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Chapter 1

Ideas & Motivations

Welcome to Calculus or Analysis I (with some1 theory) by me (Gudfit). The point of these notes is to cover
everything I think is important as I build up to my current knowledge, while keeping it free and accessible
for everyone from kids to adults.

I aim for each set of notes to be max 100 pages, as rigorous as possible, and far-reaching too. That means
I’ll cover the axioms and proofs of the most interesting stuff, plus I’ll pull in other subjects we’ve already
touched on to show how math builds on itself like funky Lego. These notes build on my existing informal
logic, algebra I notes and geometry notes, and they’re aimed at keeping the proofs, ideas, and build-up of
calculus as informal as possible.

It’ll be a mix of quick ideas and concepts, but in the appendix for each section, I’ll go rigorous with the key
axioms pulled from a bunch of books.

As you browse the contents, you may notice that these notes are somewhat dense in terms of theory. This
is by design. Many standard Calculus concepts are simply extrapolations of Real Analysis; when we gloss
over these roots, it becomes difficult to see the true beauty and underlying simplicity that Calculus offers.

Consequently, we are taking the rigorous "Analysis route." We will build the machinery from the ground up
across a series of notes:

Part I (This Document): Limits and Convergence.
Part II: Topology, Functions, Differentiation, and Integration.
Part III: Multivariable Calculus.
Part IV: Calculus on Manifolds.
Part V?: Metrics Spaces.

1LOL
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Chapter 2

Number System

This chapter will act as a sort of review of the algebra, set theory, and concrete abstraction notes with some
other fun stuff sprinkled in, as the heart of analysis is the differentiation and integration of functions defined
on the real line. We are (or should be) familiar with several systems of numbers:

• The natural numbers, N = {0, 1, 2, 3, . . . }, used for counting.
• The integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }, which extend the natural numbers to include zero and their

negatives, allowing for subtraction.
• The rational numbers, Q, the set of all numbers of the form a/b where a, b ∈ Z and b ̸= 0. This set

allows for division by any non-zero number.
• The real numbers, R, which complete the rational numbers, filling in "gaps" with irrational numbers

such as
√
2 and π.

Visually, the rational numbers form a dense collection of points on the number line, yet they do not cover it
entirely. The real numbers represent the entire continuum of the number line, as suggested in Figure 2.1.

Q
-3 -2 -1 0 1 2 3

A dense set of discrete points

R
-3 -2 -1 0 1 2 3

A continuous line

Figure 2.1: A conceptual representation of the rational and real number lines.

We will define the real numbers as any set that satisfies a specific list of axioms.

2.1 The Field Axioms

The real numbers, denoted R, are a set containing two distinct special elements, 0 and 1, and equipped with
two binary operations, addition (+) and multiplication (·). This structure satisfies a collection of axioms,
labelled P1 through P13. The first nine, known as the field axioms, define a mathematical structure called
a field.

Axioms of Addition

The first four axioms govern the behaviour of addition.
Axiom 2.1.1. Additive Associativity . For all a, b, c ∈ R, a+ (b+ c) = (a+ b) + c.

5



CHAPTER 2. NUMBER SYSTEM 6

Axiom 2.1.2. Additive Identity . For all a ∈ R, a+ 0 = 0 + a = a.
Axiom 2.1.3. Additive Inverse . For all a ∈ R, there exists a number −a ∈ R such that a + (−a) =
(−a) + a = 0.
Axiom 2.1.4. Additive Commutativity . For all a, b ∈ R, a+ b = b+ a.

Additive Associativity ensures that the grouping of terms in a sum is irrelevant, so an expression like a+b+c
is unambiguous. Similarly, Additive Commutativity allows us to reorder terms in a sum without changing
the result.
Theorem 2.1.1. Uniqueness of Additive Identity. If x and a are numbers satisfying a + x = a, then
x = 0.

Remark. The proofs for elementary theorems derivable from these axioms were covered in the algebra notes
and will be omitted here.

Definition 2.1.1. Subtraction . For any numbers a, b ∈ R, we define a− b to mean a+ (−b).

Axioms of Multiplication

Multiplication behaves similarly to addition.
Axiom 2.1.5. Multiplicative Associativity . For all a, b, c ∈ R, a · (b · c) = (a · b) · c.
Axiom 2.1.6. Multiplicative Identity . For all a ∈ R, a · 1 = 1 · a = a.
Axiom 2.1.7. Multiplicative Inverse . For all a ∈ R, if a ̸= 0, there exists a number a−1 ∈ R such that
a · a−1 = a−1 · a = 1.
Axiom 2.1.8. Multiplicative Commutativity . For all a, b ∈ R, a · b = b · a.

Note. The crucial exception in Multiplicative Inverse is that 0 does not have a multiplicative inverse.

Definition 2.1.2. Division . For any numbers a, b ∈ R with b ̸= 0, we define a/b to mean a · b−1.

The Distributive Axiom

The ninth axiom connects the operations of addition and multiplication.
Axiom 2.1.9. Distributivity . For all a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c).

This axiom is fundamental to algebraic manipulation.
Theorem 2.1.2. For any a ∈ R, a · 0 = 0.
Theorem 2.1.3. If a · b = 0, then either a = 0 or b = 0.

Proof. Suppose a · b = 0. If a = 0, the statement holds. If a ̸= 0, then a−1 exists by Multiplicative Inverse.
Multiplying a · b = 0 by a−1 gives a−1 · (a · b) = a−1 · 0, which simplifies to (a−1 · a) · b = 0, so 1 · b = 0, and
thus b = 0. ■

2.1.1 The Axioms of Order

To define order, we first formally define an ordered field.

Definition 2.1.3. Ordered Field . An ordered field is a field F with a total order relation < such that for
all x, y, z ∈ F:

1. if x < y, then x+ z < y + z;
2. if x < y and z > 0, then xz < yz.
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To establish this structure for R, we introduce a set of positive numbers, P ⊂ R, and three axioms.
Axiom 2.1.10. Trichotomy . For every a ∈ R, exactly one of the following holds: a = 0, a ∈ P , or −a ∈ P .
Axiom 2.1.11. Closure under Addition . If a, b ∈ P , then a+ b ∈ P .
Axiom 2.1.12. Closure under Multiplication . If a, b ∈ P , then a · b ∈ P .

Numbers in P are called positive. Numbers a such that −a ∈ P are called negative. We define order relations
based on this set.

Definition 2.1.4. Order Relations.

• a > b means a− b ∈ P .
• a < b means b > a (or b− a ∈ P ).
• a ≥ b means a > b or a = b.
• a ≤ b means a < b or a = b.

The axioms P1–P12 define R as an ordered field. Both Q and R are ordered fields.

A Non-Ordered Field: The Complex Numbers

The axioms for an ordered field are not sufficient to uniquely characterise the real numbers, as the set of
rational numbers, Q, also satisfies all twelve. To illustrate the distinctions these axioms create, we consider
a field that fails to be an ordered field: the complex numbers.

The set of complex numbers, C, consists of elements of the form a + bi, where a, b ∈ R and i is a symbol
defined by i2 = −1. Arithmetic in C is defined as:

• Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i
• Multiplication: (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

With these operations, C satisfies the field axioms (axioms 2.1.1–2.1.9). A key result, the Fundamental
Theorem of Algebra, states that any non-constant polynomial equation has a solution in C. However, this
algebraic completeness comes at a cost.
Theorem 2.1.4. The Complex Numbers are Not an Ordered Field. It is not possible to define a
subset of "positive" complex numbers P ⊂ C that satisfies the order axioms Trichotomy, Closure under
Addition, and Closure under Multiplication.

Proof. Assume for contradiction that such a set P exists. Consider the element i. Since i ̸= 0, by Trichotomy,
either i ∈ P or −i ∈ P . In any ordered field, the square of a non-zero element must be positive. If i ∈ P ,
then i2 = −1 ∈ P by Closure under Multiplication. If −i ∈ P , then (−i)2 = −1 ∈ P by Closure under
Multiplication. In both cases, we must have −1 ∈ P . However, we also know that 12 = 1, so 1 ∈ P . By
Trichotomy, if 1 ∈ P , its additive inverse, −1, cannot be in P . This is a contradiction. Therefore, no such
ordering is possible. ■

Theorem 2.1.5. Properties of Inequalities. For a, b, c ∈ R:

1. If a < b, then a+ c < b+ c.
2. If a < b and c > 0, then ac < bc.
3. If a < b and c < 0, then ac > bc.
4. If a < b and b < c, then a < c (Transitivity).
5. a2 ≥ 0 for all a ∈ R, and a2 = 0 if and only if a = 0.

You should be able to prove this by now.



CHAPTER 2. NUMBER SYSTEM 8

Absolute Value

If you’ve read my previous notes you should know that the absolute value measures a number’s magnitude.

Definition 2.1.5. Absolute Value . For a real number a, its absolute value, denoted |a|, is defined as
|a| =

√
a2. This is equivalent to:

|a| =

{
a if a ≥ 0

−a if a < 0

Theorem 2.1.6. Properties of Absolute Value. Let a, b ∈ R and ϵ > 0.

1. |a| ≥ 0, and |a| = 0 ⇐⇒ a = 0.
2. |ab| = |a||b|.
3. |a| < ϵ ⇐⇒ −ϵ < a < ϵ.
4. |a| > ϵ ⇐⇒ a < −ϵ or a > ϵ.
5. Triangle Inequality: |a+ b| ≤ |a|+ |b|.
6. Reverse Triangle Inequality: ||a| − |b|| ≤ |a− b|.

The triangle inequality generalises to any number of terms: |a1 + · · ·+ an| ≤ |a1|+ · · ·+ |an|.

Note. If you haven’t already you can and should prove this using induction.

So why am i reintroducing the absolute value function? well this function appears so frequently in calculus,
most notably in the definitions of limits and continuity. The standard approach to expressions involving
absolute values is to break the problem into cases, such that within each case, the absolute value signs can
be removed.

Example 2.1.1. Solving an Inequality with Absolute Values. Find all real x such that |x− 1|+ |x− 2| > 1.

The expressions change sign at x = 1 and x = 2. We consider the intervals defined by these points.

Case 1: x < 1. Here |x − 1| = −(x − 1) = 1 − x and |x − 2| = −(x − 2) = 2 − x. The inequality is
(1− x) + (2− x) > 1, which simplifies to 3− 2x > 1, or x < 1. This holds for all x in this case, so the
interval (−∞, 1) is part of the solution.

Case 2: 1 ≤ x ≤ 2. Here |x− 1| = x− 1 and |x− 2| = 2− x. The inequality is (x− 1) + (2− x) > 1, which
simplifies to 1 > 1. This is false, so there are no solutions in this interval.

Case 3: x > 2. Here |x − 1| = x − 1 and |x − 2| = x − 2. The inequality is (x − 1) + (x − 2) > 1, which
simplifies to 2x− 3 > 1, or x > 2. This holds for all x in this case, so the interval (2,∞) is part of the
solution.

Combining the results, the solution set is (−∞, 1) ∪ (2,∞).

Example 2.1.2. An Inequality for Large x. Prove that there exists a number M > 0 such that for all real
numbers x > M , the following inequality holds:∣∣∣∣ x2

x2 + x− 2
− 1

∣∣∣∣ < 1

10
.

Proof. First, we simplify the expression within the absolute value:∣∣∣∣ x2

x2 + x− 2
− 1

∣∣∣∣ = ∣∣∣∣x2 − (x2 + x− 2)

x2 + x− 2

∣∣∣∣
=

∣∣∣∣ −x+ 2

x2 + x− 2

∣∣∣∣ = |2− x|
|(x− 1)(x+ 2)|

.
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The problem requires the property to hold for all x > M . We are free to choose M as large as needed to
simplify the analysis. Let us search for an M > 2. For any x > M , we then have x > 2, which implies
x− 1 > 1, x+ 2 > 4, and x− 2 > 0. Consequently, |2− x| = x− 2 and the denominator is positive, so the
expression simplifies to:

x− 2

(x− 1)(x+ 2)
.

To show this expression is less than 1
10 , we find a simpler upper bound. For x > 2, we know that x−2 < x−1.

As the denominator is positive, we can write:

x− 2

(x− 1)(x+ 2)
<

x− 1

(x− 1)(x+ 2)
=

1

x+ 2
.

Therefore, the original inequality is satisfied if we can find an M such that for all x > M ,

1

x+ 2
<

1

10
.

This is equivalent to x+ 2 > 10, which simplifies to x > 8.

By choosing M = 8, we satisfy our initial assumption (M > 2) and the final condition. For any x > 8, all
steps in the argument are valid, and we have∣∣∣∣ x2

x2 + x− 2
− 1

∣∣∣∣ = x− 2

(x− 1)(x+ 2)
<

1

x+ 2
<

1

10
.

This proves the existence of such an M . ■

Remark. This type of argument, finding a bound M for which a property holds for all x > M , is fundamental
to the formal definition of a limit at infinity, a key concept in calculus.

2.2 The Completeness Axiom

The ordered field axioms are insufficient to distinguish the rational numbers Q from the real numbers R, as
Q also satisfies them. The deficiency of the rational numbers is that they contain "gaps", as demonstrated
by the irrationality of numbers like

√
2.

Preliminaries for Irrationality

To prove that
√
2 is irrational, we first establish some elementary properties of integers.

Proposition 2.2.1. An integer is either even or odd, but not both.

Proof. Suppose, for contradiction, that an integer a is both even and odd. Then there exist integers m and
n such that a = 2m and a = 2n + 1. Equating these gives 2m = 2n + 1, which implies 2(m − n) = 1, or
m− n = 1/2. This is a contradiction, as the difference of two integers must be an integer. ■

Theorem 2.2.1. Parity of Squares. An integer a is even if and only if its square a2 is even.

Proof. (⇒) If a is even, then a = 2k for some integer k. So a2 = (2k)2 = 4k2 = 2(2k2), which is an even
integer. (⇐) We prove the contrapositive: if a is odd, then a2 is odd. If a is odd, then a = 2k + 1 for some
integer k. So a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, which is an odd integer. Therefore, if a2 is
even, a must be even. ■

Theorem 2.2.2. Lowest Terms Representation. Every rational number can be written as a fraction
a/b where a, b ∈ Z and a and b are not both even.
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Proof. Let a rational number be a0/b0. If both a0 and b0 are even, we can write a0 = 2a1 and b0 = 2b1,
so a0/b0 = a1/b1. We can repeat this process if a1 and b1 are also both even. This generates a sequence
of positive integers |b0| > |b1| > |b2| > . . .. Such a strictly decreasing sequence of positive integers cannot
continue indefinitely. Therefore, the process must terminate at a pair (an, bn) where at least one of an or bn
is odd. ■

Theorem 2.2.3.
√
2 is irrational. There is no rational number r such that r2 = 2.

Proof. Assume, for contradiction, that
√
2 is rational. Then

√
2 = a/b for integers a, b. By the previous

theorem, we can assume that not both a and b are even. Squaring both sides gives 2 = a2/b2, which implies
2b2 = a2. This shows that a2 is an even number. By the theorem on the parity of squares, a must also be
even. Let a = 2k for some integer k. Substituting this into the equation gives 2b2 = (2k)2 = 4k2, which
simplifies to b2 = 2k2. This implies b2 is even, and thus b must also be even. We have shown that both a
and b must be even, which contradicts our initial assumption that not both are even. Therefore, the initial
assumption that

√
2 is rational must be false. ■

To address the "gaps" in Q, we introduce the final axiom of the real numbers. First, we need some definitions.

Definition 2.2.1. Bounds. Let S ⊆ R be a non-empty set.

1. A real number u is an upper bound for S if s ≤ u for all s ∈ S. The set S is said to be bounded
above if it has an upper bound.

2. A real number l is a lower bound for S if l ≤ s for all s ∈ S. The set S is said to be bounded below
if it has a lower bound.

3. The set S is said to be bounded if it is bounded both above and below.

Example 2.2.1.

• The interval (−∞, 1) is bounded above but not below. The interval (0,∞) is bounded below but not
above. The interval [0, 1) is bounded.

• Consider the set S = {x ∈ R | x2 < 2}. This set is non-empty, as 1 ∈ S. We claim that 2 is an upper
bound. Assume for contradiction that there is some x ∈ S with x > 2. Then x2 > 4, which contradicts
the condition x2 < 2. Thus, for all x ∈ S, we must have x ≤ 2, meaning 2 is an upper bound for S.

Definition 2.2.2. Supremum and Infimum . Let S ⊆ R be a non-empty set.

• The least upper bound (or supremum) of S, denoted supS, is an upper bound α for S such that for
any other upper bound u of S, we have α ≤ u.

• The greatest lower bound (or infimum) of S, denoted inf S, is a lower bound β for S such that for
any other lower bound l of S, we have l ≤ β.

Proposition 2.2.2. Uniqueness of Supremum. A non-empty set S ⊆ R has at most one supremum.

Proof. Suppose α1 and α2 are both suprema of S. Since α1 is a supremum and α2 is an upper bound, the
definition of supremum implies α1 ≤ α2. Similarly, since α2 is a supremum and α1 is an upper bound, we
have α2 ≤ α1. Combining these inequalities gives α1 = α2. A similar argument holds for the uniqueness of
the infimum. ■

Axiom 2.2.1. The Completeness Axiom . Every non-empty set of real numbers that is bounded above
has a least upper bound in R.

The set of axioms for an ordered field, together with The Completeness Axiom, defines R as a complete
ordered field.

Definition 2.2.3. Maximum and Minimum . Let S ⊆ R be a non-empty set.

• If S is bounded above and supS ∈ S, then supS is called the maximum of S, denoted maxS.
• If S is bounded below and inf S ∈ S, then inf S is called the minimum of S, denoted minS.
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A maximum or minimum must belong to the set, whereas a supremum or infimum need not.

Example 2.2.2.

• For S1 = (−∞, 1), the set of upper bounds is [1,∞). Thus, supS1 = 1. The set has no maximum, as
1 /∈ S1.

• For S2 = [0, 1), supS2 = 1 and inf S2 = 0. The set has no maximum, but it has a minimum, minS2 = 0,
since 0 ∈ S2.

• For S3 = {1/n | n ∈ N, n ≥ 1}. We have supS3 = 1, which is also the maximum. The infimum is
inf S3 = 0, which is not a minimum as 0 /∈ S3.

Theorem 2.2.4. Q is not complete. The set of rational numbers does not satisfy the completeness axiom.

Proof. Consider the set S = {r ∈ Q | r2 ≤ 2}. This set is non-empty (since 1 ∈ S) and is bounded above
(by 2, for instance). If Q were complete, S would have a least upper bound in Q. Let this hypothetical
supremum be b ∈ Q. Since

√
2 is not rational, we know b2 ̸= 2. By the trichotomy property, either b2 < 2

or b2 > 2.

Case 1: b2 < 2. We will show that b is not an upper bound by constructing a rational number b + h ∈ S
for some small rational h > 0. We require (b+ h)2 < 2, which is b2 + 2bh+ h2 < 2. This is equivalent
to h(2b+ h) < 2− b2. If we choose a rational h ∈ (0, 1), then h < 1, so h(2b+ h) < h(2b+ 1). We can
satisfy the inequality by choosing h such that h(2b+1) < 2− b2. Such a rational h exists, for example
h = min

(
1
2 ,

2−b2

2(2b+1)

)
. For this h, (b+h)2 < 2, so b+h ∈ S, which contradicts b being an upper bound.

Case 2: b2 > 2. We will show b is not the least upper bound by finding a smaller rational upper bound, b−h,
for some small rational h > 0. We require (b−h)2 > 2 for any element in S. Consider b2−2bh+h2 > 2.
This is equivalent to b2 − 2 > 2bh− h2. Since h > 0, 2bh− h2 < 2bh. We can satisfy the inequality by
finding an h such that b2 − 2 > 2bh. Such a rational h exists, for example h = b2−2

2b . For this h, b− h
is an upper bound for S that is smaller than b, contradicting that b is the least upper bound.

Since both cases lead to a contradiction, no such least upper bound b can exist in Q. ■

The completeness axiom has a symmetric counterpart for lower bounds.
Theorem 2.2.5. Greatest Lower Bound Property. Every non-empty set of real numbers that is
bounded below has a greatest lower bound in R.

Proof. Let S be a non-empty set that is bounded below. Consider the set −S = {−s | s ∈ S}. If l is a lower
bound for S, then for any s ∈ S, l ≤ s, which implies −l ≥ −s. Thus, −l is an upper bound for −S. Since
−S is non-empty and bounded above, by The Completeness Axiom it has a supremum, α = sup(−S). We
claim that −α is the infimum of S. First, we show −α is a lower bound for S. Since α = sup(−S), for any
−s ∈ −S, we have −s ≤ α, which means s ≥ −α. This holds for all s ∈ S, so −α is a lower bound. Next,
we show it is the greatest lower bound. Let l be any lower bound of S. Then −l is an upper bound of −S.
Since α is the least upper bound of −S, we have α ≤ −l, which implies −α ≥ l. Thus, −α is greater than
or equal to any other lower bound, making it the infimum of S. ■

The definition of a supremum is often more conveniently applied in proofs using the following equivalent
characterisation.
Theorem 2.2.6. Characterisation of Supremum. Let S ⊆ R be a non-empty set bounded above. A
number α is the supremum of S if and only if:

1. α is an upper bound for S.
2. For any ε > 0, there exists an element s ∈ S such that s > α− ε.
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Proof. (⇒) Assume α = supS. By definition, α is an upper bound, satisfying the first condition. For the
second condition, let ε > 0 be given. Since α − ε < α, and α is the least upper bound, the number α − ε
cannot be an upper bound for S. This implies the existence of some s ∈ S such that s > α− ε.

(⇐) Assume conditions (1) and (2) hold. We must show that α is the least upper bound. Let u be any other
upper bound for S. We need to show that α ≤ u. Assume for contradiction that u < α. Let ε = α − u.
Since u < α, we have ε > 0. By condition (2), there exists an s ∈ S such that s > α− ε = α− (α− u) = u.
This result, s > u, contradicts the fact that u is an upper bound for S. Therefore, the assumption u < α
must be false, so α ≤ u. This confirms that α is the least upper bound. ■

Consequences of Completeness

Alas the completeness axiom has several profound consequences that shape the structure of the real number
line most notably:
Theorem 2.2.7. Archimedean Property. The set of natural numbers N is not bounded above.

Proof. Assume for contradiction that N is bounded above. As N is non-empty, by the The Completeness
Axiom axiom it must have a least upper bound, α = supN. By the characterisation of the supremum, for
h = 1, there must be some n ∈ N such that n > α− 1. This implies n+ 1 > α. Since n+ 1 is also a natural
number, this contradicts α being an upper bound for N. ■

Closely related to this is the Archimedean property of the real numbers:
Corollary 2.2.1. For any x ∈ R ("large" real number) and ϵ ∈ R ("really small" real number) such that
0 < ϵ < x, there exists n ∈ N such that r < nϵ.

Proof. Suppose for sake of contradiction this was false, then there is some r > 0 and ϵ > 0 such that nϵ ≤ r
for all n ∈ N, so n ≤ (r/ϵ) which implies N is bounded above which is a contradiction. ■

Corollary 2.2.2. For any x ∈ R, there exist integers m and n such that m < x < n.

Proof. Since N is not bounded above, x cannot be an upper bound. Thus, there exists an integer n ∈ N
such that n > x. Similarly, −x is not an upper bound for N, so there exists k ∈ N such that k > −x, which
implies −k < x. Let m = −k. Then m is an integer and m < x < n. ■

Corollary 2.2.3. For any ϵ > 0, there exists an n ∈ N such that 0 < 1/n < ϵ.

Proof. Consider 1/ϵ. By the Archimedean Property, there is an integer n such that n > 1/ϵ. Since ϵ > 0,
we can rearrange this inequality to 1/n < ϵ. As n ∈ N, n > 0, so 1/n > 0. ■

These corollaries collectively show that integers are "spread out" enough to capture any real number. We
can now formalize this into a more precise statement.
Theorem 2.2.8. Existence of Integer Part. For any x ∈ R, there is exactly one integer n such that
n ≤ x < n+ 1.

