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0
Review: Systems of Linear Equations

The primary objective of linear algebra is to solve the linear equation
Ax = b. Many practical linear problems can be modelled in this

manner. I expect you to know the very basics of
. . matrices; this includes sums, multiplica-
Matrices and Linear Systems tion eto.

An array of objects is a collection where we track the row and col-
umn of each object. Formally, a finite sequence is a function from
{1,...,n} to aset S. Similarly, an m x n array of objects in S corre-
sponds to a functiona : {1,...,m} x {1,...,n} — S, where a(i, ) is
the entry in the i-th row and j-th column.

Definition o.1. Matrix.

An m x n matrix is an array of objects with m rows and n columns. If
A is an m X n matrix, then A;; denotes the entry in the i-th row and
j-th column. We write:

A A o Ay

Ay Axp - Ay
A=[Aj]l=| . . .

Aml Am2 e Amn

The i-th row of A is denoted row;(A), and the j-th column is col;(A).
The set of m x n matrices with entries in a set S is denoted S™*". Specif-
ically, R™*" and C"™*" denote matrices with real and complex entries,
respectively.

Note

Distinguish between the matrix A (the array) and the entry A;; (a
scalar). The notation A = [A;j] indicates that A is the collection of

all such components.
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Example o.1. Matrix Types.
1 2 3
- LetA= |4 5 6| e R¥3
7 8 9
i 10
- LetB= |0 3+i| €C*2
11 12
- Matrices may contain objects other than numbers. For f, g, h

R—R M= l{; ﬂ is a matrix of functions.
$15)

Definition o.2. Vector.
A vector in R” is an ordered list of n real numbers. We write vectors
as columns:

Un

Definition 0.3. System of Linear Equations.

We use matrices to solve linear problems. Let A € R™*". Let b € R™
be a given vector, often called the right-hand side vector. We seek an
unknown vector x € R” such that

Ax =b.

Explicitly, this represents a system of m linear equations in # unknowns:

n
ZAl]x]:bI forizl/-"lm'
j=1

e
S

Definition 0.4. Matrix Equality.

Two matrices A and B are equal, written A = B, if and only if they
have the same dimensions and corresponding entries are identical: A;; =
Bjj forall i,j.

Notation o.1. Block Matrices We often construct larger matrices by con-
catenating smaller ones. If A is m x n and B is m X k, we write [A |
B] for the m x (n+ k) matrix formed by placing B to the right of A.

Wik
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To develop intuition for linear systems, we first consider the case
where n = m = 2, allowing for geometric visualization. Each equa-
tion in the system Ax = b represents a line in the Euclidean plane
R,

Consider the system:

2x1 4+ 3xp =1,
3x1+2x, = 2.
Here, A = 23 and b = 1. ¥
3 2 2

- The first line passes through (1/2,0) and (0,1/3).

- The second line passes through (2/3,0) and (0,1).

Since the slopes are distinct (—2/3 vs —3/2), the lines are not par-
allel and must intersect at a unique point. This point represents the
unique solution to the system.

However, not all systems possess a unique solution. Consider the

system:

2x14+3xp =1,
dxy 4 6x0 = 2. Figure 1: Geometric interpreta-
tion of a unique solution.
The second equation is merely twice the first. Geometrically, these
equations describe the same line. Consequently, every point on the

line is a solution. The solution set S is infinite:

S = {(zx,ﬁ) € R?

,B:;(l—m),txe]R}.

Finally, consider the inconsistent system:

X2

le + 3XZ = 1,
4X1 + 6XZ =3.

Here, the lines have identical slopes but distinct intercepts. They are
parallel and never intersect. The solution set is empty.

This geometric intuition is valuable but limited to two or three di- X

mensions. For systems with many variables, we require an algebraic
method that can be automated. Figure 2: Parallel lines repre-
sent an inconsistent system.

Gaussian Elimination

We aim to formalise the method of elimination familiar from ele-
mentary algebra. The goal is to transform a system Ax = b into
an equivalent system Cx = d where the matrix C has a structure
that makes the system easy to solve. Specifically, we seek a C that is
upper triangular.
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Definition o.5. Upper Triangular Matrix.

A square matrix C is called upper triangular if all entries below the prin-
cipal diagonal (the entries Cy1, Cpo, ..., Cyy) are zero, i.e., Cl-]- =0 for

alli > j.

Consider the reduction of our first example:

2x1+3xp =1

(System 1)
3x1+2xp =2

Multiplying the first equation by 3 and the second by 2 yields 6x; +
9xy = 3 and 6x; + 4x; = 4. Subtracting the modified second from
the first eliminates x;. A more systematic approach (Gaussian elim-
ination) typically proceeds to eliminate variables from subsequent
equations. Subtracting % times the first equation from the second
yields:

The coefficient matrix is now C = [

gular.

Back Substitution

Once the system is in the form Cx = d with C upper triangular, we
can solve it by backward substitution. Writing out the equations for
an n X n system:

Ci1x1 +Cppxo+ -+ -+ Crpxpy = dq
Cyoxy+ -+ Copxy = do

Cunxn = dy

Provided C,,,, # 0, we find x,, = d,,/Cy;,. We then substitute this into
the (n — 1)-th equation to find x,,_1, and proceed recursively:

1 n
Xi = — di - Z Cl‘]‘X]' .
Cii

j=it1

Elementary Row Operations

To perform this reduction systematically, we define specific opera-
tions on the rows of the matrix A. These are the Elementary Row
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Operations (EROs). We view an elementary row operation as a func-
tion e : R™*" — R™*". There are three types of operations.

