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0.1

0
Review: Analytic Geometry

Euclidean geometry, historically viewed as a system of axioms and
constructions, was revolutionised by Descartes through the intro-
duction of coordinates. By labelling points with numbers, geometric
properties such as parallelism and intersection became amenable to
algebraic verification. This fusion of algebra and geometry, known as
analytic geometry, forms the foundation of modern calculus.

While elementary calculus often relies on trigonometry to analyse
planar figures, the study of higher-dimensional spaces requires a
more robust framework. Vector notation provides the most efficient
language for three-dimensional (and #n-dimensional) analysis, facil-
itating the description of lines, planes, and curves. This chapter is a
review of the geometric and algebraic structure of Euclidean space,
IR", which serves as the domain for multivariable functions.

Vectors in Euclidean Space

We begin by defining the space R” and the fundamental objects Y

within it: points and vectors. + (x1,x2)
The Structure of R" N
The set of real numbers is denoted by R. The Cartesian product of R y R?

with itself n times forms the n-dimensional Euclidean space.

Definition o.1. Euclidean Space.
For any positive integer 1, the n-dimensional space IR" is the set of all

ordered n-tuples of real numbers:
z

]R”:IRX]RX---><]R:{(x1,x2,...,xn)|x]-€IRfor1§j§n}.
—_——

- Figure 1: Points in IR? are or-
n copies

dered pairs; points in R® are
- For n = 2, R? represents the plane. ordered triples.
- For n = 3, R3 represents three-dimensional space.
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: % &
Two n-tuples are equal if and only if their corresponding entries are
identical.

(v1,...,04) = (wy,..., W) = vj = wj for all j.
Distance and Metric

The geometry of R” is determined by the metric (distance func-
tion). The standard Euclidean distance is a generalisation of the
Pythagorean theorem.

Definition o.2. Euclidean Distance.
Let P = (x1,...,x4) and Q = (y1,...,Yn) be points in R". The Eu- /
clidean distance between P and Q is defined as:
o P
d(P, Q) e /d/
P

R
S

Vectors and Operations Figure 2: The distance between

While a point in IR” represents a location, a vector represents a magni- points in IR corresponds to
tude and direction. We denote vectors with an arrow, e.g., v. There is the length of the segment con-
a natural isomorphism between points P = (p, ..., pn) and position necting them, derived via the
vectors p = (p1,..., pn) originating from the origin O. Pythagorean theorem.

The vector from a point A to a point B is denoted by AB and is calcu-
lated by the difference of their coordinates:

AB:B—A:<b1—a1,...,bn—b‘ln>.

Definition o.3. Vector Algebra.

Letx = (x1,...,xp) andy = (y1,...,Yn) be vectors in R", and let
¢ € R be a scalar.

1. Addition: x +y = (x1 +y1,..., Xn + Yn).

2. Scalar Multiplication: cx = (cxq,...,cxy).

Geometrically, vector addition follows the "tip-to-tail" rule. Scalar
multiplication corresponds to scaling the length of the vector (and
reversing direction if ¢ < 0).

Standard Basis and Components

It is often convenient to decompose vectors into components along
coordinate axes. We define the standard basis vectors for R” as:
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Figure 3: Geometric interpreta-
tion of vector operations.

Y20
/f -7
Vector Addition Scalar Multiplication
where the 1 is in the j-th position. In R? and RR3, these are often !
explicitly denoted: il
- InR?%: £ = (1,0), § = (0,1).
- InR3: £ = (1,0,0), § = (0,1,0), £ = (0,0,1). N
Any vector v = (vy,...,0v,) can be uniquely expressed as a linear 5 %
combination of basis vectors: z
"o Figure 4: The standard basis
U = Z v]-x]-. . 3
frt vectors in IR° are mutually or-

thogonal unit vectors aligned
We distinguish between the scalar component v; (a real number) and with the coordinate axes.

the vector component v;%; (a vector).

Example o0.1. Decomposition in R3. The vectorv = (3,-2,5) can
be written as:
v = 3% — 20 + 52.

Here, the scalar component in the z-direction is 5, while the vector
component is 52 = (0,0, 5).

E X

0.2 The Dot Product and Norm

The Euclidean metric is induced by an inner product known as the
dot product. This operation takes two vectors and returns a scalar,
encoding information about length and angle.

Definition 0.4. Dot Product.
Letv = (vy,...,v,) and w = (w1, ..., wy). The dot product v e w is
defined as:

n
vDewWw = ZU]ZU]
j=1

e
S
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Proposition o.1. Properties of the Dot Product.
For any vectors u, v, w € R" and scalar ¢ € R:
1. Commutativity: uev =veu.

2. Distributivity: ue (v+w) =uev+uew.

3. Scalar Associativity: (cu) ev = c(uev).

4. Positive Definiteness: u e u > 0, and u e u = 0 if and only if u =
0.

Proof

These properties follow directly from the properties of real number

arithmetic. For example, commutativity holds because u;jv; = vju;

for all j. Positive definiteness holds because u e u =} ujz, which is a
sum of squares.

|
Norm and Distance
The length (or norm) of a vector is defined via the dot product.
Definition o0.5. Norm.
The norm of a vector v € R", denoted ||v||, is given by:
o]l = voeo =

By definition 0.2, d(P,Q) = ||Q — P|.

Theorem o.1. Cauchy-Schwarz Inequality.
For any x,y € R™:
[x eyl < |lx/yll

Equality holds if and only if one vector is a scalar multiple of the other.
il

Proof

Ifx = 0ory = 0, the inequality holds trivially (0 < 0). Assume
x,y # 0. Consider the square of the norm of a linear combination of
unit vectors. Let £ = ﬁ and j = ﬁ Then ||£]| = ||7|| = 1. Ob-
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serve that:
0<[2£9*=(2£9) e (2£7)
—teiL2Ref)+ieg
=1+2(%ey)+1
=2+2(%e7).
This implies F2(f e ) < 2, or [£ e §| < 1. Substituting the defini-

tions of £ and #:

x _y
Tl S| =1 = [xeyl < [lx[lllyll
x| ||y||‘ lxey| < |[lx|lyl

[
The Cauchy-Schwarz inequality allows us to prove the Triangle In-
equality, which asserts that the straight line is the shortest path be-
tween two points. o
Theorem o.2. Triangle Inequality. Figure 5: The triangle inequal-
For any x,y € R™: ity: the length of x + y (direct
llx+yll < x| + |lyll- path) is at most the sum of the
o lengths of x and y.
Proof
We square the left side:
x4yl = (x+y) o (x+y)
= [|x* +2(x o ) + llylI*.
By theorem 0.1, x ey < |xey| < ||x||||ly||. Thus:
e+ 112 < 1=l + 20/l lyll + lyl* = (=l + llyl)*
Taking the square root (since norms are non-negative) yields the
result.
[

Orthogonality and Components

The dot product provides a precise algebraic definition for perpen-
dicularity.

Definition 0.6. Orthogonality.

Two vectors v and w are orthogonal if and only if v e w = 0. A set
of vectors is orthonormal if every pair is orthogonal and every vector
has unit length (norm 1).
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! % &
The standard basis {£,...,%,} forms an orthonormal set, captured
by the Kronecker delta relation:

1 ifi=j,

0 ifi##j.

Using orthogonality, we can extract the components of a vector using
the dot product. If v =} v;%;, then:

xiox]-:éi]-:

n

n
Ve, = (Z U])?]> o % = ZZ)]‘(J?]'OXA;() = Ug.
j=1

j=1
Thus, any vector can be decomposed as:
n
v = Z(’(J o x])x]
j=1
This is known as an orthogonal decomposition.

Example 0.2. Components via Dot Product. Letv = (2,5) in R2.

The component in the direction of £ = (1,0) is:
vex=(2)(1)+(5)(0) =2
The component in the direction of = (0, 1) is:
vel=(2)(0)+ (5)(1) =5.

This confirms v = 2% + 57.

$o19]

Angles and Direction

The Cauchy-Schwarz inequality implies that for non-zero vectors x, y,
the ratio % lies in the interval [—1,1]. This allows us to define the
angle 0 between vectors.

Definition o0.7. Angle Between Vectors.
The angle 6 € [0, 7] between two non-zero vectors x and y is defined

by:

xey

cosf = ———.
%[yl

This leads to the geometric form of the dot product: xey = ||x|| ||y cos 6.

- If x ey > 0, the angle is acute.
- If x ey < 0, the angle is obtuse.
- If x e y = 0, the vectors are orthogonal (6 = 7v/2).

w

vew =20

Figure 6: Orthogonal vectors
meet at a right angle. The dot
product of perpendicular vec-
tors is zero.

Figure 7: The angle 6 be-
tween two vectors is deter-
mined by their dot product:

_ _xey
cosf = .
[lx Tyl
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Example o.3. Calculating Angles. Calculate the angle between u =
(1,1) and v = (0, 1).

lul = V124+12 = V2.
lo|| = V02 +12 =1.
1

Thus, cos 6 = 1= %, which implies § = F.

E X

0.3 Projections and Decompositions

The dot product allows us to decompose a vector into components
relative to another vector, generalizing the concept of Cartesian com-
ponents. This process is fundamental in approximation theory and
physics, where one often needs the "shadow" of a force or displace-
ment along a specific axis.

Definition 0.8. Vector Projection.

Let # and v be vectors in R” with u # 0. The vector projection of v
onto u, denoted proj, (v), is the vector parallel to u that best approx-
imates v. It is defined by:

proi(v) = (2 Ju = (0o ),

where 71 = u/||u|| is the unit vector in the direction of u. The scalar
veil is called the scalar component of v along u, denoted comp,, ().

We can essentially split v into two parts: one parallel to # and one
orthogonal to u.

Proposition o0.2. Orthogonal Decomposition.
Any vector v can be uniquely written as the sum of a vector parallel
to u and a vector orthogonal to u:

v = proj,(v) + orth,(v),

where orthy (v) = v — proj, (v) is orthogonal to u.

¥

TR
Proof

We simply check the orthogonality condition. Let w = v — cu where

11
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—y ) .
€= jou- Then:

veu
weu=(v—cu)eu=veu—clueu)=veu— (uou) (ueu) =0.
Thus, the remainder is orthogonal to u.
[ |
Example o0.4. Calculating Projections. Leta = (3,4)andb =
(5,12). To find the projection of b onto a:
1. Compute the dot product: a eb = 3(5) + 4(12) = 15+ 48 = 63.
2. Compute the squared norm of a: ||a|* = 3? +4? = 25.
3. Apply the formula:
. 63 189 252
proi(b) = 220641 = {35 55 )
The scalar component is comp, (b) = % =% =126
Eid)

Example o0.5. Cube Diagonal. Consider a cube of side length a. We
wish to find the angle ¢ between the main diagonal of the cube and
one of its edges.
Place the cube at the origin in R3. The edge lies along the vector
e = («,0,0). The main diagonal connects (0,0,0) to (&, «, «), given
by d = (a,a,«).

eoed=0>+0+0=0a2

el =
|d]| = Va2 + a2 + a2 = a/3.

Using the angle formula:

CoS¢p = ———F =

1
(@)(@v3) V3
Thus, ¢ = arccos(1/+/3) ~ 54.74°.

$o19]

Physical Application: Work

In physics, work is defined as the product of the force component in
the direction of displacement and the magnitude of the displacement.
This is elegantly captured by the dot product.

proj, v

Figure 8: The projection of v
onto u. The vector orth,v repre-
sents the "error" or the distance
from the line spanned by u.
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Definition 0.9. Work.
If a constant force F is applied to an object moving along a displace-
ment vector d, the work done W is:

F
W =TFed=|F||d| cosb, |
where 6 is the angle between the force and the displacement. 0 N N
= £ dF cos 6
AR W =Fed

Figure 9: Work equals the

0.4 The Cross Product in R® component of force along the
displacement times the dis-
In IR?, given a non-zero vector, there is a unique direction (up to sign) tance: W = ||F| cos 6 - ||d||.

perpendicular to it. In IR3, the orthogonal complement of a single
vector is a plane. However, given two non-collinear vectors # and v,
there exists a unique line perpendicular to both. The cross product
provides a method to construct a specific vector along this line.

Definition o.10. Cross Product.
Let u = (uy,up,u3) and v = (v1,vp,03) be vectors in IR3. The cross
product # x v is the vector defined by:

UuXxXo—= <u203 — U3V, U301 — U103, U170 — u201>.

This formula is often memorised using the determinant of a formal
matrix containing the standard basis vectors:

£ g 2z
uxv=det |uy uy wusz| = (upv3—usvy)x — (U103 — uzv1)J+ (U102 — upv1)Z.
U1 U2 U3

Note

Unlike the dot product, the cross product is defined o/y in R3
(and technically R’, though that is an algebraic curiosity linked to
octonions). It yields a vector, not a scalar.

Proposition 0.3. Properties of the Cross Product.

For vectors #, v, w € R3 and scalar ¢ € R:

1. Anticommutativity: # X v = —(v X u).

2. Distributivity: u x (v +w) = (u X v) + (u X w).

3. Scalar Associativity: (cu) x v = c(u X v) = u x (cv).

4. Orthogonality: (u x v)eu =0and (u xv)ev = 0.

5. Parallelism: u# x v = 0 if and only if # and v are parallel (linearly
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dependent).

3

Al

Proof

Anticommutativity follows from swapping rows in the determinant
definition (which reverses the sign). Orthogonality can be verified
by direct substitution. For example, the dot productu e (u x v)
corresponds to a determinant with two identical rows (u and u),
which is identically zero.

Geometry of the Cross Product

Just as the dot product relates to the cosine of the angle, the cross
product relates to the sine.

Theorem o.3. Lagrange’s Identity.
For any u,v € R%:

e > o]|* = [[ul*[0]* — (n e )%

Proof

This is a calculation using components.
LHS = (203 — u302)* + (1301 — 1103) + (u102 — up01).

RHS = (uf + u5 + u3) (0] + 05 + v3) — (4101 + U0 + u303)*.

Expanding both sides reveals they are identical.

Substituting u e v = ||u||||v|| cos 6 into theorem 0.3:

1% cos® 6

e > o]|* = [[ul* o> — [lul*|2
= [|u]?[[o]*(1 — cos )

= [[u]|?[[o]|* sin* 6.

Taking the square root (since 6 € [0, rt], sinf > 0):

[ x o[ = [[ull[|o]| sin6.
Figure 10: The cross product
This magnitude has a precise geometric interpretation: it is the area u x v is orthogonal to the plane

of the parallelogram spanned by u# and v. The direction is deter- spanned by u and v. Its mag-
mined by the Right-Hand Rule: if you curl the fingers of your right nitude equals the area of the
hand from u towards v, your thumb points along u# x . parallelogram formed by the

vectors.
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Example 0.6. Calculating Cross Products. Leta = (1,2,3) and b =
(4,5,6).

a x b =det

N
a1 N
N W N

— £(12—15) — (6 — 12) + £(5 — 8)
= 3%+ 6§ —32 = (—3,6,-3).
Check: (a x b)ea = —3(1)+6(2) —3(3) = —=3+12—9 =0.

Scalar Triple Product and Volume

Combining the dot and cross products yields the scalar triple prod-
uct, which computes volumes.

Definition o.11. Scalar Triple Product.
For vectors u, v, w € R3, the scalar triple product is u e (v X w). Itis
calculated by the determinant:

Uy Uz Uug
ue(vxw)=det|vy vy uv3
w1, wy w3

The absolute value |u ® (v X w)| represents the volume of the paral-
lelepiped determined by the three vectors.

- The triple product is cyclic: ue (v x w) =ve (w X u) =we (uXxwv).
- If the triple product is zero, the vectors are coplanar (the volume is
Z€ero).

Example o0.7. Volume Calculation. Find the volume of the paral-
lelepiped defined by u = (1,0,0), v = (0,1,0), and w = (1,1,1).
The volume is:

100
V=|det{0 1 0O||=[11-0)—0+0]=1.
111

This represents a unit cube "sheared" in the z-direction; shearing
preserves volume.

$o19]

Figure 11: The scalar triple
productu e (v x w) gives the
signed volume of the paral-
lelepiped spanned by u, v, and
w.
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0.5 Lines and Planes

Analytic geometry provides two complementary ways to describe
geometric objects: parametric equations, which label points using inde-
pendent variables, and implicit equations (or level sets), which define
objects as the solution set of algebraic constraints.

Lines in R"

A line is determined by a point and a direction.

Definition o0.12. Parametric Equation of a Line.
The line L passing through a base point P; in the direction of a non-
zero vector v is the set of points r(t) given by:

r(t)=ro+tv, teR,

where 1y is the position vector of Py.

In R3, if rg = (x0,Y0,20) and v = (a, b, c), the component equations
are:
x=xp+at, y=yo+bt, z=zp+ct

If a,b,c # 0, we can eliminate ¢ to form the symmetric equations:

X—X _Y—Y _z2—20
a b c

Example 0.8. Line Between Two Points. Find the line passing
through P = (1,3) and Q = (5,2).

The direction vectorisv = Q — P = (4, —1). The parametric equa-
tionis r(t) = (1,3) + (4, —1) = (1 +4t,3 —t). Restricting t € [0,1]
parameterises the segment PQ.

E X

Planes in R>

A plane is a two-dimensional surface. It can be described parametri-
cally by two direction vectors, or implicitly by a single normal vector.

Definition 0.13. Parametric Equation of a Plane.
The plane containing a point Py and two non-collinear vectors # and
v is given by:

r(s,t) =ro+su+tv, s,teR.

e
S
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Definition o0.14. Implicit (Scalar) Equation of a Plane.
A plane is the set of all points r such that the vector r —rj is orthog-
onal to a non-zero normal vector n.

ne(r—ry) =0.
If n = (a,b,c) and ry = (X0, Yo, z0), this expands to:
a(x —x0) +b(y —yo) +c(z—20) =0 = ax+by+cz=d,

where d = axy + byo + czo.

Example 0.9. From Points to Plane. Find the equation of the plane
passing through P = (2,1,0), Q = (3,4,1),and R = (4,5,6).

First, find two tangent vectors:

u=PQ=1(1,31), v=PR=(24,6).

The normal vector is their cross product:

n=uxuv=det = (14, -4, -2).

N~ =R
= W
N = N

Using P as the base point:

14(x—2) —4(y—1) —2(z—0) = 0.

Intersection of Planes

Two non-parallel planes intersect in a line. The direction of this line is
orthogonal to the normals of both planes. Thus, if the normals are n;
and ny, the line of intersection is parallel to v = n; X ny.

Example o.10. Line of Intersection. Find the line of intersection of
x+y+z=10and 2x + 3y + z = 20.

Normals are n; = (1,1,1) and ny = (2,3,1). Direction vector:

v=m xnp=(1(1) —1(3),1(2) — 1(1),1(3) — 1(2)) = (—2,1,1).
To find a point on the line, set z = 0 and solve the system:
x+y =10, 2x+ 3y =20.

From the first, y = 10 — x. Substitute into the second: 2x + 3(10 —
x) =20 = —x+4+30 =20 = «x = 10. Theny = 0. So
Py = (10,0,0) is on the line. The line is #(t) = (10,0,0) + #(—2,1,1).

17
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Exia

Distance Problems

The projection formulas from the previous section provide elegant
solutions for distance problems.

Proposition o.4. Distance from a Point to a Plane.

The distance D from a point P to the plane ax + by +cz+d = 0is
given by the projection of any vector from the plane to P onto the nor-
mal direction n = (a,b,c). Let Q be any point on the plane. Then:

D = |[proj, (PQ)|| = =7

Explicitly, if P = (x1,y1,21):

. |axy + by +cz1 +d|

D
Va? + b2 + 2

%
]

Example o.11. Closest Point on a Plane. Find the point on the
plane x — y + 10z = 10 closest to P(1,2,3).

The normal is n = (1,—1,10). Pick a point on the plane, say
Q(0,0,1). The vector from the planeto Pisv = QP = (1,2,2).
The vector offset from the plane is the projection of v onto n:

<1'2'2>.<1'71'10>n* E<
124+ (-1)2+102 ~ 102

w = proj,v = 1,—-1,10).

The closest point R is P — w:

19 —19 190 83 223 116
R—“lw‘@mmmnm)—@mnmnm)
£
P
//T Figure 12: The closest point R
o7 T on plane 5 to point P is found
b L ) by subtracting the normal pro-
SR jection w from P.
Q
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1
Curves and Vector-Valued Functions

While elementary calculus typically models curves as graphs of func-

tions y = f(x), this perspective is insufficient for studying geometry

in higher dimensions or objects with complex topology (such as self-

intersecting loops).

There are three primary frameworks for describing a curve:

1. Implicit (Level Set): The set of points satisfying an equation
F(x1,...,x4) =c.

2. Graph: The set of points (x, f(x)) for a function f.

3. Parametric: The image of a map from an interval I C R into R".
For the purposes of multivariable calculus and differential geometry,
the parametric viewpoint is the most robust. It allows us to describe
motion, direction, and velocity intrinsically, without reliance on a
specific coordinate grid.

Parametrised Differentiable Curves

We define a curve not merely as a set of points, but as a mapping.
This distinction allows us to discuss properties such as velocity and
acceleration.

Definition 1.1. Parametrised Curve.
A parametrised differentiable curve is a smooth (infinitely differen-
tiable) map

v:I—R",

where I C IR is an open interval. The variable ¢ € I is called the pa-
rameter. The image set y(I) C R" is called the trace of the curve.

If y(t) = (x1(¢),..., xx(t)), differentiability implies that each compo-
nent function x;(t) possesses derivatives of all orders. We denote the
first derivative with respect to t by 7/ (t) or ().
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Note

We distinguish strictly between the map < (the path) and its trace
(the geometric locus). Different paths may have the same trace but
distinct dynamic properties.

Velocity and Tangent Vectors

The derivative of a vector-valued function is defined component-
wise.

Definition 1.2. Velocity Vector.
Let v : I — RR" be a smooth curve. The velocity vector (or tangent
vector) at f is defined as:

76 = tim =0 ), o),

Geometrically, the vector 7/(t) is tangent to the trace of the curve

at the point (t), pointing in the direction of increasing parameter
values.

Example 1.1. The Helix. Consider the map 7 : R — R® defined by:

v(t) = (acost,asint, bt),

where a,b > 0. The trace of this curve lies on the cylinder x? + y? =
a%. The velocity vector is:

v/ (t) = (—asint,acost,b).

Since ||9/(t)||> = (—asint)? + (acost)? + b> = a® + b?, the speed
Il7/(#)]| is constant.

X

Regularity and Singularities

A curve is said to be regular at ¢ if 7/(t) # 0. Points where 7/(t) = 0
are called singularities of the parametrisation. At a singular point,
the curve may have a sharp corner or a cusp, although it is also pos-
sible for the trace to be smooth while the velocity vanishes due to the
parametrisation "stopping" momentarily.
Example 1.2. The Cusp. Let y(t) = (#3,?) fort € R. The deriva-
tive is 9/(t) = (3t%,2t). Att = 0,9/(0) = (0,0). The trace exhibits
a sharp cusp at the origin, satisfying y = x?/3. This sharp turn pre-
vents the existence of a unique tangent line at (0,0).

Figure 1.1: The velocity vector
7' (t) is tangent to the path.

: :
z
Figure 1.2: The helix y(#) =
(acost,asint,bt) winds around
the z-axis on the cylinder

x? +y2 =a%
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Exia

Implicit vs. Parametric Representations

While parametric equations are ideal for calculus, geometric loci are
often defined implicitly. We compare these viewpoints in R?.

Graphs as Curves

The graph of a function f : I — R is the set {(x, f(x)) | x € I}. This
can be trivially parametrised by choosing x as the parameter:

v(8) = (& f(1)),

This parametrisation is always regular, as ' (t) = (1, f'(t)) # 0.

tel

Level Curves

A level curve is the set of solutions to F(x,y) = c. Unlike graphs,
level curves can be closed loops (like circles) or self-intersecting
figures. Finding a parametrisation for a level curve often requires
exploiting trigonometric or hyperbolic identities.

Example 1.3. The Hyperbola. Consider the level curve x> — > = 1.
1. Right Branch (x > 0): We use the identity cosh? t — sinh? ¢ = 1.
A natural parametrisation is:

v(t) = (cosht,sinht), teR.

Since cosht > 1, this covers only the region x > 1.

2. Left Branch (x < 0): We reflect the x-coordinate:

B(t) = (—cosht,sinht), teR.

Unlike the circle, the hyperbola is disconnected, requiring separate
parametrisations for each component (or a discontinuous domain).

E X

Non-Uniqueness of Parametrisation

A single geometric set can be covered by infinitely many different
paths. These paths may differ in speed or orientation.
Example 1.4. Parametrisations of the Unit Circle. The level set x> +

y?> = 1 can be parametrised by:
1. 11(t) = (cost,sint) for t € [0,27). Velocity |v;]| = 1. Orienta-

Figure 1.3: A cusp at the origin
generated by y(t) = (£3,#2).

Figure 1.4: The hyper-
bola x2 — y? = 1 has
two branches: right branch

y(t) = (cosht,sinht) and left

branch B(t) = (—cosht,sinht).
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tion is counter-clockwise (CCW).

2. 72(t) = (cos2t,sin2t) for t € [0, 7). Velocity ||v5|| = 2. The par-
ticle moves twice as fast.

3. 73(t) = (cos(—t),sin(—t)) = (cost, —sint). Orientation is clock-
wise (CW).

While the traces are identical, the maps 71, 2, 3 are distinct math-

ematical objects.

Eid)
/
T2 Figure 1.5: Vectors tangent
to the same point on the cir-
cle, generated by different
parametrisations. -y; is unit
Trace speed CCW, v, is double speed

CCW, 73 is unit speed CW.

1.3 Calculus Properties

The operations of calculus extend linearly to vector-valued functions.

Proposition 1.1. Differentiation Rules.

Letu,v : I — R" be differentiable curves andlet A : I — Rbea
differentiable scalar function.

1. Sum Rule: & (u(t) +v(t)) = ' (t) + v/

2. Scalar Product Rule: 4 (A(t)u(t)) = A'(H)u(t) + A(t)u'(t).

3. Dot Product Rule: 4 (u(t) e v(t)) = u/(t) e v(t) + u(t) o v'(t).

Proof

These follow immediately from the component-wise definitions

and the standard product rule for real-valued functions. For the dot
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Proposition 1.2. Orthogonality of Constant Norm Curves.
If a curve y(¢) has constant norm ||7y(t)|| = ¢ for all ¢, then the veloc-
ity vector /(t) is orthogonal to the position vector y(t) for all ¢.

v =c = y(t)e~(t) =0.

3

Proof
Since || (t)[|? = (t) ® y(t) = c?, we differentiate both sides with re-

spect to t:
Livyer) = 2@ =0

By the dot product rule:
v (t)ey(t) +y(t) o' (1) =0 = 27(t) ¢/ (t) = 0.

Thus, y(t) e y/'(t) = 0.
[ ]

This proposition explains why the velocity vector of a circle (where
l7(t)|| = R) is always tangent to the circle and perpendicular to the

radius.
Example 1.5. Parametric Intersection. Find the points where the

curve (t) = (t,t2,13) intersects the plane 6x — 3y + 2z = 5.
Substitute the components of () into the plane equation:

6(t) —3(t?) +2(13) =5 = 23 —3t> + 6t — 5 = 0.
To solve for t, we check for integer roots. If t = 1:
2(1)® —3(1)24+6(1) =5=2-3+6—-5=0.
Thus, t = 1 is a solution. The intersection point is (1) = (1,1,1).

E X

Y1)

T i X

NI

[l[l=R

Figure 1.6: For a curve of con-
stant norm (e.g., a circle), the
velocity 7/ (t) is always perpen-
dicular to the position vector
(8-
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Curves in Three Dimensions

In IR?, a curve can often be described by a single equation F(x,y) = c.
In IR3, a single scalar equation F(x,y,z) = c typically describes a
surface (a two-dimensional object), not a curve. To describe a curve
implicitly in three dimensions, we require the intersection of two
surfaces.

Intersection of Surfaces

Geometrically, restricting a point to satisfy two independent equa-
tions F(x,y,z) = ¢; and G(x,y,z) = ¢, removes two degrees of
freedom, leaving a one-dimensional locus (a curve). Converting this
implicit description into a parametric one r(f) is a fundamental task
in analytic geometry.

Example 1.6. Intersection of a Sphere and a Plane. Consider the
curve defined by the intersection of the sphere x? + y? + z2 = 4 and
the plane x = /3.

Substituting x = /3 into the sphere’s equation:

(V32 4y +22=4 = 3+ +22 =4 = P +2=1

This describes a unit circle in the plane x = V3. A natural
parametrisation is:

r(t) = (V/3,cost,sint), te[0,2m).

ERid)
Example 1.7. Intersection of Quadric Surfaces. Find a parametrisa-
tion for the curve of intersection between the hyperbolic paraboloid
z = x?> — y? and the plane z = 2x.
Equating the expressions for z:

2y =2x = ¥*-2x—y*=0.
Completing the square for x:
(x—1)-1-y"=0 = (x—-1> -y’ =1

This describes a hyperbola in the xy-plane (specifically, the projec-
tion of the curve). We parametrise this hyperbola using hyperbolic
functions. For the right branch (x > 1):

x(t) =1 =cosht = x(t) =1+ cosht, y(t) =sinht.

Substituting back into z = 2x to find the third component:

z(t) = 2(1+ cosht).

Figure 1.7: The intersection of
sphere x> + y?> + z2 = 4and

plane x
radius 1.

V/3 is a circle C of
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Thus, a parametrisation is r(t) = (1 + cosht,sinht,2 4+ 2cosht) for
teR.

$o19]

1.5 Surfaces in Euclidean Space

A surface is a two-dimensional subset of R3. Just as with curves, we
distinguish between three primary modes of description.

Surfaces as Graphs

The graph of a function f : D C R? — R is the set

S={(xy f(xy)) | (xy) € D}.

This is the most restrictive definition, as it cannot represent surfaces
that fail the "vertical line test" (such as a sphere). However, any graph
can be trivially parametrised by letting x = # and y = v.

Parametrised Surfaces

A general surface is the image of a map from a region D C R? into
R®.

Definition 1.3. Parametrised Surface.
A parametrised surface (or patch) is a smooth map r : D — R> de-
fined by

r(u,v) = (x(u,v),y(u,v),z(u,v)), (uv)eD.

The variables u and v are the parameters, and D is the parameter do-

main.

Example 1.8. The Sphere. The sphere of radius R is naturally
parametrised by spherical coordinates (fixingp = R). Letu = 6
(azimuthal angle) and v = ¢ (polar angle).

r(u,v) = (Rcosusinv, Rsinusinv, R cos v),
with domain D = [0, 27| x [0, 7t].
ki

Example 1.9. The Cylinder. A cylinder of radius R aligned with
the z-axis can be parametrised by:

r(u,v) = (Rcosu, Rsinu,v),
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where u € [0,27] is the angle and v € R represents the height z.

.41

Level Surfaces

A level surface is the set of solutions to an implicit equation F(x,y,z) =
k. This is the three-dimensional analogue of a level curve.

Proposition 1.3. Graphs as Level Surfaces.
Any graph z = f(x,y) can be represented as the level surface F(x,y,z) =
0 by defining F(x,y,z) = f(x,y) — z.
R
Implicit equations are particularly useful for describing quadric
surfaces, which are the zero sets of quadratic polynomials in three
variables.

Classification of Standard Quadric Surfaces

The general quadratic equation in R? can often be reduced to one of
the following standard forms by translation and rotation of coordi-

nates.

1. Ellipsoid: 5+ 5+ 3 = 1. .
2. Elliptic Paraboloid: 2 = Z—; + i—i

3. Hyperbolic Paraboloid: % = Z—z - ;‘—2

2 2 2
4. Cone: i—zzz—zwLZ—z. ,
Trace: z = x

2
5. Hyperboloid of One Sheet: ;(é + z—z -5 =1

6. Hyperboloid of Two Sheets: ;‘—; + Z—j —5=-1

To identify a surface from its equation, one employs the method of
traces (or slices): fixing one variable (e.g., z = k) and analysing the
resulting curve in the remaining variables.

Example 1.10. Analysing a Cone. Consider the surface z> = x2 +
2 Trace: z

yA.
- Trace z = k: x> +y* = k2. For k # 0, these are circles of radius |k|.

2 2

=x
Figure 1.8: Traces in the xz-
- Trace x = 0: z2 = y> = z = +y. These are intersecting lines. plane (y = 0) help identify the

2 surface type.

- Trace y = 0: z2 = x> = z = +x. These are intersecting lines.

This structure characterises a circular cone with vertex at the origin.

E X

Figure 1.9: An ellipsoid with
semi-axes 4, b, ¢ along the coor-
dinate directions.
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Intersections and Parametric Solutions

We now apply our parametric tools to solve geometric intersection
problems.

Intersection of a Parametrised Curve and a Surface

To find where a path r(t) intersects a surface defined implicitly by
F(x,y,z) = 0, we substitute the components of r(t) into the surface
equation. This yields a scalar equation in ¢.

Example 1.11. Path and Paraboloid. Letr(t) = (t,0,2t — t?). Find
the intersection with the paraboloid z = x? + y2.

Substituting x = t,y = 0,z = 2t — ? into the surface equation:

2t — 12 = ()24 (02 = 2t —22 =0 = 2t(1 —t) = 0.

The solutions aret = 0and t = 1.
- At t = 0, intersection is at #(0) = (0,0,0).

- Att =1, intersection is at r(1) = (1,0,1).

Constructing Parametrisations for Intersection Curves

When two surfaces intersect, we can often parametrise the resulting

curve by using one of the variables as a parameter or by exploiting

trigonometric identities.

Example 1.12. Viviani-Style Curve. Find a parametrisation for the

intersection of the cylinder x? + y? = 4 and the surface z = xy.

1. Step 1: Parametrise the "base" projection. The cylinder con-
straint suggests polar coordinates:

x =2cost, y=2sint, te€]l0,2m).

2. Step 2: Lift to the second surface. Substitute x and y into z = xy:

z = (2cost)(2sint) = 4costsint = 2sin(2t).

The intersection curve is r(t) = (2cost,2sint,2sin(2t)).

E X

Collisions vs. Intersections

When dealing with moving particles, we must distinguish between:

Figure 1.10: The curve

r(t) = (2cost2sint,2sin2t)
lies on the cylinder x? + y? = 4
and the saddle surface z = xy.
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1. Intersection: The geometric paths cross (the traces share a point).
The particles may occupy this point at different times.

2. Collision: The particles occupy the same point at the same time.
Example 1.13. The Cat and Mouse Problem. Let the mouse’s path
be 7, (t) = (t,t?,13) and the cat’s path be r.(s) = (1+2s,1+6s,1 +
14s). Note that we use different parameters (t and s) to test for
geometric intersection.

We solve 7y, () = r.(s):

t=142s (1.1)
2 =1+ 6s (1.2)
£ =1+14s (1.3)

From (1.1), 2s = t — 1. Substitute into (1.2):
2 =1+32s)=1+3(t—1)=3t-2 = t2 -3t +2=0.

Factorising: (t — 1)(t —2) = 0. The potential solution times for the

mouse are t =1 and t = 2.

~Ift=1:2s=1-1=0 = s = 0. Checking (1.3): 13 = 1+ 14(0),
which holds.

- Ift=2:2s=2-1=1 = s = 1/2. Checking (1.3): 2> = 8 and
1+ 14(0.5) = 8. This also holds.

Conclusion:

- The paths intersect at point A = (1,1,1) (mouse atf = 1, cat at
s = 0).

- The paths intersect at point B = (2,4,8) (mouse att = 2, cat at
s =0.5).

Do they collide? This requires t = s. At A,t =1 # s = 0. No colli-

sion. At B, t = 2 # s = 0.5. No collision. The geometric paths cross

twice, but the animals are never at the same place at the same time.

X

1.7 Curvilinear Coordinates

While Cartesian coordinates (x,y,z) are universal, they are often
ill-suited for problems possessing radial or rotational symmetry. To
simplify the description of such systems, we introduce curvilinear
coordinates. Unlike the Cartesian basis {%, 7,2}, which is constant
throughout space, curvilinear systems employ a local basis (or frame)
that varies from point to point.

A coordinate system is right-handed if its associated local unit vec-
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tors {1y, 11,13} satisfy the cyclic cross-product relations:

~ ~ A~ ~ ~ ~

1 Xy =13, Uy Xli3=1, 13X

=

1 = 1y.

Equivalently, the determinant of the matrix formed by these vectors is
+1.

Polar Coordinates

In the Euclidean plane R?, the polar coordinate system (r, ) is de-
fined by the transformation:

x=rcosf, y=rsind,

where r > 0 represents the distance from the origin, and 6 € [0,27)
represents the angle from the positive x-axis.

The inverse transformation for x # 0 is given by:

r=4/x2+y? 6 =arctan (K) +km, Figure 1.11: Polar coordinates

x and the local frame {7,6}.
where k is chosen based on the quadrant of (x,y).

The local basis vectors {#,0} are obtained by normalising the partial
derivatives of the position vector » = x% + y7.

? =cos0%+sinf 7y

0= —sinf%+cosfy
This frame is orthonormal (7 @ § = 0) and rotates as the point moves
around the origin.

Example 1.14. Polar Curves.
1. Circle: The equation x? + y?> = R? simplifies to r = R.

2. Line: The line y = mx + b becomes rsin @ = mrcosf + b, or
B b

r= -
sinf — m cos 6

$o19]

Cylindrical Coordinates

Cylindrical coordinates (r,0,z) extend polar coordinates to R3 by
retaining the Cartesian z-coordinate.

x=rcosf, y=rsind, z=z.

Herer > 0,60 € [0,27), and z € R.
The basis vectors are:

P =cosf%+sinfy, 6= —sinff+cosfy, 2=2 Figure 1.12: Cyhn.drlcz?ﬂ coordi-
nates (7,6, z): radial distance r
These form a right-handed orthonormal system: 7 x 8 = 2. in the xy-plane, azimuth 6 from

the x-axis, and height z.
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Example 1.15. Surfaces in Cylindrical Coordinates.
1. The cylinder x? + y*> = R? is simply r = R.

2. The paraboloid z = 4 — x? — y? becomes z = 4 — r2.

3. The half-plane y = x (x > 0) is defined by 0 = /4.

e
This system is ideal for problems with axial symmetry, such as calcu-
lating the magnetic field of a current-carrying wire (B « 10).

Spherical Coordinates

Spherical coordinates (p, ¢, 6) exploit the full rotational symmetry of
R3. We define:
- p: Distance from the origin (o > 0).

- ¢: Polar angle from the positive z-axis (¢ € [0, 7t]).
- 0: Azimuthal angle in the xy-plane (6 € [0,27)).
The coordinate transformation is:

x =psingcost, y=psingsinh, z = pcosep.

Note

Caution: In physics literature, the roles of 6 and ¢ are often re-
versed (with 6 as the polar angle). We adhere to the ISO 8oooo-2
standard common in mathematics.

The inverse relations are:

p= /12412422, ¢ = arccos <Z> 0 = arctan (Z) ' Figure 1.13: Spherical coordi-
P x nates (p, ¢,0): radius p, polar
The local orthonormal frame {p, §,8} is given by: angle ¢ from the z-axis, az-
imuth 6 from the x-axis.
p =sin¢gcosO £ +singsindf+ cos¢pz
¢ = cos¢pcosf £+ cospsinff —sing2
0

= —sinf £+ cos0y

This system is right-handed: p x ¢ = 0. The vector p points radially
outward, ¢ points tangent to a meridian (downward), and 6 points
tangent to a parallel (eastward).

Example 1.16. Spherical Surfaces.

1. Sphere: p = R.

2. Cone: The equation z2 = %(x2 + ?) represents a cone. In spheri-

cal coordinates:

(pcosp)? = %(p2 sin? ) = cos?¢p = %sinng — tan¢ = +/3.
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Thus,¢ = m/30or¢ = 2m/3, describing a cone with a fixed
opening angle.

3. Vertical Plane: The planey = x corresponds to 0§ = /4 (and
0 =5m/4).

#h)
Example 1.17. Converting a Plane to Spherical Coordinates. Con-
vert the equation of the plane z = 2 into spherical coordinates.

pcosp =2 = p = 2secq.
In spherical coordinates, the plane z = 2 is described by
s
o =2sece, 0§¢<§’ 0<6<2m.

Note that ¢ < 77/2 corresponds to z > 0, which matches the fact
that the plane z = 2 lies entirely above the origin. For each fixed di-
rection (¢,0) with ¢ < 71/2, there is exactly one point of the plane
along that ray, at distance p = 2/ cos ¢.

ERl

1.8 Exercises

. Circular Orientation. Find a smooth parametrisation r : R — IR?
such that the trace of r is the unit circle x?> + y? = 1, the curve is
traversed clockwise, and r(0) = (0,1).

. Orthogonality at Extrema. Letr : I — IR" be a differentiable
curve whose trace does not contain the origin. Suppose ty € I is a
value such that the distance ||x(¢)|| achieves a local minimum at .
Prove that if ¥'(ty) # 0, then the position vector r(fy) is orthogonal
to the velocity vector r'(fp).

. Vanishing Acceleration. A parametrised curve r(t) satisfies
r’(t) = 0forall t € I. Characterise the geometric nature of the
trace of r.

. Planar Confinement. Let r : I — R3 be a differentiable curve and
let v € R3 be a fixed non-zero vector. Suppose that r'(t) L v for all
t € I and that the initial point r(0) is orthogonal to v. Prove that
r(t) is orthogonal to v for all t € I. Geometrically, what does this
imply about the curve?

. Characterisation of Spherical Curves. Letr : I — R" be a dif-
ferentiable curve with non-vanishing velocity. Prove that ||x(¢)]|
is constant (i.e., the curve lies on a sphere centred at the origin) if
and only if r(t) L ¥/(t) forall t € I.

. Cartesian Products. The Cartesian product of three sets is defined

31
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10.

11.

12.

13.

14.

15.

16.

17.

