] and g;de = ZL#GJ deL + (Sign G)g] dxc_].
Therefore, it follows from Def. 8-3.3 that

(frdx) A(gsdx,) = (sign p)(sign ©)(f; 1) dx pr, 61y - (D
Now we consider two cases.

Case 1.(l,J) contains a repeated index.

In this case, (p/, ¢.J) also contains a repeated index. Consequently, both
(sign p)(sign ©)(f1 &) dx(p1,csy and (f;g)dxy s, are the zero form and it follows
from (1) that (f]dXI)/\(gjdXJ) =0= (f[gj)dx@h .

Case 2. {1,J) contains no repeated index.

This means no index occurring in / occurs in J and we can unambiguously
define T to be the permutation of (/,J) that agrees with p on [ and agrees with ¢
on J. Then t is the product of the permutations p and ¢ (in either order) and
sign T = (sign p)(sign ©). Also, ©(1,J) = {pl, 6.J). Therefore

(/181 dxpr, 0, = (f187)AXnr,.ry = (sign D)1 81Xy
Substituting this in (1), we get
(frdx) A(gsdx,y) = (sign p)(sign o)(sign T)(f; g/)dxy, 1
= (sign 1)2(ﬁgj)dx<lqj> = (frg)dxy, - O

8-3.5. Proposition. Both distributive laws hold: If o. and B are p-forms and vy is
a q-form, then
(a+P)AY=0aAy+PBAy and YA(o+ B) =yAo +YAB.

Proof. Suppose
o=2 frdx;, B=2,gdx; andy=2, h;dx,,

all being standard representations. Then by Def. §8-3.3,
OAY =2y frhrdxy gy, BAY=ZX1, grhsdxy..
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Besides, the standard representation of o + B is 2y (f; + g/)dx;. Therefore we can
apply Def. 8-3.3 to obtain

(o +BYAY=Z, (fi + gD hydxy
=2 frhydxy n+ 2 grhsdxg .

The preceding three equalities lead immediately to (ot + B)AY = oAy + BAY.
The proof that YA (0. + B) = YyAo + YA B is similar. O

We now use the two propositions above to establish that the defining equal-
ity in Def. 8-3.3 for the wedge product is valid even when o. = X; f;dx; and § =
%, gsdx; are not standard representations.

8-3.6. Proposition. Let oo = X, f;dx; and B =X, g;dx,, not necessarily standard
representations. Then

OAB =2, f1g dxy. -
In other words,

(Er frdx )Ny grdxy) =Zpg figrdxg,sy.
Proof. By repeated application of distributivity (Proposition 8-3.5), we have
anB =% (fidx)A(Zs grdxs)) = X Z; ((frdx) A(gsdx,))
=%, figdxy by Proposition 8-3.4. O

8-3.7. Proposition. The wedge product is associative: If o,,B,y are forms of any
orders, then

(@AB)AY=an(BAy).

Proof. Straightforward computation using the above two propositions. O

8-3.8. Proposition. [f'o. is a p-form and B is a g-form, then
aAp = (1Y (B

Proof. In view of the distributivity proved in Proposition 8-3.5, it is sufficient to
prove the equality only for simple forms o = f;dx; and 3 = g;dx,. Proposition 8-
3.4 and the property noted just after Def. 8-2.7 that fi(,0) = (f1.f2)® further re-

duces the matter to the case when o, = dx; and B = dx;. Thus we need only prove
that

dx;ndxy= (=1 (dx;ndxy),

where [ is a p-index and J is a g-index. We also know from Proposition 8-3.4
that

deAd.XJ: dX<["/> and dXJ/\d)C[ = dX<‘/,1>.

Therefore, we need only prove that
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dx<[’_[> = (—l)pquUJ) .

This will follow if we show that the sign of the permutation ¢ that rearranges
(I,J) as (J,I) is (1Y, because we know from Remark 8-2.5(b) that dx , =
(sign ©)dx,y, ,. To see why sign 6 = (1), let

I:<i19i27‘”7ip> and J:<jl’j29~~~ajq>'
Then
<[,J>:<i|,i2,...,ip,jl,jz,...,jq> and <J,[>:<j],j2,...,jq,il,iz,...,ip>.

It is easily seen from here that permuting (/,J) into (J,/) can be achieved by
successively interchanging each of 7,7, ;,...,7;, in that order, with its immedi-
ate neighbours to the right j,,j,,...,j, (again, in that order), one after the other.
This calls for ¢ interchanges to be carried out for each of the p indices
Ip,iy-1,...,11. Therefore, sign 6 = (1) O

The above considerations did not take into account forms of order 0, which
are defined to be continuous functions. We complete the picture by setting fA
= aAf = fo,, where f is a continuous function and thus a 0-form. It is left to the
reader to verify that the properties of the wedge product that have been shown to
hold continue to be valid when one or more of the forms involved are of order 0.

8-3.9. Propeosition. I/ 1 is a continuous function and o, are forms of any or-
ders, then (ho) AP = h(aAB) = oA (hP).

Proof. Immediate from Proposition 8-3.6. O

Note that, since ho. = hano. and A(0AB) = ha(aaP), the first equality in
Proposition 8-3.9 can also be obtained as a consequence of Proposition 8-3.7.

8-3.10. Remark. It is a consequence of Proposition 8-3.4 and Proposition 8-3.7
that, for any k-index (iy, i, ..., iy, the equality

dx

i = Ax, Adx, Ao Adx;
12 k 1 2 k

holds. We shall often write dx, Adx; A---Adx; for dx;; .
thing, for dx; , where I = (i}, iy, ..., ij).

;, OF, what is the same

-1

Problem Set 8-3

8-3.P1. For 1-forms a, 3, show by direct computation (without using Proposition
8-3.8) that AP =—P Ao

8-3.P2. Show that there is a 2-form o in R* such acac # 0.
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8-4 The Exterior Derivative

In this section we define the exterior derivative of any differential form. More
specifically, given any k-form  of class C' in an open set U  R”, we produce a
(k+1)-form in U, called the exterior derivative. A characterisation is provided at
the end.

We remind the reader that all our discussion pertains to an open subset of
R".

8-4.1. Definition. The exterior derivative of a O-form f of class C' is the 1-form
df :ng (D; [ )dx;

and that of a k-form (k > 1) of class C" in standard representation ® = Y, f;dx;
is the (k + 1)-form
do =2 (dff)~dx;.

It may appear at first sight that the symbol ‘dx;” now has two meanings, one
in the sense of the definition of a differential form and another as the exterior
derivative of the 0-form f given by f(xx) = x;. However, the exterior derivative of
this 0-form is nothing but what we have called d; in the former sense. So the
two meanings turn out to be the same.

8-4.2. Examples. (a) If f: R*SR s given by f(x1,x,x3) = xi2 + xox3, then
df'= 2x,dx, + xydx, + x,dx; .

(b) If /;: R"—>R is the function that maps any point in R” onto its ith coordinate,
ie., fi(x1,x2, ..., x,) = x;, then D, f; = 1 or 0 according as j = i or j # i. Therefore,
dﬁ = dxi .

(c) Suppose n =2 and w is a 1-form given in xy-notation as

o= fdx+ gdy.
Then
do = (df)A(dx) + (dg)A(dy)

= alabc+aidy Adx+ a—ga’x+a—galy Ady
ox ay

ox dy
= aldy/\a’x+a—gaz’x/\az’y
dy ox
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because the terms involving dx Adx and dy Ady vanish.

(d) Suppose n =4 and o is a 2-form given in terms of x;,x,,x3,x4 by
O = x4dx Adxy + xx3dx | Adxs.
Then
dw = dxsndxi Adxy + (x3dxs + xodx3) Adxy Adx;

= dxsAdxi Adxy — x3dxi Adxy, Adxs
since dxzAdx, Adxz = 0.

(e) The 1-form in R? given by @ = xdy is not the (exterior) derivative of any 0-
form. Suppose, if possible, that ® = df, where fis a C' function on R?. Since by
definition, df'= (D f)dx + (D,.f)dy, for any closed curve Y with component func-
tions y; and 7y, i.e., a 1-surface with y(0) = (1), we have

_L{(,O = J.[O,l] [(Dxf)(yl(t)a YZ(t)) [%j + (Dyf)(YI(t)s YZ(I)) (%)] dt

= Jio %f (), v2(0) dt = f(1(1), va(1)) = f(v1(0), 12(0))
=0,

because Y(0) = y(1). On the other hand, for the closed curve given by Y(¥) =
(cos (2mt), sin (21t)), we have jyu) =1 as seen in Example 8-2.6(a). This contra-

diction shows that ® = xdy is not the (exterior) derivative of any 0-form.

8-4.3. Theorem. If o is a p-form and B a q-form, both of class C', then AP is
also of class C" and

d(anB) = (do) AP + (=1Yon(dp). O]
Moreover, d is linear. In particular, if ® = 2 f;dx;, not necessarily in standard
form, then dw =Yy (dfy) Adx;.
Proof. 1t is straightforward to see from the definition of wedge product that oA 3
is also of class C'.

The linearity of d on 0-forms is a trivial consequence of the linearity of par-
tial differentiation. For higher order forms, when 2 f;dx; and X, g;dx; are
standard representations, their sum has standard representation >, (f;+ g)dx;
and the multiple ¢X’; f; dx;, where ¢ € R, has standard representation >; (¢f;)dx; .
This allows us to check linearity by a routine computation. It is then straightfor-
ward to verify that do = > (df;) Adx; even if ® = 3 f;dx;, not necessarily in
standard form.

We begin by proving (1) when one among o and f is a 0-form. If both are,

then (1) is essentially the product formula for derivatives. It can be summarised
as

d(/g) = (df)g +/(dg),
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when fand g are C' functions. We shall use this special case shortly.

Suppose o is a 0-form and 3 is a g-form, ¢ > 0. In view of the distributivity
of the wedge product and linearity of d, we need prove (1) in this case only
when B = gdx;, a simple g-form. In order to avoid losing sight of the hypothesis
that o is a 0-form of class C', which means simply a C' function, we shall de-
note it by f. Then

df = dgndx;.

Using the result of the preceding paragraph and the distributivity of the wedge
product, we obtain

d(onB) = d(fAB) = d((fg)dx)) = d(fg) ndx; = ((df)g +[(dg)) ndx,

= ((d)g)) ~dx; + (fldg)) ndx,.
Now, by Proposition 8-3.9, we have

(@)@ ndx; = (df) A(gdx;) = (do) B

(f(dg)) ndx; = f(dgndx,) = an(dp).

Therefore d(aAP) = (do) AP + aa(dB). Since p = 0 in the present case, the
foregoing equality is the same as (1).

If o is a p-form, p > 0, and B a 0-form, we can prove analogously that (1)
holds, or alternatively, appeal to the fact that Al = BAo when one of these is
0-form, and apply the case just established in the preceding paragraph.

and

Finally, consider the case when both o and 3 are higher order forms. Again,
in view of the distributivity of the wedge product and linearity of d, we need
prove (1) only when both are simple forms. Therefore we take

o=fdx; and [=gdx,,

where f and g are C' functions and dx,, dx, are basic forms with ascending in-
dices 1,J. Then
oAB = fagdxy , =fg(dx;ndxy).

Therefore,
d(anB) = d(fg)ndxy, s, = (df)g +/(dg) ndxy, s,

= (@N ~dxy gy + (fdg) ndxy
Now, by Proposition 8-3.9,

(@) ndxy s, = ((df)Q) A(dxi Adxy) = df A(dx; A g dx)
=(df ndxp) A (gdx)) = (da) AP.
Also, by Proposition 8-3.8, dg Adx; = (—1Ydx; Adg and hence
(fdg) ndxy, = (fdg) A(dx;ndx)) = f(dg A(dx; A dx,)))
= f((dgndx) ndxy) =f((—1Ydx; ndg) ndx,)



8-4 The Exterior Derivative 269

= (P fadxin(dgndxy) = (1Y an(dp).
Thus,

d(AB) = (do) AB + (=1 oA (dB). O

Since d is defined only on forms of class C', then d(dw) makes sense only
for forms ® of class C°.

8-4.4. Corollary. Let ® be a C* form of order p in U € R". Then d(dw) = 0.

Proof. Observe that d(dx;) = d(1dx;) = 0 because every partial derivative of the
constant function 1 is 0.

Let o= fe C*(U). Then
d(do) = d(E,(D;/)dx)
= ’_’IZZI (D ;f)dx;ndx;.

I<i<j<n
=0,
because D;;f'= D, f by Schwarz’ Theorem 3-5.3 (f'is of class C?). Thus, d(dw)
=0 when o is a C* form f of order 0. This may be written as df'= 0.

If o = fdx;, then by Def. 8-4.1, do = dfndx;. Consequently, by (1) of Theo-
rem 8-4.3, d(dw) = d*fndx; + (=1)' dfad(dx;) = 0 since d’f = 0 and d(dx;) = 0.
This proves the result for simple forms. Additivity of & now implies it for gener-
al forms. ]

8-4.5. Remark. The 1-form in R? given by ® = xdy is not the (exterior) deriva-
tive of any C* 0-form. Indeed, if xdy = df, where f is a C* function, then &’f= 0,
whereas d(xdy) = dxady # 0. [See also Example 8-4.2(¢).]

We have shown in the above paragraphs that the exterior derivative pos-
sesses the following properties:
(i) disadditive: d(o.+ ) = do + df;
(ii) d(aAB) = (do) AP + (1o (dP), where p is the order of o
(iii) d(do) =0, where o is a C* form of any order.

These properties together with the fact that df = él(Dj f)dx; when f"is a 0-form
of class C' characterise d on the family of all C' forms. Applying the last men-
tioned fact to f= x;, we obtain df = jZil(Dj f)dx; = ldx;, because all other terms in
the summation have D;f = 0. Thus df'= dx;. Since f'is of class 7, (iii) now leads
to 0 = d(df’) = d(dx;). Hence, repeated application of (ii) yields
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d(dx; ndx, A+ ndx, ) =0.

But by Remark 8-3.10 dx,.] A a’x,.2 A A dxl.k =dx;, where I = {i;,i,...,i;). Thus
d(dx;) = 0 for any k-index I. Now, if ® = X, f;dx; is any k-form of class C', by
(1) and (ii), we have dw = X, (df; ndx; + f; d(dx;)) = Z,; df; ndx; since d(dx;) = 0.

Problem Set 8-4

8-4.P1. Write the standard representation of the 1-form df, where f(xi,...,x,) =
é} x;* and show directly from the definition that its exterior derivative is 0.

8-4.P2. Let o be a k-form in U < R”. If there is a (k—1)-form A such that dA =
®, then o is said to be exact in U. If dw = 0, then o is said to be closed in U. Let
U=TR*\{(0,0)} be the plane with origin removed. Show that the 1-form

_ xdy—ydx
n xz +y2

is closed but not exact.

8-5 Induced Mappings on Forms

Let us consider in detail what happens to functions (0-forms) under a mapping
of their domain.

Suppose that U is an open subset of R”, V" an open subset of R”. If a real va-
lued function fis defined on V, then a map 7:U—V naturally generates a related
function

T*f=foT
on U. Thus, if 7 maps the open set U into the open set V, then the set of real va-
lued functions on ¥ is mapped (in the opposite direction) to the set of functions
on U under the correspondence f~7*fin the manner described above. If fand T
are both continuous, then the same is true of 7*f.

In other words, we have shown that a mapping 7* of 0-forms on V into 0-
forms on U arises naturally from a continuous map 7:U—V.

The definition below extends this idea to forms of higher order when 7 is a
C' map from U'to V.

We shall use x for points of U and y for points of V. Let ¢, ....,¢, be the
component functions of 7. Note that for each i (1 <i < m), dt; =j2'=1‘.1 (Dit;)dx; is a
I-form in U. They will be mentioned in the forthcoming definition.

8-5.1. Definition. With notation as above, the mapping T*, which maps each k-

form
w=b dy;
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in standard representation into
T*0 =2 (beT)dt, ndt; A+~ Adl,

where (i|,iy,...,iyy = 1, is called the mapping (of forms) induced by the map
T:U-V.

Example. Let @ = y dy; Ady, + yi2dyi adys + yiyadys adys be a 2-form in
R?, and let 7: R*—R> be defined by

2
T(xl 7x2) = (-xl + X2,X2 ax1x2)'

The component functions of T are #(x1,x;) = x| + X2, H(x],xp) = xzz, t(x1,x) =
X1X2. SO, dtl = dx1 + dX2 . dtz = 2X2dX2 . dt3 = dexl + X dXz . Therefore,

T*0 = (x1 + x2)(dx; + dxy) A(2x2dx,) + (xlxz)z(dxl + dxy) A(xadx) + x1dxy)
+ (X + X202 (2x2dx2) A (X2 dxy + X dxs)

= (2x2(x1 +x) + Xt — 2 — 2x24(x1 + xz))dxl Adxs.
8-5.2. Remarks. (a) If any of the terms in the standard representation ® =

2.1 bidy; are the zero form of order k, then so is the corresponding term in T*.
Therefore, in computing 7*® from ®, we may omit the zero terms.

(b) Combined with this observation, the definition yields T*(dy,-u) = altiu for u =
1,...,m.
(c) In the case of a simple k-form,
O=fidy; =frdy, ndy, A--ndy;
the observation and Definition together yield
T*o=(fioT)dt; ndt, n---Adt;,
= (TH) T* (dy, ) A T*(dv, ) A=A T(dy, ).
The last equality holds irrespective of whether (i|,i,,...,i) is an ascending in-

dex or not. Indeed, the same permutation is needed on each side to produce an
ascending index.

(d) By the second part of Remark 8-2.12, T*(w; + ) = T*(w;) + T*(,).

(e) It follows from (c) and (d) that, for an arbitrary k-form ® = >, b;dy; in V,
whether in standard representation or not, we have

Tr0 =3 (T*b ) T*(dy,) A T*(dy, ) Ave A T*(dy, ).

() If ®; and ®, are forms of any orders, then
(o Awy) = TH(0) A T* ().

This is trivial if one is a 0-form, and follows from (d) and (e) for other cases.
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(g) A k-surface ® is, by definition, the restriction of a C' map defined on an
open set containing the cuboid [0,1]%. Therefore it makes sense to speak of @*,
thereby meaning @, *, where @, is any C' function of which ® is the restriction.
In case there are more than one such @, then whatever we say about ®* will be
valid with any choice of @, .

The following is a natural property of induced mappings on forms. The
symbol ST denotes the composition So7, and 7*S* denotes T*oS*.

8-5.3. Proposition. Let U, V, W be open sets in R",R™ and R", respectively. Sup-
pose T:U—V and S:V—W are C' maps. If w is a k-form in W, then S*o is a k-
form in V, T*S*® and (ST)*w are k-forms in U and

T*S*o = (ST)*o.
Proof. Only the equality is in need of proof. If ® is a 0-form, that is, a continu-
ous function f: W—R, then
(ST)*® = (SoT)*f = fo(SoT) = (foS)oT = (§¥f)oT = T*(S*f) = (T*S*)f.

Thus, the equality holds for 0-forms.

Let us denote points of U, V, W by x,y,z, respectively. Let #1,...,7, be the
component functions of 7 and si,...,s, be the component functions of S. We
denote the component functions of ST by u;,...,u,. If ® = dz,, then

S*w = §*(dz,) = ds, :JZ:‘,I (Dssy)dy;,
so that
T*S*w = T*(S*w) :A/_g.l ((Djsg)eT) dt; :jgl ((Djsq)eT) 2, (Dity) dx;
= lﬁ; (Diug)dx; by the chain rule

= du, = (ST)*o.
Ifo= qZ:,Ifqdzq is a 1-form in W, we have
(ST)*w = qzl ((STY*£,)(ST)*dz, = qzl (T*S*£)(T*S* dz,) = I*(qz; (S*£2)(S* dz,))
= T*(S*w) = T*S*.

The general case of the equality to be proved now follows from Remark 8-
5.2(e). O

The next proposition shows that exterior differentiation of forms and of in-
duced forms have the expected relationship.

8-5.4. Proposition. Let U be an open set in R", V an open set in R"™ and suppose
T:U—V is a C* map. Then

d(T*w) = T*(dw)
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for any k-form ® in V of class C".

Proof. We use y = (y1,...,y,) for points of V and x = (xy,...,x,) for points of U.
Lett ....,t, be the component functions of 7. If ® = f'is a O-form, then

TH(dw) = T*(E, (D;)dy)) = £ T*D,/) T*(dy)) = 2 (D)D) dy
= £ (D)°DE (D) ds = 2 (E, (D) T)Dit) )
=3 Di(foT)dx; by the chain rule

=d(T*f) = d(T*w).
Thus, the result holds for 0-forms.
Now let w = f'dy;, ndy, A---ndy, = fdy;, wherel=(ii,i,...,i) is an as-
cending k-index. Then by definition of 7* and Remark 8-5.2(f), we have
d(T*w) = d(T*f dt, ~dt; A+ A dt,.k)
= d(T* ) dt, Adt, Ao Adt + ()T d(dt, Adt, A+ Ad),
where we have used (1) of Theorem 8-4.3 in the second step. Since the result
has been shown above to hold for 0-forms, we have d(T*f) = T*(df). Apply the
identity (1) of Theorem 8-4.3 to d(dt; Adt; A---Adt;) repeatedly k—1 times

and use Corollary 8-4.4 k times, which we may, because T is of class C*. Upon
doing so, we find that d(dt; Adt; A---Adl, )= 0. Therefore,

d(T*®) = T*(df )ndt, ndt, ~---~dt, =T*df)AT*(dyy)
=T*(df ndy)) by Remark 8-5.2(f)

= T*(dw).
Thus, the result holds for simple k-forms. Since d and T* are both additive [see
Theorem 8-4.3 and Remark 8-5.2(d)], it holds for all A-forms. O

Problem Set 8-5

8-5.P1. Consider the mapping T:R—R? defined by 7(x) = (x*,x°). If @ = y, dy is
a 1-form in R%, show that 7*m = 3x*dx.

8-5.P2. Let T:R*>R be defined by 7(x,y) = x — y. Find T*(dx).

8-5.P3. Let T:R*>R? be given by T(x;,x,) = (ax; + bx,,cx; + ex;) and let o =
dyy~ndy,. Show that T*® = (ae — bc)dx; Adx, .

8-5.P4. Verify in R” that dfia...Adf, = CIGE) dx\A...Adx, for any C'
functions fi, ..., ;. I(Xsee5,)
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8-5.P5. In the notation used for Def. 8-5.1, show for any simple k-form ® = b;.
dy;in V with k < n that

A, ,...,t,)
T*w= (bjoT — iy,
(bre )ZJ X, 5 X; ) I
1 Jk
where (iy,..., i) = I and the summation extends over all ascending k-indices J =

iyeersjin {1,...,n}. If k> n, then T*w® = 0. It is not assumed that / is ascend-
ing.

8-5.P6. Let ® be a k-form and @ a k-surface in an open set U < R™. Let
1,:[0,11">R" be the inclusion map, that is, 1(y) = y. Show that [, = LkCI)*co.

8-5.P7. Let T:R*>R’ and f:R* >R’ be C* mappings and the component func-
tions of f'be f, 1>, /3. Suppose  is the 1-form defined by @ = f,dx+ fody + f3dz.
Prove that T*(dw) = ((curl /)oT,N), where N(u,v) € R* has respective compo-
nents

AN.T) ABLT) ATLT)

ow,v) - ou,v) T ou,v)

curl ' is as defined on p.296 and (,) denotes the inner product in R>.

8-6 Chains and Their Boundaries

The modern language of differential forms originated with E. Cartan but the
general Stokes theorem was proposed by H. Poincaré as the formula:

jao 0= LD do,

where @ is a k-surface with ‘boundary’ d® in an open set U < R”, in which the
(k—1)-form ® is defined.

George Stokes was the first to bring the classical result attributed to him in-
to the public domain, but he did not claim credit, as he had come to know of it
from Lord Kelvin.

The general Stokes theorem transforms an integral over a surface into
another over the region enclosed by the surface, and includes the well-known
theorems of Green, Gauss and Stokes, but with somewhat restrictive hypotheses.

First we verify the Stokes formula for the n-surface defined by the identity
map of [0,1]" onto itself and then go to the general case with the help of induced
forms.

The boundary of the 1-surface defined by the identity map of [0,1] onto it-
self, intuitively speaking, is the ‘sum’ of two zero-dimensional surfaces that map
onto {1} and {0}, the latter taken with a negative sign, for reasons discussed in
Section 8-1. For Green’s theorem on [0,1]? in calculus, the boundary is supposed
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to be traversed ‘anticlockwise’, which means it is taken to consist of the four 1-
surfaces given by

1—‘lo(t) = (0’ t)) FZO(t) = (t> 0)’ 1—‘ll(t) = (l’t) and FZI(t) = (t’ 1)’

but I';o and I',; are to be traversed in the reverse direction in order that the anti-
clockwise orientation be maintained. Reversal of direction means that integrals
computed using the above parametrisation are to be multiplied by —1. Equiva-
lently, the parametrisation is to be reversed (replace ¢ by 1—¢). Thus we may
think of the anticlockwise boundary as —I"1g+ 1 +150—1I;, or

2 .
2 (1)(To—T).

To make this precise, we need to have a way of (i) forming sums of k-surfaces
with 1 and —1 permitted as coefficients; (ii) setting up integrals of differential
forms over such sums and (iii) generalising I';y and I’ to higher dimensions.

8-6.1. Definition. Let U be an open subset of R" and ®,,®,,...,®, be k-
surfaces. By a k-chain in U we mean a formal linear combination of k-surfaces

-
c= 2:)1 a,®,,
q
where ®,,®,, ..., D, are k-surfaces and a, ,a,, ...,a, are real numbers.

It may be emphasised that ¢ is not a linear combination of the functions
O, D,,..., D, defined on [0,1]" but a ‘formal’ linear combination, meaning the-
reby a function defined on the set of all k-surfaces with respective values
a,a,...,a, on the surfaces @, D,, ..., D, and value 0 at every other k-surface.

The integral of a k-form ® over a chain ¢ = ﬁl a,®, is defined by
=

.[C(‘O: qél anQQQ)

We can add k-chains and multiply them by real constants as we do with any real
valued functions defined on a set, which is the set of all k&-surfaces in the present

case. Thus, if ¢ = Zaqd) andc—Zaq thenc+c—2aq<1> +Zaq<1)

where terms may be combined in the usual manner, and for any real number a,
the chain ac is 2 (aay)®@,. We give below some elementary properties of chains.

8-6.2. Proposition. Let a be a real number and let ®,®' be k-forms in an open
set U C R". Suppose c¢,c' are k-chains in U. Then
[@+o)=[o+] o,
[oooo=l o+ 0
le0=af o
Proof. If ¢ = qé)l a,d,, then
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Jo@+0)= 2 a,fp @+ 0) = Z a,Jp,0+ Z s, 0'=[ 0+ 0

The remaining assertions can be proved analogously. O

We proceed to define the boundary of a k-surface in U < R". For each posi-
tive integer 7, 1 <i <k, define mappings T';y and T';; as
1—‘iO(xl 9o sxkfl) = (xl oo Xic] ,O,Xi, cee axkfl)
and
Ffl(xl 9 ,kal) = (xl seeesXicls lyxis cee ’xkfl)'

These functions map [0,1]°" into various faces of [0,1]*. For instance, if k = 2,

then Iy, takes [0,1] onto the edge of [0,1]* between the vertex with coordinates
(0,1) and the vertex with coordinates (1,1), whereas I'5, takes [0,1] onto the edge
between the vertex (0,0) and the vertex (1,0). Actually, they map R*" into R
and have derivatives of all orders. Therefore, if V/ is an open set in R* containing
[0,11%, then the inverse images Ty (V) and T, "'(V) are open sets in R*"' [see 2-
6.P11], which T’ and T';; map into V. Consequently, if @ is a k-surface, then the
composed maps ®ol;; and ®ol are (k—1)-surfaces and hence the summation
in Def. 8-6.4 below describes a (k— 1)-chain. Besides, if ® is of class % then so
are ®ol’;; and d ol

Strictly speaking, our notation for the maps I';y and I';; should indicate & as
well, but we prefer not to complicate our symbols and instead take & as unders-
tood from the context. When we work with a composition such as I'jjol, it
should be borne in mind that the value of & for I'y is 1 higher than that for I'j,.
So, the symbols I'y, and I'j, do not mean quite the same thing in the composition
I'jpol'y as they do in the composition I'jpoI'. This caveat applies to 8-6.P2—8-
6.P4.

8-6.3. Remarks. (a) The component functions of I';y and I';; may be denoted by
(T); and (I'y);, 1 <j < k. With this notation, we can describe I';y by setting

X, j<i
Xy J>i

and analogously for I';; with 1 replacing 0 when j =i.

(b) Since I';y and I';; map [O,l]k’1 into R%, there are k Jacobians associated with
each, depending on which k—1 component functions we are taking the Jacobian
of:

I(Tip)se s (Tig) 15 (i) jars s (Fig i)
O(Xp5enes Xy )

, 1<j<k,
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and similarly for T';;. However, since (I'y); and (I';;); are constant functions (0

and 1, respectively), the Jacobian vanishes unless j = 7, in which case, the Jaco-
(x5 X51)

bian is ) 1 everywhere.

8-6.4. Definition. If ®:[0,1*—U < R" is a k-surface, k > 1, the boundary of ®
is defined to be the (k— 1)-chain

30 = 2 (-1)(@oT — ®oly).

and that of a 1-surface ®:[0,1]>U < R" is the 0-chain ®(1)— ®(0). Further-
more, the boundary of a k-chain ¢ = qZ; a,D,, where k> 0, is defined to be

e = qzl a,00,.

One can informally think of d® as essentially the restriction of @ to the fac-
es of [0,1]%, each of which is suitably ‘reparametrised’.

If k=2, then
0D = iXi)l(—l)i((IDOF[O —@ol}) =®oly+ Dol — Dol g — Dol
The boundary being the sum of 1-surfaces with appropriate signs is a 1-chain.
8-6.5. Example. Let the 2-surface ®:[0,1]*—R? be given by
D(r,0) = (rcos (3w0O), rsin (370)).

Since I'1(2) = (0,7), T'11 (1) = (1,1), T20(2) = (£,0), T2 (1) = (£,1), we have

ol (f) = (0,0); range is just the origin;

®ol(f) = (cos (3mr),sin (37r)); range is the circle of radius 1 about the origin,
the subsets [0,%] and [%, 1] of [0,1] both being mapped into the upper semi-
circle;

Dol (2) = (2,0); range is the segment between the origin and (1,0);

ol (f) = (-,0); range is the segment between the origin and (—1,0).

Note that the ranges of @ oI}y, ® oI,y and oI’y contain interior points of
the range of @. Moreover, integrals over ®ol’,, and ® oI, need not cancel.

8-6.6. Remark. Consider the inclusion mapping 1,:[0,1]*—R, that is, 1, (y) = .
Since it is the restriction of a C* map of R into itself, it provides a k-surface and
the induced map 1,* is defined. Also, I';p and I';; can be considered as mapping
R*! into Rk, and moreover the compositions 1,01, and 10T reduce to I';p and
I';; . Consequently,

X ,
oy = 2 (D)Mo —Tin).
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Problem Set 8-6

dv, ifj<i
8-6.P1. Show that l—‘io*(dyj) = Fil*(dyj) = 0 lf] =1
de, ., ifj>i.

8-6.P2. If @ is a k-surface, k > 1, prove that

k s )
J(0®) = El(—l)’j%(—lY(d) olpoljy — @ oIl — D olyolyy + dolol ).

8-6.P3. Prove that, for any i,j, 1 <i<;j<k-1, we have
(i) TioTjo = Tjip00T o0,

(ii) Tl = Ty 10T,

(iii) TioT o = [y oo,

(@iv) 1“l.lol“j1 = 1“#1,101",-1 .

8-6.P4. If @ is a k-surface, k > 0, prove that

k= L
() 2 51 PaTiely =0,
(i) £, 5(1)"/(@0T o, + ®oT0T) =0,
Lok k
(i) £

=1,=1

~

1

(_I)qu)orilor/'l =0.

~.

8-6.P5. Let ¢ be a k-chain, k> 1. Show that d(dc) = 0.

8-6.P6. State conditions under which the formula

[o(fdw) =[5 (f0) - o (@) A0

holds, and show that it generalises the formula of integration by parts.

8-6.P7. For the 2-surfaces @ of Example 8-2.2(e) and Example 8-2.2(h), de-
scribe the four maps @ oI, Pol’|,Pol,,,Dol%; on the domain [0,1]. Also,
describe their ranges in the terminology of analytic geometry of R?. Which, if
any, of the four maps has range contained in the the boundary of the range of @

in the sense of Def. 2-4.12? (Answer this on the basis of a figure; precise proof
not required.)

8-6.P8. Let m be an n-form of class C' in an open set U < R” and ¢ an (n+ 1)-
chain of class C. Show that [,, & = 0.
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8-7 The General Stokes Theorem

We begin with the substitution form of the fundamental theorem of calculus in
the language of differential forms.

8-7.1. Theorem. Let F be a C' function on an open set U R and ® a 1-surface
of class C* in U. Then [, dF = |5 F.

Proof: [ dF = [y (Fo@)®' = ] (Fo®)(s)®'(s) ds = F(®(1)) ~ F(®(0)).

Also, 0@ = O(1) — D(0). (Here ®(0) and ®(1) denote 0-surfaces.) Conse-
quently,

[0 F'= F(®(1)) = F(®(0)). 0

8-7.2. Example. Let ' = x be the 0-form in an open set U, where [0,1] c U
R'. Let ®:[-1,1]—U be given by ®(x) = x*. Then

fodF=1"12tdt=0
and
[so F = F(@(1)) - F(®(-1)) = F(1) - F(1) = 0.
8-7.3. Theorem. Green’s Theorem for Differential Forms. Let U be an open
subset of R?, ® a 1-form of class C' in U and ¢ a 2-chain in U of class C*. Then
.[Bc 0= .[c do.
Proof. We use y for points of R? and x for points of R'. It is clear from the defi-

nitions of boundary and of integral over a chain that we need establish the
equality only when c is a C* 2-surface ®.

Since  is a 1-form, it can be represented as

W= fody + fidy.

dw= (D fi — D1 f2) dy\ Adys,

where the negative sign comes from interchanging dy, with dy,.

Therefore,

To begin with, suppose the 2-surface @ is given by the inclusion map
1:[0,17>=R2. Observe that (D;f)or = (D;f;) for i = 1,2 and the Jacobian of 1 is
1. Consequently,

[ do=[(D\f))dyi~dy, — [ (D2 f2) dyi Adys

= J.[o,1]2 (Difi1)dydy, — .[[0,1]2 (Da2f2)dyrdy .
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Using Fubini’s theorem, we have

N L do = J[O,l] dyZ.[[(),l] Difi)dy: - I[O,l] dy .[[0,1] (D2f2)dy,.
ow,

J.[O,l] (D1 f1)dyr = fi(1,p2) = f1(0,32) = (fiel'11 = fiel10)(32)

and
fo.1 (D2£2)dy2 = f(1.1) = f5(01,0) = (20T — froTa0) (1)

Therefore, [, dw is seen to be equal to
Jo (fioTu = fioTi0)(y2) dyz = fio 1y (2T = froTa) (1)

= Jio (el = fioTio)(x) dx = Jio 4y (froT a1 — fooT50)(x) dix (1)

by renaming the variables y, and y; as x.