Definition 0.6. Type I: Scaling.
Multiply the s-th row by a non-zero constant « € R\ {0}. The func-
tion e; acts on A to produce a matrix A’ with entries:

aAg ifi=s,
if i #s.

Al =
2R

Definition o.7. Type II: Replacement.
Replace the s-th row by the sum of the s-th row and a multiple « of the
t-th row (where s # t). The function e, produces A’ with entries:

AS]' + OCAt]' 1fl =S,

Al =
g Al] if i 7%— S.

Definition 0.8. Type III: Interchange.
Interchange the s-th row and the t-th row. The function e3 produces A’
with entries:
Atj ifi = S,
A=Ay ifi=t,

Ajj  otherwise.

These operations are fundamental because they preserve the solution
set of the linear system. Furthermore, they are reversible.

Proposition o.1. Invertibility of EROs.
Each elementary row operation e is a bijection. Its inverse e~ ! is also
an elementary row operation of the same type.

¥

P
Proof

We construct the inverses explicitly:

1. If ey multiplies row s by &« # 0, then the operation that multi-
plies row s by 1/« recovers the original matrix. This is a Type I
operation.

2. If ep adds « times row ¢ to row s, then adding —a« times row t to
row s reverses the effect. This is a Type II operation.
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3. If e3 swaps rows s and ¢, applying the same swap again restores
the original order. This is a Type III operation.

Since an inverse exists for every A, the map is a bijection.

Proposition o0.2. EROs Preserve Solution Sets.

Let [A | b] be the augmented matrix of a system Ax = b, and let [A’ |
V'] be obtained from [A | b] by a single elementary row operation. Then
Ax = b and A’x = b’ have the same solution set.

¥

Proof

Each elementary row operation replaces one equation by an equiv-
alent linear combination of the equations, or swaps equations. Any
solution of Ax = b satisfies all linear combinations of its equa-
tions, so it satisfies the transformed system. Since the operation is
invertible, the reverse implication also holds. Thus the solution sets
agree.

These operations allow us to transform matrices into simpler forms
(Row Echelon Form) without altering the underlying relationships
between variables.

Definition 0.9. Row Echelon Form.

A matrix is in row echelon form if:

1. All non-zero rows are above any zero rows.

2. The leading (first non-zero) entry of each non-zero row is to the right
of the leading entry of the row above it.

3. All entries below each leading entry are zero.

0.3 Equivalent Systems

We now investigate the conditions under which two distinct systems
of linear equations possess the same solution set. This concept is
central to justifying the Gaussian elimination process.

Linear Combinations of Equations

Consider the system of m linear equations in n variables, denoted by
(1):

Al‘]‘x]‘Zbi fOI‘iZl,...,TI’l.
1

n

]
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Definition o.10. Linear Combination.
Given equations Ej, ..., Ey, a linear combination is any equation of
the form

0By +aEy+ - - -+ amEn,

where a1, ..., a,, are scalars.

We can form a new equation by taking a linear combination of these
m equations. Let ay, ..., &, be scalars. Multiplying the i-th equation
by &; and summing over all i yields:

m

n m
Z L% (Z Al]x]> = Z txibi.
i=1  \j=1 i=1
Rearranging the terms to group coefficients of each x;, we obtain a
new linear equation:

n

m m
Z Z OCiAl'j x]- = Z zxibi.
j=1 \i=1 i=1

It is immediate that any solution x satisfying the original system (1)

must also satisfy this new combined equation.
Now, consider a second system of k equations, denoted by (2):

n
Zijx]- =d, forp=1,... k.
j=1

If every equation in system (2) can be obtained as a linear combina-
tion of the equations in system (1), then any solution to (1) is auto-
matically a solution to (2). The converse holds if every equation in (1)
is a linear combination of the equations in (2). This mutual depen-
dency leads to the definition of equivalent systems.

Definition o.11. Equivalent Systems.

Two linear systems are said to be equivalent if every equation of each
system can be expressed as a linear combination of the equations of the
other system.

Theorem o.1. Equivalence Theorem.
Equivalent linear systems have the same solution set.

Proof

Let S1 and S; be the solution sets of system (1) and system (2)

respectively. If every equation in (2) is a linear combination of equa-
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tions in (1), then any x € S satisfies all equations in (2). Thus
51 C S;. Conversely, if every equation in (1) is a linear combination
of equations in (2), thenany x € S, satisfies all equations in (1).
Thus S, C Sq. Therefore, S; = Sp.

|

Example o0.2. Non-Equivalent Systems. Consider system (1):

X1 +2x2 +5x3 =0
x1+3x24+8x3=0
—Xx1+xp+4x3=0

And system (2):
Xp+2x3=0
X1 — X3 = 0
x1+x3=0

System (2) has the unique solution x; = xp = x3 = 0. System (1),
however, admits the non-trivial solution x; = 1,x, = —3,x3 = 1.
Since the solution sets differ (S, C S1), the systems are not equiva-

lent. Specifically, the third equation of system (2) cannot be a linear
combination of the equations of system (1).

$2.45]

Row Equivalence

The algebraic process of taking linear combinations of equations
corresponds directly to performing row operations on the augmented
matrix of the system. We now formalise the relationship between
matrices.

Definition o0.12. Row Equivalence.
A matrix A is row equivalent to a matrix B, denoted A ~ B, if B can
be obtained from A by a finite sequence of elementary row operations.