18.

as AxBxC = {(abc)|aecAbeB,ceC}If(xyz) €
[0,1] X R x Z, describe the possible values for the coordinates x,y,
and z.
Centroids. Let P = (1,2), Q = (—1,-2), and R = (0,3) be points
in R%. Determine the centroid M of the triangle PQR.
Triangle Geometry. Let A = (1,2,3), B = (1,1,-2),and C =
(4,4,4) be points in R3.
(a) Compute the displacement vectors u = AB,v = BC, and
w = CA.
(b) Verify thatu+v+w =0.
(c) Calculate the internal angles of the triangle ABC using the
dot product.
(d) Sum these angles to verify the Euclidean plane triangle sum
theorem.
Orthogonality Check. Determine whether the vectors v = (1,0,4)
and w = (0,2,0) are orthogonal, collinear, or neither. Justify your
answer.
Projection and Decomposition. Letv = (1,1,1) and w = 27 —
2. Calculate proj,, (v). Hence, express v as the sum of a vector
parallel to w and a vector orthogonal to w.
Scalar Triple Product. Leta=%+7,b=2% and c = 7.
(a) Calculate ae (b x c).
(b) Calculate be (a x c).
(c) Interpret these results in terms of the volume of the paral-
lelepiped spanned by a, b, c.
Plane Construction. Find the scalar equation of the plane contain-
ing the line r(t) = (1+1t,2 —t,3) and the vector w = (1,2,3)
(assuming w is not parallel to the line).
Work and Displacement. A constant force F = 100% is applied
to a mass, displacing it from P(1,2,3) to Q(4,4,4). Calculate the
work done by F.
Planar Intersections. Find the direction vector of the line of inter-
section of the planes given by x +y+z =3 and 2x — 3y — 4z =7.
Parametric to Cartesian. Interpret the geometric object described
by the parametric equationsx = u+v,y =u—v,andz = 1+ u.
Convert this description into a Cartesian equation F(x,y,z) = 0.
Minimising Distance. Let S be the plane containing the points
A(1,0,2), B(3,4,1), and C(0,0,1). Find the unique point on S
closest to the origin.
Triangular Parametrisation. Using the points A, B, C from the
previous exercise, provide a parametrisation for the triangular
region AABC. Explicitly state the domain of the parameters.
Non-Cancellation of Dot Products. Suppose aeb = aecfora
non-zero vector a. Does it necessarily follow that b = ¢? Provide a

The centroid of a finite set of points
{P1,..., P} is given by the vector
average % Y P



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
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proof or a counter-example.

Uniqueness via Dot Products. Suppose aeb = a e ¢ holds for a//
vectors a € R". Prove that b = c.

Uniqueness via Cross Products. Suppose a x b = a x ¢ holds for

all vectors a € R®. Prove that b = c.

Rhombus Diagonals. Use vector algebra to prove that the diago-
nals of a parallelogram are orthogonal if and only if the parallelo-
gram is a rhombus (i.e., all sides have equal length).
The Varignon Parallelogram. Let A, B,C, D be vertices of a
quadrilateral in R3 (not necessarily coplanar). Let My, My, M3, My
be the midpoints of the consecutive sides. Prove that MMy MsM,
forms a parallelogram.
Thales’ Theorem. Use the dot product to prove that a triangle Set the origin at the centre of the
inscribed in a semicircle is a right-angled triangle. semicircle.
Skew Lines Distance. Calculate the minimum distance between
the skew lines r1(t) = (14,2 —3t,3+4t) and r2(s) = (1 + 25,2+
s, 3s).
Difference of Squares. Simplify the expression [a — b] e [a + b].
Under what condition are the sum and difference of two vectors
orthogonal?
Curve Identification. Identify the geometric nature of the traces of
the following curves:

(@) r(t) = (cost,sint,cost) for t € [0,27].

(b) r(t) = (cosht,4sinht) for t € R.

(c) r(t) = (e',2¢!,3e!) for t € [0,In3].
Surface Identification. Identify the following surfaces given by
their Cartesian equations:

(@) z=x%+ yz

(b) x¥*+y>—-322=1

© (x—1)2+(y+2)%+(z-3)2=1

d) x*+2y2=1
Surface Parametrisation. Provide explicit parametrisations (in-
cluding domains) for the surfaces listed in the previous exercise.
Rectangular Patch. Parametrise the subset of the plane x 4 3y —
z = 10 defined by the bounds 1 < x <3 and 2 <y < 4.
Inequalities in Curvilinear Coordinates. Describe the regions
defined by the following inequalities, converting to cylindrical or
spherical coordinates where appropriate:

(@ 1<x2+y>+22<3

(b) 0<x>+y><4
Coordinate Conversion. Let P = (\@, 1,2) be a point in Cartesian
coordinates. Find the coordinates of P in:

(a) Cylindrical coordinates (7,6, z).

(b) Spherical coordinates (p, ¢, 0).
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33-

34.

35-

36.

37-

38.

39-

4o0.

41.

42.

Viviani’s Curve. Find and parametrise the curve of intersection of

the cylinder x? +y? = 4 and the hyperbolic paraboloid z = x> — 2.

Elliptic Intersection. Find and parametrise the curve of intersec-
tion of the plane x + v +z = 10 and the paraboloid z = x% + y2.
Coordinate Surfaces. Convert the equation 4 = p sin ¢ into:

(a) Cylindrical coordinates.

(b) Cartesian coordinates.
Spherical Curves. Find the intersection of the cone ¢ = /3 and
the plane z = 4. Provide a parametrisation for this curve.
Vertical Intersection. Find the intersection of the half-plane 6 =
7t/4 and the sphere p = 4. Parametrise the resulting curve.
Polar Forms. Derive the polar coordinate equations r(6) for:

(a) The ellipse % + % = 1.

(b) Theliney =1 — 2x.
Vector inversion. Let v, b be non-zero vectors and ¢ be a scalar.
Prove that if a vector x satisfies both vex = ¢ and v X x = b, then
x is uniquely determined. Find an explicit formula for x in terms
of v,b,c.
The Jacobi Identity. For any vectors a,b,c € R3, prove the Jacobi
Identity:

ax(bxc)+bx(cxa)+cx(axb)=0.

Stereographic Projection. Consider the unit sphere $?> C R®. Let
N = (0,0,1) be the north pole. For any point P € S?\ {N}, let
71(P) be the intersection of the line passing through N and P with
the xy-plane (z = 0).

(a) Derive the formula for 77(x,y,z) in terms of Cartesian coordi-

nates.

(b) Show that this map is a bijection between S? \ {N} and RR?.
Kepler’s Law of Areas. Let r(t) be the position of a particle mov-
ing in R3 under a central force field (where the force F is parallel
to r).

(a) Show that the quantity L = r X ' (angular momentum per

unit mass) is constant.

(b) Deduce that the particle moves in a fixed plane.

(c) Show that the rate at which the position vector sweeps out

area is constant (Kepler’s Second Law).
The Gram-Schmidt Process. Let a; = (1,1,0), a = (1,0,1), and
a3 =(0,1,1).

(a) Construct a unit vector u; parallel to a;.

(b) Construct a unit vector up orthogonal to u; that lies in the

plane spanned by a; and aj.

(c) Construct a unit vector uz orthogonal to both u; and uy.

For a solution to exist, we must have
v L b. Use the identity v x (v X x).

Use the vector triple product expansion
ax (bxc)=(aec)b—(aeb)c
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2
Calculus and Geometry of Curves

In this chapter, we extend the calculus of real-valued functions to
vector-valued functions mapping an interval I C R to R". While a
curve represents a geometric set of points in space, a path is a spe-
cific parametrisation of that curve. We establish the machinery for
differentiation and integration of paths, which allows us to analyse
dynamic properties such as velocity and acceleration, as well as geo-
metric properties like tangency and curvature.

Differentiation and Integration

We define the calculus of vector-valued functions component-wise.
This pragmatic approach relies on the standard limit definitions from
single-variable calculus.

Definition 2.1. Derivative and Integral.
Let F : I — R" be a vector-valued function with components F(t) =

(Fi(£), ..., Ea(t)).

1. Differentiation: If the components F] are differentiable at ¢, the deriva-

dF . /dF  dF,
tjt_P(t)—<Eit,..-,cit>.

2. Integration: If the components Fj are integrable on [a, b], the def-

tive of F is:

inite integral is:

/ﬂbF(t)dt: </;Fl(f)dt,---,/ubFn(t)dt>,

3. Antiderivative: The indefinite integral is defined as:
/F(t) dt = G(t) +¢c = G'(t) = F(t),

where ¢ € R" is a constant vector.

Geometrically, if r(t) represents the position of a particle at time ¢,
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then #/(t) represents the velocity vector, tangent to the trajectory.
Example 2.1. Calculus of a Space Curve. Let F(t) = (cos’t,(1 +
3t)~1,#2sin(t/3)).

1. Derivative: Differentiating component-wise using the chain and

product rules:

dF d s d gy d (2 . t>>
== { S (cos?t), = ((143t)7 1), = ( sin =
dt <dt (cos™ 1) dt ( )™ dt S 3 Figure 2.1: The derivative 7/ (t)

-3 _t ot t is tangent to the curve at P.
m,ztslng‘i‘gCOSg .

= <—2 costsint,
2. Integral: Using the identity cos? t = %(1 + cos 2t), we integrate:

t  sin2t 1 ) t .t t
/F(t)dt— <2+4,31n|1+3t|,—3t cos3+18tsm3+54cos3>+c.

The third component is obtained via integration by parts (twice).

.41

The Fundamental Theorem of Calculus extends naturally to this
setting.

Theorem 2.1. Fundamental Theorems of Calculus for Curves.
Let F and G be vector-valued functions.
1. If F is continuous on [g, b], then % fat F(t)dt = F(¢).

2. If G is differentiable on [4,b] and G’ is integrable, then

/b G'(t)dt = G(b) — G(a).

Proof

We prove the second statement; the first follows similarly. Let

G(t) = -1 G;j(t)%;. By linearity of the integral and the standard
scalar Fundamental Theorem of Calculus:

/b G'(t)dt = f (/ﬂb Gi(t) dt) %

a ]:1

=1
- Z G(b)%; - ,"Zlc,»w)ae] _ G(b) - 6(a)
1= 1=
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2.2 Algebraic Properties and Rules

The linear structure of differentiation preserves vector addition and
scalar multiplication. More interestingly, the product rule adapts to
the various vector products defined in analytic geometry.

Theorem 2.2. Vector Product Rules.

Let u,v : I — R" be differentiable vector functions, and let f : I —
R be a differentiable scalar function.

1. Scalar Product Rule: %(fu) = %u + fi—’t‘.

2. Dot Product Rule: 4 (uev)=u'ev+uev'.

3. Cross Product Rule (for n =3): & (uxv) =u' xv+u xv'.
T

Note

The order of vectors in the cross product rule must be preserved

due to anti-commutativity.

Proof

We demonstrate the proof for the cross product (3) using sum-
mation notation and the Levi-Civita symbol €;. Letu x v =

3 (v3 .
Vi1 (X5 =1 €ijettivf) -

k=1 ij=1
Y 23: € (dulv d ]) £
= ijk \ 3795 i k
P s} dt dt
3 3 3 3
= Z Z €ijku;vj | X + Z Z €ijktiv; | Xx
k=1 \i,j=1 k=1 \i,j=1
= (' xv)+ (ux?).

The proofs for scalar and dot products follow equivalent logic
using the standard product rule on components.

Theorem 2.3. Chain Rule for Curves.
Letu : | — IR" be differentiable and g : I — ] be a differentiable
scalar function. Then the composition u o g is differentiable, and:

%(”(g(f))) =u'(g(t) g (t).

37
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Note

In more general contexts, this derivative can be viewed as the ma-
trix product of the Jacobian Du(g(t)) (a column vector) and the
scalar g/ (t).

Proof

Letu(s) = (ui(s),...,un(s)). By the scalar chain rule applied

to each component, u; (g(t)) represents the derivative of u; with
respect to its argument s, evaluated at s = g(t):

d du;

CORES )”jg — u(3(6)g (1),
s=g(t

Assembling the vector yields the result.

2.3 Geometric Applications

The calculus of curves provides rigorous tools for analysing the ge-
ometry of paths in IR".

Tangent Lines

Given a parametrisation r(t), the vector #'(ty) defines the direction of
the tangent line at ty, provided /(o) # 0.

Definition 2.2. Parametric Tangent Line.
The tangent line to a regular curve r(t) at t = t( is given by:
I(s) = r(tg) +sr'(ty), seR
T &
Example 2.2. Tangent to a Helix. Consider the curve r(t) =
(cost,sint, t). Att = m/2:
1. Point: r(7t/2) = (0,1, 71/2). 2
2. Tangent Vector: ¥'(t) = (—sint,cost, 1) = ¢ (n/2) = -
<—1,0,1>.  Helix
y
3. Line: I(s) = (0,1,71/2) +s(—1,0,1) = (—s,1,71/2 + s).
Eid)
X
Intersection of Curves Figure 2.2: A helix (cost,sint, t)
with tangentatt = /2. The

Two curves intersect if they share a common point in space. The angle tangent has components in both

of intersection is defined as the angle between their tangent vectors at the xy-plane and z-direction.
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that point. %

Example 2.3. Angle of Intersection. Let ry(t) = (t,t2,t3) and
ro(u) = (sinu,sin2u, u). Figure 2.3: Two curves (t, t?,13)
Intersection occurs at the origin, where t = 0 and u = 0. Compute (blue) and (sinu, sin2u, u) (red)
the tangent vectors: intersecting at the origin. The
. ) . angle between their tangent
1’1(1’) = <1,2t, 3t > — U1 =1n (O) = <1,0,0> vectors is 0 = arccos(l/\@).
ry(u) = (cosu,2cos2u,1) = vy =15(0) = (1,2,1).
The angle 6 satisfies:
U1 V2 1(1)+0+0 1
cost) = = = —.
oozl (1)(V1Z+22+12) V6
Therefore, § = arccos(1/+v/6) ~ 66°.
o 4ULN
/ (1)
Orthogonality of Constant Norm Curves | |
\ |
A fundamental result in the geometry of curves (and mechanics)
relates the magnitude of a vector function to its direction of change.
By proposition 1.2, if ||r(t)|| is constant then r(t) L #/(¢) for all ¢. I#l| = const
This result explains why the velocity of a particle moving on a sphere
is always tangent to the sphere’s surface. Figure 2.4: For a curve on a
Example 2.4. Angular Momentum and Torque. In mechanics, the sphere (constant norm), the ve-
angular momentum L of a particle with position » and momentum locity vector is always tangent
p =mvisdefinedas L =r x p = m(r X v). to the surface, hence perpendic-
The torque 7 is the rate of change of angular momentum. Using ular to the radius vector.

Theorem 2.2:

%:%(mrxy):m(r’xv—i—rxv/).

Since ¥ = v and v x v = 0, the first term vanishes. Thus:

dL
—_ = = F =
Fria s (ma) =r x T,

where F is the net force. If the force is central (parallel to ), then
T = 0 and angular momentum is conserved.

.41

2.4 Geometry of Smooth Oriented Curves

An oriented curve is a geometric curve endowed with a specific direc-
tion of traversal. While a curve may be the image of infinitely many
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different functions, we often identify the curve with a particular regu-
lar parametrisation.

Definition 2.3. Smooth Path.

Let C C IR" be an oriented curve starting at P and ending at Q. A smooth
non-stop path parametrising C is a map 7 : [4,b] — R” such that:

1. 7 is smooth (C®).

2. v isregular: o/(t) # 0 forall t € [a,b].
3. y([a,b]) = C with ¢(a) = P and ¢(b) = Q.

P
S

Arclength Parametrisation

The length of a curve is independent of its parametrisation. To see
this, consider the infinitesimal displacement ds along the curve

y(8) = (x(8), y(8), z(£)):

ds = ||9/(t)||dt = \/(Z)z + (”Z)Z + (f;)zdt.

Integrating this magnitude yields the total arclength.

Definition 2.4. Arclength Function.
The arclength function s(t) measuring the distance along 7 from the
start point t = a is:

s(t) = /ﬂt 17/ (7)) dr. .

v
If |[9/(t)|| = 1 for all ¢, the curve is said to be unit-speed or parametrised
by arclength. o o
T & ds = o/ || dt
Proposition 2.1. Properties of Arclength. Figure 2.5: The infinitesimal arc
The function s(t) satisfies: length ds relates to the param-
1. % = |7/ (®)|| (speed). eter increment dt through the

. , , N : . speed [|7']|.
2. Since v is regular, s'(t) > 0, so s(t) is strictly increasing and invert-

ible.

3. The inverse function ¢(s) allows reparametrisation: ¥(s) = y(t(s))
is a unit-speed path.

Example 2.5. Helix Arclength. Consider the helix r(t) = Figure .2'6: A helix
(Rcost, Rsint, bt) for t € [0,27]. (cost,sint, bt). The arclength
iss = tv1+ b? reflecting con-

The velocity is #/(t) = (—Rsint, Rcost, b). The speed is constant:
stant speed along the curve.

I¥()|| = VR2sin t + R2cos? t + b2 = /R2 + b2.
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The arclength function is s(t) = fg VR2+b2du = tv/R? + b2. Solv-

ing for t, we get t(s) = \/1%257-1-212 The unit-speed reparametrisation is:

r(s) = <Rcos <S) ,Rsin < ° ) , bs > .
VRZ + b2 VRZ+b2) VRZ+ b2
#a )

The Frenet-Serret Frame

To study the intrinsic geometry of a curve in R3, we attach a moving
orthonormal basis {T, N, B} to each point on the curve. This frame

is well-defined for any curve that is non-linear (so the curvature is .
Figure 2.7: The Frenet frame

non-zero) and regular.
{T,N,B} on a helix. T (red)

Definition 2.5. Frenet Frame. is tangent, N (green) points

Let ¥ (t) be a regular curve of class C> with non-vanishing curvature. ~ toward the axis, B (orange)

1. Unit Tangent: T(t) = H;’:ﬁ completes the right-handed
frame.

2. Principal Normal: N(t) = H?Eg‘l,

3. Binormal: B(t) = T(t) x N(#).

Note

N is well-defined only if T'(t) # 0 (i.e., the curve is not a straight
line). By Proposition 1.2, since || T|| = 1, T’ is orthogonal to T, ensur-
ing N L T. The definition of B ensures the frame is orthonormal
and right-handed.

Theorem 2.4. Frenet-Serret Equations.
For a unit-speed curve 7y (s), the derivatives of the frame vectors are given

by:

T'(s) 0 x(s) 0 T(s)

N'(s)| = |—«(s) 0 T(s)| | N(s)

B'(s) 0 —7(s) 0 B(s)
Here x(s) is the curvature and 7(s) is the torsion.

i

Proof
Since {T, N, B} is a basis, any vector derivative can be expanded in
this basis.

1. By definition, T'(s) is parallel to N(s). We define «x(s) = || T(s)]|.
Thus T’ = kN.

2. Since B = T x N, differentiating yields B = T' x N+ T x N’ =
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(kN) x N4+ T x N’ = T x N'. Thus B’ is orthogonal to T. Also,
since |B|| = 1, B is orthogonal to B. Hence B’ must be parallel
to N. We define the torsion T such that B' = —tN.

3. For N’, differentiate N = B x T:

Using cross product identities (N X T = —Band B x N = —T),
we get N/ = 7B — «T.

Curvature and Torsion

- Curvature (x) measures the rate at which the curve turns (deviates
from a line).

- Torsion (T) measures the rate at which the curve twists out of the
plane defined by T and N (the osculating plane).

If the parameter ¢t is arbitrary (not necessarily arclength), we use the
chain rule (via speed s = ||/ (t)|)):

|T'(t) |7 > 9"
K(t)zl _||:| /3\,
s (Bdl
o(t) = _B'(t)eN(t) _ (v x9")eqy"”
8 9" =<9

Example 2.6. Curvature of a Circle. For a circle of radius R, we
have y(t) = (Rcost, Rsint,0).

9" = (—Rsint,Rcost,0), 4" = (—Rcost,—Rsint,0).

9 x 9" =(0,0,R*sin® t + R*cos® t) = (0,0, R?).
R 1
- RP R
The curvature is constant and reciprocal to the radius. The torsion
is zero, as the curve is planar.

.41

Example 2.7. Frenet Frame of a Helix. Let y(f) = (cost,sint, ).
1. Derivatives:

9 (t) = (=sint,cost, 1), 9] = V2.

T(t) = (—sint,cost, 1).

V2

N' =B XT+BxT =(—tN)xT+Bx (kN) = —1(N x T) +«(B x N).

—

Figure 2.8: The twisted cubic
(t,t2,13). Non-zero torsion
causes the curve to leave any
fixed plane.
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ﬁ

Osculating Plane and Circle

At any point P on the curve, the vectors T and N span the osculating
plane. This is the plane that "best fits" the curve locally. The devia-
tion of the curve from this plane is measured by torsion.

Inside the osculating plane, the best-fitting circle to the curve at P is
the osculating circle.

- Radius: p = 1/« (radius of curvature).

- Centre: C = P+ pN.

Example 2.8. Finding the Osculating Plane. Find the equation of
the osculating plane for r(t) = (2sin(3t),t,2cos(3t)) at t = 7.

1. Point: (7r) = (0, 71, —2).

2. Velocity: #/(t) = (6cos(3t),1, —6sin(3t)) = #'(7r) = (—6,1,0).
3. Acceleration: ¥ (t) = (— 1851n(3t) 0,—18cos(3t)) = ¢’ (m) =
(0,0,18).

4. Normal to Plane: The binormal B is parallel to #' x .
— (—6,1,0) x {0,0,18) = (18,108,0) = 18(1,6,0).
Using (1,6,0) as the normal direction:

1(x—0)+6(y—m)+0(z+2)=0 = x+6y =67

.4

2. Normal:
T'(f) = ——(—cost, —sint,0), |T']| = -
V2 V2
N(t) = (—cost, —sint,0).
3. Binormal:
1 * y : 1
B=TxN=—det|—sint cost 1| =—=(sint,—cost,1).
V2 —cost —sint O V2
4. Curvature and Torsion: From T’ =  $xN, we have % =
V2K = k= % From B’ = —$TN:
B' = —(cost,sint,0) = 1N
7 V2
Then —LN=—V2tN = 7=1

Figure 2.9: The osculating
plane (green) at a point on a
helix. The osculating circle (red,
dashed) lies in this plane with
radius p = 1/x.
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Physics of Motion

In kinematics, we study the motion of objects without necessarily
invoking the forces that cause them, though the framework is built
upon Newton’s Second Law, F = ma. We treat the trajectory of a
particle as a path t — r(t) in R3, where ¢ denotes time.

Kinematic Quantities
We define the fundamental vector quantities of motion.

Definition 2.6. Position, Velocity, and Acceleration.
Let r(t) be the position vector of a particle at time ¢.
1. Velocity: v(t) = 9. The speed is v(t) = [[v(t)]|.

2
2. Acceleration: a(t) = ‘thj %-

Using the Frenet frame {T, N, B}, we can decompose the acceleration
vector into components that have direct physical interpretations.

Proposition 2.2. Tangential and Normal Acceleration.
The acceleration vector a lies entirely in the osculating plane (the plane
spanned by T and N):

a=arT +ayN.

The components are given by:
- Tangential Acceleration (ar): ar = %. This measures the rate of
change of speed.

- Normal Acceleration (ay): any = xv?. This measures the change in
direction (centripetal acceleration).

ot
Proof
Since v = vT, differentiation yields:
d do dTr
=—@l)=—T+v—.
a= g0 =T +og
Recall that ‘% = ’fi—T’;— = (xN)v. Substituting this back:
d . 2
ET+ v(kvN) = 0T + xv°N.
|
Note
a e B = (; there is no acceleration in the binormal direction. Figure 2.10: Uniform circu-

lar motion. Velocity v (red) is
tangent; acceleration a (green)
points toward the centre with
la| = v?/R.
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Example 2.9. Circular Motion. Consider a particle moving in a
circle of radius R with constant angular velocity w:

r(t) = (Rcos(wt), Rsin(wt)).
Differentiation yields:

v(t) = (—Rwsin(wt), Rw cos(wt)), v = Rw.

a(t) = (—Rw? cos(wt), —Rw? sin(wt)) = —w?r(t).

Here, %’ = 0,soar = 0. The acceleration is purely normal (cen-
tripetal):
R 2 2
ay = ||a|| = Rw? = Rew)? ;)) = % = k0%,

consistent with x = 1/R.

E X

Projectile Motion

If we assume a constant gravitational acceleration a(t) = (0, —g), we
can integrate to find the trajectory.

Example 2.10. Projectile with Initial Velocity. Suppose a projectile
is launched from the origin with initial velocity vy = (voy, voy)-
Integrating a(t) = (0, —g):

() = /u(t) dt = (Cy, —gt + ).

Applying v(0) = vg gives v(t) = (vox, voy — &t). Integrating again
for position:

r(t) = /v(t) dt = <v()xt,voyt - ;gt2>,

assuming r(0) = 0. This describes a parabola. The maximum height
occurs when vy (t) =0, i.e., t = vy, /g.

.41

2.6 Scalar Line Integrals

We now consider the integration of a scalar field f : R” — R along

a curve C. This generalises the concept of arclength to "weighted"
arclength, useful for calculating mass, charge, or average values along
a wire.

7N

Figure 2.11: Projectile mo-

tion under gravity. The path
y =
parabola. Initial velocity (red);

vyt — %gt2 traces a

constant acceleration —g7j
(green).

b

Figure 2.12: Scalar line inte-
gral [ fds. The “curtain” has
height f(v(t)) and the integral
computes its area.
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Definition 2.7. Scalar Line Integral.

Let C be a piecewise smooth curve parametrised by v : [a,b] — R”,
and let f be a continuous function defined on C. The line integral of
f along C is:

b
/cfdsz/ﬂ )y (Bl dt.

This line integral is independent of parametrisation and does not
change if we reverse the orientation of the curve. If we reverse the
curve (—C), the scalar line integral remains unchanged:

/7Cfds:/cfds.

This contrasts with vector line integrals (work), which change sign
upon reversal.

Applications

Mass and Centre of Mass

If p(x,y, z) represents the linear mass density (mass per unit length)
of a wire C, the total mass M is:

M:/Cp(x,y,z) ds.

The coordinates of the centre of mass (¥, 7, Z) are given by the mo-
ments:

=i

1 o1 1
—M/Cxpds, y—M/Cypds, Z—M/Czpds.

Example 2.11. Centroid of a Semicircle. Find the centroid of a wire
with uniform density p = 1 shaped like a semicircle of radius R in
the upper half-plane.

Parametrisation: (t) = (Rcost, Rsint) for t € [0, 7t].

I/ ()] = R.

Total mass (length): M = fon Rdt = ntR. Centre of mass i

_ 1 [* . R ™ . R
y:ﬁ/o (Rsmt)Rdt:%/o smtdt:E[—cost]g:—.

By symmetry, ¥ = 0. Hence, the centroid is (0,2R/ ).

X
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Averages

The average value of a function f over a curve C of length L is:

1
f avg — Z /Cf ds.
Example 2.12. Average Height on a Helix. Consider one turn of the
helix r(t) = (cost,sint,t) fort € [0,27]. The speed is ||| = /2.

The length is L = 271v/2.
The average height (z-coordinate) is:

1 o 1 [2177 1 a2
7 — V) dt = — |=| =2 —
: Znﬁ/o (v2) 27 {2]0 w2 "

2.7 Exercises g

1. Differentiation and Integration. Perform the following calcula-

Figure 2.13: The exponential

tions for vector-valued functions. spiral ( e~tcost,etsint, e—t>

(a) Compute % (¢, Int). lies on the cone z = /x2 + 2.
(b) Compute %(cosh(tz),sinh(ln ).
(c) Evaluate the indefinite integral [(1,¢,sint) dt.

2. Kinematics from Acceleration. Let a particle move with constant
jerk (the derivative of acceleration). Specifically, let ¥’/ (t) = ¢
for some constant vector c. If the initial position, velocity, and
acceleration are ry, vy, ag respectively, find the general formula for
the position r(t).

3. Initial Value Problem. Suppose the velocity of a particle is given
by

v(t) = (t,3,t cosh(#?))
and its initial position is r(0) = (1,2,3).
(a) Find the acceleration a(t).
(b) Find the position r(f) for t > 0.

4. Parametric Tangents. Let the path of a particle be described by
r(t) = (2t,Int,t2 + 1) for t > 0. Find the parametric equations of
the tangent line to the path at the point (2,0,2).

5. Intersection vs Collision. Two particles travel in the plane along
the following paths for ¢t > 0:

ri(t) =(=10+t1+1t), r(t)=(20—4t6+1).

(a) Determine the point in the plane where the geometric paths Solve ry(s) = ry(t) for s, t > 0.
intersect.

(b) Determine if the particles collide (i.e., does r;(t) = r»(t) for
some time f > 0?).
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6.

10.

11.

12.

13.

14.

Helix Properties. Consider the helix r(t) = (cos(7t), sin(7t),t/8).
(a) How many complete revolutions does this helix make as it
travels from z = 0 to z = 17
(b) Calculate the total arclength of the curve fromz =0toz = 1.
Reparametrisation. Find the arclength function s(t) for the helix
r(t) = (2cost,2sint, t) starting from t = 0. Invert this function to
find t(s) and write the curve r(s) parametrised by arclength.

Speed Limits. A hover car travels along the path r(t) = (27,3 sint, 4t)

for t > 0 (units in miles and seconds). If the speed limit is 6 miles
per second, determine if the car ever exceeds the limit. Provide a
rigorous upper bound for the speed ||t/(#)]].
Frenet Frame Calculation. Let r(t) = (e fcost,e !sint,e”t). This
curve is a spiral lying on a cone.

(a) Calculate the unit tangent vector T(t).

(b) Calculate the principal normal N(t).

(c) Calculate the binormal B().
Curvature and Torsion. Using the results from the previous exer-
cise, compute the curvature x(t) and torsion 7(t) of the exponen-
tial spiral.
Maximising Curvature. Find the point on the curve y = 1/x (for
x > 0) where the curvature « is maximised.
Remark.

Use the standard formula for the curvature of a graph y = f(x):

')
*(X) = P

Planar Characterisation. Prove that a curve with non-vanishing
curvature is planar if and only if its torsion T is identically zero.

Remark.

One direction is easy. For the converse, consider the derivative

of the binormal vector.

Central Forces and Planarity. A force is called central if F(r) =
f(|lx|])r, meaning it always points along the position vector.
(a) Using Newton’s Second Law F = ma, show that for a particle
moving under a central force, the angular momentum L =
r X mv is constant.
(b) Deduce that the trajectory of the particle must lie in a fixed
plane.
* Lancret’s Theorem. A curve r(s) is called a generalised helix if
its tangent vector T(s) makes a constant angle with a fixed unit
vector u (the axis). Prove that a curve is a generalised helix if and
only if the ratio of curvature to torsion, « /T, is constant.
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16.

17.
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Remark.

Consider the projection T @ u = cos «. Differentiate this condition
and express u in the Frenet basis.

* The Darboux Vector. In the theory of rigid body dynamics, the
change of a rotating frame is described by an angular velocity
vector. For the Frenet frame {T,N, B}, we define the Darboux
vector as:

w = 1T + «B.

Prove the following kinematic relations, which show that the
evolution of the frame corresponds to rotation about w:

@ T=wxT

(b) N=wxN

(c) B=wxB
* Implicit Curvature. Let C be a plane curve defined implic-
itly by the level set F(x,y) = 0. By differentiating the relation
F(x,y(x)) = 0 implicitly twice, show that the curvature is given
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by: This formula allows the calculation of

| — FxxFyz 4 ZnyFxFy — FnyJﬂ curvature without finding an explicit

K= parametrisation.

(F2 4 F2)3/2

* The Evolute. The cvolute of a plane curve r(s) is the locus of
the centres of its osculating circles. It is given by e(s) = r(s) +
0(s)N(s), where p(s) = 1/x(s) is the radius of curvature. Prove
that the tangent vector to the evolute, €/(s), is normal to the origi-

nal curve r(s). Specifically, show that e/(s) is parallel to N(s). Assume ' (s) # 0. Use the Frenet
equations.
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3
Review: Point Sets and Topology

Normally in one dimension, we rely heavily on open intervals (a, b)
to define limits. In higher dimensions, the geometry becomes richer,
and we must generalise concepts such as "closeness", "boundaries",
and "connectedness” using the language of set theory.

This chapter formalises the classification of points and sets in R”,

providing the necessary framework for multivariable analysis.

Neighbourhoods and Point Classification

The fundamental building block of topology in metric spaces is the
open ball, which generalises the open interval. Recall Euclidean
distance and write ||x — y/|].

Definition 3.1. Open Ball (Neighbourhood).

Leta € R"andr > 0. The open ball of radius r centred at a, de-
noted B, (a) (or sometimes O,(a)), is the set of all points strictly within
distance r of a:

Bi(a) ={xeR" | ||x—al <r}.

bourhood, denoted Br(a), is the open ball with the centre removed:

B.(a) =By(a)\{a} = {x e R" |0 < ||x—a| <1}

Using neighbourhoods, we classify points in IR" relative to a given set
S.

Definition 3.2. Topological Classification of Points.

Let S C R" be a set and x € IR” be a point.

- x is an interior point of S if there exists ¥ > 0 such that B,(x) C
S.

- x is an exterior point of S if there exists r > 0 such that B,(x) NS =

We often refer to B,(a) as the r-neighbourhood of a. The deleted neigh-

Standard single-variable calculus.

Review for readers of the analysis
notes.

Open Ball B, (a)

Closed Ball B, (a)

Figure 3.1: In IR?, an open ball
is a disc without its rim (dashed
boundary). A closed ball in-
cludes the rim.
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Q.

- x is a boundary point of S if every neighbourhood B, (x) contains
at least one point in S and at least one point not in S.
We "re"introduce specific notation for the collections of these points:
- The interior of S, denoted int(S) or S°, is the set of all interior
points.

- The boundary of S, denoted 95, is the set of all boundary points.
Example 3.1. Interior and Boundary of a Disc. Consider the set
S={reR*| x| <1}.
- Any point with ||x|| < 1is an interior point. If || x| = 0.9, we can
choose r = 0.09, and the entire ball fits inside S.

- Any point with ||x|| > 1 is an exterior point.

- Any point with ||x|| = 1is a boundary point. Any ball centred on
the rim of the disc will capture points inside the disc and points
outside it.

Thus, int(S) = {x | ||x]| < 1} and 9S = {x | ||x|]| = 1}.

X

Cluster Points and Limits

In the study of limits (e.g., lign f(x)), it is not necessary for a to be-
xX—a

long to the domain of f, but a must be "arbitrarily close" to the do-

main. This motivates the concept of a cluster point.

Definition 3.3. Cluster Point.
A point x € R" is a cluster point (or accumulation point) of a set S

Note

Ifx € Sbutuxisnota cluster point of S, then x is called an iso-
lated point. For an isolated point, there exists a neighbourhood
containing no other points of S other than x itself.

Cluster points are intrinsic to the behaviour of sequences. The follow-
ing proposition links the topological definition to sequences, which is
often more practical for proofs.

Proposition 3.1. Sequential Characterisation of Cluster Points.
Let x € R" and S C R". The following are equivalent:
1. x is a cluster point of S.

if every deleted neighbourhood B, (x) contains at least one point of S.
The set of all cluster points of S is called the derived set, denoted S'.

51

Once again meaning basic calculus not
the my study on analysis
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2. Every neighbourhood B,(x) contains infinitely many points of S.

3. There exists a sequence of distinct points {x;} C S\ {x} such that
X — x as k — oo.

(1 = 2)

Assume x is a cluster point. Suppose, for contradiction, there exists
a neighbourhood B, (x) containing only finitely many points of S
distinct from x, say {s1,...,Sm}. Letd = minj<j<y [|s; — x[|. Then
the ball Bs(x) contains no points of S other than possibly x. This
contradicts the definition of a cluster point. Thus, every neighbour-

hood must contain infinitely many points.
SEB #

(2 = 3)

Construct the sequence inductively. Pick x; € Bj(x) N (S \ {x}).
Then pick x; € Bj/p(x) N (S \ {x,x1}). In general, choose x; €
By/k(x) N S distinct from all previous terms. By construction, ||x; —

x|| < 1/k, so the sequence converges to x.
BLES

B3 =1

If such a sequence exists, then for any r > 0, there exists K such
that for all k > K, xx € B,(x). Since the points are distinct, at least

one is not x, so B’r(x) NS # Q.
ER %

Example 3.2. Cluster Points of a Discrete Set. Consider the set S =
{1/nineZzZ"} CR
- The point 0 is a cluster point of S because the sequence 1/ con-
verges to 0. Note that 0 & S.

- The point 1 € S is an isolated point. We can choose r = 1/2; the
interval (0.5,1.5) contains no other elements of S.

- The derived set is S’ = {0}.
et

Lemma 3.1. Transitivity of Accumulation.
The cluster points of the derived set are cluster points of the original
set. Thatis, (§')' C §'.

1k

Proof
Letx € (S'). By the sequential characterisation, there exists a se-

quence {yx} C S’ converging to x. For any r > 0, there exists some
yi such that ||y, — x| < r/2. Since y; is itself a cluster point of S,
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the neighbourhood B, /;(yk) contains infinitely many points of S.
By the triangle inequality, B,»(yx) C B;(x). Thus, B;(x) contains
points of S. Hence x € §'.

|

3.2 Open and Closed Sets

We now classify sets based on the nature of their boundaries.

Definition 3.4. Open and Closed Sets.

Aset S CR"is:

- Openif S = int(S). Equivalently, for every x € S, there exists a
neighbourhood fully contained in S.

- Closed if its complement S° = R" \ S is open.

The properties of open sets follow directly from the properties of
unions and intersections.
- The union of any collection of open sets is open.

- The intersection of finitely many open sets is open.

By De Morgan’s laws (Proposition 17.1.2 in the context of set theory),
we deduce the dual properties for closed sets:

- The intersection of any collection of closed sets is closed.

- The union of finitely many closed sets is closed.
Note

Sets are not doors; a set can be neither open nor closed (e.g., the
interval (0, 1]), or both open and closed (e.g., R" and ©).

Closure and Boundary Properties

The closure of a set S, denoted §, is the union of the set and its clus-

ter points:
S§=5us.

This represents the smallest closed set containing S. We have the

following characterisations:

1. Sisclosed <= S’ C S. (A closed set contains all its cluster
points).

2. $=S5U0S.

3. 9S =8NS,

| Theorem 3.1. The Boundary is Always Closed.
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For any set S C R", the boundary dS is a closed set.

Proof

We show that the complement (dS)€ is open. Letx ¢ 9S. By def-
inition, it is not the case that every neighbourhood of x intersects
both S and S°. Thus, there exists some r > 0 such that B,(x) is
disjoint from S (making x an exterior point) or B,(x) is contained in
S (making x an interior point).

e If B,(x) NS = @, then every pointy € B,(x) is also an exterior
point. Thus B,(x) C (9S)°.

e If B,(x) C S, then every point y € B,(x) is also an interior point.
Thus B,(x) C (dS)°.

In either case, x has a neighbourhood strictly contained in the com-
plement of the boundary. Thus (9S)° is open, and 95 is closed.
n

3.3 Compactness

Compactness is a generalisation of the property of being "finite" in
a topological sense. It ensures that local properties can be extended
globally, which is essential for theorems like the Extreme Value Theo-

rem.

Definition 3.5. Covering and Compactness.
Let K C R". An open covering of K is a collection of open sets {Uy }ye1
such that K C Uy Un- The set K is compact if every open covering
admits a finite subcover. That is, there exist finitely many indices &, ..., af
such that

KC Uy U---UUy,.

In Euclidean space R”, the Heine-Borel Theorem provides a concrete
characterisation of compactness: A set K C R" is compact if and only
if it is both closed and bounded.

Proposition 3.2. Closed Subsets of Compact Sets.
Let K be a compact set and let F C K be a closed set. Then F is com-
pact.

P

¥

Proof

Let {U,} be an open covering of F. We must produce a finite sub-
cover. Since F is closed, its complement F is open. Consider the
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collection of open sets {U, } U {F°}. Since F C [JU,, the union of
this expanded collection covers the entirety of IR”, and specifically
covers K. Because K is compact, there exists a finite subcover of K
from this collection:

K C Uy U---Ul,, UF.

Since F C Kand FNF° = @, the sets Uy, ..., Uy, must cover F.
Thus, we have found a finite subcover for F.
|

Example 3.3. Non-Compact Sets.
- The set R is not compact. The covering {(—n,n) | n € Z*} cov-
ers IR, but no finite sub-collection covers IR. (It is closed but not
bounded).

- The interval (0,1) is not compact. The covering {(1/n,1) | n > 2}
covers (0,1), but any finite subcover has a maximum 7, leaving
the interval (0,1/n] uncovered. (It is bounded but not closed).

.49

3.4 Connectedness and Regions

In calculus, we often require a domain to be "in one piece" to define
integrals or establish the Intermediate Value Theorem.

Definition 3.6. Connected Set.

A set S is disconnected if there exist two disjoint open sets U, V such
that:

1. SNU#Qand SNV # Q.

2. SCUUV.
If no such separation exists, S is connected.

Definition 3.7. Region.
An open, connected set in R” is called a region (or domain).

Verifying connectedness using the separation definition can be dif-
ficult. A more intuitive notion is path-connectedness: can we walk
from any point to any other point without leaving the set?

Definition 3.8. Path-Connectedness.
A set S is path-connected if for any x,y € S, there exists a continu-
ous function v : [0,1] — S such that 7(0) = x and (1) = y.

55
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While path-connectedness implies connectedness, the converse is not
always true (e.g., the Topologist’s Sine Curve). However, for open sets
in R", the two concepts coincide.

Theorem 3.2. Regions are Path-Connected.
Every region (connected open set) in R” is path-connected.
i

Proof

Let D be aregion and fixa pointa €  D. Let U be the set of all
points x € D that can be connected to a by a path in D. We aim to
show U = D.
U is open
Letx € U. Since D is open, there exists a ball B;(x) C D. Any
pointy € B,(x) can be connected to x by a straight line segment
(which lies in the ball, and thus in D). Concatenating the path
from a to x with the segment from x to y showsy &  U. Thus
B.(x) C U.

LIRS

D\ U is open
Letz € D\ U.Since D is open, there is a ball B,(z) C D.If
any point w € B,(z) were in U, we could path-connect a to w and
then w to z, implying z € U, a contradiction. Thus B,(z) is dis-
joint from U, so B,(z) C D\ U.

LB &
Since D is connected, it cannot be the union of two disjoint non-
empty open sets U and D \ U. Since a € U (so U # @), it must be
that D \ U = @. Therefore, U = D.

Fundamental Theorems in R"

The topological structure of R” allows us to generalise several fun-
damental theorems from single-variable calculus. While properties
relying on the order of real numbers do not extend directly to higher
dimensions, concepts related to completeness, compactness, and
convergence do.

Figure 3.2: In an open con-
nected set, the ability to connect
x to a local neighbourhood im-
plies global path-connectedness.

If you've read my analysis notes these
should NOT be new to you
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Completeness and Concentration

The completeness of R—the property that "there are no gaps"—extends
to R". This is formally captured by the Cauchy criterion.