Proof. Consider the set S = {k ∈ Z | k ≤ x}. By the Archimedean property, S is non-empty and it is
bounded above by x. By the completeness axiom (extended to sets of integers), S must have a supremum
which is also its maximum element, n. By definition, n ∈ Z and n ≤ x. Since n is maximal in S, n+ 1 /∈ S,
which means n + 1 > x. Thus, n ≤ x < n + 1. Uniqueness follows because if m were another such integer,
the distance between n and m would be less than 1, impossible for distinct integers. ■

One of the key implications of these properties is the distribution of rational and irrational numbers within
the reals.
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Density in R

Definition 2.2.4. Dense Set . A set S ⊆ R is dense in R if for all x < y in R, there is an element of S in
the interval (x, y). We also say that S is a dense subset of R.

For example, the set of reals itself forms a dense subset of the reals, rather trivially, as does the set of reals
minus one point. The set of positive numbers is not dense (there is no positive number between −2 and −1),
and nor is the set of integers (there is no integer between 1.1 and 1.9).
Theorem 2.2.9. Approximation Property for Rationals. For any real number x and any ϵ > 0, there
exists a rational number r such that |x− r| < ϵ.

Proof. Let x ∈ R and ϵ > 0 be given. By the Archimedean property, there exists an integer n ∈ N such that
n > 1/ϵ, or 1/n < ϵ. Consider the real number nx. By the Existence of Integer Part theorem, there is an
integer m such that m ≤ nx < m+ 1. Dividing by n gives m/n ≤ x < (m+ 1)/n. Let r = m/n, which is a
rational number. From the first inequality, x − r ≥ 0. From the second, x < m/n + 1/n = r + 1/n, which
means x− r < 1/n. Combining these, we have 0 ≤ x− r < 1/n. Since 1/n < ϵ, we have |x− r| < ϵ. ■

Remark. This theorem demonstrates that the rational numbers are dense in the real numbers. It implies
that between any two distinct real numbers, there exists a rational number.

Note. For the sake of completion here is the second proof.

Theorem 2.2.10. Q is dense in R. If x, y are reals with x < y, then there is a rational number in the
interval (x, y).

Proof. We first prove the result for 0 ≤ x < y. The general case follows: if x < y ≤ 0, there exists a rational
r ∈ (−y,−x), so −r is a rational in (x, y); if x < 0 < y, any rational in (0, y) is also in (x, y).

So, let 0 ≤ x < y be given. By the Consequences of Completeness, there is a natural number n with
1/n < y − x. The informal idea behind the proof is that the gaps between consecutive elements in the
sequence {. . . ,−2/n,−1/n, 0, 1/n, 2/n, . . . } are all smaller than the distance between x and y, so one of
these rational numbers must fall between them.

Formally: As N is unbounded, there exists m ∈ N with m ≥ ny. Let m1 be the least such integer (an
application of the well-ordering principle). Note that m1 > 1, because y − x > 1/n =⇒ y > 1/n =⇒
ny > 1. Consider (m1 − 1)/n. We have m1 − 1 < ny (else m1 would not be the least integer ≥ ny) and so
(m1 − 1)/n < y. If (m1 − 1)/n ≤ x, then together with y ≤ m1/n this implies y − x ≤ 1/n, a contradiction
to our choice of n. Thus we must have (m1 − 1)/n > x, and so (m1 − 1)/n ∈ (x, y). ■

Proposition 2.2.3. Properties of Rational/Irrational Operations. Let r ∈ Q and x, y ∈ R \Q. Then:

1. r + x ∈ R \Q.
2. rx ∈ R \Q for r ̸= 0.
3. x+ y and xy may be rational or irrational. For example,

√
2 + (−

√
2) = 0 ∈ Q, but

√
2 +

√
3 ∈ R \Q.

Also,
√
2 ·

√
2 = 2 ∈ Q, but

√
2 ·

√
3 =

√
6 ∈ R \Q.

Proof. For (1), suppose for contradiction that r + x = q for some q ∈ Q. Then x = q − r. Since Q is a field,
q − r ∈ Q, which contradicts that x is irrational. The proof for (2) is analogous. ■

Theorem 2.2.11. (R\Q) is dense in R. Between any two distinct real numbers, there exists an irrational
number.

Proof. Let a < b be real numbers. By the Approximation Property, there exists a rational number r in the
interval

(
a√
2
, b√

2

)
. So a√

2
< r < b√

2
. Multiplying by

√
2 gives a < r

√
2 < b. Since r is rational (r ̸= 0) and

√
2 is irrational, their product r

√
2 is irrational. Thus, we have found an irrational number between a and

b. ■
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2.3 Basic Topology of the Real Line

We conclude with a brief introduction to the topological structure of R, which provides the language needed
to discuss concepts like continuity and limits with precision.

Intervals and Neighbourhoods

Definition 2.3.1. Intervals. An interval is a subset of R with the property that any number that lies
between two numbers in the set is also included in the set. Common forms for a < b include:

• Open interval: (a, b) = {x ∈ F | a < x < b}
• Closed interval: [a, b] = {x ∈ F | a ≤ x ≤ b}
• Half-open intervals: [a, b) or (a, b]
• Unbounded intervals (rays): [a,∞), (a,∞), (−∞, b], (−∞, b)

Definition 2.3.2. Neighbourhood . An open neighbourhood of a point a ∈ R is any open interval
containing a. The δ-neighbourhood of a is the set

Bδ(a) = {x ∈ F | |x− a| < δ} = (a− δ, a+ δ)

for some radius δ > 0. A deleted neighbourhood of a excludes the point a itself:

B′
δ(a) = {x ∈ F | 0 < |x− a| < δ} = (a− δ, a) ∪ (a, a+ δ)

These concepts are illustrated in Figure 2.2.

Example 2.3.1. Finding the Centre and Radius of a Neighbourhood. Find a and δ for which Bδ(a) = (3, 11).
The centre a is the midpoint of the interval, a = (11 + 3)/2 = 7. The radius δ is half the length of the
interval, δ = (11− 3)/2 = 4. Thus B4(7) = (3, 11).

aa− δ a+ δ

Bδ(a) = (a− δ, a+ δ)

aa− δ a+ δ

B′
δ(a) = (a− δ, a) ∪ (a, a+ δ)

(a is excluded)

Figure 2.2: Open neighbourhood Bδ(a) (left) and deleted neighbourhood B′
δ(a) (right) on R.

Topological Properties

Definition 2.3.3. Connected Subsets. A set U ⊆ R is connected if for any two points in U , all points
between them are also in U . The connected subsets of R are precisely the intervals.

Example 2.3.2. Connected: Let U = [0, 5]. For any two points x, y ∈ U , the entire interval [x, y] remains
inside U . Disconnected: Let V = [0, 1] ∪ [2, 3]. There is a gap: while 0.5 ∈ V and 2.5 ∈ V , the intermediate
point 1.5 /∈ V .

Definition 2.3.4. Boundary Points. A point p ∈ R is a boundary point of a set U ⊆ R if every
neighbourhood of p contains at least one point in U and at least one point not in U . The set of all boundary
points of U is denoted bd(U).

Remark. A boundary point of U need not be an element of U . For some sets, such as N, every point is a
boundary point, so bd(N) = N.

Definition 2.3.5. Interior Points. A point p ∈ U is an interior point of U ⊆ R if there exists a
neighbourhood of p that is entirely contained within U . That is, if there exists an ϵ > 0 such that Bϵ(p) ⊆ U .
The set of all interior points of U is denoted int(U).



CHAPTER 2. NUMBER SYSTEM 15

Example 2.3.3. Boundary & Interior of an Interval. For the set U = [0, 1) = {x ∈ R | 0 ≤ x < 1}:

• The boundary is bd(U) = {0, 1}.
• The interior is int(U) = (0, 1).

Example 2.3.4. Boundary and Interior of a Union of Intervals. Suppose U = {x ∈ R | x < −8 or 10 ≤ x <
13} = (−∞,−8) ∪ [10, 13).

• The boundary is bd(U) = {−8, 10, 13}.
• The interior is int(U) = (−∞,−8) ∪ (10, 13).

Remark. Although 10 ∈ U , it is not an interior point because any open neighbourhood of 10 contains points
less than 10, which are not in U . Therefore, 10 /∈ int(U).

0 1

int(U) = (0, 1)

Connected set U = [0, 1)
bd(U) = {0, 1}

−8 10 13

(−∞,−8) (10, 13)

Disconnected set U = (−∞,−8) ∪ [10, 13)
bd(U) = {−8, 10, 13}, int(U) = (−∞,−8) ∪ (10, 13)

Figure 2.3: Left: a connected set (interval) with its interior and boundary. Right: a disconnected set with
its interior and boundary.

2.4 Nested Intervals and Completeness

The Completeness Axiom (The Completeness Axiom) characterises the real numbers by asserting the exis-
tence of a supremum for every bounded non-empty set. However, an alternative characterisation exists, one
that is constructive in nature and illuminates the topological structure of the real line: the Nested Interval
Property.

Definition 2.4.1. Nested Interval Property . An ordered field F is said to possess the Nested Interval
Property (NIP) if for every sequence of closed intervals In = [an, bn] such that In+1 ⊆ In for all n ∈ N, the
intersection is non-empty:

∞⋂
n=1

In ̸= ∅

Geometrically, this property implies that a sequence of intervals shrinking inside one another must "trap"
at least one point. While Q satisfies the Archimedean Property, it fails the NIP (one can construct nested
rational intervals converging to

√
2 with empty intersection in Q). Conversely, one can construct non-

Archimedean fields that satisfy the NIP but are not complete. It is the conjunction of these two properties
that implies completeness.

Example 2.4.1. Trapping a Single Point. Consider the sequence of intervals given by In = [0, 1
n ] for all

n ∈ N.

• Observe that I1 = [0, 1], I2 = [0, 1
2 ], etc.

• Since 1
n+1 < 1

n , we have [0, 1
n+1 ] ⊂ [0, 1

n ], so the sequence is nested.

By the Nested Interval Property, the intersection is non-empty. In this specific case, the only element
common to all intervals is 0 (by the Archimedean Property), so:

∞⋂
n=1

[
0,

1

n

]
= {0}

Theorem 2.4.1. Equivalence of Completeness. Let F be an ordered field. If F satisfies the Nested
Interval Property and the Archimedean Property, then F is complete.
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Proof. Let S ⊆ F be a non-empty set bounded above. We wish to show that supS exists in F. We employ
the method of successive bisection to approximate the supremum. Let b0 be an upper bound of S. Since S is
non-empty, we choose an element a0 ∈ S. Note that a0 ≤ b0. We define a sequence of intervals In = [an, bn]
recursively.

(i) Let I0 = [a0, b0].
(ii) Given In = [an, bn], let mn = an+bn

2 be the midpoint.
(iii) If mn is an upper bound for S, set In+1 = [an,mn] (i.e., an+1 = an, bn+1 = mn).
(iv) If mn is not an upper bound for S, set In+1 = [mn, bn] (i.e., an+1 = mn, bn+1 = bn).

FS

target supS

a0 b0
I0

a1 = m0 b1
I1

a2 b2 = m1

I2

Figure 2.4: The construction of nested intervals narrowing down to the supremum. If the midpoint is an
upper bound, we discard the right half; otherwise, we discard the left half.

By construction, In+1 ⊆ In. Furthermore, for every n, bn is an upper bound for S, and an is not an upper
bound (or technically, there exists x ∈ S such that x ≥ an, specifically since a0 ∈ S and the sequence an
is non-decreasing). By the Nested Interval Property, there exists a unique element ξ ∈

⋂∞
n=0 In. We claim

ξ = supS.

The length of the interval In is (b0−a0)/2
n. By the Archimedean Property, for any ϵ > 0, there exists n large

enough such that the length of In is less than ϵ. This implies that ξ is the unique point in the intersection.

Step 1: ξ is an upper bound. Suppose ξ is not an upper bound. Then there exists s ∈ S such that s > ξ.
Let ϵ = s− ξ > 0. By the Archimedean Property, we can choose n such that bn − an < ϵ. Since ξ ∈ [an, bn],
we have bn − ξ < ϵ.

bn < ξ + ϵ = ξ + (s− ξ) = s

This implies bn < s, which contradicts the fact that bn is an upper bound for S. Thus, ξ is an upper bound.

Step 2: ξ is the least upper bound. Suppose there exists an upper bound u such that u < ξ. Let
ϵ = ξ − u > 0. Again, using the Archimedean Property, choose n such that the length of In is less than ϵ.
Since ξ ∈ [an, bn], we have ξ − an < ϵ.

an > ξ − ϵ = ξ − (ξ − u) = u

Thus an > u. However, by our construction, an is not an upper bound (specifically, if an > a0, an was a
midpoint that was not an upper bound). This contradicts u being an upper bound (since u < an and an is
not an upper bound, u cannot be an upper bound). Therefore, ξ = supS. ■

Note. The proof relies heavily on the Archimedean Property to force the interval lengths to zero. Without
it, the "hole" might be infinitesimally small but non-zero, allowing the intersection to contain points that
are not the supremum. Thus, NIP + Archimedean ⇔ Completeness.

Uniqueness of the Real Numbers

We have established that R is a complete ordered field. A natural question arises: are there other systems
that satisfy these axioms? The answer is effectively no.
Theorem 2.4.2. There is, up to isomorphism, exactly one complete ordered field.
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This theorem (the proof of which is beyond the scope of this review) assures us that any construction of the
real numbers (whether via Dedekind cuts, Cauchy sequences, or axiomatic definition), results in the same
mathematical structure. Whether we view the real numbers as algebraic objects or geometric points on a
line (reconciled via the axioms of Euclidean geometry), we are dealing with a unique system that bridges the
discrete and the continuous. This structure forms the bedrock upon which the analysis of functions, limits,
and continuity is built in the subsequent chapters.

2.5 Uncountability of the Real Numbers

A fundamental consequence of the Nested Interval Property is the distinction regarding the size of infinity
between the rational numbers and the real numbers. While Q is countable (i.e., can be placed in a one-to-one
correspondence with N), R is uncountable. The standard proof typically employs Cantor’s diagonalisation
argument on decimal expansions (for the set-theoretic construction, see the Set Theory notes, especially
Section 7.4). However, establishing the properties of decimal representations rigorously is tedious. Instead,
we utilise the Nested Interval Property to provide a direct topological proof.
Theorem 2.5.1. Uncountability of R. The set of real numbers R is uncountable.

Proof. Assume, for the sake of contradiction, that R is countable. Then, the elements of R can be enumerated
in a sequence:

S = {x1, x2, x3, . . . } = R

We construct a sequence of nested closed intervals {In}∞n=1 such that the n-th interval excludes the n-th real
number in our list.

(i) Let I1 be any closed interval such that x1 /∈ I1. (For instance, if x1 = 0, we could choose I1 = [1, 2]).
(ii) Suppose we have constructed nested closed intervals I1 ⊇ I2 ⊇ · · · ⊇ Ik such that xj /∈ Ij for all

1 ≤ j ≤ k.
(iii) To construct Ik+1, consider the interval Ik. We must choose a sub-interval Ik+1 ⊆ Ik such that

xk+1 /∈ Ik+1.

• If xk+1 /∈ Ik, then any closed sub-interval of Ik suffices.

• If xk+1 ∈ Ik, since Ik contains infinitely many points, we can select a closed sub-interval that does
not contain xk+1. (For example, divide Ik into disjoint sub-intervals and select one that excludes
xk+1).

This recursive process yields a sequence of non-empty closed intervals I1 ⊇ I2 ⊇ I3 ⊇ . . . such that for every
n ∈ N, xn /∈ In.

By the Nested Interval Property, the intersection contains at least one point. Let ξ be an element of this
intersection. Since ξ ∈ In for all n, and specifically xn /∈ In, it follows that ξ ̸= xn for any n ∈ N. Thus, ξ is
a real number that is not included in the enumeration S. This contradicts the assumption that S contains
all real numbers. Therefore, R is uncountable. ■

Note. This result highlights a strict hierarchy of infinities; the cardinality of the continuum strictly exceeds
that of the rationals.

2.6 Decimal Representations and the Number Line

While the axiomatic construction of R as a complete ordered field provides a foundation for analysis, it is
computationally convenient to represent real numbers using the decimal system. This representation links
the algebraic properties of R with the intuitive notion of magnitude and provides a concrete method for
approximation.
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Decimal Expansions

Any real number x can be represented as an integer part plus an infinite series of fractions with denominators
that are powers of 10.

Definition 2.6.1. Decimal Expansion . Let x ∈ R with x ≥ 0. A decimal expansion of x is a series of
the form:

x = a0 +

∞∑
n=1

dn
10n

where a0 ∈ N ∪ {0} is the non-negative integer part, and each digit dn ∈ {0, 1, . . . , 9}.

The existence of such an expansion is a consequence of the Archimedean Property. We define a0 = ⌊x⌋. For
n ≥ 1, the digits are defined recursively by dn = ⌊10n(x − an−1) − . . . ⌋, essentially extracting the tenths,
hundredths, and so forth.

Remark. This representation is not unique for all real numbers. Specifically, numbers with a terminating
decimal expansion (where dn = 0 for all n > N) have an alternative representation ending in infinitely many
nines. For instance:

1.25 = 1.2500 · · · = 1.2499 . . .

To ensure uniqueness in the mapping between R and decimal sequences, one conventionally forbids expansions
ending in an infinite sequence of nines, or treats them as equivalent classes. In this way, real numbers are
simply all infinite decimals.

Rationals and Periodic Expansions

The distinction between rational and irrational numbers manifests clearly in their decimal expansions.
Theorem 2.6.1. Characterisation of Rational Decimals. A real number x is rational if and only if its
decimal expansion is eventually periodic. That is, there exist integers N and k > 0 such that dn+k = dn for
all n > N .

Proof.

(⇐) Suppose x has a periodic expansion. It can be written as the sum of a terminating part and a geometric
series. Since the sum of rationals is rational, and the limit of a rational geometric series is rational,
x ∈ Q.

(⇒) Let x = p/q with p, q ∈ N. The digits of the decimal expansion are determining by performing long
division of p by q. At each step, the remainder rn must satisfy 0 ≤ rn < q. Since there are only q
possible values for the remainder, by the Pigeonhole Principle, a remainder must eventually repeat.
Once a remainder repeats, the sequence of dividends and thus the sequence of digits dn enters a cycle.

■

Example 2.6.1. Converting Decimals to Fractions Terminating decimals correspond to fractions with de-
nominators of the form 2a5b. For example:

3.25 =
325

100
=

13

4

Infinite repeating decimals require algebraic manipulation to identify the underlying rational. Consider the
number 3.1̇42857̇. Let 3.1̇42857̇ = 3 + α, where α = 0.1̇42857̇. Since the repeating block has length 6, we
multiply by 106:

106α = 142857.1̇42857̇ = 142857 + α

Solving for α:

α =
142857

106 − 1
=

142857

999999
=

1

7
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Therefore:
3.1̇42857̇ = 3 +

1

7
=

22

7

Consequently, the irrational numbers R \ Q correspond precisely to the infinite non-repeating decimals.
This aligns with our earlier proof of the uncountability of R, as the set of all infinite sequences of digits is
uncountable.

Approximation and the Number Line

We previously established that Q is dense in R. The decimal representation offers a specific sequence of
rational approximations: for any x ∈ R, the sequence of truncated decimals rn = a0.d1 . . . dn is a sequence
of rationals converging to x, satisfying |x− rn| ≤ 10−n.

More generally, we can approximate real numbers by rationals with arbitrary denominators, a concept
fundamental to Diophantine approximation.
Theorem 2.6.2. Basic Approximation Theorem. For any x ∈ R and any integer q ≥ 1, there exists an
integer p such that: ∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

q

Proof. Consider the number axis partitioned into intervals of length 1/q. These intervals are of the form
[k/q, (k + 1)/q) for k ∈ Z. Since the union of these intervals covers R, the number x must lie in one such
interval. Thus, there exists an integer p (where p = k or p = k + 1) such that:

p

q
≤ x <

p+ 1

q

The distance between x and the closer endpoint (or simply p/q) is bounded by the length of the interval.
Specifically:

0 ≤ x− p

q
<

1

q
=⇒

∣∣∣∣x− p

q

∣∣∣∣ < 1

q

By choosing q sufficiently large, we can approximate x with a rational number p/q to any desired degree of
precision. ■

The Geometric Continuum

Throughout these notes, we have treated R primarily as an algebraic object — a complete ordered field.
However, intuition often relies on the geometric representation of R as the unique coordinate system for a
straight line, the number axis. We assume the existence of a one-to-one correspondence between the set R
and the points on a geometric line.

• An arbitrary point O is chosen as the origin, corresponding to 0.
• A unit length is established to locate 1.
• Every point P to the right of O corresponds to a positive real number x representing the length of the

segment OP .
• Every point Q to the left of O corresponds to a negative real number.

The Completeness Axiom ensures that this correspondence is perfect: there are no "holes" in the line.
Every point on the line corresponds to a real number, and every real number corresponds to a point. This
geometric completeness allows us to graph functions, define derivatives as slopes, and interpret integrals
as areas, bridging the gap between discrete arithmetic and continuous analysis. The justification of this
correspondence requires the axioms of Euclidean geometry (specifically the Cantor-Dedekind axiom), which
we assume for the remainder of this course.
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2.7 Exercises

Part I: Inequalities and Field Properties

1. Bernoulli’s Inequality. A fundamental tool in analysis is Bernoulli’s Inequality, which estimates
powers of numbers close to 1.
(a) Prove that for any real number x > −1 and any natural number n ∈ N, (1 + x)n ≥ 1 + nx.

Remark. Use mathematical induction. Be careful to justify where the condition x > −1 is used.
(b) Show that for n ≥ 2 and x ̸= 0, the inequality is strict.

2. The Cauchy-Schwarz Inequality. Let a1, . . . , an and b1, . . . , bn be real numbers. Prove that:(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Remark. Consider the quadratic function f(x) =
∑n

i=1(aix + bi)
2. Observe that f(x) ≥ 0 for all

x ∈ R. What does this imply about the discriminant of the corresponding quadratic equation?

3. Using the result from the previous exercise, prove the following:

(a) If x, y, z > 0, then (x+ y + z)
(

1
x + 1

y + 1
z

)
≥ 9.

(b) (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i .

4. Complex Ordering. We stated that C cannot be an ordered field. However, one can define an order
on C. Let us define the lexicographical order : for z1 = a1 + b1i and z2 = a2 + b2i, we say z1 < z2 if
a1 < a2, or if a1 = a2 and b1 < b2.
(a) Verify that this relation satisfies the Trichotomy law (Trichotomy).
(b) Verify that this relation satisfies Closure under Addition (Closure under Addition).
(c) Show that this relation fails Closure under Multiplication (Closure under Multiplication).

Part II: Supremum and Completeness

5. Supremum of a Sum. Let A and B be non-empty bounded sets of real numbers. Define the set sum
A+B = {a+ b | a ∈ A, b ∈ B}.
(a) Prove that sup(A+B) = supA+ supB.

Remark. To prove equality, prove two inequalities: sup(A+B) ≤ supA+supB and sup(A+B) ≥
supA+ supB. For the latter, use the ϵ characterisation of the supremum.

(b) Formulate and prove a similar statement for inf(A+B).
(c) Give an example where A and B are bounded, but sup(AB) ̸= supA · supB.

Remark. Consider sets containing negative numbers.

6. Nested Open Intervals. The Nested Interval Property (fig 2.4) specifically requires the intervals to
be closed.
(a) Construct a sequence of nested open intervals Jn = (an, bn) such that Jn+1 ⊆ Jn for all n, but⋂∞

n=1 Jn = ∅.
(b) Construct a sequence of nested unbounded closed intervals Kn = [an,∞) such that

⋂∞
n=1 Kn = ∅.

7. Existence of Roots. Let n ∈ N and a > 0. We can prove that y = n
√
a exists using the Completeness

Axiom, without relying on geometric intuition. Let S = {x ∈ R | x ≥ 0 and xn < a}.
(a) Show that S is non-empty and bounded above. Let y = supS.
(b) Prove that yn = a.