We next compute the integral [, . Now, o1 = —T'j + I'j; + Ty — Iy ; there-
fore,

.[DI(D: I o= _Ir10m+jrllm+jr20m_jr21 . 2)
T+ +T59 Ty

JF/I 0= Ir[l Sfrdy, + .[rl-] Sady

dr; dr,
= .[[0,1] fiela “x dx + »[[0,1] froTy de.
Together with Remark 8-6.3(b), this implies
Irn 0= -..[0,1] Sfiolydx. 3)
Similarly,
J.l"io(D:-.‘[O.l]ﬁoriod)a @)

Substituting (3) and (4) in (2) and using (1), we obtain the required result in the
case when the 2-surface ¢ = @ is the inclusion map 1:[0,1]*—R”.

Suppose now that ¢ is a 2-surface ®:[0,1]*—R% Then by the result of 8-
5.P6,
Jo do = |, @*(dw)
= L d(®*w) by Proposition 8-5.4.

Now, @ is (can be extended to be) a C* map from an open subset of R” to U and
o is a 1-form in U. Therefore ®*w is a 1-form in an open subset of R?. This
permits us to use the special case that has already been proved. Together with
Remark 8-6.6, this leads to
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2 i
[ d@*w) = [, ®*0 = [ @0 =% 1), P*0- [, P*w)
2 .
E(—l)‘ (Tio-T31)

= lzill (_l)ijlk,l To*(@*w) — T *(P*w)) by 8-5.P6 again
= lZi',l —l)iflk_ [(@oT)*(@) — (Pol'y)*(w)) by Proposition 8-5.3

= Iacp o,

applying 8-5.P6 to each of the four integrals in the previous sum. As recorded at
the beginning of this proof, it is sufficient to prove the theorem when the chain ¢

is a 2-surface, as has now been done. O

8-7.4. Example. Let ®@ be the 2-surface of Example 8-3-2(h). Below we trans-
form the integral [, xdy via Theorem 8-7.3 and show that it does not yield the
area (content in R?) of the range of ®.

Theorem 8-7.3 transforms the integral into [,dxAdy. By definition, this
means _l.[o’l]z Jodrd®, where Jg means the Jacobian of @ with respect to (7,0).
Computation leads to Jg = 37"(3r— 1). Therefore, the integral evaluates to %“,
which differs from the area of the range of @, as the latter is 7.

8-7.5. Stokes Theorem for Differential Forms. Let U be an open subset of R,
o be a 1-form in U of class C' and ¢ a 2-chain in U of class C*. Then

Jac(‘) = .[c do.

Proof. Let 1:[0,1]*—R? be the inclusion map. Then by 8-5.P6 and Proposition 8-
5.P4, we have

Jodo = [, @*(dw) = |, d(@*w).
It follows from here by using Green’s Theorem (Theorem 8-7.3) that

[odo=[, ®*o.
Now,

Jn@*0=2 ([, o], o*)
=2 (1] (Ty*(@*0) ~ Ty *(@®*)) by 8-5.P6 again
=2 (1), (@T)"(@) ~ (@2T;)*(w)) by Proposition 8-5.3
=l o,

applying 8-5.P6 to each of the four integrals in the previous sum. O
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8-7.6. Example. Let @ be the 2-surface described by the equations
x=cosu, y=(b+sinu)cosv, z=(b+sinu)sinv,
where 0 <u <27, 0 <v<2mand b € R. (When b > 1, this parametrises a torus.)

Let ® = Pdx+Qdy+Rdz be a 1-form in R of class C'. Then do =

R L P _9R 0 o
[ay azjdyAdZJr(az o jd Adx +[8 e jdx/\dy We shall prove

that [,5 ® = [¢, dw, where 0D = I_)i:1 (—1)/(@oT 'y — Dol ).

From the definition of integrals of forms, we get

oP JoP
Lb(a dz Adx —=— Y dx/\dy]

B oP d(z,x) (9P J(x,»)
_J.[O’Z"]Z ((goq)j(u,v) PIORD) [g (I)J( ) 3w, )Jd dv

:I[O,Zn]z ((%Pofbj(u V) cosv—[%—io@](u V) Slnv}smu(b+smu)dudv. (1

Set F(u,v) = Po®. Then
oF _ BP JoP
n ( ay J( ) (—oq)j(u v)5— 8

=—sinv(b + sinu) [g—iod)j(u,v) + cosv(b + sinu) (aa—focl)j(u,v). 2)

Substituting from (2) into (1), we find that the right side of (1) becomes
I[oz]ZSI uaa—dud I Sm”(F(“ 2m) — F(u,0))du=0

since F(u,2m) = (Po®)(u,2mw) = P(cosu,b +sinu,0) = (Po®@)(u,0) = F(u,0).
Therefore, it follows from (1) that

oP oP _
jq) [a—dz dv— G- din dy] —0. 3)
On using the definition of integrals of forms, we get

(BQ dx ndy— dy/\dzj

IO o [( o@j(u V) smusmv—(aag od))(u,v) cosu] (b+sinu)dudv. (4)
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Observe that
%(sin v(b + sinu) (Qo®)(u, v))
=sinvcosu (Qod®)(u,v) +sinv(b + sinu) {(%—gocb)(u, V) (—sin u)

+ (aa—godn(u,v)cos ucosv+ (aa_goq))(u,v)cosusinv} )

and

%(cos ucos v (Qod)(u,v))
= (-sinv)cos u (Qo®)(u,v) + cosucosv {( oCD)(u v)(—sinv)(b + sinu)

+( Qo(D)(u v)cosv(b + sin u)} (6)

Substituting from (5) and (6) into the right side of (4), we get

I[O 2 Bu (sinv (b + sinu) (Qo@)(u,v)) + v(Cos ucosv(Qo®@)(u,v)). (7)
Now,
j [0, 2r] 8u (sinv(b + sinu) (Qo®)(u, v)) du =
and
J [0,27] OV (COS”COSV(QOCD)(M v))dv=0.
Therefore
jq) (%—gdx/\dy—%_gdy /\dZJZ
Similarly,

I, (g—Rd dz—%—dzxxdxj = 0.

Together with (3), these two equalities show that [4, d® = 0. In order to prove the

required equality, we must thus show that [, ® = 0.
Now,

fowPdx = lg.r, Px+gor,, Pdx+]o.r, Pdx—[o.r,, Pdx. (8)

°l0 °loon

Also, using the subscript 1 to denote first components, we have

d _ 20 — 9 cos0= 2 -9
E(((Dorlo)](t)) = E(DI(O, t) 3t cos0 Y cos2m 3 @1(275, t)
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=2 (@:Ti)1(0).

Therefore,

Jo.r; Pdx = [1g 2m (Po@T10)(1) %(«bormn(r)) dt = Jgor, 5, Pelx.

Since 4 (@oTy) () = 4 @1(4,0) = S By(1,21) = 4 (PoTao)i(9),

therefore,

Jot3y Py = [y (Po®OT20)(0) (@ T0)i(0) dt = fr, Pl

Using (8), we therefore conclude that [,, Pdx = 0.

Similar arguments, all exploiting the fact that ®(0,7) = ®(2x, ) and D(z,0) =
@(t,2m), lead to [, Ody = 0 = [,4 Rdz. Consequently, [,, ® = 0, as remained to
be shown.

8-7.7. Theorem. Divergence Theorem for Differential Forms. Let U be an
open subset of R®, ® a 2-form of class C" in U and ¢ a 3-chain in U of class C*.
Then

J.ac 0= J.c do.

Proof. We use y for points of R* and x for points of R?. It is clear from the defi-
nitions of boundary and of integral over a chain that we need establish the
equality only when ¢ is a C* 3-surface ®.

Since  is a 2-form, it can be represented as

O =fidyndys + fodyiadys + fidyiadys.
Therefore

do= (D, fi =D/, + D3 f3) dy\ ndy, ndys,
where the negative sign comes from interchanging dy, with dy; .

To begin with, suppose the 3-surface @ is given by the inclusion map
1:[0,17°—R>. Observe that (D; f;)ot = (D, f;) for i = 1,2,3 and the Jacobian of t is
1. Consequently,

[ido = [ (Di fi) dvi Adyy adys = [ (D2 f2) dvi Adya Adys + [, (Ds f3) dy Adys Adys
= .[[0,1]3 (D1 f1) dyrdyadys — J[o,1]3 (D2fa)dy dyrdys + J[0,1]3 (D3 f3)dyrdyadys.

Using Fubini’s theorem, we have

L do= J.[(),l] dy; J.[(),l] dyZ.[[O,l] (Difi)dy

- J.[O,l] dy .[[0,1] dy; 1[0,1] (D2f2)dy,
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+ I[O,l] dy I[O,l] dyzj[o,u (D3 f3)dys.
Now,

J‘[o,u (D1 f1)dyr = f/i(L,y2,y3) = fi(0,y2,33) = (fiol 1 = fioT10)(y2,3),

. fioa) (D2£2)dy2 = (01, L,ys) = (01,0,33) = (0T — oT20)(11,13)
an

[0 (D3./5)dys = fi(31,92,1) = (31,2, 0) = (3031 = f30T30)(y1,32)-
Therefore, [, dw is seen to be equal to
J[Q]] dyzj[0,1] dys (fiol'1i = fielo)(v2,13)
- I[O,l] dy J[o,l] dys (fr0121 = f20T20)(V1,13)

+ J‘[o,l] dy, J[o,1] dyr (fiols1 = f30T30)(V1,02)

= .[[O,l] dx .[[O,l] dxy (frol = fielio)(x1,x2)
- ...[0,1] dx I[O,l] dxy (f20T21 = fr0T20)(x1,x2)

+I[0,1]dxlf[o,1]dx2 (f3ol31 = f30I30)(x1,x2) (1)

by renaming each of the variable pairs (32,33), (¥1,73), (V1,)2) as (xX1,x).

We next compute the integral [, ®. Now,

ov=-Tg+ T+ Ty —T5 —T5 +I5.

Therefore
J.Bl 0= I o
i+ 1+ =T =30 +T75
:*J.rlow"_.l.r“0)+.[r20w*.|.r21w*.[r30w+.|.r31 . (2
Now,

Iry0=Ir, fidrndys+ [ frdyindys + [ fdvindy,

a((ril)Z s (ril)3)
a(x;,x,)

(T, (Ty1)3)
a(xlﬂxz

AT (T1)2)
9(x;,x,)

= J.[O’l]zﬁor,'l dxl dX2

+ I[o I]zfzorzl dx;dx,
+ I[o I]zﬁorzl dxydx; .

Together with Remark 8-6.3(b), this implies
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IFM o= I[O,l]zfioril dxydx; . 3)

Similarly,
Jriom:I[O,l]zﬁorideldxz . 4)

Substituting (3) and (4) in (2) and using (1), we obtain the required result in
the case when the 3-surface ¢ = @ is the inclusion map 1:[0,1]’—R>.

Suppose now that ¢ is a 3-surface ®:[0,1]’—R% Then by the result of 8-
5.P6,
LD do= L O*(dw) = L d(®*w) by Proposition 8-5.4.

Now, @ is (can be extended to be) a C> map from an open subset of R to U and
o is a 2-form in U. Therefore, ®*w is a 2-form in an open subset of R?. This
permits us to use the special case that has already been proved. Together with
Remark 8-6.6, this leads to

3 .
J,d(@*®) =[5, P*o = 3 [ o =2 ), "0~ [, ®*o)
£ (-1 (Tio=T)
3 .
=3 (1], , (To*(@*0) - Ty *(@*®)) by 8-5.P6 again

i _1”%71 (DoTp)*(w) — (Pol;)*(w)) by Proposition 8-5.3

i=1

= J‘acb 0,

applying 8-5.P6 to each of the 6 integrals in the previous sum. As recorded at
the beginning of this proof, it is sufficient to prove the theorem when the chain ¢

is a 3-surface, as has now been done. O

8-7.8. Example. The divergence theorem is used to evaluate

Iaq,xdyAdz +ydznadx +zdxady (1)

where @ is described by

D(t,u,v) = (tcosu, (b + tsinu)cosv, (b + tsinu)sinv),
where 0<r<a,0<u<2n,0<v<2nanda,beR,and 0 <a <b.
By the divergence theorem, the integral to be evaluated equals

[o3dxndyndz = 3] Jo dtdudv

[0,a]x[0,27]%[0,27]
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cosu —tsinu 0

= 3[ det| sinucosv tcosucosv —(b+tsinu)sinv |dtdudv
[0,a][0,2]<[0,27c]

sinusinv tcosusinv (b+¢sinu)cosv

=3 (b + tsinu)dtdudv = 67| #b + tsinu)dt du
[0,a]*[0,2m]x[0,27] [0,a] x[0,2m]

=6m’a’h.
We next evaluate (1) to verify the answer.

By definition,
dxdyndz +ydzndx + zdxndy) =3dxndyrdz

and
0B = 3 (-1) (0T~ PoTy),
where I'; and I';; are understood as
Tio(u,v) = (0,u,v), T 1(u,v)=(a,u,v), 0<u<2m, 0<v<2m,
(8, v) =(8,0,v), Ti(t,v)=(t,2m,v), 0<¢t<a, 0<v<2m,

s0(t,u) = (t,u,0), T51(t,u)=(t,u,2n), 0<¢t<a, 0<u<2m

What we have to prove is the equality

i(fl)"fq,orl_oxdy/\dz +ydznadx + zdxndy
- il(_l)ij@l"n xdyndz +ydzndx +zdxndy
=f¢3dxAdyAdz.

The six compositions ®oI';; and ®oI';; occurring in the boundary chain d® are
(@I o) (u,v) = DP(0,u,v) = (0,bcosv,bsinv),
(DT )(t,v) = D(2,0,v) = (t,bcosv,bsinv),
(@oT50)(t,u) = D(t,u,0) = (tcosu,b + tsinu,0),
(@I ) (1, v) = D(a,u,v) = (acosu,(b + asinu)cosv,(b + asinu)sinv),
(@oTy))(t,v) = D(t,2m,v) = (t,bcosv,bsinv),
(@oT5)(t,u) = D(t,u,2m) = (tcosu,b + tsinu,0).

Using the above compositions, we first compute

3 . 3 .
3 Do, xdyadz— 3 (1 four, xdyndz.
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By Def. 8-2.4, we have

I¢orIOXdyAdZ:I d(bcosv,bsinv) dudv="0.

(0,20 o(u,v)
Similarly,
_ d(bcosv,bsinv) _
I¢or20x‘1y/\dz '[[O,a]x[o,zn] t RITRY) dtdv=0
d(bcosv,bsinv)
because — 5 =
_ d(b+1tsinu,0) _
I¢OF3OXdyAdZ '..[O,a]X[O,Zn] tCOSUW dtdu=0.

o((b+asinu)cosv,(b+asinu)sinv) dudv
d(u,v)

chrll xdyndz = j[o,zn]z acosu

acosucosv —(b+asinu)siny
(acosu)-det . . dudv
acosusinv  (b+asinu)cosv

-
-

[0, 2n?

02 (@ OS )b+ asinu)dudy = 200,

Iq,orZIXdyAdZ:I ; d(bcosv,bsinv) didv=0

[0,a]x[0,27] a(t,v)
d(bcosv,bsinv)
because N T7RO S
_ d(b+tsinu,0) _
I¢cr31 xdyndz= j[o,a]x[o,zn] (tcosu) Tt dtdu=0.

From (1)—(6), it follows that
3 i 3 ;
;(—1) Iq%rioxdy/\dz - ’;1(—1) jq,or” xdyndz
=~0-2a’) + (0~ 0)~ (0~ 0) = 2’
Next we compute
3 i 3 i
lgl -1 .[cborioy dz ndx — ; 1) '[‘I’Oril ydzAdh.

By Def. 8-2.4, we have

d(bsinv,0
Ll,ol-wydm\dx=f[072n]2 (bcosv)% dudv=0.

(1)

2)

)

4)

)

(6)

(7

®)
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Similarly,
_ d(bsinv,t)
Lbol“z ,ydzndx = I[O,a]X[O,Zn] (bcosv) ) dtdv
0 bcosv
=[ (bcosv)-det dtdy
[0.a1x[0.21] 1 0
=L a0 CDc0S V) drdv = —mals. 9)
. 9(0,fcosu)
= + =(.
Lbor”y dzndx j[o,a]X[O,zn] (b+tsinu) o(u,v) didu =0 (10)
Jor,, v dzndx = I[o o (b T @sinu)cos 90 teosu) 4

o(t,u)

i (b+ asinu) det acosusinv (b+asinu)cosv dud
= asinu)cos v-de udv
[0, 20" —asinu 0
= I[O o a(b + asinu)’sinucos’vdudv = 2m*a’b. (11)
_ d(bsinv,1) _ 2
I¢°r2‘ ydzndx I[o,a]X[o,zn] (beosv) a(t,v) didv =-mab (12)
as in (2).
As in (3), we have
_ . 9(0,zcosu) _
Jory yende=[ (b tsing SGEERE didu=0. (13)

From (8)—(13), it follows that
3 . 3 )
;(_l)lj¢ori0deAdx — Z:l(—l)’fq)oril ydzAdx

=—0-21’d’b) + (—mab* — (~mab?)) — (0 — 0) = 2m’a’h.  (14)

Finally, we use the compositions to compute

3 ; 3 .
2 Douryzdendy = 2 (-Do.r, zdxndy.



290 The General Stokes Theorem

B .. 9(0,hbcosv) B
Ll,ol-mzan/\afy—I[O’Zn]Z (b SIHV)W dudv=0. (15)
_ . d(t,bcosv)
[oury, zdxndy =] oo PSIOY) =5 = %5 dtdv
= a0 (~b*sin®v) dtdv = mab. (16)
Japoryy zdx Ady =0. (17)
B . . d(acosu,(b+asinu)cosv)
Iq,or”zdxxxdy—j[o’mz (b +asinu)siny FIERY) dudv
— 1 ()
=] (b+asinwsinv-det| " S dudy
(0. 2] acosucosv —(b+asinu)sinv
=] - a(b + asinu)’sinusin®vdudv = 2n’a’b. (18)
[gur,, zdxndy = J[Oyu]x[m (bsinv) 2L drdy = mab’ (19)
as in (16).
Japory, zdx Ady =0. (20)

From (15)—(20), it follows that
3 i 3 i
;(—1) I¢°ri0 zdxndy - 1;1(_1) ‘Lboril zdxndy

=—(0-21’d’b) + (mab® — (mab®)) — (0 — 0) =2m’a’h.  (21)
From (7), (14) and (21), we find that
i(—l)i.fq,orioxdy/\dz +ydzadx + zdxndy

- i(_l)%orn xdyndz+ydzadx + zdx ady = 6m°a’b.

8-7.9. The General Stokes Theorem. Let U be an open subset of R", ® a
(k= 1)-form of class C" in U and ¢ a k-chain of class C* in U. Then

J.ac 0= J.c do.

Proof. We use y for points of R” and x for points of R*".

It is clear from the definitions of boundary and of integral over a chain that
we need establish the equality only when ¢ is a C* k-surface.
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The case when n = k = 1 easily handled. Indeed, ® is a 0-form, which is
simply a C' function F on the open set U R, and the k-surface c is a 1-surface
®, which is nothing but the restriction to [0,1] of a C* function that maps an
open set containing [0,1] into U. Therefore, dc = 0® = ®(1) — ®(0). (Here O(0)
and @(1) denote O-surfaces.) Consequently,

[5. @= F(D(1)) — F(D(0)).
Also,

[ do =g, (Flo®)®' = [\ (Fo®)(s)D'(s) ds

and the required equality holds by virtue of the fundamental theorem of calcu-
lus. [See the substitution form of the FTC in Section 8-1; the latter does not
assume either F' or @’ to be continuous and is therefore more general than the
present case under discussion.]

Now suppose that n = k> 1 and that the k-surface c is given by the inclusion
map 1:[0,1* >R, that is, u(y)=y.

Since n = k > 1, the (k— 1)-form ® is an (n — 1)-form and hence [see Re-
mark 8-2.8] we can represent ® as

k
o= Elﬁdyl/\"'/\dy;_|/\dyi+|/\"'/\dyk.

Therefore,
do= IZ: dfi ndy A Ay AV A Ay
= 5 (D) Df)dyi A ady,
where (-1)""' comes from interchanging dy; successively with dy,,...,dy; . Re-

call that the chain ¢ under consideration is the k-surface given by the inclusion
map 1:[0,17*>R". Moreover, (D; f)oy. = (D;f;) and the Jacobian of 1 is 1.
Consequently,

k g
Jedo=% (D) [ (Dif)dyin-- Ady;
k j—
= 2D f i (Df)dyr--- .
Using Fubini’s theorem [see Remark 6-3.3], we have

k -
Jedo =2 ) [ig gt dyi- dyidy - dv Jio,y (Dif)dyi.
Now,

J.[(),l] (Dlﬁ)dyl :ﬁ(J’la ceesVicls 1 s Vitlseee 7yk) 7ﬁ(y|7 cees Vil 90;yi+1 9 ,J’k)
=(fiolu = fioli)) (V15 -5 Vict s Vit1 s -+ V0)-

Therefore |, do is seen to be equal to
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k -
iZ::] 1 IJ.[()ﬂl]kfl(inril —fioLi) Wt -+ 5 VictsYiet s -5 Vi) Ayie - Ay dyier-+- dyy
k .
= IZ:‘,I(—I)“1 J‘[O’l]k—l (fioli = fioli) dxy- - dxjy (1)

by renaming the variables yi,...,V;1,Vi15 ..., Vi @S X1,...,X1 . (One can consider
the renaming as a transformation of variables with Jacobian 1.)

We next compute the integral [, . As noted in Remark 8-6.6 above, dy
= él (—1)/(Ty — T1); therefore
fico= 5 I ©=2 (71)11"1'00)4—1-2:“1 (*l)ﬂj.ril . )
5(*1)1 (Tyo=T31)
Now,

k
J.l"l»l w:jgljl‘ilﬁdyl/\"'/\dyj—l/\dyjﬂ/\"'/\dJ’k

k a((ril)l9"‘5(ril)j—19(ril)j+l9“‘9(Fil)k)

:Z .ol",- dx '”dx7.
jZIJ.[O‘l]H Sl (X5 ey Xyy) 1 1
Together with Remark 8-6.3(b), this implies

Jry ©=Jio et fioTudy -+ doxicy 3)
Similarly,

J‘rioa):'.‘[o»l]k71 ﬁoriodxl "'ka,l . (4)

Substituting (3) and (4) in (2) and using (1), it follows that the theorem is valid
for the special case whenn=k>1, wis an (n—1)-formand ¢ =, =1,.
Suppose now that » may or may not be equal to k and that ¢ is a k-surface
®:[0,1]7*>R". Then by the result of 8-5.P6,
[odo =], ®*(dw)=[, d(@*w®) by Proposition 8-5.4.

Now, @ is (can be extended to be) a C* map from an open subset of R to U and
o is a (k—1)-form in U. Therefore ®*w is a (k— 1)-form in an open subset of
RR*. This permits us to use the special case that has already been proved. Togeth-
er with Remark 8-6.6, this leads to

Ilkd((b*(o) = ...Blkq)*o‘) = .[ *o

3 (-1 (Tjp-T)

=l

k. .
=2 (1 (Jr, @*0 - [, ®*0)

= £ (1], (" (®*0) - [, *(®*e)) by 8-5.P6 again
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lZ]:.l (—1)’[1](71 (DoT)*(w) — (Pol';)*(w)) by Proposition 8-5.3

Iacp o,

applying 8-5.P6 to each of the 2k integrals in the previous sum. As recorded at
the beginning of this proof, it is sufficient to prove the theorem when the chain ¢
is a (k— 1)-surface, as has now been done. O

8-7.10. Example. We shall verify the equality in the general Stokes theorem
when the differential form ® is
dxy Adxy Adxy + (1 +x0) dxy Adey Adxy + (p—x4) dxy Adxy Adxy + x3dxy Adxy Adx;
in R* and the chain ¢ is the inclusion map 1:[0,1]*—>R*.
From the given ®, we obtain
do=(0-1+0-0)dx;AdxyAdxsAdxy =—dx) Adxs Adxs Adxy.
Therefore,

L do= —L dxyAdxandxsAndx, = —1[071]4 dydyydyydy,=—1.
Now,

Lo(yny2.y3) = (0,y1,02,y3) and Ty i(v1,2,13) = (1L,y1,32,)3).
80, [, @ = Jjo1p (D(Ddyidysdys =1 =] . Hence,

[

rlow_'frn @=0.
Also,
D0(r1,y2,33) = (01,0,32,p3) and o 1(y1,32,93) = (v1, 1,y2, ).
So, .[1‘200) = .[[0,1]3 yidyrdy,dys = 5 and Irﬂw = .[[0,1]3 (n+1D)dyidyrdys = 3.

Hence,
|

0(yy2,33) = (V1,)2,0,3) and T31(y,p2,33) = (Vi,02, 1,y3).
80, [ryy @ = Jjo.1p (M1 —y2)dy1dyady; = 0 = |, | ©. Hence,

]

rloa)—J}11 o=-1.
Next,

r30°)_jr3, ®=0.

Finally,
Lyo(yi,02.33) = (V1,02,3,0) and Ty i(yi,y2,¥3) = (V1.2,¥3,1).

S0, Jr,y @ =105 3dyrdyadys =% =], . Hence,

[

Taking the alternating sum of [ ®—[ ®, 7= 1,2,3,4, we get [, @ =

r400)—j o=0.

—0 + (1) — 0+ 0 =—1, which is the same as the value obtained for [, do.
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Problem Set 8-7

8-7.P1. Use the divergence theorem to evaluate

faq,Fl dyndz + Fydzndx + F5dxndy, (1)
where
®:[0,17%[0,21]%[0,1]—R’
is given by
D(r,0,z) = (rcosH,rsinb,z)
and

F(x,y,z)=(1- (x2 +y2)3, 1- (x2 +yz)3,xzz2 .

8-7.P2. Using Green’s theorem, calculate the integral falde + Qdy, where P =
5—xy—y* and Q = 2xy—x* and 1 is the identity mapping of [0,1]* = {(x,) : 0
<x<1,0<y<1}. Verify the answer by evaluating the integral directly.

8-7.P3. Use the Stokes theorem to evaluate the integral

Jo ydx +zdy + x dz, (1)
2 .
where @:(r,0)—(rcos 0, rsin 6, %), 0<r<a,0<06<2nis a2-surface in

R,

Verify your answer by actually evaluating the integral (1).

8-8 The Integral Formulas of Vector Analysis

We conclude this chapter with some discussion that helps exlain the connection
between Stokes theorem (Theorem 8-7.5) and the divergence theorem (Theorem
8-7.7) of differential forms to the classical Stokes and divergence theorems of
analysis by reducing integration of forms over ‘parametrised’ surfaces to inte-
grals over domains in Euclidean spaces.

We begin with the following:

8-8.1. Definition. Let U be an open set in R". A vector field is a map F:U—-R"
of the open set U into R". Since F associates a vector F(v), v € U, to each point
of U, F is called a vector field. The map F is represented by coordinate func-

tions, F=(fi,fo, ... »fn)-

Recall that F is continuous (respectively, differentiable) if each f; is conti-
nuous (respectively, differentiable).
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8-8.2. Example. Let U be the complement of the origin in R For (x,y) € U, set

Flx,y) = B A—
- [(x“ryz)z (x2+y2)2J

Then F Is a vector field which to each point (x,y) € U associates

(ﬁ,ﬁ), having the same number of coordinates, namely, two, in
X +y x4y

this case.

Suppose f'is a differentiable function on U < R. Then gradf is the vector
field

)

gradf=[af al : al]

a_x]’axz : .’axn
With every vector field F defined in an open set U < R" is associated a 1-form

Op = fidx, + fadx,+ -+ fodx,. 2)

We define the divergence of F to be the function div F:U—R given by

:£+an+...+E (3)

divF — .
X, ox, ox,

The 1-form corresponding to the vector field gradf'is

0 df
£ @

The 1-form (4) is precisely the exterior differential of 1.

The correspondence between forms and scalar and vector fields in R® de-
serves special mention. The above said correspondence will be needed in the
latter part of the chapter.

Let U be an open set in R*. A vector field on U is a continuous function
F:U—>R? with component functions F,F, F3.

With every such F is associated a 1-form in U, namely, Ar = Fdx + F,dy
+ F3dz and a 2-form oy = Fidyadz + Fydzandx + Fydxady. Conversely, every
I-form A in U is Ar and every 2-form  is @y for some vector field F on U.

Let /'be a C' function defined on U. The gradient of f is the vector

gradf—(aiaiai].

ox, dx, dx,

Thus grad fis a vector field on U. It is often denoted by Vf.
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Observe that F = grad f if and only if A = df. Let F = (F|,F,,F;) be a C'
vector field on U. Its curl is the vector field

curl F = VxF = (Eaiaiaiaiaij

and its divergence is the function

divF=V-F o ai oF,
ox dy oz
Since Wp = Fidyadz + Fydz ndx + Fydx ndy, when F is Cl, we have
dog = ai ai+a— dxndyndz =(divF)dxndy ndz
ox dy ox

as all other terms vanish. Therefore, div = 0 if and only if dwz= 0.
Furthermore, since

d(Arp) = d(Fdx + Fydy +F3dz)={aaldy dx+aa dZ/\de
y

andx dy+a—2d2/\dy oF; 3cbw\a’ +a Sdyndz
ox oz ox dy

o 9 dy d+aF oF dz d+ai—aid/\dy,
ay 0z PR ox 9y

it follows that curl F =0 if and only if d(Ar) = 0.

Example. Observe that curl (grad /) = 0, where £U—R is a C* function, and
div (curl F) = 0 when F is a C* vector field.

If F = grad f, then Ar = df. Since d(Ar) = d(df) = 0, it follows that curl F =
0, that is, curl (grad 1) = 0.

By definition of divergence and curl,

divcurl py= X[ 95 _9F ), 9 [0F 0F) 0[dFk JR)_,
ox\'dy 9z ) ody\dz odx ) oz ox ay

since F is of class C* and Schwarz’s theorem (Theorem 3-5.3) is therefore appli-
cable.

Now, let F = (f1,/,...,/s) be a vector field in an open set U < R". Consider
the (n — 1)-form corresponding to F

0= ,-221 (—I)Hﬁdxl AdXy A AdXADX A - Adx, . (5)
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Then dw is the n-form

d(o=(_i %)dxl/\dxz/\---/\dxn
i=1 ax[_
= (divF)dx Adxyn -+ Adx,. (6)

See proof of Theorem 8-7.9 and (3) above.
8-8.3. Definition. Let I" = [0,1]" be the unit cuboid in R" and let \,, be the inclu-

sion mapping with domain I" into R". Then 1, is called a positively oriented
surface and its boundary

A, =3 (-1)(Tp—Tn) (7
is said to be the positively oriented boundary.

Now let ® be an injective mapping of [0,1]" into R” of class C* whose Ja-
cobian is positive (at least in the interior of [0,1]"). Let Q = ®([0,1]"). By
Inverse Function Theorem 4-2.1, Q is the closure of an open subset of R". We

define the positively oriented boundary of the set Q to be the chain
oD = ®(d[0,1]"). ®)
We denote this (n — 1)-chain by €.

8-8.4. Volume Element. In Examples 8-2.6(b), the value of the form dxadyadz
over the surface ®:F—R’ defined by

D(r,0,0) = (arcos 210 sin o, brsin 210 sin o, crcos ),  (7,0,0)e [0,17°
turns out to be % nabc. This is the Jordan content of the ellipsoid
;—§+;—j+z—§ <l.

Let @:/">R" be an n-surface in R". Assume that @ is injective, continuous-
ly differentiable with positive Jacobian Jg. Let f be a continuous real-valued
function on the range Q of ®@. By Transformation Formula 7-4.4,

[0, A(P(u) () du = LD( oy S dx. )

It follows from the definition of the form ® = fdx; Adx,A--- Adx, and (9) above
that

Jo® = [0,y S(P(W) Wo(u)du = [ 1o,y [ dx. (10)
Consequently, when f = 1 everywhere, (10) becomes

I¢dx1Adx2A~~~/\dxn :J‘[O’l]n dx. (11)
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The above discussion leads to the following:
8-8.5. Definition. The n-form
dxiAdxon ... Adx, (12)

is called the volume element in R". It is often denoted by dV, (the subscript is

dropped when it is not necessary to specify the dimension.)
Remark. Let F = (f1,/,...,/,) be a vector field in an open set U < R". Define
o =fidx, + fodx, + -+ fodx,
and let y:/—R be a l-surface, y(u) = (Y1 (v),Y2(u), ...,Y.(u)). Then the integral of
of can be written in the following way:
S|
[Lor =2 [ SNy () du
1
= I FOru))Y () du
I
= [ FOyw)) 1] y'(w) | du, (13)

where ¢ denotes the unit vector in the direction of Y'(u). We call |y(u)|du the
element of arclength along y and denote it by the customary notation ds. The
formula (13) can then be written in the form

Jywp = [(F-1)ds. (14)

The Surface Area. Let ® be a 2-surface in an open set U < R’ of class C' with
parameter domain /* ¢ R” given by

0= @i y), x2= o), 1= Oswv), (wv)e L (15)

Assume that @ is an injective mapping of I* onto ®(/*). It is well known that the
vector

AP, B DD L D,
o(u,v) : o(u,v) : o(u,v)

e, (16)

represents a normal to the surface described by (15) and is denoted by N(u,v).
We denote by n the unit vector in the direction of NV, that is,
n=A_
M
If ® is a k-surface in R* of class C' with parameter domain /*', associate
with (u;,u,,...,u;1) the vector

AP, D, ... D, )

10y g <k O(Uy s Uy yen ey lly_y)

N(”l;”Z""aukfl): ei/; > (17)
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where e, e, ..., e; denotes the standard basis in R¥. The Jacobian in (17) corres-
ponds to the equation

(xl 5 X25.nt ,Xk) = q)(ulal'tZa"-auk*l)'

If £ is a continuous function on ®(I*"), the area integral of f is defined to be
[ fdA =] (@, 1z, ... ug ) | Ny iz, sy |y -+ dugy. (18)
In particular, we obtain the area of @, namely,
A®@) = [ 1 [N,z ... sugey) || duty - du . (19)

We next compute the area of the boundary é (-1)(Ty—T) of I* using (19).
Observe that this is a linear combination of (k — 1)-surfaces in R*. They are, in
fact, 2k in number. Fix ¢ = . Then the mapping Fi]»OZ
(uy,uz,y . st) = (Uy, Uz, ... ,0, ..., 1), where O occurs in the iith coordinate of
the k-tuple on the right. A straightforward computation shows that the sum on
the right side of (17) equals e Hence the (k— 1)-dimensional area of the ith
face, using (19), equals 1. Hence the total area of the boundary is 2k. Moreover,
N-e,-p=0,p¢j,p= 1,2,...,k

We next use the formula (19) to evaluate the surface area of of the sphere
O:(u,v)—(asinucosv,asinusinv,acosu), a >0and 0 Su <7, 0 <v<2m A
straightforward computation shows
M = d’sinucosu, M = a’sin*ucosv, m

R 3ir) R = a*sin*usinv,
N = d’sin*ucosve, + a*sinusinve, + a’*sinucos ues,
IN|| = a*|sinul,
A@) = [} [T sinududv = 4nd’.
8-8.6. Stokes Theorem. Let F = (fi,15.13) be a vector field of class C' defined in

an open set U C R® and ® be an injective transformation of I* into U of class C*
with positive Jacobian. Then

[o(curl F) ndA = [,o (F-t)ds.