Theorem 3.3. Cauchy Convergence Criterion.
A sequence {x;} in R" converges if and only if it is a Cauchy sequence.
That is, for every € > 0, there exists an integer N such that

Ixx —xm|| <€ forall k,m > N.
gl

Proof

This follows from the component-wise convergence in R”. A vector
sequence is Cauchy if and only if each of its coordinate sequences
is Cauchy in R. Since R is complete, the coordinates converge,
implying the vector sequence converges.

A powerful consequence of completeness is the ability to extract
convergent subsequences from bounded sets. This is known as the
Bolzano-Weierstrass Theorem.

Theorem 3.4. Bolzano-Weierstrass.
Every bounded sequence in IR” has a convergent subsequence. Equiv-
alently, every bounded infinite subset of R” has at least one cluster point.

gl
Proof
Let {x;} be a bounded sequence. The sequence of first compo-
nents {x,({l)} is bounded in IR, so by the one-dimensional Bolzano-
Weierstrass theorem, it has a convergent subsequence. We pass
to this subsequence. The sequence of second components is also
bounded, so we extract a further subsequence where the second
components converge. Repeating this n times yields a subsequence
where every coordinate converges.

The Nested Closed Set Theorem

In R, the Nested Interval Theorem guarantees that a sequence of
nested closed intervals with lengths tending to zero intersects at a
single point. The generalisation to R" replaces intervals with closed
sets and length with diameter.

Recall that the diameter of a set S is diam(S) = sup{||x —y|| : x,y €

s).
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Theorem 3.5. Nested Closed Set Theorem.

1. Nested: Dy 1 C Dy for all k.

2. Vanishing Diameter: klim diam(Dy) = 0.
— 00

Then the intersection (;2_; Dy consists of exactly one point.
L

Existence

Select a point x; € Dy for each k. Since Dy, C Dy, for any m > k,
both x; and x,, lie in Dy. Thus, ||x; — x| < diam(Dy). Since the
diameter tends to zero, {x;} is a Cauchy sequence and converges to
some limit x. Fix an index ko. For all k > ko, x, € Dy C Dy, . Since
Dy, is closed, the limit x must belong to Dy, . This holds for any ko,
so x € (| Dy.

EXES

Uniqueness

Suppose x and y are in the intersection. Then for all k, ||x — y|| <

diam(Dy). Taking the limit as k — oo implies || x —y| =0, so x =y.
EXIES

The Nested Closed Set Theorem provides an elegant method to prove

geometric connectivity properties.

Example 3.4. Connectivity of R". AsetS C IR” thatis both open

and closed must be either @ or R".
$45)
Proof

Assume S is a non-empty proper subset of R” that is both open
and closed. Then S¢ is also non-empty, open, and closed. Pick a € S
and b € S° Consider the line segment L connecting a and b. Let
My = L. We perform a bisection procedure: Divide M into two
equal sub-segments. At least one sub-segment must have one end-
point in S and the other in S¢; its midpoint lies in exactly one of

S or S¢. Call this segment M;. Repeat this process to generate a
sequence of nested closed intervals My D M; D M;... where each
My has endpoints uy € Sand vy € S¢ and diam(My) — 0. By
the theorem 3.5, there is a unique common point p = () M. Since
u, — pandSisclosed,p € S.Sincevy — pand S°is closed,
p € S° Thusp € SN S which is impossible. Hence, no such set
exists.

Let {Dy}7> , be a sequence of non-empty closed sets in R" satisfying:

D
l'

Figure 3.3: A sequence of
nested closed sets with diame-
ters tending to zero converges
to a unique point x.
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Characterisations of Compactness

We previously defined a compact set as one where every open cover
admits a finite subcover. In R”, compactness equates to being closed
and bounded (Heine-Borel). There are two other equivalent charac-
terisations useful in proofs.

Proposition 3.3. Finite Intersection Property.

A set K is compact if and only if every family of closed subsets {Fy }yer
of K with the finite intersection property has a non-empty total inter-
section. A family has the finite intersection property if the intersection
of any finite sub-collection is non-empty.

»

]
Proof

This is the De Morgan dual of the open cover definition. Let {F,}
be closed subsets of K. Then U, = K\ F, are open relative to K.

=9 < Kn(FR=9

= k< (Nr) =Uu

<= {Uy} covers K.

If K is compact, the cover {U, } has a finite subcover Uy, ..., Uq,,.
This is equivalent to K C U/ Uy, which implies N2 F,, = @.
Thus, empty total intersection implies empty finite intersection.
Conversely, if every finite intersection is non-empty, the total inter-

section must be non-empty.
|

Theorem 3.6. Sequential Compactness.
For a set S C R”, the following are equivalent:
1. S is compact (Open Cover definition).

2. Sis closed and bounded (Heine-Borel).

3. Every infinite subset of S has a cluster point in S (Bolzano-Weierstrass
property).
il
(1 = 3)
Assume S is compact and let A C S be infinite. Suppose A has no
cluster point in S. Then for every x &€ S, there is a neighbourhood
B, (x) containing no point of A (except possibly x itself). The col-
lection {B,, (x)} covers S. By compactness, a finite subcover exists.
Since each ball contains at most one point of A, A must be finite, a
contradiction.

EXLES

59
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3 = 2)

If S is unbounded, we can pick a sequence with ||xi|| — oo having
no cluster point. Thus S must be bounded. If S is not closed, there
is a cluster pointy ¢ S. We can construct a sequence in S converg-
ing to y, which creates an infinite subset with no cluster point inside
S. Thus S must be closed.

FE B 4

2 =1

Assume S C IR" is closed and bounded. Since S is bounded, there
exists M > 0 such that S C Q := [—-M, M]". The set Q is a closed n-
dimensional cube. By the proposition on closed subsets of compact
sets, it is enough to show that Q is compact; then S, being closed in
Q, will also be compact. Let {U, }4e1 be an open cover of Q. Sup-
pose, for contradiction, that no finite subcollection of {U,} covers
Q. We construct a sequence of nested closed cubes inside Q:

e Set Qp:= Q.

* Given a closed cube Qy, divide it into 2" congruent closed sub-
cubes by bisecting each edge.

If every one of these 2" subcubes admitted a finite subcover by

sets from {U,}, then taking the union of these finitely many fi-

nite subcovers would give a finite subcover of Qy, and hence of

Q. This contradicts our assumption that no finite subcollection
covers Q. Therefore, at least one of the subcubes of Q) does not
admit a finite subcover; choose one such cube and call it Q1. By
construction we obtain a nested sequence of non-empty closed
cubesQp 2 Q1 2 Q2 O --- and at each step the side length
(and hence the diameter) is divided by 2. Thus I}g?o diam(Qy) = 0.

Nested Closed Set Theorern now applies: there exists a unique point

X € iz Qx. Since {Uy}qcr covers Q, in particular x € U, for
some index &g. Because Uy, is open, there exists r > 0 such that
B,(x) C U,,. For k sufficiently large, we have diam(Q) < r, and
since x € Q this implies Q;y C By(x) C U,,. But then the single
set Uy, is a finite subcover of Oy, contradicting the way we chose

Qy (each Qi was chosen so that no finite subcollection of {U,}
covers it). This contradiction shows that our assumption was false.
Therefore every open cover of Q has a finite subcover; that is, Q is
compact. Since S is a closed subset of the compact set Q, the earlier

proposition implies S is compact as well.
BELES
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Separation Theorems

Compactness allows us to separate disjoint sets by strictly positive
distances, a property that fails for general closed sets (e.g., the hyper-
bola xy = 1 and the axis y = 0 are disjoint closed sets in R? with
distance zero).

Definition 3.9. Distance Between Sets.
The distance between two non-empty sets A, B C R" is defined as:

d(A,B) = inf{|}a—b||:ac A,b < B}.

Proposition 3.4. Separation of Compact Sets.

Let K; and K; be disjoint, non-empty, compact sets in R". Then d(Ky,K;) >
0. Moreover, there exist disjoint open sets U, Uy such that K1 € Uj

and Kz - UQ.

¥

]
Positive Distance

Assume d(K7, Kz) = 0. Then there exist sequences x; € Kj and y; €
Kj such that ||x¢ — yi|| — 0. By compactness, we can extract conver-
gent subsequences x;, — x € Ky and yy, — y € Ky. The condition
IIxx — yxl| — Oimplies ||[x —y|| = 0,sox = y. Thusx € K; NKy,
contradicting disjointness. Hence d(Ky,K;) = J > 0.

FE

Open Separation
Let § = d(Ky, K3). Define

Uy = |J Bsya(x) and U, = |J Bs/a(y).
xeKyq yeKy

These are open sets containing K; and K; respectively. By the trian-
gle inequality, if U; N U, # @, there exist x € Kj,y € Kj such that
x —y|l < % < 4, a contradiction.

LA
Figure 3.4: Two disjoint com-
3.6 Exercises pact sets can always be sepa-
rated by a non-zero distance 6,
In the following exercises, unless otherwise specified, S denotes a allowing them to be encased in
subset of R". The distance between a point x and a set S is defined as disjoint open neighbourhoods.

d(x,S) = inf{||x —s|| : s € S}.

1. Algebra of Open and Closed Sets. Using the definitions provided
in the text:
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(a) Prove that the intersection of an arbitrary collection of closed
sets is closed.

(b) Prove that the union of a finite collection of closed sets is
closed.

(c) Is the intersection of infinitely many open sets necessarily
open? Provide a counter-example, such as ;- (—1/n,1/n).

(d) Prove that the interior of S, denoted int(S), is an open set,
and moreover, it is the largest open set contained in S.

2. Cluster Point Equivalence. In the text, we provided a sequential
characterisation of cluster points. Prove the equivalence of the

following definitions using the structure of neighbourhoods: Consider how one might construct
. . . . . a contradiction if a neighbourhood
(a) xis a cluster point of § if every deleted neighbourhood B (x) contained only finitely many points.

contains at least one point of S.
(b) xis a cluster point of S if every neighbourhood B;(x) contains
infinitely many points of S.

3. Boundary Identities. Establish the following relationships be-
tween the closure, interior, and boundary of a set.

(a) Prove that S = SUJS.
(b) Prove that 39S = S\ int(S).
(c) Prove thatif ANB = @, then ANint(B) = @.

4. Distance Characterisation of Closure. Prove that the closure of S
consists precisely of those points at zero distance from S. That is:

S={xecR"|d(xS)=0}.

5. Derived Sets and Isolation. Recall that S’ denotes the set of clus-
ter points of SSets satisfying S C S’ are often called perfect sets.. Prove
that S = S’ if and only if S is closed and contains no isolated
points.

6. Convexity and Closure. A set S C R” is convex if for any x,y € S
and any t € [0,1], the point (1 — t)x + ty lies in S. Prove that if S is
convex, then its closure S is also convex.

7. Countable Generations. For (a), consider sets like {x | d(x,S) <
) 1/k}. For (b), consider {x | d(x,S°) >
(a) Prove that every closed set in IR” can be expressed as the 1/k}.

intersection of a countable number of open sets. (Sets of this
type are called G; sets).

(b) Prove that every open set in R” can be expressed as the union
of a countable number of closed sets. (Sets of this type are
called F, sets).

8. The Graph of a Continuous Function. Let f : R — Rbea
continuous function. Prove that its graph, defined as the set I' =
{(x, f(x)) € R? | x € R}, is a closed subset of the plane R?.



10.

11. The Minkowski Sum. Given two sets A, B C IR", their Minkowski

12.

13.

14.

15.
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Normality of R”. The separation property discussed in the text
for compact sets can be strengthened. Let A and B be disjoint
closed sets in R" (not necessarily bounded). Prove that there exist
disjoint open sets U and V such that A C U and B C V.

The Lebesgue Number Lemma. This result is a crucial tool in
algebraic topology and analysis. Let K be a compact subset of R”.

(a) Prove that for any 6 > 0, there exist finitely many points

P1,---,Px in K such that the union of balls Ui«‘:l Bs(p;) covers

K.

(b) Letd = {U,} be an open covering of K. Prove there exists a
number A > 0 (the Lebesgue number of the cover) such that
for any x € K, the ball B, (x) is contained entirely within at
least one set U, € U.

(c) Show that the statement in (b) is equivalent to the standard
definition of compactness (every open cover admits a finite
subcover).

sum is defined as A+ B={a+b|ac A bc B}.

(a) Prove that if K is compact and C is closed, then K + C is
closed.

(b) Prove that the sum of two closed sets need not be closed.

Remark.

Consider K = Zand C = {ma | m € Z} in R, where a
is irrational. You may assume that {ma — |ma|} is dense in

[0,1]. Show that K + C is dense in R but not equal to R.

* Geometric Application: The Centroid. Use t/icorem 3.5 to prove
that the three medians of a triangle intersect at a single point.

Basic Connectedness Properties.

(a) Prove that a subset S C R is connected if and only if S is an
interval (possibly unbounded).

(b) Prove that if {S,} is a collection of connected sets such that
N Sy # @, then their union |J S, is connected.

(c) Prove that if A is connected and A C B C A, then B is
connected.

Rational Paths. Consider theset S = {(x,y) € R? | x € Qory €
Q}. Prove that S is path-connected.

The Topologist’s Sine Curve. Connectedness does not always

Consider the cover formed by balls
By(a,)/2(a) for each a € A.

Construct a sequence of nested trian-
gles. Let Ay be the original triangle.
Let Ay be the triangle formed by the
midpoints of the sides of A;. Analyse
the limit of these sets.

Recall that intervals are characterized
by the property: x,y € ,x <z <y =
zel

Try to construct a path consisting of
horizontal and vertical line segments
between any two points py,py € S.
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imply path-connectedness. Consider the set:

S—{(x,sini) ‘O<x§;}u{(0,y)|—1§y§1}.

(a) Prove that S is connected.

Remark.

Use the result from Exercise 13(c).

(b) Prove that S is 1ot path-connected.
Remark.

Suppose such a path y(t) exists starting at (0,0). Analyse

the behaviour of v as it enters the oscillating region.
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Limits and Continuity of Functions of Several Variables

The study of calculus in higher dimensions begins with the funda-
mental concepts of limits and continuity. While the intuitive defi-
nitions mirror those of single-variable calculus, the geometry of R”
introduces new complexities. In one dimension, a point can only
be approached from two directions (left and right). In R”, there are
infinitely many paths approaching a point, requiring a more robust
definition of the limit.

Limits of Functions of Several Variables

Double Limits

Let f : D C R" — R be a function of n variables, and let a € R"
be a cluster point of the domain D. We define the limit of f as x
approaches a using the standard e-6 formulation.

Definition 4.1. Limit of a Function.

the limit of f(x) as x approaches a is L, denoted by

lim f(x) =L,

X—a

ing 0 < ||x —a|| < 4, we have

|f(x)—L| <e.
In terms of neighbourhoods, this condition is:

x € Bs(a) = f(x) € B¢(L).

from iterated limits.

The crucial difference in multivariable calculus is that x — a implies

Let f be defined in a deleted neighbourhood of a € R". We say that

if for every & > 0, there exists a 6 > 0 such that for all x € D satisfy-

This is often called the double limit (or n-fold limit) to distinguish it

Figure 4.1: The e-é definition in
R2: if x lies in the é-disk (red),
then f(x) must lie within ¢ of L.
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approach along a1y path. If f(x) approaches different values along !
different paths terminating at a, the limit does not exist. y= ’ivz
Example 4.1. Non-Existence of a Limit. Consider the function N L e
flx,y) = ﬁ We investigate the limit as (x,) — (0,0). I e N
Along the liney = mx (where m is a constant slope), the function 0
becomes:
lim f(x,mx) = lim _—xmx) lim —ma =" .
x—0 ’ x50 x2 + (mx)2  x=0 x2(1 + m?) 1+m2 Path dependence at the origin
The limit depends on the slope m. For m = 0 (approach along the Figure 4.2: To demonstrate a
x-axis), the limit is 0. For m = 1 (approach along y = x), the limit is limit does not exist, it suffices
—1/2. Since the value is not unique, the double limit does not exist. to find two paths (e.g., a line
.49 and a parabola) yielding differ-

ent limiting values.
We can also define limits where variables tend to infinity. The defini-

tions are analogous to the single-variable case but must account for
the multidimensional nature of the domain.

Definition 4.2. Limits at Infinity.
Let f : R> — R.
f(x,y) = LifVe > 0,9M > 0such that x > M and

(xy) = (c0,00)

y > M implies |f(x,y) — L| < e. Different radial directions yield
different limiting values, so the

Figure 4.3: The surface
_ —xy (o
z = gz near the origin.

lim  f(x,y) = LifVe > 0,35,M > Osuchthat0 < |x —
(%)= (x0,+00) limit does not exist.

xo| < 6 and y > M implies |f(x,y) — L| < ¢.

The standard properties of limits — uniqueness, arithmetic rules
(sum, product, quotient), and the squeeze theorem — hold for func-
tions of several variables.

Theorem 4.1. Uniqueness of Limits.
If the limit of a function f(x) as x — a exists, it is unique. That is, if
lim f(x) = L; and lim f(x) = Ly, then L; = L.

X—a

X—a N
il

Proof

Suppose, for the sake of contradiction, that L1 # L;. Lete = %

Since L1 # Lp, we have ¢ > 0. By the definition of the limit, there
exist 671 > 0 and J, > 0 such that:

e If0 < ||x—al < dp, then |f(x) — L1] < &.
e If0 < ||x —al| < dy, then |f(x) — La| <.

Let 6 = min(dy,d;). For any x satisfying 0 < ||[x — a|| < J, both in-
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equalities hold. Using the triangle inequality:
Ly — Lol = (L1 — F()) + (F() = La)| < [F () = Ly + |f(x) = Lal.
Substituting the bounds:
|L1 —L2| <eget+e=2e= |L1 —L2|.

This implies |L1 — Lp| < |L1 — Ly, a contradiction. Thus, L1 = L.
|

Theorem 4.2. Squeeze Theorem.
Let f, g, h be functions defined on a deleted neighbourhood of a such
that:

g(x) < f(x) < h(x) forall x # a.
If lgn;g(x) = Land )l(lgl}ah(x) = L, then )l(lgrel‘f(x) =L
32
Proof
Let ¢ > 0. Since g(x) — L and h(x) — L, there exist 6; > 0 and &, >
0 such that:
e If0< |x—al <y, then [g(x) - L| <e = L—e¢< g(x).
e If0 < |x—al <, then |[h(x) —L| <e = h(x) < L+e.
Let 6 = min(dy, ;). For 0 < ||x — a|| < 4, the ordering implies:
L—e<g(x) < f(x)<h(x)<L+e.
Subtracting L yields —e < f(x) — L < ¢ or |f(x) — L| < . Thus, the
limit of f(x) is L.
|
Theorem 4.3. Arithmetic of Limits.
If )l(g)r}lf(x) = A and )1(11{511 g(x) = B, then:
1. lgn(f(x) +g(x)) =A<£B.
X—a

2. lim(f(0)g(x)) = AB.

im L&) — 4
3. If B #O,lmg(x) =3
The proofs follow directly from the properties of absolute values and
are analogous to the single-variable cases.

il
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Methods for Computing Limits

Computing double limits often requires transforming the expression
to bound the error term or reducing it to a single-variable limit.

Polar Coordinates

For limits at the origin (0,0), the substitution x = rcos6,y = rsin# is
powerful. If | f(rcos 6, rsinf) — L| < g(r) where g(r) — 0 indepen-
dent of 6, then the limit is L.

Example 4.2. Polar Coordinate Calculation. Find

X3+ y3
m —_F.
(xy)—(0,0) ¥ +y2

Let x =rcosf and y = rsin6.

B 4+y3  r¥(cos® 0+ sin®0)
21y 2

= r(cos’ 6 +sin’6).

Since | cos® @ + sin® 0] < | cos 6| + |sinf]® < 2, we have:

x3—|—]/3

m < 2r.

As (x,y) — (0,0), r — 0. Therefore the limit is 0.
b

Squeeze Theorem and Inequalities

Basic inequalities such as |xy| < 4 (x? + y?) or |sinz| < |z| are often
used to bound functions.
Example 4.3. Squeeze Theorem Application. Find

: 3 3
i SNV
(xy)—(00)  x2+y2

Using the inequality |sinz| < |z|, we have:

sin(x® +1°)

Ry Pl
x2 +y?

— x2+y2 — x2+y2 :

Note that |x| < y/x2+y2 = rand |y| <. Thus |x[> + |y|> < 2r3.

P +1yP  2r°
e rera i A

As (x,y) — (0,0), the upper bound approaches 0. The limit is 0.
ERil)

Figure 4.4: The surface

x3+y3
z = feaunt In polar form,
z = r(cos®d +sin®f) — Oas

r — 0, independent of 6.

Figure 4.5: The squeeze the-

orem: |f| <
f—0asr—0.

2r (cone) forces
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Example 4.4. Piecewise Function and Continuity. Let

sin xy x#o

flxy) = yx 0

Find lim f (x,y) and discuss continuity at the origin.

(xy)—(0,0
Forx # 0 we have |M| = |y||$| Using the inequality

|sinu| < |u| gives |Smxy| |‘xxy| = |y|. Forx = 0, f(0,y) = y, so

F(O,y)] = [yl Inall cases, [f(x,y)| < [y|. Since e |y| =
xXy)—
the limit is 0 by the squeeze theorem. Since  lim  f(x, y) =0=
(xy)—(0,0)

£(0,0), the function is continuous at the origin.

2l Figure 4.6: The surface
Example 4.5. Exponential Limit. Find z = (x* + y?) near the ori-

gin. Despite the indeterminate
lim (x4 y2)™

(x,y)—(0,0) form 0°, the limit is 1.

We examine the logarithm L = In ((x? 4+ y?)¥) = xyln(x? + y?).
Using polar coordinates, x*> + y*> = r? and |xy| < r2.
lxyIn(x® +y?)| < 72|In(r?)| = 2r%| In7|.

Using L'Hopital’s rule (single variable), liré*l+ r?Inr = 0. Thus the
r—
log-limit is 0, and the original limit is ¢” = 1.
#b
Example 4.6. Limit at Infinity. Prove

XZ
lim (xy) =0
(x,y) = (+00,400) \ X% + Y2

2 2 1
For x,y > 0, we have x> +y~ > 2xy,50 0 < 2 +y < 5. Therefore,

2 2
xy X < 1 X
o<(wt7) <)

As x — o0, (1/ 2)’“2 — 0. By the squeeze theorem, the limit is 0.

sl
4.2 Iterated Limits
Figure 4.7: The surface
While the double limit considers approach from all directions simul- — 2% Theiterated li
ly, iterated limits involve taking limits with respect to one N yr: The iterated lim-
taneously, itera & p its differ: lim lim = 1but
x—=0y—0
lim lim = —1.

y—0x—0
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variable at a time.

Definition 4.3. Iterated Limits.
The iterated limits of f(x,y) at (xo, o) are:

Lip = lim <lim f(x,y)) and Ly = lim <lim f(x,y)).

xX—=x0 \Y—Yo Y—Yo \X—Xp

The existence of a double limit imposes strict conditions on iterated
limits, but the converse is not true.

Proposition 4.1. Relationship between Double and Iterated Limits.

Let lim f(xy) =A.
(xy)—(x0.0)

1. If xhﬁrgo f(x,y) exists for each y # yp, then yhﬁny}) J}Lrgo flx,y) = A.
2. If yl;r?of(x,y) exists for each x # x¢, then xlgg}ﬂ ylgr;of(x,y) = A.
o R

In other words, if the double limit exists, any iterated limit that can
be formed must equal the double limit.
Note

Counter-examples:
2,2
e Iterated exist, Double does not: f(x,y) = % at (0,0).

2

- . X
St = e = 1
2
lim lim f(x,y) = lim —- = —1.

y—0x—0 y—0 y2
Since 1 # —1, the double limit cannot exist.
e Double exists, Iterated do not: f(x,y) = xsin(1/y) at (0,0)

(with f = 0 on axes). |f(x,y)| < |x| — 0, so the double limit is 0.
However, for fixed x # 0, liII(l) xsin(1/y) does not exist.
y—

Interchanging the Order of Limits

A fundamental question in analysis is when limit operations com-
mute. proposition 4.1 gives a sufficient condition if the double limit is
known to exist. If the double limit is unknown, we require uniform
convergence of the inner limit.

Proposition 4.2. Moore-Osgood Theorem for Iterated Limits.
Let f(x,y) be defined on a deleted neighbourhood of (xo,yo). Suppose:
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1. For each x, the limit lim f(x,y) = g(x) exists.
Y¥=Yo

2. The limit lim f(x,y) = h(y) exists uniformly with respect to y.
X—Xq

That is, for every ¢ > 0, there exists § > Osuch that0 < |x —
xo| < 0 implies |f(x,y) —h(y)| < e for all y.
Then both iterated limits exist and are equal:

lim g(x) = lim h(y).

X—XQ Yy—Yo
Proof
We prove this directly using the € characterisation. Let
lim f(x,y) = h(y) uniformly. By the Cauchy criterion for uni-

X—X0
form convergence, for any ¢ > 0, there exists § > 0 such that for any

X', x" € Bs(xp), we have
€

F(&9) = "yl < 5 forall .

Taking the limit as y — yp (which implies f(x,y) — g(x)), we ob-
tain:
g() —g(x") < 5 <e.
Thus, g(x) satisfies the Cauchy criterion as x — xp, so xlgn; g(x) ex-
0

ists. Let this limit be A. We now show li_)m h(y) = A. Fixe > 0.
Y=Y

1. Since g(x) — A, choose §; such that0 < [x — x| < & =
lg(x) — Al < ¢/3.

2. Since f(x,y) — h(y) uniformly, choose d, such that0 < |x —
xo| <6 = |f(x,y) —h(y)| < e/3 forally.
Let § = min(dy,d,). Fix an x* € Bj(xg). Since le f(x*,y) = g(x*),
Y=o

there exists 7 > Osuchthat0 < |y —y| < n = |f(x"y) —
g(x*)| < &/3. Then, for y in this range:

[h(y) = Al < [h(y) = F(5 9 [+ I f (6 y) = g () [+ |g(x7) — A

<t4iii=c
373737 °

Thus, lim h(y) = A.
e ygl;o (]/)

Sequential Characterisation

Just as in R, limits of functions in R” can be characterised by se-
quences.

71
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Theorem 4.4. Heine’s Principle for Multivariate Limits.

Let f : D — R and a be a cluster point of D. Then )lgr;f(x) = Lif
and only if for every sequence {x;} C D \ {a} converging to a, the
sequence of values { f(x;)} converges to L.

i

(=)
Assume the limit is L. For any ¢ > 0, there exists § > 0 such that
x € Bs(a) = |f(x) — L| < & Since x; — a, there exists K such
that for k > K, [|x¢ — a|| < é. Thus |f(x¢) — L| < ¢, so f(xx) — L.

ELIES
(=)
We proceed by contrapositive. Suppose lim f (x) # L. Then there
exists g > 0 such that forevery 6 = 1/k, thereis a pointx;, €
By /x(a) with |f(xc) — L| > 9. The sequence {x;} converges to a (by
construction), but {f(xx)} does not converge to L.

BELES
This principle is particularly useful for proving that a limit does rof

exist: simply find two sequences converging to a that yield different
limits for f(x).

Theorem 4.5. Cauchy Convergence Criterion.
A function f(x) has a limit at a if and only if for every ¢ > 0, there
exists > 0 such that for all X, x" € Bs(a):

f() = f")] <e.
g1
(=)
Assume that lim f(x) = Lexists. Lete > 0 be arbitrary. By the e-§
X—a
definition of the limit, there exists § > 0 such that
0<fx—al <6 = If(x) L] <.
Now take any X/, x” € B;(a), so that
0<|I¥ —al <3, 0<|x"—a| <é.
Then
£

FO) = f] S 1K) — LI+ L= fX) < 5 +5 =

This is exactly the desired Cauchy-type condition.

EXLES
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(<)

Assume now that for every & > 0 there exists § > 0 such that
X,X" € Bs(a) = |f(X) - f(X")| < e.

We must show that )1(11}1}1 f(x) exists. We use the sequential charac-
terisation of limits (Heine’s Principle) proved earlier: it is enough
to prove that for every sequence {x,} C D\ {a} withx, — a, the
sequence { f(x;)} converges, and that the limit does not depend on
the particular sequence.
Step 1: Each such sequence {f(x;)} is Cauchy (hence convergent).
Let {x¢} be any sequence in D \ {a} with x; — a. Fixe > 0, and
choose § > 0 as in the hypothesis. Since x; — a, there exists K such
that

k>K = |x—al <é.

Thus for all m,n > K, we have x,;, x,; € B%(a) and hence

fOan) = fOa)| <e.

So {f(xx)} is a Cauchy sequence in R and therefore converges
(since R is complete). Denote this limit by L({x;}) for now.

Step 2: The limit does not depend on the choice of sequence.

Let {x¢} and {yx} be two sequences in D \ {a} withx; — aand
yx — a. Consider the interleaved sequence

z) = X1, Z; =Y, Z3 = X2, Z4 =Y,

Then {z;} < D\ {a}andz;z — a. By Step 1, {f(z)} is Cauchy
in R and thus converges to some value L. But {f(x;)} and {f(yx)}
are subsequences of the convergent sequence {f(zx)}. Therefore
they both converge to the same limit L. Hence for every sequence
{x¢} € D\ {a} with x; — a, the sequence {f(x)} converges to the
same real number L. By Heine’s Principle for multivariate limits,
this implies

lim f(x) = L.

X—a
SEO

This allows us to prove the existence of a limit without knowing its

value, leveraging the completeness of R.

Continuity of Functions

We now turn to the concept of continuity. Intuitively, a function is
continuous if small changes in the input result in small changes in
the output. In R", this definition remains formally identical to the
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single-variable case, yet the implications of the multidimensional
domain are far richer.

Definition and Basic Properties

Definition 4.4. Continuity at a Point.
Let f : D C R" — R™and leta € D be a cluster point of D. The
function f is continuous at a if:

lim f(x) = f(a).

X—a

In the language of neighbourhoods, f is continuous at a if for every & >
0, there exists & > 0 such that:

x € DN Bs(a) = f(x) € Be(f(a)).

If f is continuous at every pointinaset S C D, we say f is contin-
uous on S.
Note

If a is an isolated point of D, the limit condition is vacuously sat-
isfied (there are no sequences in D \ {a} converging to a), and f is
automatically continuous there. However, in calculus, we almost
exclusively deal with regions where every point is a cluster point.

The algebraic properties of limits transfer directly to continuous
functions.

Proposition 4.3. Algebra of Continuous Functions.

Let f,g : D — R be continuous at a, and let ¢ € R. Then the follow-
ing functions are continuous at a:

1. Scalar multiplication: cf.

2. Sum and Difference: f + g.

3. Product: fg.

4. Quotient: f/g (provided g(a) # 0).

Furthermore, if f : D —+ E C R™ is continuous at a, and g : E — R
is continuous at f(a), then the composition g o f is continuous at a.

Partial Continuity vs. Joint Continuity m M

A common misconception is that a function f(x,y) is continuous if it 7
is continuous in x (for fixed y) and continuous in y (for fixed x). This w
condition, known as separate or partial continuity, is not sufficient for

joint continuity (continuity as a function of the vector x). Figure 4.8: The function
z = % is separately con-
tinuous (continuous along each
axis) but discontinuous at the
origin.
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Example 4.7. Separate Continuity does not imply Joint Continuity.
Consider the function discussed in the previous section:

iz (xy) #(0,0)
_ @
Jey) {0 (x,y) = (0,0).

- Fixy = 0: f(x,0) = 0 for all x. This is a constant function, hence
continuous in x.

- Fixx = 0: f(0,y) = 0 for all y. This is continuous in y.

Thus, f is separately continuous at the origin. However, approach-

ing along the line y = x yields a limit of 1/2 # f(0,0). The function

is discontinuous at the origin.

E
For separate continuity to imply joint continuity, stronger conditions

are required, such as monotonicity or uniform continuity in one
variable.

Proposition 4.4. Sufficient Condition for Joint Continuity.

Let f(x,y) be defined on a region D. If f is continuous in y for each
fixed x, and continuous in x uniformly with respect to y, then f is jointly
continuous.

»

]
Proof
Let (xo,y0) € D. We wish to bound |f(x,y) — f(x0,y0)|- By the tri-
angle inequality:

[f(xy) = f(xo,y0)| < |f(x,y) — f(x0,y)| + | f(x0,¥) — f(x0,%0)I-
Lete > 0.

1. Uniform continuity in x: There exists 6; > 0 (independent of y)
such that |x — xg| < d; implies |f(x,y) — f(xo,y)| < &/2.

2. Continuity in y: For the fixed x, there exists , > 0 such that
[y — yol < &2 implies |f(xo,y) — f(x0,y0)| < €/2.

Choosing 6 = min(dy,62), if (x,y) € Bs(xo,y0), both terms are
bounded by £/2. Thus the sum is bounded by e.
|

Topological Characterisation

In the topology review, we defined open and closed sets. Continuity
provides the natural link between topological structures of the do-
main and codomain. In advanced analysis, the following proposition
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often serves as the definition of continuity.

Theorem 4.6. Topological Continuity.
Let f : R" — IR™. The following are equivalent:
1. f is continuous on R".

2. For every open set V C R™, the preimage f~!(V) is open in R".

4. For every subset E C R", f(E) C f(E).

We prove the cycle (1) = (2) = (3) = (4) = (1).
(1) = (2)
Let V be open. If f~1(V) is empty, it is open. Suppose xg € f~1(V).
Then f(xg) € V. Since V is open, there is an e-ball B¢(f(xp)) C V.
By continuity, there exists 6 > 0 such that f(Bs(xo)) € Be(f(x0)) C
V. Thus Bs(xg) C f~1(V), proving f~1(V) is open.

EXLES
(2) = (3)
Let C C R™ be closed. Then its complement V. = R™ \ C is open.
By (2), the preimage f~!(V) is open. Since preimages preserve set
operations, we have f~}(V) = f~}(R"™\ C) = R"\ f~!(C). Since
the complement of f~1(C) is open, f~!(C) must be closed.

EXLES
3) = ()
Note that f(E) C f(E). Taking preimages, E C f~'(f(E)). The set
f(E) is closed, so by (3), f ' (f(E)) is closed. Since the closure E is
the smallest closed set containing E, we must have E C f~1(f(E)).

Applying f to both sides yields f(E) C f(E).

EXLES

(4) = (1)

We prove the contrapositive. Suppose f is discontinuous at a. By
Heine's principle, there exists a sequence x;, —  a such that f(x;)
does not converge to f(a). This implies there is an ¢y such that
|f(x¢) — f(a)| > o for infinitely many k (passing to a subsequence
if necessary). Let E = {x;}. Then a € E. However, f(a) is separated

from the set f(E) by €, so f(a) ¢ f(E). This contradicts (4).
BLES

Continuity on Compact and Connected Sets

The topological definitions allow us to swiftly extend the Extreme
Value Theorem and Intermediate Value Theorem to higher dimen-

3. For every closed set C C IR™, the preimage f1(C) is closed in R".

Figure 4.9: Topological continu-
ity: The preimage of an open
set V is always open.
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sions.

Theorem 4.7. Preservation of Compactness.
Let K € R" be a compact set and f : K — R™ be continuous. Then
the image f(K) is compact.

g
Proof
Let {V4} be an open cover of f(K). Since f is continuous, each
f~1(Vy,) is open in K. The collection {f~'(V,)} covers K. Since
K is compact, there exists a finite subcover corresponding to in-
dices ay, ..., a;. The sets V,,, ..., Vi, then cover f(K). Thus f(K) is

compact.
u

Corollary 4.1. Extreme Value Theorem

H#H

If f: K — R is continuous on a compact set K, then f is bounded and
attains its maximum and minimum values on K.

Proof

By the theorem, f(K) is a compact subset of R. By the Heine-Borel
theorem in R, f(K) is closed and bounded. A closed bounded set

in R contains its supremum and infimum.
n

Theorem 4.8. Uniform Continuity (Heine-Cantor).

If f: K — R™ is continuous on a compact set K, then f is uniformly
continuous on K. That is, for every € > 0, there exists § > 0 such that
for all x,y € K:

Ix=yll <6 = [If() - f) <e

T3

The proof mirrors the single-variable covering argument and is omit-
ted here.

Theorem 4.9. Preservation of Connectedness.
Let E C R” be a connected set and f : E — R be continuous. Then
f(E) is connected.

i
Proof

Suppose f(E) is disconnected. Then there exist disjoint open sets
U,V in R™ separating f(E). By continuity, f~!(U) and f~1(V)
are open in E. They are disjoint and cover E, implying E is discon-

nected, a contradiction.
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Corollary 4.2. Intermediate Value Theorem. Let f : E C R" — R be
continuous on a connected set E. If a,b € E and f(a) < ¢ < f(b),
there exists x € E such that f(x) = c.

e
Proof
The image f(E) is a connected subset of R. The only connected sets
in R are intervals. Since f(a), f(b) € f(E), the interval [f(a), f(b)]
is contained in f(E). Thus ¢ € f(E).

Contraction Mapping Principle

We conclude this section with a result for vector-valued functions
that underpins the solution of differential equations.

Definition 4.5. Contraction Mapping.
A function f : 3 € R" — R" is a contraction mapping if there ex-
ists a constant L € (0,1) such that for all x,y € Q:

1£0) = fF()Il < Lix = yl-

Note that any contraction mapping is uniformly continuous (it is
Lipschitz with constant L < 1).

Proposition 4.5. Banach Fixed Point Theorem.
Let () be a closed subset of R"” and f : (0 — () be a contraction map-
ping. Then f has a unique fixed point x* € Q) (i.e., f(x*) = x¥).

Proof
Pick any xp € Q). Define the sequence x;,; = f(x). Observe that
[Xer1 = xll = lIf(k) = f(a—1)ll < Ll = xe—1]]. By induction,

%11 — Xk |l < L¥||x; — xql|. To show that {x;} is a Cauchy sequence,
letm >n > 0:

m—1 m=1
xim —xall < Y IIxj1 —xil1 < Y Lxg — x|
= j=n
m—n—1 Ln
= |xq —xo|L" U< |\X1—Xo||1_L-
j=0

Since0 < L < 1,L" — O0asn — oo, so the sequence
{x¢} is Cauchy. Since Q) is closed (and R" is complete), the se-
quence converges to some x* € Q. Continuity of f implies

f(b)
f
b —_— c
f(a)

Figure 4.10: Since f maps the
connected domain to a con-
nected interval, every interme-
diate value c is attained.

Figure 4.11: Contraction map-
ping iteration. The sequence
Xey1 = f(xx) spirals toward
the fixed point x* wherey = x

meets y = f(x).
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x* = limxg 1 = limf(xy) = f(x*). Uniqueness follows easily:
it £(y) = y, then [x* —y|| = [IF(x') = f¥)]l < LIx* — yl|, which
implies (1 — L)||x* —y|| <0. Since 1 — L > 0, we have x* =y.

|

4.4 Further Properties of Continuity

We now consider the global behaviour of specific classes of functions,
particularly polynomials and linear maps, and introduce the stronger
concept of uniform continuity.

Polynomials and Rational Functions

The algebraic limit laws imply that continuity is preserved under
elementary operations.

Proposition 4.6. Continuity of Polynomials.
Any polynomial function P : R” — R is continuous on R". Any ra-
tional function R(x) = PO s continuous on its natural domain D =

x)
{x e R" | Q(x) # 0}.

Proof
The coordinate projection functions 77;(x) = x; are clearly contin-
uous (given ¢, take § = ¢). A monomial M(x) = cx’{l Loxkrisa

product of constants and coordinate functions, hence continuous by
the product rule for limits. A polynomial is a finite sum of mono-
mials, hence continuous by the sum rule. A rational function is a
quotient of polynomials, hence continuous where the denominator
is non-zero.

Uniform Continuity

Continuity is a local property: for a given ¢, the required J depends
on the point x. If a single J works for the entire domain, the function
is uniformly continuous.

Definition 4.6. Uniform Continuity.
Let D C R". A function f : D — R is uniformly continuous on D
if for every e > 0, there exists § > 0 such that for all x,y € D:

Ix=yll <6 = [lf() = f(¥)l <e

e
S
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We previously stated that continuous functions on compact sets are
uniformly continuous. Here, we investigate a class of functions that
are uniformly continuous on all of R": linear maps.

To analyse linear maps, we introduce the operator norm.

Definition 4.7. Operator Norm.
Let T : R" — RR™ be a linear transformation. The operator norm of
T, denoted || T||, is defined as:

I _

IT|| = sup = —= = sup [|Tx]|.
o X2

The supremum exists because the unit sphere is compact and the
map x — || Tx|| is continuous. This definition implies the inequality
I7x]| < | T]lIx]| for all x.

Theorem 4.10. Linear Maps are Uniformly Continuous.
Every linear transformation T : R" — R™ is uniformly continuous
on R".

g

Proof

Lete > 0. If T is the zero map, the result is trivial. Assume ||T| >

0. Choose 6 = HSTH Then for any x,y € R" with ||x —y|| < ¢:

€
ITx = Tyll = ITx=y)l < [ITlllIx =yl < [IT]- =

Thus, T is uniformly continuous.

4.5 Series and Matrix Functions

Finally the concepts of convergence extend naturally from sequences
of points to series of vectors and matrices. This generalisation is
crucial for the study of differential equations, where solutions are
often expressed as matrix exponentials.

Series of Vectors

Definition 4.8. Convergent Series.
A series of vectors ) ;7 ; a; in R" converges to a vector s if the sequence
of partial sums s;, = }J' ; a converges to s as m — co.

Figure 4.12: Geometric inter-
pretation of a convergent vector
series. The partial sums trace

a path converging to the limit

point s.



MULTIVARIABLE CALCULUS & IMPLICIT FUNCTIONS

Proposition 4.7. Absolute Convergence Implies Convergence.
If the series of scalars Y ;7 ; ||a|| converges, then the series of vectors
Y o1 a, converges.

Proof
Let S, = Yi., |lak||. Since this scalar series converges, {S} is a

Cauchy sequence. For the vector partial sums s;;, consider p > g:

4
< Z Hak” = |Sp_5q|-
k=g+1

p
Y, &

k=g+1

||5p - Sq” =

Since {S;,} is Cauchy, for any ¢ > 0, there exists N such that for
p,q > N,|S, —S4| < e It follows that |[s, — s4|| < e Thus {s;}
is a Cauchy sequence in R". By the completeness of IR", the series

converges.
|

Matrix Series and the Neumann Series

The space of n x n matrices, denoted M, (R), can be identified with
RR™. Thus, notions of convergence apply to matrices entry-wise.
However, it is often more powerful to use the operator norm. The
operator norm satisfies the sub-multiplicative property:

[AB| < [[A]l1IB|
From this, it follows that || A¥|| < || A||¥.