Remark. Use a contradiction argument (Trichotomy). If yn < a, use Bernoulli’s inequality to
find a small h > 0 such that (y+h)n < a, implying y is not an upper bound. If yn > a, find h > 0
such that (y − h)n > a, implying y − h is an upper bound smaller than the least upper bound.
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Part III: Topology and Structure

8. The Hausdorff Property. Prove that the real line is a Hausdorff space. That is, if x, y ∈ R and
x ̸= y, there exist ϵ > 0 and δ > 0 such that the neighbourhoods Bϵ(x) and Bδ(y) are disjoint
(Bϵ(x) ∩Bδ(y) = ∅).

Remark. Let ∆ = |x− y|. Construct radii based on ∆.

9. Topology of the Rationals. Consider the set of rational numbers Q as a subset of R.

(a) Determine the interior of Q, int(Q).
(b) Determine the boundary of Q, bd(Q).
(c) Determine the closure of Q, Q = Q ∪ bd(Q).

Remark. Recall that every interval contains both rational and irrational numbers.

10. Derived Sets. Let S ⊆ R. A point x is an accumulation point of S if every deleted neighbourhood of
x contains a point of S. The set of all accumulation points is denoted S′.

(a) Find S′ for S = {1/n | n ∈ N}.
(b) Find S′ for S = Z.
(c) Prove that if x ∈ S′, then every neighbourhood of x contains infinitely many points of S.

11. ⋆ Irrational Exponents. We have defined ab for rational b and a > 0. For irrational x, we define
ax = sup{aq | q ∈ Q, q < x} (assuming a > 1).

(a) Prove that if a, b are irrational numbers, it is possible for ab to be rational.

Remark. Consider the number
√
2
√
2
. If it is rational, you are done. If it is irrational, consider

(
√
2
√
2
)
√
2.

(b) Can a rational number to an irrational power be rational?

12. ⋆ Uniqueness of Decimal Expansions. Let x ∈ (0, 1). We stated that decimal expansions are
unique barring the case of trailing nines/zeros. Prove that if x has two distinct decimal expansions
0.a1a2a3 . . . and 0.b1b2b3 . . ., then one expansion must end in infinite 9s and the other in infinite 0s.

Remark. Let k be the first index where the digits differ, say ak < bk. Express x as a sum and estimate
the magnitude of the tail of the series

∑∞
i=k+1 9 · 10−i. Recall from algebra that

∑∞
n=1 ar

n = ar
1−r for

|r| < 1. Use this to sum the tail of nines.

13. ⋆⋆ Open Covers and Compactness. A set K ⊆ R is called compact if every collection of open sets
that covers K (i.e., K ⊆

⋃
α Uα) has a finite sub-collection that also covers K.

(a) Show that the interval (0, 1) is not compact.

Remark. Consider the open sets Un = (1/n, 1) for n ≥ 2.

(b) Show that the set N is not compact.
(c) (Heine-Borel Theorem Preview) The interval [0, 1] is compact. While proving this is difficult, try

to explain why the open cover used in part (a) fails to cover the closed interval [0, 1] without using
infinitely many sets.
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Sequences

In previous notes regarding discrete structures, we encountered the concept of a finite sequence — an ordered
list of elements {ak}nk=1. As we transition into the realm of analysis, we extend this concept to the infinite.
The study of infinite sequences is the bedrock of calculus; concepts such as limits, continuity, derivatives,
and integrals are ultimately founded upon the behaviour of sequences.

3.1 Definition and Notation

Intuitively, a sequence is an ordered list of real numbers. Formally, it is defined as a function whose domain
is the set of natural numbers.

Definition 3.1.1. Sequence . A sequence of real numbers is a function x : N → R. We typically describe a
sequence as a list (xn)n∈N consisting of one real number for each natural number n:

x1, x2, x3, . . . , xn, . . .

Although a sequence is a function, the standard functional notation x(n) is rarely used. Instead, we utilise
subscript notation to emphasise the ordinal nature of the terms. We denote a sequence variously as:

(xn), {xn}, or {xn}∞n=1

Remark. As noted in my concrete abstractions notes (xn) ̸= {xn}. The former is the ordered sequence, the
latter is the set of values contained in the sequence.

The subscript n in xn indicates the position of this term in the sequence. It is important to note that n
does not have substantive meaning beyond being a placeholder; such a symbol is called a dummy index.
Therefore, a sequence denoted (xn) could equally be denoted (xm), where the subscript m sequentially takes
values from N. Also just as with finite sequences, the index need not invariably commence at 1. We may
define a sequence starting from any integer k, denoted {xn}∞n=k, provided the domain is a countably infinite
set of consecutive integers (e.g., n ≥ 0). If we use our intuition of a real number as corresponding to a point
on a line, we can think of a sequence (xn)n≥1 as describing the motion of an object along the line, where xn

describes the position of that object at time n.

Basic Examples

To develop intuition, we examine several sequences with distinct behaviours.

Example 3.1.1. The Natural Sequence. Let xn = n. The terms are 1, 2, 3, 4, . . . . This sequence is strictly
increasing. It does not approach any specific real number but grows without bound.

22
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Example 3.1.2. Decimal Approximations. We can artificially create a sequence that constructs a real
number digit by digit:

a1 = 0.3, a2 = 0.33, a3 = 0.333, . . .

The general term is an = 0. 333 . . . 3︸ ︷︷ ︸
n

. Obviously, as n gets larger and larger, the term an gets closer and

closer to the real number 1/3. This is a prototypical example of a sequence converging to a limit.

Example 3.1.3. Arithmetic Progression. The arithmetic progression with initial term a ∈ R and ratio
r ∈ R is the sequence a, a+r, a+2r, a+3r, . . . . For example, the sequence 3, 7, 11, 15, 19, . . . is an arithmetic
progression with initial term 3 and ratio 4. The constant sequence a, a, a, . . . is an arithmetic progression
with initial term a and ratio 0.

Example 3.1.4. Geometric Progression. The geometric progression with initial term a ∈ R and ratio r ∈ R
is the sequence a, ar, ar2, ar3, . . . . For example, the sequence 1,−1, 1,−1, . . . is the geometric progression
with initial term 1 and ratio −1.

Example 3.1.5. The Harmonic Sequence. Let xn = 1/n. The terms are:

1,
1

2
,

1

3
,

1

4
, . . .

This sequence is strictly decreasing. As n increases, the terms become arbitrarily close to 0. We intuitively
say this sequence approaches 0.

Example 3.1.6. Bounded Increasing Sequence. Let xn = 1− (1/n). The terms are:

0,
1

2
,

2

3
,

3

4
, . . .

This sequence is strictly increasing, yet it never exceeds 1. The terms "accumulate" near 1, suggesting the
sequence approaches 1.

A common misconception is that a sequence approaching a value must eventually become strictly increasing
or decreasing. This is false, as demonstrated by oscillating sequences.

Example 3.1.7. The Alternating Harmonic Sequence. Consider the sequence defined by xn = (−1)n/n.
The terms are:

−1,
1

2
, −1

3
,

1

4
, −1

5
, . . .

The sign of the terms alternates between negative and positive. However, the magnitude |xn| = 1
n decreases

towards 0. Consequently, we can see the sequence approaches 0 from both sides (Fig 3.1), illustrating that
approaching a specific number does not require the terms to be strictly increasing or decreasing.

n

xn

1 2 3

x1 = −1

x2 = 1/2

Figure 3.1: Graphical representation of the sequence xn = (−1)n/n. Unlike continuous functions, the graph
of a sequence consists of discrete points.

We can easily construct sequences that behave erratically.
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Example 3.1.8. Piecewise Definition. Sequences, being functions, can be defined piecewise.

xn =

{
1 if n is odd
0 if n is even

This generates the sequence 1, 0, 1, 0, 1, . . . . This sequence is bounded but does not settle at any single value;
it oscillates perpetually.

Example 3.1.9. The "Spoiler" Sequence. Consider the sequence:

xn =

{
1 if 10 | n (n is divisible by 10)
1− 1

n otherwise

The terms generally follow the pattern 1− 1/n, approaching 1. However, at indices 10, 20, 30, . . . , the term
is exactly 1. While intuitively this clusters around 1, analysis requires careful handling of such "interrupted"
patterns.

Monotonicity and Boundedness

To precisely describe the behaviour of sequences, we introduce specific terminology regarding their direction
and magnitude.

Definition 3.1.2. Monotonicity and Boundedness. Let (xn)n∈N be a sequence of real numbers.

1. The sequence is called increasing if xn < xn+1 for all n ∈ N.
2. The sequence is called decreasing if xn > xn+1 for all n ∈ N.
3. The sequence is called nonincreasing if xn ≥ xn+1 for all n ∈ N.
4. The sequence is called nondecreasing if xn ≤ xn+1 for all n ∈ N.
5. A sequence is called monotone if it is either nondecreasing or nonincreasing. It is called strictly

monotone if it is either increasing or decreasing.
6. The sequence is called bounded if there exist real numbers m,M such that:

m ≤ xn ≤ M for all n ∈ N.

We can apply these definitions to our previous examples:

• An arithmetic progression is increasing if and only if its ratio is positive (r > 0).
• A geometric progression with positive initial term and positive ratio is monotone: it is increasing if the

ratio is > 1, decreasing if the ratio is < 1, and constant if the ratio is = 1.
• A geometric progression is bounded if and only if its ratio r satisfies |r| ≤ 1.

3.2 Subsequences

We can construct new sequences by selecting infinitely many terms from an existing sequence, maintaining
their original relative order.

Definition 3.2.1. Subsequence . Let (xn) be a sequence. A subsequence is a restriction of x to an infinite
subset S ⊆ N. This subset S can be viewed as an increasing sequence of natural numbers n1 < n2 < n3 < . . . ,
where:

n1 := minS, n2 := min(S \ {n1}), . . .

Thus, a subsequence is denoted (xnk
)k∈N, where (nk) is a strictly increasing function σ : N → N.

Essentially, we choose indices n1 < n2 < n3 < . . . and consider the restricted list:

xn1
, xn2

, xn3
, . . .
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Example 3.2.1. Subsequences of the Alternating Sequence. Recall xn = (−1)n/n.

• Selecting odd indices (nk = 2k − 1) yields the subsequence of negative terms:

−1, −1

3
, −1

5
, . . .

• Selecting even indices (nk = 2k) yields the subsequence of positive terms:

1

2
,

1

4
,

1

6
, . . .

Both subsequences appear to approach 0, consistent with the behaviour of the parent sequence.

Conflicting Subsequences

Subsequences provide a powerful tool for detecting when a sequence fails to approach a single value. If a
sequence has two subsequences approaching distinct values, the sequence itself cannot be settling on one
specific number.

Example 3.2.2. Oscillating Binary Sequence. Define xn by:

xn =

{
1 if n is odd
0 if n is even

The sequence is 1, 0, 1, 0, 1, 0, . . . . We can extract two constant subsequences:

• Odd indices yield (1, 1, 1, . . . ), which constantly stays at 1.
• Even indices yield (0, 0, 0, . . . ), which constantly stays at 0.

Since the sequence oscillates between 0 and 1 without settling on a single value, it does not have a single
value its approaching.

Example 3.2.3. The "Pesky" Term. Consider a sequence that generally decreases but is periodically
interrupted.

xn =

{
1 if n is divisible by 10
1
n otherwise

The terms look like 1, 1
2 , . . . ,

1
9 ,1,

1
11 , . . . ,

1
19 ,1,

1
21 , . . . . While the majority of terms (the subsequence where

n is not a multiple of 10) approach 0, the subsequence x10k = 1 remains constant at 1. The persistence of
these "pesky" terms prevents the sequence from settling at 0.

Recursive Sequences

Sequences need not be defined by an explicit formula for the n-th term. They are often defined recursively,
where a term depends on preceding terms.

Example 3.2.4. The Fibonacci Sequence. The Fibonacci sequence (Fn) is defined by the recurrence relation:

Fn+2 = Fn+1 + Fn for n ≥ 0

with initial conditions F0 = 1 and F1 = 1. The sequence begins:

1, 1, 2, 3, 5, 8, 13, . . .

This sequence grows without bound. However, derived sequences often exhibit interesting behaviours. For
instance, the sequence of reciprocals (1/Fn):

1, 1,
1

2
,

1

3
,

1

5
, . . .

approaches 0.
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Throughout these examples, we have relied on intuitive language to describe sequence behaviour. We ob-
served that the alternating subsequence "approaches" 0, the oscillating binary sequence "fails to settle," and
the pesky term sequence is interrupted by outliers. To move from these qualitative observations to proof,
we must formalize exactly what it means for terms to accumulate around a specific value.

3.3 Convergence

In this section, we define convergence, the central concept of real analysis. Having seen how subsequences
and recurrence relations generate various patterns, we now aim to describe what it means for a sequence
(xn) to "approach" or "tend to" a specific value x0, which we call the limit.

Intuition and Motivation

Consider a sequence of points x1, x2, x3, . . . on the real line. Intuitively, we say this sequence approaches a
point x0 if the terms eventually get closer and closer to x0.

0 x1x2x3 x4x5x6

Figure 3.2: Terms of a sequence clustering around 0.

But what does "close" mean? Distance is subjective.

• On a standard ruler with millimetre markings, two points are indistinguishable if their distance is less
than 1 mm.

• Under a microscope, we might require the distance to be less than 0.001 mm.
• With an electron microscope, the threshold might be nanometres.

For a sequence to truly converge to x0, the terms must eventually become indistinguishable from x0 regardless
of the magnification. No matter how small a tolerance (let’s call it ϵ) one specifies, the sequence must
eventually stay within distance ϵ of x0.

This leads to the formal definition. We are not saying every term is close; the first few terms x1, x2, . . .
might be far away. We are saying that eventually, for all sufficiently large indices n, the terms xn are close
to x0.

Definition of Convergence

We present two equivalent formulations of the definition. The first explicitly uses a function to determine
the "threshold" index.

Definition 3.3.1. Functional Definition of Convergence . A sequence of real numbers (xn) converges
to a point x0 ∈ R if there exists a function N : R+ → N such that for any ϵ > 0:

|xn − x0| < ϵ whenever n > N(ϵ).

We denote this by lim
n→∞

xn = x0 or xn → x0.

Here, ϵ represents the desired level of approximation (the "least count" of our measuring device), and N(ϵ)
represents the point in the sequence beyond which this approximation is guaranteed.

Standard textbooks often state this definition using quantifiers rather than an explicit function.
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Definition 3.3.2. Standard (ϵ − N) Definition of Convergence . A sequence (xn) converges to x0 if
for every ϵ > 0, there exists a natural number N (which may depend on ϵ) such that:

|xn − x0| < ϵ for all n > N.

Remark. Observe that the definition of convergence implies a direct relationship between a limit and a null
sequence (a sequence converging to 0):

lim
n→∞

xn = x ⇐⇒ lim
n→∞

|xn − x| = 0.

This allows us to translate problems of converging to a general limit x into problems of converging to 0.

Both definitions assert the same condition: for any error tolerance ϵ, the sequence eventually enters and
stays within the interval (x0 − ϵ, x0 + ϵ).

n

xn

x0

x0 + ϵ

x0 − ϵ

N(ϵ)

Figure 3.3: Visualising convergence. Once n > N(ϵ), all terms xn (blue) must lie within the shaded ϵ-strip
around x0.

Remark. It suffices to verify the condition for small ϵ. If we can find a threshold function N(ϵ) for all
ϵ ∈ (0, ϵ0), we can extend it to all R+ by simply defining N(ϵ) = N(ϵ0) for ϵ ≥ ϵ0. If terms are within
distance ϵ0, they are certainly within any larger distance ϵ.

Example: Convergence of 1/n

Let us apply the definition to a concrete example. We claim that the sequence xn = 1/n converges to 0.

Example 3.3.1. Convergence of Harmonic Sequence. Show that lim
n→∞

1
n = 0.

Analysis: We are given the sequence xn = 1/n and the candidate limit x0 = 0. We must show that for any
ϵ > 0, there exists an N such that n > N implies |xn − x0| < ϵ. Substituting the specific terms:∣∣∣∣ 1n − 0

∣∣∣∣ < ϵ ⇐⇒ 1

n
< ϵ ⇐⇒ n >

1

ϵ

Formal Proof: Let ϵ > 0 be given. By the Archimedean Property, there exists a natural number N such
that N > 1/ϵ. If we choose n > N , then:

n > N >
1

ϵ
=⇒ 1

n
< ϵ

Therefore, |xn − 0| = 1/n < ϵ for all n > N . This proves that xn → 0.

In the functional notation, we have explicitly constructed the function N(ϵ) by choosing any integer greater
than 1/ϵ (e.g., N(ϵ) = ⌊1/ϵ⌋+ 1).
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3.4 Special Limits I

With just the formal definition, combined with basic algebraic manipulation, we can establish convergence
for most examples . The following examples illustrate standard techniques for determining the threshold
N(ϵ) in non-trivial scenarios.

Example 3.4.1. Rational Functions Involving Roots. Prove that lim
n→∞

3
√
n+1

2
√
n−1

= 3
2 .

Proof. We examine the difference between the general term and the limit:∣∣∣∣3√n+ 1

2
√
n− 1

− 3

2

∣∣∣∣ = ∣∣∣∣2(3√n+ 1)− 3(2
√
n− 1)

2(2
√
n− 1)

∣∣∣∣ = 5

4
√
n− 2

To simplify finding N , we want to bound this term by something simpler. Note that 4
√
n− 2 > 2

√
n is true

whenever 2
√
n > 2, i.e., n > 1. Using this inequality:

5

4
√
n− 2

<
5

2
√
n
<

3√
n

(We use 3/
√
n for simplicity, as 2.5 < 3). For any given ϵ > 0, we require 3/

√
n < ϵ, which implies

√
n > 3/ϵ,

or n > 9/ϵ2. Thus, take N = ⌊9/ϵ2⌋+ 1. For any n > N , the inequality holds. ■

Note. The strategy used above applies generally. For any two polynomials P (n) = akn
k + · · · + a0 and

Q(n) = bkn
k + · · ·+ b0 (where bk ̸= 0), the limit depends solely on the ratio of the leading coefficients:

lim
n→∞

akn
k + ak−1n

k−1 + . . .

bknk + bk−1nk−1 + . . .
=

ak
bk

If the degree of the numerator is strictly less than the denominator, the limit is 0; if strictly greater, it
diverges to ±∞.

Example 3.4.2. Power Functions. For any α > 0, prove that lim
n→∞

(1/nα) = 0.

Proof.

Case 1: α ≥ 1. Then nα ≥ n, so 0 < (1/nα) ≤ (1/n). Taking N = ⌊1/ϵ⌋, if n > N , then 1/nα ≤ 1/n < ϵ.

Case 2: 0 < α < 1. Since α > 0, the number 1/α exists. By the Archimedean Property, there exists a
natural number m such that m > 1/α, which implies mα > 1.

Since mα > 1, we know from Case 1 that lim
n→∞

1/(nmα) = 0. Thus, for any ϵ > 0, there exists N such that
for n > N , 1/(nmα) < ϵm. Taking the m-th root of both sides yields 1/(nα) < ϵ. ■

Example 3.4.3. Geometric Sequence Decay. When |q| < 1, prove that lim
n→∞

qn = 0.

Proof. If q = 0, the result is trivial. Let 0 < |q| < 1. We can write |q| = 1
1+α where α = 1

|q| − 1 > 0. By the

Binomial Expansion, (1 + α)n = 1 + nα+ n(n−1)
2 α2 + · · · > nα. Thus:

|qn − 0| = |q|n =
1

(1 + α)n
<

1

nα

For any ϵ > 0, we require 1/nα < ϵ =⇒ n > 1/αϵ. Take N = ⌊1/αϵ⌋+ 1. When n > N , |qn| < ϵ. ■

Example 3.4.4. The n-th Root of n. Prove that lim
n→∞

n1/n = 1.
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Proof. We use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. Consider the n numbers:
1, 1, . . . , 1︸ ︷︷ ︸
n−2 times

,
√
n,

√
n. The geometric mean of these numbers is:

(1 · · · · · 1 ·
√
n ·

√
n)1/n = (n)1/n = n1/n

The arithmetic mean is:

(n− 2) · 1 + 2
√
n

n
=

n− 2 + 2
√
n

n
= 1− 2

n
+

2√
n
< 1 +

2√
n

By AM-GM, Geometric Mean ≤ Arithmetic Mean, so:

1 ≤ n1/n < 1 +
2√
n

=⇒ 0 ≤ n1/n − 1 <
2√
n

For any ϵ > 0, take N = ⌊4/ϵ2⌋+ 1. When n > N :

|n1/n − 1| < 2√
n
<

2√
4/ϵ2

= ϵ

■

Remark. (AM-GM Inequality:). For any set of non-negative real numbers x1, x2, . . . , xn, the arithmetic
mean is greater than or equal to the geometric mean:

x1 + x2 + · · ·+ xn

n
≥ n

√
x1 · x2 · · · · · xn

Proof. Let A = 1
n

∑
xk be the arithmetic mean. We assume A > 0 (otherwise the result is trivial). Consider

the quantities xk/A. Using the inequality et−1 ≥ t, we set t = xk/A:

e
xk
A −1 ≥ xk

A

Multiplying this inequality for all k = 1 . . . n:

n∏
k=1

e
xk
A −1 ≥

n∏
k=1

xk

A

The exponent on the left becomes
∑

(xk

A − 1) =
∑

xk

A − n = n− n = 0. Thus, e0 ≥
∏

xk

An , which simplifies to
1 ≥ Gn

An , or A ≥ G. ■

Uniqueness of Limits

Before we delve deeper into examples and properties of limits, we must establish a fundamental fact: a
sequence cannot converge to two different values simultaneously. If a sequence settles down, the place it
settles is unique.
Theorem 3.4.1. Uniqueness of Limits. If a sequence (xn) converges to a limit a, then it cannot converge
to a different limit b. That is, the limit of a convergent sequence is unique.

Proof. We proceed by contradiction. Assume that the sequence (xn) converges to two distinct limits, a and
b, with a ̸= b. Without loss of generality, assume a < b. The intuition is that if xn gets arbitrarily close to a
and arbitrarily close to b, the terms must eventually be in two disjoint neighbourhoods simultaneously, which
is impossible. Let ϵ = (b−a)/2. This distance represents half the separation between the two proposed limits.
Note that since a < b, ϵ > 0. Since xn → a, there exists a threshold Na such that for all n > Na, |xn−a| < ϵ.
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Since xn → b, there exists a threshold Nb such that for all n > Nb, |xn − b| < ϵ. Let N = max(Na, Nb). For
any n > N , both conditions must hold. Consider the distance between a and b. By the Triangle Inequality:

|a− b| = |(a− xn) + (xn − b)| ≤ |a− xn|+ |xn − b|

Substituting the bounds from our convergence definitions:

|a− b| < ϵ+ ϵ = 2ϵ

However, we defined ϵ = (b− a)/2, which implies 2ϵ = b− a = |a− b|. This leads to the contradiction:

|a− b| < |a− b|

This is impossible. Therefore, the assumption that a ̸= b must be false. The limit is unique. ■

The "Game" of Convergence

The definition of convergence can be daunting. It is often helpful to view it as a game between two players:
a Challenger (the sceptic) and a Defender (the prover).

The Setup: The Defender claims that the sequence (xn) converges to L.
The Challenge: The Challenger picks a number ϵ > 0. This represents a margin of error. The Challenger

is essentially asking, "Can you guarantee the sequence stays within distance ϵ of L?"
The Response: The Defender must find a threshold index N . This is the Defender’s way of saying, "Wait

until the N -th term. After that, I guarantee the terms are within your margin."
The Verification: If |xn − L| < ϵ for all n > N , the Defender wins this round.

For the sequence to be convergent, the Defender must have a winning strategy for every possible ϵ the
Challenger might throw, no matter how small.

Example 3.4.5. Achilles and the Tortoise.

Challenger: I bet the sequence xn = 1/n doesn’t converge to 0. What if I set the tolerance to ϵ = 0.0001?
Defender: That is small, but eventually the sequence gets smaller. I choose N = 10, 000. For any

n > 10, 000, we have 1/n < 0.0001.
Challenger: Okay, but what if I choose ϵ to be 1/K, where K is the number of sand particles on Earth?

It’s tiny!
Defender: It doesn’t matter how huge K is. If ϵ = 1/K, I simply choose N = K. Then for any n > K,

we have 1/n < 1/K = ϵ.
Defender’s Strategy: For any ϵ you give me, I define my response function as N(ϵ) = ⌊1/ϵ⌋+ 1. Since I

have a function that works for any input, I win. The sequence converges.