Proof. Let ® = fidx; + fadx, + fodx; be the 1-form associated with the vector
field . Then

do = [af—S—%jdxz A dxy +(ai—%}dx3 Adx, +[%—%jdxl Adxy

ox, Ox, X, ox X, ox,
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N (A ANRE R SN (T AWK
I‘de Lz [([8}62 8x3j q)] a(u,v) +[[8x3 8xlj q)J I(u,v)

+[{%—%Jo¢]—a(®“¢2) ] dudv
dx, ox, d(u,v)

= [.2 ((curl F)o®) - N(u,v) dudv
= [ .2 (curl Fo®) n(u,v) | Nu, v)||dudv

= Lz ((curl F)o®)-ndA
= LD (curl F) ndA, (20)
using (18). Also,
[o0®=l,0(F-1)ds, @21)
using (15).
The proof is completed on using Theorem 8-7.5 , (20) and (21). O

The connection between the divergence theorem for differential forms
(Theorem 8-7.7) and the classical form of the theorem is the following.

8-8.7. The Divergence Theorem. Let F = (f,,f>, f3) be a vector field of class C'
in an open set U C R® and ® be a 3-surface in U that is injective on [0,1]° and is
of class C* with positive Jacobian. If Q = ®([0,11°) and 0Q = ®(A,,), then

[odivFav=,, F-ndA.
Proof. Let
O =fi dooadxs + f, dsadxy + fi dxy Adxg
be the 2-form associated with the vector field . Then

do= %+%+% dx; Adxy Adxs
ox, dx, ox,

= (divF) dx;Adxy ndxs .

By Transformation Formula 7-4.4,

[od®= [y divF dx; Adx,ndxs
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= I[ o1 div (F(D(u)) Jo(u) du, duy dus

= |, (divF)dx,dxydxs (22)
using (9).
Also,
fro®= . ] O
<1>(£(—1)‘(1"‘-0—F”))
= i] J[O i SR, s, M3)m duy duy dus
U o(uy,uy)
= L,Q F-ndA, (23)
using (11).
In view of Theorem 8-7.7, (22) and (23), it follows that
[o (divF)dx dxydx; = [, FrndA. 0

The proof of the following generalisation to R” of Theorem 8-8.7 is no dif-
ferent from that of the above said theorem; it is therefore not included.
8-8.8. The Divergence Theorem (Generalisation). Let F = (f1,f5,...,f,) be a
vector field of class C' in an open set U < R" and ® be an n-surface in U that is

injective on I' and is of class C* with positive Jacobian. If Q = ®(I") and 9Q =
®(dv,), then

o divFdV = |3 F-ndA.
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Solutions

Problem Set 2-2

2-2.P1. (a) |||l = 2 | xk| 2 | x| = [[x]l; = 0. Also, [[x]|; = 0 means 2 x| =
But each term in the sum Z \xk| is nonnegative. Therefore, Z |x| =0 1f and only
if each x;, =0, or equlvalently, x=0.
(b) Jloudly = 2, o = el 2, i) = [od][1x]-
@) [lx+yll = Z Pty < Z Bl + 2 |yl =[x/l + [
(@) llx—zlh = lx=y) + =2l < llx =yl + Iy —z|: by part (d).
® [lxlli = [l = y) + ¥l <[l =yl + [I¥]ls by part (d). Therefore,
lIxllr = IIylh < llx =yl
By an analogous argument, |||/, — ||x||; < ||y —x]|;. But what has been proved in
part (a) shows that ||y — x||; = ||x — y||;. Therefore,
70l = llxlh < Jlx =yl
The two inequalities displayed above together yield |||x||; — [V < ||x = ¥l
2-2.P2. Let y be the n-vector with every component equal to 1 and z be the one

. n
with 2= |xi|. Then ||x]l; = = || = y+z < [Wlbllzll> = 7"l x]|>-

2-2.P3. [lx+y [ = (ey)-(r+y) = B 0r+y) = Bk + 2 2t Z vk =[x+
||lv|13, because élxkyk =x+yis given to be 0.

2-2.P4. Write a’bc as a”?b"?a"?b"*c and so on. Let x denote the 4-vector
(a3/2b1/2,b3/201/2 c3/2 1/2) and y denote the 4-vector (al/Zbl/ZC bl/ZCl/Za C1/2a1/2b)
Then xy = abc(a + b + ¢) and ||x|||[y]| = (a’b + B¢ + Fa)*[abe(a + b + )]V~
The Cauchy—Schwarz inequality yields the required result.

2-2.PS. ||| = I x[[] < [, = x]|.

2-2.P6. (a) The inequality is valid if a; = a, =---= a, = 0; so suppose at least one
a;> 0. Let b, = ak/(éI aj”)”” for 1 <k < n. Observe that 0 < b; < 1, so that b, <

S. Shirali, H.L. Vasudeva, Multivariable Analysis,
DOI 10.1007/978-0-85729-192-9 9, © Springer-Verlag London Limited 2011
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b Henee (X a)[(Z,a/)"1" = 2 [a"[[(Za")")] = Z b < Z bl =
1] n 1/ _ 13 1 1/

Z [ /[(Za") ")) = 1. S0, = a" <[(Z,4)"]".

(0) maxyc e, | < (£ [x#)"” < n'Pmax < e, x|, Therefore ||x[|.. < (£ x)"” <

n"||x||... But lim,_,.. n'” = 1. Therefore lim, ... x|, exists and equals ||x||.. .

Problem Set 2-3

2-3.P1. A(x) = A(x-1) =xA(1) =ax. So, A(x +y)=a(x+y)=ax +ay=Ax) +
A(Y).

2-3.P2. A(cx) = A(cxy,cx) = (x + 6:)'2,0) = (c(x® + x2°)'7,0) = e((x)* +
x)"?,0) = cA(x). But when x = (1,0) and y = (0,1), we have A(x + y) = (2'3,0),
A(x) = A(y) = (1,0).

2-3.P3. Straightforward computation.

2-3.P4. A straightforward computation confirms that f;(x,y)* + 4 £(x,y)* = 1. So
the range is included in {(x,v) € R* : «* + 4v* = 1}, an ellipse. The reverse inclu-
sion can be proved: Take any (u,v) € R? with > + 41" =1. Then—1 <u < 1. Ifu
=1, then v =0 and (x,y) = (1,0) satisfies fi(x,y) = 1 =u, fr(x,y) =0 = v, so that
f(x,y) = (u,v); if u =—1, then again v =0 and (x,y) = (0,1) satisfies f(x,y) = (u, ).
Suppose —1 < u < 1; then v # 0 and hence v =2 0. Take y = 1 and x =
=[(1 + u)/(1 — u)] according as v = 0. One can then verify that f(x,y) = (u,V).
Thus the range is precisely {(u,v)e R* : > + 4v* = 1}.

2-3.P5. Since /" is continuous, it maintains the same sign in some open interval /
containing x,. Therefore f is injective on / and has an inverse g when restricted
to /. Then ¢ is injective on /XR: Consider distinct (x;,);), (x2,)2) € IXR. If x; #
X», then since both are in / and f is injective on /, we have f(x;) # f(x,) and
O(x1,¥1),0(x2,y,) differ in the first component. Suppose x; = x,; then y; # »,
while x; f(x1) = xpf(x2), so that —y; +x,f(x;) # =2+ x,f(x2), which means
O(x1,y1), 0(x2,)7) differ in the second component. Thus ¢ is injective and hence
invertible on /xR. If x € I, we have u = f(x) & x = g(u) = x f(x) = ug(u). Also, v
=+ xf(x) &y =—v+xfx) = -v+ugw).

2-3.P6. B(x; + x3) = A(x; + x2,0) = A((x1,0) + (x2,0)) = A(x1,0) + A(x,,0) =
B(x)) + B(x,) and B(cx) = A(cx,0) = A(c(x,0)) = cA(x,0) = ¢B(x). Similarly for C.
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2-3.P7. C((x1,01) + (x2,32)) = C(x1 + X2, 1 +32) = A(x1 +x2) + B(y1 + y2) = A(x1)
+ B(y1) + A(x2) + B(y2) = Clxp,y1) + Clxa,2); Cle(x,p)) = Clex, cy) = A(ex) +
B(cy) = cA(x) + cB(y) = c(4(x) + B(y)) = cC(x,).

2-3.P8. Direct computation shows 4 to be linear. The required matrix is

0 0 0

S O O O O
oS O o o O
S = O O
- o o o

S o = O

2-3.P9. The function f\R*—>R? is f(xu; + yup) = (¢ cosy)v; + (€'siny)v,. The

single equation is f(xu; + yu,) = pv; + qv,. In coordinate language, f(x,y) =
(»,q), where f(x,y) is defined as (¢*cosy,e"siny).

2-3.P10. x; + x3 = 20, —3x; — 4x3 = 2000. (a) Yes, Yes. (b) x; =58 — 6y+9.

2-3.P11. The three equations x+z; = 0 for i = 1,2,3 are x; + 3x, + 2x3 —x4 = 0,
3x; + 10x; + 4x; = 0 and 4x; + 13x; + 7x3 + 4x4 = 0. Eliminating x; from the

second and third equations, we get x, — 2x3 + 3x4 = 0 and x, — x3 + 8x4 = 0. Eli-
minating x, from the last equation, we get x3 + 5x4 = 0. We can now choose x; =

1, which leads to x;3 = -5, x, = =13, x; = 50. So one possibility is x =

(50,-13,-5,1).

2-3.P14. If a = 0, then the points (,¢,¢) and (¢,—¢,¢) serve the purpose, provided
that 0 <7< and 37 <& Ifa =1, then (1,£,7) and (1,—t,—f) serve the purpose,
provided that 0 < 27 < & Suppose 0 # a # 1. Choose ¢ so that 0 < 2|¢| < |a — 1|
and 2¢* < . Then the points (a,,) and (a,#,—f) both lie in the -ball centred at
(a,0,0); also, a+2¢t—1 has the same sign as a—1 and hence F(a,t,f) =
at’(a +2t— 1) and F(a,t,—f) = —at*(a — 1) have opposite signs.

2-3.P15. Choose ¢ such that 0 < |¢| < |b],|c| and 37 < &% Then (x£,b + t,c + 1)
both lie in the required 8-ball. Also, [b+-Lt| > |b|—L|t| = [b]—|t] +L|t] > L]t
and hence (b + %t)2 > %tz, which implies b(b +t) > 0, i.e., b+ ¢ has the same
sign as b. Similarly, ¢ + ¢ has the same sign as c. It follows that (b + #)(c + ) has
the same sign as bc. Therefore F(t,b + t,c + £) = 3£(b + f)(c + 1) has the same
sign as be, whereas F(—t,b + t,c + 1) = —(b + 1)(c + £) has sign opposite to that
of bc.

2-3.P16. [|A(1,0)]| = [|(1 + 0,0)[| = [[(1,0)]] = V(1* + 0%) = 1; [|4(0,1)]| = [|(0 +
LO)| = 1; [|AB/5,4/5)|| = I(7/5,0)]| = 7/5; [|A(12/13,5/13)|| = [|(17/13,0)]| =
17/13; and ||A(1N2, 1A2)| = [|(IN2 + 1A2,0)]| = V(2 + 0) = V2. So the largest
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one is ||A(1A2, 1A2)|. Lastly, x> + x> < 1 = (x; + x,)* + 07 = x> + x5° + 2x1x, <
(% + x5 + (2 + X0 < 2.

2-3.P17. 5, 2, 5/2, 50/13. (a) ||ACx1, x)|I* = (x; + x2)* + (21 — x2)7 = 5x;” + 2x,° —
2x1x,. (b) Since |2xx;| < x,? + x57, it follows from (a) that || 4(x;, x)|* < 5x,> +
267 + x2 + x? < 6(x> + x,Y) < 6 when |x|| < 1. (c) Using (b), we have sup
{|Ax]|| : [|x]| < 1} <A6.

2-3.P18. A(x;,x2)" = (x; + 1) + (x1 — x)° = 2(x,> + x5°). So sup {[|4x]| : [Ix] <
1} <V2. When x = (x;, x2) = (12, 1/12), we have ||x|| = 1 and ||4x|| = ||(N2,0)]|
=12. Hence sup {||4x]| : [|x|| <1} =~2.

2-3.P19. When x #0, the vector v = (a/2||x||)x lies in the ball V' and Av =
(a/2)|x||)Ax.

Problem Set 2-4

2-4.P1. Let A and B be closed. Then by definition, their complements 4° and B°
are open. It has been shown (in the paragraph following Def.2-4.2) that an inter-
section of two open sets is open. Therefore A“NB° is open and hence its
complement (A°NB°)° is closed. But (4°NB)° = AUB. A similar argument ap-
plies to the intersection of any family of closed sets, because it has been noted
that a union of any family of open sets is open.

2-4.P2. Denote the ball by B. Let ¢; = (1,0,0,...,0), so that |l¢;|| = 1, and con-
sider y = a+re;. Then ||y—al| = r and hence y does not belong to B. It is
nevertheless a closure point of the ball. To see why, let B; be an open ball about
vy with radius o, say. Take B = min{%(x,r}. Then the point z = y—Pe; =
a+(r—PBe; is in B because ||z—al| = ||(r—B)eil| = r—P < r; it is also in B, be-
cause ||z—y| = B < o. Thus any ball B; about y contains a point of B, which
means y is a closure point of B. But y does not belong to B, as noted earlier.
Since we have found a closure point of B that does not belong to it, it follows
that B is not closed.

2-4.P3. ||x|| = [[(x —u) Ful| < [l —w| + [[u]| < M+ [u].

2-4.P4. Since F is closed, its complement F° is open. Since an intersection of
two open sets is open, the set UNF* is open. But UNF* = U\F. The argument
that F\U is closed is similar.
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2-4.P5. Let A < R". Since 4° < A (as is immediate from Def.2-4.7) and is an
open set by Proposition 2-4.9, it is a subset of the union of all open sets con-
tained in 4. For the reverse inclusion, consider any « belonging to the union in
question. Then a € B, where B < A4 and is open. Since B is open, a is an interior
point of it. Since B < 4, it follows from Def.2-4.7 that a is an interior point of 4
as well, thereby proving the reverse inclusion.

As noted immediately after Def.2-4.10, it is trivial that 4 ¢ A; moreover, A
is closed by Proposition 2-4.11. Therefore it contains the intersection of all
closed sets containing 4. For the reverse inclusion, consider any a € 4 and any
closed set C 2 4. By Def.2-4.10, any ball about « contains a point of 4; but then
that point must belong to C, because C 2 A. It follows that a is a closure point of
C and hence belongs to C, considering that C is closed. Thus it has been shown
that every point of 4 belongs to every closed set containing 4, whereby the re-
verse inclusion has been found to hold.

2-4.P6. Suppose x is a closure point. For each p, the ball B(x,%) contains some
x, € X. The sequence {x,},>; then converges to x. Conversely, suppose a se-
quence {x,},>; in X converges to x. Consider any ball B(x,€) about x. Some p € N
satisfies ||x, —x|| < €. For any such p, we have x, € B(x,€) as well as x, € X. This
means B(x, €) contains a point of X. It follows that x is a closure point.

2-4.P7. Suppose {x,},»1 is a convergent sequence in {x € R?: ||lx|| = 1}. That is,
[lx,|| = 1 for every p and x,—x for some x € R". If we show that ||x|| = 1, it will
follow by Proposition 2-4.5 that {x € R” : ||x|| = 1} is closed. From the inequality
]l = [l — G = < 15,1+ [lx, —x1| = 1+ |1x, ~x|J, we obtain [|x]| < 1 upon tak-
ing the limit as p—eo. Similarly, from the inequality ||x| = ||x,—(x,—x)|| =
[[x5]| = 1%, —x|| = 1=[|x, —x]|, we obtain ||x|| = 1 by taking the limit as p—e. So,
[[x] = 1.

2-4.P8. Consider any ball B about (—1,0) with radius €. Let 0 < » < €. Then the
point (—1,7), which obviously belongs to E, also belongs to B by virtue of the
inequality ||(-1,7)—(=1,0)|| = [|(0,r)|| = r < €. On the other hand, the point
(-1-r,0) obviously does not belong to £ but does belong to B by virtue of the
inequality [|(=1—7,0)—(=1,0)|| = ||(=,0)|| = » < €. Thus any ball about (-1,0)
contains a point of £ as well as a point of its complement. As noted immediately
after Def.2-4.12, this means (—1,0) belongs to the boundary of E.

To show that (1,0) is an interior point of F'= {(x1,x,) € R*:0<x, < 2}, let &
= 1. Since [|(x1,x2) = (1,0)|| = [|(x1 = Lx2), then [|xp,x2) = (LO)| <8 = [y — 1] < 1
as well as |x;| <1 = 0 <x; <2 = (x1,x,) € F. This means & = 1 has the property
that the 8-ball about (x;,x5) is contained in F.

2-4.P9. It is immediate from the definitions of closure and boundary that F' o
FUOF. Also, F' 2 F° by definition of interior. So, FUJF 2 F°UJF. It remains
to note why F°UJF D F. But this too is trivial from the definition of boundary.
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Problem Set 2-5

2-5.P1. Let K;,...,K,, be compact subsets of R" and {x,},»1 be a sequence in
their union K. For some j, 1 <j < m, there must be infinitely many p such that x,
€ K;. Therefore some subsequence has every term in K. Since K; is compact, it
follows that the subsequence has a subsequence converging to a limit in K,
which must then belong to the union K. But this subsequence is itself a subse-
quence of the sequence that we started with. The latter is therefore seen to have

a subsequence converging to a limit in K.

2-5.P2. Consider a closed ball B= {x e R" : ||x—u|| <r}. Leta,be Band 0 <A <

1. Then |la —u|| £ r and ||b — u|| < r and therefore
ha+A-Nb—ul|=|Aa+(1-A)b—Au—(1-A)u|| < A|la—u|| + (1=1)||b—ul|
SAr+(1-Nr=r,

so that Aa+(1-A)b € B. A similar argument works for an open ball {x € R" :

[[x—ul| <7}

2-5.P3. Suppose {x,},>1 does not converge to x. Then there exists € > 0 such that
some subsequence {x,,q}qZI satisfies prq—x|| > ¢ for all g. Since K is compact,
{qu}qz1 has a convergent subsequence, which we shall denote by {£,},»;. Then
{&,},>1 is a convergent subsequence of {x,},»; and also satisfies the inequality
IE,—x|| = € for all r. But according to the hypothesis, this subsequence must
converge to x, in contradiction with the inequality. To show that compactness of
K cannot be dropped, consider the sequence 1,0,2,0,3,0.4,... in R. Any conver-
gent subsequence must converge to 0, but the sequence itself does not.

2-5.P4. The set is not bounded and therefore not compact in view of Theorem 2-
5.7.

2-5.P5. Let 9/ be an open cover of X = {x}U{x, : p € N}. By definition of cover,
some set U € & has to contain x. Since U is open, there is some € > 0 such that

the €-ball B about x is a subset of U. Now convergence of {x,},> to x means that
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there is some N € N such that p > N = x, € B = x, € U. Once again by definition
of cover, for each p <N, some set U, € ¢ has to contain x,,. Hence the finite sub-
family {U, U,,...,U,} of @ covers X. We have shown that any open cover of X
contains a finite subcover, which is what it means for X to be compact.

2-5.P6. Consider the disjoint open sets U = {(x,y) e R* : x <0} and U = {(x,y) €
R? : x> 0}. Since (x,y) € 4 = x*> 1+ * > 0, we have 4 c UUV. Consequently,
A = (UnA)u(VNnA) and (UnA)N(VNA) c UnV = . It remains only to see
why Und # @ # VN A. This follows from the fact that (-2,0) € Un4 and (2,0) €
VnA.

Problem Set 2-6

2-6.P1. Denote lim f(7) by L. We must show [|L — y|| < K. Consider any & > 0. By

definition of limit, 3 8’ > 0 such that || A¢) — L|| < € whenever 0 < || — x|| < 8" and
t € A. Since x is a limit point of 4, there exists & € 4 such that 0 < || —x|| <
min {§,8'}. This & must satisfy |[AE) —L|| < € as well as [|[AE) —y|| < K. It fol-
lows that ||L — y|| < K.

2-6.P2. (a) Denote lim f(#) by L. For any & > 0, there exists 8, > 0 such that 0 <
llu—al| <8, 0<|lv=>| <& = ||Au,v)—L| <e&/2. It follows by 2-6.P1 that 0 <
|| — a]| < min {§;,u} = | y_ggf(u,v) —L|| <¢/2 <e. Since € > 0 is arbitrary, it
follows that £1_r)1{} [1V1_r)12 f(u,v)] exists and equals L. Proceeding in an analogous
manner, one can show that if there exists a positive number v such that
!ll_rg f(u,v) exists whenever ||v— b|| < v, then the %1_{1% [lul_r}al f(u,v)] exists and is

equal to lim £(7).

(b) Here n =m = k= 1. Now, &1_{% f(x,y) = 0 whether x is 0 or not; for x = 0, this

. . . . sin(xy) _
is trivial because f(0,y) = 0 for all y, and for x # 0, 11_{18 Jfx,y) = Ll_r)% Yo 0.
Thus we have %E}l‘(} f(x,y) = 0 for |x| < W, where U is any positive number. Conse-

quently, lim lim /(x.) = 0. Now, liny f(x.») = liny Yy — it follows that
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. . o . sin(xy)
y_r)% )lg% J,y) = 0 as well. Moreover, limg ) 0,0 — =
. sin(xy)

limg 0.0 y—5— =0

2-6.P3. As seen in Example 2-6.6(a), the function satisfies the inequality | f(x,)|
= |xsin(1/y)| < |x|, which shows that the limit as (x,y)—(0,0) is 0. The same
inequality shows that }CI_I)I(l) f(x,y) =0 for y # 0, which implies £1_r)18 [}}_r)l(l) fo,)] =
0. However, ig}r& f(x,») does not exist unless x = 0. So the domain of }1_1)13 f(x,»)

consists of a single point and consequently hs no limit point. Thus, there is no
such thing as l(llla [)l)lll(l) o]

2-6.P4. lim /(x,0) = 1 = ~1im £(0.).

2-6.P5. We have f(x + h,y + k) — f(x,y) = (x + h)*(y + k) — x°y
=x’k + 2xyh + 2xhk + yh* + k.
Let0<d<1.Then
N+ 1) < 8 = |h|, | k|, | hk|, > < 8 < 1
= | %k + 2xyh + 2xhk + yh* + Wk | < §(x* + 2[xy| + 2Jx| + [y + 1).
To ensure that this is less than €, choose
& <min {1, 1/( + 2[xy| + 2] + [y + 1)}.
2-6.P6. At any point (x,y) # (0,0), the function is continuous because it is a quo-
tient of continuous functions and the denominator does not vanish at the point in
question. Continuity at (0,0) follows from the inequality |[f(x,y)] <
x|/ + )] < |,
2-6.P7. First assume the function f: S—R" is continuous at x € S and let {s,} be
a sequence in S converging to x. We shall show that {f(s,)} converges to f(x).
Consider any € > 0. By continuity of /'at x, some & > 0 satisfies ||s —x|| < & =
l./(s)—f(x)|] < e. Since ;gnblo s, = x, there exists some py such that p > py =
lIs, — x[| < 8. Therefore p = py = || f(s,) —f(x)|| < €. Such an integer p, has been
shown to exist for an arbitrary € > 0. Therefore [171_r>1°1° f(sp) = f(x).

For the converse, assume that every sequence {s,} in § converging to x sat-
isfies 11,1_{2 f(s,) = f(x). We shall argue why f'must be continuous at x. Suppose, if
possible, that f'is not continuous at x. Then there must exist € > 0 for which no &
> 0 can fulfill the requirement that ||s — x|| < & = || f/(s) —f(x)|| < €. That is to say,
whatever the number & > 0 may be, there exists some s such that ||s — x|| <  but
l/(s)—f(x)|| = €. For every p € N, the number 6 = % is positive and so, there
exists s, such that ||s, —x|| < % but || f(s,) —f(x)|| = €. These inequalities show
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that the sequence {s,} converges to x but the sequence {f(s,)} does not con-
verge to f(x). This contradicts the assumption that every sequence {s,} in S
converging to x satisfies 11)1_1){10 f(s,) = f(x). Therefore the supposition that fis not
continuous at x must be incorrect.

2-6.P8. (a) Since ||x1| - \§1|| <|x;—&,|, we have
/e, x2) = €L EIN = [1(|x1], x2) = (€4l , EII < [1(x1,22) = (€1, E)I-

This shows that f'is continuous (take & = €).

(b) It was seen in Problem 2-4.P8 that u = (—1,0) is a boundary point of £. Now,
f(u) =f(-1,0) = (1,0) and f(E) = {(x1,x,) € R? : 0 < x; < 2}. It was also seen in
Problem 2-4.P8 that (1,0) is an interior point of {(x;,x;)€ R?: 0 < x, <2}.

(c) Let u € UNOE and consider any e-ball B, about f(u). Then for some & > 0,
the &-ball B, about u has the property that f(B;) < B,. Since u is a boundary
point of E, the ball B; contains a point x € E as well as a point y € E“. Therefore
Jx) € f(B)Nf(E). Since f(B) C B,, it follows that B, contains the point f(x) €
f(E). Similarly, it contains the point f(y) € f(E). Since f is injective, one can
show that f(y) € f(E)" as follows: If not, then f(y) € f(E) and hence f(y) = f(z)
for some z € E. Since f'is injective, this implies y = z. But this is a contradiction,
because z € E and y € E°. Thus, B, has been shown to contain the point f(x) €
J(E) as well as the point f(y) € f(E)‘. Therefore, f(u)e I(f(E)).

2-6.P9. Whichever norm we may use,

=12 f(x)—/(©)] for each j
and, by Proposition 2-2.6,

1/~ /@ < /)~ /@)l = 2 1)@
2-6.P10. | f(x1, ... %) — G, &) =1g) — &l

2-6.P11. To prove the sufficiency part, suppose f is continuous and consider any
s e f7(V), where ¥ < R" is open. Since f(s) is an interior point of ¥, there ex-
ists € > 0 such that the e-ball about f{(s) is a subset of V, which means ||y —f{s)||
<& = ye V. By continuity at s, there exists some & > 0 such that, for any xe S,

x=sl<8 = |/W-/)l<e = feV = xef (V).
Thus, the intersection of S with the 8-ball about s is a subset of £ '(¥). Now let
U be the union of all such balls, one for each s € /~'(¥). Then U is open (being a
union of open sets) and contains the centres of all the balls in the union, so that
f7'(V) c U. Moreover, f'(V) c S by definition of inverse image. So,
(V) e snu.

But since the intersection of S with any ball in the union is a subset of f~'(V),
we also have
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SAU < f'(V).
Thus f~'(V) = SNU. This proves the sufficiency part.
To prove the necessity part, suppose that, for any open set ¥ < R", the in-
verse image f (V) = {x € S : f(x) € V'} is the intersection of S with some open

set U c R". Let s be any point of S and € > 0. Choose ¥ to be the e-ball about
f(s). Then

[T = {xeS: f)eV} = {xeS: | f(x)-fs)| <&} =SnU
for some open set U < R". Since ¥ has been chosen as the e-ball about f(s), we
have f(s) € V, i.e., s € f'(V), and therefore s € SNU. But U is open and therefore

some 0 > 0 satisfies

xeS, |x—s||<d=>xeU.
Therefore

xeS, |x—5]|<d=>xeSNU=1f"'(V)= f(x)e V.
But /' was chosen to be the e-ball about f{s). Therefore
x€S, [x=sl|<d= [ fx)-fls)ll <e.

Since such a positive & has been shown to exist for every € > 0, we see that f is
continuous at s.

2-6.P12. Let {y,} be a sequence in f(K). Then there is a sequence {x,} in K such
that y, = f(x,) V p € N. Since K is compact, {x,} has a convergent subsequence
{X,} with limit x € K, in view of Theorem 2-5.7 and Theorem 2-5.2. Since f'is
continuous at x, it follows that {f(x,s)} converges to f(x) [see 2-6.P7]. This
means that the subsequence {y,} of {y,} is convergent with limit in f(K). Thus
any sequence in f(K) contains a convergent subsequence with limit in f(K). By
Theorem 2-5.7 and Theorem 2-5.2, f(K) is compact.

2-6.P13. Taking € = 1 in the definition of uniform continuity, we find that there
exists some & > 0 such that

[/€)~/f(x)ll <1 as long as [|§ —x|| < 8, where f€ X, xe X. (D

By Proposition 2-5.3, there exists a finite family ¢/ of d-balls B, all centred at
points of X, such that ¢/ covers X. Since % covers X, the family {f(BNnX):Be «
} covers f(X). In view of (1), each set f(BN.X) is contained in a 2-ball in R™.
Therefore f(X) is covered by the finite family of sets f(BN.X), each of which is
contained in a 2-ball. Using the facts that (a) any ball is bounded (b) the union of
a finite family of bounded sets is bounded and (c) a subset of a bounded set is
bounded, we conclude that (X)) is bounded. This means that f is bounded.

The result of the next problem can be obtained as a consequence of the fol-
lowing: (1) A continuous image of a connected set is connected. (2) A connected
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subset of R is an interval. But here we ask for a direct proof. The result will be
needed for 6-4.P7.

2-6.P14. Suppose not. Then there exist o, 3,y € R such that o, € f(X), o <7y <
B, but ¥ & f(X). The sets (—oo,y) < R and (y,oo) < R are open. Since their union
consists of all real numbers except ¥ & f(X), we have

[ (oS (1,00) = X. )

S (oY (1) = D 2
because (—oo,Y)N(Y,00) = &. By continuity of f and 2-6.P11, there exist open
sets U c R" and ¥V < R” such that

Also,

7 (o0, 1) = XU and £ (7.09)) = XV
From (1) and (2), it follows that
XNU)u (XN V) =Xand (XnU)NXNV) =D.

Since the intersections (—eo,Y)Nf(X), (Y,°)Nf(X) are nonempty (considering
they contain o and B, respectively), the same is true of their inverse images

S (oo f(X0) = f7(=e2,)) = XU and [7((7,00) /(X)) = /7 (v,20)) =
XNV. The existence of such open sets U, V contradicts the connectedness of X.
2-6.P15. Since I = [a,b]*[c,d] is compact, f is uniformly continuous on /. Since
lg| is Riemann integrable, it has an upper bound M, say. Given any € > 0, there
exists 8 > 0 such that for every pair of points z = (x,y), z' = (x,y") in I such that
|z - z'|| < &, we have |f(x,) — f(x",»")| < %,. Now consider any y,y’ such that
|y —»'| <8 and any x € [a,b]. Setting z = (x,y) and z' = (x, "), we have ||z — 2| <
& and therefore |f(x,y) — f(x,»")| < %, and hence |g(x)f(x,y) — g(x)f(x,")| < €.
But this means |y —y'| < & = |g(x)f(x,y) — gx)f(x,y")| < € for all x € [a,b].
Hence

Y=y <8= |F(y) - FO)I < |7 1g() f(x,) — gx)f(x,y)] dx < &(b - a).

2-6.P16. Suppose, if possible, that A; and A, are both limits at x and that A; # A,.
Then € = ||A; — A,|| > 0. By Def. 2-6.5, there exist 8; > 0 and &, > 0 such that

[ fGx+h)— Al <§ whenever 0<|h| <8 and x+heA
an

| f(x+h)—hof| <5 whenever 0<|h| <8 and x+heA.

Choose / such that 0 < ||A|| < min {3,,8,} and x+/ € A. Such an & exists be-

cause x is a limit point of A. Then the inequalities ||f(x+A)— A < % and

[f(x+h)— N < % both hold and hence
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e=[=Rall [ ft ) =Ml +[[fx+ 1) = Mol <5 +5 =€,

a contradiction.

2-6.P17. Let x,y € R" and and € > 0. There exists s € S such that ||x—s]| <
d(x,8) +e. Now, d(,9) < [[y—s| < [ly—xl|+[lx=s| < [ly—x[| +d(x,5) +e. It
follows that d(y,S)—d(x,S) < ||y —x|| + €. By interchanging x and y in this ar-
gument, we get d(x,S)—d(y,S) < ||ly—x||+¢€. Therefore |d(x,S)—d(y,S)| <
|ly — x|| + €. Since this holds, for every € > 0, we conclude that |d(x,S)— d(y,S)|
< ||y — x||. Uniform continuity is now immediate.

2-6.P18. (a) Straightforward computation.
(b) Observe that @,* + @,* = (1-a(2u—1)sinmv)? and (1—o(2u —1)sinmv) is
always positive in view of the hypothesis that 0 <o < 1.

Consider (u,v) # (u',v") such that ®(u,v) = ®(u',v").

Suppose u = u'. Then v # v' and the equality ®;(u,v) = D3(u',v") leads to
cosTv = cosTv' unless u = u' = 3. But v and mv’ both belong to the interval
[0,7] and cos is injective on this interval. So we find that u = u' = % Therefore
2u—1=2u'—1 = 0. Consequently, ®(u,v) = (cos2mv,sin2nv,0) and similarly
for ®(u',v"). It follows that cos2myv = cos2mv’ and sin2mv = sin2my’. But 21ty
and 2mv’ both belong to the interval [0,2m] and are distinct. So, one among 2wy
and 2mv’ must be 0 and the other must be 2rt. This means one among v,v' is 0
and the other is 1.

Now suppose that u # u". First we rule out the possibility that either u or u’
is5. Ifu= % , then the observation recorded at the beginning and the fact that

Dy, V)’ + Dou,v)” = @y (u',v') + Oou, V)’
together lead to
(1- OL(Z(%) —Dsinmv)=(1-o2u'-1)sinmv') ,
which is to say,
(I-02u'-Dsinmv") =1, or ou(2u'-1)sinmv'= 0.
But also
o(2u'-1)cosmv'= D3(u',v') = O3(u,v) = 0((2(%) —I)cosmv = 0.

Hence o (2u'—1)>= 0 It follows that 1’ = +, which is a contradiction because u'
# u. We conclude that u # 5 ; a similar argument shows that u' # .

Having ruled out the possibility that either u or u'is 5, we again use the ob-
servation recorded at the beginning to arrive at the equality

o(2u —1)sinv =a(2u'-1)sinmv'.
Since @;(u’,v") = Os(u,v), we also have

o(2u—1)cosmv=0(2u'-1)cosmv'.
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The foregoing two equalities show that (2u — 1)* = (2u’— 1) Since u # u', we
obtain from here that 2u —1 = —(2u’— 1), which yields u = 1—u’, as desired.
Since neither u nor u' is 3, we further obtain sinmtv = —sinmv’ and cosmy =
—cosTv'. But v and v’ both belong to the interval [0,7t] and sin is nonnegative
on this interval. It follows that sintv = —sinmv' = 0. Therefore cos Ty = —cos v’
= +1. Once again using the fact that v and v’ both belong to the interval [0, 7],
we conclude that one among 7v and v’ must be 0 and the other must be m. This
means one among v,Vv'is 0 and the other is 1.

Problem Set 2-7

2-7.P1. By the result of 2-3.P18, ||4|| = 2.

2-7.P2. From 2-7.P1, ||A|| =2, and from 2-3.P16, ||B|| = V2. Now, (BA)(x,X,) =
(2x1,0). Therefore ||(BA)(x1,x)|> = (2x1)> + 0> = 4x,> < 4(x,> + x7) = 4]|(x1,20)| %
which implies that ||BA|| < 2 = (N2)(¥2) = ||B|||| 4|, as required.