Proposition 4.8. Geometric Series of Matrices.
Let A € M,u(R).If |[A|| < 1, then the series Y° , A* converges to
(I—A)~L

Proof
Since ||A|| < 1, the scalar series Y_||All¥ = Y| AF| converges
(it is a geometric series). Thus, the matrix series S = Y2 Ak con-

verges absolutely. To show the sum is the inverse of I — A, consider
the partial sum S, = YI", A¥. Observe that:

Su(I—A)=(T+A+ -+ AT —-A)=1- A",

Since ||A|l < 1, 1i_r>n A™1 = O (the zero matrix). Taking the limit
m—o0
as m — oo:
S(I-A)=1

Similarly, (I — A)S = 1. Thus S = (I — A)~L.

81



82 GUDFIT

This result has profound topological implications for the general
linear group GL,(RR), the set of all invertible n x n matrices.

Theorem 4.11. Openness of the General Linear Group.
The set of invertible matrices GL,(RR) is an open subset of M, (R).
i

Proof

Let B € GL,(R). We wish to show that any matrix sufficiently close
to B is also invertible. Let H € M, (R) be a perturbation matrix
such that || H|| < HBlﬁH. We can factor the perturbed matrix as:

B+ H =B(I+B'H).

Let A= —B~'H. Then ||A|| < ||B~!||||H|| < 1. By the geometric se-
ries proposition, I — A = [+ B~1H is invertible. Since B is invertible
and the product of invertible matrices is invertible, B + H is invert-
ible. Thus, the ball of radius 1/||B~!|| centred at B is contained in
GL,(R), proving the set is open.

u GL4(R)

) Figure 4.13: The set of invertible
4.6 Exercises matrices is open; if you per-
turb an invertible matrix B by

1. Classification of Sets. For each of the following subsets, deter- - ;
a sufficiently small amount, it

mine whether it is open, closed, both, or neither, and provide a . .
remains invertible.

justification.

(@) {reR|0<x <1} asasubset of R.

(b) {x € R? | ||x|| < 1} as a subset of R?.

(c) The interval (0,1] as a subset of R.

(d) {x€R?||x| <1} as a subset of R

(e) {x e R|0<x <1} asasubset of R.

(f) The "punctured" unit ball {x € R3 | ||x|| < 1,x # 0} asa
subset of R3.

(g) The empty set @ as a subset of R.

(h) The subspace R x {0} C R? (the x-axis).

(i) The rational numbers Q as a subset of R.

() The set {x € R? | xy # 0}.

2. Set Operations. Let U be an open subset and F a closed subset of
R™
(a) Prove that any union of open sets is open, but an infinite
intersection of open sets is not necessarily open.
(b) Prove that a finite intersection of open sets is open.
(c) Show that int(S) is the largest open set contained in S.
(d) Show that S is the smallest closed set containing S.
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(e) Verify the boundary identity: 3S = S \ int(S).
(f) Show that 9S = S S¢.
3. Natural Domains. Determine the natural domain D C R” for
the following expressions and determine if D is open, closed, or

neither.
@) f(x,y) =sin(1/xy)
(b) f(x,y) =In\/x>—y

@ flxyz) =5z
4. Boundedness. Prove that a set S C IR” is bounded if and only if it
is contained in a ball Bg(xo) for some xo € R". (i.e., the centre of
the bounding ball need not be the origin).

5. Computation of Limits. Evaluate the following limits or prove
that they do not exist.
(@) lim sy
(xy)—=(0a) X

b lim x + 1) In(x? + 12
()(x,yH(om( y)In(x" +y°)

(c) lim (1 + 1) o
(xy)—(0,0) X
) x+y
d 1 -
@ (v) 2 (00) 2 — xy + 12
2
(e) lim
x—(12) X+ Yy
x—0 X2 + 2
(g) lim ——Z_ AR
x—0 /x2 + yz
2.2

. . X .
6. Non-Existence. Prove that lim = does not exist.
(xy)—(0,0) X° + Yy

Remark.
Consider paths of the form y = mx versus non-linear paths, or
examine the behaviour near y = —x.

7. Iterated Limits. Discuss the existence of the double limit and both
iterated limits at the origin for the following functions:
222

@ f(xy)= 2P (=)

b) flxy)=(x+y) sinism;
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(c) f(x,y)—{gz+ﬁ+]/5m x #0

, x=0
8. Difference Quotients. Let f : R — R be continuously dif-
ferentiable. Define g(x,y) = fD-f) ) ( ) for x # y. Determine

lim X,
(xy)—=(t, t)g( 2

9. Limit Theorems.
(a) Prove the Local Boundedness Theorem: If )1(13; f(x) = L, then
f is bounded on some neighbourhood of a.
(b) Prove the Local Sign Preservation Theorem: If )1(13;11 f(x)=L>
0, then f(x) > 0 on some deleted neighbourhood of a.

10. Dominated Convergence. Suppose yh—>nylo ¢(y) = Aand xh—>nx10 P(x) =

0. If [f(x,y) — ¢(y)| < ¢(x) holds in a neighbourhood of (xo, yo),

prove that  lim  f(x,y) =
(X,y)*) (XO/yO)

11. Continuity Extension. For the following functions, determine if a
value can be assigned at the origin to make the function continu-

ous on R2.

@ f(xy) = x2+yz+1

(b) flx,y) = |XV‘$|¥/3

© f(xy) = (3 +y*) In(x* +2¢%)

() flxy) = (& +y*)In|x +y]

12. Open Maps. If f : R — R has the property that for every open
set U C R, the image f(U) is open, is f necessarily continuous?
Provide a proof or a counter-example.

13. Limits and Subsequences. Prove that a sequence a; € IR" con-
verges to a if and only if every subsequence converges to a.

14. Triangle Inequality for Series. Suppose } ;- x; is a convergent
series in R". Prove that || Y72 x;|| < Y50 [|xil|-
15. The Matrix Exponential. Let A be an n x n matrix. Define e =
Lo n A"
(a) Show that the series converges for all A, and find a bound for
le?|| in terms of ||A].

(b) Compute EA eXPhCItly for: (1) A= diag(ﬂ, b), (11) A= 8 g] ’
0 a
111 A = .
(iii) 4 01

(c) Prove or disprove:
eAtB — ¢AeB for all A, B.
- eAtB = ¢4eB if AB = BA.



MULTIVARIABLE CALCULUS & IMPLICIT FUNCTIONS

- 24 = (e4)? for all A.
16. Approximating the Identity. Let U = {A € Mp(R) | det(I — A) #
0}.
(a) Show that U is open.
(b) Let f : U — M(R) be defined by f(A) = (A2 —1)(A—1)".
Does }‘iml f(A) exist?
—
(c) Let B=diag(1,—1). Let V = {A € My(R) | det(A — B) # 0}.
Define g(A) = (A% — B?)(A — B) L. Does }‘irr}s g(A) exist?
—

17. Inversion via Series.

1 € €
(@) Let B= |0 1 e€|.Find B~! by writing B = I — N and
0 01

using the geometric series Y~ N¥.
(b) Compute the inverse of C = ll _161 for |e] < 1usinga
€

similar method.

a
18. Matrix Power Convergence. Let A =

a
] . For what values
a

of 2 € R does the sequence A* converge? Generalise to n x n
matrices where every entry is a.

19. Derivative of the Inverse. Let A be an invertible matrix. Discuss
the existence of the limit E}irr}‘ (A — B)~1(A% — B?). Does it exist for
—

01?
1 0

20. Uniform Convergence of Compositions. Let f(x,y) be contin-

A =1? For A =

uous on [a,b] x [c,d]. Let {¢,(x)} be a sequence of functions
converging uniformly on [, b] such that ¢ < ¢,(x) < d. Prove that
the sequence F,(x) = f(x, ¢,(x)) converges uniformly on [a, b].

21. Uniform Continuity on R

(a) Prove that f(x,y) = \/x2 + 2 is uniformly continuous on R,

(b) Suppose f(x,y) is continuous on R? and | lli‘m f(x) exists.
X||—00

Prove that f is bounded and uniformly continuous on R2.
2 2
0 1
Find the optimal ¢ in terms of € for the uniform continuity

(c) Let A = . This defines a linear map L(x) = Ax.

condition of L.

22. Dini’s Theorem Generalisation. Let K C R" be compact. Let { fi}
be a sequence of continuous functions on K converging pointwise
to 0. Suppose the sequence is monotone, i.e., f1(x) > fo(x) >

85
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23.

24.

25.

26.

27.

-+- > 0. Prove that { f¢} converges uniformly to o on K.

Modulus of Continuity. The oscillation of f at a, denoted wy(a),
is defined as élir(r)1+ SUPy yc B, (a) |f(x) — f(y)|. Show that this is
. ,

equivalent to (slir(l)q+ SUPyep,(a) If(X) — f (a)| if f is continuous at a.
—
Discuss the relationship between wy(a) = 0 and continuity.

Compact Images. Let A C R” be a non-compact set. Prove there
exists a continuous unbounded function on A.

Roots of Polynomials (Complex Analysis Preview). Let p(z) =
2" +a, 12" 14+ 44y bea polynomial with complex coefficients.

(a) Show that there exists R > 0 such that |p(z)| > |p(0)] for all
|z| > R.

(b) Use the Extreme Value Theorem (on the disk |z| < R) to
prove that |p(z)| attains a minimum on C.

(c) (Harder) Using the fact that a minimum of |p| must be a root
(Fundamental Theorem of Algebra proof logic), construct an
argument for the existence of a root for p(z) = z° + 423 +
3iz — 3.

* Separate vs Joint Continuity. Construct a function f : R> — R
that is continuous on every line passing through the origin (i.e.,
for any fixed 0, g(r) = f(rcos6,rsin®) is continuous), yet f is
discontinuous at the origin.

Remark.
Consider functions that vanish on lines but have spikes on

. x%y
parabolic paths, such as e

* Pathological Continuity. Let f : R — R be defined by f(x) =
1/qif x = p/qinlowest terms (3 > 0), and f(x) = 0if x is
irrational (Thomae’s function).

(a) Prove that f is discontinuous at every rational number.
(b) Prove that f is continuous at every irrational number.
(c) Can a function be continuous o7/y on the rational numbers?
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5
Differentiation

In single-variable calculus, the derivative f'(a) serves two primary
roles: it describes the instantaneous rate of change (slope) of the
function at a point, and it constructs the best linear approximation
to the function near that point. Specifically, for a small change in
the input Ax, the resulting change in output is approximated by

Ay ~ f'(a)Ax.

This characterisation of the derivative as a coefficient of linear ap-
proximation generalises naturally to higher dimensions. For a func-
tion f : R" — R™, the scalar f’(a) is replaced by a matrix (often
called the Jacobian), and the increments Ax and Ay become vectors.
The entries of this derivative matrix are constructed from partial
derivatives, which measure rates of change along the coordinate
axes.

However, to rigorously define these concepts, we first consider the
rate of change along an arbitrary line in the domain. This leads to the
concept of the directional derivative.

Directional Derivatives

Consider a scalar field f : D € R> — R and a point py = (xo, ¥o)
in the interior of D. To measure how f changes as we move away
from pg, we must specify a direction. Let u = (a,b) be a unit vector
representing this direction.

Geometrically, we restrict the domain of f to the line passing through
po parallel to u. This path can be parameterised by:

r(t) = po + tu = (xo + ta, yo + tb).

Lifting this path to the graph of the function yields a curve on the
surface z = f(x,y) given by y(t) = (x(t), f(x(t))). The rate of change
of f with respect to distance along this path is the slope of the tan-
gent to y(t) att = 0.
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Definition 5.1. Directional Derivative.
Let f : D € R" — R be defined on an open set containing pg, and
let u € R"” be a unit vector (||u| = 1). The directional derivative of
f at po in the direction u is defined as:

Duf(PO) _ }1_{% f(PO + t":f) - f(pO).

calculus as:

Duftro) = gy fpo + ]|

Note

Some authors define the directional derivative for arbitrary non-
zero vectors v. In that convention, Dy f scales with the length of v.
By restricting u to be a unit vector, our definition represents the rate
of change per unit distance.

This definition reduces the multivariable problem to a single-variable
derivative calculation, as demonstrated in the following example.

Example 5.1. Calculating a Directional Derivative. Let f(x,y) =
25xy. We wish to calculate the rate of change of f at the point

po = (1,2) in the direction of the vector v = (3,4).

First, we must normalise v to obtain a unit vector u.

4
Vi=v3212=5—= u:<3 >

55
We parameterise the path:

3t 4t
tu=(1+—=,2+~—|.
Po +tu (+5, +5>

Substituting this into f:

g(t)—f<1+?;,2+45t) —z5<1+35t> (2+‘§).

Expanding the terms:

4t 6t 12f2
5 ' 5 25

Differentiating with respect to f:
¢'(t) = 50 + 24t.
Evaluating at t = 0:
Dyf(1,2) = ¢'(0) = 50.

g(t) =25 <2+ —+ =+ > = 50 + 20t + 30t + 1242 = 50 4 50t + 12¢2.

Provided the limit exists, this may be expressed in terms of single-variable

Figure 5.1: The directional
derivative corresponds to the
slope of the curve (blue) gen-
erated by slicing the surface

z = f(x,y) with the vertical
plane defined by pp and u.
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Compare this result with the rates of change restricted to the Carte-
sian coordinate axes. These are the directional derivatives in the
directions e; = (1,0) and e; = (0,1), commonly known as partial
derivatives.

Example 5.2. Coordinate Direction Derivatives. Using the same
function f(x,y) = 25xy at po = (1,2):

Case 1: Direction u = (1,0).

F(1414,2) = 25(1 +£)(2) = 50 + 50¢.

= 50.

d
t=0

Case 2: Direction u = (0,1).

£(1,24+1t) =25(1)(2+t) = 50 + 25¢.

= 25.

d
D<O,1>f(].,2) == E{SO +25t] o

Observe the relationship between these results and the previous
example where u = (3/5,4/5):

3

4
= (50) + 5 (25) = 30420 = 50.

This suggests a fundamental linearity property:

D 4,5 f (o) = aD19y f(po) + bD o1y f (Po)-

49

This observation—that the directional derivative is a linear combi-
nation of the derivatives along the coordinate axes—is not a coinci-
dence. It forms the basis for the definition of the total derivative and
the gradient vector in subsequent sections. While the definition ex-
tends to R” without modification, the geometric intuition of slicing
the graph with a plane is most vivid in two dimensions.

Partial Differentiation in R?

We continue the discussion of the previous section concerning the
rates of change of functions of two variables. While the directional
derivative allows us to analyse change in any direction u, the most
natural directions to consider are those aligned with the coordinate
axes.

Definition and Basic Computations
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Definition 5.2. Partial Derivative.
Let f : D C R? — R be a function and let (xq, o) € D. The partial
derivative of f with respect to x at (xg, 1) is the directional derivative
in the direction of the standard basis vector e; = (1,0):

of f(x0+h yo) = f(x0,%0)

55 (¥o-¥0) = Doy f(x0,v0) = lim 7 :

Similarly, the partial derivative with respect to y is the directional deriva-
tive in the direction e; = (0, 1):

of _ — i (0 Y0 +K) — f(x0,40)
@(Xolyo) = D<0,1>f(x013/0) = ]113(1) 2 .
Y
If the partial derivatives exist at every point in a region, they define ) . o
new functions % and %. The subscript notation is used for brevity: Figure 5.2: Partial derivatives
as slopes of traces: fy is the
o af £ = af slope of the curve obtained by
ot T oy fixing y = yo (blue), while f; is
Higher-order derivatives are defined by successive differentiation: J([he slop)e when x = x is fixed
orange).

foo= o (gi) foy = aay @1;) ete.

Note

For most functions encountered in physical applications, the order
of differentiation does not matter for mixed partials (i.e., fxy = fyx)-
This equality holds provided the mixed partial derivatives are con-
tinuous (Clairaut’s Theorem), a fact we assume for the "smooth"
functions in this chapter unless stated otherwise.

Operationally, calculating a partial derivative with respect to x is
equivalent to treating y as a constant and differentiating with respect
to x using single-variable rules.

Note

Conceptual Warning: In applied fields like thermodynamics or
economics, the phrase "holding other variables constant" must be
treated with care. A partial derivative df/dx is ambiguous un-
less the full set of independent variables is specified. For instance,
the change in gas pressure with respect to temperature depends
crucially on whether volume or entropy is held fixed.

Proposition 5.1. Properties of Partial Derivatives.
Let f, g : R> — R be differentiable functions and ¢ € R.
1. Linearity: (cf + g)x = ¢fx + §x-




MULTIVARIABLE CALCULUS & IMPLICIT FUNCTIONS

2. Product Rule: (fg)x = fxg+ fgx-
3. Quotient Rule: (f/g)x = f"gg*# (where g # 0).
4. Chain Rule (Scalar): If i : R — R is differentiable, then

S ()] = (Fx ) oL

Analogous rules hold for differentiation with respect to y.

3

Al

Proof

These follow immediately from the limit definition, which reduces
to the single-variable derivative definition when one variable is
fixed. For example, property (4) is simply the single-variable chain
rule applied to the function x — h(f(x,yo))-

[

Example 5.3. Asymmetry of Variables. Power functions and expo-
nential functions behave differently depending on which variable is
the base.

d
—(x¥) =yx¥~!  (Power rule: y is constant),

ox
aay(xy ) =xYIn(x) (Exponential rule: x is constant base).
Similarly:
a X X
3z W) =y In(y),
d -
5y ) =7

X
Example 5.4. Higher Order Derivatives. Let f(x,y) = xy*. We cal-
culate the second-order derivatives:

fx :yZ/ fy:ny.
3, ?

fxx = a(y )=0, fyy = @(Zx?/) =2x.
9, 5 0

fry = @(y ) =2y, fyx = g(ny) =2y.

Observe that fy, = fyx, consistent with the continuity of the deriva-
tives.

.41
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Directional Derivatives and the Gradient

In the previous section, we observed that for f(x,y) = 25xy, the
directional derivative satisfied the linear relationship Dy f = afy +
bfy, where u = (a,b). One might be tempted to conjecture that this
formula holds for all functions. However, the existence of partial
derivatives alone is insufficient to guarantee this structure.

Example 5.5. Failure of Linearity for Non-Smooth Functions. Con-
sider the function

0 otherwise.

1 ify=0o0rx=0,
f(x,y)={ J

At the origin (0,0):
- Along the x-axis (y = 0), f(x,0) =1, so f+(0,0) = 0.

- Along the y-axis (x = 0), f(0,y) = 1, so f,(0,0) = 0.

However, in any directionu = (a,b) wherea # Oandb # 0O,
f(ta,tb) = Ofort # 0. The function jumps from 1 (at the origin)
to 0 immediately. The limit defining Dy f diverges (or is technically
—oo if approached carefully, but simply put, the function is dis-
continuous). Even if we modified f to be continuous but "kinked",
linearity could fail.

futl
To resolve this, we require a stronger condition than simply the exis-
tence of partial derivatives.

Definition 5.3. Continuously Differentiable.

A function f is continuously differentiable, denoted f € C!, at a point
p if the partial derivatives fy and fy exist and are continuous functions
in a neighbourhood of p.

For C! functions, the linear approximation property holds, leading
to the following fundamental theorem. We introduce the gradient
vector to capture the partial derivatives.

Definition 5.4. The Gradient.
Let f be a function for which the partial derivatives exist. The gradi-
ent of f, denoted V f (or sometimes grad f), is the vector field:

V) = (5 5 ) = fit fi
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Theorem 5.1. Gradient Formula for Directional Derivatives.
If f is continuously differentiable at py, then for any unit vector u =
(a,b), the directional derivative is given by the dot product:

Duf(po) = V£(po) - u.

i

This formula provides an immediate geometric interpretation of the
gradient. Let 6 be the angle between V f and the direction vector u.
Then:

Duf = [[Vfll[lu]l cos 6 = [V f]| cos 6.

Proposition 5.2. Geometric Properties of the Gradient.

Let f be differentiable at p.

1. Maximum Increase: f increases most rapidly in the direction of V f
(6 = 0). The rate of change is ||V f]|.

2. Maximum Decrease: f decreases most rapidly in the direction of vf
—Vf (6 = m). The rate of change is —||Vf]|. T .
3. Zero Change: The directional derivative is zero when u is orthog- //C 8 A
onal to Vf (0 = m/2). This direction is tangent to the level curve \ \\\—Vf// )
passing through p. \\ ://
] I

Figure 5.3: The gradient V f
Example 5.6. Analysis of a Scalar Field. Let f(x,y) = x>+ y%. We

points in the direction of steep-
calculate the gradient:

est ascent; —V f is steepest

Vf=(2x2y). descent. Directions orthogonal
Consider the point p = (2,3). to Vf (green) are tangent to
- The gradient is Vf(2,3) = (4,6). level curves, where Dy f = 0.

- The direction of maximum increase is parallel to (4,6), or nor-
; — 1
malised u = \/ﬁ<2’3>'

- The rate of maximum increase is || (4,6)| = V16 +36 = /52 =
2v/13.

- The function is constant in the direction orthogonal to Vf. If u =
(a,b) is orthogonal to (4,6), then4a + 6b = 0, implyingb =
—2/3a. Normalizing gives directions i\/% (3, —2).

E X

Definition 5.5. Critical Point.
A point (xo, o) is a critical point of f if Vf(xp,y0) = 0 or if the gra-
dient does not exist. At such points, the tangent plane (if it exists) is
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horizontal.

e
S

Gradient Vector Fields and Level Curves

The assignment of the vector V f(p) to every point p in the domain
creates a vector field. This field visualises the "flow" of steepest as-

cent.
Example 5.7. Coordinate Frames via Gradients. The gradient can

be used to derive natural basis vectors for curvilinear coordinate
systems. Consider polar coordinates:

r(xy) = 2 412, 6(xy) = tan'(y/x).

The gradient of the radial coordinate is:

= * Y /X Y\ '
vr= <\/x2+y2' \/xz +y2> = <;/;> = (cos 6, sin B).

This is exactly the unit vector t pointing radially outward. For the

angular coordinate:

o *y/xz 1/x _ /-y x 71 L
v9—<1+(y/x)2/1+(y/x)2>—<rz /r2>— I’< s1n9,cos(9>.

Here, V6 points in the tangential direction °, but has magnitude
1/r. This reflects that a small displacement affects the angle 6 more
significantly near the origin than far away.

El

A contour plot displays the level curves f(x,y) = k for various
constants k. The fundamental geometric relationship between the
function and its contours is orthogonality.

Theorem 5.2. Orthogonality of Gradient to Level Curves.

At any point (xg,yo) where Vf # 0, the gradient vector is perpen-

dicular to the level curve f(x,y) = k passing through that point.
T

This property is extensively used in physics. For example, in electro-
statics, the electric field E = —VV is perpendicular to the equipoten-
tial lines (level curves of the voltage V).

Example 5.8. Finding Normals to Curves. To find a normal vector
to the hyperbola xy = 1 at the point (2,1/2), we define the level
function F(x,y) = xy. The curve is the level set F(x,y) = 1. The
gradient is:

VE(x,y) = (y,x).
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‘ “ T@ngent

||
At (2,1/2), the normal vector is VF(2,1/2) = (1/2,2). Any non-

zero scalar multiple, such as (1,4), is also a valid normal vector.

Xl

5.3 Partial Differentiation in R® and R"

The concepts of partial differentiation and gradients extend naturally
to functions of three or more variables. The logic remains identical:
we isolate variation in a single coordinate direction while holding all
others constant.

Definitions and Basic Properties

Definition 5.6. Partial Derivative in R".

Using definition 5.2,1et f : D C R" — R be a scalar field, and let
po = (x1,...,x,) € D. The partial derivative of f with respect to
the j-th variable x; at pg is defined as the directional derivative along
the j-th standard basis vector e;:

Common notations include:
0
l — a] f= fx]

In R3, with variables (x, Yy, z), we write fy, fy, fz.

Operationally, calculating % is equivalent to differentiating f with
respect to x; while treating all other variables {xj }..; as constants.
The properties of linearity, product, and quotient rules extend di-
rectly from the two-variable case.

Figure 5.4: The gradient vec-
tor Vf at p is orthogonal to

the tangent of the level curve
f(x,y) = k. Itpoints in the
direction of increasing k.
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Proposition 5.3. Fundamental Properties.
Let f,¢:R" — R be differentiable. Then for any scalar c € R:

1. (cf);j = cfj.

2. (f+8)j=fi+g

3. (f8)j = fig + 13-

4. Chain Rule (Scalar): If # : R — R is differentiable, then

9 _ of
aTC],[li(f(X))] =h (f(x))ach'

5. Independence of Coordinates: % = ¢jj, where 4;; is the Kronecker
j

delta.
Proof
For property (5), let f(x) = x;. Then:
ox; .. (x+te)i—(x)i x4+t —x;
— =lim ———— =lim ———— = Jj;.
ox; =0 t =0 t

The other properties follow from single-variable calculus applied to
the restricted function.

]
Example 5.9. Derivative Calculation. Let g(x,y,z) =  xy?z° +
sin(xyz).
gx = y*2° +yz cos(xyz),
Sy = 2xyz® 4 xz cos(xyz),
g2 = 3xy°z% + xy cos(xyz).
Ed
Example 5.10. Radial Derivatives. Letr = |[x|| = (/x2+ - +x2.

Foranyje {1,...,n}:

X
2 2\—1/2 J
(x1+...+xn) /.zx]-:7,

0 d

N —

This identity d;r = x;/r is ubiquitous in physics, particularly in po-
tentials dependent only on distance.

E
Example 5.11. Laplace’s Equation in R3. We verify that the poten-
tial u = 1/r satisfies Laplace’s equation V2u = Uy + Uyy +uzz =0
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for r # 0. First derivatives:

d

Second derivatives:

AN
B = o T

1 r— xj(3r26]~r)

(Quotient Rule)

76
P —3x2(xj/r) 1T —3xr 1 37
/6 /6 3T 5

Summing over j = 1,2,3:
3 3 3x2 3
1 i 3 3 5
Lty = ) <_r3+r5> AT R
]:

Since ijz = 72, the second term becomes 3r%/r> = 3/13. Thus the
sum is zero.

X

Gradient and Directional Derivatives

The definition of continuously differentiable functions (C1) extends
directly: a function is C! if all partial derivatives exist and are con-
tinuous, as in definition 5.3. For such functions, the gradient vector

completely characterises the local linear behaviour.

Definition 5.7. Gradient in IR".
Using definition 5.4, the gradient of a differentiable function f : R" —
R is the vector field:

Vi = (L Y= e

A
oxq Xy = x;

Proposition 5.4. Directional Derivative Formula.
By theorem 5.1, if f is continuously differentiable at p, then the direc-
tional derivative in the direction of a unit vector u is:

Duf(p) = Vf(p) -u=[[Vf(p)| cosb,

where 6 is the angle between V f and u.

<
]
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This implies the standard geometric interpretation: V f points in
the direction of steepest ascent, and its magnitude is the rate of that

ascent.
Example 5.12. Maximizing Rate of Change. Let f(x,y,z) =
5v/x% + y? + 22 = 5r. Find the maximum rate of change at

p = (3,6, —2). First, calculate the gradient:
_sup_s5({X¥zN_5
Vf-5Vr-5<r,r,r> = 2x.
Atp,r=v9+36+4= V49 = 7.
5
Vf(3,6,-2) = §<3, 6,—2).
The maximum rate of change is the magnitude:

1V£1 = 213,62 = 2(7) =>5.

The direction is the normalised gradient vector u = %(3, 6, —2).

El

Gradients and Level Surfaces

In R3, the solution set to f(x,y,2z) = k defines a level surface (e.g.,
spheres for x? + y? + z2 = k). The gradient provides a powerful tool
for analysing the geometry of these surfaces.

Theorem 5.3. Normal Vector to Level Surfaces.
If f is continuously differentiable and Vf(p) # 0, then V f(p) is a nor-
mal vector to the tangent plane of the level surface f(x,y,z) = kat vf
p- )
gl
This allows us to write the equation of the tangent plane to a surface
f(x,y,2z) =k at p = (x0,Y0,20) immediately as:

fx(p)(x = x0) + fy(P) (¥ — yo) + fz(p)(z — 20) = O.

Example 5.13. Normal to an Ellipsoid. Consider the ellipsoid de- Figure 5.5: The gradient Vf at
fined by F(x,v,z) = Zé + Zé %; — 1. The gradient is: a point p on the level surface
oy 2y 2 f = kisnormal to the tangent
x 2y 2z ]
VFE = <112' IBY c2> . plane. The surface shown rep

resents a 2D cross-section of a
At any point p on the surface, VF(p) is normal to the surface. This 3D level surface.

derivation is significantly more efficient than parameterising the
surface and computing cross products of tangent vectors.

.41
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Curvilinear Coordinates in R>

The gradient also allows us to derive the basis vectors for non-
Cartesian coordinate systems. If a coordinate system is defined by
scalar fields uy,up, u3 (e.g., ¥,6,z), the unit vectors pointing in the
direction of increasing coordinates are given by normalising the gra-
dients of these fields.

Example 5.14. Spherical Basis Vectors. Recall the spherical coordi-

nates p, ¢, 8 defined by:
x =psingcosh, y=psingsinh, z = pcos¢.
Inverting these gives p = (x? + y2 + z2)1/2, etc. The unit vector p

points in the direction of increasing p.

Xy z . . .
Vo = <, =, > = (sin¢ cosB,sin¢psinb, cos ).
p 0" 0’ (sing ¢ )
Since |Vp|| = 1,wehavep = Vp. For ¢ and 0, the gradients

V¢ and V0 are orthogonal to p (and each other), but must be nor-
malised to form the unit vectors ¢ and 8.

E Xl

This method generalises to any orthogonal coordinate system, pro-
viding a robust algebraic path to differential geometry in R3.

The General Derivative

Thus far, we have analysed the rate of change of a function restricted
to specific lines, yielding partial and directional derivatives. While
these provide valuable local information, they do not fully capture
the local behaviour of the function. In single-variable calculus, dif-
ferentiability at a point a implies that the graph of the function is
well-approximated by a tangent line. The slope of this line is the
derivative f'(a).

In higher dimensions, the natural generalisation of the tangent line
is the tangent space (a plane or hyperplane), and the generalisation
of the derivative is a linear transformation that best approximates
the function locally. This concept is known as the total derivative (or
Fréchet derivative).

Linear Approximation and Definition

Let U C R” be an open set and let f : U — R be a vector-valued
function. We seek a linear map L : R" — R"” such that f(a+h) ~
f(a) + L(h) for small perturbations h.

99
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Definition 5.8. Differentiability and the Total Derivative.

The function f : U — R™ is differentiable at a point a € U if there
exists a linear map L : R" — R such that:

. [[f(a+h) —f(a) — L(h)]|

lim

=0.
h—0 Ih]]

If such a linear map exists, it is unique. We call L the total differen-
tial (or simply the derivative) of f at a, denoted by df, or Df(a).

The condition requires that the error in the linear approximation
vanishes faster than the perturbation h itself (i.e., the error is o(||h||)).

The Jacobian Matrix

Since Df(a) is a linear map from R” to R™, it can be represented by
an m x n matrix with respect to the standard bases. This matrix is the

Jacobian matrix.

Theorem 5.4. The Jacobian Matrix.
If f is differentiable at a, then its total derivative Df(a) is represented
by the matrix of partial derivatives:

@ - L)
Jf(a): : .. :
Pn@) - Yr(a)

Consequently, for any vector h € IR", the linear approximation is given
by matrix-vector multiplication:

dfa(h) = Je(a)h.
i

Proof
Let L be the total derivative. To find the j-th column of the matrix
representing L, we evaluate L(e;). By the definition of the limit:

f(a+te;) —f(a) — L(te;)

lim =
t—0 |£]
This implies L(e;) = lim w, which is precisely the par-

t—0
tial derivative vector % (a). These vectors form the columns of the
j

Jacobian.
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This general definition unifies the specific derivatives encountered

previously:

- Scalar Fields (m = 1): The Jacobian is the row vector [81 f o Ouf } p
which corresponds to the transpose of the gradient (Vf)”. For-
mally, the gradient V f(a) is the transpose of the derivative Df(a)
when we identify covectors with vectors via the dot product.

- Paths (n = 1): The Jacobian is the column vector f'(t), representing
velocity.

- Coordinate Transformations (n = m): The Jacobian is a square
matrix, whose determinant measures local volume scaling.

Example 5.15. Linearisation of a Vector Field. Let f(x,y) =

(xy,x%,x + 3y). To linearise fata = (x,y), we compute the Ja-
cobian:
3 (xy) %(xy) vy ox
Jexy) = | () 56 | =2 0
F(x+3y) 2 (x+3y) 13

The best linear approximation of the change Af for a small incre-
ment h = (h, k) is:

voxlr, yh+ xk
f(x +hy+k) —f(x,y)~ [2x 0 [ 1 =| 2xh
1 3 h+ 3k

Differentiability Classes and Continuity

The relationship between the existence of partial derivatives, continu-
ity, and differentiability is subtle in higher dimensions.

Proposition 5.5. Implications of Differentiability.
Let f: U — R" be a function defined on an open set U.
1. If f is differentiable at a, then f is continuous at a.

2. If f is differentiable at a, then all directional derivatives Dyf(a) ex-
ist and Dyf(a) = Df(a)u.

3

Rl

Proof

For (1), note that f(a + h) — f(a) ~ L(h). Since L is linear, it is con-
tinuous and vanishesas h — 0. The error term also vanishes, so
lim f h) = f(a).

lim (a + h) = (a) ]
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Crucially, the converse is false. The existence of partial derivatives—
or even all directional derivatives—does not guarantee differentiabil-
ity, nor even continuity.

Example 5.16. Existence of Directional Derivatives without Conti-
nuity. Consider the function

2
Fh (o) £ 0,0),

floy) =
0 (x,y) = (0,0).
Along any liney = mx, the limitas x — 0is 0, so all directional
derivatives exist. However, along the parabolay = 2, the func-

tion approaches 1/2. Thus, f is not continuous at the origin, and
therefore cannot be differentiable there.

X

To avoid such pathologies, we rely on a sufficient condition involving
the continuity of the partial derivatives.

Theorem 5.5. Sufficient Condition for Differentiability.
If the partial derivatives of f exist and are continuous on an open neigh-
bourhood of a, then f is differentiable at a. Functions satisfying this prop-
erty are said to be of class C! (continuously differentiable).

g

The General Chain Rule

The primary advantage of the total derivative formulation is the ele-
gance of the Chain Rule. It reduces the differentiation of composite
functions to the multiplication of linear maps (or matrices).

Theorem 5.6. The General Chain Rule.

Letf: U C R" — RP be differentiable ata,and g : V C R” — R"
be differentiable at b = f(a). Then the composition h = g o f is dif-
ferentiable at a, and its derivative is the product of the derivatives:

D(gof)(a) = Dg(f(a)) o Df(a).

In terms of Jacobian matrices:

Jgot(a) = Jg(f(a))J¢(a).

T3

This single theorem encapsulates all specific chain rule formulas from Flgur? 56: The chal.n rule: the.
. . . Jacobian of g o fis the matrix
introductory calculus. For example, if z = g(u,v) with u = u(x,y) L )

product JgJ¢, with dimensions

(mx p)(pxn)=mxn.
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and v = v(x,y), the Jacobian product yields:

du  Ju
dz 9z| _ |9z 9z| |9x 9y
dx dy| ~ |ou 9Jv| |dv Qdv|°

ox 9y

Matrix multiplication immediately recovers the familiar scalar formu-

las:
0z 0z odu 0z dv

ox ~ouox ' dvox’
Derivatives of Matrix-Valued Functions

The definition of the total derivative is coordinate-free, allowing us to
differentiate functions acting on abstract vector spaces, such as spaces
of matrices.

Example 5.17. Derivative of the Squaring Map. LetS : M,(R) —
M, (R) be the map S(A) = A% We view M,(RR) as a vector space
isomorphic to R". To find the derivative DS(A), we examine the
difference S(A + H) — S(A) for a small matrix increment H:

The term linearin His AH +  HA. The remainder is H?. Since
|H?| < ||HJ? the limit of the remainder divided by ||H|| is o.
Thus, the total derivative is the linear map L(H) = AH + HA. Note
that this is not 2AH unless A and H commute.

i
Example 5.18. Derivative of the Inverse Map. Let Inv : GL,(R) —
GL,(R) be defined by Inv(A) = A~!. Using the identity (A +
H)™' — A1 ~ —A'HA™! (derived from the geometric series
expansion of (A(I + A~1H))~1), we find the derivative is the linear
map:
D(Inv)(A)[H] = —A"'HA L.

This generalises the single-variable rule (1/x)" = -1/ x2.

Higher Order Derivatives and Clairaut’s Theorem

Just as the first derivative approximates a function linearly, second
derivatives provide information about curvature. The second partial
derivatives can be organised into the Hessian matrix. A fundamental
question is whether the order of differentiation matters.

Theorem 5.7. Clairaut’s Theorem (Equality of Mixed Partials).
Let f : D C R?> — R. If the mixed partial derivatives fy, and fyx

S(A+H)—S(A) = (A+H)?-A?= A>+ AH+ HA+ H? - A> = AH+ HA + H~.
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exist and are continuous on D, then:

fxy(x/y) :fyx(xry)

for all (x,y) € D
T

Example 5.19. Failure of Equality for Mixed Partials. Consider the

function )
RAC
Flxy) = pLaEy: (x,y) # (0,0) .
0 (x,y) = (0,0)
Direct calculation shows f(0,y) = —yand f,(x,0) = x. Conse-
quently:
d d
== = (- =-1
Fr©0) = S ()] o = 2
fr00) = 2(f)| =L -
Y= ox Y00 dxlx=0

The mixed partials are unequal because they are not continuous at

the origin.
b
5.5 Exercises
Throughout these exercises, by a
1. Tangent Lines. Find the equation of the line tangent to the graph region we mean an open, connected
of f(x) at (a, f(a)) for the following functions: subset of IR".

(@ f(x)=sinx, a=0
(b) f(x) =cosx, a=rm/3
() f(x)=cosx, a=0

(d) f(x)=1/x, a=1/2

2. Exponential Tangents. For what value of a is the tangent to the
graph of f(x) = e ™ at (a,e7*) a line of the form y = mx (i.e.,
passing through the origin)?

3. Chain Rule Practice. Find f’(x) for the following functions:

(@) f(x) =sin®(x? + cosx)
(b) f(x) = cos ((x+smx)2)
(©) f(x) = (cosx)*sinx

(d) f(x) = (x +sin* x)3

(e) f(x) = sinxsin(x? + sinx)
() f(x)=sin (1)

4. Order of Approximation. Using the definition of the derivative,
check whether the following functions are differentiable at 0. If
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differentiable, determine if the error term f(0+ k) — £(0) — f/(0)h
is comparable to h? (i.e., is it O(h?)?).

@ f(x)=x%2

xIn|x| x#0

b =
®) fix) =4 " T
_)x/In|x[ x#0

Partial Derivatives. Calculate the partial derivatives D; f and Dj f
for the following functions at the specified points:

@ f(xy)=+/x*+yat(13)
(b) f(x,y) =¥y +y*at (2,1)
(© f(x,y)= cos(xzy) +ycosy at (0, 1)
d) flxy) = \/Tyz at (3,1)

Vector-Valued Partials. Calculate the partial derivatives gf and af
for the following R™-valued functions:

Xy
ating /x2 +y2.)

(b) £(x,y) = sinz(xy)]

[ /2112
(@) f(x,y) = Ay 1 (Assume (x,y) # (0,0) when differenti-

Yy

Jacobian Matrix Form. Write the answers to the previous exercise
in the form of the Jacobian matrix.

Component Derivatives.

fi(xy)
fa(x,y)

(a) Given a function f(x,y) =

] with Jacobian matrix

2xcos(x? +y) cos(x?+y)
ye*y xe*Y

identify lel/ D2f1/ and szz.

(b) What are the dimensions of the Jacobian matrix of a function
f:R" — R™ defined by f(x1,...,x,) = (y1,---,Ym)?

Derivative Forms. Assume the following functions are differen-
tiable. Describe the form (dimensions) of their derivatives.

(@ f:R*"—=R"

b) f:R® =R

(© f:R—R*
Total Differential Calculation. Find the total differential of u =
In(1+ x? + y?) at the point (x,y) = (1,2).
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11. Jacobian Computation. Find the Jacobian matrices of the follow-
ing mappings:

@@ f(xy) =sir21(x§1/)
(b) f(x,y) =e"t¥

+

© flxy) = x’z‘_iz
rcos 0

(d) f(r,6) = [rsin@]

2_ .2
12. Linear Approximation. Let f(x,y) = [x 5 Y 1 Letp = (1,2) and
Xy

v = (0.01, —0.01). Compute the value of the difference f(p + tv) —
f(p) — t[Df(p)]v for t = 1,0.1,0.01. Does the difference scale like t*
for some integer k?

13. Error Propagation. The diameter of a cylinder is measured as
Dy = 10.44 and its height as Hy = 18.36, with errors |AD| < 0.02
and |AH| < 0.01. Estimate the absolute error AV and relative error
AV /V for the volume V = %nDZH.

14. Affine Maps. Let f: R" — R".
(a) Prove that if f is affine (i.e., f(x) = Ax + b), then for any

a,velR™
f(a+v) = f(a) + [Df(a)]v.

(b) Prove that if f is not affine, this equality does not hold for all
a,v.

15. Non-Differentiability of Norm. Show that if f(x) = |x|, then

Lim (f(0+h) — f(0) —mh) =0

h—0

is never true for any number m. Thus, there is no linear map ap-
proximating |x| at the origin.

16. Bounded Difference Quotients. Let U C R" be open, a € U,
and ¢ : U — R be differentiable at a. Prove that the quantity

W is bounded as h — 0.

17. Derivative of Matrix Functions.

(a) Define differentiability for a mapping F : Mat(n,m) —
Mat(k,1).

(b) Consider F : Mat(n,m) — Mat(n,n) given by F(A) = AAT.
Show that F is differentiable and compute [DF(A)].

18. Matrix Squaring Map. Let S : R* — R* correspond to the map

A — AZ? for 2 x 2 matrices, where A =

Y ] is identified with
w
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(x,y,z,w).
(a) Write the explicit formula for S(x,y,z, w).
(b) Find the Jacobian matrix of S.

(c) Let A =
4 0 0.1

estimate (A + H)? using the derivative computed above.

:13 2] IfH = [0'1 0 1 is a small increment,

19. Geometric Interpretation of Gradient. Let f : U C R"” — R be
differentiable at a. Show that if v is a unit vector making an angle
6 with Vf(a), then

[Df(a)]v = [|Vf(a)]| cos 6.
Explain why this justifies the claim that V f(a) points in the direc-
tion of steepest ascent.
20. Continuity vs Differentiability.
(a) Is the mapping f : R" — R”" given by f(x) = ||x|x differen-
tiable at the origin? If so, what is its derivative?