R

LL− ϵ L+ ϵ

Challenger’s Neighbourhood

Early Terms (n ≤ N) The Tail (n > N)
Trapped!

Figure 3.4: The Convergence Game: The blue shaded region represents the Challenger’s ϵ-neighborhood.
The Defender wins if eventually all future points (the blue dots) stay strictly inside this region, regardless
of the red early points.

Consider the counter-example of a sequence that gets close but does not converge to the proposed limit.
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Example 3.4.6. The Constant Disappointment. Does the constant sequence yn = 0.0001 converge to 0?

Challenger: I choose ϵ = 0.00001 (which is 10−5).
Defender: I need to find N such that |0.0001− 0| < 0.00001.

Analysis: The condition is 0.0001 < 0.00001, which is false. No matter what N the Defender picks, the
terms never get closer than 0.0001. The Defender has no strategy for this specific ϵ. Thus, yn does not
converge to 0 (it converges to 0.0001).

3.5 Deep Dive into the Definition

Let us revisit the standard definition of convergence to appreciate its logical structure.

∀ϵ > 0,∃Nϵ ∈ N such that ∀n > Nϵ, |xn − x0| < ϵ

The order of quantifiers is crucial.

For each ϵ > 0: We start by fixing an arbitrary error tolerance.
There exists Nϵ ∈ N: Based on that specific ϵ, we find a threshold.
Such that for all n > Nϵ: Beyond that threshold, the condition holds.

The notation Nϵ emphasises that the threshold depends on ϵ. Generally, as ϵ becomes smaller (a tighter
tolerance), the required Nϵ becomes larger (we must go further into the sequence).

What if we swap quantifiers?

Consider the statement with the first two quantifiers swapped:

∃N ∈ N such that ∀ϵ > 0, ∀n > N, |xn − x0| < ϵ

This says there is a "universal" threshold N that works for every possible ϵ. If such an N existed, then
for n > N , |xn − x0| would be less than every positive number. The only non-negative number smaller
than every positive number is 0. Thus, this modified definition would imply xn = x0 for all n > N . In
other words, swapping the quantifiers restricts the definition to include only sequences that are eventually
constant. This is far too restrictive for analysis.

Divergence

To fully understand convergence, we must understand its negation. What does it mean for a sequence to
not converge to x0?
Theorem 3.5.1. Negation of Convergence. A sequence (xn) does not converge to x0 if:

∃ϵ > 0 such that ∀N ∈ N, ∃n > N such that |xn − x0| ≥ ϵ

In plain English: There is a "bad" tolerance ϵ such that no matter how far out we go (no matter what N
we pick), we can always find a term xn further out that violates the tolerance condition.

Definition 3.5.1. Divergence . A sequence (xn) is said to diverge if it does not converge to any x0 ∈ R.
That is, for every L ∈ R, the sequence fails to converge to L.

Divergence to Infinity

A specific and important type of divergence occurs when a sequence grows without bound.
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Definition 3.5.2. Divergence to Infinity . A sequence (xn) diverges to +∞ (written xn → ∞) if for
every M ∈ R, there exists an N ∈ N such that:

xn > M for all n > N.

Similarly, xn → −∞ if for every M , eventually xn < M .

Here, M acts as a "barrier" rather than a tolerance. The condition says the sequence eventually stays above
any barrier we set.

Topological Viewpoint

The definition of convergence can be elegantly rephrased using the language of topology. Recall that an
open neighbourhood Bϵ(x) (sometimes called open ball B(x, ϵ)) is the set of points within distance ϵ of x,
as defined in the section on the basic topology of the real line (see dfn 2.3.2).
Theorem 3.5.2. Topological Convergence. A sequence (xn) converges to x0 if and only if for every
ϵ > 0, there exists an N ∈ N such that for all n > N ,

xn ∈ B(x0, ϵ).

This phrasing shifts the focus from arithmetic inequalities to set membership: the "tail" of the sequence
must eventually lie entirely within any open neighbourhood centred at the limit.

Definition 3.5.3. Neighbourhoods of Infinity . While a neighborhood of a real number x is an open
interval containing x, we extend this concept to the extended real line:

• A neighborhood of +∞ is any interval of the form (M,+∞) for some M ∈ R.
• A neighborhood of −∞ is any interval of the form (−∞,M) for some M ∈ R.

3.6 A Descriptive Language for Convergence

The formal definition of convergence, involving nested quantifiers and explicit functional dependencies, can
be cumbersome in practice. To streamline our arguments without sacrificing rigour, we introduce descriptive
terminology that captures the essence of "eventual" behaviour.

Sufficiently Large n

The core idea of convergence is that a property holds for the "tail" of a sequence.

Definition 3.6.1. Tail of a Sequence . Let (xn) be a sequence and let N ∈ N. The N-tail (or simply the
tail) of the sequence is the subsequence (xn)n>N . It corresponds to the set of values:

{xN+1, xN+2, xN+3, . . . }

Definition 3.6.2. Eventually True . Let P (n) be a property defined on the natural numbers. We say
P (n) is true for sufficiently large n (or true eventually, or true for all but finitely many n) if there exists
some N ∈ N such that P (n) holds for all n > N .

This definition does not specify how large n must be — whether N = 10 or N = 1010 is irrelevant to the
qualitative fact that the property eventually holds.
Proposition 3.6.1. Principle of Finite Modification. The convergence or divergence of a sequence is not
affected if we modify only finitely many of its terms. Specifically, if (xn) and (yn) are two sequences such
that there exists an N0 ∈ N where xn = yn for all n > N0, then:

lim
n→∞

xn = L ⇐⇒ lim
n→∞

yn = L.
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Proof. Assume lim
n→∞

xn = L. Let ϵ > 0 be given. By definition, there exists Nx such that for all n > Nx,
|xn − L| < ϵ. We must find a threshold for the sequence (yn). Let Ny = max(Nx, N0). For any n > Ny, we
know n > N0, which implies yn = xn. Since we also know n > Nx, it follows that |yn − L| = |xn − L| < ϵ.
Thus, lim

n→∞
yn = L. The converse holds by symmetry. ■

Using this terminology, the definition of convergence can be restated succinctly:
Theorem 3.6.1. Descriptive Definition of Convergence. A sequence (xn) converges to x if and only
if for each ϵ > 0, the inequality |xn − x| < ϵ holds for sufficiently large n.

Proof. This follows directly from the definition of "sufficiently large."

(⇒) If xn → x, then for any ϵ > 0, there exists N such that for all n > N , |xn − x| < ϵ. The existence of
such an N is exactly the definition of the property holding for sufficiently large n.

(⇐) Conversely, if for every ϵ > 0 the inequality holds for sufficiently large n, then by definition there exists
an N such that the inequality holds for all n > N . This is precisely the ϵ−N definition of convergence.

■

Topologically: (xn) converges to x if for each ϵ > 0, xn ∈ B(x, ϵ) eventually.

The Role of ϵ and the K − ϵ Principle

In convergence proofs, ϵ represents an arbitrary, fixed error tolerance. Our goal is to show that the distance
|xn − x0| can be made smaller than this tolerance by choosing n large enough. Frequently, algebraic manip-
ulations yield an upper bound of the form Kϵ rather than exactly ϵ, where K > 0 is a constant independent
of n and ϵ.
Lemma 3.6.1. The K − ϵ Principle. Let (En) be a sequence of non-negative real numbers (typically error
terms |xn − x0|). Suppose there exists a constant K > 0 such that for every ϵ > 0,

En < Kϵ for sufficiently large n.

Then for every ϵ > 0,
En < ϵ for sufficiently large n.

In other words, proving the bound Kϵ is sufficient to prove convergence.

Proof. Let an arbitrary target η > 0 be given. We wish to show En < η eventually. In the hypothesis, the
condition holds for every positive number. Specifically, let us choose the value ϵ = η/K. Since η > 0 and
K > 0, this ϵ is positive. By the hypothesis, there exists a threshold N such that for all n > N :

En < K
( η

K

)
= η

Thus, En < η for sufficiently large n. Since η was arbitrary, the conclusion follows. ■

This principle allows us to be less pedantic with constants during proofs. If we arrive at |xn − x| < 2ϵ or
100ϵ, we can simply conclude convergence without redefining ϵ′ = ϵ/100 in every step.

3.7 Exercises

Part I: The Definitions of Convergence and Divergence

1. Basic ϵ−N Proofs. Use the formal definition of convergence to prove the following limits. Explicitly
define N(ϵ) in each case.



CHAPTER 3. SEQUENCES 34

(a) lim
n→∞

1
1+

√
n
= 0

(b) lim
n→∞

2n+3
5n−10 = 2

5

(c) lim
n→∞

0. 99 . . . 9︸ ︷︷ ︸
n

= 1

2. Understanding Quantifiers. Consider the modified definition of convergence where the order of
quantifiers is swapped:

∃N ∈ N such that ∀ϵ > 0, ∀n > N, |xn − x0| < ϵ.

Prove formally that a sequence satisfies this definition if and only if it is eventually constant (i.e., there
exists N such that xn = x0 for all n > N).

Remark. To prove the "only if" direction, assume the sequence is not eventually constant and con-
struct a specific ϵ that yields a contradiction.

3. Alternative Definitions? Determine whether the following statements can serve as a valid definition
for lim

n→∞
an = a. If yes, prove equivalence to the standard definition. If no, provide a counter-example.

(a) For infinitely many ϵ > 0, there exists N ∈ N such that for all n > N , |an − a| < ϵ.

(b) For any ϵ > 1, there exists N ∈ N such that for all n > N , |an − a| < ϵ.

(c) For any ϵ ∈ (0, 1), there exists N ∈ N such that for all n > N , |an − a| < ϵ.

(d) For every positive integer k, there exists Nk ∈ N such that for all n > Nk, |an − a| < 1/k.

(e) For any ϵ, δ > 0, the interval (a− ϵ, a+ δ) contains all but finitely many terms of the sequence.

4. Discrete Convergence. Let (an) be a sequence of integers. Prove that (an) converges if and only if
the sequence is eventually constant (i.e., there exists N such that an = an+1 for all n > N).

Remark. To prove the forward direction, consider the definition of convergence with a specific choice
of ϵ < 1.

5. Formal Negation. Write out the formal definition for the statement "The sequence (xn) diverges."

Remark. This requires combining the definition of divergence (for all L ∈ R, (xn) does not converge
to L) with the logical negation of the convergence definition.

6. Divergence to Infinity.

(a) Prove that if a sequence of positive terms (xn) satisfies xn → ∞, then 1/xn → 0.

(b) Rewrite the definition of xn → ∞ using functional notation (i.e., explicitly defining a function
N : R → N).

7. Topological Proof of Uniqueness. Use the topological definition of convergence (using open neigh-
bourhoods) to prove the Uniqueness of Limits theorem.

Remark. Assume xn → a and xn → b with a ̸= b. Use the Hausdorff property of the real line to
choose disjoint neighbourhoods Bϵ(a) and Bϵ(b).

Part II: Properties of Convergent Sequences

8. Boundedness of Convergent Sequences. Prove that every convergent sequence is bounded.

Remark. Let xn → L. Choose a specific value for ϵ (e.g., ϵ = 1) to bound the tail of the sequence.
Then consider the finite set of terms preceding the tail.

9. Preservation of Inequalities. Let (xn) be a convergent sequence with limit L.
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(a) Prove that if xn ≥ 0 for all n, then L ≥ 0.

(b) Give a counter-example to show that xn > 0 for all n does not imply L > 0.

(c) Suppose (yn) converges to M and xn ≤ yn for all n. Prove that L ≤ M .

10. Subsequence Inheritance. Prove that if a sequence (xn) converges to L, then every subsequence
(xnk

) of (xn) also converges to L.

Remark. Recall that for a subsequence, the index function satisfies nk ≥ k for all k.

11. Absolute Values. Let lim
n→∞

an = a. Prove that lim
n→∞

|an| = |a|. Give an example to show that the
converse is not generally true. Under what specific condition is the converse true?

12. The Maximum Mean. Let (an) be a sequence such that lim
n→∞

an

n = 0. Prove that:

lim
n→∞

max(|a1|, |a2|, . . . , |an|)
n

= 0.

Remark. Fix ϵ. Since an/n → 0, for large n, |an| < ϵn. What about the terms before that threshold?
They are fixed finite numbers.

13. Limits of Sums. Use the identity
∑n

k=1 k = n(n+1)
2 to prove:

lim
n→∞

1 + 2 + · · ·+ n

n2
=

1

2
.

Part III: Advanced Topics

14. ⋆ Recursive Sequences and Monotonicity. Let a sequence be defined recursively by x1 = 1 and
xn+1 =

√
2 + xn.

(a) Show by induction that the sequence is bounded above by 2.

(b) Show by induction that the sequence is increasing (xn+1 > xn).

15. ⋆ Characterisation of Supremum. Let S ⊂ R be a non-empty set bounded above, and let α = supS.
Prove that there exists a sequence (xn) such that xn ∈ S for all n, and lim

n→∞
xn = α.

Remark. Use the characterisation of the supremum: for every ϵ = 1/n, there exists an element in S
close to α.

16. ⋆ Approximation of Irrationals. Let (xn) be a sequence of rational numbers, where each term is
written in lowest terms as xn = pn/qn (with pn ∈ Z, qn ∈ N). Prove that if (xn) converges to an
irrational number ξ, then lim

n→∞
qn = ∞.

17. ⋆ The Ratio Lemma for Sequences. Let (xn) be a sequence of positive real numbers. Suppose
that lim

n→∞
xn+1

xn
= L < 1. Prove that lim

n→∞
xn = 0.

18. ⋆ Coupled Recursive System. Let a, b, c be real numbers. Define sequences recursively by a0 =
a, b0 = b, c0 = c and for n ≥ 1:

an =
bn−1 + cn−1

2
, bn =

an−1 + cn−1

2
, cn =

an−1 + bn−1

2
.

Prove that all three sequences converge to the same limit a+b+c
3 .

Remark. Hint 1: Show that an + bn + cn is constant for all n.
Hint 2: Let dn = max(an, bn, cn)−min(an, bn, cn) be the "diameter" of the set. Show that dn decreases
by a factor of 2 at each step (dn = dn−1/2), which implies the diameter goes to 0.
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Limits Laws

The definition of convergence, involving the precise manipulation of ϵ and N , is the rigorous foundation
of analysis. However, determining the limit of a sequence directly from the definition is often arduous. It
requires one to have a candidate for the limit a priori, and the resulting inequality manipulations can be
cumbersome for complex expressions.

To streamline the analysis of sequences, we establish the Limit Laws. These theorems allow us to decom-
pose complex sequences into simpler components, compute their limits individually, and reassemble them
algebraically. Rather than playing the "Challenger-Defender" game for every new sequence, we prove that
the game is won for basic arithmetic operations, allowing us to compute limits mechanically.

4.1 Algebraic Limit Laws

We begin with the arithmetic properties of limits. The central philosophy is that the limit operation respects
the standard algebraic structures of the real numbers.
Theorem 4.1.1. Algebraic Limit Laws. Let (an) and (bn) be convergent sequences such that lim

n→∞
an = A

and lim
n→∞

bn = B. Let c ∈ R be a constant. Then:

(i) Sum Law: The sequence (an + bn) converges to A+B.
(ii) Difference Law: The sequence (an − bn) converges to A−B.
(iii) Constant Multiple Law: The sequence (can) converges to cA.
(iv) Product Law: The sequence (anbn) converges to AB.
(v) Quotient Law: If B ̸= 0 and bn ̸= 0 for all n, the sequence (an/bn) converges to A/B.

Remark. As noted in the previous chapter, sequences may not be defined for the first few terms (e.g.,
division by zero). The Quotient Law implies that if B ̸= 0, then bn ̸= 0 for all sufficiently large n, so the
quotient sequence is eventually well-defined.

Proofs of Linear Properties

The proofs for addition and scalar multiplication rely on the Triangle Inequality and the judicious choice of
a maximum threshold index.

Proof of the Sum Law. We wish to show that |(an + bn) − (A + B)| < ϵ for sufficiently large n. By the
Triangle Inequality:

|(an + bn)− (A+B)| = |(an −A) + (bn −B)| ≤ |an −A|+ |bn −B|

36
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Let ϵ > 0. Since an → A and bn → B, there exist thresholds N1 and N2 such that:

|an −A| < ϵ/2 for n > N1,

|bn −B| < ϵ/2 for n > N2.

Let N = max{N1, N2}. For any n > N , both inequalities hold simultaneously. Thus:

|(an + bn)− (A+B)| < ϵ

2
+

ϵ

2
= ϵ

By the definition of convergence, an + bn → A+B. ■

Proof of the Constant Multiple Law. We examine |can−cA| = |c||an−A|. If c = 0, the sequence is constantly
0, which trivially converges to 0. If c ̸= 0, let ϵ > 0. We require |an −A| < ϵ/|c|. Since an → A, there exists
N such that this holds for all n > N . Thus, for n > N :

|can − cA| = |c||an −A| < |c|
(

ϵ

|c|

)
= ϵ

■

Combining these two results proves the Difference Law, as an − bn = an + (−1)bn.

Proof of the Product Law

The limit of a product is the product of the limits. The proof utilizes a standard analytical technique: adding
and subtracting a "cross-term" (either anB or Abn) to apply the Triangle Inequality.

Proof. We analyze the difference |anbn −AB|. By adding and subtracting the term anB inside the absolute
value:

|anbn −AB| = |anbn − anB + anB −AB|
= |an(bn −B) +B(an −A)|
≤ |an||bn −B|+ |B||an −A| (Triangle Inequality)

We must bound the term |an|. Since (an) is a convergent sequence, it is bounded (see Properties of Convergent
Sequences). Thus, there exists a constant M > 0 such that |an| ≤ M for all n. Consequently:

|anbn −AB| ≤ M |bn −B|+ |B||an −A|

Let ϵ > 0. We apply the convergence of an and bn:

• Since bn → B, there exists N1 such that |bn −B| < ϵ for n > N1.
• Since an → A, there exists N2 such that |an −A| < ϵ for n > N2.

Let N = max{N1, N2}. For n > N :

|anbn −AB| < Mϵ+ |B|ϵ = ϵ(M + |B|)

By the K − ϵ Principle (where K = M + |B| is a constant independent of n and ϵ), the sequence converges
to AB. ■
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Proof of the Quotient Law

To prove an/bn → A/B, it suffices to prove that the sequence of reciprocals 1/bn → 1/B. Once established,
we can view the quotient as a product: an · (1/bn) → A · (1/B).
Lemma 4.1.1. Bounding the Denominator. If bn → B and B ̸= 0, then there exists N such that for all
n > N , |bn| > |B|/2.

Proof. Let ϵ = |B|/2. Since |B| > 0, ϵ > 0. Because bn → B, there exists N such that for all n > N ,
|bn − B| < |B|/2. By the Reverse Triangle Inequality, |B| − |bn| ≤ |bn − B| < |B|/2. Rearranging yields
|bn| > |B| − |B|/2 = |B|/2. ■

This lemma ensures that the denominator is eventually bounded away from zero.

Proof of Reciprocal Convergence. We evaluate the difference | 1
bn

− 1
B |:∣∣∣∣ 1bn − 1

B

∣∣∣∣ = ∣∣∣∣B − bn
bnB

∣∣∣∣ = |bn −B|
|bn||B|

Using the lemma, for sufficiently large n, |bn| > |B|/2. Thus, 1
|bn| <

2
|B| . Substituting this bound:∣∣∣∣ 1bn − 1

B

∣∣∣∣ < |bn −B|(
|B|
2

)
|B|

=
2

|B|2
|bn −B|

Since bn → B, the term |bn −B| can be made arbitrarily small. By the K − ϵ Principle (with K = 2/|B|2),
the sequence converges to 1/B. ■

The Quotient Law follows immediately from the Product Law applied to (an) and (1/bn).

Limits and Order

The limit process preserves the non-strict order relations of the real numbers. If one sequence is consistently
larger than another, their limits must respect this hierarchy.
Theorem 4.1.2. Order Preservation. Let (an) and (bn) be convergent sequences with limits A and B
respectively. If an ≤ bn for all n ∈ N (or for all sufficiently large n), then A ≤ B.

Proof. We proceed by contradiction. Consider the sequence cn = bn − an. Since an ≤ bn, we have cn ≥ 0
for all n. By the Difference Law, cn → B−A. Let L = B−A. Assume for contradiction that A > B, which
implies L < 0. Since cn → L, for ϵ = |L|/2, there exists N such that for n > N :

|cn − L| < |L|
2

This implies L − (|L|/2) < cn < L + (|L|/2). Since L is negative, L = −|L|. The rightmost term is
−|L|+ |L|/2 = −|L|/2 < 0. Thus, cn < 0 for n > N . This contradicts the hypothesis that cn ≥ 0. Therefore,
the assumption is false, and A ≤ B. ■
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n

y

A = B

bn

an

Gap → 0

Figure 4.1: Although an < bn strictly for every n (shown by the gray gaps), the sequences converge to the
same limit. The strict inequality is lost in the limit.

Note. Strict inequalities are not preserved by limits. For example, if an = 0 and bn = 1/n, then an < bn
for all n. However, lim an = 0 and lim bn = 0, so the limits are equal (A = B), not strictly less.

Theorem 4.1.3. Sign Preservation Principle. Let (an) be a convergent sequence with limit L.

1. If L > 0, then there exists N ∈ N such that an > 0 for all n > N .
2. More generally, if α < L < β, then there exists N ∈ N such that α < an < β for all n > N .

Proof. For (1), let ϵ = L/2. Since L > 0, ϵ > 0. By the definition of convergence, there exists N such that
for all n > N , |an − L| < L/2. This implies L − L/2 < an < L + L/2, so an > L/2 > 0. Statement (2)
follows similarly by choosing ϵ = min(L− α, β − L). ■

The Squeeze Theorem

Frequently, we encounter sequences that cannot be directly simplified using algebraic limit laws (e.g., involv-
ing oscillating terms like sinn or factorials). The Squeeze Theorem (also known as the Sandwich Theorem or
Pinching Theorem) allows us to determine the limit of such a sequence by trapping it between two simpler
sequences that converge to the same value.
Theorem 4.1.4. The Squeeze Theorem. Let (an), (bn), and (cn) be sequences such that for all sufficiently
large n:

an ≤ cn ≤ bn

If lim
n→∞

an = L and lim
n→∞

bn = L, then (cn) must also converge, and lim
n→∞

cn = L.

n

y

L

bn

an

cn

Figure 4.2: The Squeeze Theorem. Since an and bn both converge to L, the sequence cn, trapped between
them, is forced to converge to L as well.

Proof. Let ϵ > 0. We need to show that |cn − L| < ϵ eventually. Subtracting L from the inequality
an ≤ cn ≤ bn gives:

an − L ≤ cn − L ≤ bn − L

From the convergence of the outer sequences:
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1. Since an → L, there exists N1 such that for n > N1, |an − L| < ϵ, which implies −ϵ < an − L < ϵ.
Specifically, we need an − L > −ϵ.

2. Since bn → L, there exists N2 such that for n > N2, |bn − L| < ϵ, which implies −ϵ < bn − L < ϵ.
Specifically, we need bn − L < ϵ.

Let N = max{N1, N2}. For n > N :

−ϵ < an − L ≤ cn − L ≤ bn − L < ϵ

Thus, −ϵ < cn − L < ϵ, or |cn − L| < ϵ. ■

Corollary 4.1.1. Null Sequence Squeeze. Suppose that a ∈ R and (an), (xn) are sequences such that:

|an − a| ≤ xn for all n, and lim
n→∞

xn = 0.

Then lim
n→∞

an = a.

Proof. We have squeezed the sequence |an−a| between the constant sequence 0 and the sequence (xn), both
of which converge to 0. Thus |an − a| → 0, which implies an → a. ■

Example 4.1.1. Squeeze Theorem Application. Evaluate lim
n→∞

(sinn)/n. The sine function oscillates, so
we cannot use simple algebraic laws. However, we know that −1 ≤ sinn ≤ 1 for all n. Dividing by n (where
n > 0):

− 1

n
≤ sinn

n
≤ 1

n

We identify the bounding sequences:

an = − 1

n
and bn =

1

n

We know that lim
n→∞

(−1/n) = 0 and lim
n→∞

(1/n) = 0. Since the limits are equal (L = 0), by the Squeeze
Theorem:

lim
n→∞

sinn

n
= 0

n

an

1
n− 1

n

sinn
n

Figure 4.3: The sequence sinn
n oscillates boundedly but is trapped between the envelopes ± 1

n , forcing con-
vergence to 0.