Since each elementary row operation is invertible (proposition o.1),
the relation ~ is symmetric. Since the identity operation is an ERO,
it is reflexive. Since the composition of finite sequences is a finite
sequence, it is transitive. Thus, row equivalence is an equivalence
relation on the set of m x n matrices.

The connection between these two concepts is fundamental.

11
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Theorem o.2. Row Equivalence and Solutions.
If two matrices A and C are row equivalent, then the homogeneous sys-
tems Ax = 0 and Cx = 0 have the same solution set.

gl
Proof
It suffices to prove this for a single elementary row operation, as the
general result follows by induction. Let C be obtained from A by
one operation e.

1. Each row of C is a linear combination of the rows of A (by def-
inition of EROs). Thus, any solution to Ax = 0 is a solution to
Cx=0.

2. Since e is invertible, A can be obtained from C by the inverse
operation e~!. Thus, each row of A is a linear combination of the
rows of C. Hence, any solution to Cx = 0 is a solution to Ax = 0.

The solution sets are therefore identical.

]
Remark.
For non-homogeneous systems Ax = band Cx = d, the systems
are equivalent if the augmented matrices [A|b] and [C|d] are row
equivalent.
Remark.

Equivalence in this sense is stronger than merely having the same
solution set, but it is the notion naturally preserved by row opera-

tions.

Row Reduced Echelon Form

We now define the specific "simple structure" we aim to achieve
through Gaussian elimination.

Definition 0.13. Row Reduced Echelon Form (RREF).

A matrix R is called a row reduced echelon matrix (i.e., it is in row re-

duced echelon form, RREF) if it satisfies the following four conditions:

Leading Ones: The first non-zero entry of each non-zero row is 1. This
entry is called the leading entry or pivot.

Zero Rows: All rows consisting entirely of zeros appear below all non-
ZEero TOWS.

Pivot Columns: If a column contains a leading entry of some row, then
all other entries in that column are o.

Stepped Structure: Let the leading entry of the i-th non-zero row ap-

pear in column ¢;. Thenc¢; < ¢ < ¢3 < --- < ¢ Thatis, the
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leading entry of a lower row always appears to the right of the lead-
ing entry of a higher row.

Example 0.3. Examples of RREF. The matrix
1 00
IL=10 1 0
0 01
is in row reduced echelon form. The matrix
10 2 0
R=01 -1 0
00 0 1
is also in RREFE. The pivot columns are 1, 2, and 4.
E
Example 0.4. Non-Examples.
1
(1) 8 ol Fails condition 4 (stepped structure). The pivot in
row 2 is to the left of the pivot in row 1.
10 o] . . .
0 2 ol Fails condition 1. The leading entry of row 2 is 2, not
i ]
1 0 0
0 1 1]: Fails condition 3. Column 2 contains a leading entry
010

but is not zero elsewhere.

Fobl
The utility of the RREF lies in the ease of reading off the solution set.
For a system Rx = 0, the variables corresponding to pivot columns
are called basic variables, while the others are free variables. The

basic variables can be expressed explicitly in terms of the free vari-
ables.
Example 0.5. Solving a System. Solve Ax = 0 where

1 1 -1 0
A=13 -1 2 3
0 4 5 3

Solution

13
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Using row operations, we reduce A to the RREF:

1 0 1/4 3/4
R=10 1 -5/4 -3/4
0 0 0 0

The pivot columns are 1 and 2. Thus x1, x, are basic, and x3, x4 are
free. The equations are:

x+1x+§x—0:>x——1x—§x
1T Xt = 1= 7%~ g

5 3 5 3
x2—1x3—1x4:0 — X224X3+1X4

Setting x3 = &, x4 = B, the general solution is:

-1/4 —3/4
5/4 3/4
= R.
x=a| +5 E n,pB e
0 1

0.4 Matrix Rank and System Consistency

We have seen that reducing a matrix to its Row Reduced Echelon
Form (RREF) provides a systematic way to solve linear systems. A
central concept emerging from this process is the "rank" of a matrix,
which essentially counts the number of independent constraints
imposed by the linear system.

Before we rely on RREF for theoretical results, we must ensure that
every matrix actually possesses one.

Theorem o.3. Existence of RREF.
Any m X n matrix A is row equivalent to a matrix in Row Reduced Ech-

elon Form (RREF).
TR

Proof

We proceed by induction on the number of rows m. If A is the zero
matrix, it is already in RREF. Suppose A is non-zero. Let k be the
index of the first non-zero column of A. Select a row i such that

Aj  # 0. By interchanging row 1 and row i, we ensure the entry
in position (1, k) is non-zero. Multiply row 1 by 1/ A1, to make the
leading entry 1. Then, for each row j > 1, subtract Aj times row 1
from row j. This clears all entries in column k below the first row.

Now, consider the submatrix consisting of rows 2 through m. By
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the induction hypothesis, this submatrix can be reduced to RREF.
Finally, use row operations to clear any non-zero entries in the
pivot columns of the submatrix that lie in row 1. The result satisfies
all conditions of an RREF.

|

Remark.

While we stated existence, it is a non-trivial fact that the RREF of a
matrix is unique. That is, row operations can take different paths,

but they always lead to the same reduced matrix. We will assume

this uniqueness for now.

Homogeneous Systems

Consider the homogeneous system Ax = 0. Let R be the RREF of

A. Let r be the number of non-zero rows in R. This integer r is called
the row rank of A. We will use rank(A) to mean this number. The
variables corresponding to the leading ones (pivots) are determined
by the system, while the remaining n — r variables are "free".