2-7.P3. ||A|| =2 =||B||, so that ||B||||4|| = 2. But || B4|| = 0, because B4 = O.

2-7.P4. No matter which norms are being used, ||(0,0)|| < ||(a,b)||, which is to
say, ||A(a,b)|| < |[(a,b)||. Therefore ||4|| < 1. Since ||4(0,b)|| = ||(0,b)||, we have
4] =1.

2-7.P5. Modify the argument of the theorem above.

2-7.P6. |B'|| = |44'B"' = BA'B'+BA'B || = |[BA'B'+(4-B)A'B|| <
IBA™'B™'|| + /(4 = B)A™'|[|B”'||. Therefore |B7||(1-[[(B-4)4'[|) < [IBA"'B'|.

The required inequality now follows because 1—||(B — A4)4™"|| is positive.
2-7.P7. Let {¢; : 1 <k <n} be the standard basis in R" and y, = de¢; for 1 <k <n.
Set y = (y1,)2,...,p). For x € R", we have x = élxkek and Ax = kZi‘.lxkAek =

Problem Set 2-8

2-8.P1. ,,21 f(m,n) = % and consequently, ,2’1( 2’1 f(m,n)) = mi;l # = 1. Also,

mi:.l fm,n) = (-1)"' and hence gl(ngl f(m,n)) is undefined. Since
s2n+1,2n+1)—1 and s(2n,2n)—0 as n—eo, the series is not convergent.
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2-8.P2. il f(1,n) =0 and gl £(2,1) = —oo; gl f(m, 1) =0 and ng f(m,2) = —oo.

2-8.P3. The terms of the finite sum s(p,p) correspond to the points with integral
coordinates in the square with vertices (1,1), (p, 1), (p,p) and (1,p). The number
of points on the line segments passing through (n, 1) and (1,7), both terminating
at (n,n), is 2n—1, where 1 < n < p. The sum of the squares of the coordinates of
any point on either of the segments is greater than n” and consequently, s(p,p) <
él(Zn— Dn® = é} 2n' - é} n *. These are partial sums of convergent series
and hence, Proposition 2-8.10 shows that that the double series %, , (m* + n*y *?

is convergent.

Problem Set 3-2

3-2.P1. Show that (x + k)’ + (v + k) — (x’ + y) can be expressed as (3x’)h + k +
[NR + K2)]-u(h, k), where u(h,k) = (3xh* + B )YNH* + k) for (h k) = (0,0).
Then use the fact that |k| < \(h*+ k%) to show that |u(h,k)| < (|3x| +
|hIN(E + ).

3-2.P3. If & = 0, then [0(¢h,tk) — $(0,0)]/t = 0 and derivative in the direction

(h,k) is 0. Suppose & # 0. Then [¢(th, tk) — §(0,0)]/t = tk*/h—0 as t—0. Thus, the
derivative in every direction is 0. Since £(0,0) = 0 and f(’,y) = 1 for y # 0, it
follows that f is not continuous at (0, 0).

3-2.P4. Since f(x) — f(0) = ||x||, for any € > 0, choosing & = € ensures that 0 <

[lx|| <& = | f(x) —f(0)| <e&. Thus f is continuous. If f were to be differentiable,
then by Remark 3-2.5(b), it would have a derivative at 0 in the direction of e;.

Therefore [ f(te;) — f(0)]/t would have a limit as +—0. But [ f(te;) —f(0)]/t = @ ,

and it is well known that this does not have a limit as t—0.

3-2.P5. Denoting the ‘increment’ vector by (4, k) we have

fee+hy+k)—f(x,y) = Qxh + h*, yh + xk + hk, k) = (2xh, yh + xk, k) + (h*, hk, 0)
= A(h, k) + (I, hk, 0),

where A:R*—>R? is the map for which A(h, k) = (2xh, yh + xk, k). Now, (h*, hk, 0)

= ||(h, k)| u(h, k), where u(h,k) = (h*, hk, 0)~/(h* + k). Since A is linear with

matrix as stated in the problem and since u(%,k)—0 as (h,k)—0, the required
conclusion follows.
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3-2.P6. Denote the ‘increment’ vector by (4,k). The expression we must deal
with is ((x + h)> + (v + k)'° = (x* + »)'°. Since it would be cumbersome to ex-
pand the 10th powers, we prefer to start with

19 o
(z+5)0 2= 10"s + 2 C(10, )=/,
where C(10, ) is the usual binomial coefficient 10!/7!(10 —;)! Denoting the
sum liC(lO, Nz'"7s77! by u(s), we have
(z+5)"=2'""=102"s + su(s), where u(0) = 0 and u(s)—0 as s—0.
It follows from here by taking
z=(*+y) and s=(x+h’+ @ +kh - +y)=2hx+h +k
that  ((x+h)*+ (@ +k)"° - +p"
= 10(x* + )’ 2hx + > + k) + Qhx + h* + k)- u(Qhx + > + k)
=20x(x* + ) °h + 1007 + )k + 100°( + y)° + Qhx + I + k) u(Qhx + h* + k).
Now,
[10A°(x> + )| < (10(° + ) N2+ 1) ) N(R + 1) and
10(x* + y)’~(h* + k%) approaches 0 as (/, k) approaches (0, 0).
Also, by the Cauchy—Schwarz inequality,
[2hx + B+ k| < |h-Qx + h) + k(1)) (B + ) N[Qx + h)* + 17]

and (2x + k)2 + 17 is bounded as (h,k) approaches (0,0). But this also implies
that 2hx + h* + k—0 as (h,k)—(0,0) and hence that u(2hx + h* + k) does the
same. It follows that, if we take v(h, k) to be the quotient,

[10A*(x* + y)° + hx + h* + k) u(Rhx + h* + k)] R+ 1) 5
when (4,k) # (0,0), then v(h,k)—0 as (h,k)—(0,0) and
h
(et By + ) = (24 ) = 20663 ) 1062+ )] ]
+ [, D) v(h, k).

Thus, (x* + )" is a differentiable function of (x,y) with derivative given by the
1x2 matrix

[20x(x* +p)” 1067 +p)].
3-2.P7. We have

(4B = = [ R R - )
Letting s = (x + h)*(y + k) —x’y in this, we obtain
(x + h)ZO(y+ k)lo_xzoylo — (x2y+s)10_(x2y)10
= 10(x*y)’s + |s]'v(s), where v(s)—0 as s—0,

according to what is given. From Example 3-2.3(b),
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s = A(h, k) + ||(h, k)| u(h, k),
where A:R*—R is the linear map for which A(h, k) = 2xyh + x’k and

2xhk + yh* + kh?

N/
It follows that

@+ R+ k)" = x*y'0 = 1062y) [ACh, k) + ||(h, Kl | uCh, k)] + [ ] ¥(s),
so that
@+ R+ 8" =Y = 1065) A(h, k) + 100)™ [|(h, k)|, k) + | 5| v(s)
and also that

u(h, k) = when (h, k) # (0, 0).

s < [|Al-[[(, )| + [|(h, K| | (P, B,
which implies that

ﬁ is bounded as ||(%, k)||—0.

This and the fact that s—0 as ||(%, k)||—0 together have the consequence that

w(h, k) = 100*) - u(h, k) + ﬁ (s)—0  as ||(h, k)||—0.

Since the above equality for (x +7)*(y + k)" —x
(x+ )+ 0" —xy' = 10(x y)gA(h k) + |(2, )l [w(h, k),

we have obtained the derivative in question as 10(x*y)’A(h, k), which is to say,
the required derivative is the linear map B:R*—R such that

B(h, k) = 10(x*y)’2xyh + x*k) = 20x"y"°h + 10x** k.
It has the 1x2 matrix [20x"y'"  10x*%)°].

20 10 can be recast as

3-2.P8. Since L&t/ St COCMZI®) - it i immediate from Def. 3-2.4

that D, f(x) =—D_;, f(xx). Therefore the derivatives in the directions # and —/ can-
not both be positive. The function f{x;,x,) = x; has derivative 1 in the direction
h = e, at every point (x;,x,) € R%.

3-2.P9. Since each f; is differentiable in (a,b), we have fi(o+ ) — fi(o) =

fi' (0 + | by ug(hy), where u(hy)—0 as h;—0. Let x = (x1,...,x,) € Eand h =
(hy,...,h,)€R". Then

S0 ) = £66) = 2 LG+ ) = iG] = B A+ Vil ug (o),
so that
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n n h
S+ 1) — )~ E il | <111 ﬁ e ()

and |é‘.l uy (h)|—0 as h—0 because uy (h;)—0 as h;—0.

3-2.P10. By definition of a4(x), we have fi(x +h) — fi(x) = ax(x)hy + hEr(h),
where Ey(h)—0 as h—0. So, f(x +h) = f(x) = 2 [filx + h) ~ fi(0)] = =, ax()h +
2 Iy (h), so that

G+ ) = ) = B a0 | = |35 ()| < | 1| [, Ex ()]

and | 32 By (h)| -0 as h—0.

3-2.P11. F(c + h) — F(c) = g(c + hyf(c + h) — g(c)f(c)
=glc+hy{flcth)—flo)}
=glc+h)y{f(c)(h) + | hllu(h)}
=g(cth)y{f ()} +|lhllglc+ h)yuh)

=g(e){f ()} + [glc + h)— g { [ (c)(h)}
+ 7l gle + h)yu(h).
Now,

I[g(c +h) = O] ()} + [|h][glc + h)yulh)|
<[ klI[llgle + 1) = g @Il + llgle + Ml[u@]].

Since g is continuous at ¢, it follows that g(c + 4) is bounded as #—0. Therefore
both terms in the bracket on the right side tend to 0 as 2—0.

3-2.P12. D, £(0,0) = limg LELCD — i L~y and similarly, D, £(0,0) = 1.

1=
If » = (a1,ay), where aja, # 0, is any other direction, then D,f(0,0) =

}1_% M = }1_% %, which does not exist. It follows from Remark 3-

2.5(b) that f'is not differentiable.
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Problem Set 3-3

3-3.P1. (a) As shown in 3-2.P3, the derivative in every direction is 0, so that the
zero linear map serves as the Gateaux derivative.
(b) Consider any /1€ R". Then

lim [f(x + th) — f(x))/t = Ah as t—0. (1)
For k belonging to some ball K centred at 0 € R”,
g(f(x) + k) = g(f(x)) = g (f(x) k + || k| v(k), (2)

where v(k)—0 as k—0. Since f'is continuous at x, then for all sufficiently small #,
we have f(x + th) — f(x) € K. Then we may take k = f(x + th) — f(x) in (2). But if
we choose £ in this manner, then we have f(x) + k = f(x + th). Therefore by (2)
and the linearity of g'(f(x)),

g(fx+ th)t)—g(f () _ g'(f(x))é + @v(k), (€)

where, by (1), k/t—Ah and hence ||k||/t is bounded as t—0. Since £—0 as r—0, it
follows from (3) and (2) that

lim SO =N — g2 as 0.

3-3.P2. Since f'is continuous, x is an interior point of the domain of gof. Consid-
er any k€ R". Then

lim [g(f(x) + th) — g(f(x))]/t = Gk as t—0. (1)
For sufficiently small 7 and any € R", we have

(gof)(x + th) = g(Ax + t(Ah) + b) = g(f(x) + H(A4h))
and hence [(gof)(x + th) — (go)(x) ]/t = [g(f(x) + (4h)) — g(f(x))])/t. By (1), this
has limit G(4h) as t—0.

3-3.P3. Modify the proof of Corollary 3-3.4, keeping in mind that the chain rule
is not available for Gateaux derivatives. So, fish for something else that will
serve the purpose.

3-3.P4. (a) Since f is real valued, each G(e)) is a real number. For a general h €
R", the linearity of G leads to G(h) = G(hy,...,h,) = G(j)él hje) = jé h; G(e).

Since G # 0, at least one among G(e;) must be nonzero. So 4, = G(e;) describes a
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nonzero element of R". The Cauchy—Schwarz inequality yields |G(hy,...,4,)| <
( le hﬁ)vjél G(e)* = ||h ||NJ§1 G(e;)?, with the rider that equality holds here only
if there is some real number o such that 4 = oi'. The inequality shows that ||G||
< \/jé G(e))’. Since equality indeed holds when % = A'/||h]|, while ||A], = 1, we
find that | G|| = \/Jél G(e;)*. Hence, the equality || G|| = |G(h)| holds with || /2], = 1 if
and only if |G(hi ..., h,)| = V(,é. hf)\/é] G(ey)’ = Hhuzvjé G(ey)* with |||, = 1.
According to the rider, this is only possible when / also satisfies # = oh’ where
o is some real number. Such an oo must satisfy |0 = || ||/|| 2]l = 1/||h|],. There
are exactly two such real numbers o, namely, +1/||4'||,. Therefore h = £h"/||h'||,
are the only two 4 € R” satisfying ||G|| = |G(h)| and || 2|, = 1.
(b) Proceeding as in (a), we have G(h) = él h;G(e)). Therefore |G(h)| <
(/é|h,—|)~max{|G(ej)| s 1 <j<n}=|hl max{|G(e)| : 1 <j<n},so that |G| <
max {|G(e)| : 1 <j < n} =|G(e,)|, say. Note that p need not be unique. Select /2 €
R” such that &, = 1 and h; = 0 for i # p. Then || k||, = 1 and |G(h)| = |G(e,)| =
max {|G(¢)| : 1 <j < n}, which shows that ||G|| = max {|G(e))| : 1 <j < n} and
also that |G(h)| = ||G||. Since |G(-h)| = ||G|| and ||-/||; = 1, we get two elements
of R” of the required kind. When p is not unique, we can get at least two more.
3-3.P5. Denote F(b) — F(a) by p, and let ¢:[a, )] >R be defined by

0(0) = p-F().

Also, ¢ is the composition of the maps #— F(f) and x— px in that order. The
first one has derivative 47— F'(f)h and the second one has derivative h— p-h
[Remark 3-2.2(d)]. Their norms are, respectively, ||F'(?)|| and || p|| [see Example
2-7.3(c)]. By the chain rule, the derivative ¢'(f) exists and equals the composi-
tion of the linear maps

h— F(t)h and h—p-h,

in that order. Using the property that ||ST'|| <||S|||| 7|| for any linear maps S and
T for which the product ST is defined, we find that

OOl <lplIF@I VY ie(ab).
However, by the mean value theorem,
[0(D) — d(a)l = [0'(c)'|b—a|  for some c € (a,b)
=10’ (b - a).
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Moreover, ¢(b) = p-F(b) and ¢(a) = p+F(a). Hence
|p*(F(b) = Fla)| < || pI[|F ()b - ),
ie, lpIP< b -a)pllIIF() (because p = F(b) - F(a)).

So, Il < -a)llF ).
Since p = F(b) — F(a), this is the same as | F(b) — F(a)|| < (b—a)||F'(c)||.

3-3.P6. (a) Suppose x = Xx;e; and y =X y;e;, where a; <x; <b;, anda; <y; < b,
for1<j<myandlet0<¢<1. Thentx+ (1-£)y=2Z(&x;+ (1 -1)y;)e;and a = ta
+(l-ta<t;+( -ty <th+(1-1H)b=0b.

(b) Let x = Xx;¢,. Since x and x + / both belong to the cuboid, then for 1 <k <
n, we have (1) a; < x; < by and (i1) a; < x; + b < b,. When 0 << 1, we therefore
have a; <x; + th; < b;. This, together with the first j — 1 inequalities in (ii) and the
last n —j inequalities in (i) leads to the required conclusion.

(c) Yes: IfN(h> + ... + %) is less than the radius of the ball (or equal), then so
isV(h + ...+ Ch).

3-3.P7. ¢'(¢) is the limit as #—0 of the quotient ®(4) = A OH(Hh)“Z) —f b e) and
the derivative of f at x + #(lLe) in the direction of e is the limit as #—0 of F(h) =
Lt hZJCHRO) phe relation is (k) = wF(wh) for p # 0. This implies (i)
and that (ii) 0'(z) is 1 times (D, f)(x + #(1e)), the directional derivative in ques-

tion. For (iii), we note that

S+ 1e) —f(x) = 0(1) = 6(0) = 9'(8) = W-(Def)(x + 6(e)),0 <6 < 1.

3-3.P8. The map x—fi(x)u; from E to R™ is the composition Aof;, where
A:R—R" is the linear map given by Az = zu;. By the chain rule, its derivative at
Xo1s the composition Aof;(xo). This composition maps 4 € R" into A( f1'(xo)(h)) =
[f1'(xo)(h)]u; . If f: E>R is also differentiable at xy € E, then the derivative of
the map x—>A(x)u, from E to R™ is given by hA—[f(xo)(h)]u,. Therefore
0'Ceo) () = L Cro) () Tuay + L Cxo) ) T

3-3.P9. (a) f(21) — £(0) = (0,0) has norm 0 but f(0) = (-sin6, cos 0) has norm 1.
(b) Apply the one variable mean value theorem to ¢O(f) = [f(a + (b —a))]-c on
[0,1], noting that ¢/(f) = limy, o[ LL-ERC=DTC@HOD ] = (D, , f)(a +

t(b — a)]-c, because lim,_,, uc = v-c.

(c) The function satisfies f(b) — f(a) = (0,0); since the function has a linear de-
rivative represented by the matrix [—sin t cos t] , it follows by Remark 3-2.5(b)
that it has a directional derivative given by [(Dy,f)a+0(b—a)] =
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2n[-sin 2w, cos 2n0]. The required 6 must satisfy —c;sin2n0 + ¢, cos2n0 = 0. If
c;=0,then 0 =% or 3. If ¢; =0, then 8 =1 . If cz/c; > 0, then there are two
possibilities for 6: 21_1'c arctan(c,/c;) and % + # arctan(c,/cy). If ¢p/c; < 0, then
again there are two possibilities for : § +5- arctan(c/ci) and 1 + 5 arc-
tan(c,/cy).

(d) £(1) = £{0) = (0,0) and /'(8) = (1 — 26, 1 — 367%), which cannot be (0,0) for any
value of 6. Now c,(1-20) + cy(1-36%) = —3¢,0°—2¢,0 + (¢c; + ¢,) and
(f(1) = f(0))(c1,cz) = 0. If ¢, = 0, then these can be equal only if 6 =% . Howev-
er, if ¢, # 0, then these can be equal only if 0 is one among the numbers —[c; +
\/(cl2 +3c7 + 3ci¢,)])/3¢,. It remains to check when both of them lie in (0,1). To
do so, we express them as —% [+ (@’ + 3u + 3)], where u = ¢,/c,. By applying
usual differentiation techniques to the functions —% [u £ ~(* + 3u + 3)], one can
show that —[c; + (c;> + 3¢5” + 3¢162)]/3¢, lies in (0,1) & ¢i/c; < —1 and that
—e1 —=V(er® + 3¢ + 3¢162))/3¢, lies in (0,1) & ¢i/e, > 2. In case =2 < ¢i/e; <

—1, of course both lie in (0,1). Thus 6 is nonunique < ¢, # 0 and -2 < ¢,/c, <-1.

3-3.P10. (a) Denote the centre of the ball B by a and consider any » € B. By
Problem 3-3.P9(b), we have (f(b) — f(a))c = 0 for every ¢ € R"; in particular,
for ¢ = f(b) — f(a). Therefore f(b) = f(a). Since b is an arbitrary point of B here,
it follows that f'is constant on B.

(b) For any a,b € B such that 0 # b — a = pu for some p € R, we have f(b) = f(a).
This follows by using the result of Problem 3-3.P9(b) and noting that D,,_, f* =

pD. f.

3-3.P11. Let sy be any point of S. By Corollary 3-3.4, f'is constant in any open
ball contained in S. Therefore S| = {s € S : f(s5) = f(s0)} is an open subset of S.
However, by continuity of f, the set S, = {s € S : f(s) # f(s0)} is also an open sub-
set of S. Since S| and S, are disjoint open subsets of the connected set S with
union equal to S, one among the two must be empty. Now S; cannot be empty
because it contains sy. Therefore S, must be empty, which means S, = S, i.e., f(s)
=f(s9) Vs€S.

3-3.P12. Apply 3-3.P7(iii) with (x,7) as x, # as i and (1,—1) as e. Then

S+ 6,0) = f(x,0) = t-[Da, -1y f((x,0) + 0(t,—1))] = t-[D, -1y f(x + 62, (1 = 0)1)]
= t[ L+ 0, (1-0))(1) + Lx+0r,(1-0))(-1)] = 0, because 2

= % by hypothesis.

Therefore f(x, ) = f(x + ¢,0) > 0 for all (x,?).
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3-3.P13. Applying 3-3.P9(b) with m = 1, we get for some 6 € (0,1),

J0) =0 = Dy + 0 =) = & (=30 @), where 2=+ 0y =),
Therefore by the  Cauchy—Schwarz inequality, |f(y)—f(x)] <
[Z (- %) 17[E, (%(z))z]”. On letting y—0 and using (ii) and (iii), we get

i

[£(0)—f(x)| < 8[1_)1:1 x7]"* for sufficiently small él x. This means f is differentia-
ble at 0 (with derivative zero).

3-3.P14. It suffices to consider only ¢. Continuity at points (x,y) # (0,0) is clear.

The observation that
x4+4x2y2—y4: . yz xz—y

2
@y e en
proves continuity at (0,0). For any (%, k) # (0,0) and any ¢ # 0, we have

Oth, th) =9(0,0) _ , h* +4hk> —k*
t (2 +k2)?

so that [O(x, y)| < 3|y|

which shows that the right side here is the derivative in the direction (4,k).
Hence the partial derivatives D;$(0,0) and D,$(0,0) are obtained from here by
setting (h,k) = (1,0) and (h,k) = (0,1), respectively. Thus D;¢(0,0) = 0 and
D,$(0,0) =—1. If ¢ were to be differentiable at (0,0), we would have

0, k) = 6(0,0) = (=1)k + (h* + k%) Pu(h, k),
where u(h, k)—0 as (h,k)—(0,0). This would imply that

_ (12 “iar bt AR -k _ 2 12452 B +3k>
u(h, k)= (h* + %) [kWHk]—Z(h + 13" kh CEVS

which does not approach 0 as (4,k)—(0,0), because its value when k& = 4 is
2"2h/|h|. This would be a contradiction. The directional derivative is not linear
in (h,k); so no Gateaux derivative.

— 3 2 2
3-3.P15. Suppose a; # 0. Then fla ) 2O __Cady a4 which

t B(a?+ Pay®) a2+ 2ay*’

2 o —
has limit % as t—0. If a; = 0, then M = (. The value of the func-
tion at any point of the parabola x = y* other than (0,0) is % , whereas its value at

0,0)is 0, i.e., f(O, ) — £(0,0) = % for all y # 0. The directional derivative is not

linear in (a;,a,); so no Gateaux derivative.
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Problem Set 3-4

3-4.PL. f(x,) = (H(x0), /o) fi(x,0)), where fi(x,y) = x°, f(x,y) = xy and
f3(x,y) = y. The 3x2 matrix having rows [df;/dx 0f;/dy], where i = 1,2,3, is the
one given in the problem. Since each partial derivative is continuous, the func-
tion f is differentiable [Theorem 3-4.4] and hence the derivative is given
[Theorem 3-4.2] by the aforementioned matrix.

3-4.P2. Since f(x,0) = 0 = f{(0,y) for all x,y, both partial derivatives exist at (0,0)
and are 0. To prove discontinuity at (0,0), we shall work with the norm ||(u,v)|| =
N(@* + V). For any & > 0, the point (x,y) = (8/2,8/2) satisfies ||(x,y) — (0,0)|| < &
but | f(x,y) — 0] = 1/2, whereby f is seen to be discontinuous at (0,0). If 2 # 0 # £,
then [ f(th, tk) — £(0,0))/t = hk/t(h* + k*), which has no limit as 7—0.

3-4.P3. Since f(x,0) = 0 = £(0,y), both partial derivatives exist and are 0. Since
x[,|y| < (6 + 37", we have | f(x,y)] < (o + )2 +)7)'"? = (x> + y*)"”. There-
fore f is continuous at (0,0). However, there is no derivative in any direction
(h, k) for which & # 0 # k, because [ f(th, tk) — /(0,0)/t = thk/|t|(h* + i*)"*, which
has no limit as t—0.

3-4.P4. The partial derivatives dx/dp, dx/dq, dy/dp, dy/dq are all continuous and
the map is therefore differentiable. The Jacobian is the determinant of

cosq —psing
sing  pcosq ’
which is p.

3-4.P5. dx/dp = —sinp cosh ¢, dx/dg = cosp sinh g, dy/dp = cosp sinhgq, dy/dg =
sinp cosh g. Upon computing the relevant determinant, we find that the Jacobian
is —sin’p — sinh’q. This vanishes < (p,q) = (km,0), where ke Z.

3-4.P6. Proceed as in the proof of Theorem 3-4.4. Statement (1) is now available
only for 2 <j < n. So, split g(x + /) —g(x) as [g(x + z,) —g(x + z;)] + [gx +
20) ~ gl + 20)] = Z/(glx + 2) g0 + z.0)) + [g(x + her) — g(x)] and handle
the summation by using (1) as in the theorem. For g(x + h,e;) — g(x), invoke the
definition of D, g.

3-4.P7. As in Theorem 3-4.4, g(x + h) — g(x) = L% hy(D;g)(x + z; + 6;h;e))
for any x € E. Now boundedness of partial derivatives yields the desired continu-

ity.



326 Solutions

3-4.P8. Here fi(x,y) = sinx cos y, f(x,y) = x +y, fa(x,y) = x* — y. Therefore the
partial derivatives are

D, fi=cosxcosy, D,fi=-sinxsiny, D1 /=1, Dyf,=1, D\ f;=2x, D, f;=—1.

The Jacobian matrix is therefore
cosxcosy —sinxsiny

1 1
2x -1

3-4.P9. As in Example 3-2.6, the derivative at (0,0) in any direction (%,k) is
1 /(h* + k%), which is not linear in (A, k). Therefore there is no Gateaux derivative
at (0,0). But partial derivatives are 1 and 0. Since [f{(¢,0) —f(0,0)]/# = 1, then
(D1.£)(0,0) = 1; since f(0,y) =0 V y, then (D, f)(0,0) = 0. For (x,y) # (0,0),

3x°(x" +yh) —x’ (2x) _ x*+3x7y? _ &+ ) +xy =y

(D1 f)(x.y) =
ey 4 07) 4+ 7) 2 +77)
2
2 2\2
(x"+y7)
2x’y 2xy X’

and D, (x,y)= — = - .
(D2f)(x.) (o +97) PEIE I
Therefore (D f)(x,y)| <2 and |(D,f)(x,y)| < 1. Thus the partial derivatives are
bounded.

3-4.P10. For (x, ) # (0,0), we have (D, /)(x,y) = 2x)° In(x* + y*) + 2xy*/(x* + )7)
and similarly for (D, f)(x,y). Also, (D, 1)(0,0) = (D,£)(0,0) = 0. (It may be re-
called from 3-4.P9 that mere existence of partial derivatives does not ensure that
there is a Gateaux derivative.) Since the partial derivatives we have obtained are
continuous, the function is differentiable everywhere by Theorem 3-4.4. There-
fore the linear derivative also provides the Gateaux derivative. By Theorem 3-
4.2, the matrix representation, which must be 1x2, has entries (D) f)(x,y),
(Dy.f)(x,), respectively.

3-4.P11. (2) (D )xy) = (1 + )1+ x* + )" + 2% and (D,f)xy) = (1
/(1 + x* + y* + xH%). Since both are continuous, f is differentiable every-
where by Theorem 3-4.4 and thus f(x,y) = f(0,0) + x(D, /)(0,0) + y(D,f)(0,0) +
[|(x, )| u(x,y), where u(x,y)—0 as (x,y)—0. Now £(0,0) = 0, (D, /)(0,0) =1 and
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(D2/)(0,0) =—1. So, f(x,y) = x =y + [[(x,y)]| u(x,y). Since u(x,y)—0 as (x,y)—0,
the required approximation is x — .

(b) Proceed similarly, noting that f(3,4) = % and that (D,f)(3,%) = 15,
(D2f)(3,1)=—%.The answer is 5 (x—3)—4(y—-1).

3-4.P12. By the chain rule,

gO=[Di )+ (1 =0x1,y)] (1 —x1) + [(Dof)x1, 2 + (1 = Dx2)] (02 — x2).
Now, f(v1,y,) — f(x1,x2) = g(1) — g(0) = g(0), where 0 < 6 < 1, using the mean
value theorem. So,
SO1,y2) = fCx1,x2) = [(D1 )0y + (1 = 0)x1, y2)] (V1 — x1)
T [(D2f)x1, 02 + (1 = 0)x2)] (12 — x2).
Take zZi = eyl + (1 — e)x,- .

3-4.P13. Follow the argument of part (b) of Theorem 3-4.9, keeping in mind that
X is now not an arbitrary point of S.

3-4.P14. Direct computation will yield the result. However, it is easier when

determinants are used. First, J(y,z) = det[JZ}” }Z}V} and similarly for J(z,x) and
u v
J(x,y). Second,
xll xl/l xV xV xll xv
det| v, Y. ¥, |=det|y, », »|=0.
le Zu ZV ZV ZU ZV

Expanding these by the first column obviously leads to the required equalities.

3-4.P15. (a) Since the cofactor 4; ; is a function of only those entries not in the

ith row (or kth column), we have aiA,- « = 0 for any 7,7,k. It follows that

1]

a?Zij (a,- kAl' k) =0ifk 7&‘] and Al/ if k :] The equality detd = Ej a,-jA,-j now
implies that a?z detd =A4;; foranyi,j.
ij

(b) By the chain rule, % detd = X, [(a%,., detd)a; /'] = Xi;dia,.  (*)
From this and the fact that 4,; = (AB[),- j» we further obtain dl detd =
X

X (AB[)[jaij,: Zi[Z; (ABi)[jaij,] =3, detdy'.
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(c) Since 4;; = c;;detd, it follows from (*) of part (b), that % det4 = de-
tA z,‘jaij’ Cii- This says that di (ln (detA)) = E,‘jaij’()j i
X

3-4.P16. z is homogeneous of degree 0. By Euler’s Theorem 3-4.9(a), the an-
swer is 0.

3-4.P17. If yo € [¢,d], then

|F(y0 +h)—F(V0)_h(,[j g—;j(xayo) dx)|

)
I[P (o ) —fxy) — b %(x, v

IN

)
17 feayo+ ) —fxyo) — h %(x, vo)ldx

IA

| (xy0+eh) ’;(x,ymdx,

where 0 < 6 <1. Since g—’; is continuous on the compact domain [a, b]*[c,d], we

know that =~ a (x, yo + h) converges uniformly to a (x, o) as h—0. Therefore the
last mentioned integral tends to 0 as #—0. Using this limit in the inequality
proved shows F'(y) to be as claimed. If [c,d] is replaced by (c,<<), then we can
apply the previous case to [c¢',d] for every ¢’ > ¢ and every d > ¢' to conclude
that the result continues to hold after the replacement. Similarly, it holds if [c,d]
is replaced by R.

3-4.P18. First consider any u € [0,4]. We have 0 < —In(1-u) =
”72+”T3+ = u(1+%+“72+ )y <u(l+u+u’+-) =74 and also 1 —u >

sin2

5. Therefore 0<u <5 = 0<-In(l —u) <2u. So, 0 >V2 = 0 < >

<i=0
< In(1- &n q> ) < 2 sin0 ¢ for all ¢. Thus 0 < —In(o? —sin’) + 2Ino <
2 for o> \/2 and all ¢. Hence

0<—["2In(o? - sin’0)do + mlna < % for o0>+2. (D

Now, by Leibnitz’s formula [see last part of 3-4.P17], when o. > 1, we have
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52 (ol —sin’)do = 5 [F6; In(or ~sin’)]do = [7° paerli
w2 4e _ [t 20 - _n_ . .
- do = [ o do N in view of the general equality
n do =_—"_ whena>b>0.

0 a+bcos® W
But - nln(oH— V(o = 1) = \/7;— and therefore,
-

n/2 In (0 — sin*¢) dd = wIn(ow + (o> — 1)) + ¢

=nlno+ win[1++(1 - %)] + ¢ for some constant ¢ and all o> 1. 2)
Since In[1++(1 - %)]—>ln2 as 0—oo, the equality (2) shows that

[ ] In(o? —sin®)do — mIno—mIn2 — ¢]—0 as o—soo.
On the other hand, (1) implies that
[]7% In(0? —sin®0) dd —wIno]—0 as o—seo.

Thus, ¢ = —rIn2. Together with (2), this leads to the required equality.
3-4.P19. By Leibnitz’s formula [see last part of 3-4.P17], u'(x) =
[§ sin¢sin(nd—xsin¢)dd and u"(x) = —[{ sin’¢ cos(nd — xsin¢) d¢. Therefo-

re
Xu"+ xu+ (= n’)u
=—x* [ sin’¢ cos(nd —xsin®)do +x [§ sin¢ sin(nd — xsin¢) do
+ (2 =) [¥ cos (nd — xsind) do
=[5 [(Pcos’d—n*)cos (nh —xsing) + xsind sin(nd — xsin)] do
= [~(n + xcos §)sin (nd — xsin¢)]7 =

3-4.P20. In view of the given continuity of /, o, B and D, f, the function ®(s,?)
= j f(x,y)dx has partial derivatives 2 — = —1(s,»), aa‘f = f(t,y) by the funda-
mental theorem of calculus, and aq> = ft LA (x v)dx by Leibnitz’s formula [see
3-4.P17]. The required equality for F'now follows by the chain rule. Continuity

of the derivative follows from the given continuity of f, o', B’ and D, f.
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3-4.P21. For n = 1, we have Fi(x) = jgf(t) dt and hence F'(x) = f(x). By Prob-
lem 3-4P20, we find for n > 1, that F,(x) = ﬁ (x—x)""fx) +

o Jo =02 fdt = G [y (v= 0" f)dt. Tt therefore follows by in-
duction that F,"(x) = f(x) Vne N,

3-4.P22. To show that T'(f) D, it is sufficient to prove that I'y(#)* + T'y(¢)* > 1.
By (b), I'j(0)’ + T'»(0)’ = 1. Therefore, if we can establish that <-(I',(¢)* + I'x(¢)°)
> 0 when ¢ = 0, the required conclusion will follow. Since this derivative is non-
negative in view of (a) and (b), all we need to establish is that it is nonzero.
Define a =T'1(0), b =T,(0), o. = y,'(6p) = —sin 6y, B = 1,'(6p) = cos 6,. Then
hypotheses (c) and (d) yield
o +p=1, +b*>0, ao+bp=0, (1)

where we have availed ourselves of the fact that y;'(0y) = 0 while using (d).
When =0,

(102 + () = [(0) T1(0) + T(0) T5/0)
=c0s0,I','(0) + sin 6, I,'(0) by (b)
=aP - bo..

1
2

Because of (1), this cannot be 0. As noted at the end of the first paragraph, this is
all we need to establish.

3-4.P23. Recall that @ is given by
D (u,v) = (1-02u—1)sinmv)cos2nv, D,(u,v)= (1—ou(2u—1)sinmv)sin2nv,
Ds(u,v) = a(2u—1)cosmv.
where 0 <o < 1.
(a) is obvious, because I'(up) = (ug,0) = ¥(0).
(b) (DoIN)(s) = (1,0, 0425 —1)). This yields (®oT)(s) = (0,0,20) for all s € [0,1].
(c) We note the following simple computational facts:
(i) replacing & by 1-& reverses the signs of 2§ —1, cosn , sin2nE but
preserves sinng and cos2ng ;

(ii) replacing & by —& reverses the signs of sinm€, sin2n€ but preserves
cosmg and cos2nE .