4.1.1 Null Sequences

In the analysis of convergence, it is often advantageous to centre our discussion around zero. A sequence (zn)
that converges to 0 is called a null sequence (or an infinitesimal sequence). The study of general convergence
can be reduced to the study of null sequences by a simple translation:

lim
n→∞

xn = L ⇐⇒ lim
n→∞

(xn − L) = 0
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n

zn

ϵ

−ϵ

N

Threshold

Figure 4.4: A null sequence (zn). Regardless of sign, the terms eventually enter and stay within the ϵ-strip
around 0.

Properties of Null Sequences

Null sequences enjoy specific algebraic stability.

1. Sum/Difference: If (an) and (bn) are null sequences, then (an ± bn) is a null sequence.
2. Absolute Value: (an) is a null sequence if and only if (|an|) is a null sequence.
3. Powers: If (an) is a null sequence and k ∈ N, then (akn) is a null sequence.

The Bounded-Null Principle

A standard pitfall in limit arithmetic is assuming that lim(anbn) requires both an and bn to converge.
However, if one sequence effectively "destroys" the magnitude of the other, convergence is preserved.
Theorem 4.1.5. Product of Bounded and Null Sequences. Let (zn) be a null sequence and let (bn)
be a bounded sequence. Then the product sequence (znbn) is a null sequence.

lim
n→∞

zn = 0 and |bn| ≤ M =⇒ lim
n→∞

(znbn) = 0

Proof. Since (bn) is bounded, there exists M > 0 such that |bn| ≤ M for all n. Let ϵ > 0. We seek to show
|znbn| < ϵ eventually. Since (zn) is null, there exists N such that for all n > N , |zn| < ϵ/M . Consequently,
for all n > N :

|znbn| = |zn||bn| <
ϵ

M
·M = ϵ

Thus, (znbn) → 0. ■

This theorem is computationally more efficient than the Squeeze Theorem for damped oscillations.

Example 4.1.2. Damped Oscillation. Evaluate lim
n→∞

sin(n2)+cos(n)
n2 . We rewrite the term as:

1

n2
· (sin(n2) + cos(n))

• The sequence zn = 1/n2 is a null sequence (by the Archimedean property).
• The sequence bn = sin(n2) + cos(n) is divergent and oscillates chaotically. However, by the triangle

inequality, |bn| ≤ | sin(n2)|+ | cos(n)| ≤ 1 + 1 = 2. Thus, (bn) is bounded.

By the Bounded-Null Principle, the product converges to 0.

Remark. Note that the standard Product Law (lim anbn = lim an lim bn) is inapplicable here because lim bn
does not exist.
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Arithmetic of Infinity

The Algebraic Limit Laws can be extended to cases where limits are infinite, provided we adopt specific
conventions. If lim an = ∞ and lim bn = ∞, the following operations are well-defined:

∞+∞ = ∞
∞ ·∞ = ∞

C · ∞ =

{
∞ if C > 0

−∞ if C < 0
(for C ̸= 0)

C

∞
= 0 (for any C ∈ R)

Remark. Indeterminate Forms: Extreme care must be taken when operations oppose each other. The
following expressions are undefined in the arithmetic of limits and require more detailed analysis to resolve:

∞
∞

, 0 · ∞, ∞−∞,
0

0
, 1∞.

For example, if an = n2 and bn = n, then ∞/∞ results in ∞. But if an = n and bn = n2, ∞/∞ results in
0. The symbol ∞/∞ itself gives no information about the limit.

4.2 Convergence of Subsequences

Recall that a subsequence is formed by composing the sequence with a strictly increasing index function
(dfn 3.2.1). Formally, if σ : N → N is such a function (where nk = σ(k)), the subsequence is denoted (aσ(n)).
Having established the algebraic limit laws, we now turn to the topological relationship between a sequence
and its subsequences.

Inheritance of Convergence

The first result is intuitive: if the "parent" sequence approaches a limit, any "child" sequence (subsequence)
constrained to the same path must approach the same limit.
Theorem 4.2.1. Subsequence Convergence. If a sequence (an) converges to a limit L, then every
subsequence of (an) also converges to L.

Proof. Let (ank
) be a subsequence of (an), where the index mapping nk = σ(k) is strictly increasing. A

fundamental property of strictly increasing functions on natural numbers is that nk ≥ k for all k ∈ N.

Let ϵ > 0. Since an → L, there exists a threshold N(ϵ) such that for all n > N(ϵ), |an − L| < ϵ. Consider
the subsequence term ank

. If we choose the index k > N(ϵ), then by the property of indices, nk ≥ k > N(ϵ).
Consequently, the term ank

satisfies the convergence condition:

|ank
− L| < ϵ

Thus, the same threshold function N(ϵ) suffices to prove the convergence of the subsequence. ■

A Criterion for Divergence

While the direct theorem is useful, its logical contrapositive provides a powerful tool for establishing diver-
gence.
Corollary 4.2.1. Divergence Criterion. If a sequence (an) contains two subsequences converging to distinct
limits, then (an) is divergent.
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This formalises our earlier observation regarding the oscillating sequence 1, 0, 1, 0, . . . , which possesses sub-
sequences converging to 1 and 0 respectively. By the Uniqueness of Limits, the parent sequence cannot
converge.

Example 4.2.1. Divergence of Trigonometric Sequences. Prove that the sequence xn = sinn diverges.

Proof. Assume for contradiction that lim
n→∞

sinn = L. We utilise the addition formula: sin(n+1)−sin(n−1) =

2 sin(1) cos(n). Taking the limit as n → ∞:

L− L = 2 sin(1) lim
n→∞

cosn =⇒ 0 = 2 sin(1) lim
n→∞

cosn

Since sin(1) ̸= 0 (as 1 radian is not a multiple of π), it implies lim
n→∞

cosn = 0. However, we also have the

identity cos(2n) = 1− 2 sin2(n) or cos2 n+ sin2 n = 1. Taking limits of cos2 n+ sin2 n = 1:

(lim cosn)2 + (lim sinn)2 = 1 =⇒ 02 + L2 = 1 =⇒ L2 = 1

Taking limits of sin(2n) = 2 sinn cosn:If sinn → L and cosn → 0, then the subsequence sin(2n) must
converge to L (by uniqueness) but also to 2(L)(0) = 0.Thus L = 0.We have reached a contradiction: L2 = 1
and L = 0. Therefore, the sequence diverges. ■

Proposition 4.2.1. Odd-Even Decomposition. A sequence (xn) converges to L if and only if the subse-
quences of odd terms (x2n−1) and even terms (x2n) both converge to L.

Proof.

(⇒) This follows immediately from the Subsequence Convergence Theorem.
(⇐) Let ϵ > 0. Since x2n−1 → L, there exists Nodd such that |x2n−1 − L| < ϵ for all 2n− 1 > Nodd. Since

x2n → L, there exists Neven such that |x2n − L| < ϵ for all 2n > Neven. Let N = max(Nodd, Neven).
For any k > N :

– If k is odd, k > Nodd, so |xk − L| < ϵ.
– If k is even, k > Neven, so |xk − L| < ϵ.

Thus, |xk − L| < ϵ for all k > N , so the sequence converges. ■

The Subsequence Cover Property

The converse of the inheritance theorem ("if every subsequence converges to L, then the sequence converges
to L"), is trivially true because the sequence is a subsequence of itself. However, a more subtle and powerful
version exists. It states that we do not need every subsequence to converge; we only need to know that every
subsequence contains a convergent sub-subsequence.
Theorem 4.2.2. The Subsubsequence Criterion. Let (an) be a sequence. If every subsequence of (an)
has a further subsequence that converges to L, then the sequence (an) converges to L.

Proof. We proceed by contradiction. Assume that every subsequence of (an) has a sub-subsequence con-
verging to L, but the sequence (an) does not converge to L.

Step 1: Negating Convergence. The statement an ̸→ L implies that there exists a specific ϵ0 > 0 such
that for any threshold N ∈ N, there is at least one index n > N where the term an lies outside the
neighbourhood (L− ϵ0, L+ ϵ0).

∃ϵ0 > 0,∀N ∈ N, ∃n > N such that |an − L| ≥ ϵ0

Step 2: Constructing a "Bad" Subsequence. We claim that the set of indices S = {n ∈ N : |an−L| ≥
ϵ0} is infinite. If S were finite, we could choose N > max(S), and for all subsequent terms the inequality
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|an − L| < ϵ0 would hold, implying convergence. Since S is infinite, we can construct a subsequence
(ank

) consisting entirely of terms from S. We define the indices inductively:

n1 = inf S

n2 = inf(S \ {n1})
...

nk = inf(S \ {n1, . . . , nk−1})

This yields a strictly increasing sequence of indices nk. By construction, for all k, |ank
− L| ≥ ϵ0.

Step 3: The Contradiction. Consider this specific subsequence (ank
). By the hypothesis of the theorem,

this subsequence must contain a further subsequence (ankj
) that converges to L. However, every term in

our constructed subsequence satisfies |ank
−L| ≥ ϵ0. This property is inherited by any sub-subsequence.

Thus, for all j:
|ankj

− L| ≥ ϵ0

It is impossible for a sequence to converge to L if all its terms remain at least a distance ϵ0 away from
L. This contradicts the hypothesis that a convergent sub-subsequence exists.

Therefore, the initial assumption must be false, and (an) converges to L. ■

n

an

L

L+ ϵ0

L− ϵ0

Subsequence (ank
)

|ank
− L| ≥ ϵ0

Figure 4.5: Visualisation of the contradiction proof. If an ̸→ L, we can extract a subsequence (red points)
strictly outside the ϵ0-band. This red subsequence cannot have any sub-subsequence converging to L, con-
tradicting the theorem’s hypothesis.

4.3 Special Limits II

Having established the algebraic limit laws and the Squeeze Theorem, and having examined fundamental
power functions in the section 3.4, we focus on some more specific sequences that appear frequently in
analysis.

Geometric Series

In section 3.4, we proved that for a geometric sequence with ratio |b| < 1, the terms decay to zero ( lim
n→∞

bn =

0). Conversely, if b > 1, we can write b = 1 + r with r > 0. By the Binomial expansion, (1 + r)n ≥ 1 + nr,
which grows without bound. Thus, bn → ∞.

This behaviour allows us to sum the Geometric Series. Let Sn be the sequence of partial sums:

Sn = 1 + b+ b2 + · · ·+ bn
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We utilize the algebraic identity (1− b)(1 + b+ · · ·+ bn) = 1− bn+1. Assuming |b| < 1, we can solve for Sn:

Sn =
1− bn+1

1− b

Since |b| < 1, we have bn+1 → 0. Thus:

lim
n→∞

n∑
k=0

bk =
1

1− b

Parametrized Limits

Occasionally, a limit depends on an external parameter x. This requires careful case analysis. Consider the
sequence an(x) =

1
1+n2x for a fixed x ∈ R.

• If x = 0, then an(0) = 1/1 = 1 for all n. Thus, lim
n→∞

an(0) = 1.

• If x > 0, then n2x → ∞, so the denominator diverges to infinity and an(x) → 0.

• If x < 0, the sequence is undefined when 1 + n2x = 0. Assuming x is such that the denominator is
non-zero for large n, |n2x| → ∞, so the limit is 0.

The limit function is 1 at x = 0 and 0 elsewhere. This discontinuity presages the distinction between
pointwise and uniform convergence.

Roots of Constants

We previously proved that lim
n→∞

n
√
n = 1 using the AM-GM inequality. We can apply similar logic (or

Bernoulli’s inequality) to constants.
Theorem 4.3.1. Limit of n-th Roots of Constants. For any P > 0, lim

n→∞
n
√
P = 1.

Proof. If P = 1, the result is trivial.

Case 1: P > 1. Let xn = n
√
P − 1. Since P > 1, we have xn > 0. Raising both sides to the power n and

applying Bernoulli’s Inequality (or the first term of the Binomial expansion):

P = (1 + xn)
n ≥ 1 + nxn

Rearranging yields 0 < xn ≤ P−1
n . By the Squeeze Theorem, xn → 0, implying n

√
P → 1.

Case 2: 0 < P < 1. Let Q = 1/P > 1. Then n
√
P = 1/ n

√
Q. Since we just proved n

√
Q → 1, the reciprocal

converges to 1/1 = 1.

■

The Hierarchy of Growth

We conclude with a comparison of polynomial, exponential, and factorial growth. The colloquial wisdom is
that "exponentials beat polynomials" and "factorials beat exponentials."
Theorem 4.3.2. Polynomial vs. Exponential. Let a > 1 and k ∈ N. Then:

lim
n→∞

nk

an
= 0

(
equivalently

an

nk
→ ∞

)
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Proof. Let a = 1 + b with b > 0. We expand (1 + b)n using the Binomial Theorem. For n > k + 1, we look
specifically at the term with index k + 1:

(1 + b)n =

n∑
j=0

(
n

j

)
bj >

(
n

k + 1

)
bk+1 =

n(n− 1) · · · (n− k)

(k + 1)!
bk+1

The expression on the right behaves like a polynomial in n of degree k + 1. Specifically, for large n, the
product n(n − 1) · · · (n − k) grows as nk+1. Thus, there exists a constant C such that (1 + b)n > Cnk+1.
Dividing by nk:

an

nk
> C

nk+1

nk
= Cn

Since Cn → ∞, the reciprocal nk/an converges to 0. ■

Theorem 4.3.3. Exponential vs. Factorial. For any r ∈ R,

lim
n→∞

rn

n!
= 0

Proof. Assume r ̸= 0. Fix an integer N0 > 2|r|. For any n > N0, we split the product into a constant part
and a "tail": ∣∣∣∣rnn!

∣∣∣∣ = |r|N0

N0!︸ ︷︷ ︸
Constant C

· |r|
N0 + 1

· |r|
N0 + 2

· · · |r|
n︸ ︷︷ ︸

n−N0 terms

In the second part, every denominator is greater than N0 > 2|r|, so each factor is strictly less than |r|
2|r| =

1
2 .

0 <

∣∣∣∣rnn!
∣∣∣∣ < C ·

(
1

2

)n−N0

= (C2N0)
1

2n

Since we proved earlier that qn → 0 for |q| < 1, (1/2)n → 0. By the Squeeze Theorem, the limit is 0. ■

This establishes the standard hierarchy of dominance as n → ∞:

log n ≪ nk ≪ an ≪ n! ≪ nn

where A ≪ B implies lim
n→∞

(A/B) = 0.

4.4 Monotone Convergence and Bolzano-Weierstrass

We have established the definition of convergence and the algebraic laws that govern limits. However, using
the definition directly requires us to know the limit a priori. In this section, we develop powerful tools to
establish the convergence of a sequence based solely on its internal properties (specifically, its boundedness
and monotonicity), without needing to guess the limit value beforehand.

The Monotone Convergence Theorem

Intuitively, if a sequence moves in only one direction (monotonicity) and is prevented from escaping to infinity
by a barrier (boundedness), it must eventually bunch up against that barrier. This geometric intuition is
formalised by the Completeness Axiom.
Theorem 4.4.1. Monotone Convergence Theorem (MCT). A monotone sequence of real numbers is
convergent if and only if it is bounded. Specifically:

1. If (an) is increasing and bounded above, it converges to sup{an}.
2. If (an) is decreasing and bounded below, it converges to inf{an}.
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Proof.

(⇒) If a sequence converges, we have already shown it must be bounded (see Properties of Convergent
Sequences).

(⇐) We prove the case where (an) is increasing and bounded above. The decreasing case is analogous.Since
the set of terms A = {an | n ∈ N} is non-empty and bounded above, the The Completeness Axiom
ensures the existence of a supremum L = supA. We claim lim

n→∞
an = L. Let ϵ > 0. By the

characterisation of the supremum, L is the least upper bound, so L − ϵ is not an upper bound.
Therefore, there exists some index N such that aN > L − ϵ. Since the sequence is increasing, for all
n ≥ N , we have an ≥ aN . Combining this with the fact that L is an upper bound (an ≤ L):

L− ϵ < aN ≤ an ≤ L < L+ ϵ

Thus, |an − L| < ϵ for all n ≥ N . ■

Example 4.4.1. Recursive Sequences. Consider the sequence defined by x1 = 1 and xn+1 =
√
2 + xn.

Boundedness: We claim xn < 2. For n = 1, 1 < 2. If xk < 2, then xk+1 =
√
2 + xk <

√
2 + 2 = 2. By

induction, the sequence is bounded above.
Monotonicity: We claim xn+1 > xn. This is equivalent to

√
2 + xn > xn, or 2+xn > x2

n, or x2
n−xn−2 < 0.

Since the roots of t2 − t− 2 are 2 and −1, and 0 < xn < 2, the inequality holds.

By the MCT, the sequence converges to a limit L. Passing the limit through the recurrence

L =
√
2 + L =⇒ L2 − L− 2 = 0 =⇒ (L− 2)(L+ 1) = 0

Since xn > 0, the limit must be L = 2.

4.4.1 The Bolzano-Weierstrass Theorem

While the MCT is powerful, not all bounded sequences are monotone. For instance, the sequence ((−1)n)
is bounded but oscillates. However, it contains a convergent subsequence (e.g., the constant sequence of
1s). The Bolzano-Weierstrass Theorem generalises this observation, asserting that every bounded sequence
contains a convergent subsequence. This is a cornerstone result in analysis, linking the algebraic property
of boundedness to the topological property of compactness.We present two proofs: one relying on the con-
struction of a monotone subsequence (Newman’s approach), and one utilising the Nested Interval Property
(the Bisection method).

Proof I: The Peak Point Lemma

This approach relies on extracting order from chaos. We show that every sequence, no matter how erratic,
contains a monotone subsequence.

Definition 4.4.1. Peak Point . Let (an) be a sequence. A term an is called a peak point (or simply a
peak) if it is at least as large as every term that follows it an ≥ amfor all m > n.

Intuitively, if we view the sequence as a landscape, a peak point is a location from which "looking forward"
(to higher indices) reveals no higher ground.
Lemma 4.4.1. Monotone Subsequence Lemma. Every sequence of real numbers possesses a monotone
subsequence.

Proof. We consider two cases regarding the number of peak points in the sequence (an).

Case 1: Infinite Peak Points. Suppose there are infinitely many peak points. We list their indices in
increasing order: n1 < n2 < n3 < . . . . Since an1

is a peak point and n2 > n1, we have an1
≥ an2

.
Similarly, since an2

is a peak point and n3 > n2, we have an2
≥ an3

. In general, ank
≥ ank+1

. Thus,
(ank

) is a decreasing subsequence.



CHAPTER 4. LIMITS LAWS 48

Case 2: Finite Peak Points. Suppose there are only finitely many peak points (possibly none). Let N
be the largest index among the peak points (set N = 0 if there are none). For any n > N , the term
an is not a peak point. We construct an increasing subsequence as follows:

• Choose any index n1 > N . Since an1
is not a peak point, there must exist some n2 > n1 such

that an2
> an1

.
• Since n2 > N , an2 is not a peak point. Thus, there exists n3 > n2 such that an3 > an2 .
• Proceeding inductively, we find nk+1 > nk such that ank+1

> ank
.

This yields a strictly increasing subsequence (ank
). ■

Theorem 4.4.2. Bolzano-Weierstrass. Every bounded sequence of real numbers has a convergent sub-
sequence.

Proof via Monotone Subsequences. Let (an) be a bounded sequence. By the Monotone Subsequence Lemma,
(an) contains a monotone subsequence (ank

). Since the original sequence is bounded, the subsequence (ank
)

is also bounded. By the Monotone Convergence Theorem, a bounded monotone sequence must converge. ■

Proof II: The Method of Bisection

The second proof is constructive and geometric. It traps the terms of the subsequence within successively
smaller intervals, invoking the Nested Interval Property.

Proof via Bisection. Let (an) be a bounded sequence. Thus, there exists M > 0 such that an ∈ [−M,M ] for
all n. Let I1 = [−M,M ].

Step 1: Constructing Nested Intervals. We divide I1 into two closed sub-intervals of equal length, J1 =
[−M, 0] and J2 = [0,M ]. The set of indices N is infinite. By the Pigeonhole Principle (extended to
infinite sets), at least one of these sub-intervals must contain terms an for infinitely many indices
n.Let I2 be the half containing infinitely many terms. We repeat this process. Given an interval Ik
containing infinitely many terms of the sequence, we split it into two equal closed halves. We select
one half, Ik+1, that contains infinitely many terms of the sequence.This generates a sequence of closed
intervals I1 ⊇ I2 ⊇ I3 . . . with the following properties:

1. The length of Ik is 2M/2k−1.
2. Each Ik contains an for infinitely many values of n.

Step 2: Finding the Limit. By the Nested Interval Property (see Number System notes), the intersec-
tion

⋂∞
k=1 Ik is non-empty. Since the lengths converge to 0 (Archimedean Property), the intersection

contains a unique point L.

Step 3: Constructing the Subsequence. We construct the subsequence (ank
) recursively:

• Choose n1 such that an1 ∈ I1. (Always possible).
• Choose n2 such that n2 > n1 and an2

∈ I2. (Possible because I2 contains infinitely many indices).
• Generally, having chosen nk, choose nk+1 > nk such that ank+1

∈ Ik+1.

For any k, both ank
and L lie within the interval Ik. Therefore:

|ank
− L| ≤ length(Ik) =

2M

2k−1

As k → ∞, the length approaches 0. By the Squeeze Theorem, lim
k→∞

ank
= L.

■
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4.4.2 Applications of Monotone Convergence

The Monotone Convergence Theorem allows us to define constants and algorithms that would otherwise rely
on intuition. We examine two classical applications: the definition of Euler’s number and the algorithmic
computation of square roots.

The Euler Number

Consider the sequence en = (1 + 1
n )

n. While it is well-known that this converges to e ≈ 2.718, proving
existence requires the MCT. To do so, we introduce an auxiliary sequence yn = (1 + 1

n )
n+1.

Theorem 4.4.3. Existence of e. The sequence en = (1 + 1
n )

n is strictly increasing and bounded above.
Consequently, it converges to a limit, denoted by e.

Proof. We first analyse the auxiliary sequence yn = (1+ 1
n )

n+1 = (n+1
n )n+1. Consider the ratio of consecutive

terms for n ≥ 1:

yn−1

yn
=

( n
n−1 )

n

(n+1
n )n+1

=

(
n

n− 1

)n(
n

n+ 1

)n+1

=
n

n+ 1

(
n2

n2 − 1

)n

=
n

n+ 1

(
1 +

1

n2 − 1

)n

By Bernoulli’s Inequality, (1 + x)n ≥ 1 + nx. With x = 1
n2−1 :(

1 +
1

n2 − 1

)n

≥ 1 +
n

n2 − 1
> 1 +

n

n2
=

n+ 1

n

Substituting this back:
yn−1

yn
>

n

n+ 1
· n+ 1

n
= 1 =⇒ yn−1 > yn

Thus, (yn) is strictly decreasing. Since yn > 1, it is bounded below, so lim yn exists. Now consider en. We
observe that:

en = yn · 1

1 + 1/n
= yn · n

n+ 1

Since lim
n→∞

n
n+1 = 1, the limits of (en) and (yn) are identical. Furthermore, since yn decreases to the limit

from above, and en < yn, en is bounded above (specifically by y1 = (1 + 1)2 = 4). It can also be shown via
the AM-GM inequality that en is strictly increasing. Thus, the limit exists. ■

The Babylonian Method

We apply the MCT to a sequence defined recursively by the Newton-Raphson method (known historically
as the Babylonian method) to compute square roots. To calculate

√
α for α > 0, we define:

x1 >
√
α, xn+1 =

1

2

(
xn +

α

xn

)
(4.1)

Theorem 4.4.4. Convergence to
√
α. The sequence defined above converges to

√
α.