Theorem 0.4. Non-Trivial Solutions.
A homogeneous system of linear equations with fewer equations than
unknowns always has a non-trivial solution.

3L
Proof
Let the system be Ax = 0, where A is m x n with m < n. Let R be
the RREF of A. The number of non-zero rows r satisfies r < m < n.
The number of free variablesisn — r > 0. Since there is at least
one free variable, we can assign it a non-zero value (e.g., 1), which
determines the pivot variables uniquely. This constructs a solution
where x # 0.

This result is fundamental. It tells us, for instance, that any set of
n 4 1 vectors in R” must be linearly dependent, a concept we will
formalise in the next chapter.

The Square Case

For a square matrix (n equations in n unknowns), the existence of
non-trivial solutions is linked to the invertibility of the matrix.

Theorem o.5. Square Homogeneous Systems.
Let A be an n x n matrix. The system Ax = 0 has only the trivial so-
lution x = 0 if and only if A is row equivalent to the identity matrix
I

L

15
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(<)
If A ~ I, then the system Ax = 0 is equivalent to I,x = 0, which
implies x = 0.

EXLES
(=)
Suppose Ax = 0 has only the trivial solution. Let R be the RREF
of A. The system Rx = 0 also has only the trivial solution. This

implies there are no free variables. Thus, every column must be a

pivot column. Since R is n X n and has 7 pivots, it must be I,.
EXLES

Non-Homogeneous Systems

We now turn to the general case Ax = b. To analyse this, we form the
augmented matrix [A | b] by appending b as an extra column. We
perform row operations on this augmented matrix to obtain [R | d],
where R is the RREF of A.

The system Ax = b is equivalent to Rx = d. Let r be the number of
non-zero rows of R. The equations corresponding to the zero rows of
R (rows r + 1 to m) take the form:

0O-x1+--4+0-x,=d; fori=r+1,...,m
These equations are satisfied if and only if d; = 0.

Theorem o0.6. Consistency Condition.
The system Ax = b is consistent (has a solution) if and only if the vec-
tor d in the reduced augmented matrix satisfies d; = 0 for alli > r,

where r is the number of non-zero rows in the RREF of A.
il

Proof

Let [A | b] be the augmented matrix and let [R | d] be its RREF,
where R is the RREF of A. Row operations preserve solution sets,
so Ax = b is consistent if and only if Rx = d is consistent.

By definition of r, the rows r + 1,...,m of R are zero rows. The cor-
responding equations in Rx = d are

0=d; fori=r+1,...,m.

If any d; # 0fori > r, the system is inconsistent. Conversely, if all
d; = 0 for i > r, then the remaining r equations (the non-zero rows)
involve the pivot and free variables and always admit a solution.
Hence Ax = b is consistent exactly when d; = 0 for all i > r.

This condition effectively says that the rank of the augmented matrix



ALGEBRA IV: LINEAR 17

[A | b] must equal the rank of A. If rank([A | b]) > rank(A), the
system is inconsistent.
Example 0.6. Consistent and Inconsistent Systems. Consider the
system Ax = b with

1 -2 1 2
A=12 —4 2 and b= |4
1 1 -3 2
Fet
Solution
Row reducing the augmented matrix:
1 -2 1 |2 K2R ReeR 1 -2 112
2 -4 2 |4 | 77" 0 010
1 1 -3]|2 0 3 —4]0
The system is consistent since no row of the form 000 | k| with
k # 0 appears.
2
Now keep the same A but takeb = |1|. Row reduction yields a
2
row of the form [0 0 0 | k] with k # 0, so the system is inconsistent.
[ ]

Example o0.7. Consistency condition. Find the condition on by, by, b3
for the following system to be consistent:

X+y+Z:b1

2x +2y +2z=b
3x + 3y +3z = b3

Row reduction yields zero rows on the left. Consistency requires
b2—2b1 =0and b3—3b1 =0.

$o19]

0.5 Elementary Matrices

We now introduce the concept of elementary matrices, which pro-
vides a matrix-algebraic perspective on elementary row operations.
This formalisation is not only theoretically elegant but also practical,
as it allows us to represent row reduction as matrix multiplication—a
form readily implemented in computational algorithms.
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Definition o0.14. Elementary Matrix.

An elementary matrix of order n is a matrix obtained by performing
a single elementary row operation on the n x n identity matrix ;.
Note

The order (or size) of a matrix is its number of rows by number
of columns. An m x n matrix has order m x n, a square matrix of
order n is an 1 X n matrix.

Definition o.15. Identity Matrix.

The identity matrix in R"*" is the n x n matrix I with entries

1 ifi=j,

0 ifi#j.

We write [, when the size needs emphasis. The symbol 4;; is called the
Kronecker delta.

Since there are three types of elementary row operations, there are
three types of elementary matrices.

Example 0.8. Examples of 2 x 2 Elementary Matrices. Starting from

1 0
L = :

1. Type I (Scaling): Multiply row 1 by a # 0:

a 0
E| = .

2. Type II (Replacement): Add « times row 2 to row 1:

1 «
E, = .

3. Type III (Interchange): Swap row 1 and row 2:
01
E; = .

The fundamental property of elementary matrices is that they imple-
ment row operations via left multiplication.