Using these, it is an easy computation that, for all re [-1,1],
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(@oy)i() = (@0Y)(0) = (1+0(2u, —1)sinTtt) cos 27t ,
(@o)(t) = (@r0Y)(£) = —(1+ o(2u, —1)sin ) sin 27z ,
(Doy)s(1) = (D30Y)(F) = ou(2u, —1)cos Tt .

This shows that ®ov is continuously differentiable on [0,1].

(d) It follows from (b) that (®oT")(up) = (0,0,20c) # 0. Therefore the required
conclusion will follow if we can show that (®o%);(0) = 0 but (Pov),'(0) # 0.
From the computation of (®Po7y);(?) in (c), we find that its derivative is

(Doy)s'(t) = —mou2u, —1)sin 7z,

so that (Po7);'(0) = 0. From the computation of (Poy),(?) in (c), we find that its
derivative is

(DoY), () = =21 + ou(2u,, — 1) sin ) cos 27t — mou(2u,, — 1) cos 7t sin 27t .

For ¢ = 0, this leads to
(DPoy),'(0) =—=2m 0.
This establishes (d).

The interpretation about the graph of ®oT lying on the ‘edge’ of M is that
the points with 0 < ¢ <1 cannot lie on the edge.

Problem Set 3-5

3-5.P1. No, because 6 depends on % and there is no telling how it will behave as
h—0.

3-5.P2. Since f(h,0) = 0, we have D, f(0,0) = 0. By an elementary computation,
for (x,y) # (0,0), we have D, f(x,y) = 2xy*/(x* + y*)*. Therefore D; f(0,k) = 0
when k # 0. This shows that D, f(0,0) = 0. Similarly, D, ,f(0,0) = 0. An ele-
mentary computation also shows that, for (x,y) # (0,0), we have D, f(x,y) =
[2xy/(x* + y*)]?, which is not continuous at (0, 0).

3-5.P3. Since f(4,0) = 0, we have D, f(0,0) = 0. By an elementary computation,
for (x,y) # (0,0), we have D, f(x,y) = 2xy*/(x* + y*)>. The partial derivatives of
D, f(x,y) at (0,0) are both 0. If D, f were differentiable at (0,0), we would have

D\ f(h,k) = D\ f(h,k) = D1 f(0,0) = hDy 1 f(0,0) + kD5 1 f(0,0) + (h* + &) u(h, k)
_ (hz 4 kz)l/zu(h,k),



332 Solutions

where u(h,k)—0 as (h* + k*)"*—0, which amounts to D, f(h,k)/(h* + i*)"* =0,
i.e., 20K /(1 + I7)°*—0 as (h* + k*)"*—0. But this is false, because when k = Ak,
we have 2hkY/(h* + I7)°? = 20%(1 + A2

3-5.P4. D F=f(x + (), Do F = fl(x + g)g'y), D11 F=f"(x+gy), D12 F
= /" + gNg'Wy). So (DiF)( Di2F) = fx + g(n) f(x + g0)g'y) =
(D, F)(Dy 1 F).

3-5.P5. Let f(¢f) = F(tx,ty). Then on the one hand, f(f) = x(D; F)(tx,ty) +
WD, F)(tx,ty), so that

F1(t)=x*(Dy 1 F)(tx,ty) + x9(Dy 2 F)(tx, ty) + xp(D | F)(tx, ty) + y* (D2 2 F)(tx, ty)
=x*(Dy 1 F)(tx,1y) + 2x0(Dy 2 F)(tx, ty) + y* (D 2 F)(tx, ty)

by Young’s theorem (Theorem 3-5.4). On the other hand, f(¢) = #F(x,y), which
leads to f'(7) = p#* 'F(x, ), so that f"(¢) = p(p — 1)t" *F(x,). So, x*(Dy 1 F)(tx, 1y)
+2x9(Dy 2 F)(tx,1y) + y*(Dy 2 F)(tx,1y) = p(p — )" *F(x,y). Setting 1 = 1, we get
the desired equality. We remark that one can do this with higher derivatives too
and obtain an equality that can be expressed in self-explanatory notation as (xD;

+yDy)"Fx,y)=p(p—1)---(p —m + DF(x,y).

3-5.P6. Proceed as in the proof of Schwarz’s theorem (Theorem 3-5.3) up to (2).
But now D, | f'is also continuous and the analogue of (2) for y(x) = f(x,b + h) —
f(x,b) also holds. As in the proof of Young’s theorem (Theorem 3-5.4), w(a + h)
—y(a) = o(b + h) — d(b). So, when h = £k, the right sides of (2) and its analogue
are equal. Cancel /4” and use the given continuity.

3-5.P7.For h#0,
_ 2 2 _ <
f(h,y) = f(0,y) = h arctan — y arctan% = h[harctan - y(5 arctan;”, )]

Therefore D, f(0,y) = —y (including the case when y = 0). It follows that
D, 1 f(0,0) =—1. A similar argument shows that D; , £(0,0) = 1.

3-5.P8. Write D, fas f; and so on. By Euler’s theorem (Theorem 3-4.9(a)), we
have (1) xf; + yf> + zf; = nf. Upon differentiating with respect to x,y,z, we get (2)
xfi1 + yfi + zfi3 = (n — 1)f; and two more equations (3) and (4). The reader would
do well to write them out! It may be noted that the first order partial derivatives
appear on the right sides with the factor (n— 1), but appear on the left side in (1)
without the factor. We have four linear equations for three ‘unknowns’ x,y,z.
Applying Cramer’s rule to (2)—(4), we get z = (n— 1)B/H, where B is the deter-
minant of a certain matrix, which we shall denote by [B]. Moreover, the
numerator of z when using Cramer’s rule with (2),(3),(1) in that order works out
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to be (n—1)4. Also, the coefficient matrix is the transpose of [B]. Since it is
given that z # 0, we know B # 0. Therefore z = (n—1)4/B. By multiplying the
two solutions obtained for z, we get the required equality.

3-5.P9. Proceed as in 3-5.P8, but since nothing is guaranteed to be nonzero,
Cramer’s Rule only yields Hz = (n—1)B and Bz = (n—1)4. Multiply to get
B?z(n— 1) = AHz(n - 1). First suppose z # 0. Then the required equality is imme-
diate if n—120;butn—1=0=>Hz=0=Bz,=>H=0=B (asz# 0) = B’ =
AH, which establishes the required equality for all z # 0. For the rest, take the
limit as z—0.

3-5.P10. Differentiate the equalities of 3-4.P14 with respect to v and u, respec-
tively, and subtract.

3-5.P11. Use the chain rule twice successively in F(x,y) =0, to get
Fo+ Fy'=0=Fo+2Fyy'+ Fy(/) + Fyy
Eliminate y': Fy3y” =-F, Fy2 +2F F.F, —Fnyxz, which equals the given de-

terminant.

3-5.P12. Observe that, since f(s, ) is a continuous function of ¢ for each s, it fol-
lows by the fundamental theorem of calculus (FTC) that [ Ly f(s,t)dt is a
differentiable function of y with a continuous derivative f(s,y) at every (s,y) €
[a,b]x[c,d]. Therefore, by Leibnitz’s formula [see 3-4.P17],

Dy Fx,p) = |} [% (J7 fis,tyde)]ds = [ f(s,y)ds.

One further application of the FTC leads to D, , F(x,y) = f(x,y). Now, since f
must be uniformly continuous, jf f(s,t) dt is a continuous function of s for each
v. Therefore by the FTC, D, F(x,y) = ch f(x,t)dt. Yet another application of the
FTC leads to D, | F(x,y) =f(x,y).

3-5.P13. Proceed as in Corollary 3-5.6 after showing for each k that
n 1
|fxCx+h)—fi(x) —jgl h;- D, f(x)] < Ln” || h,. To arrive at this, set up ¢ as in the
proof of Theorem 3-5.5 and note that it satisfies
16(1) = 0(0) = 9'(0)] = [9'(8) — (O) = [ X, ;- Dy fix + Oh) = 2 by D; /i ()|
7 I/} 1
=2 ]I, fi(x + Oh) = Dy fy)| < Ll Allo 2, [ ] < LI I

by Cauchy—Schwarz. But
(1) = &(0) = 0'(0)] = | ficx + 1) = fi(x) —él By D fi(x)].
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Problem Set 4-1

4-1.P1. Let X = (0,1) R and 7x = -1x. Then T is a contraction map without any
fixed point. For (i), [x € R,x =x*] & x =0 or 1. So the fixed points are 0 and 1.
For (ii), there are no fixed points unless o0 = 0, in which case every x € R is a
fixed point. For (iii), the domain and range are disjoint and there is no question
of fixed points.

4-1.P2. Let x, be the unique fixed point of 7°. Then T°(Txo) = T(T(xo)) = Txo.
Therefore Tx is a fixed point of T’ 3, so that Txo = xo. Thus x is a fixed point of 7’
as well. If T were to have another fixed point, then so would 7°. The reader will
see that the result is true for any power of 7.

4-1.P3. (a) If x, and y, are both fixed points of 7, then ||7xo— T¥o|| = ||x0—Yol|,
which contradicts the hypothesis unless xo = yy.

(b) The hypothesis here immediately implies that of part (a).

4-1.P4. () [Tx—D|| =[x + 1x) =@ + 1) = |x—y) + (Ix=1/)| = [(x—y) —
O =Yyl = =yl = Yoyl <=y =[x =y, and x + 1x # x for all x.

®) f(x)=1-e(1+ Y and 0 < 1—e'(1+ ') ? < 1 everywhere. If z were to be
a fixed point, we would have z = f(z) = z+ (1 + €)', which implies (1 + &) =
0, a contradiction.

4-1.P5. Consider the real-valued map g: X—R defined by g(x) = ||x — Tx||. Then

1g() =)l = |l[x = Txl| = [y = Tyll|
< =Tl = lly = Tl [+ [y = Txl| = ||y = Tyl
Sllx=yll+ [T =Dl < 2llx = yll.
Therefore g is continuous. Since X is compact, g attains its minimum at some z €
X. If z # T(z), then g(1(2)) = ||Tz— T(1Tz)|| < ||z— TZ|| = g(z), contradicting the
minimality of g(z). Therefore z = 7(z), i.e., z is a fixed point of 7. If w were to be

another fixed point, then we would have ||7z— Tw|| = ||z—w|| although z # w, a
contradiction.

4-1.P6. % Tx = 1 — 7x%500. Therefore, when x € [1,2] the double inequality 0 <
% Tx < 1 must hold. From the first part of this double inequality, it follows that
x— (x” — 6)/500 describes an increasing function on [1,2]. Besides, 7(1) = 1 +



Problem Set 4-1 335

5/500 > 1 and 7(2) = 2 — (128 — 6)/500 = 439/250 < 2. Therefore T maps [1,2]
into itself. Now max (% Tx) exists because d% Tx is a continuous function on the
closed bounded interval [1,2]. The second part of the above double inequality
implies that |% Tx| < 1. By Proposition 4-1.5, it follows that 7" is a contraction
and hence by Contraction Principle 4-1.6, the given sequence converges to the

unique fixed point of 7, which is easily seen to be 6.
4-1.P7. T*x = 1 for every x € [0,3] and therefore 7" is a contraction when n = 2.

4-1.P8. By (i), o, > 0 for all n. By (ii), there exists a positive £ < 1 and a positive
integer m > N such that 0 < o, < k. From (i), it now follows that

|1T"x—T"y|| < k||x—y]| for all x,y € X.
That is, 7" is a contraction. Now apply Corollary 4-1.8.

4-1.P9. Note that x € R is a fixed point of / if and only if x is a root of the poly-
nomial g(x) =x’—3x+1.

(a) By direct evaluation, we find g(-2) <0 < g(-1), g(0) >0 > g(1) and g(1) <0
< g(2). So, there is a root u between —2 and —1, a root v between 0 and 1 and a
root w between 1 and 2. Then u < v < w. Since g is a polynomial of degree 3,
there are no further roots. It follows that these are the only three fixed points of
f. This establishes (a). We remark for later reference that g > 0 on (u,v) and g <
0 on (v,w).

(b) Since the map t—¢’ is strictly increasing on R, therefore f'is strictly increas-
ing on [u,w]. But f(1) = u and f(w) = w. So, f maps the open interval (z,w) onto
itself.

(c) If x = v, then f"(v) = v for all n. Suppose u < x < v. Then on the one hand,

f(x) <f(v) = v and on the other hand, x’—3x+1 = g(x) > 0 [see remark above at
the end of (a)], so that L(1 +x°) > x, i.e., f(x) > x. Thus u <x <v = u <x <f(x)
< v. Therefore /"(x) is an increasing sequence in (u,v) and thus has a limit in
(u,v]. Its limit is easily seen to be a fixed point of / and must therefore be equal
to v. A similar argument when v < x < w shows that /"(x) is a decreasing se-
quence in (v, w) with limit v.

(d) Since w > 1 (as seen in (a)), there exist x; and x, in (1, w) such that both are
greater than 1. By the mean value theorem, |f(x|) — f(x2)| = |x; — x2| | f'(?)], where ¢
lies between x; and x,; in particular > 1. But f(7) = £ > 1. So, |f(x;) — f(x2)| >

Jx1 — x|
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4-1.P10. (a) f(x) =x © gx) =’ +x-1=0.Now g(3 ) =3 (2 )*'+ 1)1 =

1011

7 — 4 . .
107 — 1 <0 <g(1) and g'(x) = 5x" + 1 > 0 everywhere. So, g has a unique root in

R, which lies in [%, 1], i.e., f has a unique fixed point e R, which lies in [%, 1].

(b) f'(x) = —4x*/(x* + 1)* < 0 when x > 0. This and the fact that f(y) >0V ye R
lead to the required conclusion.

(c) Since 0 <3 < a by (a), we have f(3) > o > 2 by (b). First we show that 1 is
a self map of the interval [2,f(3)]. Consider any x such that 3 <x < f(2). It
follows from (b) and (i) that /(2) > f(x) > f%(2) > 3. So, f is a self map of
[2./(3)]. Next, we show that |f'(x)| < (%) on [3,f(3)]. To this end,
4 | S| = <L [4x°/(x* +1)°] = 4°(=5x" + 3)/(x* + 1)*, which is positive when x*

. Now, ( ) < ( )2 =26 3 3 . Therefore |f'(x)| is increasing on [<,18].

441 4721
Hence | ()] < [f(38) on [3,48]. But 2 <f(3) = 8L < 26 =18 Therefore the

3 16

interval in question, namely [%, f(—)] is a subinterval of [, 77]. Consequently,

the inequality | f'(x)| < |f” ( 1)l holds on [ T f( )] as well. From (i) and Proposi-
tion 4-1.5, it now follows that /" is a contraction. Note: The contraction f
approximates o via the contraction principle, but Newton’s method applied to

the polynomial g works much faster.

4-1.P11. Consider a sequence {r,} in (0,1) such that 7,—1. For each p, the map

T,(x) = r,(Tx) is a contraction in § and therefore has a fixed point x,,, i.e., x, € S
and r,(Tx,) = x,. Since S is compact, some subsequence {x,y} converges to a
limit x € S. Since 7' must be continuous (in view of the inequality it satisfies), the
equality 7, Txw) = Xpx V &k immediately shows that x is a fixed point of 7. The
map 7 given by Tx = x satisfies the condition; the reader may observe that every
point is a fixed point.

4-1.P12. Define f:X—R by f(x) = ||[Tx—x|| = 0. Then || f(x)—fE)|| < (1+¢)
lx—&||, where ¢ is the contraction constant. This inequality shows that /" is con-
tinuous. Moreover,

S(Ix) =||T(Tx)— Tx|| < c||Tx —x|| = ¢f(x) for all xe X.
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In the case when X is closed as well as bounded, it is compact [Theorem 2-
5.7] and we can deduce that f(x;) = 0 for some x, € X by Theorem 2-6.13. This
X is then a fixed point of 7, considering that ||7x( —xo|| = f(xo) = 0.

Now suppose X is not bounded (but is closed). Take any z € X and consider
the set Y= {x € X: f(x) <f(2)}. Since f is continuous, Y is closed. For y € ¥, we
have

lz=yll Tz =z|| + [Tz = Tyl + 1Ty =yl < 2/(2) + cl|z—=yl|.
Hence
lz=yll < 2/(2)/(1-0).
Consequently, Y is not only closed but also bounded. Besides, 7" maps Y into ¥
because
veY=>f(T)<cf(y)Scf(2)Sf(z) = TyeY.
Therefore 7 has a fixed point in Y and hence also in X.
Finally, since

1o =xol] = {1 = Toxol| < [| 72 —x]| + [T — Texol| < f(x) + cl[x — x|,

we have ||x — x| < f(x)/(1-c¢). It follows that

13, =xoll < fCe,)(1= ) = AT" x)/(1=¢) < fle)/(1 =),

which shows that the sequence {x,},>; converges to x;.

Problem Set 4-2

4-2.P1. For both g and g, the interval (3,5) may be taken as the open set; g,(y)

= "2, No, because any open set containing 0 must also contain negative num-

bers, which cannot be squares of any real numbers.

4-2.P2. Since % = (1+x)e" > 0 on (—1,%), the given function is injective when
restricted to this interval and has range (—e ', o), which is an open subset U of R
containing e. Therefore there is a continuous inverse g with domain U. These
will serve the purpose; so will any subset V' of U that contains e and is open,
taken with the restriction of g to V. Corresponding question for (-2, —2/e%): The
point (=2,-2/¢%) lies on the graph of y = xe*. Find an open set containing y =
—2/e* such that there is a continuous function x = g(y) defined on it, for which x
= g(y) = y = xe" and g(-2/e*) = —2. The answer is that % <0on (—oo,—%) and
the given function when restricted to this interval is injective and has range U =
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(—%e’y ?,0). Take g to be the inverse defined on U. Note that we know the exis-
tence of the required map though we cannot compute it explicitly.

4-2.P3. The first part is the same as Example 4-2.2(d). As f(x,y) = f(x,y + 2n), f
is not injective.

4-2.P4. The inverse function theorem says only that the function is locally in-
vertible. Since it is not injective [as seen in 4-2.P3], it is certainly not invertible.

4-2.P5. Let U C E be open and b € f(U). Then b = f(a) for some a € U. Since
f'(a) is invertible, the inverse function theorem yields open sets U; < U and V'
R" such that a € U; and f(U;) = V. But then f{(a) € V< f(U). Since b =f(a) and V'
is open, this means f(U) is open.

4-2.P6. Let b be any point of V. Then b = f(a) for some a € U. By hypothesis,
f'(a) is invertible and hence the inverse function theorem yields open sets U; <
U and 7, < R” such that @ € U, and f(U;) = V;and f has a differentiable local
inverse on V. But then » = f{a) € V| and the local inverse is therefore differenti-
able at b. However, g has to agree with the local inverse and must therefore also
be differentiable at b.

4-2.P7. Let K denote the closure of f(¥). It is trivial to show that (V) < K. To
prove the reverse inclusion, consider any y € K. Then there exists a sequence
{x,} in V such that f(x,)—>y. Since V is compact, x,—>x € ¥ when {x,} is re-
placed by a suitable subsequence. From the continuity of f, it follows that
f(x,)—f(x), so that y = f(x). Since x € V, we have y € (V). So K  f(V), and
hence K = (V). Finally, we note that the set f(V), of which K is the closure, is
an open set, as proved in 4-2.P5.

4-2.P8. [f(h) —f(0)/h = 1 + 2hsin (1/h)—>1 as h—0. Also

f(x) =1+ 4xsin (1/x) — 2 cos (1/x) for x # 0.

Now consider any (-9, 8). When n is any natural number greater than 1/27d, the
number x = 1/27tn belongs to (-0, 8) and satisfies f//(x) = —1 < 0, while the num-
ber x = 1/(2n + 1)1 also belongs to (—0,8) but satisfies f'(x) = 3. Thus /" takes
positive as well as negative values in (-9,9), and consequently, / cannot be in-
jective on (-9, d).

4-2.P9. (a) D(s,x) = @(s',x) = (d(s) + Wx), x) = (O(s) + Y(x), x) = [x =
x5 0(s) T w(x) = o(s) + wx)] = [Wx) = wx), &s) + w(x) = o(s) + yx)] =
0(s) = 0(s") = s =s". (b) Let (s',x") € R"<X. Then s'— y(x') = ¢(s) for some s, so
that (s',x") = (0(s) + y(x"),x") = O(s,x").

4-2.P10. Since all partial derivatives are continuous in open set containing
(0,0,0), f is continuously differentiable. The determinant of the Jacobian matrix
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at (0,0,0) is found to be 20, which is nonzero. By the inverse function theorem, f
has a continuously differentiable local inverse at (meaning, on some open set
containing) the point (0,0, 0).

4-2.P11. Sufficient conditions are that f and g be continuously differentiable
mappings of all pairs (u,v) belonging to some open set containing (u, vy), where
Xo = f(ug,vo) and yy = g(ug,vo) and 9(f,2)/d(u,v) # 0 at (ug,v,). Differentiating
the equalities u = F(x,y), v = G(x,y) with respect to u and v, we get

OF of  OF Jg OF of  OF Jg
1=y 9 * 9 u> 0=2x v 9y v>
9G o 9G Jg 9G o 9G Jg
0="3x u * 9 u> =2 v 9 v

We get the required equalities by solving these four equations. (Remark: Actu-
ally these equations merely state that the Jacobian matrix of a map and of its
inverse are inverse matrices. Therefore, if one knows how to express each entry
of the inverse of a matrix in terms of the ‘cofactors’ from the latter, one can eas-
ily generalise the result of this problem to higher dimensions.)

4-2.P12. Since f(—x,—y) = f(x,y) and (—x,—y) # (x,y) whenever (x,y) # (0,0),
therefore f always maps at least two points of U into the same point. To show
that precisely two points of U are mapped into the same point, consider
(x,¥),(u,v) € U that are mapped into the same point. Then we have the two equa-
tions x* — y* = u* — v* and 2xy = 2uv. Squaring the first and using the second, we

get X+ y2 =14’ +%, which, upon being combined with the first, leads to ¥ =

y* =v*. We may suppose x # 0. If y = 0, then the preceding equations imply that
v =0 and x = £u, so that either (x,y) = (u,v) or (x,y) = (—u,—v). If y # 0, then the
second of the original two equations shows that u,v have the same or opposite
signs according as x,y do. It follows again that either (x,y) = (u,v) or (x,y) =
(—u,—v). This shows that the mapping is ‘two-to-one’. To show that the mapping
is surjective, we note that the equations s = x> — 1%, ¢ = 2xy can be solved for
(x*,»%) by elementary methods by first obtaining s* = (x* + y*)* — #* and then
X+ )7 ="+ 7), leading to x* = L(\(s* + £) +5) and y* = L((s* + P) - 9).
These equations show that (s,7) # (0,0) = (x,y) # (0,0). This demonstrates sur-
jectivity but falls short of obtaining an explicit differentiable local inverse,
because we have not shown that the sign ambiguity can be settled on some open
set in such a manner as to ensure differentiability. Rather than doing this, we use
the inverse function theorem. The linear derivative Df at any (x,y) has matrix
with first row [2x —2y] and second row [2y  2x]; it can be seen to be invertible
for any (x,y) # (0,0), for instance via its determinant, which is 4(x* + 7).

4-2.P13. Since the three functions mentioned are continuously differentiable and
x> + y* does not vanish on U, the component functions f; and f are continuously
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differentiable. Therefore, so is f. If f” is invertible at some (a,b) € U, then by the
inverse function theorem, f must be injective on some open set containing (a, b).
However, any open set containing (a,b) contains points (Aa,Ab) # (a,b) and
f(\a,Ab) = f(a,b). This contradicts the injectivity of fon the open set.

4-2.P14. What is to be proved is that the map ¢:U—R" defined by ¢(x) =

(fl(x) Jn(x)
h(x) 2° "2 h(x)

Since f1,f1,...,/, and & are continuously differentiable and / vanishes no-
where on U, the component functions of ¢ are continuously differentiable and
hence so is ¢. Therefore by Theorem 2-7.15, if ¢’ is invertible at some (a,b) € U,
it is invertible on an open set containing (a,b) and we may assume that (a,b) #
(0,0). Now, by the inverse function theorem, ¢ must be injective on some open
set containing (a,b). However, any open set containing (a,b) contains points
(Aa,\b) # (a,b) and, at the same time, by the homogeneity hypothesis, ¢(Aa, Ab)
= 0(a, b). This contradicts the injectivity of f'on the open set. To deduce 4-2.P13,
take n =2, U = {(x) € R? : (x,) # (0,0)}, fi(x,y) =x* =17 fo(x,y) = xy and
h(x,y) =x"+ y*.

) has a noninvertible linear derivative everywhere on U.

4-2.P15. Since u,v,w are continuously differentiable and homogeneous of de-
gree 0, the same argument as in 4-2.P14 applies. If f1, f>, ..., f, are continuously
differentiable and homogeneous of degree 0 on an open set in R”, then their Ja-
cobian is zero everywhere on that set.

4-2.P16. (a) Obvious that » > 0. Since the range of cos™' is [0,%], we have 0 €
[0,m] when y > 0. But when y < 0, we have x/(x* + y*)"? # —1, so that cos™" (x/(x*
+1%)"%) # n and hence 0 # —.

(b) First, note that sin(cos 'u) =~(1 —u”) V u e [~1,1]. Therefore when y <0,
we have sin = —sin [cos ' (x/(x* +19)")] = —[y|/(x* + 1)) = —(=)/(x* + )" =
y/r, and when y > 0, we have sin© = sin [cos ' (x/(x* + y))")] = |y [/(x* + yH)"* =
Y+ 9" = yir. Also, cos @ = cos (—0) = x/(x* + )"
0.

(c) Suppose (r, 0) € (0,o0)x(—m, 7] and x = rcos 0, y = rsin 6. By definition of g,

= x/r, whether y <0 or >

the first component of g(x,) is (x* + y*)"? = (*cos’ 0 + r’sin® 0)"? = r, remem-
bering that € (0,00). If y = rsin 6 > 0, then sin 6 > 0 and so 0 ¢ (-, 0); hence 0 €
[0,7]. Moreover, the second component of g(x,y) is cos ' (x/(x* + y)"?) =
cos ' (cos 0) = @, considering that 0 € [0,7]. If y = 7sin § < 0, then sin ® < 0 and

so 0 ¢ [0,m]; hence 0 € (—m,0). Moreover, the second component of g(x,y) is
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—cos ' (x/(x* + yz)” ) = —cos ' (cos ) = 0, considering that 6 € (—,0). In either
case, g(x,y) = (7,9).

(d) For the sequence (x,,y,) = (-1,1), we have 9,—cos ' (-1) = m, but for
(Xp,00) = (—1,—%), we have 6,——cos ' (—1) = 7. So limg(x, ) as (x,y)—>(-1,0)

does not exist.
4-2.P17. f'(a) =2e. So, §,(x) =x + i(y —xe"); also, xo(y) =1+ i(y —e)and

B =1+5(-e)+ 5 -1+ -e)exp(l+5:(y-o)

Only x; and x, are partial sums of the Taylor series of /' at y = e. The point in
question is f(a) = e.

4-2.P18. Clearly /" is continuously differentiable everywhere and its derivative
at (0,0) is the identity map. Moreover, it maps (0,0) into itself. By the inverse
function theorem, it has a local inverse at (0,0). By the argument in the proof of
the theorem, an approximating sequence for the local inverse, valid in some ball
centred at (0,0), is generated by the contraction map

O () = (6,) + (U, v) —f(6,0)) = (=7, v = ).
Thus, if the approximating sequence starts with (x;,y;) = (0,0), then the second
term is
(x2,2) = (x1, 1) + ((u,v) = f(x1,01)) = (0,0) + ((,v) = (0,0)) = (u, )
and the third term is
(3,33) = (¥2,32) + () = [(x2,32)) = (¥2,32) + () = (x2 + 32", x2° + 1)
=)+ (u,v)— @+ V' +v))=w—Av—id).

Problem Set 4-3

4-3.P1. No; the relevant Jacobian has value 0.

4-3.P2. Let fi(x,y,z,u) = 3x + y—z— 1, f(x,y,z,u) =x—y + 2z + u, fs(x,y,2,u)
=2x + 2y — 3z + 2u. Then d( 1, f4, £)/0(x,y,u) = —12 — 12u°, which can never be
0. If there were to exist a solution for x,y,z valid on some interval (in which u
varies), then the fact that 2x + 2y —3z)=(Bx+y—2z)— (x — y + 2z) would imply
that —2u = u’ + u on that interval, which is plainly impossible.
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4-3.P3. Clearly, £(1,0,0,1) = (0,0). Denote the component functions of f by f;
and f;. Then

S166,Y) = filx, X2, yi,y2) =x1y2 + X0y — 1
and

Sx,y) = fo(x1,%2, y1,32) = X162 = Y1)z
The linear derivative D, f'at (1,0,01) is given by the matrix

af1/dy, 9fi/dy, | | 0 1
daf>/ 9y, daf, /9y, -1 0/

which is invertible. Therefore the theorem shows that y is a function of x near
(1,0). Also, the linear derivative D, f'at (1,0,01) is given by the matrix

af,/9x, afi/ox, | _ |1 0f
df,/dx,  9f,/dx, 0 1

Therefore the required linear derivative at the point (1,0,01) has matrix
0 1771 o] _[o 1
-1t o] o1 |[-1 o0
4-3.P4. We have f(x(,z),y,z) = 0 V y, z. Using the chain rule to differentiate

with respect to y, we get %(x(y,z), V,2) g—;(y,z) + %(x(y,z), y,z) = 0. Similarly,

from the identity f(x,»(z,x),z) = 0 V z,x, we get %(x,y(z,x),z) %(z,x) +
Jf . Jf 9 9,
5; (6, ¥(z,x),z) = 0. Finally, 5-(x,y,z(x,y))" f(x,y) + a—);(x,y,z(x,y)) =0. If

f(x,y,2) =0, then (x,y,2) = (x(y,2),1,2) = (x, y(z X),z) = (x,,2(x,y)). Therefore

. . 9 ) 9 Jdf 9 Jf
we can write the three equations as a—)/: pri =0 LRI, f =0, a£ a; a{C

By > ay az

=0. If = 0, it follows from the first equation that = 0 and then from the

second that a—i = 0 as well. Thus, if one is nonzero, so are the other two. Fur-

J 9 o ..
thermore, from the first equation, we have ; = *% TR substituting this in the

Jd ox 9 9 . .
second, we get —% % % + a£ = 0. By substituting this in the third, we get

df ox dy 9 9 ox Jdy d . o
a’; a; ai a; + a{C =0, or x(%%f + 1) = 0. The desired equality is

now immediate.
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4-3.P5. The product equals 1, not —1, because g—; =N -y - -uh)=-1=

4-3.P6. By definition, i = fo¢, where ¢(xy,...,x,) = (g1(x1),22(x2), ..., (X))
By the chain rule and the fact that the determinant of a product of matrices is the
product of their determinants, we have J,(x) = J((x))Jo(x1,...,X,). Now, the
Jacobian matrix of ¢ has diagonal entries g;'(x;), 1 <i < n, and all other entries

are 0. Therefore its determinant is Jy(x, ..., x,) = g1'(x1) 22 '(x2) - -+ - 2,'(x).

4-3.P7. f maps R'xR? into R' = R and has a continuous linear derivative every-
where because all its three partial derivatives

D, f(x,y1,32) = 2xy1 + €, D flo,y1,32) =, Ds fx,y1,2) =1

are continuous. Also, f(0,1,-1)=0+1-1=0 and D,f(0,1,-1) =D, f(0,1,-1) =
1 # 0. By Implicit Function Theorem 4-3.2, there exists a differentiable function
g on an open set containing (1,—1) in R? such that g(1,-1) = 0 and

fle1,»),71,2) = 0 on that open set. Moreover, its linear derivative
[(Dig)(1,-1)  (D2g)(1,-1)]is-A;'4;, where

A, =D, f(0,1,-1)= 1
and

A2 = D(J’I,yz)f(oa 1971) = [DZf(Oa 1771) D3f(07 1571)] = [O 1]

Thus [(Dig)(1,-1)  (D2g)(1,~1)] =[0 —1]. This means (D, g)(1,~1) = 0 and
(D2g)(1,-1)=-1.

4-3.P8. Let F:R* >R be defined by F(x,7) = f(x) — tg(x). Then F(0,0) = 0 and
(D, F)(0,0) = f7(0) - 0-g'(0) # 0. It follows from the implicit function theorem
that the function x = x(f) of the required kind exists on a suitable interval (-9, )
and that x'(0) = —(D, F)(0,0)/(D, F)(0,0). Since (D;F)(0,0) = —g(0), we have
x'(0) = g(0)/f"(0). When g(0) =0, we take x(f) = 0 on R.

Problem Set 4-4

4-4.P1. (i) W = (=12, 1A2). (ii) With W = (=1,-1N2)U(=1N2, 1N2)U(1N2, 1),
take g(y) to be V(1 — ) on the second interval and either (1 — %) or —/(1 —)?)
on the other two (in any combination); all satisfy g(0) = 1. (iii) Same as part (ii);
the only solution satisfying g(y) > 0 is g(y) =(1 — %) V ye W.
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4-4.P2. There would be no purpose to this problem if it merely called for the
two proofs to be written one after the other. The uniqueness established during
the proof of (a) of Theorem 4-3.2 (just before defining g) can be used in the
proof of (b) of Theorem 4-4.1 to show instantly that G agrees with G| on B;. So
the construction of the map G, becomes unnecessary. Since that uniqueness was
not recorded as one of the conclusions of Theorem 4-3.2, it was unavailable
while proving Theorem 4-4.1 separately.

4-4.P3. (a) f(x,y) =) — " g(x) = [["“.

(b) f(x,y) = > — x%; g1(x) = x and g,(x) = —x are both differentiable solutions. Any
solution g must satisfy |g(x)| = |x|. If it is also differentiable, then the identity
g(x)* = x” leads to g(x)g'(x) = x so that |g'(x)| = 1. Since a derivative has the in-
termediate value property, we must have either g'(x) = 1 everywhere or g'(x) =
—1 everywhere. So, g; and g, are the only possibilities.

(©) fxy) =y —x* gi(x) = X%, ga(x) = —g1(x), g3(x) = x* for x > 0 and —x” for x <
0, ga(x) = —gs(x).

4-4.P4. Modify the proof of Theorem 4-4.4 as follows: The function y—F(x,y)
has a positive derivative at y = b. Therefore there exists a positive 1; < 1 such
that the function is negative at » — 1, and positive at » + 1. Now apply the in-
termediate value theorem on the interval [b—m;,b+m;]. The proof of
differentiability carries over without any modification.

4-4.P5. The proof of Theorem 4-4.1 carries over almost verbatim.

Problem Set 5-1

5-1.P1. ¢(x,y) = xy, f(x,y) = y — x°, so that ®(x) = x°. The Lagrange equations
y—2Ax =0, x + L = 0 taken with constraint y —x° =0 have solution A=x =y =0.
However, for every § > 0, the points (—8,8%),(8,8%), both satisfy the constraint
and yet 0(—8,8%) < ¢(0,0) < ¢(3, 8.

5-1.P2. (a) Consider any y; € W such that (x;,y;) € T. Suppose, if possible, that
2() # x;. Define g, on W to agree with g except that g(y;) =x;. Then g, # g
but (g1(y),y) € T whenever y € W (even when y =y, because (x;,y,) € T). This
contradicts the uniqueness of g.