(b) Give an example of a function f(x,y) that has partial deriva-
tives at a point but is not continuous there.

(c) Give an example of a function that is continuous at a point
but has no partial derivatives there.

21. Derivative of the Inverse Matrix.

(a) Let A be a2 x 2 invertible matrix. Compute the derivative
of the function f(A) = A~! using the formula A~! =

1 d -b

det A —c a :

(b) Show that your result is consistent with the general formula
Df(A)[H] = —A"'HA™L

22. Derivative of the Determinant. Considering det : Mat(2,2) —
R, show that at the identity matrix I, the derivative acts on an
increment H by the trace:

[D det(I)]|H = tr(H).

23. Lipschitz Condition. Let f(x,y) be defined on I = [a,b] X [c,d]
and assume f, is continuous on I. Prove that f satisfies a uniform
Lipschitz condition in y: there exists L > 0 such that |f(x,y1) —

f(x,y2)| < Llyr — yal for all (x, 1), (x,y2) € L.
24. * Constant Function Criteria.

(a) If fx and f, exist on a region D and are identically zero,
prove that f is constant on D.
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(b) Letz = f(x,y) be differentiable on an open rectangle D. If
dz = 0, must f be constant?

25. » Dependency of Functions. Let u(x,y) and v(x,y) be continu-
ously differentiable functions on a region ). Suppose they satisfy
the system:

Ju dv  dJu _ Jv 2, 2
ox oy’ oy  ox’ vt =C

Prove that u and v must be constant on Q).

26. * Continuity of Partials vs Differentiability. Let

1 2.2
xy sin ¥ +y-#0
flay) = e
0 X +y*=0
(a) Prove that f,(0,0) and f,(0,0) exist.
(b) Prove that f is differentiable at (0,0).

(c) Prove that the partial derivatives fy and f, are not continuous
at (0,0).

This demonstrates that continuity of partials is a sufficient, but not
necessary, condition for differentiability.



6.1

6
The Chain Rule and Applications

Symbolically, if f and g are differentiable appropriately, then D(f o
g) = Dfo Dg. This chapter records concrete forms of the general
chain rule for scalar fields, paths, and coordinate transformations,
with applications to geometry, differential equations, and implicit
functions.

Differentiation Along Paths

We first consider the case of a scalar field f : D C R" — R evalu-
ated along a differentiable pathr : I € R — D. This composition
g(t) = f(x(t)) represents the value of f observed by a particle mov-
ing through the domain.

Theorem 6.1. Chain Rule for Paths.
Let f be continuously differentiable on an open set D C R”, and let

f(x(t)) is differentiable, and its derivative is given by:

d /
S/ (1)) = Vf(x(t) -r'(t).

In coordinates, if r(t) = (x1(t),..., x,4(t)), this becomes:

af dx
dt Z 1 Ox; dt

i

Proof
This is The General Chain Rule. The Jacobian of f is the row vector
(V£)T, and the Jacobian of r is the column vector r'(t). The product

of a 1 x n matrix and an #n X 1 matrix is the scalar dot product.
n

This formula relates the temporal rate of change to the spatial geom-
etry. The term r/(t) represents the velocity of the trajectory, while V f

r: I — D be a differentiable path. Then the composite function g(t) =

Figure 6.1: A path (red) on the
surfacez = e~ (¥ ¥)/2, Along
this circular path, Vf - ¥ = 0
since the path stays on a level
set.
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encodes the spatial variation of the field.

Example 6.1. Differentiation of a Power-Exponential Function.
Consider the function u = x¥ for x > 0. Let x = ¢(t) and y = §(¢)
be differentiable functions. By the chain rule:

du du , ou
TR A (t)+ @zp ().

Computing the partial derivatives:

d d
() =¥l (x¥) =¥
ax(x ) =yx¥, 8y(x ) =x¥Inx.

Thus: p
=TI () 2 () (1),

Substituting ¢ and ¢ back yields:

G =9 (Zg;"’/(” +1n(¢<t)>w’(t)) :

$2.45]

Geometric Interpretation: Orthogonality

The chain rule provides a rigorous proof for the geometric orthog-
onality between gradients and level sets, using t/icorem 6.1 and theo-

rem 5.2.

Theorem 6.2. Gradient Ortﬁogonullty: ‘ ‘ Figure 6.2: The gradient Vf is
Let f : R" — R be a continuously differentiable function and ¢ €

]é?._If r(t) is anzf d1ffe;enjc1able path lying entirely within the level set tangent ¢’ lies along the curve
= {x: f(x) = c}, then: where f — c.

Vf(x(t)) 7' (t) =0.

Consequently, Vf(p) is orthogonal to every tangent vector to S at p.

orthogonal to level curves. The

T3
Proof

This is theorem 5.2, applied to a level set.
Since the path lies in S, we have f(r(t)) = c for all t. Differentiating
both sides with respect to t:

d d
S = Ll =o0.

Applying the chain rule to the left-hand side yields V f(x(t))
r'(t) =0.
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| n
Example 6.2. Normal to a Sphere. Consider the sphere de-

fined by f(x,y,z) = x* + y*> +2z> = RZ The gradient is
Vf = (2x,2y,2z) = 2x.

Let r(t) be any curve on the sphere. The velocity t'(#) is a tangent

vector to the sphere. The theorem implies 2x - ¥'(t) = 0, which con- Figure 6.3: The unit sphere

firms that the position vector (radius) is orthogonal to the tangent x2 4+ y2 4+ 72 = 1. Ateach point

plane at every point on a sphere. p, the gradient Vf = 2p points
.49 radially outward, orthogonal to

all tangent vectors.

6.2 Change of Variables

When the intermediate variables are themselves functions of multiple
independent variables, the chain rule expresses the partial deriva-
tives of the composite in terms of the partial derivatives of the con-
stituents.

Remark.

In this section, we frequently use u,v as independent variables (pa-
rameters), while z or w typically denote dependent variables. In
other contexts, such as the Laplace equation, u often denotes the
dependent variable itself; we rely on context to distinguish these

roles.

Letz = f(x,y), where x = x(u,v) and y = y(u,v). We view z as a
function of u and v. The dependence structure can be visualised as:

z

/\ /\

The derivative with respect to u involves summing the contributions
from all paths leading from z to u:

o= _dzor  dzdy
ou 0xdu OJyou’
Similarly for v:
oz _dzox  ozdy
dv  0xdv dydv
Example 6.3. Polar Coordinates. Let f(x,y) be a differentiable
function. Consider the polar transformation x = rcosf, y = rsinf.
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We wish to express the partial derivatives df /dr and df /96 in
terms of Cartesian derivatives.

o _ofox ooy
or dxadr Ay or
= fx(cosB) + f,(sin6).

of _ 9fdx  df oy

00 0x 00 ' oy 00
= fx(—rsinf) + f,(rcos6).
These relations can be inverted to express the Cartesian operators

dx,dy in terms of polar operators, a technique essential for solving
partial differential equations on circular domains.

$o19]

The Laplacian in Polar Coordinates

A classic application of the chain rule is transforming the Laplacian s
operator A = V2 = 9yy + dyy into polar coordinates. This is non- w

trivial because it involves second derivatives.
Figure 6.4: The harmonic func-

Theorem 6.3. Polar Laplacian. fonu — Inr — /2ty

If u(x,y) = U(r,0) is twice continuously differentiable, then: satisfies Au — 0 for r > 0. Its ra-

U 1oU 1 90°U dial symmetry makes it natural
Bu=5a Tio Tae to express in polar coordinates.
g
Proof
We differentiate the first-order result from the previous example.
Recall:

d Jd . .0
5 = cos@a +sm9®.

To find 9,,U, we apply the operator % to Uy = cos 0 uy +sin 6 uy:
o*U :
57 = g(ux cos 0 + u, sin 6).

Since 0 is independent of r in the partial derivative, cosf and sin 8

are constant coefficients here.

0’U 0 . .0
Fra cosGa(ux) + smGE(uy).
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Now we apply the chain rule expansion of 9, to uy and uy:

0
—(Uy) = tyycost + Uyy sing,

or

%(uy) = Uyy cos 0 + 1y, sin 6.

Substituting these back:
U,y = cos? 0 tyy + 2sin 0 cos O Uyy + sin? 0 Uyy.

This accounts for the radial second derivative. The angu-
lar term Uy is more involved because the coefficients cos 6
and sin 8 must also be differentiated with respect to 6. Recall

Up = —rsinf uy +rcost uy.
] .
Uygy = E(—r sinf uy +rcos 6 uy).
Using the product rule (differentiating the trig terms and the u
terms):
d
Upg = —rcosBuy — rsin@aa% —rsinfuy, + rcos@%
. . Oy duy
= —r(cos Ouy +sinbuy) +r (— smGW + cos GW .
Note that cos uy + sinfu, = U,. Thus the first term is —rU,. For
the derivatives dguy and dguy:
Oy .
50 = Uy (—78in6) + 11y (r cosb),
ou
aif)y = Uyx(—7sinf) + uyy(rcosh).
Substituting these into the expression for Ugy and simplifying
yields:
Ugg = —rU, + 1’2(sin2 Ouxy — 2sin 6 cos Ouyy + cos? Ouyy).
Dividing by r2:
1 1 ) . 2
r—zuge = —;Ur + (sin” Quyy — 25in 6 cos Ouyy, + cos” Ouyy ).

Adding U, and r%llge + %Ur:

1 1 . .
U, + r—zueg + ;Ur = (cos2 0 + sin? )ty +0- Uyy + (sm2 0 + cos? G)uw = Uxy + Uyy.

Thus, Au = Uy, + +U, + -5 Ugp.

113
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Implicit Differentiation

The chain rule provides a systematic method for computing deriva-

tives of functions defined implicitly by equations of the form F(x,y,z) =

0.
If the equation F(x,y,z) = 0 defines z locally as a function of x and
y,say z = g(x,y), then F(x,y,g(x,y)) = 0 in that neighbourhood.
Differentiating this identity with respect to x (holding y constant)
gives:

oFdx 0Fdy OF oz

Aottt =

dxdx dydx  0Jz dx
Since x and y are independent variables, dx/dx = 1 and dy/dx = 0.
Thus:

0z 0z Fy
hrbky =0= 5= EZO
Similarly, g—; = —%.

Example 6.4. Implicit Surface Derivatives. Consider the surface de-
fined by x2 +y? +z% = 3xyz. Let F(x,y,z) = x*> + y* + 22 — 3xyz = 0.
We compute the partial derivatives of F:

Fy = 2x — 3yz, Fy =2y —3xz, F,=2z—3xy.
Assuming 2z — 3xy # 0, the partial derivatives of z(x,y) are:

0z 2x —3yz _ 3yz—2x

ox  2z-3xy 2z—3xy’

0z 2y —3xz _ 3xz—2y

9y 2z-3xy 2z—3xy’
This method avoids the algebraic complexity of solving for z explic-
itly, which is often impossible.

Fo19]

6.4 Differentiation of Determinants

A sophisticated application of the chain rule arises in linear algebra:
computing the derivative of a determinant where the entries are
functions of a parameter ¢.

Theorem 6.4. Derivative of a Determinant.

A(t) = det(A(t)). Then:

ﬁ=§wmm,

Let A(t) = (a;;(t)) be an n x n matrix of differentiable functions. Let

Figure 6.5: A torus defined
implicitly by (x> + y? + 22 +
RZ — 122 = 4R*(x? + y?). At
each point, z can be expressed
locally as a function of x and y
via implicit differentiation.
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where A;(t) is the matrix obtained from A(t) by replacing the i-th row
with the derivatives of that row, (a}(t), ..., a},(t)).

m N
gl
Proof
The determinant A is a polynomial function of the n? variables ajj.
By the chain rule:

Boyy i
=45 1 dajj dt
From the cofactor expansion A = }1:1 aCij, the partial derivative

with respect to an entry a;; is simply its cofactor C;; (since C;; does
not depend on 4;;). Thus:

dA n n
]:

=1

The inner sum Z =14
the determinant of the matrix where the i-th row is replaced by
derivatives. Summing over all rows i gives the result.

i:Cij is precisely the cofactor expansion of

6.5 Homogeneous Functions and Euler’s Theorem

The chain rule yields a beautiful characterisation of homogeneous
functions, which appear frequently in physics and economics.

Definition 6.1. Homogeneous Function.
A function f : D C R"\ {0} — R is homogeneous of degree k if
for all x € D and t > 0 such that tx € D:

Fltx) = £ (x).

e
S

Theorem 6.5. Euler’s Homogeneous Function Theorem.
Let f be continuously differentiable. Then f is homogeneous of degree
k if and only if it satisfies the partial differential equation:

x- Vf(x) = kf(x).

In coordinates: Y ; x; ax =kf(x).

(=)

Figure 6.6: The cone z =
/%% 4+ y? is homogeneous of
degree 1: scaling (x,y) by ¢
scales z by t. Euler’s theorem
gives xzy + yzy = z.
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Assume f(tx) = t*f(x). Differentiate both sides with respect to t:

%[f(txl,...,txn)] = %[ Fx))-

Using the chain rule on the left (letting u; = tx;, so du;/dt = x;) and
the power rule on the right:

i i(tx) cx; =kt (x).

=1 i

Setting t = 1, we obtain }_ x;fy, (x) = kf(x).

FER #
(=)
Conversely, assume x - Vf = kf. Fix x and define g(t) = f(tx).
Then: 1

§/(1) = V(09 - x = 1 (09 - V(1)

By hypothesis, (tx) - Vf(tx) = kf(tx) = kg(t). Thus ¢'(t) = ¥g(t).
This is a separable differential equation g'/¢ = k/t, with solution
g(t) = Ctk. Att =1, g(1) = f(x) = C. Hence f(tx) = t*f(x).

FE B 4

Figure 6.7: A positive-

Example 6.5. Verification for a Quadratic Form. Let f(x,y) = definite quadratic form
Ax? 4+ Bxy + Cy?. This is homogeneous of degree 2. z = x*+ Jxy + y? homoge-
Euler’s Theorem predicts xfy +yf, = 2f. Calculate partials: neous of degree 2. Rays from

the origin scale parabolically

fx =2Ax+ By, f,=Bx+2Cy. with distance.

Compute the sum:

x(2Ax + By) +y(Bx + 2Cy) = 2Ax* + Bxy + Bxy + 2Cy?
= 2(Ax? 4 Bxy + Cy?) = 2f(x,y).

X

6.6 Tangent Spaces and the Normal Vector Field

In the study of the differential geometry of surfaces, the tangent
space at a point plays the role of the best linear approximation to the
surface, analogous to the tangent line for curves. This plane contains
all possible velocity vectors of curves traversing the surface through
that point. Orthogonal to this tangent space is the normal line, deter-
mined by a normal vector.

We analyse these structures through three complementary perspec-
tives: as level sets of scalar fields, as images of parametrisations, and
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as graphs of functions. While these viewpoints are mathematically
equivalent, each offers distinct computational advantages.

Tangent Planes to Level Surfaces

Let S be a surface defined implicitly as the level set of a differentiable
function F: R®> — R, so that S = {(x,y,z) | F(x,y,z) = k}.

In the previous section, we established that for any differentiable
curve r(t) lying on S, the velocity vector r'(t) satisfies VF(x(t)) -

r'(t) = 0. This implies that the gradient vector VF(p) is orthogonal to
every tangent vector to the surface at p.

Definition 6.2. Normal and Tangent Plane (Implicit).

Let po = (x0,Y0,20) be a point on the level surface F(x,y,z) = k. If
VF(po) # 0, we define:

1. The normal vector to S at pg isn = VF(pp).

2. The tangent plane to S at pg is the plane passing through py with
normal n. Its equation is:

VE(po) - (x—=po) =0,

or explicitly:

Fx(po)(x — x0) + Fy(po) (¥ — ¥o0) + Fz(po)(z — z0) = 0.

The choice of the function F defines an orientation. Replacing F with

—F reverses the direction of the normal vector field. For example, on
the unit sphere x> + y? + z2 = 1, VF points radially outward, while

V (—F) points radially inward.

Example 6.6. Tangent Plane to a Quadric Surface. Consider the Figure 6.8: A hyperbolic
surface defined by the equation x> — 2y? + z? + yz = 2. We wish to paraboloid (saddle surface)
find the tangent plane and normal line at the point p = (2,1, —1). z = x?> — 2y Such quadric
Let F(x,y,z) = x* — 2y* + 2% + yz. The gradient is: surfaces arise from implicit
VF = (2x, —4y + 2,2z + ). equations like x? — 2% + 22 = c.

Evaluating at p = (2,1, —1):
n=VF(2,1,-1)=(4-4-1,-2+1) = (4,-5,—-1).
The equation of the tangent plane is:
4(x—2)-5(y—1)—1(z+1) =0 = 4x—-5y—z=4

The normal line is given parametrically by 1(t) = p+tn = (2 +
4t,1—5t,—1—t).

.41
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Tangent Planes to Parametrised Surfaces

Consider a surface S defined as the image of a differentiable map

r: D C R? — R3, written as r(u,v) = (x(u,v),y(u,v),z(u,v)). Fixing
one parameter creates coordinate curves on the surface. For a point
Po = r(ug, vo):

- The u-curve is a(u) = r(u,vp). Its tangent vector is r,, = 3—;.

- The v-curve is B(v) = r(up, v). Its tangent vector is r, = g—;.

These two vectors, r, and r,, are tangent to the surface at py. If they
are linearly independent (i.e., non-collinear), they span the tangent
plane.

Definition 6.3. Normal Vector (Parametric).
The normal vector induced by the parametrisation r(u,v) at a point (ug, vo)
is the cross product of the partial derivatives:

Jr or

N(ug,v9) = 30 % 35"

A surface is called smooth (or regular) at (19, vg) if N(ug, vg) #

0.

The order of parameters matters: switching u and v results in r, X .
. . . Figure 6.9: The tangent vec-
r, = —(r, X ry) = —N, reversing the orientation. . 1 the t .
ors r,; and r, span the tangen

Example 6.7. Normal to a Parametrised Surface. Let S be the sur- g Y 3 8
plane. Their cross product

face parametrised by r(u,v) = (uz, 2usino, u cosv). We find the .

. . . ] N = r, X 1, is the surface nor-
tangent plane at the parameter point (1,v) = (1,0). First, identify mal
the point on the surface: '

p = r(1,0) = (12,2(1) sin(0), 1 cos(0)) = (1,0,1).
Compute the partial derivative vectors:

r, = (2u,2sinv, cos v),

ry = (0,21 cosv, —usinv).
Evaluate at (1,0):
1(1,0) = (2,0,1), 15(1,0) = (0,2,0).

The normal vector is the cross product:

N=r1,X1,= = (-2,0,4).

o - ®

j
0
2

S N =

The equation of the tangent plane at (1,0, 1) is:

—2(x—1)4+0(y—0)+4(z—1) =0 <= —2x+4z=2 < x—2z=—1

.41
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Tangent Planes to Graphs

A graph z = f(x,y) is a specific type of surface that can be treated

using either of the frameworks above.

1. As a Level Surface: Define F(x,y,z) = z — f(x,y) = 0. The
gradient is:

VE = (=fo,=fy 1)

2. As a Parametrisation: Define r(x,y) = (x,y, f(x,y)). The tangent
vectors are:

ry = (L0, fx), 1, =(0,1,f).

The normal is:

i j k
N:rxxryz 1 0 fx :<7fxrffyrl>‘
0 1 f

Both methods yield the same upward-pointing normal vector.

Proposition 6.1. Tangent Plane Equation for a Graph.
The tangent plane to the graph z = f(x,y) at (a,b) is given by:

2= £(a,0) + fo(a,b)(x — a) + fy(a, ) (y — D).

>

A4
This equation is the linearisation of f at (a,b). It represents the first-
order Taylor expansion of the function of two variables.

Example 6.8. Linear Approximation via Algebra. Consider the
graph of f(x,y) = 4x> — y?> + 2y. We find the tangent plane at
(—1,2). The function value is f(—1,2) = 4(1) —4+4 = 4. We
can compute partial derivatives directly, or we can use an algebraic
"completion of the expansion” method around the point (—1,2). Let
x=—-1+Axand y =2+ Ay.

z=4(—1+Ax)2 — (2+Ay)* +2(2 + Ay)
= 4(1 - 2Ax + Ax?) — (4 + 408y + Ay?) + (4 +2Ay)
=4 8AX +4Ax% — 4 —4Ay — AY* + 4+ 20y
=4 —8Ax — 2Ay + (4Ax% — Ay?).

The linear part determines the tangent plane:
L(x,y) =4—-8(x+1)—2(y —2).

This matches the standard formula where f(—1,2) = —8and
fy(=1,2) = —2. The quadratic terms (4Ax? — Ay?) represent the de-
viation of the surface from its tangent plane, providing information
about the local curvature (Hessian) of the surface.

Figure 6.10: The paraboloid

z = x? + y? with tangent plane
at (1,0,1). The plane z = 2x — 1
is the linearisation of f at that
point.
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Exia

6.7 Exercises

1. Partial Derivatives via Substitution.

(a) Letu =e* +siny +t, where x = st and y = s + t. Find %—?.

(b) Letu = e¥siny, where x = 2st and y = t + s%. Find g—’; and
o
St

(c) Letu = f(s,t) withs = x/y and t = y/z. Express 3%, 3—;, and
% in terms of the partials of f.

2. Total Differential.

(a) Let u = f(ax?+ by? + cz?). Find the total differential du.
(b) Let f(x,y,z) = (x/y)'/?. Compute the differential df evalu-
ated at the point (1,1,1).

3. PDE Verification. Verify the following partial differential equa-
tions using the Chain Rule.

(a) Letw = F(xy,yz), where F is a continuously differentiable
function. Prove that:

(b) Letz = f(xy), where f is a differentiable function of one
variable. Prove that:

xa—z _ g2 0
ax Y ady
(c) Letu(x,y) = ¢(x+at) + ¢p(x — at), where ¢, are twice
differentiable. Show that u satisfies the wave equation:
u  ,0%u
= — a7 =0.
o "o
4. Polar Symmetry.

(a) Letu = F(x,y) satisfy the equation x93 + yg—; = 0. Prove that
in polar coordinates, F depends only on 6 (i.e., F(rcosf,rsinf) =
h(9)).

(b) Let F(x,y) = f(x)g(y). In polar coordinates, suppose
F(rcos@,rsinf) = h(0) (independent of r). Determine the
form of F(x,y).

() Letu = f(y/x%+y?) be a radial function satisfying the
Laplace equation Au = 0. Find the explicit form of u(x,y).

5. * Coordinate Independence of the Laplacian. Let x = x(u,v)
and y = y(u,v) be a change of variables satisfying the Cauchy-
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Riemann relations:
ox _dy ox_ 9y
ou dv dv  ou
Let w(x,y) be a twice differentiable function.
(a) Prove thatif Ayyw = 0, then Ay ,w = 0.
(b) Prove that A, »(xy) = 0.
Linear Dependence Criterion. Prove that a differentiable function
z = f(x,y) is a function of the single variable ax + by (where
ab # 0) if and only if

* Monge-Ampeére Relation. Let u(x,y) have continuous second
derivatives. Let F(s, t) be a function such that F(uy, 1,) = 0 identi-
cally, with VF # 0. Prove that the Hessian determinant vanishes:

Uyxllyy — (uxy)2 =0.
Composition Validity. Let f : R® - R, frec : R? — RS, g: R2 —
R, and gvec : R3 — R2.
(a) Determine which compositions (e.g., f © g, Gvec © fvec) are
well-defined.

(b) For the well-defined compositions, specify the dimensions of
the resulting derivative matrix.

Chain Rule Calculation. Let f(x,y,z) = x*> + y> + z% and g(x,y) =
(¥, y%, x +y)-
(a) Compute the derivative of h = f o g at a point (4, b).
(b) Compute the derivative of k = go Vf (viewing Vf as a map
R3 — R3) at (x,y,2).

Existence of Derivatives. Let f(x,y) = sin(e™). Is f differentiable
at the origin? Compute its derivative if it exists.

Product Rules. Let f, g : R” — R™ be differentiable.

(@) If m =1, prove D(fg)(a)h = f(a)Dg(a)h+ g(a)Df (a)h.
(b) If m = 3, prove the product rule for the cross product f x g.

Impossible Composition. Prove that there is no differentiable
map g : R> — R? such that g(1,1) = (0,0) and the composition
f o g has the Jacobian matrix at (1,1), where f(x,y) =
(xty,x+y).

Asymptotic Expansion. Let f : D C R"” — R™. Suppose there
exists a matrix A such that for x near x:

f(x) = fx0) + Alx =x0) + o([Jx = xo|)-

121
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14.

15.

16.

17.

18.

19.

20.

Prove that f is differentiable at xg and Df(xg) = A.

Geometric Orthogonality. Let f : R — R be a differentiable
path lying on the unit sphere (i.e., |f(t)|| = 1 for all #). Prove that
f'(t) - f(t) = 0 for all t. Interpret this geometrically.

Jacobian Determinant of Invertible Maps. Let u(x,y) and v(x,y)
be continuously differentiable. Suppose they satisfy the "separa-
tion condition:

(u1 —uz)* + (v1 — v2)* > C[(x1 — x2)* + (y1 — y2)°]
9(u,0) -

for some C > 0. Prove that the Jacobian determinant 3(xy) is never

zero.

* Derivative of Determinant (General). Let A(x) beann x n
matrix depending on x € R¥. Prove the identity for the derivative
of the determinant:

Baaq det(A) = tr (adj(A)g;:) .
Using this, prove that if u = det(V) where V is the Vandermonde
matrix defined by x1,...,x,, then )1 ; a x =0.

* Hadamard’s Identity. Let f : R” — R" be a C2 map. Let Jf be
its Jacobian matrix and C;; be the cofactors of J;. Prove that the
columns of the cofactor matrix are divergence-free:

Zac =0 f hj=1,.
= or eac =
= Jx; 1=

* Orthogonal Transformations. Let A be an orthogonal matrix
and f : R” — R be twice differentiable. Let F(x) = f(Ax).
Prove that the Laplacian is invariant under orthogonal coordinate
changes:

1=
-‘m

- 0’ f

— L5
j=1 ]
where y = Ax.

Error Propagation in Products. Let f(x) = [T, fi(x). Using the
total differential approximation Af =~ df, prove that the relative
error of the product is approximately the sum of the relative errors

Af v Bfi
f l-;fz"

Extend this result to quotients.

of the factors:

Linear Dependence of Functions. Let x;(t),..., x,(t) satisfy a
system of differential equations x;(t) = Y a;;x;(t) with a;; > 0.
If x;(t) — Oast — oo for all i, must the functions be linearly
dependent?
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7
Implicit Functions and Differentiation

The functional relationships encountered in geometry and physics
are frequently defined not by explicit formulas y = f(x), but by
equations of the form F(x,y) = 0 or systems of such equations.

For instance, the unit circle is the locus of points satisfying x* +

y?> — 1 = 0. While one can sometimes solve for y explicitly (e.g.,

y = £V1— x?), this is often algebraically impossible or practically
inconvenient.

The Implicit Function Theorem provides the conditions under which
such an equation locally defines a function, even if an explicit for-
mula cannot be found. Furthermore, it allows us to compute the
derivatives of these functions directly from the defining equation.
This chapter establishes the theoretical existence of such functions
and develops the calculus of coordinate transformations and differen-
tial operators.

The Implicit Function Theorem

Consider a level set defined by F(x,y) = 0. The goal is to determine
when this equation defines y as a function of x in the neighbourhood
of a solution point (xg, yo). Geometrically, this corresponds to the
curve F(x,y) = 0 being a graph over the x-axis locally, which requires
the tangent to the curve not to be vertical.

Theorem 7.1. Implicit Function Theorem (Scalar Case).

Let D C IR? be an open set and let F : D — R be a function satisfy-
ing the following conditions:

1. F is continuously differentiable (CY on D;

2. There exists a point (xg,y9) € D such that F(xp,y0) = 0;

3. The partial derivative with respect to y is non-zero at this point:

oF
@(xo,yo) # 0.
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val | containing yg such that for every x € I, there is a unique y € |
satisfying F(x,y) = 0. This defines a function f : I — ] such that

y = f(x).

by:
1y Bx(x f(x)
F &)= ~F & i)

T
Note

Constructive Limitations: The theorem guarantees the existence of
the function f, but it does not provide an algorithm to construct it
explicitly. In many applications, an analytical expression for f is
impossible to find.

Example 7.1. Kepler’s Equation. In celestial mechanics, the posi-
tion of a planet in its orbit is determined by Kepler’s Equation:

y—x—esiny =0, where0<e<1.

Here y is the eccentric anomaly and x is the mean anomaly. Let
F(x,y) = y — x — esiny. At the origin, F(0,0) = 0. The partial
derivative with respect to y is:

F,=1—ecosy.
Since |e] < 1, F, > 1 —€ > 0 everywhere. Thus, the implicit func-
tion y = y(x) exists globally and is differentiable. Its derivative is:

dy P ~1 1

dx ~ F,  1-—ecosy T 1—ecosy’

Although y(x) cannot be expressed in terms of elementary func-

tions, its properties can be analysed fully (e.g., ¥'(x) > 0, so the
function is monotonic).
Eid)
The differentiation formula f'(x) = —F,/F, follows from the general

chain rule applied to the identity F(x, f(x)) = 0:

_ dFdx oFdy

d - ;o

Higher-order derivatives can be computed by differentiating this
relation repeatedly.
Example 7.2. Implicit Differentiation. Consider the equation defin-

Then there exists an open interval I containing xy and an open inter-

Moreover, f is continuously differentiable on I, and its derivative is given

y

Figure 7.1: The Implicit Func-
tion Theorem guarantees that
within the neighbourhood I x J,
the curve defines a unique func-
tiony = f(x). This requires
the tangent to be non-vertical

(Fy #0).

Figure 7.2: The surface

F(x,y) = y — x — ksiny.
The zero level set (where F = 0)
defines y implicitly as a mono-
tonic function of x.
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ing a curve near (1,1):
xy+2Inx+3Iny—-1=0.
Let F(x,y) = xy +2Inx + 3Iny — 1. The conditions at (1,1) are:
1. F(1,1) = 1(1) +2(0) +3(0) — 1 = 0.
2. Fy(xy) =x+3. At(L1), F(1,1) =1+3=4#0.
Thus, a differentiable functiony = f(x) exists near x = 1 with
f(1) = 1. Its derivative is:
K yt+: o xy+2 oy y(xy +2)

/ _ _ _ )
fix) = F, x+§ x  xy+3 x(xy +3)

At the point (1,1):

E X

7.2 Systems of Implicit Functions

The concept extends naturally to systems of equations. Consider a
mapping F : R"™" — R™, with m dependent variables (say y) in
terms of n independent variables (say x). The solvability condition is
determined by the Jacobian determinant of the dependent variables.

Theorem 7.2. Implicit Function Theorem (General Systems).

Let F(x,y) be a C! function from an open set in R" x R to R™. Let
(x0,¥0) be a point such that:

1. F(xo,y0) = 0;

2. The Jacobian matrix with respect to y is invertible at this point:

a1 MY
oF
det (> (x0,y0) =det | : , # 0.
oy : :
oFw .. OFm
a1 MY

Then there exists a neighbourhood of xp in R"” and a unique continu-
ously differentiable function g(x) such that y = g(x) and F(x,g(x)) =
0 for all x in that neighbourhood.

T3

The derivatives of the implicit functions can be found by solving
the linear system obtained by differentiating F(x,y(x)) = 0. If the
Jacobian matrices are denoted by DxF and DyF, the chain rule in
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theorem 5.6 yields:
DyF+ DyF-Dy =0 = Dy = —(DyF) ' D4F.
Example 7.3. Spherical Coordinate Derivatives. Consider the trans-

formation from Cartesian to spherical coordinates defined by the
system:

X = psin¢cos
y = psin¢gsind
Z = pCos ¢
Suppose z is viewed as a function of x and y (locally restricted

to the upper hemisphere of a fixed sphere, so p is constant). The
goal is to calculate 9%z/9x? using the implicit relations. From

X+ y?2+ 22 = p? differentiating with respect to x (holding y
constant) gives:
0 )
24228 =0 = ==L
ox ox z

Differentiating again with respect to x:

z2 4+ x2
z2 z2 z3

9 (_f> _ lz—x-zp  z—x(-x/z2)
dx \ z
Since x? + z2 = p? — y?, it follows that:

Pz _ gy

0x2 23

Alternatively, using the angular coordinates directly from the sys-
tem requires inverting the Jacobian of the map (x,y,z) — (p,¢,6),
illustrating the power of the implicit approach for constraints like
x? + 1% + z2 = const.

E

Figure 7.3: Upper hemisphere:
. z = /1—x%2—1y2 The con-
7.3 The Inverse Function Theorem straint 22 + 42 + 22 = 1 implic-
itly defines z as a function of

A special case of the implicit function problem arises when inverting
(x,y) where z > 0.

a mapping f : R" — IR". This is a specialisation of Implicit Function
Theorem (General Systems) with m = n, solving F(x,y) = f(x) —y = 0
for x in terms of y.

Theorem 7.3. Inverse Function Theorem.

Letf: U C R" — R" be a C! mapping. Let a € U and suppose the
derivative matrix Df(a) is invertible (i.e., det(Df(a)) # 0).

Then there exist open sets V containing a and W containing f(a) such
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that f : V — W is a bijection. Its inverse g = f~! : W — V is contin-
uously differentiable, and its derivative is given by:

Dg(y) = [Df(g(y))] "

Proof

A proof based on the Contraction Mapping Principle is included,
highlighting the connection to fixed-point iterations.

Let A = Df(a). Since A is invertible, the problem can be linearised.
Seek x such that f(x) = y. This is equivalent to finding a fixed point
of the map:

p(x) =x+ A" (y — £(x)).

Observe that f(x) =y < ¢(x) = x.

Step 1: Constructing the Contraction. Differentiation yields

D¢(x) = I — A'Df(x) = A"'(A — Df(x)). Since f is C!, Df(x)
is continuous. Choose a sufficiently small radius r > 0 such that
for all x in the ball B,(a), ||Df(x) — Al < m. This implies
[Dg(x)|| < [|A7||[|A — Df(x)|| < 1. By the Mean Value Inequality,
for any xq,x, € B,(a):

1
lp(x1) =)l < Sl —xl|

Thus, ¢ is a contraction mapping.

Step 2: Existence of the Inverse. For any y sufficiently close to

b = f(a), say within distance Ar, the map ¢ maps the closed ball
B,(a) into itself. By the Banach Fixed Point Theorem, there exists a
unique x such that ¢(x) = x, which implies f(x) = y. This proves f
is locally a bijection.

Step 3: Differentiability. Let g be the local inverse. Lety,y + k €
W and x = g(y),x + h = g(y + k). Since f is differentiable:

f(x+h) — f(x) = Df(x)h +o(||h]|) = k.
Applying the inverse matrix T = [Df(x)] 1
h = Tk — T(error).

One can show that |error||/| k|| — Oask — 0, establishing that

Dg(y) = T.
]
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Variable Substitution and Differential Operators

A practical application of the chain rule and implicit differentiation

is the transformation of differential operators under a change of vari-
ables. This technique is ubiquitous in simplifying partial differential
equations.

When performing a substitution, it is critical to distinguish between
the independent variables and the dependent variables at every
step.

Example 7.4. Transforming a Second-Order Operator. Let

z = z(x,y) be a twice continuously differentiable function. Con-
sider the differential equation:

1 0%z Pz 9z 1 oz 0z
sy 25ty | — 5 (-t | =0
(x4+y)2 \9x2  “dxdy  9y? (x+y)3 \ox oy
Apply the variable substitution # = xy and v = x — y, expressing
the equation in terms of u and v.
First, express the partial differential operators d, and 9, in terms of
9y and 9, using the chain rule.

0 oJud Jvad 0 0

ox oxou oxov You 9’
0 oud 0Jva o 0
7:774———:){——7.
dy dyodu Jyav ou Jv
Observe that the sum of the operators simplifies significantly:

i+i—( + )i
ox  dy T

Apply this combined operator to the function z:
9 + 9 z=(x+ )%
ax oay) T VY50

2
Now calculate the second derivative term ( a% + a%) z. Apply the

operator (x + y)9, to the result (x + y)zy:

(33l -3l B (32

0z d | oz
—[14‘1]@4‘(3(4’]/) {(x—i—y)au} a
0z , 0%z
—2$+(x+y) 781,[2'

Substitute these transformed derivatives back into the original
equation:

[Zzu +(x+ y)2zuu} - 1)3 [(x +y)zy] = 0.

1
(x+y)? (x+y
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Simplifying the terms:

2 1 1
Zy + Zuyu —qu:() = Zyu + (x+y)2zu:0

(x+y)?

Finally, express the coefficient (x + y)? in terms of u and v. Note
that:
(x +y)? = (x —y)? + 4xy = v* + 4u.

The transformed equation is the linear ordinary differential equa-
tion (with parameter v):

P 1
ou?  v24+4uou
Fu]
Example 7.5. Canonical Form of a PDE. Consider the partial differ-
ential equation with constant coefficients:
0z 0%z 0%z

+2b—— +

Tox2 9xdy CW =0

where b — ac = 0 (the parabolic case) and ¢ # 0. A linear substitu-
tion u = x + ay, v = x + By simplifies this equation.
Without loss of generality, let c = 1,50 a = b2. The operator can be
factored:

b9 + 263y + dyy = (b3 + dy)%.

Choose «a, B so that the operator bd, + d, becomes proportional to a
single derivative, say d,. Using the chain rule:

ax - au ‘I’ av, ay - “au + ﬁav.
Substituting these into the operator:
by 49y = b(dy + 9y) + («0y + Bdy) = (b + )9y + (b + B)0y.

To eliminate d,, choose B = —b. To keep 9, (and ensure the trans-
formation is invertible), choose any & # —b, for example « = 1 — b.
With these choices, the operator becomes (b + 1 — )9, = 9,. The
differential equation simplifies to:

0%z
ﬁ - O.
The solutionisz = uf(v) + g(v), or in original coordinates, z =

(x+ A =b)y)f(x —by) + g(x — by).
X
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Differentiation with Side Conditions

In many applications, particularly in thermodynamics and physics,
the distinction between independent and dependent variables is
physically motivated but mathematically fluid. A system state may
be described by n variables subject to k constraints, leaving n — k
degrees of freedom. The partial derivative of a quantity depends
crucially on which variables are held constant.

Constrained Partial Derivatives

Consider a set of variables related by constraint equations. If z is a
function of x and y, the symbol g—i is unambiguous: y is held fixed.
However, if x, 1, z are constrained by F(x,y,z) = 0, any variable

can be viewed as a function of the other two. The notation (g—i)
y

explicitly indicates that y is held constant.

Example 7.6. The Ideal Gas Law. The state of an ideal gas is de-
scribed by pressure P, volume V, and temperature T, constrained
by the equation of state PV = nRT (where n, R are constants).
The rate of change of pressure with respect to volume under
isothermal conditions (constant T) is:

doP\ 9 (nRT\ _ nRT
ov), ov\iv ) vz’
If P is held constant (isobaric expansion), V and T vary, but P does
not change, so (g—{;) , is ill-defined or zero depending on interpre-
tation (usually zero in the context of differential forms dP = 0).
More interestingly, consider the internal energy U = U(P,V,T).
Since P, V, T are not independent, the independent variables must
be specified.
1. Variables (T,V): U = f(T,V). Then (g—LT[)V is the heat capacity
at constant volume.
2. Variables (T, P): Substitute V. = nRT/P to write U = g(T,P).
Then (g—LTI) is related to the heat capacity at constant pressure.

Using the chain rule, these quantities satisfy:

U\ _(auy | (auy (av
For an ideal gas, U depends only on T (Joule’s Law), so (g—g) ; =0,

and the two derivatives with respect to T are equal. For real gases,
they differ.
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The Triple Product Rule

A fundamental identity relates the partial derivatives of three vari-
ables constrained by a single equation.

Theorem 7.4. The Cyclic Chain Rule.

0, such that the partial derivatives Fy, F, F; are non-zero. Then:
ox\ (oy\ (oz\ _
W), \oz ), \ox ),

Proof
From the total differential of F(x,y,z) = 0:

dF = Fydx + F,dy + F,dz = 0.
To find (g—;) ,setdz = 0:
z

dx
Frdx+Fydy=0 = (83/)2_

_k
F

By symmetry (permuting variables):

Wy _ R (%) _ K
oz), F/ ox y_ E’

Multiplying these three expressions:
F F F
y z x 3
IV A2 (-2 )= (=181 = —1.
(&) (5) (R)-camama

This result is counter-intuitive if one attempts to treat partial deriva-
tives like fractions (where the product would seemingly cancel to
+1). The sign arises because the "paths" of constant z, constant x, and
constant y define a cycle on the surface F = 0 that reverses orienta-

tion.

Gradients in Curvilinear Coordinates

By definition 5.7, the gradient V f is defined independently of the co-
ordinate system as the vector representing the differential df, while
its component representation depends on the basis vectors. In Carte-
sian coordinates, Vf = fyi + f,j + fzk. In curvilinear coordinates,
account for the changing direction and scaling of the basis vectors.

Let x, y, z be variables related by a differentiable equation F(x,y,z) =

131
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Orthogonal Basis Vectors

Let (uj, up, u3) be a set of orthogonal curvilinear coordinates. The
standard basis vectors &; are unit vectors tangent to the coordinate
curves. Since Vf is a vector, it can be decomposed in this basis:

Vf= (Vf . él)él + (Vf . éz)éz + (Vf . é3)é3

By theorem 5.1, the directional derivative is Dy f = Vf - v. Thus, the
coefficient of &; is the rate of change of f with respect to distance
along the u;-curve. If a small change du; produces a displacement

ds; = hjdu; (where h; = || ar || is the scale factor), then:
s, _9of _10f
Vf - € = 8751 h aul .

This yields the general formula:

Vf: a—f

) Mm
:“ —_

Polar and Spherical Gradients

Polar Coordinates (r,0): The position vector is r = r cos 6i + r sin 0j.
The scale factors are h, = ||t;|| = 1 and hy = ||rg|| = r. Thus:

A L

Example 7.7. Gradient of a Potential. If f(r,0) = r* cos(kf), then:
Vf = (krk=1 cos (k))& + %(—krk sin(k8))0 = kr* 1 (cos(k6)& — sin(k6)H).