$o19]
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Theorem o.7. Matrix Multiplication Implements Row Operations.
Let A be an m x n matrix, and let e be an elementary row operation.
Let E = e(Iy) be the corresponding elementary matrix. Then perform-
ing the operation e on A is equivalent to pre-multiplying A by E. That
is:
e(A) = EA.
%12

Proof

We verify this for the Type II operation (Replacement). Let e be the
operation "Replace row s by row s 4 ax row t". The entries of the
elementary matrix E = e(I,) are given by:

1 ifi=k,
Ex=1<a ifi=sk=t,

0 otherwise.

Using the definition of matrix multiplication, the (i, j)-th entry of
the product EA is:

m
(EA)ij = ) ExAyj-
k=1

e Ifi # s, the only non-zero term in the sum is when k = 7, where
E;i = 1. Thus (EA);; = 1-A;; = Ajj. This matches the fact that
rows other than s are unchanged.

e If i = s, the sum has two non-zero terms: k = s (where Egs = 1)
and k = t (where Eg; = a). Thus:

(EA)SJ =1- AS] +uo- At]

This is precisely the definition of the row operation e applied to
A.
The proofs for Type I and Type III operations follow similarly.
[ |

This theorem allows us to view row reduction as a factorisation pro-
cess. If a matrix B is obtained from A by a sequence of operations
corresponding to elementary matrices Eq, Ey, . .., Ej, then:

B =EE_;...EA.

Invertibility

The relationship between elementary matrices and invertibility is
central to linear algebra.

19
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Proposition o.3. Identity Acts as a Multiplicative Unit.
If X € R"*?, then XI, = X and [, X = X.

>
a8

Proof
For brevity, write I = I,. The (i, ]) entry of XI is

p p
(XD)ij =Y Xielij = Y Xidyj = Xij,
k=1 k=1

since all other terms vanish. Thus XI = X. The proof of [, X = X is

analogous.
n

Thus

Definition 0.16. Invertible Matrix.
A square matrix A of order n is invertible if there exists a square ma-
trix B of order n such that

AB=1, and BA=1,.

In this case, B is unique and is called the inverse of A, denoted AL

Proposition o0.4. Invertibility of Elementary Matrices.
Every elementary matrix is invertible, and its inverse is an elementary

matrix of the same type.

3

Proof
Let E be an elementary matrix corresponding to the row operation
e. From our discussion on row operations, we know e is a bijection
with an inverse operation e~! which is also an elementary row
operation. Let ' = e !(I). Then for any matrix X, E'X performs
e~! on X. Consider the product E’E. This corresponds to perform-
ing e on I (getting E), and then performing e~ ! on the result. Thus
E'E = e~ !(e(I)) = I. Similarly, EE’ = I. Thus E is invertible with
inverse E’.

|

Characterisation of Invertible Matrices

We can now state the main theorem linking systems of equations,
row reduction, and matrix inversion.



Theorem 0.8. The Invertible Matrix Theorem.

Let A be a square matrix of order n. The following statements are equiv-
alent:

1. A is invertible.

N

A is row equivalent to the identity matrix I,,.
A is a product of elementary matrices.

»

The homogeneous system Ax = 0 has only the trivial solution x =
0.
5. The system Ax = b has a solution for every b € R".

+

T3

Proof

We prove the cyclic implications (1) = (2) = (3) = (1),

and link (4) and (5) separately.

(1) = (2): Suppose A is invertible. Let R be the row reduced
echelon form of A. Since row operations correspond to multi-
plication by invertible elementary matrices, R = PA for some
invertible matrix P. Since P and A are invertible, R is invertible.
As established previously (t/icorem 0.5), the only invertible matrix
in RREF of order n is I,. Thus A ~ I,,.

(2) = (3): If A~ 1y, then I, = Ei... E{A for elementary matrices
E;. Multiplying by inverses:

-1 -1 -1 -1
A=E' B L =Bt BN

Since the inverse of an elementary matrix is an elementary ma-
trix, A is a product of elementary matrices.

(3) = (1): If Ais a product of elementary matrices, and each ele-
mentary matrix is invertible, then their product A is invertible.
(1) < (g): If Aisinvertible, Ax =0 = A lAx = A710 =
x = 0. Conversely, if Ax = 0 has only the trivial solution, then

A ~ I, (by theorem 0.5), which implies A is invertible by (2).

(1) < (5): If A is invertible, for any b, let x = A~1p. Then
Ax = A(A71b) = b. Thus a solution exists. Conversely, if Ax = b
always has a solution, then for each column ¢; of the identity
matrix I, there exists a vector ¢; such that Ac; = e;. Let C be the
matrix with columns cy,...,c,. Then:

AC:A[cl cn}:[Acl Acn}z{el en}:In.

Now consider the homogeneous system Cx = 0. Multiplying by
A gives ACx = A0 = 0. Since AC = I,, we have I,x = 0, so
x = 0. Thus, the homogeneous system Cx = 0 has only the triv-
ial solution. By the equivalence (1) <= (4) applied to C, the
matrix C is invertible. Since C is invertible and AC = I,,, we have
A = C 1. Therefore, A is invertible.
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Proposition 0.5. One-Sided Inverses.
Let A be a square matrix.
1. f BA=1Ithen B=A"".

2. fFAC=1,thenC= A1
In other words, for square matrices, a left or right inverse suffices to
prove invertibility.

>

Remark.

The proof of this relies on the rank arguments from the homoge-
neous systems section. If AC = [, then for any x, ACx = x.If
Cx = 0,thenx = 0. Thus the homogeneous system Cx = 0 has
only the trivial solution, implying C is invertible. Then A = C —1is
uniquely determined.