(b) The given local minimum at b means that there exists an open ball W, c W
such that b € W, and ¢(g(y),y) = d(g(b),b) = d(a,b) whenever y € W;. The set U;
= {(x,y) € S : y € W;} is open and contains (a,b) because b € W,. Consider any
(x,y) e TnU,. We have (x,y) € T and y € W, W, so that x = g(y) by (a). There-

fore ¢(x,») = 0(g(»),y). Since y € W1, this implies 0(g(y),y) = d(a, b). Thus ¢(x,y)
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> 0(a, b) whenever (x,y) € TNU, . Since U is an open set containing (a, b), there
exists an open ball B ¢ U, such that (a,b) € B. Now, (x,y) € TnB = (x,y) €
U, = ¢(x,y) = ¢(a, b).

5-1.P3. The Jacobian matrix of the R?-valued constraint function has rows
[T =1 1]and[2 1 4]. The first two columns provide an invertible matrix,
so that the invertibility condition holds on the entire constraint set. Denoting the
point (a,b) of Theorem 5-1.3 by (x,y,z) and A;,...,A,, by A, W, equations (1)
there become 2x + A +2u =0, 2y -A+u=0,2z+ A +4u = 0. These lead to x =
—(A+2w/2, y = (A—W)/2, z=—(A+4n)/2. Substituting in the constraints, we
get 3L — 51 =4 and —5A — 21 = 32. Therefore A = 2 and L = -2 and hence
(x,y,2z) = (1,2,3). Since this solution of the Lagrange equations is unique, the
minimum must occur at (1,2,3). The minimum value of x* + y* + z* is 14.

5-1.P4. (a) The distance of any point (x,y) from the circle x* + y* = 1 is (x* +
)2 — 1, which is therefore our objective function. The constraint is x +y = 4.
The Jacobian matrix of the constraint function is [ 1]. Both entries are non-
zero everywhere and therefore the invertibility condition holds on the entire
constraint set. The Lagrange equations are x(x* + y*) "2 + A = y(x* + y*) 2 + L =
0 and the constraint is x + y = 4. The only solution is (x,y) = (2,2). If the mini-
mum exists, then it must occur at (2,2).

(b) It is sufficient to minimise double the square of the distance of a point (x,))
from the line x + y = 4, which is (x + y — 4)>. The constraint is x* + y* = 1. Since
the constraint set is compact, we expect a minimum as well as a maximum. The
Jacobian matrix of the constraint function is [2x 2y], the entries of which can-
not both vanish at the same point of the constraint set. The Lagrange equations
are 2(x + y—4) + 2Ax = 0 = 2(x + y — 4) + 2Ay and the constraint. There are pre-
cisely two solutions: (x,y) = (1/7/2,14/2) and (-1/72,—1/2). By evaluating (x +
y —4)* at the two points, we find that (1/7/2, 1/4/2) is a point of minimum and the
other one is a maximum.

5-1.P5. The objective function is 0(x,y,u,v) = (x—u)’ +(y—v)’ and the con-
straint functions are u+v—4 and x’+)°—1. Observe that the constraint
equations rule out the possibility that x —u = 0 = y —v, because this would im-
ply x + y=u + v =4, whereas

Yy =l = x|y <I=>x+y<2=x+yz4
Now, the Lagrangian is L = (x—u)’ +(y—v) +Mx" +y" =D+ uu+v—4) .
Using subscripts to denote partial differentiation,
Li=2(x—u)+2\x, L,= 2(y—v)+2Ay, L,= 2(x—u)+
and L,= -2(y—v)+L.

For these to be zero, we must have x —u = y —v and hence Ax = Ay. But A # 0,
because, as already observed, x —u # 0. Therefore x = y, which implies u = v.
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This leads to the two solutions u = v =2 and x = y = £1/4/2 with A = £24/2 - 1
and p = +/2 — 4. The Jacobian matrix of the R*- valued constraint function is

0 0 1 1

2x 2y 0 0]
On the constraint set, one cannot have x = 0 = y; therefore the 2x2 matrices
formed by the first and third columns and by the second and third columns can-
not both fail to be invertible at the same point of the constraint set. Thus the

invertibility condition holds everywhere on the constraint set and there are no
points of extremum other than the solutions obtained.

5-1.P6. Since the constraints define a compact set and the function x* + y* + 2% is
continuous, an absolute maximum and absolute minimum must exist. The Jaco-
bian matrix of the R*-valued constraint function has rows [% 2?} %] and
[1 1 —1]. These cannot be proportional at any point of the constraint set. It
therefore follows that the absolute extrema occur among the solutions to the
Lagrange equations.

The partial derivatives of

L=x2+y2+22+K(%2+%2+§—:—1)+u(z—x—y)

are
OL/0x=2x+ +hx—W, dL/dy =2y + 2Ay— WU, 0L/0z=2z+ & Az + L.
For these to be zero, we must have x = %, y= 2:%0 and z = —% . Substi-

; ; — 251 S 2 _
tuting in z=x+y, we get 5% + 550 T 97 = 0. Now p # 0, because

otherwise the first of the given constraints will not be satisfied. So,

25(h + 4)(2L +10) + 2(2A + 50)(2% +10) + 5(2A + S0)(A + 4) = 0.

This is a quadratic in A with roots A =—10 and A = —75/17. Corresponding to the
root A =—10, we have x = —1/3, y = —W/2 and z = —5/6. Substituting this in the
quadratic constraint, we get L = +6(5/19)"?
= (£2(5/19)"2,+3(5/19)",£5(5/19)"%). Both yield x* +1* +z* = 10. Similarly,
corresponding to the root A = —75/17, we get p = +£140/17(646)"* and (x,y,z) =
(£40/(646)"2, F35/(646)"%,£5/(646)"?). Both yield x* + y* + 2% = 2850/646 < 10.

It follows that these two points give the absolute minimum and the other two the

. The corresponding points are (x,y,z)

absolute maximum.
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5-1.P7. (a) The Jacobian matrix of the constraint function is
[6x—2y—-2 —2x+4y—06], the entries of which can both vanish only when x =
1 and y = 2. Thus the set S = {(x,y,z) e R* : 6x—2y—-2=0= 2x+4y—6} is
the same as {(1,2,z) : z € R}. Observe that this set S can be verified to be con-
tained in the constraint set. Since the invertibility condition fails on the set S,
extrema that lie in it may not be detected by the Lagrange multiplier method.
First we seek extrema outside S. The Lagrange equations are

2x+M6x—2y—2)=0, 2y +M-2x+4y—-6)=0, 2(z—1)=0.

If 6x—-2y—-2 =0, then x = 0 and y = —1, which violates the constraint. There-
fore 6x—2y—2 # 0, and similarly, —2x+4y—-6 # 0. So 2x/(6x—2y—-2) =
2y/(-2x+4y—6) and hence ¥ +xy—y? +3x—y = 0. Combining this with the
constraint, we obtain 5x> +4x—8y+7 = 0, so that y = (5x* +4x+7)/8. When
we substitute for y from here in the constraint, the resulting equation is

50— 1D?[S(x+ 1> +16] =0,

showing that there is no solution with x # 1. Thus there are no extrema outside S.
For extrema in S, we recall that the set is defined by 6x—-2y—-2= 0 and
-2x+4y-6=0. We may use these two as constraints and apply the Lagrange
method, taking advantage of the fact that the Jacobian matrix of the two con-
straint functions is invertible everywhere. Alternatively, we may note that, when
x=1, y=2, we have x* + y* +(z—1)* = 5+(z—1)*, which is obviously mini-
mum when z = 1, whereby the absolute minimum is seen to be at (1,2, 1).

(b) Upon writing the constraint as 2y —(2x+6)y+(3x* —=2x+7) = 0 (a quad-
ratic equation for y), we get y = L[ x+3++-5(x—1)? ], so that the constraint set
is {(1,2,z) : z € R}, which is the same set as what we called S above. (So the
search for an extremum outside S was doomed before it began!) Then we pro-
ceed as in the last sentence of the preceding paragraph. There is no need for
differentiation at any stage.

5-1.P8. (a) | /(r,0)| < /°. (b) Given a ball |r{ <a <1 centred at the origin, choose
0 = a/2m, so that the point (7,0) = (a/2,0) satisfies |7| < a as well as /6 = . Then
(r,0) is in the given ball and f(r,0) = —a*/4 < 0. Therefore f does not have a local
minimum at the origin. (c) According to our choice of polar coordinates, a line
through the origin is represented by 6 = constant (same on both sides of the ori-
gin) = a, say. If oo = 0 (the line is the x-axis), then f(r,0) = f(r,0) = %, which
shows that the restriction of f to the line 8 = o has a local strict minimum at the
origin when o = 0. Now suppose o # 0. Then for 0 < |r] < |0c\121", we have
cos (/o) > 0 and hence f{(r, o) > 0. Therefore the restriction of f to the line 6 = o
has a local strict minimum at the origin in this case too.
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6.2
5-1.P9. (a) Since 4x*” < (x* +37), we have 0 < ( naa = < x%. Since limx® =0 as
x4y

(x,)—(0,0), the same is true of % Also, lim(x* +y* — 2x’y) = 0. Hence
limf(x,y) = 0 as (x,»)—(0,0). Thus f is continuous at (0,0).
(b) Clearly, gg(0) =£(0,0) = 0. Also,

8o (1) —g,(0)
t

41* cos’0 sin’ 0
(¢* cos*0 + sin’ 0)

= %[l2 —2£cos’0sin0 —

47 cos’0 sin’ 0
(¢* cos* 0 + sin’ 0)’

=¢—2fcos’0sin® —

Therefore g¢'(0) = 0 (when 8 = 0 as well as otherwise). Besides, for # # 0,
16¢° cos’ 0 sin” 0 16¢° cos'’ 0 sin” O
(t*cos*@+sin’0)° (¢ cos*0 +sin’ 0)’

gd(f) = 2t — 61°cos’ 0 sin O —

Therefore

(N — o] 2 6y i 2
8o (1) tge 0) _ 2 6c0s20sin 6 — 126t c4os 0 s1n2 92
(t"cos™ 0 +sin” 0)
16¢* cos'’ 0 sin’ 0
(> cos*0 +sin’ 0)’ '

so that g¢"(0) = 2 (when 0 = 0 as well as otherwise).

(¢) f(x,x*) = —x*, which shows that f takes negative values arbitrarily close to
(0,0).
5-1.P10. (a) | f{x,y)| < x* + 7. (b) Along the y-axis (x = 0), the function becomes
o) = £(0,y) = y*cos (2y°/r). For 0 < |y| < m/2, we therefore have ¢(y) > 0; also
0(0) = 0. So ¢ has a local strict minimum at y = 0. Along the line y = kx, the
function becomes

W(x) = f(x, kx) = x* (1 + k) cos [x2 % ] when k#0 and x* when k= 0.
When & # 0, we have y(x) > 0 for 0 < |x| < [Flarctank|/(1 + £°)]"* while y(0) =
0, so that y has a local strict minimum at x = 0. The case when &k = 0 is trivial.
(¢) Consider any open set x* + ) < & < 1 containing (0,0). Take (x,y) with x* =
8%/4[1 + tan?(8%/4m)] and y = xtan (8%/4m) # 0. Then

¥+ =84<8& while f(x,y)=(8"4)cos[(8/4)/(8%/4m)] = —(8%/4) < 0.
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Problem Set 5-2

5-2.P1. f, = 6x° — 6x and = 6y + 6y. These vanish simultaneously only at
(0,0),(0,~1),(1,0) and (1,~1). So, extrema can occur only at these points, though
not necessarily at all of them. Now f;, = 12x — 6, f,, = 0 and f;, = 12y + 6. There-
fore ﬁcf > fuofyy at (0,0) and (1,-1). It follows by (c) of Theorem 5-2.3 that there
is no extremum at (0,0) and (1,—1). Also, fxy2 < fufy at (1,0) and (0,-1). Since f,,
> (0 at (1,0), it follows from (a) of Theorem 5-2.3 that there is a local strict
minimum at (1,0); since f;, < 0 at (0,—1), it follows from (b) of Theorem 5-2.3
that there is a local strict maximum at (0,—1).

5-2.P2. (a) The first partial derivatives are

le: 4X13 — 4XZX3 5 sz: 4X23 — 4X3X1 5 D3f: 4)633 — 4X1X2 .

For all three to vanish, we must have x;* = x,* = x3* = x;xx; > 0, from which it
follows that |x;| = |x2] = |x3| and further that |x,|* = |x,]|x3], so that |x;| = |x,| = |x;|

=0 or 1. Although there are nine such points in R?, four of them fail to satisfy

x1xx3 > 0. At the remaining five points

P():(0,0,0), Pl :(17131)3 P2:(17_15_1)5 P3 = (_1519_1)9 P4: (_13_131)5

all three partial derivatives vanish. So a local extremum, if any, must occur at
one of these five points. In order to apply the theorem, we compute second par-
tial derivatives:

Dy f=12x7,  Dyif=-4x;, Dsif=-4x
Dyof=—4x;,  Dyrf=12x, Dsof =—4x
Dy s f=—4x, Dysf=-4x;,  Dssf=12x;"
At Py, we find that all values are 0 and consequently, O vanishes everywhere.
So, Theorem 5-2.1 tells us nothing about this point! At P,, we find that
Dy f=12, D, ,f=4, D; f=4
Dy, f=4, Dy, f=12, D3, f=—4
Dysf=4, Dysf=-4, Dy f=12.
Hence Q is given by
O(hy,ha,hs) = A[3(h* + hy® + hs?) + 2(=hyhs + hshy + hyhy)].

Upon recasting this as

O(h1,hy h3) = 4[(hy — hs)* + (hy + b)) + (hy + o) + (hy* + by + h3)],
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we see that Q is positive definite. From the theorem we can now conclude that f
has a strict local minimum at P,. Similar computations show that / has a strict
local minimum at Pz, P, and also at P;.

Regarding Py = (0,0,0), when x; = x, =x; = a, say, we have

x4 x34 —4xxx3 = a3(3a —4),

which is negative for 0 < a <-4 and positive for a < 0. Therefore there is no ex-
tremum at Py .

(b) ittt = dxpons = =1 007 - 1P+ (7 = 1P (7= 1)
+2((eaxs —x1)° + (rax; —x0)” + (X132 — x3)%)
+ (0" =)+ (T =) (o —Xzz)z]-

The above identity shows that, at the points Py, ..., P4, the function has not only
local minima but also absolute minima.

(c) In the above answer to part (b), drop the initial constant and also the factor
-+ then drop the last three squares. The partial derivatives of the resulting func-
tion g(xy,xy,Xx;3) = (xl2 +x,° —Hc32)2 — 12x1xx3 + 3 vanish at the same five points
as those of /" and there are strict minima at precisely the same four points.

(d) Proceed as in part (a). The Hessian form at P, turns out to be

O(hy,hy, h3) = 10[(hy — h3)* + (hs + hy)* + (hy + ho)* + T(h > + hy” + b))

5-2.P3. Proceeding as in the example illustrated with @ > b > ¢ > 0, we find that
(£1,0,0), (0,£1,0), (0,0,£1) and (0,0,0) are the only points where all three partial
derivatives vanish. The hypothesis @ > b > 0 > ¢ implies that £{0, ,0) > £(0,0,0) =
0> £(0,0,7) for all ¢. Therefore there is no extremum at (0,0,0). There is a maxi-
mum at (£1,0,0) but no extremum at (0,£1,0) for the same reasons as in the
illustrated example. At (0,0,£1) however, the hypothesis a > b > 0 > ¢ implies
that the entries of the Hessian matrix are all positive and hence there is a mini-
mum.

5-2.P4. The first partial derivatives are

D F=yzQ2x+y+z-1), DF=zx(x+2y+z-1),
D.F=xy(x+y+2z-1).

At any point where some two coordinates are 0, all first partial derivatives va-
nish. Although there are three kinds depending on which two coordinates are 0,
we need consider only one kind. These points are listed below under (A). We
proceed to find points at which all three partial derivatives vanish and only one
coordinate is 0. It is sufficient to consider only the possibility x =0, y# 0 #z. In
this event, vanishing of the partial derivatives is equivalent to y+z—1 = 0.
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These points are listed under (B). Lastly, we consider the case when all three
coordinates are nonzero. When this is so, vanishing of the partial derivatives is
equivalent to

2x+y+z—-1=0, x+2y+z—-1=0, x+y+2z—-1=0.

It is easily seen that the unique solution of this system is (4,4.=). Thus we have
to consider the following three categories of points that are candidates for an
extremum:
(A) x arbitrary with y =z =0;
(B)x=0, y#0+#zwith y+z—1=0; note that this implies y # | # z;
© G>3):
(From 2-3.P14 and 2-3.P15, we know that the points in (A) and (B) are not
extrema. Here we shall try to demonstrate the fact by applying Theorem 5-2.1.)
The second partial derivatives are

Do F =2yz D, F =2zx+2z+7 -2 D..F =2xy+2yz+y* -y
Dy F =2zx D, F =2xy+22x+x2—x D..F =2xy.

At a point in category (A), the Hessian matrix becomes

000
(*=x)[0 0 1.
01 0

The associated quadratic form is O(a,b,¢) = 2(x* — x)bc. For 0 # x # 1, this can
take positive as well as negative values, and therefore by Theorem 5-2.1, there is
no extremum at the point in question. If x =0 or 1, the Hessian form is identical-
ly zero and the theorem fails. We are forced to argue as in 2-3.P14 why there is
no extremum at (0,0,0) and (1,0,0). We can then conclude that there is no extre-
mum at any point listed in (A).

At a point in category (B), the Hessian matrix becomes

2 1 1
-’ =»[1 0 0.
1 00

The associated quadratic form is Q(a,b,c) = -2(* —y)(a(a + b + ¢)). Consider-
ing that 0 # y # 1, we know Q can take positive as well as negative values, and
therefore by Theorem 5-2.1, there is no extremum at the point in question. Thus
there is no extremum at any point listed under (B).

At the only point in category (C), the Hessian matrix becomes
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L
16

_—— N
—_— N =
N =

The associated quadratic form is
O(a,b,c) = % (2a*+2b* + 2¢% + 2be + 2ca + 2ab)
= el +(ctay+(@+byl.
This is seen to be positive definite, so that by Theorem 5-2.1, there is a local
minimum at (4,4.2).

To summarise, there is a local minimum at (4,4.+) and no local extremum
anywhere else.

(Note: The reader is invited to prove by using the arithmetic mean-
geometric mean inequality and single variable methods that xyz(x + y+z—1) >
—ﬁ forallx>0,y>0,z>0.)
5-2.P5. O(a,b,c) = a” + 13b* + 4c* — 10bc — 2ca + 4ab = (a + 2b — ¢)* + (3b - ¢)*
+ 2¢%. For this to be zero, we must have a + 2b— ¢ = 3b— ¢ = ¢ = 0, which im-
plies (a,b,c) = (0,0,0). So Q is positive definite.

5-2.P6. O(a,b,c) = a* + 5b* + 10¢* — 10bc — 2ca—2ab = (a — b — ¢)* + (2b—3¢)?
> 0. This shows that Q is positive semidefinite. Since O(5,3,2) = 0, it is not
positive definite.

5-2.P7. o is represented by the 3%2 matrix having rows [1  0],[0 1],[1 1].
Therefore Qo a. is the quadratic form in R* associated with the product

1 0 1|{4 B -B|ll O
01 1]|B 4 -B||0 1|
-B -B 4|1 1
This product turns out to have rows

[24-B) A-B] and [A-B 2(4-B)]

The associated quadratic form Qo is therefore (Qco)(a,b) =
2(A-B)[(d’ +b’) + ab]. Since (¢’ + b°) +ab = (a +1b)’ + 3%, the form is posi-
tive or negative definite according as 4 > B or A < B.

5-2.P8. O°a is associated with the product
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1 0 1|1 -1 —-1{{1 O 9 3
01 1]|-1 5 =5{lo 1| [3 5]
-1 =5 10|11 1
So (Q°a)(a,b) = 9a* + 6ab + 5b* = (3a + b)* + 4b* > 0. This can be zero only if
(a,b) =(0,0). Thus Q> is positive definite.
5-2.P9. As discussed in Example 5-2.10(b), one need only check whether

F"(a) < F'(a) fll(a,a,a)_flz(aaaaa) or F"(a) > F'(a) fll(a,a,a)_flz(aaaaa) ,
fila,a,a) fila,a,a)

where subscripts indicate partial differentiation, F(x) = tanx, f(x,y,z) =y’z + z'x

+x’y — 3(n/4)° and a = /4. Elementary computations show that

F(a)=2, F'(a)=4, fi(a,a,a)=6(n/4)’,
fisa,a,a) = 5(m/4)* and fi1(a,a,a) = 20(n/4)*.
So the question is whether 4 < 2(20(r/4)* — 5(/4)*)/6(r/4)’, which simplifies to

whether ©t <5, which it is. Therefore (7/4, /4, 1/4) is a point of constrained local
strict maximum.

5-2.P10. Proceed as in the previous problem to get
F'(a) =3/2, F"(a) =—1/2, fi(a,a,a) =7/3, fi1(a,a,a) =0, and fir(a,a,a) = 1.

Then F'(a)( fil(a,a,a) — fix(a,a,a))lfi(a,a,a) = —3v3/2m, which is less than
F"(a) =-1/2, because 1t < 3v3. So, minimum.

5-2.P11. Proceed as in the previous problem to get
F'(a)=2, F'(a) =4, fi(a,a,a) =1/2, fi1(a,a,a) =0, and fix(a,a,a) = 1.

Then F'(a)( fii(a,a,a) — fia(a,a,a))/fi(a,a,a) = —4/r, which is less than F"(a) =
4. So, minimum.

5-2.P12. Yes. Let u'= (h, k) with 1 € R" and k € R™. Using equalities established
in the proof of the theorem, we argue thus: f(a, b)(u) = A1h + Ay)k; hence h = —
Al Ak = g'(b)k; so u' = (g'(b)k, k) = G'(b)(k). Therefore Ho(h) = H(G'(b)(k)) =
H(u") > 0. Similarly for u". Apply Theorem 5-2.1.

5-2.P13. One partial derivative of the constraint function never vanishes; so the
invertibility condition holds everywhere on the constraint set. The Lagrangian is
L=x*+)"+2"+ Mz —xy—2). We shall use subscripts to denote partial differen-
tiation. We have L, = 2x—Ay, L, = 2y—Ax, L, = 2z+ A. This confirms that
(x,»,2) = (0,0,2), A =—4 is one solution. With these values of x,y,z, A, we have

Ly=2 L,=4 L.=0
Ly,=2 L,=0

L.=2.
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Therefore the Hessian form of the Lagrangian is H(a,b,c) =
2a* + 2b* + 2¢* + 8ab. The linear derivative of the constraint function f(x,y,z) =
z—xy—2 at (0,0,2) has the matrix [0 0 1]. The condition (/7(0,0,2))(a,b,c) =
0 thus becomes ¢ = 0. For such (a,b,¢), the Hessian form of the Lagrangian is
H(a,b,0) = 2a* + 2b* + 8ab = 2[(a + b)* + 2ab). This is negative when a = —b =
1 and positive when @ = b = 1. Therefore there is no extremum at (0,0,2) by 5-
2.P12.

5-2.P14. One partial derivative of the constraint function never vanishes; so the
invertibility condition holds everywhere on the constraint set. The Lagrangian is
L=x"+y"+2+u*+ Mu—xyz—2). We shall use subscripts to denote partial
differentiation. We have L, =2x —Ayz, L, =2y — Azx, L, =2z—Axy, L, =2u + A.
This confirms that (x,y,z,u) = (0,0,0,2), A = —4 is one solution. With these val-
ues of x,y,z,u, A, we have

L,=2 L,=0 L.=0 L,=0
L,=2 L,=0 L,=0

L,.=2 L,.=0

Ly =2.

The Hessian matrix is thus seen to be twice the identity matrix. It follows with-
out further ado that the quadratic form of interest to us is positive definite.
Therefore the given point is a (local strict) minimum.

5-2.P15. Conversion leads to x* +y° +z° + (1 + (yz + zx + x))*, the second de-
rivatives of which are an unpleasant prospect. We prefer not to convert.

One partial derivative of the constraint function never vanishes; so the in-
vertibility condition holds everywhere on the constraint set. The Lagrangian is L
= X +y +2+ 1w+ Mu—(yz+2x +xy) — 1). Denoting partial derivatives by
subscripts, we have L, = 3x* = My +2), L, = 3" =Mz +x), L. = 32— Mx +),
L, = 3u* + \. This confirms that (x,y,z,u) = (0,0,0,1), A = =3 is one solution.
With these values of x,y,z,u, A,

L,=0 L,=3 L.=3 L,=0
L,=0 L,=3 L,=0

L.=0 L,.=0

Ly, =6.

Therefore the Hessian form of the Lagrangian is H(a,b,c,d) =
6[(bc + ca + ab) + d*]. The linear derivative of the constraint function f(x,y,z, u)
=u—(yz+zx+xy)— 1 at (0,0,0,1) has the matrix [0 0 0 1]. The condition
(1'(0,0,0,1))(a,b,c,d) = 0 thus becomes d = 0. For such (a,b,c,d), the Hessian
form of the Lagrangian is H(a,b,c,0) = 6(bc + ca + ab), which is positive when
(a,b,c,d) = (1,1,0,0) and negative when (a,b,c,d) = (1,-1,0,0). By the result of
5-2.P12, there is no extremum at (0,0,0,1).
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5-2.P16. One partial derivative of the constraint function never vanishes; so the
invertibility condition holds everywhere on the constraint set. The Lagrangian is
L = F(x) + F(y) + F(z) + Mz — g(x)g(y) — C). Denoting partial derivatives by
subscripts, we have L, = F'(x)-Ag'(x)g(), L, = F'(»))—Ag(x)g'®), L. =
F'(z) + A. This confirms that (x,y,z) = (0, 0,C), A =— F'(C) is one solution. For
these values of x, y,z, A,

Ly = F"(0) Ly, =F(C)g 0y’ L
L}y = F"(O) Lzy
LZZ

Il
S O

=F"(C).
The Hessian form of the Lagrangian is
H(a,b,c) = F"(0)a* + F"(0)b* + F"(C)c* + 2F(C)g'(0)*ab.
The linear derivative of the constraint function f(x,y,z) = z — g(x)g(y) — C at
(0,0,C) has the matrix [0 0 1]. The condition (f7(0,0,C))(a,b,c) = 0 thus

becomes ¢ = 0. For such (a, b, c), the Hessian form of the Lagrangian is H(a, b, 0)
= F"(0)a® + F"(0)b* + 2F'(C)g'(0)*ab. It follows upon completing squares that

" (0)g'(0)
H(a,b,0) = F"(0)(a + F(FZ(‘i)g Z ) +

F)(O) (F"(0’ = F(C)’g'(0)")b.

Hence H(a,b,0) retains the same sign for all nonzero (a,b) € R” if and only if
F"(0)* - F'(C)*g'(0)* > 0, or equivalently, | F"(0)| > | F(C)|-g'(0)*. Therefore this
inequality is a sufficient condition that there be an extremum at (0,0,C). Fur-
thermore, when the condition is satisfied, the sign of H(a,b,0) is negative if
F"(0) <0. Thus the required further condition (for a maximum) is that #"(0) <0.

5-2.P17. One partial derivative of the constraint function is nonzero at (0,0, 1);
so the invertibility condition holds at the point. The Lagrangian is L =
(* +1* +2%) + Mze” — xp(x* + 1) —e). Denoting partial derivatives by sub-
scripts, we have L, = 2x — 30’y — A%, L, =2y — 3hxy” — Ax’, L. =2z + Mz + 1)é’.
This confirms that (x,y,z) = (0,0,1), A = —1/e is one solution. For these values
of x,y,z,A, we have

Lo=2

=0 L.=0
=2 L,=0
LZZ

-1.

Ly,
L,

y

Therefore the Hessian form H of the Lagrangian is H(a,b,c) = 2a* + 2b* — .
The linear derivative of the constraint function f(x,y,z) = ze" — xp(x* + y*) — e at
(0,0,1) has the matrix [0 0 2¢]. The condition (f7(0,0,1))(a,b,c) = 0 thus
becomes ¢ = 0. For such (a, b, ¢), the Hessian form of the Lagrangian is H(a, b, 0)
= 24* + 2b*, which is positive definite. By Theorem 5-2.9, we conclude that the
point in question is a local extremum (strict minimum).
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5-2.P18. One partial derivative of the constraint function is nonzero at (0,0, 1);
so the invertibility condition holds at the point. The Lagrangian is L =
xyz + Mzée® — xy(x* + y*) — e). Denoting partial derivatives by subscripts, we have
L, =yz-3M%y =W, L, = zx — 3hg” — A, L. = xp+ Mz + 1)&. This confirms
that (x,y,z) = (0, 0,1), A = 0 is one solution. For these values of x,y,z,A, we
have

Ly=0 L,=1 L,=0
L,=0 L,=0
L.=0.

Therefore the Hessian form H of the Lagrangian is H(a,b,c) = 2ab. The linear
derivative of the constraint function f(x, y,z) = z¢” — xy(x* + y*) — e at (0,0, 1) has
the matrix [0 0 2e]. The condition (70,0, 1))(a,b,c) = 0 thus becomes ¢ = 0.
For such (a,b,c), the Hessian form of the Lagrangian is H(a,b,0) = 2ab, which
takes positive as well negative values. By 5-2.P12, we conclude that the point in
question is not a local extremum.

5-2.P19. It was already checked that the invertibility condition holds on the
whole constraint set. The Hessian matrix turns out to be

2+42A 0 -2 0

0 2420 0 2
ol

0 -2 0 2

|
\S]
=)
\S]

The linear derivative of the R?-valued constraint function f(x,y,u,v) =
(& +y" = Lu+v—4) at (£1A2,£142,2,2) has the matrix

f_r\/i +2 0 o}

0 0o 1 1

An element (a,b,c,d) € R is mapped into zero by this matrix if and only if a + b
=0 = c¢ + d. For such (a,b,c,d), the Hessian form of the Lagrangian is
H(a,—a,c,—c) = 4[(1 + \)a* —2ac +¢*]. This is positive definite when A =
242 —1 and can take positive as well as negative values when A = 232 —1.
Therefore (142,142,2,2) is a point of local strict minimum but
(—1A2,7142,2,2) is not an extremum.

5-2.P20. Since b* > o, the constraint cannot hold with y/(x* + %) = 0. The linear
derivative of the constraint function is
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b b
[2x(1——m) 2y(1——m) 2z].

If z = 0 at any point of the constraint set, then the constraint equation implies
(\/(x2 +19) = by = > > 0, so that 1 —bAJ(x*+)%) # 0. It follows that, for the
above linear derivative to be zero at some point of the constraint set, we must
have x = y = 0, which is impossible (as already observed). Thus the invertibility
condition is satisfied. The Lagrangian is

L(x,p,2) = x + M2 +)7 + 22 = 2By +)7) + (B — &)

and its partial derivatives are

—1+27\x(1—\/7)— \/7(\/(x +y%) = b),

L,=20(1 - J J o NG+ = b),

L, =2)z.

If A, x or /(x* + %) — b were to be 0, then we would have L, = 1. Therefore if L,
=0, then A, x and ~/(x* + %) — b must all be nonzero; hence, using the expres-
sions for L, and L., we see that L, = L, = L. = 0 implies y = z = 0. Using this in
the constraint we get |x|—b = +a and from L, = 0, we get the following four
solutions of the Lagrange and constraint equations:

=b+a, y=z=0, A=-1/2a,
x=b-a, y=z=0, A=1/2a,
x=—(b+a), y=z=0, A=1/2a,
x=—(b—a), y=z=0, A=-1/2a.

When y =z =0, we find that the linear derivative of the constraint function is
[2x(1-%4x) 0 0].

This maps into zero only those elements of R? that are of the form (0, B, 7). Also,
Lo=L.=2\ L, =2M1-"%)and L,,= L., =L, =0. At (0,B,y), the Hessian
form of the Lagrangian therefore works out to be 2A[(1 — &/x)B* + ¥’]. This is
positive definite if (1 — %]x) > 0 and A > 0. Therefore there is a local minimum
when x = —(b+ a), y = z = 0. Similarly, there is a local maximum when x =
b+ a,y=z=0. The other two solutions correspond neither to a maximum nor a
minimum.

5-2.P21. Let x; be the length of the tangent from the ith vertex to the circle, 1 <i

< 6. We have to minimise Xx; subject to Zarctanx; = m. The six entries of the
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matrix of the linear derivative of the constraint function are 1/(1+x/), all of
which are nonzero. The invertibility condition is therefore fulfilled everywhere.
The six partial derivatives of the Lagrangian L are dL/dx; = 1+A[1/(1+x7)], and
for all of these to be zero, we have to have x; = v(~1 —4), 1 <i < 6. The con-
straint now implies that —1 —A = tan®T = 1, so that A = —%. It follows that x; =
J5- Now we have the unique solution of the Lagrange equations and the con-
straint. It remains to check the sufficient condition for a minimum. Since the
second partial derivatives of the Lagrangian are L, =—2A\x;/(1 erl-z)2 =+3/2>0
and Ly, 5= 0 when i # j, the Hessian form of the Lagrangian is positive definite
(on all of R®). This verifies the sufficiency. Therefore, the minimum area is % =
243.

Problem Set 6-1

6-1.P1. Suppose, if possible, that [a,b] # [ck,d,] for some k # p. Then one of
these intervals contains a number 7 that the other one does not. Let 7 € [a;, b;] but
t & [c,d;]. Then the point x for which x; = a; for i # k but x; = ¢ belongs to the
face of / in question but does not belong to J at all.

6-1.P2. If p # g, then the points x and x’ with x; = x;= a; for i # g and x, = a,, x,
= b, both belong to the first mentioned face but cannot both belong to the sec-
ond, because x, # x', in view of the stipulation [see Def. 6-1.1] that a, < b,.
Thus p = ¢g. The point x with each x; = a; belongs to the first mentioned face and
therefore to the second, which means x, = ¢,, and hence a, = ¢,. The proof that
[a;,b;] = [c;,d;] for i # p is as in Problem 6-1.P1. Now, either b, < d,,, in which
case / c J, ord, < b,, in which case J c /. For the last part, let x; = (a; + b;)/2 for
i #p and x, = a,+ tmin {b,— a,,d,— a,}. Then x € R" is an interior point of / as
well as J.

6-1.P3. Consider dimension 1 first: If [a,b] and [c¢,d], where a < b and ¢ < d,
have no common interior point and their union is an interval, we shall prove that
either b=c ora = d. Weknowa<“—;b<bandc<%<d. So,a=c=a<
%<d:> a< min{“—;b,%} <min {b,d} = min{“T”’,%} € (a,b)N(a,d)
= (a,b)n(c,d) = &, a contradiction. Hence a # ¢. We may suppose a < ¢ (the
contrary case being analogous). We shall argue that b = c. Since ¢ < ";d <d,we
have b > ¢ = a < ¢ <% < b = ¢ < min{ <L, 42y < min{b,d} =
min {% ,% } € (¢,b)n(c,d) < (a,b)(c,d) = D, a contradiction. Hence b < c.
But b <c =5 <%< c = % ¢ [a,b]U[c,d], a contradiction because
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[a,b]U[c,d] is an interval containing b as well as c. Therefore b = ¢ and the one-
dimensional case is established.