Eal

Spherical Coordinates (p,¢,0): Use the physics convention: p is the
radial distance, ¢ € [0, 7] is the polar angle from the z-axis, and
6 € [0,2m) is the azimuthal angle in the xy-plane.

x =psingcosl, y=psingsinh, z=pcosep.
The scale factors are:
hp = |lox/dp|| = 1.
- hy = [or/99]| = p.
= [[or/0d0| = psin¢.
Substituting these into the general formula:

vi=? o 5 195 1 0/,

p +p8¢¢+psm<p89 ’




MULTIVARIABLE CALCULUS & IMPLICIT FUNCTIONS 133

Example 7.8. Electric Field of a Point Charge. The electric potential
isV(p) = % Since V is independent of ¢ and 6, the gradient is
purely radial:
_ _ 0 _1ya) _ U NUUE I
E=-VV= (ap(p )p) =—(-p )p—pfzp-
ERil)

7.7 Global Existence of Implicit Functions

The Implicit Function Theorem is strictly local. By theorem 7.1, it
guarantees a solution y = f(x) within a small neighbourhood of

a point. The local guarantee in t/eoremn 7.1 does not address global
behaviour. However, questions in analysis often demand global solu-
tions.

Proposition 7.1. Sufficient Condition for Global Existence.

Let F : (a,b) x R — R be a continuous function. Suppose the par-
tial derivative F exists everywhere and satisfies F,(x,y) > m > 0
for some constant m. Then for any x € (a,b), the equation F(x,y) =

0 has a unique solution y = f(x), and the function f is continuous
on (a,b).

Proof

For a fixed xo, consider the function g(y) = F(xp,y). By the Mean

Value Theorem, for any y; < y5:

8(y2) —g(y1) = Fy(x0,8)(y2 —y1) > m(y2 —y1)-

Letting yo — o0, g(y2) — oco. Lettingy; — —o0, g(y1) — —oo.
By the Intermediate Value Theorem, there exists a yy such that
g(yo) = 0. By the strict monotonicity (F, > 0), this solution is
unique. Continuity of f follows from the local Implicit Function
Theorem argument extended over the domain.

While global existence for scalar equations relies on monotonicity,
global invertibility for maps F : R” — IR" is subtler. The condition
det(Jr) # 0 everywhere is not sufficient for global invertibility.
Example 7.9. Local vs. Global Invertibility. Consider the map

F: R? — R? defined by:

u=-e*cosy, v=-e"siny.

The Jacobian determinant is e?* # 0. Thus, F is locally invertible
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everywhere. However, F is not injective (it is 277-periodic in y), so
no global inverse exists. The image of Fis R*? \ {0}, which is not
simply connected.

.41

Theorem 7.5. Hadamard’s Global Inverse Function Theorem.

Let F : R" — R" be a C! map. F is a diffeomorphism (a smooth bi-
jection with a smooth inverse) if and only if:

1. The Jacobian determinant det(Jg(x)) is never zero.

2. The map is proper, meaning ||F(x)|| — oo as ||x|| — oo.

7.8 Exercises

Implicit Differentiation and Systems

1.

Implicit Differentiation. Find dy/dx for the curve defined by
sin(x) cos(y) — sin(x) — cos(y) = 0.

Implicit System. Let u(x,y) be determined by the system:
u=x+y+z+t, x+ty=uzt, Z2+=1

Assume appropriate solvability conditions. Determine the partial
derivative (%) .
Y

Derivatives from Equations. Let y(x) be defined implicitly by the
following equations. Find i’ and y":

(@) In(x?+y?) = arctan(y/x)

() xy —2xIn2+2y =0

(c) y3—|—y—x2 =0atx=0.

(d) ¥®*+y®—4=0at(1,V3).

(e) sinx+2cosy—1=0at (7/2,371/2).

Implicit Surfaces. Let z = z(x,y) be determined by the given
equations. Compute the specified derivatives:

(@) x+y+z=e F¥*2) Find 9,2, 0yZ, 0xxZ, OxyZ.

(b) x®+y®+2°—3xyz—4 =0. Find Vzat (1,1,2).

(¢) z= /x? —y?tan(z/ /x> — y?). Find 0,2, 9dyz.

(d) x/y =In(z/x). Find the total differential dz.

(e) xy +yz+zx = 1. Find all first and second order partial

derivatives.

Functional Constraints. Let f be a differentiable function. Find
the derivatives of z(x,y) defined by:

@@ f(x+y+zx®+y?+2z%) =0. Find dz.
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(b) f(x,x+y,x+y+z)=0.Find d,z,9yz.
(o) f(x+y,y+zz+x)=0. Find all second derivatives.

6. Inverse Function Derivatives.

(a) Given x =¥ + u3,y = e — 93, find 9,u and dyo.

(b) For the system x = ucos(v/u),y = usin(v/u), find the
partials of the inverse map u(x,y), v(x,y).

(c) Letx = ¢,y = ¢°~¥,z = yw. Find dz and d°z at (u,v) =
(0,0).

Coordinate Transformations and PDEs

7. Variable Substitution (Polar). Transform the differential expres-

; _ ,0u ou s ;
sion E = x§, — y§5; into polar coordinates (r,0).

8. Variable Substitution (PDE). Transform the equation

a2\, (o) 1
ox ay o /x2 + y2
using the substitution x = uv and y = 1 (u? — ©?).

9. Dependent Variable Transformation. Transform the equation
t _ ¢
THfu’ and z = T+fo* Show

X2zy + yzzy = 22 by setting x = t, y =
that the transformed equation is simply %—f = 0.

10. PDE Verification. Verify that the implicitly defined functions
satisfy the given PDEs:

(@) xzy —yzy = 2x, where F(xy,z —2x) = 0.
(b) (x* —y? — z2)zx + 2xyz, = 2xz, where x> + y2 + 2% = yf(z/y).
(c) x Monge-Ampere Identity. zyyzyy — (zxy)2 = 0, where
x/z = ¢(y/z) with ¢" # 0.
11. Simplifying PDEs.

(@) Transform (x —y)zy + yz, = 0 by making z a variable and y, z
independent.

(b) Transform the Wave Equation uy; — Ay = 0 using § =
X —ct,y=x-+ct

(c) Transform xy” — yx" (derivatives w.r.t t) into polar coordi-
nates r, 0.

(d) Transform zy =z, using¢ =x+y,7=x—y.

12. Operator Transformations.

(a) Show that Au = u, + %u, + %21/{99 + U, in cylindrical coordi-

nates.

(b) Using parabolic coordinates x = 1(u? — 0?),y = uv, show that

1

Nyyz=——
Xy u2+»02

(Aypz).
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Curvilinear Coordinates

13. Spherical Laplacian. Using the formula for Vf in spherical coor-
dinates, derive the expression for the Laplacian Af =V - Vf.

14. Jacobian Determinant. Calculate the Jacobian determinant of
the transformation from spherical to Cartesian coordinates and
interpret it geometrically as the volume distortion factor.

Side-Condition Calculus and Thermodynamics

15. Constrained Derivatives.

(@) Letx+y+z= 0,x2+y2+22 = 1. Find dx/dz at (1/\5,—1/\/2,0).
(b) Let x3+1y3+2% =3xyz,x+y+z = a. Find y'(x),2'(x),y" (x),2" (x).

16. Thermodynamic Relations. Re-derive the cyclic identity using the

total differential:
ox\ (ay\ (oz\ _ |
), \oz ), \ox ),

Verify this identity explicitly for the ideal gas law PV = nRT.

Theoretical Foundations and Global Issues

17. Existence and Uniqueness.

(a) For F(x,y) = (x—y)®> = 0at (0,0),F, = 0, yety = xis
a unique smooth solution. Why does this not contradict the
Implicit Function Theorem?

(b) Prove thaty — x — % siny = 0 defines a unique smooth
function y(x) on all of R.

(c) Letx = y+ ¢(y) with ¢(0) = 0 and |¢’| < k < 1. Prove local
invertibility near y = 0.

3 is a global

18. Global Invertibility. Discuss why the map f(x) = x
diffeomorphism on R, whereas f(x) = x — x3 is not, despite both

being polynomials. Relate this to Hadamard’s Theorem.

19. * Iterative Solution. Consider the map u = J(x2 —y?),v = xy. Let
a = (1,1). Calculate the Jacobian | at a. Use the Newton iteration
formula

Xny1 =X+ ]y — £(xu))
to approximate the inverse map near (u,v) = (0,1).

20. x Global Invertibility.

(a) Let F(x,y) = (x+e¥,y —e*). Show Jf is never zero. Is F
globally invertible? (Check properness).

(b) Let f : R> — R?>be CL. If det(Jf) # 0 everywhere and
|f(x)| — o0 as |x| — oo, prove f is surjective.
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21. x Legendre Transformation. Let y = f(x) be strictly convex. Let
p = f'(x) and define g(p) = px — f(x). Prove that ¢’(p) = x and
8" (p) = 1/f"(x).



8.1

8
Geometric Applications of Differentiation

The differential calculus developed in the preceding chapters pro-
vides a robust framework for analysing local linear behaviour. Hav-
ing established the machinery of gradients, Jacobians, and the Im-
plicit Function Theorem, we now turn to the geometry of curves and
surfaces in R3. The study of tangent spaces extends to more complex
configurations, such as curves defined by the intersection of surfaces,
and to the geometric relationships — angles and orthogonality —
between these objects.

Tangent Analysis of Space Curves

In theorem 6.1, we identified the derivative r'(t) of a path r(t) as the
velocity vector, which is geometrically tangent to the trajectory. We
now formalise the geometric structures associated with this vector.

Curves Defined Parametrically

Let I be a smooth curve in R® parameterised by r(t) = (x(t),y(t),z(t))
for t € [a,b]. At a point pg = r(ty) where r'(t) # 0, the tangent vec-
toris T = r'(tp).

The tangent line to I' at py is the line passing through p( parallel

to T. Its parametric equation is 1(s) = po + sT. In symmetric form,
provided the components Ty, T, T; are non-zero:

X—X _Y—Y _z2—20
Ty T T

The plane passing through py and orthogonal to the tangent vector is
called the normal plane. Its equation is derived from the condition

(x—=po) - T=0:
Te(x = x0) + Ty (y — yo) + Tz(z — 20) = 0.

Figure 8.1: A helix I in R3. At
each point, T = r/(t) is tangent
to the curve, and the normal
plane is orthogonal to 7.
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Curves Defined by Intersections

Frequently, a curve arises not from an explicit parametrisation but as
the intersection of two surfaces. Let I be the locus of points satisfying

the system:
F(x,y,z) =0, G(x,y,z)=0.

Assume F and G are continuously differentiable. A point pg € I is
regular if the gradients VF(pg) and VG(po) are linearly indepen-
dent.

Theorem 8.1. Tangent to an Intersection Curve.

Let I be the intersection of the level surfaces F = 0 and G = 0. Ata
regular point py, the tangent vector 7 to I' is parallel to the cross prod-
uct of the gradients:

T = VF(po) x VG(po)-

Explicitly, via the Jacobian determinants:

_ /3(F,G) 9(F,G) 9(F,G)
e < Ay,2) Az x) Axy) >

Po

Proof

Let r(t) be a parametrisation of the curve I' with r(0) = py. Since
the curve lies on both surfaces, we have F(r(t)) = 0and G(r(t)) =
0. Differentiating with respect to t using theorem 6.1 yields:

VF(pg) - ¥(0) =0 and VG(po)- ¥ (0)=0.

The tangent vector r'(0) is orthogonal to both normal vectors

VF and VG. Therefore, it must be parallel to their cross product
VF x VG. The components follow from the definition of the cross
product:

i ik F, FE F, FE F, F
_ |ty Z |, x Z |, X v
VEXVG = é’; éyy cF;ZZ “lo, el e 6 e o€
u
Example 8.1. Slope of a Lifted Line. Consider a curve I' defined Figure 8.2: A sphere
by the intersection of the surface z = f(x,y) and the vertical plane X% +y? + 2% = r* intersected by
passing through (x¢, o) with angle « to the x-axis. We wish to find aplane z = c. The intersection
the tangent of the angle ¢ that the tangent line to I' makes with the curve is a circle with tangent

vector T = VF x VG.

xy-plane.
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Let the defining functions be:
F(x,y,z) =z— f(x,y) =0,
G(x,y,z) = (x — xp) sina — (y — yp) cosa = 0.
The gradients are:
VF = (~fx,—fy,1), VG = (sina, —cosa,0).
The tangent vector is:
i j k
sine. —cosa 0

The vector T has horizontal componentu = (cosa,sina) (a unit
vector) and vertical component v = fycosa + f,sina. The angle ¢
with the horizontal plane satisfies:

vertical rise fxcosa + f,sina

tan¢g = . =
¢ horizontal run | /c0s2 & + sin &

= fycosa + f,sina.

Fbl
Remark.
This result matches precisely the definition of the directional
derivative Dy f in definition 5.1. The geometric intersection method

confirms the analytical definition.

Surface Geometry and Limits

We previously established that the gradient VF serves as the normal
vector to the level surface F(x,y,z) = 0. Here we explore more ad-
vanced behaviours, such as the limiting behaviour of tangent planes
near singularities or boundaries.

Example 8.2. Limit Position of a Tangent Plane. Consider the sur-
face defined parametrically by:

x=u+v, y=u*+v* z=ud+7o.

We investigate the behaviour of the tangent plane as the parameter
point (u,v) approaches the boundary line u = v. Foru # v, we
compute the normal vector N = r,, X r,. The partial derivatives are:

r, = (1,2u,3u%), 1, = (1,20,30%).

T=VFxVG=|—fy —f, 1|=(cosa,sina,fycosa+ f,sina).

Figure 8.3: The monkey saddle
z = x® — 3xy?. Near the origin,
the tangent plane degenerates
asr, Xr, — 0.
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The cross product components are determined by the determinants:

N, = gég:i% = 2u(30?) — 20(3u?) = 6uv(v — u),
Ny = SE = 32(1) - 302(1) = 3002 — ) = =30 — 1) (u +0),
N = ggizg — 1(20) — 1(2u) = 2(0 — u).

Since u # v, we can divide the vector N by the common factor v — u
to obtain a parallel normal vector n:

n = (6uv, —3(u +v),2).
The equation of the tangent plane at p = (x,y,z) isn- (X —p) =0:
6uv(X —x) —3(u+0v)(Y —y)+2(Z-2z) =0.

As (u,v) — (uo,up), the point p approaches (2ug,2u3,2u3) and the
normal vector approaches:

ng = (6u3, —6ug,2).
The limiting tangent plane is:
613 (X — 2ug) — 6ug(Y —2u3) +2(Z — 2u3) = 0.
Simplifying:
6udX — 6ugY + 27 = 12u3 — 12u + 4u3 = 4u.

Dividing by 2 yields the final equation: 3u3X — 3uoY + Z = 2u3.

B
8.3 Angles and Orthogonality " \/ n,
The angle between two surfaces at an intersection point is defined as P
the angle between their respective tangent planes, or equivalently, the Sy

angle between their normal vectors.

Figure 8.4: The angle w be-

Definition 8.1. Angle Between Surfaces. tween surfaces S; and S, equals

Let S; and S, be surfaces with normal vectors n; and n; at a point p. the angle between their normal

The angle w between the surfaces is given by: vectors n; and ny.

Ing - ny|

COSW = ————.
[ [[[[ma]|

The surfaces are orthogonal if nj - ny = 0.
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: % &
This concept allows us to construct orthogonal coordinate systems in
IR3, where coordinate surfaces intersect at right angles everywhere.
Example 8.3. Orthogonal Surface Families. Consider three families
of surfaces defined by parameters u, v, w:

1. Si(u): L =u = F=xy—uz=0.

2. S(v): Va2 + 224+ /Y2 +22 =0

3. S3(w): Va2 +z22— /Y2 + 22 = w.
We verify that these surfaces are mutually orthogonal at any inter-

section point p = (x,y,z). First, compute the gradients (normals).
For 51, use the implicit form F = xy/z —u = 0.

m=v () = (L) = D),

For S; and S3, let A = Vx2+z2and B = /y2+22. S, : A+ B = .
Gradientnp = VA + VB. 53: A — B = w. Gradient n3 = VA — VB.
We check orthogonality of n, and nj:

ny-n3 = (VA+VB)- (VA —VB) = ||[VA|> - |VB|J
Compute | VA%

xZ 4 22
2

X 2 2 _
207) = VAP =

VA:< —1.

Similarly |[VB|> = 1. Thusny - n3 = 1 — 1 = 0. Families S; and S;
are orthogonal.
Now check n; against ny. It suffices to check n; - VA and n; - VB.

n; - VA « (yz,xz, —xy) - (x,0,z) = xyz — xyz = 0.

n; - VB « (yz,xz, —xy) - (0,y,z) = xyz — xyz = 0.

Thus n; is orthogonal to both VA and VB, and consequently to nj
and n3. The three families form a triply orthogonal system.

£
(% 1,1,1)
8.4 Further Applications of the Gradient '
These applications connect the gradient to global properties of func- o =1
tions, such as extrema on compact sets and homogeneity. 7 (“/n“f

Example 8.4. Extremal Values on a Sphere. Find the points on the
Figure 8.5: On the unit sphere,

Dnf = Vf - nismaximised
wheren || Vf.

unit sphere x> + y? + z2 = 1 where the directional derivative of
f(x,y,z) = x + y + z along the outer normal is maximised.
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The outer normal to the sphere at p = (x,y, z) is the unit vector n =
p (since the radius is 1). The directional derivative is:

Dnf =Vf-n
Here Vf = (1,1,1).
Dnf=(1,1,1) - (x,y,z) =x+y+z.

We must maximise u = x + y + z subject to x*> + y* + z> = 1. By the
Cauchy-Schwarz inequality:

X +y+z] < VIZH12 412 /22 + 12 +22=3-1 =3

Equality holds when p is parallel to (1,1,1). Thus, the maximum
directional derivative is v/3 at % (1,1,1), and the minimum is —+/3
at % (1,1,1).

Ed
Example 8.5. A Characterisation of Constant Functions. Suppose a
differentiable function f : R*> — R satisfies the partial differential
equation:

xfx(x,y) +yfy(x,y) = 0.

We prove that f must be constant. From Euler’s Homogeneous
Function Theorem, this equation implies f is homogeneous of de-
gree k = 0.

ftx, ty) = 2f (x,y) = f(x,y).

Taking the limit as t — 0:
Fxy) = lim £ (t,ty) = £(0,0)

Thus f(x,y) is constant everywhere. Alternatively, in polar coor-
dinates, the operator xdy + yd, is equivalent to rd,. The equation
becomes r% = 0, implying f depends only on 6. Continuity at the
origin then forces f to be constant.

Eal

8.5 Optimisation with Constraints: Lagrange Multipliers

In single-variable calculus, finding extrema of a function often in-
volves identifying critical points where the derivative vanishes.

For functions of several variables, this idea generalises to critical
points where the gradient is zero. However, many practical problems
involve finding extrema subject to certain side conditions or con-
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straints. These constraints restrict the domain to a curve or surface,

analogous to finding extrema on a closed interval in one dimension.
The method of Lagrange multipliers provides a powerful technique

for locating potential extrema of a function f subject to a constraint

g = 0. While it does not guarantee the existence of such extrema, it
identifies candidate points where they might occur.

Definition 8.2. Local and Global Extrema.
Let f : D C R" — R be a function.

such that f(x) < f(a) for all x € B(a,d) N D.

such that f(x) > f(a) for all x € B(a,d) N D.

3. If S C Dand f(a) > f(x) forall x € S, then f(a) is a maximum
of fonS.

4. If S C Dand f(a) < f(x) forall x € S, then f(a) is a minimum
of fonS.

imum or minimum.

Theorem 8.2. The Method of Lagrange Multipliers.

Let f: D CR" — Rand g: D C R" — R be continuously differen-
tiable functions with Vg(p) # 0 for all p on the level set S = {x €
D | g(x) = c}. If f attains a local extremum on S at a point pg € S,
then there exists a scalar A (the Lagrange multiplier) such that:

Vf(po) = AVg(po).

il
We present the proof for the n = 2 and n = 3 cases, which are
illustrative of the general principle.
Case n = 2 (Constraint Curve)
Suppose f has a local maximum at pg = (xg, o) on the level curve

¢(x,y) = c. Letr(t) be a smooth path parameterising g(x,y) = ¢
such that r(0) = py. Since r(t) lies on the level curve, g(x(t)) = c for
all t in some interval. The function h(t) = f(r(t)) has a local maxi-
mum at t = 0. By Fermat’s Theorem from single-variable calculus,
h'(0) = 0. Applying the Chain Rule, we get:

W (t) = Vf(x(t)) 7' (t).
So, W'(0) = Vf(po) - ¥(0) = 0. This means Vf(py) is orthogonal

1. f has a local maximum at a € D if there exists an open ball B(a, d)

2. f has alocal minimum at a € D if there exists an open ball B(a, ¢)

Maximum and minimum values are collectively called extreme values.
If the domain S is the entire domain of f, these are called global max-

Figure 8.6: Constrained opti-
misationon g(x) = c¢. Atan
extremum, Vf || Vg: the objec-
tive’s steepest direction aligns
with the constraint’s normal.



MULTIVARIABLE CALCULUS & IMPLICIT FUNCTIONS

to the tangent vector r'(0) of the curve. Similarly, since g(x(t)) = ¢,
differentiating with respect to t gives:

Vg(x(t)) -¥'(t) =0.

Att = 0,Vg(po) - r(0) = 0. Thus, both Vf(pg) and Vg(po) are
orthogonal to the tangent vector ' (0). In IR?, if two vectors are both
orthogonal to the same non-zero vector, they must be collinear.
Therefore, there exists a scalar A such that Vf(pg) = AVg(po).

S 4

Case n = 3 (Constraint Surface)

Suppose f has a local maximum at py = (x0,Y0,20) on the
level surface g(x,y,z) = c. Let r(t) be any smooth path on
the surface ¢(x,y,z) =  csuchthatr(0) = po. Asin the
n = 2case h(t) = f(r(t)) has alocal maximum att = 0, so
W(0) = Vf(po) - r'(0) = 0. Also, Vg(po) - ¥'(0) = 0. These con-
ditions imply that both V f(pg) and Vg(po) are orthogonal to the
tangent vector r'(0) of any curve passing through py on the surface.
Since this holds for all such curves, it means V f(pg) and Vg(po)
are both normal to the tangent plane of the surface g = c at po.
As established in the Theorem on Normal Vector to Level Surfaces,
such normal vectors must be collinear. Therefore, there exists a
scalar A such that Vf(po) = AVg(po)-

LB 4
The method does not guarantee that the solutions correspond to
maxima or minima, nor does it guarantee their existence. If the con-
straint set is closed and bounded (i.e., compact), and f is continuous,
then extrema are guaranteed to exist by the Extreme Value Theorem.

Examples of Lagrange Multipliers

Example 8.6. Distance to a Hyperbola. Find the points on the
hyperbola x> — y? = 1 closest to the origin.

We minimise the squared distance f(x,y) = x? + y? subject to the
constraint ¢(x,y) = x> —y*> —1 = 0. The gradients are Vf =
(2x,2y) and Vg = (2x, —2y). The Lagrange multiplier equation
Vf = AVg yields:

2x =2Ax = x(1—A)=0
2y= -2y = y(1+A)=0

From x(1 — A) = 0, we have either x = Oor A = 1. Ifx = 0, the
constraint becomes —y? = 1, which has no real solutions. So x # 0.
Thus, we must have A = 1. Substituting A = lintoy(1+A) = 0
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givesy(l+1) = 0 = 2y = 0 = y = 0. Substitute
y = Ointo the constraint: x> — 0> = 1 = x> =1 =
x = =£1. The candidate points are (1,0) and (—1,0). The distance
squared at these points is f(1,0) = 12 +0?> = land f(-1,0) =
(-=1)2 + 0> = 1. The minimum distance to the origin is 1. The hy-
perbola is unbounded, so there is no maximum distance.

E
Example 8.7. Extrema on the Unit Circle. Find the extrema of
f(x,y) = x> — y* on the unit circle g(x,y) = x> +y*> — 1 =0.

The gradients are Vf = (2x, —2y) and Vg = (2x,2y). The Lagrange
multiplier equations are:

2x =2Ax = x(1—A)=0
—2y=2\y = y(1+A)=0

From these, we have:
- IfA=1:Theny(1+1) =0 = y = 0. The constraint x*> + y?> =
1 implies x> =1 == x = £1. Candidate points: (£1,0).

- If A = —1: Then x(1 — (=1)) =0 = x = 0. The constraint x> +

y?> = 1implies y> = 1 = y = +1. Candidate points: (0, £1).
Evaluating f at these points: f(+1,0) = (£1)2 - 0> = 1.
£(0,£1) = 0> — (£1)2 = —1. The maximum value is 1 (at (£1,0)),
and the minimum value is —1 (at (0, £1)). The unit circle is com-
pact, so these extrema are guaranteed to exist.

ki
Example 8.8. Closest Point on a Plane. Find the point on the plane
2x — 2y + 6z = 12 closest to the point (2,3,4).
We minimise the squared distance f(x,y,z) = (x —2)% + (y — 3)% +
(z — 4)? subject to g(x,y,z) = 2x — 2y + 6z — 12 = 0. The gradients
are Vf = (2(x —2),2(y — 3),2(z —4)) and Vg = (2,—2,6). The La-
grange multiplier equation gives:

2x—2) =21 = x—2=A
2(y—3)=—-20 = y—3=-A
20z—4) =6 => z—4=3A

From these, we express x,y,zintermsof A:x = 2+ A, y =
3 - A, z = 4+ 3A. Substitute these into the plane equation:
224A)—=2(3—A)+6(4+31) =124+20—6+2A +24+ 181 =12
224+ 220 = 12220 = —-10 = A = —10/22 = —5/11. Substitute A
back to find the point: x =2 —-5/11 =17/11y = 3+5/11 = 38/11
z = 4+3(-5/11) = 4—-15/11 = 29/11. The closest point

N
LN

Figure 8.7: Level curves of

f(xy) = x> + y* (green
circles) and constraint
gx,y) = ¥ —y* = 1 (red

hyperbola). Gradients align at
the extremal points.
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is (17/11,38/11,29/11). This problem is one where common
sense tells us a minimum exists (a point to a plane). The Lagrange
method identifies this unique point.

Eid)
Example 8.9. Maximising Box Volume. A rectangular box without
a lid is made from 12 m? of cardboard. Find the maximum volume
of such a box.
Let the dimensions be x,y, z. The volume to maximise is
V(x,y,z) = xyz. The surface area (without a lid) is A(x,y,z) =
xy + 2xz + 2yz = 12. This is our constraint g(x,y, z) =
xy + 2xz + 2yz — 12 = 0. The gradients are VV = (yz,xz,xy)
and Vg = (y + 2z, x + 2z,2x 4 2y). The Lagrange equations are:

yz=Ay+2z) (1)
xz=Ax+2z) (2)
xy =A2x+2y) (3)

Assume x,y,z # 0 (otherwise V. = 0, which is not a maximum).
Also,if A = 0, then yz = 0, which implies x,y,z # 0 is violated.
SoA # 0.From (1), xyz = A(xy + 2xz). From (2), xyz = A(xy +
2yz). From (3), xyz = A(2xz + 2yz). Equating the first two expres-
sions: A(xy + 2xz) = A(xy +2yz) = 2xz = 2yz.Sincez # 0,
x = y. Now equate the second and third expressions: A(xy +2yz) =
A(2xz +2yz) == xy = 2xz.Sincex # 0,y = 2z. So we have
x = yand y = 2z, which implies x = 2z. Substitute x = 2z and
y = 2z into the constraint equation: (2z)(2z) +2(2z)z 4+ 2(2z)z = 12
472 4422 + 472 = 121222 = 12 = z? = 1. Since z is a length,
z = 1. Thenx = 2z = 2andy = 2z = 2. The dimensions are
2 x 2 x 1. The maximum volume is V = (2)(2)(1) = 4 m3.

.4

Extrema of Quadratic Forms on a Circle

A particularly illuminating application of Lagrange multipliers is
finding the extrema of a quadratic form on a circle. This result forms
the basis for the second derivative test in higher dimensions.
Consider the quadratic form Q(x,y) = ax* + 2bxy + cy* and the
constraint g(x,y) = x> +y?> = R®. The gradients are VQ = (2ax +
2by,2bx + 2cy) and Vg = (2x,2y). The Lagrange equations VQ =
AVg are:

2ax +2by =2Ax = (a—A)x+by=0 (1)
2bx +2cy =20y = bx+(c—A)y=0 (2)
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We also have the constraint x> + y?> = R2. This system of linear
equations in x and y has non-trivial solutions (i.e., not x = y = 0) if
and only if the determinant of the coefficient matrix is zero:

a—A b

. C_A:(a—/\)(c—)\)—bzzo.

This is the characteristic equation. It is a quadratic equation in A:
A2 —(a+4c)A+ (ac — b*) = 0.

The solutions A are always real numbers. Let A1, A; be the two
(possibly repeated) real solutions. For each A, we find the corre-
sponding x, y values satisfying equations (1), (2), and the constraint
X2 4y? =R

Theorem 8.3. Extrema of Quadratic Forms on a Circle.
Suppose Q(x,y) = ax? + 2bxy + cy?. For a circle Sg with equation
x?> +y? = R? (R > 0), the characteristic equation (a — A)(c — A) —
b? = 0 has two real solutions, A; and A,. The extreme values of Q on
Sk are A{R? and ApR2. If Ay = Ay, Q(x,y) is constant on S with value
MR2.If Ay # Ay, let Ay < Ay. Then the minimum value of Q on Sg
is A1 R? and the maximum value is A, R2.
gt

Proof
The derivation of the characteristic equation and the reality of its
roots has been shown above. To demonstrate that Q(x,y) = AR? at
the points identified by A, multiply equation (1) by x and equation
(2) by y:

(a—A)x*+bxy =0

bxy + (c—A)y* =0
Summing these two equations: (a — A)x? + 2bxy + (c — A)y?> = 0

ax? +2bxy +cy? —A(2+y?) =0Q(x,y) —AR? =0 = Q(x,y) =
AR?. This proves that at any point (x,y) satisfying the Lagrange

T . . . =k
multiplier conditions for a given A, the value of the quadratic form Q=h
Q(x,y) is AR?. Since Q is a continuous function on a compact do-
main (the circle), its extrema exist and must be among these values. QZ = k% 5
Max X +y° =R

The smallest A gives the minimum, and the largest A gives the

maximum.
|
E le 8.10. Ext fflx,y) = Ellipse. Let f(x,vy) = .
Pl b e o) st e 1150 st )
' s T T 2 2 2
Th . 2P 8_ 2 B B onx“ + y = R“. The level
e constraintis g(x,y) = F + 5 —1 = 0. Vf = (y,x), Vg = curves of Q (ellipses) are tan-

gent to the constraint circle at
the extrema.
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(x/4,y). The Lagrange equations:

x
y= /\Z (1)
x=2Ay (2)
Substitute (2) into (1): y = )\% = /\Ty So y(1 —) =0 = y=0

orA?=4 = A =42

- If y = 0: From (1), 0 = Ax/4. If A = 0, then x = 0. (0,0) is not on
the ellipse. If A # 0, then x = 0. (0,0) is not on the ellipse.

- If A = 2: From (2), x = 2y. Substitute into the ellipse equation:
QPP = o Ll — 2=
1 = y==+11Ify=1,x=2 Point (2,1). f(2,1) = 2(1) = 2. If
y=—1,x=—2 Point (—=2,—1). f(=2,—1) = (=2)(=1) = 2.

- If A = —2: From (2), x = —2y. Substitute into the ellipse equation:
(G- R N U R
Ify =1 x = —=2. Point (-2,1). f(—2,1) = (-2)(1) = —2. Ify =
—1, x = 2. Point (2, —1). f(2,—1) = (2)(—-1) = —2.

The maximum value of f is 2, occurring at (2,1) and (-2, —1). The

minimum value of f is —2, occurring at (—2,1) and (2, —1).

E X

The nature of the critical points of a quadratic form Q(x,y) at the ori-

gin (0,0) (which is a critical point since VQ(0,0) = 0) is determined

by the values of Ay, A; from the characteristic equation:

1. If Ay, Ay > 0: Q(0,0) is a local minimum (paraboloid opens up-
ward).

2. If A1, A2 < 0: Q(0,0) is a local maximum (paraboloid opens down-
ward).

3. If A1 <0 < Az Q(0,0) is a saddle point (hyperbolic paraboloid).

4. If Ay = 0and A, > 0: Q(0,0) is a non-isolated local minimum, a
parabolic trough opening upward.

5. If Ay = 0and Ay < 0: Q(0,0) is a non-isolated local maximum, a
parabolic trough opening downward.
This classification is crucial for the multivariate second derivative

test, which we will derive using Taylor series expansions. 7 lg\‘;\\

Multivariate Taylor’s Theorem

While the linear approximation L(x) provided by the differential is Figure 8. 9 The Gaussian

sufficient for analysing local behaviour such as tangency and sen- z = (*+") (blue) and its

sitivity, it fails to capture curvature or the nature of critical points. quadratic Taylor approximation
z = 1— x% — y? (red) near the

origin.
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To distinguish between maxima, minima, and saddle points, or to
achieve higher precision in numerical estimation, we require higher-
order derivatives.

The extension of Taylor’s Theorem to multiple variables can be de-
rived by restricting a function f(x) to a line segment passing through
a point a. Parameterising the segment as r(t) = a + th, the composite
function g¢(t) = f(a+ th) is a single-variable function to which the
standard Taylor’s Theorem applies.

The Operator Notation

Let f : D C R" — R be a function of class ck (continuous partial
derivatives up to order k). We introduce the differential operator
representing the directional derivative along a vector h = (hy,..., hy):

! 0

Applying this operator k times yields the symbolic power:

k - 0 ‘
i=1
For the bivariate case h = (1, k), the binomial expansion gives:

(hdx + kdy )2 f = h* frx + 20k fry + K2 fyy.

Theorem 8.4. Taylor’s Theorem (Multivariate).
Let f : D C R" — R be of class C™*1 on an open convex set D. Let
a € D and let h be a vector such that a+ h € D. Then:

1
flath) =Y i l(h- V)](a) + Ru(h),
where the remainder term R, (h) can be expressed in the Lagrange form:

Ru(h) = - [(h- ¥)" ] (a + o)

(m+1)

for some 6 € (0,1). Alternatively, the Peano remainder form states
that Ry, (h) = o(||h]|™) ash — 0.

g
Remark.
In the quadratic case (m = 2), this expansion reveals the structure
governing local extrema. For a point a, letting x = a + h:

Fx)  f(2) + V(@) - (x—a) + 5 (x— ) Hy(a) (x ),
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where Hy(a) is the Hessian matrix of second partial derivatives.

Example 8.11. Higher-Order Expansion by Substitution. Compute
the Taylor expansion of f(x,y) = e*sin(y) about the origin up to
degree 3.

Rather than computing all partial derivatives manually, we may
utilise the known single-variable series for e* and siny:

1 1
e":1+x+§x2+6x3+~~

. 14
smy:y—gy + -
Multiplying these series and retaining terms with total degree < 3:
1, 13
flx,y) = 1+x+§x to Y-yt
1! 54 x —|—1x2 +
=Yy 6y Y 5 Yyr...
1 1
=yt+ay+ Xty =y’ +o(p?).

93
ﬁ(of 0) = 1 (from the term

%xzy, noting the coefficient in Taylor series is ﬁ fxxy).

This result implies, for instance, that

.49

Proposition 8.1. Uniqueness of Taylor Series.

If a function f of class C™ admits an expansion f(a+h) = P, (h) +
o(||h||™) where Py, is a polynomial of degree at most m, then P, is the
Taylor polynomial of f at a.

¥

This proposition justifies the substitution method used above.
Example 8.12. Limit Calculation via Expansion. Consider the func-

tion
=2 (xy) # (0,0)
flx,y)=¢ ¥
{o (x,) = (0,0)

We wish to find the Taylor polynomial of order 2. Let u = x% + y2.
Since e = 1+ u + u* + o(u?), we have:

1—(1+u+zu)
u

= —1—%144—0(14) = —1—%(x2+]/2)+0(x2+y2).

Thus, the polynomial is P>(x,y) = —1 — 322 — Jy2. It follows imme-
diately that fy(0,0) = —1 and f,,(0,0) = 0.

.41
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Classification of Critical Points

For a differentiable function f, a point a is a stationary point (or
critical point) if Vf(a) = 0. At such a point, the linear term in the
Taylor expansion vanishes, and the local behaviour is dominated by
the quadratic term:

f(a+h)—f(a) = %hTHf(a)h.

The nature of the stationary point is determined by the definiteness
of the Hessian matrix Hy(a).

Theorem 8.5. The Second Derivative Test.
be the Hessian matrix.

imum at a.
imum at a.
dle point at a.

test is inconclusive (higher order terms are required).

-

7

The Bivariate Case

For n = 2, Sylvester’s Criterion allows us to classify points using

the determinant. Let A = fyy, B = fyy, C = fyy evaluated at a. The

Hessian is H = 1; g . Let A = det(H) = AC — B%.

- If A > 0and A > 0: Local Minimum (Positive Definite).

- If A>0and A < 0: Local Maximum (Negative Definite).
- If A < 0: Saddle Point (Indefinite).

- If A = 0: Inconclusive.
Example 8.13. Classifying Extrema. Find and classify the critical

points of f(x,y) = x> — 12xy + 8y5.
Step 1: Find critical points.

Vf = (3x* — 12y, —12x + 24v*) = 0.

From the first equation, y = x?/4. Substituting into the second:

—12x +24(x?/4)? = —12x + %x4 =0 = x(x*-8)=0.

Let a be a critical point of a C? function f : R" — R. Let H = H f(a)

2. If H is negative definite (all eigenvalues < 0), then f has a local max-
3. If H is indefinite (eigenvalues have mixed signs), then f has a sad-

4. If H is singular (at least one zero eigenvalue) and semi-definite, the

Figure 8.10: A local minimum
at the origin forz = % + %
The Hessian is positive definite

1. If H is positive definite (all eigenvalues > 0), then f has a local min- with eigenvalues A = A; = 2.

Figure 8.11: A saddle point
at the origin forz = x2 — y2.
The Hessian has eigenvalues

M =27 = 2.
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The real solutionsarex = Oandx = 2. Ifx = 0,y = 0. Point
P;(0,0). If x =2,y = 1. Point P,(2,1).
Step 2: Analyse the Hessian.

6x —12
H(x,y)= | .
12 48y
At P] (0,0)
H-| 9 12 , A=0-144= —144 < 0.
-12 0
Py is a saddle point.
At P,(2,1):
H— |12 12 , A= (12)(48) — 144 = 576 — 144 = 432 > 0.
—12 48

Since A > 0 and fyy = 12 > 0, P, is a local minimum. The value is
f(2,1)=8—-24+8=-8.

B
Example 8.14. A Degenerate Case. Consider f(x,y) = (x + y)%.
The gradientis Vf = (2(x +vy),2(x + y)).
The critical points are all points on the line y = —x. The Hessian is

H = E ; .Here A = 4 —4 = 0. The test is inconclusive. How-

ever, inspection of the function reveals that f(x,y) > 0 everywhere,
and f(x,y) = 0 on the line y = —x. Thus, every point on this line is
a global minimum (non-strict). This describes a parabolic trough.

ERl

8.8 Global Optimisation Strategies

While the Hessian classifies local extrema, finding the global maxi-

mum and minimum on a domain D requires a global comparison.

Figure 8.12: A coercive function

Optimisation on Compact Sets ;
flry) = 3(2+y?) —2x+y +

If D is closed and bounded (compact) and f is continuous, the Ex- 3. As ||x|| — oo, the quadratic
treme Value Theorem guarantees the existence of global extrema. The terms dominate, guaranteeing a
algorithm is: global minimum.

1. Find all critical points in the interior of D and evaluate f.

2. Find all points where V f does not exist and evaluate f.
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3. Find the extrema of f restricted to the boundary oD.

4. Compare values.

Example 8.15. Global Extrema on a Region. Find the global ex-
trema of f(x,y) = x®> — xy + y*> — 2x + y on the region bounded
by x = 0,y = 0,x +y = 3. First consider the unbounded case to
illustrate coercivity.

Consider f on IR?. Stationary point calculation:

2x—y—2=0, —x+2y+1=0 = (x,y) = (1,0).

Hessian at (1,0): fxx = 2,fxy = =1L fyy =2 = A =3 >0.
Local minimum. Value f(1,0) = —1. Is this a global minimum? We
examine the behaviour at infinity. Converting to polar coordinates
or completing the square:

I RY S O SN O R
f(x,y)fz(x ) +2x +2y 2x +y.

The quadratic terms dominate the linear terms. As ||x|| — oo,
f(x) — oco. Thus, the function is coercive. A coercive continuous
function on R” must attain a global minimum. Since (1,0) is the
only critical point, it is the global minimum.

Now restrict to the triangle D = {x > 0,y > 0,x +y < 3}. The

interior critical point (1,0) remains feasible with value f(1,0) = —1.
On the boundary segment x = 0, f(0,y) = y?>+yfory € [0,3],
so the minimum is 0 aty = 0 and the maximumis12aty = 3.
On the boundary segmenty = 0, f(x,0) = x> —2x = (x —
1)2 —1forx € [0,3], 50 the minimumis —1atx = 1and the
maximum is 3 at x = 3. On the boundary segmentx +y = 3,
writey = 3 — xwithx € [0,3]andobtain f(x,3 — x) =
3(x — 2)?, so the minimum is 0 at x = 2 and the maximum is 12 at
x = 0. Comparing values, the global minimum on D is —1 at (1,0)

and the global maximum is 12 at (0, 3).

b
Example 8.16. Least Squares Regression. We apply minimisa-
tion to a fundamental problem in data analysis. Given data points

{(xi,yi) 1, we wish to fit a line y = ax 4 b minimising the sum of
squared errors:

n

=Y (ax;+b—y)?
i=1

This is a convex function of (a,b). We find the critical point by
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differentiating E with respect to a and b:
oE 2
> = 2) (axi+b—y)x; =0 = a) x7+b) x; =) xy;

oE

% :ZZ(axi+b—y,-) =0 = ﬂzxi+b'7’l :Zyi'

This linear system (the Normal Equations) has a unique solution

provided the x; are not all identical. The Hessian matrix is:

H — Eaq Eab _ zle‘z szi )
Epa  Epp 2 x;  2n

The determinantis 4nY_x? —  4(¥x;)?, which is strictly positive
by the Cauchy-Schwarz inequality (unless all x; are equal). Since
Eyp, = 2n > 0, the Hessian is positive definite everywhere. Thus, the
solution is a global minimum.

ER
Example 8.17. The Fermat-Torricelli Problem. Given three non-
collinear points A, B, C in the plane, find the point P that minimises
the sum of distances S(P) = PA + PB + PC.

Assuming P is not one of the vertices, the gradient VS must be
Zero.