Proof

We prove (2); the proof of (1) is analogous. Assume AC = I;,.
Then for any x, ACx = x. If Cx = 0,thenx = ACx = A0 = 0,
so the homogeneous system Cx = 0 has only the trivial solution. By
theorem 0.5, this implies C is invertible.
Multiply AC = I, on the left by C~! to get C"'AC = C~1I,, hence
A = C~!. Therefore C = A~ L.

|

Computing the Inverse

The equivalence (1) <= (2) provides a practical algorithm for
computing A1 Since Ey...E;A = I,, we have A~! = E...E;. This
means the same sequence of row operations that reduces A to I, will
transform I, into A~1L.

Algorithm: Form the augmented matrix [A | I,]. Apply row opera-
tions to reduce the left side to I,. The right side will become A~1.

RREF .
[A| L] == [ | A7),

If the left side cannot be reduced to I, (i.e., a row of zeros appears),

then A is not invertible.
Example 0.9. Inverse Calculation. Compute the inverse of

1 10
A=10 1 1
1 01




Solution
Form [A | I]:
11 1 00
01 010
1 0 0 01
R3 — R3 — Ry:
1 1 0 0
0 0 1 0
0 -1 1|-1 0 1
Rz — R3 + Ry:
11 01 0O
01 1,0 10
00 2(-1 11

Scale R3 by 1/2, then clear the columns above the pivots to get:
10 0| 1/2 -1/2 1/2
010 1/2 1/2 -1/2
00 1}-1/2 1/2 1/2

ThusA'=3|1 1 -1|.

0.6 Exercises

1. System Solving. Use Gaussian elimination (row reduction) to
solve the following systems.

(a)
X1 +2xp+3x3 =1
2x1 +2xp +5x3 =2
3x1+5x+x3=3
(b)

Xp+x3+x4 =1
X1+x3+x4=2
X1 +x+x,=3

X1+x+x3=4

2. Intersection of Planes. Find the set of common points (the inter-
section) of the three planes in IR® given by:

9x—3y+2z=20, x+y+z=0 —x+2y+z=-10.
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3. Quadratic Fitting. Determine whether the data points (1,27), (2,16), (3,29), (4,9)
can lie on a quadratic curve y = ax? + bx + c. Find the necessary
condition on g and determine the quadratic function.

4. Homogeneous vs Non-Homogeneous. Consider the system:

x+3y+2z=4
2x +5y — 3z = —1
dx+1ly+z=7

Solve this system over R. Let S be its solution set. Now replace
the constants (4, —1,7) with (0,0,0) to form the associated homo-
geneous system. Let Sg be its solution set. Describe both S and S
explicitly.

5. Underdetermined System. Solve the system and express the
solution set as a linear combination of vectors:

X1+ x2+x3+x4=0
2x1+x2—x3+3x4 =0

6. General Solution. Find the general solution of the system:

X14+x+x3+x4+x5=1
X1+ 2xp + 3x3 +4x4 + 5x5 =6

X1 — X3 —2x4 —3x5 = —4

7. Triviality Check. Without fully solving, determine whether each
homogeneous system has a non-zero solution. Explain your rea-
soning based on rank or variable counts.

(@)
x+y+z=0
2x+y+5z2=0

(b)
x+y+z=0
2x+y+52=0
3x+2y+6z=0

8. Parameter Analysis. For which values of A does the following
system have a solution?

Axi+x+x3=1
X1+ A +x3=A
x1+x2+)tx3:)\2



10.

11.
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Identify the values of A for which the solution is unique, and
those for which there are infinitely many solutions.

Consistency Condition. For which values of ¢ is the system con-
sistent? When consistent, describe the solution set.

x+y+z=1

2x+3y+z=2

3x+4y+2z=t

RREF Analysis. Let A and b be defined as:

1 2 1 1
A=12 4 =2|, b= |2
11 0 t

Reduce the augmented matrix [A | b] to Row Reduced Echelon
Form. Use the result to determine the values of t for which the
system Ax = b is consistent, and describe the number of solutions.

Row Equivalence and Rank. Prove that if A and B are row-
equivalent matrices, then rank(A) = rank(B). (Hint: compare
the number of non-zero rows in their RREFs.)

25
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Abstract Vector Spaces

Definition 1.1. Vector Space.

Let F be a field (typically R or C). A set V is called a vector space over
F if it is equipped with two operations:

Vector Addition: A map V x V — V, denoted (x,y) — x +y.

Scalar Multiplication: A map F x V — V, denoted (A, x) — Ax.
These operations must satisfy the following axioms for all x,y,z € V
and o, B € F:

Axiom 1. Commutativity.
X+y=y+x
NS A
Axiom 2. Associativity of Addition.
(x+y)+z=x+ (y+2).
UNEL A
Axiom 3. Zero Vector.
There exists an element 0 € V such that x +0 = x for all x € V.
NS A

Axiom 4. Additive Inverses.
For every x € V, there exists an element —x € V such that x + (—x) =
0.

A

Axiom 5. Unital Property.
1. x = x, where 1 is the multiplicative identity of F.

3



Axiom 6. Associativity of Scalar Multiplication.
(aB)x = a(px).

N
Axiom 7. Distributivity over Vectors.
a(x+y) =ax +ay.

3
Axiom 8. Distributivity over Scalars.
(a« + B)x = ax + Bx.

R

The first four axioms assert that (V,+) is an Abelian group. The
remaining axioms govern the interaction between the field F and the
group V.