For dimension n > 1, we first observe that if [a,b] < [c,d], where a < b, ¢ <
d, then the two intervals have an interior point in common. Now, let the n-
dimensional cuboids in question be / = [;x---x[, and J = J;X---xJ, and suppose
IuJ = K x---xK,, where the I;,J;,K; are all closed bounded intervals, i.e., one-
dimensional cuboids. Then [;uJ; = {z; : z € IUJ} = K; by Remark 6-1.2(b). Thus
each /;uJ; is a closed bounded interval K; and the one-dimensional case applies.
In particular, /; and J; must have a point in common. For some p (1 < p < n),
neither 7, nor J, contains the other, because otherwise, by the observation at the
beginning of this paragraph, each pair /;,J; would have a common interior point
x; and x = (xq,...,x,) would be a common interior point of / and J. We claim that
1;=J; for i # p. For, suppose if possible that /,# J,, where g # p. Then one of
them contains a point not in the other. To be specific, suppose x, € /, but x, & J,.
Since neither /, nor J, contains the other, there exists x, € J, such that x, & /,. For
i # p, q there exists some x; € [;}UJ;, as already noted. The point x = (x1,...,x,)
then belongs to (/;UJy)*---x(1,J,), which is the same as K;x---xK,, i.e., [UJ.
But x ¢ [ = I;x---x], because x, ¢ I, and also x ¢ J = J;x---xJ, because x, & J,.
This contradiction proves our claim that /; = J; for i # p. This has the conse-
quence that /, and J, do not have a common interior point and therefore it
follows from the one-dimensional case (established above) that the right end-
point of one among /, and j, is equal to the left endpoint of the other. This and
the fact that /; = J; for i # p quickly lead to required conclusion.

6-1.P4. By 2-4.P6, an clement of R" belongs to the closure of a subset of R" if
and only if some sequence lying in the subset converges to that element. Let x €
T . Then some sequence {x*'};cy in I converges to x. This means that the se-
quence {x“;}; .y of ith components converges to the ith component x; of the
limit x. Since each x* belongs to 7, we have a; < x*; < b, for 1 <i < n. Taking
limits, we have a; < x; < b; for 1 <i < n. Thus x € J. This proves I < J. For the
reverse inclusion, suppose x € J. Then a; < x; < b; for 1 <i < n. Therefore for
each i, there exists a sequence {# ;}rcy in (a;,b;) converging to x;. The sequence
{x(k)} ren in R for which x(k),- = 1, then lies in / and converges to x. Thus x € 1.

6-1.P5. Let J = [oy,B1]x %[, B,]. By Remark 6-1.2(b), o is the minimum
among the ith coordinates of the points of J. Since J = UF, it follows that o is
also the minimum among the left endpoints of the ith edges of the cuboids be-
longing to F. In particular, o is a point of the partition P;. Similarly, f, is also a
point of the partition P;. It follows by Proposition 6-1.8 that there exists a pav-
ing Qi,...,0, of J such that the family F, of all the cuboids formed by this
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paving is the unique subfamily of the family of all the cuboids formed by the
given paving Py, ..., P, satisfying UF, = J. It follows that F = F;. This com-
pletes the proof the existence of the kind of paving claimed. The last part about
volumes is now merely a consequence of Remark 6-1.7(d).

Problem Set 6-2

6-2.P1. There are only two cuboids: [0,1]%[0,1] and [0, 1]%[1,2]. For the first
one,mis0+0=0and Mis 1+ 1=2; for the second one, mis 0 +1=1and M
is1+2=3,

6-2.P2. On the cuboid K ; :[/T_laf] X [ﬂ i], we have m; , = inf {f(x) : x €

n ’n

Ky = 1771 + 248 and vol(K;y) = - . Therefore L(f,P) = ¥ él (f’_zl I

J=1
L)

6-2.P3. On each cuboid K formed by the given paving, My —mgx =2 and the

n

total volume of all the cuboids is (1)(2)(1)(4) = 8. So, U(f,P) — L(f,P) = (% )8
=32

6-2.P4. It is still true (as before) that each cuboid K in B has at least one edge K,
with exactly one endpoint in J,. So the rest of the proof of Proposition 6-2.11
goes through as before. The subfamilies need not be the same as before, because
a cuboid having one edge K, with exactly one endpoint in J, and also one edge

K, (g # p, of course) with both endpoints outside J, now belongs to O instead of
B.

6-2.P5. First suppose g is integrable. The function f% is 0 outside J while it
agrees with f'on J and hence with g. It is therefore bounded, agrees with g on
J°and is 0 outside /. By Proposition 6-2.11, it is integrable and has integral [, g.
Next, suppose f is integrable. By Proposition 6-2.7, the restriction of f to J is
integrable; but the restriction is equal to g. By Proposition 6-2.11, [, g= [, (/).

6-2.P6. Let € > 0. Then f(x,y) > € = x,y € Qand x = £, where the smallest such
positive ¢ satisfies + > €. Since x € [0,1], we must have 0 < p < q. There are
only finitely many such positive integers g; let N be the largest. For each ¢, | <g
< N, there are ¢ + 1 integers p such that 0 < p < g. So, there are IS;N(q-l- 1) or
fewer, say M, rational numbers x,, ...,x), such that f(x;,) > €. Let §> 0 be less
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than € and also less than half the smallest distance between any two x;. Then the
numbers x; + §, after excluding 0—6 and 1+ 8, form a partition of [0,1]. To-
gether with the partition @ = yy <y, = b of [a,b], it provides a paving P of the
domain of /. Let F be the family of those cuboids formed by P that have [0, 8] or
[x;— 0, x;+ 8] or [1-0,1] as an edge, and G consist of the remaining cuboids.
By Remark 6-2.9, the total volume of the cuboids in F cannot exceed 63(b — a).
Therefore, in view of the fact that sup = 1 and inf /= 0, we obtain the inequal-
ity Zxe 7 (Mg —mg)vol(K) < 68(b—a). If (x,y) € K € G, then x # x; V j and
hence f(x,y) < €, so that My —my < €. It follows that Xx g (Mg — mg) vol(K) <
€-vol([0,1]x[a,b]) = €(b — a). Therefore U( f,P) — L(f,P) < 68(b —a) + (b — a)
< 7e(b — a), because & < €. Since every cuboid contains points with irrational
coordinates, every lower sum is 0 and hence the integral is 0.

6-2.P7. (a) For each cuboid K formed by any paving of I, w have My > 0 and my
> 0 (usual notation). Therefore U(f,P) = ZgMygvol(K) > 0 and L(f,P) =
Xgmgvol(K) = 0.

(b) First show that if M = sup {f(s) : s € X}, m = inf {f{s) : s € X}, where X is
any subset of the domain of the bounded function f, then M—m =
sup {| f(s) —f(?)| : s,t € X}. By definition of M and m, we have f(s)—f(¢) <
M —m as well as f({)—f(s) S M—m V s,t€ X, so that [f(s)—f()| S M—-m ¥V
s,t € X. To prove the reverse inequality, consider any € > 0. There exist s,/ € X
such that f(s) > M — § and f(¢) <m + 5. This implies f(s)—f() >M-m—¢€. It
follows from this inequality that sup {| f(s) —f(¢)| : s,t€ X} 2 M — m — €. Since
this is true for every positive €, it further follows that sup {| f(s) —f(?)| : s,t € X}
= M- m.

Next, let F be the family of cuboids formed by a paving P of / and let
mg(f) = inf{f(x) : x € K}, Mg(f) = sup{f(x) : x € K}, with corresponding
meanings for mg(|f|), Mx(|f]). According to what has been proved above, for
any s and ¢ belonging to K, we have |[f(s)|—|f(O)|| £ |f(s)—f()<
My (f) = mx(f), so that sup {| [ /()] = [ /(D] | : 5,1 € K} < My(f) —mx(f). Again
using what has been proved above, we conclude that My(|f]) —mg(lf]) <
My (1) — mg(f). Upon multiplying by vol(K) and taking the sum over K € F , it
follows that

U(f1,P) = L(f1,P) < U(f,P) = L(/,P)
for any paving P and any bounded function f. By Proposition 6-2.5, it now
follows that, if f'is integrable, then so is | f|. To prove the inequality, note that —
| /()] £ f(x) £ |f(x)| V x € K. Since fand |f| are both integrable, the required
inequality follows.
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6-2.P8. Without loss of generality, we may assume that ¢; = 0,b,= 1 for 1 <i <
n. Subdivide the domain 7= [0,1]x---x[0,1] into m" congruent cuboids. Then

Wb

1 Iy h=1 -1 ﬂ
U(f.P) = L(f,P) = 57 Zivinwoip =1L/ G2 S A RTACE D)

h=1 i—1 i,—1
[le iy sy lf(msmy ) Zzl iy, 1:1.f(”7=’2m LARRS] nm )]
i 1 j,—1
[ S ) - g O D)

Now, any term in the first summation that has i, < m for every k cancels with a
unique term in the second summation, namely, the one with j; = iy + 1 for every
k. Note that the latter term has j; > 1 for every k. Similarly, any term in the
second summation that has j, > 1 for every k cancels with a unique term in the
first summation, namely, the one with i, = j, — 1 for every k. Note that the latter
term has #; < m for every k. After all the cancellations, the only surviving terms
from the first (respectively, second) summation are those with iy = m (respec-
tively, jx = 1) for some k. For a given k, the number of terms in the first
summation with i, = m is m"; considering that there are n possibilities for £, the
total number of such terms is at most nm"" (actually fewer because of double
count). Similarly for the second summation. It follows that

n—1
0<U£P) - L(f,P)< 22 M _ 200 os meses,

where M = sup|f| over [0,1]x---x[0,1].

6-2.P9. Being integrable, each of / and g must be bounded. Denote by B a com-
mon upper bound for their absolute values. Given any € > 0, there exists a
paving P of I such that U(f,P)— L(f,P) < €/2B as well as U(g,P)— L(g,P) <
€/2B. Next, let F be the family of cuboids formed by P and, for each K € F, let
mg(f) = inf{f(x) : x € K}, Mg(f) = sup{f(x) : x € K}, with corresponding
meanings for mg(g), Mg(g) and for mg(fg), Mk(fg). Then for any s,f € K, we

have
|/()g(s) —f(Dg®)] = | /(s)gls) —f(D)gls) + f(D)g(s) - f(Dg®)]
<|g@Il f(s) =] + [ £ g(s) — g
< B(Mg(f) —mg(f)) + B(Mk(g) — mx(g)),
so that

Mg (fg) —mg(fg) = sup {|f(s)g(s) —f(Dg()| : s,te K}
< B(Mk(f) —mg(f)) + B(Mk(g) — mx(g)).
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On multiplying by vol(K) and taking the sum over all K e F, we get
U(fg.P)~L(fg.P) < BIU(/P)~ L(f.P) + U(g,P) ~ (g, P)] < B(/2B+ £/2B) =,
which implies fg is integrable.

6-2.P10. Let € > 0. There exists a paving P of I ¢ R" such that U(f, P) — L(f,P)
= Xx (Mg —mg)vol(K) < g, taken over all the cuboids K formed by P, with My
and my having the usual meanings. Now /xJ has a paving P’ such that the cubo-
ids formed by it are precisely KxJ; also, vol(KxJ) = vol(K)vol(J) and, by
definition of ¢ its sup over KxJ is My and inf is my. It follows that
U,P)—L(O,P") = Zx(Mg—mg)vol(KxJ) = Zg(Mg—mg)vol(K)vol(J) <
evol(J). This shows ¢ to be integrable over /xJ.

6-2.P11. First we assume that both f; and f; are nonnegative. Let P; : a; =xy <X
<...<x,=b; be apartition of /; and P, : a, = yy <y, < ... <y, = b, be a parti-
tion of ;. Then P = P\xP, is a partition of / into mn subcuboids (subrectangles)
K;;. Set

M;=sup { /i(x) : x€ [xi—1,x]}, My =sup {/L(y) : y€[yi-1, 1},
m; = inf {/i(x) : x € [x;-1,x]}, my=inf{ /() 1 yeyi1,yil},

M; ;= sup {/i(0) () 1 x € [xi-1,x1], y € L1013
m[j = lnf{ﬁ(x)ﬁ(y) tX€E [xifl >x[]? ye [yjfl?yj]}
Since both £ and f, have been assumed nonnegative, we have m;m’; = m; ; and
M;M';= M, ; and hence
mmy = m; ;< fi(x) () < M; ;= M; M.
It follows that
mym'; (x; = Xi-)(y; = Vj-1) S j (% = X))y = y-1) < L{ijflfz

< JTKZ.].flfz <M;, (i — xi—l)(yf - ){f—l) SMz'M'j (i — xi—l)(y}' - yj—l)~

Summing over i and j and using Remark 6-4.6(g), we get L(fi,P))L(f>,P>) <
[ fifo < TKflfz < U(f1,P)U(f>,P,). In view of the fact that, first, this holds for

all partitions Py, P,, second, fi, f, are integrable, and third, L(f1,P)), L(f>,P>),
U(f1,P), U(f>,P) >0, it follows that

([, A ([, S0V < [ fih < T fis < ([, A ([, HO)dy).

To remove the assumption that f; and f; are nonnegative, let g, = max {f;,0} and
hy = min{f;,0}, k = 1,2. Then g|,g»,h,h, are all integrable and kak =
Lk | L hi, k=1,2. A simple computation now leads to the required equality.
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Problem Set 6-3

6-3.P1. Fix any x € I. If x ¢ Q, then f(x,y) = 0 V y € [a,b] and therefore
1, f(x,y)dy = 0. Suppose x € Q. Then x = p/qg with some minimal positive g and
f(x,y) = 1/q if y € Q while f(x,y) = 0 if y ¢ Q. Therefore [, f(x,y)dy = (b—a)/q.
Thus [, f(x,y)dy is the product of the constant (b — a) with the Thomae func-
tion, which has integral 0. Therefore [, dx [, f(x,y)dy =0.

6-3.P2. No. For each fixed x € [0, 3] other than x = /3, f(x,) takes only two val-
ues: 3 when y € Q but x* when y ¢ Q. Therefore, f is the Dirichlet function,
which is not integrable. Thus I[O,l] f(x,y)dy does not exist except when x = /3.
6-3.P3. Consider any x € [0,3]. If x¥* = 3, then f(x,y) = 3 V y € [0,1]. So
fow fGx,p)dy = 3. 1f x> # 3, then f(x,y) takes only two values: 3 when y € Q but
x* when y Q. Therefore when x* <3, [ o, f(x,y)dy = x> and [y, f(x,y)dy = 3.
Similarly, when x* > 3, [ o, f(x,y)dy = 3 and [y, f(x,»)dy = x°. This means
[ 101y f(x,y)dy = x* when x < /3 but 3 when x > V3. For [, f(x,»)dy, it is the
other way around. Therefore,
foz dxf o S ) dy = g 5y X +] 55 3dx=9-2\3
and o5 dx [0, f(x,y)dy =9 + 24/3.

Now consider y € [0,1]. If y € Q, then f(x,y) =3 V x € [0,3] and so, [ o4 f(x,y)dx
= Jioy f(r,y)dx = 9. But if y ¢ Q, then f(x,y) = " V x € [0,3] and so,
[ o3 e, y)dx = J103) S, y)dx = 9. Therefore

J’[()’]] dyi [0,3] f(xﬂy) dx = I[O’l]dyj[o,s] f(xvy) dx = 9

6-3.P4. If y € Q then f(x,y) = cosx. So [, . f(x,y)dx = [, cosxdx=0.1f y & Q
then f(x,y) = 0. So [, f(x,y)dx = 0. Hence, for all y, |, f(x,y)dx =0, so that
o) @ Jiom f(6,3)dx = 0. For x = ¥, f(x.y) = 0 for all y. So |, f(5,y)dy = 0. For
x#7%, f(x,y)=cosxifye Qand 0 if y & Q So, whenx# 7, [, f(x,y)dy does not
exist. Now let P be a paving of [0, %]X[O,l] into subcuboids K,...,K,,. Then
U(f;P) = L(f,P) = Zizizm(sup; f— inf, /)vol(Ki) > Zici<n((5 — 0)vol(K) =
(?/]E)(%)- The result now follows by Proposition 6-2.7.

6-3.P5. | f(x,y)dx = [, (1WD)dx + [ (~1/x*)dx = 1/y+(1—1/y) = 1. So,

I[O,l] dy .[[0,1] S, y)dx = 1. I[o,n Sy)dy = I[o,x] (—l/xz)dy + -[[x,l] (l/yz)dy =
—1/x—(1-1/x)=-1. So, oy dx j[O,]]f(x,y)dy =-1.



Problem Set 6-3 365

# 0. Without loss

6-3.P6. Suppose there exists a point (xy,)y) at which 2 M a) a

of generality, we may assume that it is positive. In view of the continuity of the
partial derivatives, (xo s yO) 1ies in the interior of a closed rectangle R =

[a,b]*[c,d] on which 2L e a > 0. So [ 2 > (. On the other hand, by

)y 31 Bx

Bxa) 3} Bx
Fubini’s theorem,

2
JR ara} B}Br = -[ dy Jhaaxaf}dx _-[ dxjjaa}véidy =0,

since each equals f(b,d) — f(b,c) — f(a,d) + f(a,c).

6-3.P7. At each point (x,y) € R? at most one term in the series is different from
zero and therefore no convergence problem arises in the definition of the func-
tion. Also, f vanishes outside (0,1]%(0,1], is unbounded on every open set
containing (0,0) and is continuous except at (0,0).

We begin by simplifying the description of /. In order to do so, consider any
(x,) € (0,1]%(0,1]. There exists a unique j € N such that x € (27,2'7]. If j > 1,
then we have

fy) = 2[¢ (x) = 0, (0)]0,(»)

= [q)j,l (x)_q)j(x)]q)];l (y)+[¢j(x)_¢j+1 (x)](b,(y)
= _¢j(x)¢j,1(J/)+¢j(x)¢j(y) = ¢j(x)[_¢j,1(y)+¢j(J’)]~

However, if j = 1, then f(x,y) = §[¢,-(x)—¢,-+l(X)]¢,-(y): ¢,(x)¢,(y). Thus f
has the simplified description:
O,()[=0,,(M+,(M] if 37 <x <= withj>1

T awe it <rs w1,

This simplified description shows that, when x € (27,2'7] with j > 1 (so that x &
(27,2" 7 withj = 1),

o SOy dy = [y &, (0)[=0,, (1) +0,(»]dy
=0,(x) fy [0, () +0,(Mldy = ¢,(x)[-1 + 1]
=0= ¢,(x), considering that x (27,2'7/] with j = 1.
But when xe (27,27 with j =1,

[§ fee)dy= [y 0,(x)0,(»)dy= 6,(x).
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Thus [, f(x,»)dy = ¢,(x) for all x e (0,1]. This implies [, dx [, f(x,y)dy =
[y 0,(x) dx=1.

Before computing the integral iterated in the reverse order, note that
j-1
1270,(0)=0,, (1) +0,(»]dr = [<6,,(»)+ 0, ()] forj>1
and "7 6,(x)0,(»)dx= 0,() forj=1.

1/27

It follows from the simplified description of f derived above that
oo j-1 hd J-1
Jo foey)de= S foeyyde= [, fouyyde + S [T5 fny)ds
J= J=

= 0,00 + z [~ () +0,()],

in view of what was noted in the preceding paragraph. Now, for any integer m >
1,

0,(v) + z [=0,, () +0,()] = 0, ().

Therefore Ié fx,y)dx = }"1_{2 ¢, (»). But this limit is zero when 0 <y < 1, be-

cause m > 112 = 12" <y = ¢, (y)= 0. Thus [} f(x,y)dx =0 for 0 <y <

1, and consequently, [, dv [, f(x,y)dx=0.

Problem Set 6-4

6-4.P1. If E° = @, then 0E =E and c(dE) = ¢(E) > ¢(E) > 0, contradicting
Proposition 6-4.14.

6-4.P2. E has content by Proposition 6-4.14 because OE C OE. Since c(ENIJE) <
¢(dE)=0and E = EUJE, it follows by Remark 6-4.6(d) that c¢(£) = ¢(E).

6-4.P3. If E is a cuboid, then o(E) is also a cuboid; moreover, its edges have the
same length as those of E. Therefore they have the same volume and thus same
content too. Since o is continuous on an open set containing £ and is an injec-
tive map, it follows by 2-6.P8(¢c) that ol(dE) < d(o(E)). But o has a continuous
inverse on the open set R” containing o(E) and therefore o(0E) = d(o(E)). Now
suppose E has content. By Proposition 6-4.14, ¢(dE) = 0. Using this with Propo-
sition 6-4.10 and what has just been proved about the behaviour of o on cuboids
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that c(d(0u(E))) = 0. By Proposition 6-4.14, oE) has content. Finally, applying
Proposition 6-4.10, for any € > 0, we first obtain finitely many cuboids covering
E and having total volume less than ¢(E) + €; their images under o then provide
finitely many cuboids covering oi(E) and having the same total volume, which is
less than ¢(E)+e¢e. By Remark 6-4.6(b), it follows that c(o(E)) < c¢(E) +e.
Therefore c(0(E)) < c(E). Arguing the same way with o/ (i.e., replacing s by
—s), we find that ¢(E) < c(o(E)).

6-4.P4. Let I be a cuboid such that £ < I. By definition of integrability of
f:E—R, the extension f,:/—>R is integrable and [, /' = |, f,. Hence by 6-2.P7,
| f,| is integrable and | [, /| =], £, 1< [, |f;|. But |f,| =|f|;. Therefore, again by
definition, |f]is integrable and | [, f| < [, | /,| = [, |fl: = [z |/

6-4.P5. Let m = inf {f(x) : x € A} and M = sup {f(x) : x € A}; let I be any cuboid
containing 4. Then m < f;(x) <M on I and 0 = m-c(4) = [, my, < Iifi < Lﬁ <
[, M4 = M-c(4) = 0. Therefore |, f, exists and is zero, i.., [, f exists and is

Z€ro.

6-4.P6. We shall use the easily proven inequality [;(f+g)> [, f+ [/ g and its
analogue for upper integrals.

Let m = inf {f(x) : x€ E} and M = sup {f(x) : x € E}; let [ be any cuboid con-
taining £. For any subset G of E, denote by f; the extension to I of the restriction
of f to G. Then myy, < fy, < Myy, and fp = fe\x;, +fx. It follows from the
foregoing inequality that m-c(Xy) < [, Sy < I f v < M-c(X;) and further that
lim [, Sy, = lim [; Sy, = 0; also, it follows from the equality that

ilek"' LfE\Xk = Lka"' LfE\Xk < LfES LfES Lka"' LfE\Xk
= I fat I fo-

The result follows from here upon using the limits established just earlier.

6-4.P7.1f ¢(E) = 0, then [, f = 0 and therefore any | € [m,M] serves the pur-
pose. When ¢(E) # 0, we have m-c(E) < [, f < M-c(E) and hence m < = [, f <
M. Take u = #E) |, f- If E is closed, then it is also compact (being bounded), so
that m and M are in the range of /. If £ is also connected then, the range of f
must be an interval [see 2-6.P14] and must therefore be [m, M ]. This implies the

existence of the required &.

6-4.P8. Observe that f(x)” < M" for all x € E. So, [, /" < M"c(E), which implies
lim sup (™™ < M. Now, let € > 0. There exists x, € E such that f(x;) > M —&.
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Any open cuboid / containing any point of E, in particular xy, must contain a
point interior to £ and hence must also contain an open cuboid K c E. Therefore
c(ENI) > c¢(KNI) = ¢(K) > 0. By continuity of f, there exists an open cuboid /
such that f(x) > M—¢ on I. Hence [, f" > [, /" = (M—¢€)"c(ENI). Since
c(ENI) > 0, we have lim c¢(ENI)"™ =1 and therefore liminf (Jo ™" > M.
Since this holds for every € > 0, we have liminf (Jof™"" > M. The reverse ine-
quality has already been proved. To see why the condition £ = E° cannot be
omitted, take £ = [0,1]U{5} and f(x) = 1 on [0,1] and f(5) = 2.

6-4.P9. Let / be a cuboid containing E. If f;, g; and (fg), are the functions on /
obtained by setting f,g and fg equal to zero outside E, then surely (fg); equals

the product (f7)(g;). In view of Def. 6-4.3, we need prove only that (f;)(g)) is
integrable. This follows from 6-2.P9.

6-4.P10. Consider any x,y € K. Observe that J, is the disjoint union of J,NJ, and
J\J, and similarly for J,. Therefore

)= F) =1, £ = [, £1= 100 f = L SIS 141 ]

= oo -
If we set u = (uy,...,u,) and v = (v{,...,v,), where u; = min {x;,y;} and v; =
max {x;,y;}, it is easy to check that (J\J,)U(J\J,) < J,\J,. Therefore
I(JX\JV)U(JJ!\JX) | f1 =00 [ /] <M-c(JNJ,), where M = sup | f]. Since u; < v; for
each i, we have J, c J, and therefore c¢(J,\J,) = ¢(J,) — ¢(J,). Our choice of u
and v implies that c(J,) — ¢(J,) can be made arbitrarily small by taking x and y

sufficiently close.

6-4.P11. The function is defined on the cuboid [0,1]x[0,1] except at the origin.
Set it equal to O at the origin; the extended function is discontinuous only at the
origin and is also bounded. By Theorem 6-4.15, it is integrable and hence so is
the given function.

Problem Set 6-5

6-5.P1. Since by —a; > b, —a,, we have a; + b, < b; + a,. It follows that, when
X € [ay,by], we have

al+a2§a1+x2§a1+b2<b1+a2§b1+x2. (1)
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(a) From the last three inequalities in (1), we get

[a1 +X2,b1 +x0] = [a1 + x2,a1 + Do]U[ar + by, by + a)]U[by + az, by + x5].
It is now immediate that S = BUCUD.
(b) From the first three inequalities in (1), we get

[a1 +ax,b + ] = [a1 + az, a1 + x:]V[a) + x3,ay + by]U[a) + by, by + a3].

It is now immediate that /= A UBUC.

(c) By Proposition 6-5.1, the boundaries of A,B,C,D all have content zero.
Therefore by Proposition 6-4.14, all the four sets have content. Since ANB =
{1, x) € R (X2, ... ,x,) € [a2,ba]%X[a,,b,], x1 = a; + x,}, it follows by
Proposition 6-5.1 that it has content zero. A similar argument applies to BNC
and CND.

(d) In view of the above, Remark 6-4.6(d) shows that S has content and that,
firstly, ¢(S) = ¢(B) + ¢(C) + ¢(D) and secondly, that ¢(J) = c(4) + ¢(B) + ¢(C).
But ¢(J) = vol(J) = (by—ay) --- (b, — a,). Therefore, we need only prove that
¢(D) = c¢(A4). This results from applying 6-4.P3 with s =a; — by and p = 1.

(e) Take [a;,b1] =[0,1], [a2,b,] =[0,2]. Then (xy,...,x,) € Bifx; =2 and x, = 0;
but (x1,...,x,)&S.

If by —a; < by—a,, let N be an integer large enough so that (b, — ay)/N <
by — a;. Now partition [a,, b,] into N equal subintervals 7}, ..., Iy, so that S is the
union of N sets Sj,...,Sy obtained by replacing [a,,b;] in its definition by
I, ..., Iy. Each of these sets satisfies the hypothesis that has now been dropped.
So, it is covered by part (d) and therefore has content (b; —ay) --- (b, — a,)/N.
Moreover, the intersection of the union of Sy, ...,S; with S;; (1 <k < N) has
content zero. Hence, ¢(S) = Z;¢(Sy) = (by — ay) --- (b, — a,).

6-5.P2. By Theorems 6-3.2, 6-4.13 and 6-5.1

[r Dy v f=Todx [0 " Doy flxe,p)dy =[5 [ Dy f(x,b(1= ¥a)) — Dy f(x,0)] dx

=Jo LDy f(x, b(1 = ¥/a)) dx+ £(0,0) — f(a,0
= aD, f(xo,b(1—X0/g)) + £(0,0) — f(a,0),

where 0 < xj < a, by the mean value theorem for integrals. Observe that Xo/g +
b(1—%o/g)/p = 1. So, the point (xo, ), where y, = b(1—X0/z), lies on the line
segment joining (a,0) to (0, ).
6-5.P3. The given set E is the same as
{(6)eR*1x20, 320, (x,) #(0,0), 0=<x < (de)", x[(1 - &)/e]”
<y<@-x)"
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Since 0<x<(de)*=x[(1-g)e]*<(d-x)"

and x=(4e)" = x[(1 —e)e]" =4 -x*)",
the boundary is the union of the four (nondisjoint) sets

(0y)eR:0<y <%, (D) AL - 9]},

{(,)eR*: 0<x<(de)”, y = x[(1 —e)e]™}
and

{(,)eR*:0<x<(4e)” y = (A-xD)".

The first two are easily seen to be subsets of rectangles of arbitrarily small con-
tent (area in the present context) and the latter two have content zero in view of
Proposition 6-5.1. Therefore the given set has content. Also, it is a subset of the
rectangle [0, (4€)”]x[0, 4”*], which has content A€”.

Problem Set 7-1

7-1.P1. (a) 3,5 because 1 <2e/n <2 <3 <n<5.(b) 3,4 because 2 <99/n < 4
& 3<n<4.

7-1.P2. 4,5. A partition with  subintervals will do if and only if 1 < 2¢ < 3|

ie., 4 <n <2e. Since 3 < e <3, this implies & < n < 6. Therefore integers

other than 4 and 5 are ruled out. One can check that » = 4 and n = 5 both fulfil 1

2e < 3
<n -2

7-1.P3. As in the proof of Proposition 7-1.3, choose N such that 1 + 1/N < %,
e.g., N=4. Then [% (4)] =6 and [% (4)] = 7. Therefore the triplet (nonunique)

may be taken as 4,6,7. To check that this triplet works, we note that 6 =2 2

34 6
<2 and 1—71 <2.

7-1.P4. The inequality / < L < p/ will hold if and only if either a < bj, < pa or b,
<a <MHby, depending on which among a and 5, is bigger. These are respective-
ly equivalent to by, <n <b/, and b/, < n < Wby, Therefore the inequality / < L <
w! will hold if and only if either b/, <n <, or bj, < n <Hbj,. In other words if
and only if b/au < n < MHby,. Therefore it is possible to choose 7 as required if and
only if the interval (b/au ,Lb,,) contains an integer.

(a) If by, <, then by <1 and also Kby, > by, > 1. Therefore the interval in ques-
tion contains the integer 1. Suppose b, > W. Since W > 2, we have > —1 > 1
and hence W/(1*— 1) < u < b, It follows that 1 < (5)(* — 1)/ = () (- 14)
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= length of the interval (b/au ,Mby). Therefore the interval in question contains

an integer in this case as well.

(b) If 1 <pu<+2, take a = 1 and b = . Then the interval (&, ,1;,) is (1, uw) c
(1,2), which contains no integer.

Problem Set 7-2

7-2.P1. Let W= (0,e), ox) = 1/x and F = (0,1). Then ou(F") = (1,e0), which is not
even bounded. Note that F is not a subset of /¥ and therefore Proposition 7-2.4
is not contradicted.

7-2.P2. Modify the proof as follows: Consider an arbitrary 1 > 0. Since o' is
continuous, E is covered by open balls contained in the open set ¥ (as in the
proof) such that, on each ball, ||| varies by no more than /2. Replace V by the
union of these balls; then sup {||o'(x)|| : x € ¥ } < My"" +m. Take an arbitrary
> 1 and, instead of Proposition 7-2-1, use Proposition 7-1.3 to ensure that (di-
amK)" < W'vol(K). Then the total volume of the family {(K)' : K € H} of
closed cuboids (as in the proof) is less than (W(Mp"" +M))"[c(F) + €/(2M)"].
Since € > 0, > 0 and u > 1 are all arbitrary, the total volume no greater than
Myc(F).

7-2.P3. First injectivity. Consider (u,v), (#2,v2) € E and (uy,v;) # (u3,v,). De-
note ou(u;,vy) by (x1,11), and 0(u,v2) by (x2,12). We claim (x1,y) # (x3,1,).The
definition of o shows that x,* + y12 =u,” and x,° + yzz = u,”. Therefore if u, Uy,
we have x,’ er]2 # X +y22, so that (x1,y1) # (x2,)2). If uy = uy, then v; #v,.
Since by definition of £, we have 0 < v; < 2w as well as 0 < v, < 2, therefore
either cosv; # cosv, or sinv; # sinv,. Since u; = u, # 0, it follows that either
U1 COSV| # UpCOSVy OF U SINVy # upsinvy, i.e., (x1,)1) # (x2,)>). Thus o is injec-
tive.

For surjectivity, consider any (x,y) € G. We must find (u,v) € E such that
o(u,v) = (x,y),1.e., x = ucosvand y =usinv. Set

= +y)" M
cos” & if y>0

and V= 1 . 2)
2nm—cos 5 if <0

The given definition of G ensures that 0 < u < 4. To show that (u,v) € E, we
need only show that 0 < v < 2x. Since the range of cos™" is [0,7], it is immediate
that 0 <v <m when y > 0 and that T <v < 21 when y < 0. In particular, v=0=y
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>0 and v =21 = y < 0. We argue why v # 0. Suppose if possible that v = 0.
Then y > 0. This implies on the one hand that x < u by (1) and on the other hand
by (2) that v = cos (%), which further implies cos™'(Z) = 0, so that x = u. This
contradition shows that v cannot be 0. Now suppose, if possible, that v = 2.
Then y < 0. By (2), this implies that v = 21 —cos (&), which further implies
cos_l(g) =0, so that x = u > 0, and on using (1), we have y = 0. But by the given
definition of G, we have x > 0 = y # 0. Thus v cannot be 27 either. So, 0 <v <
2m. It remains to show that ol(u, v) = (x,y), i.e., ucos v=x and usinv = y.

We use the two consequence of (2) that firstly, cosv = £ regardless of
whether y > 0 or y < 0, and secondly, sinv = (1)) for y > 0 and —/(1 — ()’
for y <0. It follows from the former consequence that ucos v = u-+ = x regardless
of whether y > 0 or y < 0. And it follows from the latter consequence that, for y
> 0, we have usinv = u~J(1- (%)2) =+y? =y, while for y < 0, we have usinv =

(1= ) = =
Problem Set 7-4

7-4.P1. Since W, has content, its boundary o/, has content zero by Proposition
6-4.14. It follows by Remark 6-4.6(d) that the set F = {x € W : deta'(x) =
0} Wl has content zero. Therefore, for each integer £, there exist [Proposition
6-4.10] finitely many closed cuboids which cover F' and have total volume less
than 1/k. Denote their union by S;. Then S; is closed, F' < S and ¢(Sy) < 1/k.
Each of the aforementioned cuboids is contained in an open cuboid with volume
not more than twice as much [Remark 6-1.2(iv)]. Denote the union of these open
cuboids by 7. Then T} D S, and ¢(T) < 2/k. Also, E\T} has content by Remark
6-4.6(h). Note that W, T} = W,NT,* because T contains dW,;. Now,

E\T, = ENTF c ENTE = ENTS € WinTE = WinTE € WinSE = W\S;
and the invertibility of o on W yields
WENTy) = UEN(ENTy)) = a(E)NOUENTY).
Furthermore, the set a(£\T7}) has content in view of Proposition 7-2.4 (take W,
as the set ‘W there). Therefore the integrals
Ja(E)\(x(EﬁTk) f and [ 7, (foa)|deto|

both exist. Since a is invertible and o’ injective on the open set W\ S contain-
ing EN\Tp, it follows from Theorem 7-4.4 that the two integrals are also equal.
Moreover, since all the sets ENT} are contained in the single set £, whose clo-
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sure is contained in the open set # on which o is continuously differentiable, it
follows that c(o ENT}))—0 as k—e by Proposition 7-2.2. The required conclu-
sion now follows from what was established in Problem 6-4.P6.