Proof. Boundedness: Using the AM-GM inequality on the terms xn and α/xn:

xn+1 =
xn + α/xn

2
≥
√
xn · α

xn
=

√
α

Thus, xn ≥
√
α for all n ≥ 2.
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Monotonicity: Since xn ≥
√
α, we have x2

n ≥ α, which implies α/xn ≤ xn. Therefore:

xn+1 =
1

2
(xn +

α

xn
) ≤ 1

2
(xn + xn) = xn

The sequence is decreasing and bounded below by
√
α. By the MCT, it converges to a limit L ≥

√
α. Passing

the limit through the recurrence:

L =
1

2

(
L+

α

L

)
=⇒ 2L = L+

α

L
=⇒ L2 = α =⇒ L =

√
α

■

4.5 Cauchy Sequences

In our study of convergence thus far, the definition of a limit, lim
n→∞

an = L, requires a priori knowledge of
the value L. We verify convergence by testing whether the terms of the sequence eventually reside within an
arbitrary ϵ-neighbourhood of this candidate limit. However, in many practical and theoretical contexts, the
limit is unknown or difficult to compute explicitly. We therefore require an intrinsic criterion for convergence
— one that depends solely on the internal behaviour of the sequence’s terms relative to one another, rather
than their proximity to an external point.

Definition and Intuition

Intuitively, if a sequence converges to a specific point L, the terms must eventually cluster around L. Con-
sequently, as the terms crowd closer to L, they must essentially crowd closer to each other. If we consider
the tail of the sequence, all terms are confined within a small interval; thus, the distance between any two
terms in that tail must be small.

Definition 4.5.1. Cauchy Sequence . A sequence (an) is called a Cauchy sequence if for every ϵ > 0,
there exists a natural number N ∈ N such that for all n,m > N :

|an − am| < ϵ

This definition formalises the notion of mutual proximity. Unlike the definition of convergence, which an-
chors the sequence to a static limit L, the Cauchy condition requires that the terms eventually become
indistinguishable from one another at any given scale of precision.

R

Threshold N

Tail Region (n,m > N)

an am

< ϵ

Figure 4.6: The Cauchy Condition. Beyond the index threshold N , the terms of the sequence are trapped
in a "tail" where they bunch together.

Examples of Cauchy Analysis

To verify the Cauchy criterion, we typically assume without loss of generality that m > n and write m = n+p
for some p ≥ 1. We then attempt to bound the difference |an+p − an| independently of p.
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Example 4.5.1. Geometric Sequences. Let |q| < 1. We show that the sequence an = qn is Cauchy. Consider
the difference for m > n:

|am − an| = |qn+p − qn| = |qn(qp − 1)| = |q|n|1− qp|

Using the triangle inequality and the fact that |q| < 1 (implies |q|p < 1):

|1− qp| ≤ 1 + |q|p < 2

Thus:
|am − an| < 2|q|n

Since |q| < 1, the sequence (2|q|n) is a null sequence. For any ϵ > 0, there exists N such that 2|q|n < ϵ for
all n > N . Consequently, (an) is Cauchy.

Example 4.5.2. The Alternating Sequence. Let an = (−1)n. Consider the distance between consecutive
terms (p = 1):

|an+1 − an| = |(−1)n+1 − (−1)n| = |(−1)n(−1− 1)| = | − 1− 1| = 2

If we choose ϵ = 1, there is no N such that |am − an| < 1 for all m,n > N , since consecutive terms always
differ by 2. Thus, the sequence is not Cauchy (and therefore divergent).

Example 4.5.3. Convergence of a Finite Series. Consider the sequence of partial sums defined by an =∑n
k=1

1
k2 . For m > n:

|am − an| =
m∑

k=1

1

k2
−

n∑
k=1

1

k2
=

m∑
k=n+1

1

k2

We utilise the inequality 1
k2 < 1

k(k−1) =
1

k−1 − 1
k for k ≥ 2. Applying this to the sum (telescoping sum):

|am − an| <
m∑

k=n+1

(
1

k − 1
− 1

k

)
=

(
1

n
− 1

n+ 1

)
+ · · ·+

(
1

m− 1
− 1

m

)
Most terms cancel, leaving:

|am − an| <
1

n
− 1

m
<

1

n

For any ϵ > 0, choosing N > 1/ϵ ensures that |am − an| < 1/N < ϵ. Thus, the sequence converges.

Example 4.5.4. Divergence of the Harmonic Sums. Consider an =
∑n

k=1
1
k . We test the Cauchy condition

with m = 2n.

|a2n − an| =
2n∑

k=n+1

1

k
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

This sum contains n terms. The smallest term is the last one, 1/2n.

|a2n − an| ≥
2n∑

k=n+1

1

2n
= n · 1

2n
=

1

2

For ϵ = 1/2, the condition fails. No matter how large N is, we can always find n > N and m = 2n such that
the distance is at least 1/2. Therefore, the sequence is not Cauchy and diverges to infinity.

Boundedness of Cauchy Sequences

Before establishing the relationship between Cauchy sequences and convergent sequences, we prove a funda-
mental property: Cauchy sequences cannot oscillate wildly or diverge to infinity.
Proposition 4.5.1. Boundedness of Cauchy Sequences. Every Cauchy sequence is bounded.
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Proof. Let (an) be a Cauchy sequence. We apply the definition with a fixed tolerance, say ϵ = 1. There
exists N ∈ N such that for all n,m > N , |an − am| < 1. Fix m = N + 1. Then for all n > N :

|an − aN+1| < 1

By the Reverse Triangle Inequality, |an| − |aN+1| ≤ |an − aN+1| < 1, which implies:

|an| < 1 + |aN+1| for all n > N.

The sequence consists of the tail (bounded by 1 + |aN+1|) and the finite set of initial terms {a1, . . . , aN}.
Let M be the maximum of these magnitudes:

M = max{|a1|, |a2|, . . . , |aN |, 1 + |aN+1|}

Then |an| ≤ M for all n ∈ N. Thus, the sequence is bounded. ■

The Cauchy Convergence Criterion

We now state and prove the central theorem regarding Cauchy sequences. In the real number system, the
property of being Cauchy is equivalent to the property of being convergent.
Theorem 4.5.1. Cauchy Convergence Criterion. A sequence of real numbers is convergent if and only
if it is a Cauchy sequence.

Proof. The proof consists of two directions.

Convergent =⇒ Cauchy. Suppose lim
n→∞

an = L. Let ϵ > 0 be given. We must show that mutual
distances |an−am| can be made less than ϵ. Since an → L, there exists N ∈ N such that for all k > N ,
|ak−L| < ϵ/2. Let n,m > N . We introduce the limit L into the expression via the Triangle Inequality:

|an − am| = |(an − L) + (L− am)|
≤ |an − L|+ |L− am|
= |an − L|+ |am − L|

Since both n,m > N , both terms are bounded by ϵ/2.

|an − am| < ϵ

2
+

ϵ

2
= ϵ

Thus, (an) is Cauchy.

Cauchy =⇒ Convergent. This direction relies on the completeness of R. Suppose (an) is a Cauchy
sequence.

i Existence of a Candidate Limit. By the previous proposition, (an) is bounded. By Bolzano-
Weierstrass, every bounded sequence contains a convergent subsequence. Let (ank

) be a subse-
quence converging to a limit L. We claim that the entire sequence (an) converges to L.

ii Convergence of the Whole Sequence. Let ϵ > 0. We use the convergent subsequence as an
"anchor".

• Since (an) is Cauchy, there exists N1 such that for all n,m > N1, |an − am| < ϵ/2.
• Since ank

→ L, there exists K such that for all k > K, |ank
− L| < ϵ/2.

We choose an index from the subsequence, nk, that is sufficiently large. Specifically, we choose
k such that k > K and nk > N1. (This is possible because indices of a subsequence tend to
infinity). Now, let n > N1. We estimate the distance from an to L:

|an − L| ≤ |an − ank
|+ |ank

− L|
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The first term |an−ank
| is less than ϵ/2 because both indices n and nk are greater than N1 (using

the Cauchy property). The second term |ank
− L| is less than ϵ/2 because of the convergence of

the subsequence.
|an − L| < ϵ

2
+

ϵ

2
= ϵ

Thus, lim
n→∞

an = L.

■

This theorem is profound because it allows us to prove convergence without knowing the limit. It is the
defining characteristic of a complete metric space.

Completeness via Monotone Convergence

In our construction of the real numbers, we posited the Completeness Axiom (Least Upper Bound Property)
as a foundational axiom. We then derived the Monotone Convergence Theorem (MCT), the Archimedean
Property, and the Nested Interval Property (NIP). It is instructive to note that these properties are deeply
interlinked. In fact, if we assume the MCT as an axiom, we can derive the other forms of completeness.
Theorem 4.5.2. MCT implies the Archimedean Property. Assume the Monotone Convergence The-
orem (MCT) holds. Then for any x, y > 0, there exists n ∈ N such that nx > y.

Proof. Assume, for contradiction, that the Archimedean Property fails. Then there exist x, y > 0 such that
nx ≤ y for all n ∈ N. Consider the sequence an = nx. Since x > 0, the sequence is strictly increasing
(an+1 − an = x > 0). By our assumption, an ≤ y for all n, so the sequence is bounded above. By the MCT,
the sequence must converge to a limit L. However, if a sequence converges, it must be Cauchy. Let us test
the difference between consecutive terms:

|an+1 − an| = |(n+ 1)x− nx| = x

For the sequence to be Cauchy, this difference must eventually be less than any ϵ. If we choose ϵ = x/2, we
see that |an+1 − an| = x > x/2 for all n. Thus, the sequence is not Cauchy and therefore not convergent.
This contradicts the conclusion of the MCT. Thus, the sequence cannot be bounded, and the Archimedean
Property must hold. ■

Theorem 4.5.3. MCT implies the Nested Interval Property. Assume the Monotone Convergence
Theorem holds. Let [an, bn] be a sequence of nested closed intervals ([an+1, bn+1] ⊆ [an, bn]). Then⋂∞

n=1[an, bn] ̸= ∅.

Proof. Consider the sequence of left endpoints (an). Since the intervals are nested, an ≤ an+1 for all n, so
(an) is increasing. Furthermore, for any n, an ≤ bn ≤ b1. Thus, (an) is bounded above by b1. By the MCT,
the sequence (an) converges to a limit A = sup{an}. We claim A ∈

⋂
[an, bn]. Since A is the supremum of

the left endpoints, an ≤ A for all n. Also, since every bk is an upper bound for the set of all an (due to the
nested property, any left endpoint is less than any right endpoint), we must have A ≤ bk for all k. Thus,
ak ≤ A ≤ bk for all k, which implies A ∈ [ak, bk] for all k. The intersection is non-empty. ■

4.6 Exercises

Part I: Computational Limits and Basic Laws

1. Use the Limit Laws and the Squeeze Theorem to determine the limits of the following sequences, or
prove that they diverge.
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(a) an = 3n+(−2)n

3n+1+(−2)n+1

(b) bn =
√
n(
√
n+ 1−

√
n)

(c) cn =
(
1− 1

22

) (
1− 1

32

)
· · ·
(
1− 1

n2

)
(d) dn = 1

n2 (1 + 2 + · · ·+ n)

2. Limits of n-th roots. Using the fact that lim
n→∞

n1/n = 1 and the Squeeze Theorem, evaluate:

(a) lim
n→∞

(2n + 3n)1/n

(b) lim
n→∞

(1n + 2n + · · ·+ 100n)1/n

(c) lim
n→∞

(n2 − n+ 2)1/n

3. Rationalisation. Evaluate the limit of the sequence given by:

xn = n

(√
1 +

1

n
− 1

)
.

Remark. Multiply by the conjugate expression
√

1+1/n+1√
1+1/n+1

. This linearisation technique is the precur-

sor to the derivative.

4. Infinite Products. Consider the sequence Pn =
∏n

k=2

(
1− 1

k

)
.

(a) Write out the first few terms of the product and simplify the expression for Pn algebraically.

(b) Prove that lim
n→∞

Pn = 0.

(c) Now consider Qn =
∏n

k=2

(
1− 1

k2

)
. Prove that lim

n→∞
Qn = 1

2 .

5. Divergence by Summation. Prove that the sequence Sn =
∑n

k=1
1√
k

diverges to +∞.

Remark. Bound the terms 1√
k

from below by 1√
n
.

Part II: Theoretical Properties

6. Monotone Convergence in Action. Let x1 =
√
2 and define the sequence recursively by xn+1 =√

2 + xn.

(a) Prove by induction that xn < 2 for all n.

(b) Prove by induction that xn+1 > xn for all n.

(c) Monotone Convergence Theorem: This theorem states that any bounded, monotone sequence
converges. Accepting this result (without proof) implies that the limit L = lim

n→∞
xn exists.

Determine the exact value of L by taking the limit as n → ∞ on both sides of the defining
relation xn+1 =

√
2 + xn.

7. Ratio Tests for Sequences. Let (an) be a sequence of positive terms.

(a) Prove that if lim
n→∞

an+1

an
= L < 1, then lim

n→∞
an = 0.

(b) Show by counter-example that if lim
n→∞

an+1

an
= 1, the sequence may converge or diverge. Consider

an = n and an = 1/n.

8. Cesàro Means (Arithmetic Mean Limit). Let (an) be a sequence that converges to a. Define a
new sequence of averages σn = a1+a2+···+an

n .

(a) Prove that lim
n→∞

σn = a.
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Remark. Split the sum into two parts. Since an → a, for any ϵ, there is an N such that ak ≈ a
for k > N . The terms before N become negligible when divided by a large n.

(b) Give an example of a divergent sequence (an) for which the sequence of averages (σn) converges.

9. Geometric Mean Limit. Using the result from the previous exercise and the identity ln(a1 . . . an) =∑
ln(ai), prove that if (an) is a sequence of positive numbers converging to a > 0, then:

lim
n→∞

n
√
a1a2 · · · an = a.

10. Cauchy’s Root-Ratio Theorem. Using the previous exercise, prove that for a sequence of positive
numbers (an):

If lim
n→∞

an+1

an
= L, then lim

n→∞
n
√
an = L.

Use this to verify that lim
n→∞

n
n√
n!

= e.

Remark. Let xn = nn

n! .

Part III: Advanced Challenges

11. The Dominant Term (Max-Norm). Let a1, a2, . . . , am be non-negative real numbers. Let M =
max{a1, . . . , am}. Prove that:

lim
n→∞

(an1 + an2 + · · ·+ anm)
1/n

= M.

Remark. Factor out Mn from the summation and use the Squeeze Theorem. Note that 1 ≤
∑

(ak/M)n ≤
m.

12. Contractive Sequences. A sequence (xn) is called contractive if there exists a constant k ∈ (0, 1)
such that |xn+2 − xn+1| ≤ k|xn+1 − xn| for all n.

(a) Show that |xn+1 − xn| ≤ kn−1|x2 − x1|.
(b) Use the Triangle Inequality to show that for m > n:

|xm − xn| ≤ |x2 − x1|
kn−1

1− k
.

(c) Conclude that (xn) is a Cauchy sequence (and therefore convergent).

13. ⋆ Stability Analysis of Non-Linear Recurrence. Let c be a real number. Consider the recursive
sequence defined by a1 = c/2 and

an+1 =
c

2
+

a2n
2
.

(a) Suppose the sequence converges to a limit L. Show that L must satisfy the quadratic equation
L2 − 2L+ c = 0.

(b) For which values of c does this equation have real solutions? What are the possible values for L?
(c) Case 0 < c ≤ 1: Prove by induction that the sequence is increasing and bounded above by

1−
√
1− c. Conclude that the limit is indeed 1−

√
1− c.

(d) Case c > 1: Prove that an → +∞.

Remark. Show that if the sequence were bounded, it would converge to a root of the quadratic,
which is impossible for c > 1.

14. ⋆ The Toeplitz Theorem (Generalised Averaging). This is a generalisation of the Arithmetic
Mean exercise. Let tn,k be a grid of non-negative weights (1 ≤ k ≤ n) such that for every fixed k,
lim
n→∞

tn,k = 0, and for every n,
∑n

k=1 tn,k = 1. Let (an) converge to L. Define the transformed sequence

xn =
∑n

k=1 tn,kak. Prove that lim
n→∞

xn = L.
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Remark. Write xn−L =
∑n

k=1 tn,k(ak −L). Split the sum into a "head" (small indices k) where tn,k
vanishes as n → ∞, and a "tail" (large indices k) where |ak − L| is small.

15. ⋆ A Pseudo-Cauchy Condition. A fundamental property of real numbers is that if terms get close to
each other, the sequence converges (The Cauchy Criterion). However, "close" must be defined carefully.

(a) Give an example of a divergent sequence (an) such that lim
n→∞

|an+1 − an| = 0. This shows that
distance between consecutive terms going to zero is insufficient.

(b) Now, suppose a sequence satisfies the stronger condition:

|an+p − an| ≤
p

n2

for all positive integers p. Prove that this sequence converges.
Remark. Fix n and let p vary to bound the tail of the sequence. Recall that

∑
1/n2 converges,

which suggests the "total distance" remaining is finite.

16. ⋆ Quasi-Monotone Convergence. Let (xn) be a non-negative sequence satisfying the inequality:

xn+1 ≤ xn +
1

n2
for all n ∈ N.

Prove that (xn) converges.

Remark. Consider the auxiliary sequence yn = xn−
∑n−1

k=1
1
k2 . Show that (yn) is monotone decreasing

and bounded below. You may assume that
∑∞

k=1
1
k2 converges to a finite limit.

17. ⋆⋆ Binomial Averaging. Let (an) be a sequence converging to L. Prove that:

lim
n→∞

1

2n

n∑
k=0

(
n

k

)
ak = L.

Remark. This is a specific application of the Toeplitz Theorem. Identify the weights tn,k =
(
n
k

)
2−n.

You must justify why for fixed k,
(
n
k

)
2−n → 0 as n → ∞. Stirling’s approximation or simple factorial

bounds may help.

18. ⋆⋆ The Trapped Recurrence. Let (an) be a sequence such that 0 < an < 1 for all n, satisfying the
inequality:

(1− an)an+1 >
1

4
.

Prove that lim
n→∞

an = 1
2 .

Remark. First, recall the algebraic inequality x(1− x) ≤ 1
4 for all real x. Use the given inequality to

show that an+1 > an, making the sequence strictly increasing. Then apply the Monotone Convergence
Theorem and solve for the limit.

19. ⋆⋆ Parameter Dependent Convergence. Let u1 = b. Define a sequence recursively by:

un+1 = u2
n + (1− 2a)un + a2 (n ≥ 1).

Discuss the convergence of (un) for different values of the parameters a and b.

Remark. Complete the square to rewrite the recurrence in the form un+1 − a = (un − a)2 + (un − a).
Let vn = un − a to simplify the system to vn+1 = vn(1 + vn). Under what conditions does vn → 0?

20. ⋆ ⋆ ⋆ Characterisation of Divergence. Let (an) be a bounded sequence. Prove that (an) diverges
if and only if it contains two subsequences converging to distinct limits.

Remark. The "if" direction is the Divergence Criterion. For the "only if" direction: if (an) diverges,
it has no single limit. By Bolzano-Weierstrass, it has at least one convergent subsequence with limit
L. Since the whole sequence does not converge to L, construct a subsequence entirely outside a
neighbourhood of L. Apply Bolzano-Weierstrass to this "outer" subsequence to find a second limit
L′ ̸= L.



Chapter 5

Infinite Sums

Having established a framework for sequences and their limits, we now turn our attention to the summation
of infinitely many terms. While the concept of adding an infinite list of numbers appears intuitive, it requires
a precise definition based on the theory of sequences to avoid the paradoxes often associated with infinity.

5.1 Infinite Series

An infinite series is essentially a sequence of sums. Given a sequence of real numbers (bn), we do not simply
"add them all up" in one step; rather, we define the sum as the limit of partial additions.

Definition 5.1.1. Infinite Series. Let (bn)
∞
n=1 be a sequence of real numbers. The formal expression∑∞

n=1 bn is called an infinite series. We define the m-th partial sum Sm as:

Sm :=

m∑
n=1

bn = b1 + b2 + · · ·+ bm

The series is said to converge to a limit L if the sequence of partial sums (Sm) converges to L. In this case,
we write:

∞∑
n=1

bn = L

If the sequence (Sm) diverges, the series is said to diverge.

It is crucial to distinguish between the sequence of terms (bn) and the sequence of partial sums (Sm). The
behaviour of the series is determined strictly by (Sm).
Proposition 5.1.1. The Divergence Test. If the series

∑∞
n=1 bn converges, then lim

n→∞
bn = 0.

Proof. Let Sm converge to L. We observe that bm = Sm − Sm−1. By the Algebraic Limit Laws:

lim
m→∞

bm = lim
m→∞

Sm − lim
m→∞

Sm−1 = L− L = 0

■

Remark. The condition bn → 0 is necessary but not sufficient for convergence. A series may have terms
tending to zero yet still diverge, as we shall demonstrate with the harmonic series.

57
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Series with Non-Negative Terms

The analysis of infinite series is significantly simplified when the terms bn are non-negative (bn ≥ 0). In this
scenario, the sequence of partial sums is monotonic.

Sm+1 = Sm + bm+1 ≥ Sm

Since (Sm) is increasing, we may apply the Monotone Convergence Theorem (MCT).
Theorem 5.1.1. Convergence of Non-Negative Series. A series

∑∞
n=1 bn with bn ≥ 0 converges if and

only if the sequence of partial sums (Sm) is bounded above.

Proof. Let Sm be the partial sums. Since bn ≥ 0, we have Sm+1 − Sm = bm+1 ≥ 0. Thus, (Sm) is a
monotonically increasing sequence. The result follows immediately from the Monotone Convergence Theorem
(MCT): an increasing sequence converges if and only if it is bounded above. ■

This theorem allows us to determine convergence without explicit knowledge of the limit value L. We usually
establish boundedness by comparing the series to a known quantity.

Example: The Inverse Squares

Consider the series of reciprocal squares:

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ . . .

Since the terms are positive, the partial sums Sm are increasing. To prove convergence, we must demonstrate
that Sm is bounded above. We employ a technique of estimation by finding a larger series that is easier to
sum (a telescoping series).

Proof. We seek an upper bound for Sm =
∑m

n=1
1
n2 . For n ≥ 2, we have the inequality n2 > n(n − 1).

Consequently:
1

n2
<

1

n(n− 1)
=

1

n− 1
− 1

n

We can now estimate the partial sum:

Sm = 1 +

m∑
n=2

1

n2

< 1 +

m∑
n=2

(
1

n− 1
− 1

n

)
The summation on the right is a telescoping sum. Expanding the terms reveals the cancellation:(

1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

m− 1
− 1

m

)
= 1− 1

m

Thus, we have the bound:

Sm < 1 +

(
1− 1

m

)
= 2− 1

m
< 2

Since Sm is increasing and bounded above by 2, the series converges by the MCT. ■

Note. The heuristic used here involves increasing individual terms to form a simpler, summable expression.
While this proof confirms convergence, it does not reveal the exact sum, which Euler famously proved to be
π2/6.
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Example: The Harmonic Series

We now consider the harmonic series:
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . .

Although the terms approach zero (lim 1/n = 0), the series diverges. We prove this by showing that the
partial sums are unbounded. The proof utilises a technique of grouping terms, often attributed to Nicole
Oresme (c. 1350).

Proof. Let us examine specific partial sums at indices that are powers of 2. Let m = 2k.

S2k = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k−1 + 1
+ · · ·+ 1

2k

)
We define groups of terms ending at powers of 2. The j-th group (where j runs from 1 to k) sums terms
from n = 2j−1 +1 to n = 2j . The number of terms in the j-th group is 2j − 2j−1 = 2j−1. In each group, the
smallest term is the last one, 1/2j . Therefore, we can bound the sum of the group from below:

2j∑
n=2j−1+1

1

n
≥ 2j−1 · 1

2j
=

1

2

Applying this lower bound to the expression for S2k :

S2k ≥ 1 +
1

2
+

(
1

2

)
︸ ︷︷ ︸

Group 2

+

(
1

2

)
︸ ︷︷ ︸

Group 3

+ · · ·+
(
1

2

)
︸ ︷︷ ︸

Group k

There are k − 1 groups following the first 1/2. Thus:

S2k ≥ 1 +
1

2
+ (k − 1)

1

2
= 1 +

k

2

As k → ∞, 1 + k/2 → ∞. Consequently, the sequence of partial sums (Sm) is unbounded. By the MCT
(contrapositive), the series diverges. ■

Remark. The divergence of the harmonic series is extremely slow. For the sum to exceed 100, one would
require approximately 1.5× 1043 terms. Nonetheless, it diverges to infinity.