Remark.

Strictly speaking, one should distinguish the symbols for operations
in V from those in F. For instance, one might write & for vector
addition and ® for scalar multiplication, reserving + and - for the
field operations. The distributive law (axiom 8) would then read
(a+pB)ox = (¢ ®x) ® (B O x). However, in practice, the context
almost always clarifies which operation is intended.

To illustrate that vector spaces encompass more than just column

vectors, we examine some non-standard structures.

Example 1.1. The Space of Positive Reals. Let V' = IR, be the set

of strictly positive real numbers. We define the vector operations as

follows:

Vector Addition (B): For x,y € R, definex ®y = xy (standard
real multiplication).

Scalar Multiplication (©): For A € Rand x € Ry, define A ® x =

X,

$.19]
Solution

We verify the axioms. The "zero vector" is the elemente € V such
that x @ e = x, which corresponds to x - e = x; thus, the zero vector
is the real number 1. The additive inverse of x is x 1. Distributivity
holds:

Ao (x@oy) =yt =y =(Aox)®(Aoy).

Thus, (R4, ®, ®) is a vector space over R. In this context, standard
expressions like 2x would formally evaluate to x?.
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Example 1.2. The Complex Conjugate Space. Let V be a vector
space over the complex numbers C. We can construct a new vector
space V which shares the same underlying set and additive group
as V, but possesses a modified scalar multiplication.

$.15]
Solution

For any A € C and x € V, we define the operation ® by:
AOx = Ax,

where A denotes the complex conjugate. Since the conjugation map
A+ Ais a field automorphism (respecting addition and multipli-
cation in C), the vector space axioms are preserved. For example,
associativity of scalar multiplication becomes:

(@) © x = (ap)x = (€B)x = &A(Bx) = a © (BOx).

This structure is particularly important in the study of antilinear
maps and dual spaces in quantum mechanics.

Several properties that appear intuitive from arithmetic can be rigor-
ously derived from the axioms. These properties hold for any vector
space, regardless of the nature of its elements.

Proposition 1.1. Basic Vector Arithmetic.

Let V be a vector space over a field F. Forall x € V and A € F:

1. The zero vector is unique.

2. 0-x = 0. (The scalar 0 times any vector yields the zero vector).

4. If Ax =0, then either A =0 or x = 0.
5. (=1)x = —x. (The scalar —1 produces the additive inverse).

¥

Proof
1. Suppose 0 and 0’ both satisfy x + 0 = x and x + 0’ = x for all x €

V. Then
0=0+0" =0,

so the zero vector is unique.
2. Using axiom 8:

0-x=0+0)x=0-x+0-x.

Adding the additive inverse —(0- x) to both sides yields 0 = 0- x.
3. Similarly, using axion 7:

A-0=A0+0)=A-0+A-0 = 0=A-0.

3. A-0=0. (Any scalar times the zero vector yields the zero vector).

&l

= Re
~.

Ao =—iv

Scalar multiplication in V
(red) vs V (teal) by A = i.

Figure 1.1: Visualising the ac-
tion of scalars in the conjugate
space V.
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4. Suppose Ax = 0and A # 0. Since F is a field, A has a multiplica-
tive inverse A~1. Then:

x=T-x=A"Nx=A2"T1Ax)=r"10=0.

Thus, if A # 0, we must have x = 0.
5. We calculate the sum of x and (—1)x:

x+(-x=1-x+(-x=(1+(-1))x=0-x=0.
If y is any element with x +y = 0, then
y=y+0=y+(x+(-1)x) = (y+x)+(-1)x =0+ (-1)x = (-1)x,
so the additive inverse of x is (—1)x.

Remark.

Property 5 allows us to define subtraction in vector spaces naturally
asx —y = x + (—1)y. Furthermore, for any natural number 7, the

notation nx represents the n-fold sum x + --- + x, which is consis-
tent with scalar multiplication by the integer n (interpreted as an
element of the field F). If F has finite characteristic p, then px = 0
for all vectors x.

Remark.

The characteristic of a field F is the smallest positive integer p such
thatp -1 = 0inF,ie., 1 added to itself p times equals 0; if no
such p exists, the characteristic is 0. For example, Q, R, and C have

characteristic 0, while IF,, has characteristic p.

1.1 Linear Combinations and Subspaces

Definition 1.2. Linear Span.

Let V be a vector space over a field F. Let S C V be a subset of vec-
tors (possibly infinite). A vector v € V is a linear combination of el-
ements of S if it can be written as a finite sum:

n
U= Z /\ixi/
i=1

where A; € F and x; € S. The set of all such linear combinations is
called the linear span of S, denoted (S) or span(S).

It is immediate from the axioms that (S) is closed under vector addi-
tion and scalar multiplication. If v = }_A;x; and w = }_ y;x; (padding
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with zero coefficients if necessary to use the same vectors), then:
v+w=)Y (Ai+pu)x; and av =) (aA;)x;.
This closure property is fundamental.

Definition 1.3. Subspace.

Let V be a vector space. A subset U C V is a subspace of V, denoted
U <V, if U is non-empty and closed under the operations of V:

- Ifu,ve U, thenu+ve U.

- IfueUand A € F, then Au € U.

A subspace U is called a proper subspace if U # {0} and U # V.

Definition 1.4. Row and Column Space.

Let A € F"*". The row space of A is the subspace of F" spanned by
the rows of A. The column space of A is the subspace of F"* spanned
by the columns of A.