7-4.P2. Since f is continuous, the integrals all exist, while the second, third and
fourth integrals are equal by Fubini’s theorem [see Remark 6-3.3]. So, we need
only prove that the first and second are equal. To this end, let W = R? and W, =
{(r,0) e R*: 0 <r<B, 0<86<2n} =(0,8)x(0,2m), where B > A. Then the
transformation o: W—R? defined by o(r,0) = (rcos®, sin®) is continuously
differentiable on W. On the open subset W1, it is invertible with deto.’ = r > 0
everywhere. Besides, #; has content and E < W, = [0, B]x[0,2x]. Finally, o(E)
=D and (fo)(r,0) = f(rcos, rsinB). The required equality therefore follows
from 7-4.P1. (A similar argument justifies the usual procedure of evaluating the
integral over the part of the disc in the first quadrant, i.e., {(x,y) e R*: 0 <x* +)*
< A% x>0, y >0}, via polar coordinates in the above manner, the integration
with respect to 8 being taken over [0,7].)

7-4.P3. Let (x,y) = ou,v) = (u,v—u). Then o is injective and continuously dif-
ferentiable on R?, with linear derivative o//(u,v) given by the matrix having first
row [1 0] and second row [-1 1]. If we take f(x,y) = tan '(x +y), then
[(foa)|deto[](u,v) = tan 'v. Using our definition of o, the set £ is most easily
‘described in terms of u and v’ by the inequalities # >0, v—u >0, v < 1, which
is the same as, u > 0, u < v < 1. As a figure would immediately suggest and a
little manipulation will easily confirm, it is also the same as 0 <v<1, 0 <u <v.
Such a description of £ in terms of # and v simply means E = o(F), where

F={uv)eR*:0<u<l, u<v<1}={uv)eR*:0<v<1, 0<u<v}.
By the transformation formula (Theorem 7-4.4), the required integral is

[ [(foo)|deta|)(u,v) dudv = [, tan™"v dudv.

By Fubini’s theorem [see Remark 6-3.3] this can be evaluated as either
[y ([} tan™'vdv)du or [y (], tan™'v du)dv.

The latter is easier to evaluate and leads to the answer %—% .

7-4.P4. By Proposition 7-4.12, we may choose the balloon according to our
convenience, which means we take E,, = {(x,y) € R : L <x*+)? < 1} By the
Proposition 7-4.15, [, f = [, /t; = . /X

=[7de |, f(rcos, rsin®) X (rcos®, rsin®)rdr
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=[d [ f(rcos®,rsin®)rdr

2L (1-—L-) <o foreachm ifa=l
P r 2-2 2 200
= -[f) de J.I}m 720 dl” = { * "

21t (1+1nm) <o for each m ifa=1 .

Therefore ’17‘1_>rg [, f is finite (in fact ) if oo < 1 and does not exist other-

> 220 2(1
wise.

7-4.PS. It is well known that: (1) lim,. IoA % dx exists in R; (2)

2k+hm
.[2 smx dx >

i forke N (3) zj >ln(v+1)—Inp for u<v. Con-

sider the function f(x) = % The sequence {E,}, where E, = [0,m], is a
balloon for [0, ) and we know from (1) that }nl_r)g [, f is finite. Now let {F,} be
the sequence of sets where

Fo=[0,Cm-1)n] U U) [2kn. (2K + 1))

k=m

— [0, m=1)R] U [2mm, Cm+ D] U U [2km (2% + D]

k=m+1

Each F,, is a union of m* —m + 2 disjoint closed intervals and therefore has con-
tent. Since [0, 2m—1)r]U[2mn, 2m+1)n] c [0,(2m+1)x], therefore F,, C F 4.

Also, U F,2 U [0,(2m—1)r] = [0,0). Thus {F,,} is a balloon for [0,), and

m=1

moreover,

2m-1 2k+h)m
IF f J‘é ) smx dx + z -[2 smxd

k=m

In view of (2), we have

m? m2+1

_ 1 L1 1
Z (2k+l)n = Z (2k+2)n s > k1w k-

2k+)m
.l'( ) SlllX i):
2km k=m k=m+1

By using (3) and the above representation of [, f as a sum, we deduce from this
inequality that
I = [ six gy LI (m® +2) — In(m + 1)].

The second term on the right tends to e with m while the first has a finite limit
by (1). It follows that an £ tends to oo with m.
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7-4.P6. Since 7(0,0) = (2,-1), we have a; = 2 and a, = —1. Furthermore, since
7(1,0) = (5,0), we have 2 + b; = 5 and —1 + b, = 0 and hence b; =3 and b, = 1.
Similar considerations lead to ¢; = 1 and ¢, =—1. So,
T(x,y) = (u,v) =2 +3x+y,~1 +x-y).
Now £:(2+3x+)) =3, 22 +3x+)) = 1, L(-1+x-p) =1, (-1 +x-y) =
—1. Therefore the Jacobian is —4. Since the equations
u=2+3x+y, v=—l+x-y

lead to x = 4(u+v— 1) and y = 4(u — 3v — 5), the mapping T is bijective. By the
transformation formula,
[pexp Qu—v)dudv = ;.0 €Xp (2(2 +3x +y) — (=1 + x—y))(4) dxdy

= .[[O,I]X[O,l] exp (5 + 5x +3y)(4)dxdy = 4e° f[o,l] e dx .[[0,1] eBydy

=4 - 1) - 1).

Problem Set 8-2

8-2.P1. ® is a 1-surface and ®(u) = (D(u), ..., D, (1)).

.LD(D Jcbzfdxz I[o]] ’du

If ®(u) = (u,u’,u°) and @ = dx + dz, then the above integral equals

o) -+ flo G du =gy du+ Jo, 3uidu=2.

8-2.P2. [y [/i(® 1) Do), D3(1) G2+ fo(y(10), (10), Ds(10)) G+

(P, P,)

JD1(10).D(10) D5(0)) S22 sy

8-2.P3. [, 0=

055 gy ) 2 gy ) 22 gy

a(x,y) d(x,) a(x,y)
d(x;,x;)

= (ywy —v,w)” + (v ws —vsw) + (v, wy —vyw,)” because ﬁ:"iW,‘_V,‘Ww
X,y i

I[O,l]z(VIWZ_VZWI)

2
8-2.P4. ®,(r.0) = 2rcos2mo Dy(r0) = 2rsin 2O Dy, 9)— i
1+72 1+72

. So,
1+r
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o(D,,d,) 16w’ cos2nd d(D,,®,) 16w sin2n0 and
a(r,0) a+r2y> 9(r,0) 1+
(D, @,)  8mur(l-r7)
a(r,0) A+r7)°
3.2
Therefore, ®,(r.0) (D,,d,) _ 327 cozs 42n6
a(r,0) 1+r7)
32 232
i) AP, ®) _ 321 sin 42ne and () A@, D) _ 8mr(l 2r4) .
a(r,0) 1+r) a(r,0) 1+7r7)
3 22
The sum of these three is 8w 4t r(-r7) =8 ! S Therefore

A )

r r
O=8N [, p ——=—=drdd=8n ————dr=2m.

JCD I[0,1] (1+r2)2 I[0,1] (l+r2)2
8-2.P5. Let (ay,...,a,) be any point in R" and let ®:[0,1]— R" be the constant
map with value (a,,...,a,) everywhere on [0,1]. Then each component function
of @ is also constant and therefore has derivative (Jacobian) 0 everywhere. Con-
sider any 1-form o = />:1 fidx;. Since 1[0,1] Ji( @)D/ (u)du = 0 for every j, we
have [,®=0.
8-2.P6. Let ®:[0,17°—R? be given by ®(x;,x,,x3) = (x1,x2).
8-2.P7. To extend ¢ to the left of 0, take @(u) = @(0) + u¢'(0) and to extend to
the right of 1, take @) = @(1) + (1 — 1)@'(1). Since ¢ is the restriction of a C'
map on R, it follows easily that ® is the restriction of a C' map on R”. Thus it is
a 2-surface.

Its range is {(x,y)eR?*:0<x<1 and 0<y<o(x) or 0>y (x)}.
The range of ¥ is the graph of @, namely, {(x,y)e R*: 0<x< 1,y = @(x).

Problem Set 8-3
8-3.P1. Let o = zfdx, and B = zg,dxl Then oAf = ():fdx,)/\(zgldx,) =

zfgjdx,/\dxj zfgjdxj/\dxl ():g,dx)/\(zfdx, = —[,’)AOL

8-3.P2. Put oo = dx;Adx; + dxsAdx,. Then coAot = 2dx; Adxas AdxsAdxy.
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Problem Set 8-4

8-4.P1. Since D, f = 2x; for 1 <i < n, then df = 2x(x;dx;). Now, D;x; = 1 if j =i
and 0 otherwise. Therefore
d(df) = 2£((£(Djx;) dx)) ndx;)
= 2%((D,-x,—) dx;ndx;)  because Djx;=01ifj#i
= 0 because dx;Adx; = 0.

8-4.P2. We have

- * __ 7
dan d(x2+y2dy x2+y2de

The other terms vanish since dxadx = dyady = 0. Thus 1 is closed.
Next. suppose 1) is exact; then there exists a C* function f such that

f LYy x y
ay dy = x2+y2dy X242 d

f_

Consider the 1-surface v:[0,1]—U given by Y(¢) = (cos 27z, sin 2mf). That is y;(¢)
= cos 2mt, Y»(f) = sin2xt. On the one hand, we have

ydf =l ( ax L ()4 n@de + —(Y(t)) pO)de= o,y 5 (fOr0) e

=/(y(1)) = f(¥(0)) =0 because Y(0) =y(1).
But on the other hand,
of of

y
Iydf= Iy—dx+a—dy Iy x2+y2dy_x2+y2dx

=21 J;y; (cOs 2mf) - (sin 2uf) — (sin 277) <o (cos 2nr) dt = 4 # 0.

Problem Set 8-5

8-5.P1. As in Def. 8-5.1, denote the two component functions of 7 by ¢ and #,.
Then #,(x) = x* and £:(x) = x° and T*0 = T*(y, dy,) = Hd(t:) = x*(3x%) dx = 3x* dx.
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8-5.P2. In subscript notation, we have 7(x;,x;) = x; —x, and we have to find
T*(dyy). Now, T*(dy,) = d(x; — x3) = dx; — dx, = dx — dy in xy-notation.
8-5.P3. T*w = T*(dy, Ady,) = d(ax; + bxy) Ad(cx) + ex,)

= (adx, + bdxy) A(cdx) + edx;) = (ae — bc)dxi Andx; .
afi a/,
a J

3.5 and Proposition 8-3.7, this is a sum of various wedge products having n fac-
tors each. Those summands with repeated dx; are zero and can be neglected. and
we are left with a sum of wedge products

8-5.P4. dfin---Adf, = (_7 dx) A /\(j_1 dxj) In view of Proposition 8-

at; ot
1 Iy d
—_e. x’l ./\dx[, s
0x;, ox;,. "
where (i",i",...,i",) is an n-index of distinct integers in {1,...,n}, and all such
n-indices occur. If ¢ is the permutation that rearranges (i',,i",...,i",) in ascend-

ing order as the k-index (1,...,n), then dx; A -+ Adx;, = (sign G)dx|A... Adx,.
Therefore the wedge product displayed above is equal to

ti i
ox, dx,
It follows from this that the sum of wedge products that dfiA... Adf, equals (re-
call that all permutations of (1, ...,n) must occur) is precisely

O(fis--s fy)
o(x;5...»X,)

(sign o) dxiA - Adx,.

dxin---Adx,.

8-5.PS. If k > n, then it is obvious that 7#® = 0. So assume & < n. By Def. 8-5.1
and Remark 8-5.2(¢), T*w = (b;oT)dt; A+ Adl;, . We can drop the factor b;oT in
the rest of our computation. Now,

& at,-l 7 al,k
dlilA..~/\dt[k—(jz::18—)9dxj)/\ -../\(] lax

dx;).

In view of Proposition 8-3.5 and Proposition 8-3.7, this is a sum of various
wedge products having & factors each. Those summands with repeated dx; are
zero and can be neglected. and we are left with a sum of wedge products

Ot 0,
Fr E)x dxipy Ao Ndxy
b
where (i';,i%,...,i"%) is a k-index of dlstmct integers in {1,...,n}, and all such .-

indices occur. If ¢ is the permutation that rearranges {(i';,i",...,i%) in ascending
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order as the k-index J = (ji, ..., /i), then dx;, A ... /\dx,-lk = (sign 6)dx;. Therefore
the wedge product displayed above is equal to

. o, oy,
(sign G) o, ax, dx;.

It follows from this that, in the sum of wedge products that dz; A --- Adl;, equals,

those terms for which (i';,i%,...,i%) is a permutation of any one particular as-
cending J = {(j1,...,jx (recall that all its permutations must occur) add up to
ot yeusty)
— U gy
90 5-0 X;,)

Besides, all ascending k-indices J are covered; therefore df;, A --- Adl;, is precise-
ly equal to the summation in the statement of the problem.

8-5.P6. It is enough to argue the case when ® = b;dy;, a simple k-form. Let [ =

(i1,..., Iy), an ascending k-index in {1,...,m} and denote the component func-

tions of @ by @, ..., D,,. We apply 8-5.P5 with n =k and 7= ® to get

oD, ,...,D;)
O(X;5..vrX;)

Since the Jacobian of the inclusion map is 1, it follows from the above equality
and the definition of integral of a differential form over a surface that [, =
[, @*o.

8-5.P7.a’co=[af2 afjd d+[af3 afzjd d+(af aﬁjdm\dx.

O*@ = (bjod) dxyn-- ndxy.

ox dy d dz Ox

T*(dw) - [%—%}T]T*(dx)w*(dy)

+[[%—%] JT*(dy)/\T*(d )+((afl aﬂjoTjT*(dZ)/\T*(dx)
dy 0Oz

Now, T*(dx) = dT, = aTl —Ldu+ o, —Ldv, T*dy) = o, —2du +a 2 dv and T*(dz) =
Jdv du Jv

aidu Ty —=dv . Therefore

Ju Jdv

T*(dw) = %—% oT Mdu/\dv
ox dy o(u,v)
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%_% oT a(Tz’T)d Adv+ [af af3joT a(n’]{)du/\dv
dy 0Oz o(u,v) dz ox o(u,v) '

Thus T*(dw) is the required inner product.

Problem Set 8-6

8-6.P1. By Proposition 8-5.4, I'y*(dy;) = d(I'n*y;) = d((T';0);) and similarly for
I';i. From the description of (I'); in Remark 8-6.3, we find that d((I'y);) and
d((T"y);) are as required.

8-6.P2. 9 = 3. (-1)(®@oly — doT,) and hence
k k=1 .
IOP) = = (1) Z, (1Y ((@oTp — Tl — (ol — Polip)el})

=2 (1) B (1(@0T 0Ty — ®oT, 0T — ®oT ol + DoT0T)).

8-6.P3. (i) [jo(x1, ..., x%1) = (x1,...,%-1,0,%;, ... ,x1) and therefore
Fioorj()(xl s e Xpimr) = Dol s s Xl ,O,iju,xk—l)

_{(xl, 2 X;050,0,x,,..,%, ) ifi=j

(e X, 0,x,,. X 1,0,x,,. LLXy) ifi<j.

Tio(x1s e sxi1) = (X1, -+, Xi1,0,X;, ..., X, 1) and therefore

r}+1,0°rf0(x1 LR 7xk—1) = r}+l,0(x1 s s Xin] aoaxia cee axk—l)

G x50,0, x5, x5 ) ifi=j
(5o X5 0,050, X, 4,0, X, ) ifi<j.

Similarly the other relations.
8-6.P4. (i) The result is true for k£ = 2, because

) jil (—1) ¥ ®oT 0Ty = ®oT ol — ®oTyol e = 0
by part (i) of 8-6.P3 (withi=;=1).

Assume that the result is true for k—1, that is,

=

k=]

NS

- I)Hj(I)OFiOOFjO =0.

i=1j=1

(-

Now,
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S| i
lz:'l (1) @olyely

=1

~.

k=1 k 2 i+ kt i+hk—1
=X X (-1 (DOFOOFO"‘E( 1) q>ol"kool"0+2( D™ @olely g

i=1j=1
k=1

=2 (-)"®olygel T+ £ (-1 0T oT 1

by the induction hypothesis.
But
;E:jl (~1) Dol ol + j.fz:fll(—l)frkf1 Dolol 1,
_ K Kt L= -1 _
= El(—l) Dolol + El(_l) Polpolp=0
by part (i) of 8-6.P3.
Similarly the others.
8-6.P5. Follows from the results of 8-6.P4.

8-6.P6. Suppose f is a function of class C' on an open subset U of R". Let o be
a (k— 1)-form of class C' and @ a k-surface in U. Under these conditions, the
formula holds and the proof is as follows.

It is a consequence of the general Stokes theorem that [ d(f®) = [;4 (f©).
Now, d(f®) = (df)A®w+ fdw and hence [, d(f®) = [, (df ) A® + [ (fdw). Subs-
tituting the previous equality into the aforementioned consequence of Stokes
theorem, one gets [,q, (f®) = [ (df)A® + [ (fdw), which implies the required
equality.

Now suppose n =1, k=0 and U < R is an open set containing the closed
interval [a,b]. Then the k-form @ is a O-form, which is a C' function g. Consider
a k-surface @:[0,1]—U such that ®(0) = a and ®(1) = b. Then 0® is the chain
{@(1)} — {®(0)} = {b} — {a}. This means [, (f®) = f(b)g(b) - fla)g(a). Also,
lo(fdw) = [o(fdg) = [y /&' = ], fE)'©)dE and [o(df)rw = [o(gdf) =
I f(€)g(E) d&. Thus the equality proved reduces to that of the formula of integra-
tion by parts, but under stronger differentiability hypotheses.
8-6.P7.T'1o(9) = (0,9, I'11(9) = (1,1), I'0(¢) = (2,0), 21 (¢) = (¢, 1). Therefore, for
@ as in Example 8-2.2(¢e), we have
Dol (7) = (0,0); range: just the origin;

oI’y (¢) = (cos 2mt, sin 27t); range: circle of radius 1 about the origin;
Dol (f) = (¢,0); range: segment between the origin and (1,0);

®ol’,; is the same as Doly.

Only ®oT"}; has range contained in the boundary of the range of ®.

For @ as in Example 8-2.2(h), we have
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@ ol o(f) = (—+cos 27t, —+sin 276); range: the circle of radius + about the origin;
@ol'y(¢) = (cos 2mt, sin 27f); range: the circle of radius 1 about the origin;
Dol (f) = (3(3¢— 1),0); range: segment between (—%,0) and (1,0);

®ol’,; is the same as Dol.

Only ®oTI"}; has range contained in the boundary of the range of ®.

8-6.P8. By the general Stokes theorem, [,. ® = [, dw. However, do is an (n + 1)-
form and is therefore 0.

Problem Set 8-7

8-7.P1. By the divergence Theorem, (1) is the same as

F,
f ai oF, 8 dx ndy ndz
ox ay Az
=, [-6(x+ ) (x> +y?)* +2x%z]dx Ady A dz
= j [-67° (cos O +sin 8) + 2r*(cos® 8) z]rdrdOdz
0,110,271 ]X[0, 1]
=1T.

We next verify the answer by actually evaluating (1).

Now,

a(I) = f(CDorl 0— (DOFI 1) + ((I)Orzo — d)orm) - ((DOF30 — @OR |),
where

rlO(eaz):(anaZ)a on(}",Z):(l",O,Z), F30(rae):(rae:0)
F]](e,Z):(l,e,Z), F22n(r,z):(r,2n,z), r31(rae):(raeal)'

Therefore,

_ d(0-sin 6, z) e
Iq»rlOFl dyndz = I[O’ (0. (FIOQ)(O,G,Z)W dbdz = 0;
_ d(1-sin 8, z) _
Iq»rl Frdyndz= J.[O,ZTL]X[O,I] (Floq))(laeaz)wdedz =0,
because (Fo®)(1,0,z) =0;
oy, Frdyadz=] (Fro®)(r,0.2) 2051002 i

[0, 11x[0,1] r,z

>
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_ o(r-sin 2w, z) s
."<I)ol"22n Fl dy/\dZ - '[[0, 114[0,1] (FIO(D)(}’, ZTE,Z)WdrdZ = 0,
_ d(r-sin 6, 0) e
Jorg Frdyadz=[ - (Fio®)(r.6, 0= g =0
_ d(r-sin 6,1) 3
Jory Frdyadz=[ - (Fio®)(r.6, DESg drd =0,

Thus [, 1 dyadz = 0. Of the six corresponding integrals occurring in the sum
for [, F> dz Adx, the first two and last two turn out to be 0, but the middle two
both turn out to be —% and cancel out. So, [5,F>dzAdx. We proceed to find

Ja0 F5 dx Ady.

(Fso®)(0,6.2) 9(0-cos 0, 0-sin0)

J<1>°1"10 Fydxndy = I[0, 21]x[0,1] 2(6,z2)

d0dz = 0;

d(1-cos0,1-sin0)

Fydxndy = F30®0)(1 dodz = 0;

Jor, Fydndy I[o,zn]x[o,l]( ®)(1.8,2) 9(8,z) o
d(r-cos 0, 7-sin 0)

Fydxndy = Fro®)(r,0 ’ drdz=0:

J<1>Crzo 3axNay I[o,zn]x[o,l]( ®)(r,0,2) 9(r.2) raz=0;
d(r-cos 2w, r-sin 21

Jory Fydendy=] (Fo®)r2m.2) ( T ) drdz=0;
[y Fdxndy =] (Fio®)(r,0,0) 2008 87510 4o,

[0, 11x[0, 2x] a(r,0)
because (F30®)(r,0,0)=0;

drdd

B d(r-cos 6, r-sin 0)
Jory Fadendy=] o (Fro®@)(6,)=— .0

|

(r*cos’0) rdrdd = 1.
[0, 1]x[0, 2]

Therefore, [q, F5 dxAdy = %n. It follows that the required value of the integral is

1 _ 1
O+O+En—zn.

8-7.P2. Using Green’s theorem,
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| (5—xy—yH)dx+(2xy —x*)dy

2
2(—1)1 (Tio—Ti)

90 P

- I[O,I]Z [g —E] dx ndy

=l (2y=2x)—(=x~2y))dx ady
= [lo1p (4y—x)dx A dy

:J.[O,l] I[o,1] (4y —x)dxdy :2—%2%.

y—(0,y) y—(1,y) x—(x,0) x—(x, 1)

[ G-xy=yhdx=—]p (—xy=y")dx+] (5—xy—y*)dx

2 )
E(—l)l (Tio=T31)

i, S=xy = )dx— [ (S—xy—y?)dx

= = 1
_J.[O,l] de—j[o,l] (4 —x)dx = 5—4+§:%.

| (2xy—x*)dy = “Ir, (2xy—x")dy +r, (2xy—x")dy

2
;](*1)1 (Tio=T31)

+p, 2xy - x*)dy - Ir, Qxy— x*)dy

=Joy@-Ddy=1-1=0.
The answer is verified too.

o _, W_, O

Rk} =0
ox dy 0z

8-7.P3.F; =y

- By B_y B_,
ox dy 0z
O _, 95 _, 95
ox Iy dz

F3=x =0

By Stokes theorem the integral (1) equals
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qu,dy/\dz+d2/\dx+dx/\dy.
Observe that
30.2) 3_)} % sin 6 rcosO )
Y,z _lor _ _r : _ .
m— 3 9| |rsin20 2 c0s 20 —7(sm600526 cos 0sin 20)
’ — —| | b b
or do
2
:—%sine,
(z,) _ —r—zcose
are) b
Iy _
d(r,0)

The last integral (2) equals

2 2
[ L sin 0drd® +-L—cos 0drd® — rdrd® | = —na’
[0,a]"[0.2n) | b b

r—(r,0) r—(r,2m)
0—>(0,0) 6—(a,0)

2 .
Ja¢y dx = gl () ) ydx = — Lbcrloydx + Lbcrlayd

®oT;)—@oT;,

+ I@rzo)’dx - varzzﬂy dx
=Jor,,ydx
=[] (asin®)(—asin®)dd

[0, 2]

2 —
-] _a( cos29)de:_na2;
[0,2m] 2

Ia¢2dy - _J.cparmZdy + Lbor,aZdy + LIDOFZOZdy - Lborzz,ery

2 .
B B a”sin20
—chr]aZdy _I[O,Zn] Tacosede

2
_a - . _
= EI[O.ZM [sin(26+6) +5sin(20-6)|d6 =0 .

385

@
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Similarly
[spxdz=0.

The answer is thus verified.
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Boundary of a set, 44
# Bounded, 5
Bounded above, 5

3.1 Bounded below, 5

v, 1 Bounded sequence, 7

=, 1 Brown, 127

1 Burkill, 138

I, 1

e, 1 C

e,1

N, 2 C' function (or C ' map), 99
Z,2 Cartesian product, 3, 24

Q,2 Cauchy complete, 30

R, 2 Cauchy convergence criterion, 8
C,2 Cauchy sequence, 7, 30

U, 2 Cauchy—Schwarz inequality, 26
N, 2 Centre of a ball in R”, 40

Centred at a, 40, 124
A Chain rule, 11, 85, 86, 135, 235
Change of variables, 14, 217

Absolute maximum, 151 Change of variables formula, 14

Absolute minimum, 151 Chaudhary, 130
Absolute value, 5 Cheng, 174
Additive set function, 229, 236 Class. 1
Adjoint, 21 Class C 1,99
Akilov, 130 Closed ball, 42, 125
Apostol, 26, 127 Closed cuboid, 177
Ascending, 258, 259 Closed cuboid formed by, 180
Associative law, 17, 18 Closed differential form, 270
Closed interval, 6
B Closed r-ball in R", 42

Closed subset of R”, 41

Closure of a set, 43, 247

Closure point, 43

Collection, 1

Column matrix, 16

Commutative law, 17

Compact, 230

Compact set, 10, 48, 57, 161, 185, 209,
223,235

Compactness, 9, 45, 127

Balloon, 239, 243, 244
Banach—Cacciopoli principle, 119
Basic k-form, 254

Berberian, 152

Bessel's equation, 107

Bijection, 3

Bijective, 3, 131
Bolzano—Weierstrass theorem, 7, 45
Boundary, 209

Boundary of a k-chain, 277
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Complement, 2, 41

Component, 24

Composite function, 4, 85
Composition, 4, 168, 233
Composition of linear maps, 34, 35
Conformable for addition, 16
Conformable for multiplication, 17
Connected set, 51, 145
Connectedness, 145

Constant map, 35, 79

Constrained extrema, 152
Constrained local maximum, 152
Constrained local minimum, 153

Constrained local strict maximum, 169

Constrained local strict minimum, 169

Constrained optimisation, 151

Constraint equations, 157

Constraint function, 157

Constraint set, 157

Constraints, 151

Content of a set, 203

Continuity, 8

Continuous at a point, 9, 52

Continuous everywhere, 52

Continuous on a set, 9

Continuously differentiable, 99, 124,
137, 144

Contraction (mapping or map), 117

Contraction mapping theorem, 119

Contraction principle, 119, 126

Converge (double sequence), 70

Converge (sequence), 7, 30

Converge absolutely, 71

Convergent double series, 71

Convergent improper integral, 15

Convergent sequence, 7, 30

Convex set, 49, 90, 112, 224

Coordinate, 24

Coordinate transformation, 247

Cover (or covering), 47

Cube, 177

Cuboid, 94, 177

Cuboid formed by, 180

Curl, 296

D

De Morgan’s laws, 3
Decreasing function, 12
Decreasing sequence, 7
Derivative at a point, 11, 78
Derivative function, 11
Determinant, 15, 19, 98, 137, 232
diamE, 217, 219

Diameter, 217, 218, 219, 233
Differentiable, 11
Differential form, 256
Differentiation, 8
Directional derivative, 77, 82
Dirichlet function, 197
Divergence, 296

Divergence theorem, 284
Divergent improper integral, 15
Domain, 3

Dot product, 25

Double limit, 70

Double sequence, 69

Double series, 69, 71

Drager, 123

E

Edge of a cuboid, 177

Elementary matrix, 20, 37, 233

Elementary real analysis, 1

Elementary row and column
operations, 20

Empty set, 1

Equivalent parametrisation, 252

Euclidean norm, 25

Euclidean n-space, 24

Euler’s relation, 103

Euler's theorem, 103

Exact differential form, 270

Exponential function, 11

Exterior derivative, 266

Exterior product, 261

Extremum, 151

Index



Index

F

Family, 1, 4, 47, 183, 224

Field axioms, 4

Finite subcover (or subcovering), 10,
48,241

Finney, 153

First partial derivative, 109

Fixed point, 117

Foote, 123

Fréchet differentiable at a point, 79

Fubini’s theorem, 200, 245

Functions, 1

Fundamental ttheorem of integral
calculus, 14

G

Gateaux derivative, 79
Gauss’ theorem, 250
General Stokes theorem, 274
Gilsdorf, 246
Gopalkrishnan, 21

Gradient, 77, 295

Graves, 138

Greatest lower bound, 6
Green’s theorem, 250

H

Have content, 203

Heine—Borel theorem, 10, 48
Hessian form, 165, 169

Hessian matrix, 165

Hoffman, 21

Homogeneous of degree p, 102, 103

|

Identity map, 34

Identity matrix, 18, 36

Image, 3

Implicit function theorem, 134, 136,
144

391

Implicit function theorem in two
dimensions, 146

Improper integral, 15

Increasing function, 11

Increasing sequence, 7

Induced mapping, 270

Infimum, 6

Infinite-dimensional space, 127

Injective, 3, 124, 131

Inner product in R”, 25

Integrable, 13, 203

Integral test, 15, 74

Integration, 8

Integration by parts, 14, 278

Interior of a set, 42, 178

Interior point, 42

Intermediate value theorem, 117, 147

Intermediate value theorem (Bolzano),
9

Intersection, 2

Intersection of open sets, 40

Inverse, 3

Inverse function theorem, 121, 124

Inverse image, 3

Inverse of a differentiable map, 124

Inverse of a linear map, 34, 226

Inverse of a matrix, 21, 36

Inversion, 18

Invertible, 3

Invertible linear map, 34, 124, 232

Invertible matrix, 21, 36

Isolated point, 53

Iterated (or repeated) integral, 200, 213

J
Jacobian, 98, 232
Jacobian matrix, 98, 137

K

Kantorovich, 130
k-chain, 275
k-index, 257
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k-surface, 251
Kumaresan, 138
Kunze, 21

L

KR",R™), 61, 64

Lagrange equations, 157

Lagrange multipliers, 138, 151, 157

Lagrangian, 157, 169

Lang, 127

Leading diagonal, 15

Least upper bound, 5

Least upper bound axiom, 4

Left distributive aw, 18

Leibnitz’s formula, 107

Limit of a function, 8, 54

Limit of a sequence, 7, 30

Limit point, 8, 53, 55, 56

Linear (or Fréchet) derivative, 79

Linear map (operator, transformation),
32

Linear ordering axioms, 4

Lipschitz condition, 115

Local inverse, 127

Local maximum, 11, 151

Local minimum, 11, 151

Local solution, 23, 137

Local strict maximum, 151, 161

Local strict minimum, 151, 161

Locally invertible, 127

Logarithm function (natural), 11

Loomis, 130

Lower bound, 5

Lower face, 179

Lower integral, 13

Lower Riemann integral, 188, 203, 204

Lower sum, 13, 187

M

Main diagonal, 15
Map, 3
Mapping, 3

Index

Matrices and determinants, 1
Matrix, 15

Matrix of a linear map, 34
Mean value theorem, 12, 110
Mobius band, 61, 108
Monotone function, 12
Monotone sequence, 7
Morrey, 238

Multi-index, 257

N

Nanda, 130

Negative definite, 165
Negative semidefinite, 165
Newton’s method, 12, 129
Nonoverlapping, 180, 185, 231
Nonsingular matrix, 21

Norm of a linear map, 62

Null matrix, 17

n-vector, 24

0]

Objective function, 151, 157
One-to-one, 3

One-to-one correspondence, 3
Onto, 3

Open ball, 42, 124, 126

Open cover (or covering), 10, 47, 48
Open cuboid, 177

Open cuboid formed by, 180
Open interval, 6

Open mapping, 131

Open set, 10, 40, 41, 67
Optimisation problem, 151
Ordered field, 5

P

Page, 127

Pairwise disjoint, 2

Partial derivative, 96

Partial sums of a double series, 71
Partition, 12
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Paving of a cuboid, 180

Polar coordinates, 124, 222, 239, 253
Positive definite, 165

Positive semidefinite, 165

Product of a scalar and a linear map, 35

Product of linear maps, 35
Product of matrices, 17
Product of scalar and vector, 24
Proper subset, 2

Protter, 238

Pugh, 14

Q

Quadratic form, 165, 167, 168

R

Radius of a ball in R”, 40, 125
Range, 3

Range space, 3

Rational components, 203
Rational polar coordinates, 246
r-ball in R", 40

Rectangular coordinates, 124, 242
Refinement, 188, 190, 191, 195, 220
Repeated (or iterated) limit, 70
Restriction, 3

Riemann integrable, 13, 189
Riemann integral, 189, 203, 204
Right distributive law, 18

Row matrix, 16

Rudin, 26, 127

Scalar, 24

Scalar product, 25

Schwarz, 109

Schwarz’s theorem, 110, 269
Second partial derivative, 109, 169
Self map, 117

Sequence, 6

Set, 1

Set algebra, 1

393

Set function, 229

Shirali, 53, 74

Shrinking lemma, 119

Shrinking map, 117

Simple differential form, 254

Singh, 21

Sohrab, 26

Spivak, 26

Square matrix, 15

Standard basis, 25

Standard representation, 258, 260

Stereographic projection, 39

Sternberg, 130

Stokes theorem, 250

Strictly decreasing function, 12

Strictly increasing function, 12

Subcover (or subcovering), 10, 47

Submatrix, 21

Subsequence, 7, 45, 46

Subset, 1

Substitution, 217

Substitution form of the FTC, 250

Substitution rule, 14, 249

Sum in R”, 24

Sum of a double series, 71

Sum of linear maps, 35

Sum of two matrices, 16

Supremum, 5

Surjective, 3, 131

System of (or simultaneous) equations,
23

T

Taylor’s theorem, 12, 109, 112

Term of a double series, 71

Terms of a double sequence, 69

Thomae function, 197

Thomas, 153

Transformation, 32

Transformation formula, 14, 217, 228,
231, 235,250

Transformation of content, 222

Transpose, 16
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Transposition, 16

Triangle inequality in R, 5

Triangle inequality in R", 26, 28, 41
Trigonometric functions, 11, 246
Twice continuously differentiable, 112

U

Unconstrained extremum, 167
Unconstrained optimisation, 151
Uniformly continuous on a set, 10, 57
Union, 2

Union of open sets, 40

Unique local solution, 137

Upper bound, 5

Upper face, 179

Upper integral, 13

Upper Riemann integral, 188, 203, 204
Upper sum, 13, 187

Index

\%

Vasudeva, 53, 74
Vector, 24
Volume of a cuboid, 177

W

Wedge product, 261
Wildberger, 246

Y

Young, 109
Young’s theorem, 111

Z

Zero vector, 25
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