VS =V([r—af +[lr=b[ +[[r—cf) =us+up+uc =0,

where uy4 is the unit vector from P to A. The condition ug + ug +
uc = 0implies that the three unit vectors form an equilateral tri-
angle in vector space, meaning the angles between the segments
PA, PB, PC must all be 120°. This point exists inside the triangle
only if no angle of AABC exceeds 120°. If an angle is >  120°, the
minimum occurs at that vertex.

.49

8.9 Global Optimisation

While the method of Lagrange multipliers identifies stationary points
on the boundary or constraint manifold, it does not, by itself, deter-
mine the global extrema of a function. To find the absolute maximum
and minimum of a differentiable function f on a compact domain D,
we must employ a strategy analogous to the "closed interval method"
from single-variable calculus.

155
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The Closed Set Method

The Extreme Value Theorem guarantees that a continuous function
on a closed and bounded (compact) set D C IR" attains its global
maximum and minimum values. Since any local extremum in the
interior of D must be a stationary point, and any extremum on the
boundary 9D must be a constrained extremum, the search can be
systematised as follows.

Theorem 8.6. Global Optimisation Algorithm.

Let f : D — R be a continuous function on a compact set D with a

piecewise smooth boundary dD. To find the global extrema:

1. Interior Analysis: Find all critical points of f in the interior of D
(where Vf = 0 or is undefined). Evaluate f at these points.

2. Boundary Analysis: Find the extrema of f restricted to the bound-
ary oD. This may be achieved by parameterising the boundary or

using Lagrange multipliers. Evaluate f at these points. Pryax
3. Comparison: Compare all function values found in steps 1 and 2. oD
The largest is the global maximum; the smallest is the global min- oD
imum.
w5 (—2,0) (0,0) (2,0)
Example 8.18. Extrema on a Half-Disk. Find the global maximum Figure 8.13: Candidates for
and minimum of f(x,y) = x* + y* — 4xy + 1 on the half-disk global extrema on the half-disk
D={(xy) ER? | x*+y> <4,y >0} include interior critical points
Step 1: Interior Critical Points. We solve Vf = 0: (blue) and boundary extrema
(red).
fr=4 —4y=0 = y =13,
fy:4y3—4x:0 = x =y
Substitutingy = x2 into the second equation yields x = x?, so

x(x® — 1) = 0. The real solutions are x = 0,1, —1.
- x=0 = y=0. Point (0,0).

- x=1 = y=1. Point (1,1).

- x=-1 = y=—1. Point (-1, —1).

We examine these points with respect to D: (1,1) lies in the interior
(12+12=2<41>0).f(1,1) =1+1-4+1=-1.(-1,-1)is
not in D (since y < 0). (0,0) lies on the boundary, so we will handle
it in Step 2.

Step 2: Boundary Analysis. The boundary 90D consists of the diam-
eter segment and the semicircular arc.

(i) The Diameter Segment: y = 0,x € [-2,2]. Let g(x) = f(x,0) =
x* 4+ 1. On [-2,2], ¢'(x) = 4x3. The critical point is x = 0. Values:
<(0) =1, g(£2) =17.
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(ii) The Semicircular Arc: x = 2cost,y = 2sintfort € [0,7]. Let
h(t) = f(2cost,2sint) = 16(cos*t + sin*t) — 16costsint + 1. Us-
ing the identities cos* t + sin*t = 1 — 2sin?tcos?t = 1 — 1 sin?(2t)
and sin(2t) = 2sintcosf:

h(t) =16 <1 - ;sinz(Zt)> —8sin(2t) +1 = 17 — 8sin?(2t) — 8sin(2t).

Let u = sin(2t). As t ranges from 0 to 7, 2t ranges from 0 to 27, so

u takes all values in [—1,1]. We maximise q(x) = 17 — 8u®> — 8u on

-1,1]. g'(u) = -16u —8=0 = u=-1/2.

- Critical value: q(—1/2) =17 —8(1/4) —8(-1/2) =17 -2+4 =
19.

- Endpoints u =1: q(1) =17 -8 -8 =1.

- Endpoints u = —1: q(—1) =17 -8+ 8 = 17.
Step 3: Comparison. Collecting all candidate values:
- Interior: f(1,1) = —1.

. Diameter: £(0,0) =1, f(42,0) = 17.

- Arc: Max value 19 (where sin 2t = —1/2), Min value (on arc) 1.
Conclusion: The global maximum is 19, and the global minimum is
-1

#b

Inequalities via Optimisation

Constrained optimisation is a potent tool for proving inequalities.

By finding the maximum of a function subject to a constraint, we
establish an upper bound for all points satisfying that constraint.
Example 8.19. A Weighted AM-GM Type Inequality. Prove that for
any positive numbers a4, b, c:

11—|—b—|—c)6

b2 <10
ab“c® < 8( 6

ERil)
Proof
Let x> = a,y? = b,z> = c. The inequality is equivalent to finding the

maximum of u = x?y*z°® subject to x> + y? + z2 = K. For simplicity,
consider the equivalent problem of maximising

f(x,y,z) = In(x*y*2%) = 2Inx + 4Iny + 6Inz
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subject to the constraint ¢(x,y,z) = x*+ y> +z> = 6r? (where
x,y,z > 0). Using Lagrange multipliers:

246
Vf—/\Vg - <x,y,z> —/\<2x,2y,22>.

This yields the system:

2 1 4 2
= = 2=, S =20y = =1, é:2/\27:,2
X ATy ATz

2

Substituting into the constraint:

1 2 3 5 6 5 1
)\+A+)\76r — Af6r :>/\frz.

Thus the optimal point satisfies x> = r?, y> = 212, z> = 3r2. Evaluat-

ing the original objective function P(x,y,z) = x?y*z° at this point:

Puax = (r*)(2r%)2(3r%)3 = r? - 4r* . 27/% = 108r12.

Since6r2 = a+ b+ c,wehaver? = %b*c. Thus, ab?*c® <

108 (%)mz — 108 (%)6

8.10 Extrema of Implicit Functions

Frequently, the objective variable z is not given explicitly as z =
f(x,y) but is defined implicitly by an equation F(x,y,z) = 0. While
one could use the Implicit Function Theorem (t/icorem 77.1) to compute
derivatives and set them to zero, it is often more efficient to treat

the problem as a constrained optimisation where we optimise the
coordinate function z subject to the constraint F(x,y,z) = 0.

The Method of Lagrange Multipliers for Implicit Surfaces
To find the extrema of z subject to F(x,y,z) = 0, we set up the La-
grangian with objective function h(x,y,z) = z:
L(x,y,2,A) =z+ AF(x,y,2).

The stationarity conditions are:

Ly=AF, =0

Ly, =AF, =0

EZ - 1 + )\‘PZ - 0

F(x,y,z) =0

>

Figure 8.14: An ellipsoid

2
;‘—i + Z—Z +i—§ = 1. The ex-
trema of z occur where VT is
vertical, i.e.,, F, = F, = 0.
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From the third equation, A = —1/F,, which implies A # 0 (assuming
F, is finite). Thus, the conditions F, = 0 and F, = 0 must hold. This

recovers the direct method result: the extrema of the implicit surface

z(x,y) occur where the normal vector to the surface F = 0 is vertical

(parallel to the z-axis), i.e., VF = (0,0, F,).

Example 8.20. Extrema of an Implicit Surface. Find the extrema of
the function z = z(x, y) determined by the equation:

2x2+y2+zz+2xy—2x—2y—4z+4:0-

Let F(x,y, z) be the left-hand side. We identify the stationary points
where F; =0 and F, = 0:

Fr=4x+2y—-2=0 = 2x+y=1.

F,=2y+2x—-2=0 = x+y=1

Solving this linear system yields x = 0,y = 1. Substitute these coor-
dinates back into the defining equation to find the corresponding z
values:

2(0)2 4 (1)2 422 +2(0)(1) —2(0) —2(1) —4z+4=0

1422—2—4z44=0 = 22— 4z+4+3=0.

Factoring gives (z — 1)(z — 3) = 0. The stationary points on the
surface are P;(0,1,1) and P,(0,1,3). To classify them, we could
compute the second derivatives of the implicit function, or simply
observe the geometry. Since the surface is a quadric (an ellipsoid),

z = 1 corresponds to the bottom (minimum) and z = 3 to the top
(maximum). Specifically, using the Lagrange multiplier A = —1/F;:
AtP(0,1,1),F, = 2z—4 = —-2,s0A = 1/2. AtP(0,1,3),
F, = 2z—-4 = 2,s0A = —1/2. The positive multiplier at the
minimum and negative at the maximum is consistent with the
orientation of the gradient of the constraint.

8.11 A Higher-Dimensional Rolle’s Theorem

We conclude this chapter with a theoretical result that generalises
Rolle’s Theorem to vector-valued functions. In one dimension, Rolle’s
Theorem states that if a differentiable function f vanishes at the end-
points of an interval, its derivative must vanish somewhere inside. In
higher dimensions, the "vanishing derivative" condition is subtler.
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Proposition 8.2. Rolle’s Theorem for Balls.

Let B = B(0,7) C R" be a ball and let F : B — R™ be continuous on

the closure and differentiable in the interior. Suppose there exists a non-
zero vector v € R™ such that:

v-F(x) =0 forall x € 9B.
Then there exists a point ¢ € B such that for all u € R":

v-[DF(&)u] = 0.

¥

P

Proof

Define the scalar function ¢ : B — R by ¢(x) = v - F(x). By hypoth-
esis, g is identically zero on the boundary 9B. Since g is continuous
on a compact set, it attains a global maximum and minimum. If g

is constant (zero) everywhere, then Vg(x) = 0 for all x. If g is not
constant, it must attain a non-zero extremum at some interior point
¢ € B. At this interior extremum, the gradient vanishes: Vg(&) = 0.
By the chain rule (or properties of the dot product derivative), the
directional derivative of g along any vector u is:

Dug(g) = Vg(g) -u=v- [DF(f)u.

Since Vg(&) = 0, this quantity is zero for all u. ( B - )
]

Remark (Geometric Interpretation). Figure 8.15: The surface F(B)
Letn = 2and m = 3. The image F(B) is a surface in R®. The con- with boundary in the plane
dition v - F(x) = 0 on the boundary means the edge of the surface v-.y = 0. Attheapexg, the
lies in the plane passing through the origin with normal v. The tangent plane is parallel to this
conclusion states that there is an interior point ¢ where the tangent boundary plane.

plane to the surface is orthogonal to v (i.e., parallel to the bound-
ary plane). This perfectly recovers the intuition of the Mean Value
Theorem in geometry.

8.12 Exercises

1. Tangent Lines. Find the parametric equations for the tangent line
to the curve r(t) = [t,t?,13] at the point where f = 1. Show that
this line intersects the plane z = 0 at the point (—2/3,1/3,0).

2. Normal Planes. Find the equation of the normal plane to the
twisted cubic r(t) = [t,?,13] at the origin. Show that the nor-
mal planes at t and —t are perpendicular if and only if > = ...
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(determine the value).

. Intersecting Surfaces. The surfaces x* + y*> = 2 (a cylinder) and
z = x? — y? (a hyperbolic paraboloid) intersect to form a curve T

(a) Find the tangent vector to I' at the point (1,1,0) using the
cross product of the gradients.

(b) Determine the angle at which the curve I intersects the plane
x+y+z=2

. A Constant Sum Property. Consider the surface defined by /x +
VY ++/z = +/afor x,y,z > 0. Prove that the sum of the intercepts
of any tangent plane to this surface with the coordinate axes is
constant and equal to a.

. Orthogonal Families. Show that the family of spheres x? + y +

2

z%2 = ax and the family of spheres x? + y2 + z% = by are orthogonal

at every point of intersection (excluding the origin).
. The Gradient and Level Sets. Let f : R3 — R be differentiable.

(a) Prove thatif Vf(xg) # 0, then Vf(xp) is orthogonal to the
tangent plane of the level surface f(x,y,z) = c passing
through xo.

(b) Find the points on the ellipsoid x? + 2y + 3z = 1 where the
tangent plane is parallel to the plane 3x —y + 3z = 1.

. Steepest Ascent. The temperature at a point (x,y, z) is given by
T(x,y,z) = 200¢— ¥ —3y*—92%

(a) Determine the direction of fastest temperature increase at the
point P(2, —1,2).

(b) A mosquito flies from P at a speed of v. Show that to cool
down as quickly as possible, it should initially fly towards the
origin, but with a trajectory bent towards the x-axis.

. The Discrete Laplacian. Let u(x, y) have continuous second-order
partial derivatives in a neighbourhood of (xg, o). Prove that as
h—0:

u(xo+h,yo) +u(xo — h,yo) + u(xo,yo + h) + u(xo, yo — h) — 4u(xo, yo)
hZ

— Au(xo,0) +O(IP)

where Au = tyy + uyy.

. Stationary Point Analysis. For the following functions, determine
if (0,0) is a stationary point. If so, classify it as a local maximum,
local minimum, or saddle point.

@ f(x,y)=x*—4xy+5y> -1

(b) flxy) = Vx> +y?
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10.

11.

12.

13.

14.

15.

16.

17.

© flry) = (x+y)*—y?
Classification of Critical Points. Find all stationary points for the
following functions and classify them using the Hessian matrix.

@ u(xy) =x*(y—1)?
(b) u(x,y) = 3x%y — x* —2y?
(c) u(x,y) = (1+¢¥)cosx —ye¥
Local vs Global Extrema. Consider the function f(x,y) = x> —
4x2 + 2xy — 2.
(a) Prove that f has exactly one critical point in R? and that this
point is a local maximum.

(b) Prove that f does 10 have a global maximum on RR?.

Remark.

Consider the behaviour of the function along a specific line,
such as y = 4x.

The Monkey Saddle. Analyse the critical point of f(x,y) = x3 —
3xy? at the origin.

(a) Show that the determinant of the Hessian is zero.

(b) Sketch the regions where f(x,y) > 0and f(x,y) < 0in the
xy-plane to show it is a saddle point.

Quadratic Approximation. Compute the second-order Taylor

cos x
cosy

polynomial P (x,y) for the function f(x,y) =
Use this to estimate f(0.1,0.1).

near the origin.

Constrained Quartics. Find the global extrema of f(x,y,z) =
x* + y* + z* subject to the constraint xyz = 1.

Remark.

Are the extrema maxima or minima? Is the set compact?

Linear on a Sphere. Find the extrema of u(x,y,z) = x — 2y + 2z
subject to the constraint x2 + 12 + z2 = 1. Interpret this geometri-
cally as the distance of a plane from the origin.

Trigonometric Constraints. Find the extrema of z(x,y) = cos® x +
cos?y subject to the condition x —y = Z within the square 0 <
x,y < Tt

Euclidean Distance to a Hyperplane. Use Lagrange multipliers
to find the minimum of f(x,y,z) = x* + y? + z? subject to ax +
by + cz = k, where a,b,¢,k > 0. Confirm your result matches the
standard formula for the distance from the origin to a plane.



18.

19.

20.

21.

22.

23.
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Extrema on Compact Sets. Find the maximum and minimum of
f(x,y) = sinxsinysin(x +y)

on the domain D = {(x,y) | x >0,y > 0,x +y < 7t}

Temperature Extremes. Suppose that the temperature T in the
xy-plane satisfies the differential relations:

aT

T

8x — 4y, gy

Use the method of Lagrange multipliers to find the maximum and
minimum temperatures on the unit circle x? + y* = 1.
Remark.

One must first integrate the gradient to find T(x,y) up to a con-
stant, or formulate the Lagrange condition directly in terms of
the gradient components.

Proximity to a Plane. Use the method of Lagrange multipliers to
find the point on the plane x + 2y — 3z = 10 which is closest to the
point (8,8,8).

Remark.

Minimise the squared distance function to simplify computa-
tions.

Triply Orthogonal System. Let 4, b, c be non-zero constants. Prove
that the following three surfaces are mutually perpendicular at
every point of intersection:

Syixy=az?, Sy:x*+y*+z22=0b, S3:2°+2x% =c(z>+24%).

Remark.
Compute the gradients and verify their pairwise dot products
vanish.

Optimal Design. A cylindrical soda can is to be designed to con-
tain a fixed volume V. Assume the cost of production is directly
proportional to the surface area. Determine the ratio of the height
h to the radius r that minimises the cost.

High-Degree Spherical Extrema. Find the global extreme values
of the function f(x,y,z) = xy?z on the sphere x? + y? + z> = R>.
Remark.

Consider the symmetry of the function and the constraint.
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24.

25.

26.

27.

28.

29.

Optimisation Under Threat. An agent is investigating an estate
on the xy-plane (z = 0) and must assume a position that min-
imises the rate of damage inflicted by three antagonists located at
specific coordinates:

- Antagonist A at (1,0,0) inflicts damage at a rate of 5/d?, where
d 4 is the distance to the agent.

- Antagonist B at (—1,1,0) inflicts a constant damage rate of 3
within a radius of 2, and 0 otherwise.

- Antagonist C at (1,1,3) inflicts damage at a rate of 5d%, where
dc is the distance to the agent.

Find the optimal location (x,y,0) for the agent.

Intersecting Constraints. Find the extrema of the quadratic form
2
u = §+ZT+§ (wherea > b > ¢ > 0) subject to the two
constraints:
2P+t =1
xcosx +1ycospPB+zcosy =0

where cos? « + cos? B+ cos? v=1

Remark.

This determines the axes of the ellipse formed by the intersec-

tion of an ellipsoid and a plane through the centre.

Cyclic Inequality. Let 2 > 0 be fixed. Find the minimum of
Y1 x; for x; > 0 subject to:

Under what condition on 4 does a solution exist?

Heron’s Formula via Lagrange. Prove that for a triangle with
fixed perimeter 2s, the area is maximised when the triangle is
equilateral. Use the area formula A = /s(s — x)(s — y)(s — z)
where x, y, z are the side lengths.

Maximum Volume in Ellipsoid. Find the maximum volume of
a rectangular box with sides parallel to the axes that can be in-
scribed in the ellipsoid

2 2 2
X y zz
a7+b7+c7_1'

Holder’s Inequality. Let p,q > 1such that1/p+1/g = 1.
(a) Maximise )i ; a;x; subject to } /' ; xf =1and x; > 0.

(b) Deduce that for any vectors a,b € R", [a-b| < ||a],||b][4.



30.

31.

32.

33.

34.

35.
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Euler’s Homogeneous Function Theorem. A function f : R" \
{0} — R is homogeneous of degree k if f(tx) = t*f(x) for all t > 0.
(a) Prove that if f is differentiable and homogeneous of degree &,
then x - Vf(x) = kf(x).
(b) Prove the converse: if x - Vf(x) = kf(x), then f is homoge-
neous of degree k.
Remark.

Differentiate g(t) =t~ f(tx) with respect to t.

The Envelope Theorem. Let f(x,«) be a C? function where x €
R" is the variable and « € R is a parameter. Let x*(a) be the point
where f(-, a) attains its global maximum. Let V(&) = f(x*(a),a)
be the value function. Prove that, assuming x*(«) is differentiable:

V@)= Lt @), )

Remark.
This states that the derivative of the maximum value is the
partial derivative of the objective function evaluated at the op-

timum; the variation of x* does not contribute to the first order
change.

Implicit Function Theorem Practice. The equation F(x,y,z) =
x3 +y3 + 2% + 6xyz — 1 = 0 defines z implicitly as a function of x
and v.

: o) o
(@) Find 52 and a—z.

(b) Find -2 axay at the point (0,0,1).

* Convexity and the Hessian. Let f : D — R be a C? function
on a convex set D C RR". Prove that f is convex (i.e., f(tx + (1 —
Hy) < tf(x) + (1 —t)f(y)) if and only if the Hessian matrix H(x)
is positive semi-definite for all x € D.

* Differentiation under the Integral. Let F(y) = | ah f(x,y)dx.
Using the definition of the partial derivative and the Mean Value
Theorem, prove Leibniz’s Rule: if f and % are continuous, then

Fly) = /ab Y (x,y)

Apply this to compute g'(y) for g(y) = [ e e~ cos(2xy) dx, and
hence evaluate the integral.

Conservative Fields and Clairaut’s Theorem. Consider the vector
field F(x,y) = (y® + x,x2 + ). Use Clairaut’s Theorem (equality of

165



166 GUDFIT

36.

37-

38.

mixed partials) to prove that there exists no scalar function f such
that F = Vf.

Zero Gradient Property. Let U C R" be a path-connected open
set. Prove that if Vf(x) = 0 for all x € U, then f is constant on U.

Remark.

Use the single-variable Mean Value Theorem along a path con-
necting any two points in U.

The Multivariate Mean Value Theorem. Prove that if f : R” —+ R
is differentiable on an open set containing the line segment con-
necting points p and q, then there exists a point ¢ on the segment
such that:

f(@) = f(p) =Vf(c) - (q—p).

Remark.

Parametrise the segment as r(t) = p +t(q — p) for t € [0,1] and
apply the Chain Rule.

The Method of Characteristics. Consider the system of differen-
tial equations:

dxi_ diyi

ar - oar
Eliminate dt to form a differential equation relating x and y. Solve

X.

this equation to find the geometric shape of the trajectories (level
curves) along which the motion occurs.



9.1

9
Multiple Integration

Following our exploration of local geometric behaviour via differ-
entiation, we now turn to the global properties of functions on R":
volume, mass, and accumulation. Just as the single-variable integral
aggregates values over an interval, the multiple integral aggregates
values over a region in higher dimensions. We extend the Riemann
sum construction to planar and spatial domains, establishing rigor-
ous conditions for integrability and providing computational tools
via iterated integration.

The Riemann Integral in R?

Let D C R? be a bounded closed region. We seek to define the
integral of a function f : D — R. The geometric intuition—the
volume of the solid bounded by the graph z = f(x,y) and the xy-
plane—relies on approximating the region with elementary shapes.

Partitions and Measurability

Definition 9.1. Partition and Riemann Sum.

Let D be a closed, bounded region in IR?. A partition T of D is a col-
lection of subregions {1, ...,0, } with measurable areas Ac;, whose
interiors are disjoint and whose union is D. The norm of the partition,
denoted || T||, is the maximum diameter of any subregion o;.

For a function f : D — R, a Riemann sum with respect to T is given

by:
S(f, T) =Y. f(&i,ni)Ac,

i=1
where ({;,7;) is an arbitrary sample point chosen within the subregion
0j.
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Definition 9.2. Double Integral.
The function f is Riemann integrable on D if the limit of the Riemann
sums exists as the norm of the partition approaches zero, independent

of the choice of sample points. We write:
n \\\
f(x,y)dA = lim f(&i,mi)Aa;.
/-D HTH—)OZ':Zl v l o (i)
In Cartesian coordinates, the area element is dA = dx dy. N
& Region D
To ensure this definition is well-posed, the boundary of D must not Figure 9.1: A partition of a gen-
contribute to the sum in the limit. This requires the concept of mea- eral region D into subregions.
sure zero. A set S C IR? has measure zero if, for every € > 0, S can be Subregions intersecting the
covered by a countable collection of rectangles whose total area is less boundary require careful han-
than e. dling regarding measurability.

Proposition 9.1. Lebesgue’s Criterion for Integrability.

Let D be a bounded closed region whose boundary dD has measure
zero (Jordan measurable). A bounded function f : D — R is Rie-
mann integrable on D if and only if the set of discontinuities of f in
D has measure zero.

A

¥

This proposition implies that continuous functions, or bounded
functions with discontinuities limited to a finite number of smooth
curves, are integrable.

Iterated Integrals and Fubini’s Theorem

While the definition relies on the limit of sums, the practical compu-
tation of multiple integrals is achieved by reducing them to succes-
sive single-variable integrals.

Theorem 9.1. Fubini’s Theorem.
Let R = [a,b] X [c,d] be a rectangular region. If f is continuous on
R, then:
b d d b
Joremaa= ([ swndy)as= [*( [ oo i) ay.
R Ja c Je a
3L

The integrals on the right-hand side are called iterated integrals. In
the inner integral [ Cd f(x,y)dy, the variable x is treated as a constant.
The value of this inner integral depends on x, forming the integrand
for the outer integral.
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Example 9.1. Order of Integration. LetR = [0,2] x [0, 77/2]. We
evaluate the integral of f(x,y) = ycos(xy) over R.
Using the order dx dy:

2 r/2 2 y x=m/2
dxdy = / L d
/0 /0 yeos(xy)dxdy = | L/sm(xy)} y

x=0

= /Ozsin (%) dy

= —%(cos(n) —cos(0)) = —.

If we were to integrate with respect to y first ([ y cos(xy) dy), we
would require integration by parts, which is significantly more la-
borious. This highlights the strategic importance of choosing the
optimal order of integration.

E X

General Regions

For integrable f (or nonnegative f by Tonelli), Fubini’s Theorem ex-
tends to non-rectangular regions D by introducing the characteristic
function xp(x,y) which is 1 if (x,y) € D and 0 otherwise, effectively
integrating over a bounding rectangle.

- Type I Region: D = {(x,y) |a <x <b, g1(x) <y < g(x)}.

flx,y)dA = ’ gZ(X)f(x,y)dydx.
//D /ﬂ g1(x)

- Type Il Region: D = {(x,y) |c <y <d, n(y) <x < hy(y)}.

//Df(x,y)dA = /C ‘ /hﬁ;?)f(x/y)dxdy-

Example 9.2. Volume of a Solid. Calculate the volume of the solid
bounded by the cylinder x> + y> = 1and the planesz = 0 and
z=2-—x.

The domain D is the unit disk x* +y? < 1. The height of the solid is
given by f(x,y) =2 —x.

V:/D(Z—x)dA.

Using linearity of the integral and symmetry:

V:Z/ dA—//di.
D D

Figure 9.2: The region R for t/ie-
orem 9.1. Integrate by horizontal
(dx first) or vertical (dy first)
strips.

Figure 9.3: A Type I region

bounded by y = gi(x) (lower)
and y = g2(x) (upper). Integra-
tion proceeds as | ab | ;2((;)) dy dx.
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The first term is 2 x (Area of D) = 27t. The second term integrates
the odd function x over a region symmetric about the y-axis, so it
vanishes. Thus, V = 2.

X

Applications and Interpretations

The multiple integral is a versatile tool for aggregating density func-
tions.

Definition 9.3. Physical Quantities.
Let p(x,y,z) be a density function defined on a region B C R.
1. Volume: If p =1,V = [[[;dV.

2. Mass: If p is mass density (mass/volume), M = [[[; o(x,y,z) dV.
3. Charge: If p is charge density, Q = [[[; o(x,y,2) dV.

Example 9.3. Mass of a Variable Density Box. Let B = [0,1] x
[0,2] x [0,3] be a solid with density p(x,y,z) = xyz. The total mass

3 2 g1 e
e [ [ f s
oy Jy Yyzdxdydz

is:
Since the integrand factors as f(x)g(y)h(z) and the limits are con-
stants, the integral separates:

e () () (1) - [ )2

Exia

9.3 Advanced Methods of Integration

These techniques streamline computation by reshaping domains and
simplifying integrands.

Strategic Order of Integration

Although Fubini’s Theorem guarantees that the order of integration
does not affect the result for continuous functions, the choice of order
can significantly impact the computational complexity.
Example 9.4. Computational Complexity. Consider the integral
over the unit square A = [0,1] x [0,1]:

y
I= | ——*——5dA.
/A (1+x24y?2)3/2
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Integrating with respect to y first:

1 1 y p p
I_/ </0 (1+x2+y2)3/2 y) :
y=1

—/ —(1+x*+y*)" 1/2LZde

:/0 (\/1+x2 - \/21x2> T

Using standard integrals [(u? + a2)~1/2du = In(u + Vu? + a2), we
obtain:

I=[In(x+ V1+2) —In(x + \/2+x2)}; —In <1+1ﬁ> “In (1%‘6) —1nﬁ£.

Reverse order (integrating x first) requires evaluating [(1 + x*> +

2)=3/24x. Letti =  J1+2 ield involved
y x. Letting x = 1+ y*tan 6 yields a more involve
trigonometric substitution, confirming that the first order was
preferable.

Exia

It is crucial to recognise that Fubini’s Theorem relies on integrabil-

ity. If the conditions are not met, the iterated integrals may behave
pathologically.

Example 9.5. Failure of Fubini’s Theorem. Define f on A = [0,1] x
[0,1] by a variant of the Dirichlet function:

1  if x is irrational,
flx,y) = L
2y if x is rational.

For any fixedy # 1/2, the functionx — f(x,y) is discontinu-
ous everywhere, so fol f(x, y) dx does not exist. Consequently, the
iterated integral fo dy fo x,y) dx is undefined. However, for a
fixed rational x, fo x,y)dy = fo 2ydy = 1. For a fixed irrational
X, fo x,y)dy = fo 1dy = 1. Thus, the inner integral exists for
all x, and fo dx fo x,y)dy = fol ldx = 1. The double integral
1[4 f dA does not exist because the set of discontinuities is not of
measure zero (it is the entire square), violating Lebesgue’s criterion
(proposition 9.1).

$o19]

171



172 GUDFIT

Change of Variables

The geometric flexibility of integration is greatly enhanced by coor-
dinate transformations. A change of variables substitutes (x, y) with
functions of new parameters (1, v), deforming the region of integra-
tion to a simpler shape (e.g., transforming a disk to a rectangle).

Theorem 9.2. Change of Variables Formula.

Let T: D' — D be a one-to-one transformation given by x = x(u,v)
and y = y(u,v), where x,y have continuous partial derivatives on D’.
If the Jacobian determinant

=2y 6
d(u,v) % %

is non-zero on the interior of D’, then for an integrable function f:

[ ferdy = [ st vt o)) | S0 dude,

il
The term |J| du dv represents the local scaling of area elements under

the transformation.
Example 9.6. Area of a Lemniscate. We wish to find the area en-

closed by the curve
(xZ/aZ +y2/b2)2 _ xZ/aZ _yZ/bZ‘

This equation suggests a generalised polar coordinate transforma-
tion:
x =apcosf, y="bpsind.

The Jacobian is:

acosf —apsinf

J = det [ ] = abp(cos® 8 + sin? 0) = abp.

bsinf bpcosd
Substituting into the curve equation:
(0%)? = p*cos? 6 — p?sin?f = p* = p?cos(20) = p* = cos(26).

For the right loop of the lemniscate, —7t/4 < 6 < 7t/4. Due to sym-
metry, we integrate over the first quadrant (0 < 6 < 71/4) and mul-

tiply by 4.
p /4 pv/cos260 bo) do d
Area — / A=4 / / 6.
rea= || A (abp) dp
m/4 1 ) V/cos 20 /4 1 /4
- 4ab/ [p ] d6 = 2ab/ cos(20) d = 2ab [ sin(29)} — ab.
0 2 0 0 2 0

#bl Figure 9.4: The lemniscate of
Bernoulli: p> = cos(26). When
scaled by a2 and b, the enclosed
area is ab.
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Example 9.7. A Linear Transformation. Calculate

I:/Q(x—i—y)dA,

where Q) is the region bounded by y?> = 2x, x +y = 4,and x +y =
12.

The boundaries suggest the substitution u = x +yand v = y. The
lines become u = 4 and u = 12. The parabola y> = 2x becomes
0?2 = 2(u — ), or u = v*/2 + v. To apply the formula, we need the

Jacobian ggzz ;

. Inverting the map: x =u — v, y = v.

The integration bounds for v are determined by the parabola equa-
tion2u = ©v®+2v = 0’2 +20—2u = 0. Solving for v:
v = -1+ /14 2u. Since we consider the region typically in the
upper half plane or bounded naturally, we assume the segment
between the two branches:

12 p—1+V1+2u
I = / / u-ldodu.
4 —1—+v142u

I= /12u (2\/14-7211) du.
4

Lett =+/1+2u,s0u=(t?—1)/2and du = tdt. Limits: u =4 —
t=3,u=12 = t=>5.

5121 5 5 £1° 8156
1= 2ttdt:/ o dt=|— — —| ===,
/3 2 26 3( ) 5 33 15

X

Polar Coordinates and Region Decomposition

Polar coordinates (x = rcosf,y = rsinf) are the most common
substitution, with Jacobian | = r. They are particularly effective when
domains are circular sectors or when the integrand involves x? + 2.

Example 9.8. Decomposing a Region. Consider the region
D={(xy) |2y <x*+y* < 4y,x>0}

In Cartesian coordinates, this region is the difference between two
circles tangent to the x-axis at the origin: x> + (y — 1)> < 1and
x? + (y —2)? > 4. In polar coordinates:

2rsin® < 1> < 4rsinf = 2sinf < r < 4sin6.

r=4sin@

Figure 9.5: The region D
bounded by ¥ = 2sinf and
r = 4sinf. It is simple as
a f-type region but requires
decomposition as an r-type
region.
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Since x > 0, we have § € (0,71/2). This description defines D as a
f-type region (where r bounds depend on 6):

/2 r4sinf ird

dA:/ / rcosf,rsinf)rdrde.
/D f 0 2sinf fl )

Conversely, if we view it as an r-type region (where 0 bounds de-

pend on r), we must split the integral. The radius r ranges from o

to 4. However, the condition 2sinf < r < 4sin 6 implies sinf < r/2

and sin® > r/4. From geometric inspection (figure 9.5):

- For 0 < r < 2: 0 runs from arcsin(r/4) to arcsin(r/2).

- For 2 < r < 4: 0 runs from arcsin(r/4) to /2.

This decomposition illustrates why choosing the correct "type" of
region is vital.

E X

Example 9.9. Integration over a Triangle using Polar Coordinates.
Let D = {(x,y) | 0 <y < x < 1}. We compute

/I;f(\/xz—i—yz)dA.

In polar coordinates, the line x = 1 becomesrcosf =1 = r =
secf. Theliney = xis @ = m/4. Theregionis0 < 6 < /4 and
0<r<sech.

/4 rsech
I= / f(r)rdrdé.
0 0

Alternatively, we can integrate with respect to 0 first. The maxi-
mum radius in the region is V12 + 12 = V2. The region splits at
r=1:

- For 0 < r < 1: 0 ranges from 0 to 7r/4.

- For1 <7 < +/2: The boundary is x =1, so secd > r = cosf <
1/r = 0 > arccos(1/r). Thus arccos(1/r) <0 < /4.

[= /01 </0n/4 de) f(r)rdr+/1ﬁ (/azjs(l/r) d0> F(r)yrr.

This form converts the double integral into a single-variable inte-
gral involving inverse trigonometric functions.

.41

Symmetry in Integration

Justas [ ” . f(x)dx = 0 for odd functions, symmetry in R? simplifies
double integrals.
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Proposition 9.2. Symmetry Principles.
Let D be a region symmetric about an axis or the origin.
1. x-axis symmetry: If (x,y) € D <= (x,—y) € D.

- If f(x,—y) = —f(x,y), then [[, fdA =0.

I flx—y) = F(xy), then [l FAA =2 [l .o, FAA.
2. Origin symmetry: If (x,y) € D <= (—x,—y) € D.

- If f(—x,—y) = —f(x,y), then [, fdA = 0.

These properties are immediate consequences of the change of vari-
ables (u,v) = (x,—y) or (u,v) = (—x, —y) with Jacobian |J| = 1.
Use of symmetry is highly recommended to eliminate terms before
embarking on laborious integration.

Triple Integrals

The extension of the Riemann integral to functions of three variables,
f:B C R — R, follows the same constructive logic as the double
integral. For a bounded solid region B, we define the triple integral

//Z;f(x,y,z)dv

as the limit of Riemann sums }_ f(;, 7;, ;) AV; over partitions of B,
where AV represents the volume of a sub-block.

Iterated Integration in R®

Just as Fubini’s Theorem (t/coremn 9.1) reduces double integrals to
iterated single integrals, the evaluation of triple integrals relies on
projecting the three-dimensional region onto a coordinate plane.

Definition 9.4. Elementary Regions in R3.
A region E C R? is z-simple (or Type I) if it lies between two contin-
uous functions of x and y:

E={(xy2) | (xy) €D, um(xy) <z<uxy)},

where D is the projection of E onto the xy-plane. Analogous definitions
apply for x-simple and y-simple regions.

Definition 9.5. Method of Projection (Filament Summation).
Let O C R3 be a region bounded above and below by surfaces z =

uy(x,y) and z = uy(x,y). The triple integral represents the summa-
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tion of vertical filaments:

Uz (xy)
ﬁnf(x,y,z)dV:/D[/ul(w) f(x,y,z)dz| dA,

where D is the orthogonal projection of () onto the xy-plane. This cor-

responds to the standard reduction over a Type I region.

Definition 9.6. Method of Cross-Sections (Slice Summation).
Alternatively, if () lies between planes x = a and x = b, we may view
the integral as the summation of planar slices. Let D(x) be the cross-
section of ) at a fixed x. Then:

//Qf(X,y,z)dV: /ab [//D(x)f(x,y,z)dydz dx.

This method is particularly effective when the cross-sections D(x) are
simple regions (e.g., disks or rectangles) whose parameters vary con-
tinuously with x, or when the integrand allows for immediate simpli-
fication over the slice.

For a z-simple region E, the triple integral reduces to:

uz (x,y)
Y, av = Y, dz| dA.
[Lrwwzrav= 1" oz e

Example 9.10. Volume of a Region. Let E be the region bounded
by the parabolic cylinder z = y? and the planesz = 0, x = 0, x = 1,
y = —1,and y = 1. We calculate the volume V = [[J. dV.

The region is bounded above by z = y? and below by z = 0. The
projection onto the xy-plane is the rectangle D = [0,1] x [—1,1].

1 1 yzddd 1 12dd 1 24 ys
=L = [ Faxas= [ pay= %]
-1Jo Jo zaxdy —1oy ray —1y Y 3

2

1
L3

ERl

Symmetry and Order of Integration

The strategic use of symmetry, as discussed in proposition 9.2 for R?,
is even more critical in R? to reduce computational burden.
Example 9.11. Cylindrical Wedge and Symmetry. Let B be the solid
bounded by the cylinder x> + y? = 1, the plane z = 0, and the plane
z=x+y+1 Weevaluate [[[,xdV.
The geometric description implies 0 < z < x +y + 1. The domain D
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in the xy-plane is the unit disk x> + y? < 1.

I:/D(/(JXWJrlxdz) dA:/l;x(x+y+1)dA://D(szrnyrx)dA.

Using the symmetry of the unit disk D:

- f(x,y) = x is odd with respect to x; its integral over D is o.

- f(x,y) = xy is odd in x (with y fixed) and odd in y (with x fixed);
its integral over D is o.

Thus, only the x? term survives.

I:/ x2dA.
D

Using polar coordinates for the remaining term (x = rcosf,dA =
rdrdf):
2l 1 27
I:/ / (Tzcoszg)rdrdgz (/ 1’3d1’> (/ COS29d9> :1.7-[:5_
0o Jo 0 0 4 4
Eid)

Example 9.12. Integration via Cross-Sections. Calculate I =
o (x +y) dV, where Q) is the region bounded by the planes x = 0,
x =1, and the surface 1+ x2 = u—; + Z—i
The bounding surface describes a hyperboloid-like tube expanding
along the x-axis. The cross-section D(x) at a fixed x € [0,1] is the
region:
2 2

y .z 2
2 + 2 <14 x°
This is an ellipse with semi-axes A = av1+x? and B = bv1+ x2.
Applying the method of cross-sections:

1= /01 [//D(x)(x—l—y)dydz] dx.

The inner integral splits into two terms:
(1) ﬂD(x) xdydz = x - Area(D(x)). The area of the ellipse is
mAB = m(av1+x2)(bvV1+x2) = mab(1 + x?). Thus, this
term contributes 7rabx(1 + x?).

) [y () Y4y dz. The domain D(x) is symmetric with respect to
the z-axis (i.e., (y,z) € D(x) <= (—y,z) € D(x)). Since the
integrand ¢(y,z) = y is odd, this integral vanishes.

Substituting back:

1 ) 1 3 1, 1,7 1 1\ 3
I:/ mabx (14 x%) dx = mzb/ (x+x°)dx =mab |=x"+ -x*| =mab| =+ - | = —7mab.
0 0 2 4 |, 2 4 4

Attempting this via the projection method onto the yz-plane would
require handling the projection of the bounding surfaces x = 0 and
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x = 1 within the hyperbolic constraints, which is significantly more
laborious.

E
Example 9.13. The Tetrahedron. Let T be the tetrahedron bounded
by the coordinate planes and the plane x 4+ y +z = 1. We calculate
the volume.
The plane equation yields z = 1 — x — y. The projection onto the xy-
plane is the triangle bounded by x = 0,y = 0,and x +y = 1 (ob-
tained by setting z = 0).

1 rl—x 1fxfyddd 1 rl—x dvd
B A T IR
0 Jo J0 “eyax 0 Jo ( * y)yx 1

1-x 1
= /01 [(1 —X)y — ;yz]o dx = /01 %(1—x)2dx = {—é(l —x)“q’}0 = % ,
#bl 1
Example 9.14. Changing Order of Integration. Consider the iter- *
ated integral I = [y [ J''" 6xzdy dxdz. Figure 9.6: The tetrahedron
Here, the region E is defined by 0 <z < 1,0 < x <z,and 0 <y < boundedby x +y +z =
x + z. Integrating first with respect to y: The order of integration cor-

1,z 1oz ) responds to slicing the solid
I= /0 /0 6xz(x+z)dxdz = /0 /0 (6x°z + 6xz°) dx dz. parallel to the axes.

= /1 {Zx?’z + 3x222} Tz = /1 (2z* +3z%)dz = /1 5z4dz = 1.

0 x=0 0 0
Arbitrarily changing the bounds without geometric analysis is
impossible. For instance, to integrate dz first, one must invert the
dependencies x < z < 1 and determine how y bounds z (since

y<x+z = z>y-—x).

E X

Geometric Analysis and Visualisation

The successful evaluation of multiple integrals often depends on the
initial geometric analysis before any calculus is performed.

1. Schematic Construction: Always sketch the region. For 3D re-
gions, identify the projection onto the coordinate planes and the
"entry" and "exit" surfaces for the innermost variable.

2. Intersection Analysis: Explicitly calculate the curves of intersec-
tion between boundary surfaces. For example, the intersection of
x? +y*+ 22 = R? and x? + y?> = Rx is a curve on the sphere that
projects to a circle in the xy-plane.

1.
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3. Symmetry Exploitation: Before integrating, check for invariance
under reflections (x — —x). If the region is symmetric and the
function is odd, the integral is zero. If even, the domain can be
reduced.

Remark.

In the context of mechanics, the method of cross-sections corre-

sponds to summing the moments of thin laminae, whereas the

method of projection corresponds to summing the moments of lin-
ear filaments. The choice of method should align with the "natural"

decomposition of the physical object.