This grouping technique (estimating sums over blocks of size 2k), is generalised by the Cauchy Condensation
Test, which provides a powerful criterion for the convergence of monotone decreasing series.

5.2 The Cauchy Condensation Test

The technique employed to establish the divergence of the harmonic series admits a powerful generalisation
known as the Cauchy Condensation Test. This criterion allows us to test the convergence of a series with
monotonically decreasing terms by replacing it with a "condensed" series that is often far easier to analyse
(typically a geometric series).
Theorem 5.2.1. Cauchy Condensation Test. Let (bn) be a non-increasing sequence of non-negative real
numbers (b1 ≥ b2 ≥ · · · ≥ 0). Then the series

∑∞
n=1 bn converges if and only if the condensed series

∞∑
k=0

2kb2k = b1 + 2b2 + 4b4 + 8b8 + . . .

converges.
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Remark. The intuition here is sparsity versus magnitude. The terms b2k are selected exponentially far
apart, but we weight them by 2k to compensate for the terms we skipped. The test asserts that these two
effects balance perfectly for monotone sequences.

Proof. We examine the partial sums of the original series, Sm =
∑m

n=1 bn, and the partial sums of the
condensed series, Tk =

∑k
j=0 2

jb2j . Since bn ≥ 0, both sequences of partial sums are non-decreasing. By the
MCT, convergence is equivalent to boundedness.

(⇐) Convergence Implication. Suppose the condensed series converges to a limit T . We wish to show
that (Sm) is bounded. Fix m ∈ N. Choose k sufficiently large such that m ≤ 2k+1 − 1. We group the
terms of Sm as follows:

Sm ≤ S2k+1−1

= b1 + (b2 + b3) + (b4 + b5 + b6 + b7) + · · ·+ (b2k + · · ·+ b2k+1−1)

In the group (b2j + · · ·+ b2j+1−1), there are 2j terms. Since (bn) is non-increasing, the largest term in
this group is the first one, b2j . However, to obtain an upper bound involving the condensed series, we
observe that for the convergence direction, we essentially bounded b2 + b3 ≤ 2b2, b4 + · · · + b7 ≤ 4b4,
and so on. Thus:

Sm ≤ b1 + 2b2 + 4b4 + · · ·+ 2kb2k = Tk ≤ T

Since Sm is bounded by T for all m, the original series converges.
(⇒) Divergence Implication. Suppose the condensed series diverges (Tk → ∞). We show that Sm must

also be unbounded. We group terms to find a lower bound. Consider the partial sum up to 2k:

S2k = b1 + b2 + (b3 + b4) + (b5 + · · ·+ b8) + · · ·+ (b2k−1+1 + · · ·+ b2k)

≥ b1 + b2 + 2b4 + 4b8 + · · ·+ 2k−1b2k

= b1 +
1

2

(
2b2 + 4b4 + 8b8 + · · ·+ 2kb2k

)
= b1 +

1

2
(Tk − b1)

If Tk → ∞, then S2k → ∞. Thus the original series diverges.

■

5.2.1 The p-series Test

The primary application of the Condensation Test is to determine the convergence of the generalised harmonic
series, commonly known as the p-series.
Theorem 5.2.2. Convergence of p-series. The series

∑∞
n=1

1
np converges if p > 1 and diverges if p ≤ 1.

Proof. Let bn = 1/np. This sequence is non-negative and decreasing for all p ∈ R. We apply the Cauchy
Condensation Test. The condensed series is:

∞∑
k=0

2kb2k =

∞∑
k=0

2k
1

(2k)p
=

∞∑
k=0

2k

2kp
=

∞∑
k=0

(21−p)k

This is a geometric series
∑

rk with ratio r = 21−p.

Case p > 1: Then 1− p < 0, so r = 21−p < 1. A geometric series with ratio strictly less than 1 converges.
Thus, the original series converges.

Case p ≤ 1: Then 1 − p ≥ 0, so r = 21−p ≥ 1. A geometric series with ratio r ≥ 1 diverges. Thus, the
original series diverges.

■
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Remark. This result establishes the boundary between convergence and divergence for polynomial decay.
The harmonic series (p = 1) is the threshold. For p > 1, the sum defines the Riemann Zeta Function,
denoted ζ(p) =

∑∞
n=1 n

−p. While we have proven convergence, finding the exact sum is difficult. Euler
famously proved ζ(2) = π2/6 and ζ(4) = π4/90, though values for odd integers (like ζ(3)) remain mysterious.

5.2.2 The Cauchy Criterion for Series

In the study of sequences, we established that a sequence converges if and only if it is a Cauchy sequence.
As an infinite series is defined by its sequence of partial sums, we can translate the Cauchy Convergence
Criterion directly to the context of series.
Theorem 5.2.3. Cauchy Criterion for Series. The series

∑∞
n=1 bn converges if and only if for every

ϵ > 0, there exists N ∈ N such that for all n > m > N :∣∣∣∣∣
n∑

k=m+1

bk

∣∣∣∣∣ = |Sn − Sm| < ϵ

Proof. Let Sn =
∑n

k=1 bk be the sequence of partial sums. By definition, the series converges if and only
if (Sn) converges. By the Cauchy Convergence Criterion, the sequence (Sn) converges if and only if it is a
Cauchy sequence. The condition for (Sn) to be Cauchy is exactly:

|Sn − Sm| < ϵ for all n,m > N

Substituting Sn − Sm =
∑n

k=m+1 bk (assuming n > m) yields the theorem statement immediately. ■

This criterion allows us to prove the convergence of a series by showing that the "tail" of the sum becomes
arbitrarily small, without needing to compute the limit or show monotonicity.

Example 5.2.1. Alternating Harmonic Series. Consider
∑∞

n=1(−1)n+1/n. The partial sums are not mono-
tone, so the previous tests do not apply directly. However, using the Cauchy Criterion, one can show that
for large m, the alternating sum

∣∣∣ 1
m+1 − 1

m+2 + · · · ± 1
n

∣∣∣ is bounded by the first term 1
m+1 , which vanishes

as m → ∞. Thus, the series converges.

5.3 General Convergence Tests

Hitherto, our methods for determining the convergence of a series have relied on specific structural properties,
such as monotonicity (Integral Test, Condensation Test) or the ability to compute partial sums explicitly
(Telescoping Series). We now establish a broader class of tests based on the principle of comparison. The
fundamental philosophy is simple: if a series is "smaller" than a convergent series, it converges; if it is
"larger" than a divergent series, it diverges.

5.3.1 The Comparison Test

Theorem 5.3.1. Direct Comparison Test. Let
∑

an and
∑

bn be series with non-negative terms such
that, for all n ∈ N (or for all n sufficiently large), 0 ≤ an ≤ bn.

(i) If
∑

bn converges, then
∑

an converges.
(ii) If

∑
an diverges, then

∑
bn diverges.

Proof. Part (ii) is the contrapositive of part (i). We prove (i) using the Cauchy Criterion for Series. Suppose∑
bn converges. Let ϵ > 0. By the Cauchy Criterion for Series, there exists a threshold N such that for all

n > m > N :
n∑

k=m+1

bk < ϵ
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(The absolute value is redundant as terms are non-negative). By the hypothesis 0 ≤ ak ≤ bk, it follows
immediately that:

n∑
k=m+1

ak ≤
n∑

k=m+1

bk < ϵ

Thus, the partial sums of
∑

an satisfy the Cauchy criterion and must converge. ■

Note. To apply the Direct Comparison Test effectively, one requires a "toolkit" of reference series. The
most common references are the Geometric Series (

∑
rn) and the p-series (

∑
1/np), whose convergence

properties we have fully characterised.

Remark. Asymptotic Dominance: The convergence of a series is determined solely by the behaviour of
its "tail" (terms beyond some index N). Consequently, the condition an ≤ bn need not hold for all n, but
merely for all n ≥ N for some fixed N .

5.3.2 Absolute and Conditional Convergence

The Comparison Test requires non-negative terms. To handle series with mixed signs, we introduce the
concept of absolute convergence.

Definition 5.3.1. Absolute Convergence . A series
∑

an is said to be absolutely convergent if the series of
absolute values

∑
|an| converges. If

∑
an converges but

∑
|an| diverges, the series is said to be conditionally

convergent.

Proposition 5.3.1. Absolute Convergence Implies Convergence. If a series
∑

an is absolutely convergent,
then it is convergent.

Proof. This is a direct application of the Cauchy Criterion for Series. Since
∑

|an| converges, for any ϵ > 0,
there exists N ∈ N such that for all n > m > N :

n∑
k=m+1

|ak| < ϵ

By the Triangle Inequality for finite sums:∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak|

am+1 am+2

am+3|
∑

ak|

Resultant Magnitude:
∣∣∑n

k=m+1 ak
∣∣

Sum of Magnitudes:
∑n

k=m+1 |ak|

Figure 5.1: Visualisation of the Triangle Inequality. The length of the red vector (the modulus of the sum)
is shorter than the total length of the blue path (the sum of the moduli).

Consequently,
∣∣∑n

k=m+1 ak
∣∣ < ϵ. Thus,

∑
an satisfies the Cauchy Criterion and is convergent. ■
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5.3.3 The Ratio Test

Often, finding a direct comparison series is difficult. The Ratio Test allows us to compare a series to a
geometric series by examining the rate at which its terms decay.
Theorem 5.3.2. d’Alembert’s Ratio Test. Let (an) be a sequence of non-zero terms. Suppose the limit

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists.

(i) If L < 1, the series
∑

an is absolutely convergent.
(ii) If L > 1, the series

∑
an is divergent.

(iii) If L = 1, the test is inconclusive.

Proof.

Case (i): L < 1. Since L < 1, we can choose a number r such that L < r < 1. By the definition of the
limit, there exists N ∈ N such that for all n ≥ N :∣∣∣∣an+1

an

∣∣∣∣ < r =⇒ |an+1| < r|an|

By induction, |aN+k| < |aN |rk. Thus, the tail of the series is dominated by a convergent geometric
series

∑
|aN |rk (since r < 1). By the Direct Comparison Test,

∑
|an| converges.

Case (ii): L > 1. There exists N such that for all n ≥ N , |an+1|/|an| > 1. This implies the terms |an| are
strictly increasing eventually, so lim an ̸= 0. By the The Divergence Test, the series diverges.

Case (iii): L = 1. We exhibit two examples where L = 1 but the behaviour differs:
•
∑

1
n diverges (Harmonic Series).

•
∑

1
n2 converges (p-series with p = 2).

In both cases, lim |an+1

an
| = 1. Thus, the test provides no information.

■

5.4 Applications of Convergence

We conclude our discussion on series by examining two celebrated applications: a number-theoretic proof
regarding the distribution of prime numbers, and the mathematical resolution of a classical philosophical
paradox.

The Divergence of Prime Reciprocals

Paul Erdős was renowned for solving a vast range of problems using elementary yet ingenious techniques. One
of his most beautiful proofs concerns the harmonic series restricted to prime numbers. While the harmonic
series

∑
1/n diverges, and the series of squares

∑
1/n2 converges, the distribution of primes is sufficiently

dense that their sum also diverges.
Theorem 5.4.1. Erdős’s Theorem on Primes. The series of reciprocals of prime numbers diverges:∑

p prime

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+ · · · = ∞

Proof. We proceed by contradiction. Assume the series converges. By the definition of convergence, the tail
of the series must vanish. There exists an index k such that:

∞∑
j=k+1

1

pj
<

1

2
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We classify the prime numbers into two sets:

• Small Primes: PS = {p1, p2, . . . , pk}.
• Big Primes: PB = {pk+1, pk+2, . . . }.

Let N be a large natural number (to be determined later). We partition the set of integers {1, 2, . . . , N} into
two disjoint sets based on their prime factorisation:

Nbig = {n ≤ N : n is divisible by at least one big prime}
Nsmall = {n ≤ N : n is divisible only by small primes}

Note that 1 ∈ Nsmall (as the empty product of primes). Since these sets partition {1, . . . , N}, we must have
|Nbig|+ |Nsmall| = N . We now estimate the size of these sets.

Estimating |Nbig|: For any prime p, the number of multiples of p less than or equal to N is ⌊N/p⌋. Thus:

|Nbig| ≤
∞∑

j=k+1

⌊
N

pj

⌋
≤

∞∑
j=k+1

N

pj
= N

∞∑
j=k+1

1

pj

Using our initial assumption that the tail sum is less than 1/2:

|Nbig| <
N

2

Estimating |Nsmall|: Let n ∈ Nsmall. By the Fundamental Theorem of Arithmetic, we can write n in the
form n = a2nbn, where bn is a square-free integer.

1. The square-free part (bn): Since n has only small prime factors, bn must be a product of distinct
primes from PS = {p1, . . . , pk}. There are 2k possible subsets of PS , so there are at most 2k choices
for bn.

2. The square part (a2n): Since a2n ≤ n ≤ N , we have an ≤
√
N . There are at most

√
N choices for an.

The total number of elements in Nsmall is bounded by the product of these choices:

|Nsmall| ≤ 2k
√
N

The Contradiction: Combining the estimates:

N = |Nbig|+ |Nsmall| <
N

2
+ 2k

√
N

Rearranging yields N
2 < 2k

√
N , or

√
N < 2k+1. However, k is fixed (determined by the convergence of the

series), whereas N is arbitrary. If we choose N = 22k+2, we obtain:

22k+2 <
22k+2

2
+ 2k · 2k+1 = 22k+1 + 22k+1 = 22k+2

This implies N < N , a contradiction. Thus, the series diverges. ■

Corollary 5.4.1. Infinitude of Primes. The set of prime numbers is infinite.

Proof. If there were finitely many primes, the sum
∑

(1/p) would be a finite sum of rational numbers, which
converges. Since the series diverges, the set of primes must be infinite. ■

Resolution of Zeno’s Paradox

The theory of infinite series provides a resolution to Zeno’s Dichotomy Paradox. Zeno of Elea argued that
motion is impossible because to travel a distance d, one must first travel d/2, then half the remaining distance
d/4, then d/8, and so on. He claimed that because this process involves an infinite number of steps, it cannot
be completed in finite time.
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The Mathematical Resolution Zeno’s fundamental error lies in the implicit assumption that the sum
of infinitely many time intervals must be infinite. Let the total distance be d and the velocity be v. The time
taken to cover the first half is t1 = d/2

v . The time for the next quarter is t2 = d/4
v , and generally tn = d

2nv .
The total time T is the sum of these intervals:

T =

∞∑
n=1

tn =
d

v

∞∑
n=1

1

2n

0 d

Step 1: d
2

d
4

d
8 . . .

t1 t2 t3

Figure 5.2: Visualisation of Zeno’s Paradox.

This is a geometric series with r = 1/2.

T =
d

v

(
1/2

1− 1/2

)
=

d

v
· 1 =

d

v

The infinite series converges to a finite value. Thus, an infinite succession of events can indeed occur within
a finite duration, resolving the paradox.

5.5 Conditional Convergence and Rearrangements

We have hitherto focused on series with non-negative terms. As defined in section 5.3, we distinguish
between absolute convergence (where

∑
|an| converges) and conditional convergence (where

∑
an converges

but
∑

|an| diverges). Recall that absolute convergence implies ordinary convergence. We now focus on the
delicate nature of conditional convergence, where the sum exists solely due to the cancellation of signs.

5.5.1 The Alternating Series Test

The prototype of a conditionally convergent series is the alternating harmonic series:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

While
∑

1/n diverges, the alternating signs provide sufficient cancellation for the sum to exist. We formalise
this observation in the Leibniz Criterion.
Theorem 5.5.1. Alternating Series Test (Leibniz). Let (bn) be a decreasing sequence of positive real
numbers such that lim

n→∞
bn = 0. Then the alternating series

∑∞
n=1(−1)n+1bn converges.

Proof. Let Sn =
∑n

k=1(−1)k+1bk denote the partial sums. We examine the behaviour of the even and odd
partial sums separately. Consider the even partial sums S2n:

S2n = (b1 − b2) + (b3 − b4) + · · ·+ (b2n−1 − b2n)

Since (bn) is decreasing, each parenthetical term is non-negative. Thus, (S2n) is an increasing sequence.
Furthermore, we can rewrite S2n as:

S2n = b1 − (b2 − b3)− (b4 − b5)− · · · − b2n
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Since each term in parentheses is non-negative and b2n > 0, we have S2n ≤ b1. The sequence (S2n) is
increasing and bounded above, hence it converges to a limit L. Similarly, the odd partial sums can be
written as S2n+1 = S2n + b2n+1. Since S2n → L and b2n+1 → 0 (by hypothesis), we have:

lim
n→∞

S2n+1 = lim
n→∞

S2n + lim
n→∞

b2n+1 = L+ 0 = L

Since both the even and odd subsequences of partial sums converge to the same limit L, the entire sequence
of partial sums converges to L. ■

n

Sn

L

S1

S2

S3

S4

Decreasing Odd Sums
S2n+1

Increasing Even Sums
S2n

b2 b4

Figure 5.3: Visualisation of the Alternating Series Test. The partial sums oscillate around the limit L. The
odd partial sums form a decreasing sequence bounded below by L, while the even partial sums form an
increasing sequence bounded above by L.

5.5.2 Rearrangements of Series

A fundamental question in the theory of infinite series is whether the commutative law of addition holds.
That is, does the order of summation affect the limit?

Definition 5.5.1. Rearrangement . A series
∑

a′n is a rearrangement of
∑

an if there exists a bijection
σ : N → N such that a′n = aσ(n) for all n.

Stability of Absolute Convergence

For absolutely convergent series, the infinite sum behaves like a finite sum: the order of terms is irrelevant.
Theorem 5.5.2. Rearrangement of Absolutely Convergent Series. If

∑
an converges absolutely to

a limit L, then any rearrangement
∑

aσ(n) also converges absolutely to L.

Proof. Let
∑

an be absolutely convergent. Let ϵ > 0. Since
∑

|an| converges, there exists N such that∑∞
k=N+1 |ak| < ϵ/2. Consider the rearrangement bn = aσ(n). We construct a threshold M for the new

series. Choose M large enough such that the set of indices {1, 2, . . . , N} is contained within the set
{σ(1), σ(2), . . . , σ(M)}. This ensures that all the "critical" initial terms of the original series are included in
the first M terms of the rearrangement. For any m ≥ M , the difference between the partial sums is:∣∣∣∣∣

m∑
k=1

bk −
∞∑
k=1

ak

∣∣∣∣∣ =
∣∣∣∣∣

m∑
k=1

aσ(k) −
∞∑
k=1

ak

∣∣∣∣∣
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The terms a1, . . . , aN are present in both sums and cancel out. The remaining terms have indices greater
than N in the original enumeration. Thus:∣∣∣∣∣

m∑
k=1

bk − L

∣∣∣∣∣ ≤
∞∑

k=N+1

|ak| <
ϵ

2
< ϵ

This proves convergence to L. The absolute convergence of the rearrangement follows similarly by bounding
partial sums. ■

Riemann’s Rearrangement Theorem

The behaviour of conditionally convergent series is starkly different. In the absence of absolute convergence,
the value of the sum depends entirely on the order of cancellation. Consider the alternating harmonic series∑ (−1)n+1

n = L. If we rearrange the terms to take one positive term followed by two negative terms:(
1− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+ . . .

Simple arithmetic shows this sums to L/2. Riemann proved that this instability is total.
Theorem 5.5.3. Riemann’s Rearrangement Theorem. Let

∑
an be a conditionally convergent series.

For any L ∈ R ∪ {−∞,∞}, there exists a rearrangement of
∑

an that converges to L.

Proof. Step 1: Divergence of Positive and Negative Parts. Let pn be the sub-sequence of positive
terms of an, and qn be the sub-sequence of negative terms. If

∑
pn were convergent, then since

∑
an

converges,
∑

qn =
∑

an −
∑

pn would also converge. This would imply
∑

|an| =
∑

pn −
∑

qn converges,
contradicting the assumption of conditional convergence. Thus, both

∑
pn and

∑
qn must diverge to ∞ and

−∞ respectively. Furthermore, since
∑

an converges, an → 0, so both pn → 0 and qn → 0.

Step 2: The Algorithm. Let L ∈ R. We construct the rearrangement inductively to oscillate around L.

1. Sum terms from (pn) until the partial sum exceeds L. Let this require n1 terms.

S1 =

n1∑
i=1

pi > L

This is possible because
∑

pn → ∞.
2. Now add terms from (qn) to S1 until the sum drops below L. Let this require m1 terms.

S2 = S1 +

m1∑
j=1

qj < L

This is possible because
∑

qn → −∞.
3. Resume adding terms from (pn) until the sum exceeds L again.

Step 3: Convergence. We repeat this process indefinitely. Let Tk denote the partial sums of this new
rearrangement. The sequence Tk oscillates around L. The "error" |Tk − L| is bounded by the magnitude of
the last term added. Specifically, if we have just crossed L by adding a positive term pnk

, then |Tk−L| ≤ pnk
.

If we have just crossed L by adding a negative term qmk
, then |Tk − L| ≤ |qmk

|. Since an → 0, we have
pn → 0 and qn → 0. Consequently, the oscillation amplitude shrinks to zero:

lim
k→∞

|Tk − L| = 0

Thus, the rearrangement converges to L. ■
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5.6 Grouping and Products of Series

In our investigation of alternating series, we observed that conditionally convergent series are sensitive to
rearrangement. However, grouping terms is a milder operation. While grouping can transform a divergent
series into a convergent one (e.g., (1− 1) + (1− 1) + . . . vs 1− 1 + 1− 1 + . . . ), the converse is stable.

5.6.1 Grouping Terms

Theorem 5.6.1. Grouping Theorem. If a series
∑

an converges to a sum A, then any series obtained by
grouping terms of

∑
an (without changing order) also converges to A.

Proof. Grouping terms essentially corresponds to selecting a subsequence of the partial sums. Let Sn =∑n
k=1 ak be the partial sums of the original series. Since the series converges to A, Sn → A. A grouped

series is defined by a strictly increasing sequence of indices n1 < n2 < . . . . The terms of the new series (bk)
are given by:

b1 = a1 + · · ·+ an1 = Sn1

b2 = an1+1 + · · ·+ an2
= Sn2

− Sn1

The k-th partial sum of the grouped series, Tk =
∑k

j=1 bj , is exactly Snk
. Since (Snk

) is a subsequence of
the convergent sequence (Sn), it must converge to the same limit A. ■

5.6.2 The Cauchy Product

Given two convergent series
∑

an = A and
∑

bn = B, it is natural to ask if there exists a "product series"
that converges to AB. The naive term-wise product

∑
anbn rarely works (e.g., if an = bn = 1/n, the product

is
∑

1/n2, which converges, but A and B diverge).

Motivated by polynomial multiplication (
∑

aix
i)(
∑

bjx
j) =

∑
cnx

n, we define the convolution of two series.

Definition 5.6.1. Cauchy Product . The Cauchy product of two series
∑∞

n=0 an and
∑∞

n=0 bn is the
series

∑∞
n=0 cn, where:

cn =

n∑
k=0

akbn−k = a0bn + a1bn−1 + · · ·+ anb0

k (index of a)

m (index of b)

a3b0

a2b1

a1b2

a0b3

c3

c1

c2

c4

Summing along diagonals

The convergence of the Cauchy product is subtle. Conditional convergence is insufficient to guarantee that∑
cn = AB. However, absolute convergence provides the necessary stability.

Theorem 5.6.2. Mertens’ Theorem (Simplified). If
∑

an and
∑

bn converge absolutely to A and B
respectively, then their Cauchy product

∑
cn converges absolutely to AB.
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Proof. Let An, Bn, Cn denote the partial sums of
∑

|ak|,
∑

|bk|,
∑

|ck| respectively. Let A∗, B∗ be the limits
of the absolute series.

Part 1: Absolute Convergence. We bound the partial sum Cn:

n∑
k=0

|ck| =
n∑

k=0

∣∣∣∣∣∣
k∑

j=0

ajbk−j

∣∣∣∣∣∣ ≤
n∑

k=0

k∑
j=0

|aj ||bk−j |

The term on the right is a subset of the terms in the product of partial sums AnBn. Specifically,
∑n

k=0

∑k
j=0 |aj ||bk−j |

sums all terms |ai||bj | where the indices sum to at most n (a triangle in the ij-plane). This is clearly bounded
by the square product AnBn:

n∑
k=0

|ck| ≤

(
n∑

i=0

|ai|

) n∑
j=0

|bj |

 = AnBn ≤ A∗B∗

Since the partial sums of absolute values are bounded,
∑

cn converges absolutely.

Part 2: Convergence to the Product. We wish to show
∣∣∣∑2n

k=0 ck −AB
∣∣∣ → 0. Observe that

∑2n
k=0 ck

sums all products aibj where i + j ≤ 2n. The product of partial sums (
∑n

i=0 ai)(
∑n

j=0 bj) sums all aibj
where 0 ≤ i, j ≤ n. The difference includes terms where indices are "large". Consider the difference:

∆n =

∣∣∣∣∣∣
2n∑
k=0

ck −

(
n∑

i=0

ai

) n∑
j=0

bj

∣∣∣∣∣∣
The terms in the first sum that are NOT in the second sum are those where i+ j ≤ 2n but (i > n or j > n).
Let ϵ > 0. Since the series converge absolutely, the "tails" are small. For large n,

∑∞
k=n+1 |ak| < ϵ. The

difference is bounded by sums of terms involving these tails:

∆n ≤

(
2n∑
i=0

|ai|

) 2n∑
j=n+1

|bj |

+

 2n∑
j=0

|bj |

( 2n∑
i=n+1

|ai|

)
∆n ≤ A∗(tail of B) +B∗(tail of A)

As n → ∞, the tails vanish, so ∆n → 0. Since (
∑n

i=0 ai)(
∑n

j=0 bj) → AB, the Cauchy product converges to
AB. ■

Cn

Square Sum AnBn

Difference
(Terms in Square
but not in Cn)

n

n

Figure 5.4: Visualisation of Mertens’ Theorem. The bounds become clear by separating the partial sum Cn

(red triangle) from the full product AnBn (blue square).
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Remark. It is sufficient for just one of the series to be absolutely convergent (and the other convergent)
for the product to converge to AB. This stronger version is the full statement of Mertens’ Theorem.

5.7 Power Series

Thus far, we have studied series of fixed numbers. A natural generalization is to replace the coefficients with
functions of a variable x. The most fundamental class of such functional series is the Power Series, which
can be viewed as "infinite polynomials."

Definition 5.7.1. Power Series. A power series centred at 0 is a series of the form:

S(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + . . .

where (an) is a sequence of real coefficients and x ∈ R is a variable. The domain of convergence is the set of
all x for which the series converges.

Abel’s Lemma

To determine the structure of the domain of convergence, we first establish a fundamental lemma: if a power
series converges at a certain distance from the origin, it must converge at all points closer to the origin.
Lemma 5.7.1. Abel’s Lemma. If the power series

∑
anx

n converges at a point x0 ̸= 0, then it converges
absolutely for all x satisfying |x| < |x0|.

Proof. Since the series
∑

anx
n
0 converges, the sequence of its terms must approach 0 (by the The Divergence

Test). Consequently, the sequence (anx
n
0 ) is bounded. There exists a constant M > 0 such that:

|anxn
0 | ≤ M for all n.

Now, consider any x such that |x| < |x0|. We manipulate the term |anxn|:

|anxn| = |anxn
0 | ·
∣∣∣∣ xx0

∣∣∣∣n ≤ M ·
∣∣∣∣ xx0

∣∣∣∣n
Let ρ = |x/x0|. Since |x| < |x0|, we have 0 ≤ ρ < 1. The series

∑
Mρn is a geometric series with ratio

ρ < 1, which converges. By the Direct Comparison Test, the series
∑

|anxn| converges. Thus, the power
series converges absolutely at x. ■

Radius of Convergence

Using Abel’s Lemma, we can define the domain of convergence using a single parameter. The domain is not
an arbitrary set, but a symmetric interval.
Theorem 5.7.1. Structure of the Domain. For any power series

∑
anx

n, there exists a unique R ∈ [0,∞]
(called the Radius of Convergence) such that:

1. The series converges absolutely for all |x| < R.
2. The series diverges for all |x| > R.

At the boundaries |x| = R, the series may converge or diverge (requires specific testing).

Proof. Let D be the domain of convergence of the series. We consider the set of magnitudes for which the
series converges:

S = {|x| : x ∈ D}
Note that 0 ∈ S, so the set is non-empty. We examine two cases based on the The Completeness Axiom
(Completeness Axiom).
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Case 1: S is bounded above. By the Completeness Axiom, S has a supremum. Let R = supS.
• Convergence for |x| < R: Let x be such that |x| < R. By the definition of the supremum,

there exists a real number r ∈ S such that |x| < r ≤ R. Since r ∈ S, there exists some x0 ∈ D
with |x0| = r such that the series converges at x0. By Abel’s Lemma, since |x| < |x0|, the series
converges absolutely at x.

• Divergence for |x| > R: Suppose the series converges at some x with |x| > R. Then |x| ∈ S.
This implies |x| ≤ supS = R, which contradicts |x| > R. Thus, the series must diverge.

Case 2: S is unbounded. We define R = ∞. For any x ∈ R, since S is unbounded, we can find x0 ∈ D
such that |x0| > |x|. By Abel’s Lemma, the series converges absolutely at x. Thus, the series converges
for all x.

■

Determining the Radius

We often use the Ratio Test to determine R. Applying the test to the terms un = anx
n:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = |x| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
For convergence, we require this limit to be strictly less than 1. Thus, if L = lim |an+1/an| exists, then
R = 1/L.

Example 5.7.1. Examples of Radii.

• Geometric Series:
∑

xn. Here an = 1. The ratio is 1. Thus R = 1. It converges for x ∈ (−1, 1).
• The Exponential Series:

∑
xn

n! . The ratio is 1/(n+1)!
1/n! = 1

n+1 → 0. Thus |x| · 0 < 1 is true for all x.
R = ∞.

• Factorial Series:
∑

n!xn. The ratio is (n+ 1) → ∞. The series converges only at x = 0. R = 0.

5.8 Exercises

Part I: Convergence Calculations

1. Basic Convergence Testing. Determine whether the following series converge or diverge. If the
series converges, specify if it is absolute or conditional.

(a)
∑∞

n=1
n2+1
n3+1

(b)
∑∞

n=1
n!
nn

(c)
∑∞

n=1
1

n
√
n

(d)
∑∞

n=2
1

n(log2 n)2

Remark. Use the Cauchy Condensation Test. Recall that log2(2
k) = k.

(e)
∑∞

n=1(−1)n
(√

n2 + 1− n
)

Remark. Rationalise the expression first.

2. Exact Summations. Calculate the exact sum of the following series by identifying them as telescoping
sums or geometric series.

(a)
∑∞

n=1
1

4n2−1

(b)
∑∞

n=1(
√
n+ 2− 2

√
n+ 1 +

√
n)

(c)
∑∞

n=0
3n+4n

12n
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3. The Root Test. While the Ratio Test is powerful, it is inconclusive when the limit is 1. A slightly
stronger test is the Root Test. Let α = lim supn→∞ |an|1/n. Prove that:

(a) If α < 1, the series
∑

an converges absolutely.

(b) If α > 1, the series
∑

an diverges.

Remark. For (a), compare with a geometric series
∑

rn where α < r < 1. For (b), show that the
terms do not tend to 0.

4. Decimal Expansions.

(a) Express the repeating decimal 0.121212 . . . as an infinite geometric series and find its rational
value p/q.

(b) Prove formally that 0.999 · · · = 1.

Remark. Treat 0.999 . . . as
∑∞

n=1 9 · 10−n.

5. Power Series Radii. Find the radius of convergence R for the following power series using the Ratio
or Root tests.

(a)
∑∞

n=1
xn

n2

(b)
∑∞

n=1
n3

3nx
n

(c)
∑∞

n=1
x2n

n

Remark. Let y = x2 and find the radius for y first.

(d)
∑∞

n=1

(
1 + 1

n

)n2

xn

Remark. Use the Root Test. Recall the definition of e.

Part II: Theoretical Extensions

6. Abel’s Summation Formula. Just as we can rearrange finite sums, we can rearrange infinite series
under specific conditions. Let (an) and (bn) be sequences. Let An =

∑n
k=1 ak be the partial sums of

a. Prove that for any n ≥ 1:

n∑
k=1

akbk = Anbn+1 −
n∑

k=1

Ak(bk+1 − bk).

Remark. Substitute ak = Ak −Ak−1 (with A0 = 0) into the sum and regroup the terms.

7. Dirichlet’s Test. Use Abel’s Summation Formula to prove the following powerful test for conditional
convergence: If the partial sums of

∑
an are bounded (i.e., |An| ≤ M), and (bn) is a decreasing

sequence converging to 0, then the series
∑

anbn converges.

(a) Prove the theorem.

Remark. Apply Abel’s formula. Show that the resulting series converges absolutely using the
comparison test and the telescoping nature of

∑
(bk − bk+1).

(b) Apply this to show that
∑∞

n=1
sin(nx)

n converges for any x ∈ R where x is not a multiple of 2π.

Remark. You may assume the trigonometric identity |
∑n

k=1 sin(kx)| ≤
1

| sin(x/2)| .

8. The Cauchy-Schwarz Inequality for Series. Let
∑

a2n and
∑

b2n be convergent series of real
numbers. Prove that the series

∑
anbn converges absolutely, and:( ∞∑
n=1

anbn

)2

≤

( ∞∑
n=1

a2n

)( ∞∑
n=1

b2n

)
.
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Remark. Apply the finite Cauchy-Schwarz inequality to the partial sums and take limits.

9. Raabe’s Test. The Ratio Test fails when |an+1

an
| → 1. Raabe’s Test provides a finer instrument for

these cases. Let (an) be a sequence of positive terms. Suppose that:

lim
n→∞

n

(
an

an+1
− 1

)
= p.

Prove that if p > 1, the series converges.

Remark. Let 1 < s < p. Compare the terms an with the sequence bn = 1
(n−1)s . Use the Bernoulli/Binomial

approximation (1− 1/n)s ≈ 1− s/n to show that an+1

an
< bn+1

bn
for large n.

10. ⋆ Failure of the Cauchy Product. We proved Mertens’ Theorem for absolutely convergent series.
Show that if we drop the requirement of absolute convergence, the Cauchy product may diverge.
Consider the series an = bn = (−1)n√

n+1
.

(a) Verify that
∑

an converges using the Alternating Series Test.
(b) Form the Cauchy product cn =

∑n
k=0 akbn−k. Show that |cn| ≥ 1 for all n.

Remark. Observe that each term in the sum for cn has the same sign. Use the minimum value
of the denominator.

(c) Conclude that
∑

cn diverges.

11. ⋆ Irrationality of e. We have defined e =
∑∞

n=0
1
n! .

(a) Let sn be the n-th partial sum. Prove that 0 < e− sn < 1
n!n .

Remark. Bound the tail
∑∞

k=n+1
1
k! by a geometric series with ratio 1/(n+ 1).

(b) Assume e = p/q for integers p, q > 0. Show that q!e must be an integer.
(c) Use the inequality from part (a) to show that 0 < q!e− q!sq < 1.
(d) Conclude that e is irrational (as there are no integers strictly between 0 and 1).

12. ⋆ Comparison of Divergence. Suppose (an) is a decreasing sequence of positive real numbers
converging to 0. Prove that if

∑
an diverges, then the series

∑
min(an,

1
n ) also diverges.

Remark. This shows that the harmonic series is, in a sense, the "boundary" of divergence. If
∑

an
diverges, it cannot vanish significantly faster than 1/n.

13. ⋆ Infinite Products. An infinite product
∏∞

n=1(1 + an) is said to converge if the sequence of partial
products PN =

∏N
n=1(1 + an) converges to a non-zero limit. Prove that if an ≥ 0, then

∏∞
n=1(1 + an)

converges if and only if the series
∑∞

n=1 an converges.

Remark. Use the inequality 1+x ≤ ex to bound the partial products from above by the exponentials
of the partial sums. For the reverse direction, note that PN ≥ 1 +

∑N
n=1 an.

14. ⋆⋆ The Square of a Series.

(a) Prove that if
∑

an is a convergent series of positive terms, then
∑

a2n also converges.
(b) Give a counter-example to show that this is not true if the terms are not necessarily positive (i.e.,

find a conditionally convergent series
∑

an such that
∑

a2n diverges).

15. ⋆⋆⋆ Square Roots of Divergence. This is a problem posed by Abel. Let
∑

an be a divergent series
of positive terms. Let Sn be the partial sums.

(a) Prove that the series
∑ an

S2
n

converges.

Remark. Observe that an

S2
n
≤ Sn−Sn−1

SnSn−1
= 1

Sn−1
− 1

Sn
. This is a telescoping sum.

(b) Prove that the series
∑ an

Sn
diverges.

Remark. Use the Cauchy Criterion. For large m,n, approximate the sum by noticing that for
terms close together, Sk ≈ Sm. The sum behaves like Sn−Sm

Sn
= 1− Sm

Sn
. Since Sn → ∞, this does

not vanish.



Appendix A

Advanced Sequence Analysis

While the standard definition of convergence covers most introductory cases, analysis often requires tools to
handle sequences that oscillate or behave erratically. In this chapter, we formalize the behavior of bounded
but divergent sequences and introduce powerful computational tools for ratio limits.

A.1 Limit Superior and Limit Inferior

We have established that while every convergent sequence is bounded, not every bounded sequence converges.
For example, an = (−1)n oscillates between −1 and 1. Although it has no single limit, it does have "bounds"
that it eventually respects. To formalize this, we introduce the concepts of Limit Superior (lim sup) and
Limit Inferior (lim inf).

Definition via Eventual Bounds

For a bounded sequence (an), consider the tail of the sequence starting from index n: {an, an+1, an+2, . . . }.
We define two auxiliary sequences based on the supremum and infimum of these tails.

Definition A.1.1. Limit Superior and Inferior . Let (an) be a bounded sequence. We define the
sequence of "eventual supremums" as βn = sup{ak : k ≥ n}. We define the sequence of "eventual infimums"
as αn = inf{ak : k ≥ n}.

• Since the tail shrinks as n increases ({an+1, . . . } ⊂ {an, . . . }), (βn) is decreasing and (αn) is increasing.
• Since (an) is bounded, both (βn) and (αn) are bounded and therefore convergent.

We define the Limit Superior and Limit Inferior as:

lim sup
n→∞

an := lim
n→∞

βn = lim
n→∞

(
sup
k≥n

ak

)

lim inf
n→∞

an := lim
n→∞

αn = lim
n→∞

(
inf
k≥n

ak

)

Characterization via Subsequences

While the definition via eventual bounds is computationally useful, the limit superior has a profound topo-
logical meaning. Let E be the set of all subsequential limits (also called cluster points) of (an).

• The set E is non-empty (by Bolzano-Weierstrass) and closed.
74



APPENDIX A. ADVANCED SEQUENCE ANALYSIS 75

• The limit superior is the maximum of this set: lim supn→∞ an = supE.
• The limit inferior is the minimum of this set: lim infn→∞ an = inf E.

This characterization explains why lim sup is often called the "maximal limit."

Properties

The limit superior represents the "highest" value that the sequence visits infinitely often, while the limit
inferior is the "lowest".
Theorem A.1.1. Consistency of Limits. Let (an) be a bounded sequence.

1. The sequence converges to L if and only if the limit superior and limit inferior coincide:

lim
n→∞

an = L ⇐⇒ lim inf
n→∞

an = lim sup
n→∞

an = L

2. Super-additivity and Sub-additivity: For any two bounded sequences (an) and (bn):

lim inf an + lim inf bn ≤ lim inf(an + bn) ≤ lim sup(an + bn) ≤ lim sup an + lim sup bn

(See Appendix B for proofs.)

Example A.1.1. Oscillating Sequence. Let an = (−1)n(1+ 1
n ). The terms are roughly −1, 1,−1, 1 . . . . The

supremum of any tail is slightly larger than 1, converging to 1. The infimum of any tail is slightly smaller
than −1, converging to −1. Thus, lim sup an = 1 and lim inf an = −1. Since they are unequal, the sequence
diverges.

Application: Subadditive Sequences

A powerful application of these concepts is Fekete’s Lemma, which guarantees the convergence of "subaddi-
tive" sequences.

Example A.1.2. Fekete’s Subadditive Lemma. Let (an) be a sequence of non-negative real numbers satis-
fying the subadditivity condition:

am+n ≤ am + an for all m,n ∈ N

Prove that the sequence (an

n ) converges.

Proof. Fix an arbitrary integer k. Any integer n can be written as n = qk + r, where 0 ≤ r < k. Using the
subadditivity property repeatedly:

an = aqk+r ≤ ak + · · ·+ ak︸ ︷︷ ︸
q times

+ar = qak + ar

Dividing by n:
an
n

≤ qak
n

+
ar
n

=
qak

qk + r
+

ar
n

As n → ∞, note that q
n ≈ 1

k and the remainder term ar

n → 0 (since r is bounded by k). Taking the limit
superior:

lim sup
n→∞

an
n

≤ ak
k

Since this inequality holds for any fixed k, we can take the limit inferior as k → ∞:

lim sup
n→∞

an
n

≤ lim inf
k→∞

ak
k

This implies the limit superior is less than or equal to the limit inferior. Since lim inf ≤ lim sup always,
equality must hold. Thus, the limit exists. ■
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A.2 The Stolz-Cesàro Theorem

When calculating the limit of a ratio of sequences an

bn
, we often encounter the indeterminate form ∞

∞ . The
Stolz-Cesàro theorem serves as a discrete analogue to L’Hôpital’s Rule.
Theorem A.2.1. Stolz-Cesàro Theorem. Let (bn) be a strictly increasing sequence of positive real
numbers such that lim

n→∞
bn = +∞. If the limit of the ratio of differences exists:

lim
n→∞

an − an−1

bn − bn−1
= L

Then the limit of the sequence ratio also exists and is equal to L:

lim
n→∞

an
bn

= L

(See Appendix B for proof.)

Example A.2.1. Cesàro Means (Arithmetic Mean). Let (xn) be a sequence converging to x. Prove that
the sequence of averages converges to x. Let an =

∑n
k=1 xk and bn = n. Note that (bn) is strictly increasing

and tends to ∞. Consider the ratio of differences:

an − an−1

bn − bn−1
=

xn

n− (n− 1)
=

xn

1
= xn

Since limxn = x, by the Stolz-Cesàro theorem:

lim
n→∞

an
bn

= lim
n→∞

x1 + · · ·+ xn

n
= x

A.3 Completeness Revisited

Throughout our study of sequences, we have relied on various properties to establish convergence. It is worth
noting that these properties are deeply interlinked and stem from the nature of the real number system.

Remark. There is one further equivalent formulation of completeness known as the Heine-Borel Theorem
(or Finite Covering Theorem): Every open cover of a closed, bounded interval [a, b] has a finite subcover.
While this is typically treated in topology, it completes the "Big Six" theorems of real analysis: MCT, Nested
Intervals, Bolzano-Weierstrass, Cauchy Criterion, Supremum Principle, and Heine-Borel. We cover this in
greater detail next notes.

Example A.3.1. Importance of Closed Intervals. The requirement that the nested intervals be closed is
essential. Consider the sequence of nested open intervals In = (0, 1/n).

(0, 1) ⊃ (0, 1/2) ⊃ (0, 1/3) . . .

Although the lengths 1/n → 0, the intersection
⋂∞

n=1(0, 1/n) is empty. There is no real number x that
satisfies 0 < x < 1/n for all n, because by the Archimedean property, we can always find an n such that
1/n < x. This failure of intersection demonstrates that open intervals lack the property of compactness.
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Appendix: Proofs of Advanced Theorems

This appendix contains the proofs for the theorems presented in the chapter on Advanced Sequence Analysis.

B.1 Limit Superior Properties

Proof of Consistency (Limit Existence)

Theorem Statement: lim
n→∞

an = L ⇐⇒ lim inf an = lim sup an = L.

Proof. Let αn = infk≥n ak and βn = supk≥n ak. Note that by definition, for all n:

αn ≤ an ≤ βn

(⇒) Suppose lim an = L. For any ϵ > 0, there exists N such that for k ≥ N , L− ϵ < ak < L+ ϵ. It follows
that for n ≥ N :

L− ϵ ≤ inf
k≥n

ak = αn and βn = sup
k≥n

ak ≤ L+ ϵ

Thus limαn = L and limβn = L. (⇐) Suppose limαn = L and limβn = L. By the Squeeze Theorem
applied to the inequality αn ≤ an ≤ βn, it follows immediately that lim an = L. ■

Proof of Sub-additivity

Theorem Statement: lim sup(an + bn) ≤ lim sup an + lim sup bn.

Proof. Let k ≥ n. By the definition of supremum:

ak ≤ sup
j≥n

aj and bk ≤ sup
j≥n

bj

Summing these inequalities:
ak + bk ≤ sup

j≥n
aj + sup

j≥n
bj

Since this holds for all k ≥ n, the Right Hand Side (RHS) is an upper bound for the set {ak + bk : k ≥ n}.
The supremum is the least upper bound, so:

sup
k≥n

(ak + bk) ≤ sup
j≥n

aj + sup
j≥n

bj
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Taking the limit as n → ∞ preserves the inequality (Order Preservation Law):

lim
n→∞

sup
k≥n

(ak + bk) ≤ lim
n→∞

sup
j≥n

aj + lim
n→∞

sup
j≥n

bj

Which is exactly lim sup(an + bn) ≤ lim sup an + lim sup bn. ■

B.2 Proof of the Stolz-Cesàro Theorem

Theorem Statement: Let (bn) be strictly increasing with bn → ∞. If lim an−an−1

bn−bn−1
= A, then lim an

bn
= A.

Proof. Let xn = an − an−1 and yn = bn − bn−1. We are given lim
n→∞

xn

yn
= A. Let ϵ > 0. Since xn

yn
→ A, there

exists N0 such that for all n > N0:

A− ϵ

2
<

an − an−1

bn − bn−1
< A+

ϵ

2

Since bn is strictly increasing, bn − bn−1 > 0. We can multiply through without flipping inequalities:

(A− ϵ

2
)(bn − bn−1) < an − an−1 < (A+

ϵ

2
)(bn − bn−1)

We now sum these inequalities from k = N0 + 1 to n:

(A− ϵ

2
)

n∑
k=N0+1

(bk − bk−1) <

n∑
k=N0+1

(ak − ak−1) < (A+
ϵ

2
)

n∑
k=N0+1

(bk − bk−1)

These are telescoping sums. They simplify to:

(A− ϵ

2
)(bn − bN0

) < an − aN0
< (A+

ϵ

2
)(bn − bN0

)

Divide the entire inequality by bn (which is positive for large n):

(A− ϵ

2
)

(
1− bN0

bn

)
<

an
bn

− aN0

bn
< (A+

ϵ

2
)

(
1− bN0

bn

)
Rearranging for an/bn:

aN0

bn
+ (A− ϵ

2
)

(
1− bN0

bn

)
<

an
bn

<
aN0

bn
+ (A+

ϵ

2
)

(
1− bN0

bn

)
Now take the limit as n → ∞. Since bn → ∞, terms with bn in the denominator vanish (bN0

/bn → 0 and
aN0/bn → 0). The Lower Bound approaches 0 + (A − ϵ/2)(1) = A − ϵ/2. The Upper Bound approaches
0 + (A+ ϵ/2)(1) = A+ ϵ/2. Thus, for sufficiently large n:

A− ϵ <
an
bn

< A+ ϵ

Since ϵ is arbitrary, lim
n→∞

an

bn
= A. Extension to Infinite Limits: If L = +∞, the logic follows similarly.

Since an−an−1

bn−bn−1
→ ∞, for any large M , eventually an−an−1 > M(bn−bn−1). Summing this yields an > Mbn

(ignoring small small constants from the head of the sequence), implying an/bn → ∞. ■
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