9.5 Coordinate Systems in R3

While Cartesian coordinates suffice for rectangular boxes, regions
with rotational symmetry require coordinate systems that respect
their geometry. thecoren 9.2 extends naturally to R3.

Definition 9.7. Jacobian in R5.
Let T : S — R be a transformation given by x = x(u,v,w), y = y(u,v,w),
z = z(u,v,w). The Jacobian determinant is:

ox,y,z) _ S oy 9y
3 =det |52 £ 2
(u’v’w) dz dz 0z

Ju Jv Jw

Theorem 9.3. Change of Variables in R>.
If T is a C! diffeomorphism (except possibly on a set of measure zero),
then:

//Rf(x,y/Z)dV = ﬁsf(T(u,v,w)) ‘m‘ du do dw.

Cylindrical Coordinates

Cylindrical coordinates extend polar coordinates by adding the z-
axis.
x=rcosf, y=rsinf, z=z.

The Jacobian is:

cosf —rsinf 0
J=det |sinf rcosf 0| =r.
0 0 1
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Thus, the volume element is dV = rdz dr dé.

Example 9.15. Volume of a Solid Between Surfaces. Find the
volume of the region E bounded above by the paraboloid

z = 18 — 2x* — 2y? and below by the plane z = 0.

In cylindrical coordinates, the paraboloid is z = 18 — 2r2. The inter-
section with z = 0 occurs at 18 —2r> =0 = r =3.

21 3 ,18—2r2 27 3
V:/ / / rdzdrd@:/ de/ r(18 — 2/2) dr.
o Jo Jo 0 0

3
=27 {9# — 1#} =27 (81 - E) = 81m.
2 |, 2

$o19]

Spherical Coordinates

Spherical coordinates (p, 6, ¢) are defined by:

x =psingcosh, y=psingsind, z = pcosg.

Here p > 0 is the distance from the origin, 0 < ¢ < 7t is the polar
angle (from the positive z-axis), and 0 < 6 < 27 is the azimuthal
angle.

Claim 9.1. Jacobian of Spherical Coordinates.

oley,2) _ —p?sin¢.

Ao, ¢,0)
Note

The sign depends on the chosen parameter ordering; the volume
element uses |]|.

Taking the absolute value, the volume element is dV = p? sin ¢ dp d¢p d6.

ik
Proof
Expanding the determinant:

singcosf® pcosdpcosd —psingsind
J = det |singsin® pcos¢sind psingcosd
cos ¢ —psing 0
Straightforward computation (using cos?> + sin’ = 1) yields
—p?sin ¢.
n

Figure 9.7: A cylinder in R3.
In cylindrical coordinates
(r,6,z), the volume element
isdV =rdrdfdz.

Figure 9.8: The paraboloid

z = 18 — 2r? bounded below by
z = 0. The volume beneath is
computed via cylindrical coor-
dinates.

Figure 9.9: A sphere in spher-
ical coordinates (p, ¢, 0).
The volume element is

dV = p?sinpdode db.
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Example 9.16. Moment of Inertia of a Sphere. Let B be a ball of ra-
dius R with constant density 6. We calculate the moment of inertia
about the z-axis,

L :ﬁ&(x%yz)dv.
B

In spherical coordinates, x> + y?> = (psin¢)?. The region is 0 < p <
R 0<¢<m0<0<2m.

2m rm R
2:5/0 /O/O(p2sin2¢)(p2smq>)dpd¢d9.

Separating variables:

L :5</02nd6) </0Rp4dp) </0nsin3<pd¢>.

The integrals are 277, R%/5, and fon(l —cos? ¢)sinpdp = 4/3.

R°4  8mR®

l=0@m)53= "5

Since the mass M = %nR3(5, we can rewrite this as I, = %MRz.

el
Example 9.17. Volume of an Ellipsoid. Calculate the volume of the
region E defined by ;—; + Zé + i—i <L
We use the generalised coordinate transformation x = au,y =
bv,z = cw. The Jacobian is abc. The region E transforms into the
unit ball B in uvw-space.

V= ﬁ av = /// (abc) du dvdw = abc x Vol(B) = %nabc.
E B

.4

Applications: Center of Mass

For a solid E with density function §(x,y,z), the massis M =
[z 64V and the centre of mass (,7,2) is given by the moment in-

tegrals:
zZ= %%zé(x,y,z)dV.

Example 9.18. Center of Mass of a Conical Solid. Find the centre of
mass of the solid E bounded above by the sphere x> + y> +z2 = 1
and below by the conez = y/x% + y?, assuming constant density
o=1.

By symmetry, ¥ = 7 = 0. In spherical coordinates, the sphere is p =

Figure 9.10: An ellipsoid

x2 yz
2t ot
umeis V =

2 _
C2

1
3 7tabce.

1. Its vol-
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1. The cone z = r corresponds to ¢ = 7r/4. Thus 0 < ¢ < /4.

2t /4 1 371 ) V2
. 1Y 4 T
M:/O /0 /Op251n¢dpd4>d6:27r {3]0[—@54)}61/ :3<1—2 .

The moment M,y is:

fow - [ [loosvsnsiapn-sn 5] [259]" -5

s /8 _ 3 ~
Thus, z = 5p = 60_1/3) ~ 0.64.

Figure 9.11: The ice-cream cone
. . . . ion: bounded above by the

.6 Techn n Tr I ration reglon Y
9-6 Techniques i iple Integratio sphere p = 1 and below by the

While tieorems 9.1 and 9.3 provide the theoretical infrastructure for cone ¢ = 77/4.

multiple integration, complex problems often require a synthesis

of geometric decomposition and algebraic manipulation. We now
examine regions formed by the intersection of curved surfaces and
integrals involving quadratic forms, which bridge calculus and linear
algebra.

Decomposition of Complex Regions ]
2

When a region () is defined by the intersection of multiple surfaces,

the boundary description often changes within the domain. In such

cases, one must decompose () into subregions where the bounds

are defined by single analytic functions, effectively applying the z=R/2-- Q -
additivity of the integral.

Example 9.19. Intersection of Two Spheres. Evaluate \ ,

I— // 24V,
o) ~.. _ -

where Q) is the region common to the spheres x? + y? + z? < R? and
x4+ 1% 422 < 2Rz Figure 9.12: Cross-section of the

The second inequality may be rewritten as x* + y? + (z — R)?> < R?, region () in the yz-plane. The

representing a sphere of radius R centred at (0,0, R). The in-

tersection of the boundary surfaces x> + y? + z2 =  R%Zand
x?2 +y* 4+ 22 = 2Rz occurs where R*> = 2Rz, yielding the plane
z = R/2. Geometrically, (2 is a lens-shaped region symmetric about

integration splits at the intersec-
tion plane z = R/2.

the z-axis.

The region naturally splits at z = R/2:

1. O (lower part): 0 < z < R/2. Bounded by the sphere x> + y? +
72 < 2Rz.
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2. O, (upper part): R/2 < z < R. Bounded by the sphere x> + > +
72 < R2,

Using the "slicing" method, we fix z and integrate over the circu-

lar cross-section D(z). For Q)y, the condition x*> + y> < 2Rz — 22

implies the area of D(z) is 7(2Rz  —  z2). For (), the condition

x? +y? < R? — 22 implies the area of D(z) is 71(R? — z2). Thus:

R

1= /OR/Z 2 [n(ZRz - zz)} dz + z? [n(R2 - zz)} dz.

R/2

Evaluating these single-variable integrals:

R/2 1 1 | R/? 11 nR®
_ R34 — | ZRA_ 2,5 =R [ — — — ) =2~
L n./o (2Rz°> —z%)dz n[sz 57 7R %~ 160 0

R 1 1 5% 1 1 11
I — R22_ Mgz —nlir2n L5l —ops (1LY (L _ 1))
2 TC/R/Z( ZoB)d=n 3R g =R 55 24 160

Summing these yields I = %nR?

Quadratic Forms and Linear Algebra

Coordinate transformations are not limited to geometric classes
(cylindrical, spherical). Spectral theory allows us to simplify inte-
grals involving general quadratic forms.

Example 9.20. Gaussian Integral with a Positive Definite Ma-

trix. Let Abea3 x 3 symmetric positive definite matrix, and
let Q(x) = xT Ax for x € R3. We compute:

[= .//ng eV gy,

By the Spectral Theorem, there exists an orthogonal matrix P

(PTP = I,detP = 1)suchthat PTAP = A = diag()Ay, A2, A3),
where A; > 0 are the eigenvalues of A. Consider the linear trans-
formationx = Py. Since P is orthogonal, the Jacobian is 1. The
quadratic form becomes:

x" Ax = (Py)T A(Py) = y" (PTAP)y = A1y7 + Aay3 + A3y

To standardise the region, apply the scaling transformation

Vi = u;/+/A;. The Jacobian of this second transformation is
(AMA2A3) 72 = (det A)~1/2. The region Q(x) < 1 transforms
into the unitball B = {u | u% + u3 +u5 < 1}. The integrand
becomes eVl — op,

I://ep(detA)*l/zdul duy dug.
B
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Switching to spherical coordinates for the unit ball:

1 2 el 5 .
I:m/o /0 /0 e’ p”singdp dpde.

The angular integrals contribute 477. The radial integral is

1 4rr(e—2
o PPl dp = [ef (0> —2p+2)]} =e—2. Thus, I = %.

E X

9.7 Integration in Higher Dimensions

Generalisation to R"

The Riemann integral generalises naturally to R”. Let (3 C R" be a
bounded region. We define

/Qf(x) d"x

via the limit of sums over n-dimensional hyperrectangles. The com-
putational tools—t/eorerms 9.1 and 9.3—apply verbatim, provided
one can compute the Jacobian determinant of the transformation
T:R" — R".

Hyperspherical Coordinates

To integrate over n-dimensional spheres, we employ generalised
spherical coordinates. For R*, with variables (x,y,z,w), we define:

X = rsinysin¢ cos 6

y = rsinysin ¢ sin

z = rsiny cos ¢

w=rcosy
wherer > 0, ¢,¢ € [0, 7], and 6 € [0,277). The Jacobian determinant

is given by: " )
X,Y,2,Ww

A, 9,6)
Example 9.21. Volume of a 4-Ball. Let By(a) be the region x> + y? +

= 17 sin” i sin .

] =

72 + w? < 42. The volume is:

27 nd nd a3 2 p
[ [ o [Pt g
4 A o 4)0 l[JOT’SIHIIJSIn(Pi’

Separating the integrals:

Vi = (/Oar3dr> </02nd9) (/Onsincpdqb) (/()ﬂsinzlpdgb).
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Evaluating each component:
- Radial: [{7r4]8 = %.
- Theta: 271.
- Phi: [—cos¢|f = 2.
. Psi: frr 1— cos(th dp =T
a4 m  mlat
This result is consistent with the general formula for the volume of 4
ball, Vy(a) = -2 _g" ~
an n-ball, Vn Tn/211)?
bl Figure 9.13: Volume of the unit
Example 9.22. The Hypercylinder. Consider the region E C R* de- n-ball. The volume peaks near
fined by xZ 4+ y2 < R%2and 0 < z,w < h. This represents a cylinder n =~ b5 then decreases as dimen-
in the xy-plane extended linearly in z and w. sion increases.
We use polar coordinates for (x,y) and keep z, w Cartesian.
AV =rdrdfdzdw.
h ph p2m (R R2
v [ [ [ rardodzdw = hn-2m- - = R
0o Jo 2
B

9.8 The Algebra of Volume Elements

The change of variables formula relies on the Jacobian determinant,
often justified by linear approximation of volume elements. A more
robust algebraic framework is provided by the wedge product (A) of
differential forms. This formalism explains the geometric orientation
and the "stretching" factors inherent in coordinate transformations.

Definition 9.8. The Wedge Product.

The wedge product is an associative, anticommutative operation on dif-
ferentials. The fundamental properties are:

1. dx ANdy = —dy A dx (Anticommutativity).

2. dx Adx = 0 (Nilpotency).
3. df = %du + %dv (Total Differential).

The volume element in IR" is the wedge product of the coordinate dif-
ferentials: dV =dxq A -+ Adx,.

This algebra automatically generates the Jacobian determinant. For
a linear transformation represented by a matrix A, if x = Au, then
dxy A+ ANdxy, = (det A) duq A -+ - A duy,.
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Example 9.23. Deriving the Polar Area Element. Letx = rcosf
and y = rsin 6. Taking differentials:

dx = cosOdr —rsinfdo,
dy = sinfdr 4 rcos 8 db.

Computing the wedge product:

dx Ndy = (cos@dr —rsin0df) A (sin®dr + rcos6de)
= (cos@sin@)dr Adr + (rcos®8)dr Adf — (rsin®0)dO A dr — (r*sinf cos §)dO A db.

Using dr Adr =0,d0 Adf =0, and d0 A dr = —dr A db:

dx A dy = (rcos? 6 + rsin® 0)dr Ad6 = rdr A db.

rd6,
This recovers the familiar area element dA = rdr df. dr
el !
Example 9.24. Spherical Volume Element. Using spherical coordi-
nates x = psin¢gcos6,y = psin¢gsinb,z = pcos ¢.
The differential form is dV = dx A dy A dz. The expansion involves
significant algebra, but systematic application of the wedge rules

Figure 9.14: The area element
dA in polar coordinates corre-
sponds to the differential form

S . . . rdr Adf.
simplifies terms like d¢p A d¢ to zero immediately.

dx Ady A dz = det <a<”’z)> dp Adgp Ado = p?sinpdp A dgp A db.
(e, ¢,6)

This algebraic approach validates the geometric intuition that the

volume of the infinitesimal block is the product of its side lengths:

dp, pd¢, and p sin ¢df.

.49

9.9 Integrals over Unbounded Regions

Let D C R” be an unbounded set. We seek to define [}, fdV by ap-
proximating D with a sequence of bounded, measurable subregions.

Definition 9.9. Exhaustion of a Region.

A sequence of bounded, measurable, closed regions { Km}‘,’n":1 is an ex-
haustion of D if:

1. Ky C K1 C D for all m.

2. D - U(;nozl Km

3. Any bounded measurable subset of D is contained in some Kj;,.
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Definition 9.10. Improper Integrability.
Let f : D — R be locally integrable (integrable on every bounded
measurable subset of D). We say f is improperly integrable on D with
integral I if, for every exhaustion {K,, } of D:
— i . n
I= Wlllggo/Kmf(x)d X.

If the limit depends on the choice of exhaustion or fails to exist, the in-
tegral diverges.

A critical distinction between R! and R” is the role of absolute con-
vergence. In R!, the conditional integral hlim / Eb xdx = 0 exists, even
—00

e} . ) . . .
though [~ |x|dx diverges. In R", requiring the limit to be indepen-
dent of the exhaustion enforces absolute convergence.

Theorem 9.4. Absolute Convergence Requirement.
Let f be locally integrable on an unbounded region D. The improper
integral [, fdV converges if and only if [, |f|dV converges.

L

This is stronger than the symmetric-limit notion in one dimension; it
matches absolute (Lebesgue) integrability.

This theorem simplifies the analysis significantly: for non-negative
functions, we need only test a single convenient exhaustion (typically
balls Br or hypercubes [—R, R]").

Convergence Tests

Since absolute convergence is required, comparison tests form the
primary machinery for determining integrability.

Theorem 9.5. Comparison Test.

Let f,g : D — R be locally integrable functions on an unbounded

domain D.

1. If |[f(x)| < g(x) almost everywhere and [}, gdV converges, then
Jp fdV converges.

2. If 0 < g(x) < f(x) almost everywhere and [, gdV diverges, then
Jp fdV diverges.

T3

For regions extending to infinity, the decay rate of the function rela-
tive to the volume growth determines convergence. In IR?, the area
element r dr df implies that f must decay faster than 1/ 2.
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Corollary 9.1. Cauchy Test for Radial Decay
e

Let D be the exterior of a disk, D = {x € R? | ||x|| > Ro}.
1. If [f(x)] < % for some p > 2, then [[,, f dA converges.

[Ix
C .
2. If [f(x)] > TP for some p < 2, then [[,, fdA diverges.
Proof
In polar coordinates, the comparison integral is | 133 r~Prdr =

fg; r1=P dr. This converges if and only if 1 — p < —1, i.e., p > 2.
Example 9.25. A Power-Decay Integral on an Unbounded Region.

1
= oo

forD={(x,y) |0<x<1x+y>1}
Theboundsarex € [0,1]]andy > 1 — x, so the region is

Evaluate

unbounded in the y direction. Let us define the exhaustion

D, = {(x,y) € D | x+y < n}. We employ the change of vari-
ablesu = x,v = x4+ y. The Jacobian is d(x,y)/d(u,v) = 1. The
region D, mapsto0 <u <land1<v <mn.

1 prn1q ol-r 1" 1 1
= —_ — = P _
I /0 /1 = dvdu [1_?7}1 1_p(n 1).

For the limit n — oo to exist, werequire1 —p <0 = p > 1. In
this case, I = ﬁ

E X

9.10 The Gaussian Probability Integral

The evaluation of [ e dxisa prototypical application of im-

proper multiple integration, famously solved by Poisson. It relies

on the transition between Cartesian exhaustions (squares) and polar Figure 9.15: The Gaussian sur-

exhaustions (disks). face z = e~(**+¥°). The volume
Example 9.26. The Gaussian Integral. We aim to compute beneath equals 7, yielding
[ 2
o e Vdx = /.
1= / e dx. | v
Consider the integral of f(x,y) = e~ (47" over R2. Let Sg =

[—R, R] x [—R, R] be a square exhaustion. By Fubini’s Theorem:

R R R 2
Ig = / e (V) gA = (/ e dx> </ eV dy) = </ e dx) .
SR -R -R —R
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Thus, lim Iz = I2.

R—00
Now consider the disk exhaustion Bg = {(x,y) | x> + y*> < R?}. Us-
ing polar coordinates:

| 2w rR
Jr = // e A = / / e rdrde.
By Jo Jo

Using the substitution u = r%:

1 2R 2
Jr =21 {—er } =n(1—-e K.
2 0
Taking the limit, Rlim Jr = 7. Since f > 0, the improper integral ex-
—00
ists and is unique. Thus I?> = 7, implying [ = /7.

E X

Singular Functions on Bounded Regions

The second type of improper integral arises when the domain D is
bounded but the function f is unbounded (singular) at some point or
along a curve.

Definition 9.11. Singular Points.

fine

dA = 1 dA,
/D fogda=tim [ f()

where Bc(pp) is a ball of radius € centred at the singularity py.

Analogous to the decay test at infinity, we have a growth test near
the singularity. For a singularity at the origin in R?, the integral
converges if f(r) ~ 1/rP with p < 2.

Counter-examples and Conditional Convergence

We defined improper integrability via independence of the exhaus-
tion. This effectively rules out conditionally convergent integrals. The
following example demonstrates why this restriction is necessary.
Example 9.27. Dependence on Exhaustion. Consider

22—y

fo) = oy
over IR? \ By(0).

Let us test convergence on the region E defined by x > 1,y > 1

Let D be a bounded region and f be continuous on D\ {po}. We de-

SR

N
N A

Figure 9.16: The exhaus-

tion comparison. We have

Br C Sg C BﬁR' Since f > 0,
the limits over squares and
disks must coincide.
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and 2y < x < 3y. This is an infinite sector. In polar coordinates,

f(r,0) = r Cori@e) = Cosr(fe). While the 1/7? decay suggests possible

divergence (the boundary case of the Cauchy test), we look at the

absolute value on the specific sector. On the sector 2y < x < 3y,
we have x > y, so x> — y?> > 0. Additionally, y/x € [1/3,1/2], so

oyt 1=(y/x)? 3 31 : :
27 = AR 2 5 Thus |f| > 3. Integrating this over the
sector:

6 o )
/2/ %rdrszC’/ 1alr,
o, 1 r 17

which diverges logarithmically. However, if one were to integrate
over a symmetric square [—R, R]?, symmetry arguments might lead
to a cancellation of positive and negative infinite contributions,
yielding a false "limit". Since the absolute integral diverges, the
improper integral is undefined.

Exia

9.13 Geometric Applications of Integration

Having established the rigorous framework for multiple integration,
we now turn to its applications. While the calculation of volume
and mass follows directly from the definition, more sophisticated
geometric and physical quantities require the summation of differ-
ential elements that are not merely rectangular blocks. This method,
often termed the method of differential elements, constructs the
integral by summing local contributions—weighted by geometry or
physics—over the domain.

Surface Area

To define the area of a curved surface S, we approximate it locally by
its tangent plane, analogous to approximating a curve by its tangent
line.

Definition 9.12. Surface Area Integral. z
Let S be a surface defined by the graph z = f(x,y) over a region D C
R?, where f is continuously differentiable. The area of S is given by:

Area(S) = //D \/1+ (?;>2+ (gfy()sz. ,

X

Derivation
Figure 9.17: Approximating a

Consider a small rectangle AD in the xy-plane with area AA. surface patch AS by the area of

the tangent parallelogram Ac.
The ratio of areas is determined
by the angle v between the nor-
mal n and the z-axis.
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The corresponding patch on the surface AS is approximated by

the portion of the tangent plane above AD. If n is the unit nor-

mal to the surface, and v is the angle between n and the z-axis

(the normal to D), elementary geometry yields the projection
relation AA = AS|cosy|. Forz = f(x,y), a normal vector is
N = (fx, fy,—1). Thus:

IN-k| 1

IN]| B /1 +f§+fy2.

The differential element of surface area is therefore dS =
1+ f2+ f2dA.

More generally, for a surface defined parametrically by r(u,v) =
(x(u,v),y(u,v),z(u,v)), the area element is determined by the cross

|cosy| =

dA
[ cos 7|

product of the tangent vectors r, and r.

Theorem 9.6. Parametric Surface Area.
If S is parameterised by r: D — R3, the surface area is:

Area(S) = /D |ty X 1y]| dudo = //D\/EG—deudU,

where E =1, r,,F =1, -1,,and G = 1, - 1, are the coefficients of
the first fundamental form.

g
Example 9.28. Surface Area of Revolution. Let X be the surface

generated by rotating the curve z = ¢(x) (a < x < b) about the
z-axis. We parameterise using cylindrical coordinates:

x=rcosh, y=rsinh, z=¢(r),

wherer € [a,bland® € [0,27]. The derivatives arer, =
(cosf,sinb, ¢'(r)) andrg = (—rsin6,rcos6,0). The metric coeffi-

cients are:
E=1+(¢'(r)? F=0, G=r%

Thus, the surface area is:

S—/Oznci()/ab\/r2(1+go’(r)2)dr—277/:1*\/1—1—((p’(r))zdr.

This recovers the standard formula from single-variable calculus,
derived via the summation of frustums.

Fetsl ,
Figure 9.18: A surface of

revolution generated by ro-
tatingz = +/r about the z-
axis. Its area is computed via

27 [ry/1+ ¢/ (r)2dr.



192 GUDFIT

Volumes of Moving Surfaces

A powerful application of the differential element method is calcu-
lating the volume swept by a continuously deforming surface. This
generalises the concept of a solid of revolution.

Theorem 9.7. Volume Swept by a Moving Surface.
Let V be the solid swept by a family of surfaces X; defined by ¢(x,y,z) =
t as t varies from a to b. The volume of V is given by:

Vol(V) = /h (//Zt qu)”ds) dt.

i
Proof
Consider the displacement of the surface Xt to X, as. Let
v = (X(t),y(t),Z(t)) be the velocity of a point on the surface.

Since ¢(x(t),y(t),z(t)) = t, differentiating with respect to ¢ yields:
Ve -v=1.

The normal velocity v, of the surface is the projection of v onto the

. Vo
unit normal n = &+
Vel

Ve 1
Vel Vel

Uy =V-Nn=V-

The volume of the thin shell swept out in time At is approximately
the surface area times the normal displacement v,Af. Summing
these contributions yields the integral.

Remark.

This result contains the Generalised Guldin Formula. If ; de-
scribes a planar region moving through space, the volume is the
product of the area of the region and the path length of its geomet-
ric centroid, provided the motion is orthogonal to the plane of the

region.

9.14 Physical Applications

Moments and Inertia

While the mass of a body V' is the zeroth moment of its density
1(x,y,z), higher-order moments characterise its rotational resistance
and distribution. The moments of inertia about the coordinate axes



MULTIVARIABLE CALCULUS & IMPLICIT FUNCTIONS

are defined as:

Ix://‘/(y2+z2)de, Iy:ﬁv(xz—i—zz)de, IZ://V(x2+y2)de.

These integrals represent the summation of mass elements y dV
weighted by the square of their distance from the axis of rotation.
Example 9.29. The Inverse Centroid Problem. Suppose the x-
coordinate of the centroid of the region bounded by x = 0, x = a,
y = 0, and a positive curve y = f(x) is given by a known function
g(a). We wish to reconstruct the curve f(x).
The definition of the centroid X for a planar region with uniform
density is:
o xf(x) dx

Jo fx)dx

Rearranging, we have the integral equation:

g(a)

g(@) [ feyax= [ xf(xdx.

Differentiating with respect to a (using the Fundamental Theorem
of Calculus):

g0 [ Fx)dx+ g(a)f(a) = af o).

Let F(a) = [, f(x)dx. Then F'(a) = f(a). The equation becomes a
linear differential equation for F:

g@F@) = (1=g(@)F(a) = T 5 =

Integrating implies InF(a) = [ ag: é(;z)u) da. Once F(a) is found, f(a)
is recovered by differentiation:

f(a) = % [A exp < a(i/if()a) da)} ,

where A is a constant determined by boundary conditions.

.4

9.15 Analytic Applications and Inequalities

Multiple integrals are a potent tool for proving inequalities in func-
tional analysis, often by introducing auxiliary variables to symmetrise
the problem.

193
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Integral Inequalities

We can derive bounds for single-variable integrals by embedding
them into higher dimensions.

Example 9.30. A Reverse Inequality. Let f be a positive continuous
function on [0,1] with bounds 0 < m < f(x) < M. We prove:

= () ) (4 o) = g

$45)
Proof

Let I be the product of integrals. We write this as a double integral
over the unit square D = [0, 1]2:

Symmetrising by swapping x and y and averaging:

&) | f)
:;%(ﬂ3+ﬂw)”L

Since m < f(x) < M, we have (f(x) —m)(M — f(x)) >0, so

F(0? = (M -+ m)f(x) +mM <0,
Dividing by f(x) > 0 gives

flx )+%<M+m

Integrating over [0,1] yields
fwaxemM [ B o< m
x)dx + / — < M+m.
[} fexax e [ <
Let A= [y f(x)dx and B = [j #%. By AM-GM,

A+mMB > 2vmM AB.

Thus 2vmM I < M + m, and

(M+m)2'

I<
- 4mM
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The Hélder Inequality

The generalisation of the Cauchy-Schwarz inequality to L? spaces is
naturally handled via double integration arguments.

Theorem 9.8. Holder’s Inequality.
Let O C R” be a measurable region. If f € LF(Q)) and g € L7(Q))
with1/p+1/g=1and p,q > 1, then:

£l < [I£11pl1gllg-
i
Proof
Normalise the functions by letting u = [f[/||f||, and v = |g|/|gll4-

We apply Young’s inequality for real numbers, uv < u?/p + v1/q.
Integrating over ():

/uvdvgl/u”dV+1/zﬂdV:1-1+1~1:1.
0 pJo qJa P g

Substituting the definitions of u and v yields the result.

[
Example 9.31. Continuity Estimates via Iterated Integration. Multi-
ple integrals allow us to convert bounds on partial derivatives into
bounds on the function’s oscillation (a precursor to Sobolev embed-
ding theorems). Suppose d;f = dxf on [0,1]% and [0, f| < 1. We
can prove f is Holder continuous in f. Writing the difference as an
integral:

fx,t2) — f(x,t1) :/ttz E)tf(x,r)d'r:/ttzaxxf(x,r)dr.

1 1

Integrating this identity with respect to x from a reference point ¥
to x:

X

[t = g bz = [ 0cf(5,m) = 0ef(5,7)

Using [dxf| < 1, the right-hand side is bounded by 2|t; — t1]. By
carefully choosing ¥ (using the Mean Value Theorem for integrals),
one can derive that |f(x,t;) — f(x,t1)| < Clta — t1|V/2.

.49

9.16 Exercises

1. Algebra of Integrable Functions. Let D be a region in R?.
(a) Let f, g be integrable on D. Prove that the product f - g is
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integrable on D.

(b) Let f be integrable on D such that f(x,y) # 0 for all (x,y) €
D. Prove that 1/ f is integrable on D.

2. Composite Functions. Let u = u(x, y) be integrable on D.

(a) If f(u) is a continuous function of u, prove that the composi-
tion f(u(x,y)) is integrable on D.

(b) If f(u) is merely an integrable function of u, must the com-
position f(u(x,y)) be integrable on D? Provide a proof or a
counter-example.

3. Almost Everywhere Equality. Let f, ¢ be bounded functions on D.

(a) Suppose f and g differ only on a set of zero area (Jordan
content zero). Prove that f is integrable if and only if g is
integrable, and in that case, [[, f = [, &

(b) Discuss the situation if f and g differ on a set of Lebesgue
measure zero but not necessarily zero area.

4. Integrability on Closures. Let f be bounded and integrable on the
closure D, and suppose the boundary 9D = D \ D has zero area.
We define the integral on D to be the integral on D. Discuss the
integrability of the following functions on the given domains:

x2—1

W) on D = [-1,1] x [-1,1].

@ f(x,y) = sin (

(b) f(x,y) = arctan ( ) on D = [0,1] x [0,1].

5. Maximum of Functions. Let f, g be integrable on D. Prove that

y—x?

the function defined by

h(x,y) = max{f(x,y),g(x,y)}
is integrable on D.

6. Local Mean Value Limit. Let f be continuous in a neighborhood
of Py(xg,yo). Evaluate the limit:

1 apr
lim —— // x,y) dx dv.
p—0 1102 . (X—X0)2+(y—yo)2§P2f (o) dxdy

7. Reduction to Single Integral.
(a) Prove the identity:

1
/IX\+\y|31f(x+y) dxdy = /ﬂf(u)du.

(b) Let D be the region in the first quadrant bounded by the
hyperbolas xy = 1, xy = 2 and the lines y = x, y = 4x. Prove

Consider the condition required on the
lower bound of |f].

Express max{a, b} using absolute
values.
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that:

2
/Df(xy)dxdy:h&/l f(u)du.

8. Order of Integration.

(a) Rewrite the following sum of iterated integrals as a single
iterated integral with the order of integration reversed (inte-
grating with respect to y then x):

/R/\/1+R2 Rx R /\/Rz—x2
0

[= d ) d d ) dy.
A x| flx,y)dy+ e ™ f(x,y)dy

(b) Let f be continuous on [0, 1]. Prove the reduction formula:

/01 ax ./xlf (£) dt = /O1 EF(t) dt.

Vi VR
c) Calculate the integral / d / —dx.
© &y V1+x2 42
9. Evaluations on Elementary Regions. Calculate the following
double integrals:

(a) // SH; X dx dy, where D is the triangle bounded by y = m —x,
D

x=rm,and y = 7.

(b) // (x? + y?) dx dy, where D is the region in the first quadrant
D
bounded by y = 0, y = x%, and x +y = 2.

2
(c) / a s1yn Y iy dy, where D is bounded by the parabolas
WD

x? = ay,x*> = by and y> = px,y*> = qx with 0 < a < b and
0<p<y.

d) [ \/x+y2dxdy, where D is the first-quadrant regi
(d) 5 \/7y y, where D is the first-quadrant region
bounded by y-axis, x2 + y? = a2, and x? — 2ax + y* = 0.

2 +y2)dxdy, where D is th 1 t g
(e) //Df(\/x + y?) dx dy, where D is the annulus sector {(x,y) |
yl < |x[ <1}
€3) / x dx dy, where D is bounded by xy = 1 and x? + 1> = 4.
D
(g) // |x — y?| dxdy, on the rectangle D = [0,1] x [~1,1].
D
(h) // y%dx dy, where D is the triangle bounded by y = x,y =
D
1,x=2.

10. Volume and Area Calculations.

(a) Find the volume of the solid bounded by the surface (x> +
y?)? = a?(x?> — y?) and the planes z = x> — y? and z = 0.
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(b) Find the area of the figure in the xy-plane bounded by the
four linesx +y = p,x+y = q,y = ax,y = bx, where
0O<p<gand 0 <a<bh.

(c) Find the area of the region bounded by the curve \/% +
% = 1 and the coordinate axes x = 0,y = 0.

11. Cauchy-Riemann Invariance. Let D be a region in the xy-plane
and consider the functional

I(f):/D ((gﬁ): (ng dx dy.

Let x = x(u,v) and y = y(u,v) be a differentiable transforma-
tion mapping a region () in the uv-plane to D. Prove that if the
transformation satisfies the Cauchy-Riemann equations:

ox dy  Ox oy

ou ' o

then the functional is invariant:

//D ('walz) dxdy = //Q ((gi)z + (g’;)z> du do.

12. Simplex Reduction. Prove that for any continuous function f:

[y peedy = 2 [0y fx)ax,

where D is the triangular region defined by a < x <y < b.

13. Integral Inequality. Prove the following estimate:

3
+ dxdy < 5.
Uy sl + eyl vy < 5

14. Iterated Triple Integration.

(a) Compute the integral:

1d 1—xd 1-x—z 1 *(1*y*2)2d
/0 x/o Z/o (1—y)e 12

(b) Transform the following iterated integral into cylindrical
coordinates:

/c;l dx ,/(;mdy /(: f(x,y,z)dz.

15. Volumes of Revolution. Find ﬂfﬂ(xz + y?) dx dy dz, where Q is
the region bounded by the surface generated by rotating the curve
y? = 2z (z > 0) about the z-axis, and the planes z = 2 and z = 8.
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19.

20.

21.

22.
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Intersection of Balls. Find [[[, xyzdx dy dz, where Q) is the com-

mon interior of the spheres x2 + y> + z2 < 4 and x* + y* + (z —

2)2 < 4, restricted to the first octant (x > 0,y > 0).

dxdydz
r

Newtonian Potential. Find [,
R, and r denotes the distance from a fixed point P outside the ball

, where () is a ball of radius

to the variable point of integration.
Spherical Coordinate Applications.
(a) Compute the integral I =[], xzx—fyz dx dy dz, where () is the

region bounded above by the surface (x? + y? + z%)? = a’xy
and below by the plane z = 0.

(b) Find the four-dimensional integral:

1-x2 1222 g2
//()\/1+x2+y2+22+a2 dx dy dzdu,

where the domain is likely implied to be the region where

the radicand is real and positive (verify the intended domain,
typically a hypersphere or spherical shell structure).

Differentiation under the Integral. Let f be a continuous function
with f(1) = 1. Define:

F(t) = ﬁ F(x? 4+ y* +2%) dxdy dz.
x24y2422<t2

Prove that F/(1) = 47

Integral Average. Let f(x,y,z) = /x2+y2+22. Let O C R3 be
the region defined by x > \/x2 + y? (a cone) and the spherical
shell 4 < x? 4+ y2 + z? < 16. Compute the average value of f over

f= Voll(m//ﬂf(x,y,z)dxdydz.

Generalised Change of Variables. Let the region () be bounded
by the paraboloid z = x2 + 2, the plane z = 0, and the hyperbolic
cylinders xy = 1,xy = 2, and the planes y = 3x,y = 4x. Evaluate

I://Zded.
Xy zdxdydz

Orthogonal Invariance. Use an orthogonal linear transformation

the integral:

to compute the triple integral

// cos(ax + by + cz) dx dy dz,
14

where V is the unit ball x2 + y2 + 22 <1, and a,b, ¢ are constants,
not all zero.
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23. Convergence of Improper Integrals. Discuss the convergence of
the following improper integrals:

@) // dxdy
ke T+ [x]7) (1 + yP7)
// _dxdy
[xl =1 |x[P =+ [yl
// s1nxsmyd xdy
xty>1 (x+y)P
dxdy
@ [, s
<1 (¥2 4 xy + y2)P

© / dxdy
24y2<1 (1 — (1—x2—y2)P —y2)P

24. Monotone Convergence for Integrals. Let D be an unbounded

region in IR?, and {D,} be a monotonically increasing sequence of
closed regions exhausting D (i.e., U;—; Dy = D). Prove that if f is
non-negative on D and integrable on each D, then:

[l feeaxdy = tim [ f(xy)avay,
in the sense that both sides either converge to the same value or
diverge to infinity.

25. Calculations on Unbounded Domains.

(a) Compute //D xiszz’ where D = {(x,y) | x> +y*> > 1}.

(b) Discuss the convergence of // xdx d where D is defined
D

_axdy
242
by |y| < x? and x? +y? < 1.
(c) Let f(x) be continuous on [a, A]. Discuss the convergence of

// dxdy
0, Alx[0,B] [y — f(x)[F

26. Logarithmic Integrals. Compute:

dxdy.

1
n—-
@ //x2+y2§1 1 Va2 412
(b) // In sin(x — y) dx dy, where D is the triangle bounded by
Jp
y=0,y=xand x = .

27. Volumes of Solids. Calculate the volume of the solid bounded by
the following surfaces:

(a) The planes a;x + by + cjz = *xh; for i = 1,2,3, assuming the
normal vectors are linearly independent.

(b) The surface (x? + y? +z2)? = a®z, with a > 0.

2 2 2
(c) The surface (;‘—i +4+ ié) — Zé +5.
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(d) The surface (x> +y?)? +z* = z.
Surface Areas. Calculate the area of the following surfaces:
(a) The portion of the sphere (x? + y? + z2)? = x> — y* (Lemnis-
cate envelope).
(b) The surface (x? + y? +z2)? = 2°.
(c) The surface of revolution generated by rotating a continuous
curve y = f(x) > 0,x € [a,b] about the x-axis.
Mass and Gravity.
(a) Find the mass of the paraboloid z = %(x2 +y?) for0<z<1,

given the surface density p = z.

(b) A uniform disk of radius R has density y. A uniform thin rod
of length [ and density p lies on the axis of the disk, with its
near end at distance a from the center. Find the gravitational
force exerted by the disk on the rod.

(c) A disk of radius a has a variable density equal to the distance
from the center. A hole of radius a/2 is cut out, centered at a
distance a/2 from the original center. Find the centroid of the
remaining shape.

(d) Prove that the center of mass of any convex object with con-
tinuous density must lie within the object.
Generalised Holder Inequality. Let u; € LPi(Q)) for p; > 0 and
i=1,....mIY", % =1, prove:
‘AL|M1MZ"'um|dA-§ el 12l py - - Nty

Iterated Cauchy-Schwarz. For a continuous function f, prove:

{/j Ucdf(x,y) dyrdx}l/z < ./C'd Ua'bfz(x,y) dxr/zdy,

Poincaré-Type Inequality. Suppose f(x,y) has continuous second-
order partial derivatives in a region D bounded by y = ¢(x) and
y = ¢(x). If f vanishes on the boundary curve y = ¢(x), prove
that there exists a constant K > 0 such that:

/sz(x,y)dxdng/D(gbzdxdy.

Minkowski’s Inequality. Let u,v € LP(Q)) with p > 1. Using
Holder’s inequality, prove:

[+l < l[ullp + [lollp-

Discuss the conditions under which equality holds.
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34.

35.

36.

37-

38.

39-

40.

41.

High-Order Bounds. Let f(x,y) be C* on the unit square D =
[0,1]2. Suppose f vanishes on the boundary dD and satisfies
|0%f /9x?9y?| < B. Prove:

‘//Df(x,y) dxdy‘ < %-

Localization Principle. Prove that if [}, f(x,y) dA > 0, then there
exists a closed subregion U C D such that f(x,y) > 0 for all
(x,y) € U.

Mean Value Theorem for Multiple Integrals. Let f(x) be continu-
ous on a bounded closed region (2 C IR". Prove there exists { € (2
such that:

[ fdx = £(@)-vol(@).

Chebyshev’s Integral Inequality. Let p(x) > 0 be continuous on
[a,b], and let f, g be continuous and monotonically increasing on
[a,b]. Prove:

(/ubp(x)f(x) dx) (./ubp(x)g(x) dx) < (/ﬂbp(x) dx) (/abp(x)f(x

Ratio Inequality. Let f be continuous, monotonically decreasing,
and positive on [0, 1]. Prove:

Jo 2P () dx _ Jo fA(x) dx
fol xf(x)dx folf(x)dx

Potential Bounds. Let I = ] B HiivaH where By is the ball of
radius R centered at the origin, and |[a|| = A > R. Prove:

47R3 47R3
— << ——.
3(A+R) = ~3(A—R)

Differentiation on Expanding Domains. Let D; be the cube [0, t]3.
Define F(t) = [[[,, f(xyz) dxdy dz for a continuous function f.
Prove that:

F(t) = %/Ot @du, where g(u) = /Ouf(s)ds.

Tubular Neighborhoods. Let I be a simple closed smooth curve
in the plane with perimeter L. Parameterise I' by arc length s.
Let 6(s) be the angle of the tangent vector. Let D be the region of
points at distance t < 1 from I (the "exterior" tubular neighbor-
hood).



42.

43.

44.

45.

46.

47.

MULTIVARIABLE CALCULUS & IMPLICIT FUNCTIONS

(a) Express the coordinates of a pointin D as x(s,t) = f(s) +
tsinf(s) and y(s,t) = ¢(s) — tcosB(s) (or similar normal
variation).

(b) Verify that the area of D is L + 7t (or 37l? as stated in the
source text, verify the radius ! vs perimeter L scaling).

Young'’s Inequality. Prove that fora,b >0and 1/p+1/g=1:

P —q/ppq
ab< & €T
p q

Interpolation Inequality. Let p = (1/p —1/q)/(1/9 —1/r) where
0 < p<gq<r. Prove:

[ullg < ellully + e Fllullp.

1/p
Norm Limits. Let ®, (1) = (ﬁ Jqu? dA) for a positive
function u. Prove:

(a) pETw b, (u) = max i.

(b) pg@m Dy(u) = minu.

(c) Il)ig(l) Dy(u) = exp <|10| /anudA> (Geometric Mean).

Pedal Surface Volume. Let P be a fixed point inside a sphere. For
any point Q on the sphere, let P be the foot of the perpendicular
from P to the tangent plane at Q. The locus of P forms a pedal
surface.

(a) Find the volume enclosed by this surface.

(b) Determine the direction Py should move to maximize the rate
of change of this volume.

Gaussian Error Function Bounds. Prove the inequalities:

\/E(l — e_”2)1/2 < /.a e dx < ?(1 — e—4u2/”)1/2.

2 Jo

Catalan’s Formula. Let the level curves of f(x,y) be simple closed
curves. Let S(v1,v2) be the region between levels v; and v;. Prove:

[ feydray= ["oF (o),
5(v1,02) 2}

where F(v) is the area enclosed by the level curve f(x,y) = v.
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