Remark.

To check if a subset is a subspace, it suffices to verify closure un-

der addition and scalar multiplication. The existence of the zero
vector follows from scalar multiplicationby 0 (0 - = 0 € U),
and additive inverses follow from scalar multiplication by —1
(-Du=—uel).

The restriction of the operations of V' to a subspace U makes U a
vector space in its own right. The zero vector of V must lie in U
(since 0 - u = 0). Furthermore, the intersection of any collection of
subspaces is itself a subspace.

Proposition 1.2. Span as Smallest Subspace.
For any subset S C V, the linear span (S) is the smallest subspace of
V containing S. If S is already a subspace, then (S) = S.

¥

Proof

First, (S) is a subspace: it is non-empty (if S # &, then0 = 0-x €
(S§) forany x € S;if S = @, then (§) = {0}) and is closed under
addition and scalar multiplication by construction of linear combi-
nations. Also S C (S) since each x € Sequals1-x. LetU < V be
any subspace with S C  U. Since U is closed under linear combi-
nations, every finite linear combination of elements of S lies in U,
hence (S) C U. Therefore (S) is the smallest subspace containing
S. If S is already a subspace, then by the same argument (S) C S,
while always S C (S), so (S) = S.
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Example 1.3. Solution Space (Nullspace). As seen in chapter o, the
solution set of a homogeneous linear system Ax = 0 is a subset
of R” closed under addition and scalar multiplication. Thus, the

solution set forms a subspace of R”, often called the nullspace of
A.

Fet
Example 1.4. Calculus Subspaces. Let V. = RR be the space of all
functions from R to R.
- C(R), the set of continuous functions, is a subspace of V.
- CY(R), the set of differentiable functions with continuous deriva-
tives, is a subspace of C(RR).
- C®(R), the set of infinitely differentiable (smooth) functions, is a

subspace of C!(R).
These nested subspaces play a crucial role in analysis.

Eid)
The universality of the vector space axioms allows us to treat diverse
mathematical objects within the same framework.

Example 1.5. The Zero Space. Let V = {0} and F be any field. De-

fine0+0 =0and a -0 = 0 for all « € F. This forms the trivial vec-
tor space.

et
Example 1.6. Field Extensions. If K is a field extension of F (de-
noted K/F), then K is naturally a vector space over F.

- C is a vector space over R. For example, {1,i} spans C over R.
- R is a vector space over Q. This space is infinite-dimensional.

$.19]
Remark.

We say K is a field extension of F if F is a subfield of K (written
F C K), meaning the operations on F agree with those in K. Equiva-
lently, K is a field that contains a copy of F.

Example 1.7. Function Spaces. Let X be any non-empty set and F
a field. The set of all functions FX = {f : X — F} forms a vector
space under pointwise operations:

(f+8)(x) = f(x) +8(x),  (Af)(x) = Af(x).

31
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Solution

If X = {1,...,n}, this space is isomorphic to F". The function f
corresponds to the tuple (f(1),..., f(n)). The standard coordinate
functions are the Kronecker delta functions J;, where

, 1 ifj=k,
(j) = -
0 ifj#k

Thus any function can be written as

For infinite X, such a sum would be infinite, which is not defined
in purely algebraic vector spaces. We typically study specific sub-
spaces of FX, such as:
* C(a,b): Continuous functions on an interval (a,b).
e C!(a,b): Continuously differentiable functions on (a, b).
* Polynomials F[x] or polynomials of degree at most 1, denoted
Py.

[
Example 1.8. Integrable Functions. Let R[a, b] be the set of all
Riemann-integrable functions on [a, b]. Standard results from calcu-
lus ensure that if f and g are integrable, then f + g and af are also
integrable. Thus, R|[a, b] is a vector space.

#b)
Example 1.9. Matrix Spaces. The set of m x n matrices with entries
in F, denoted F"*", is a vector space under matrix addition and
scalar multiplication. A particularly interesting subspace of the

square matrices M, (Q) is the set of semi-magic squares: matrices
where every row and column sums to the same constant o(A).

SMag,(Q) = {A € M, (Q) ‘ Vij:) ag = Zak]- = O'(A)}.
k k

A magic square requires the main diagonal and anti-diagonal to
also sum to 0 (A). These conditions define linear constraints, so the
sets of semi-magic and magic squares form subspaces:

Mag, (Q) C SMag, (Q) € Mx(Q).




Geometric Interpretations

When F = R, we refer to V as a real vector space. The most intuitive
model is the set of geometric vectors (directed segments) in physical
space. Addition follows the parallelogram law, and scalar multiplica-
tion scales length and reverses direction if negative.

When F = C, we have a complex vector space. The one-dimensional
space C! can be visualised as the Argand plane R?. Scalar multiplica-
tion by a complex number z = re¢'? scales a vector by r and rotates it
by 0.

However, the field need not be continuous.

Example 1.10. Finite Fields and Coding Theory. Let F = [F, =
{0,1} be the binary field. The space V.= =
strings of length 1. Geometrically, these are the vertices of a unit

IF5 consists of binary

hypercube in R".
The subspace defined by the parity check equation:

I, ={(e1,...,en) €F5 | €1+ +€, =0}

consists of all strings with an even number of 1s (since 1+ 1 = 0in
IF»). This is a simple error-detecting code. If a single bit is flipped
during transmission, the parity sum becomes 1, alerting the receiver
to an error. This geometric view of finite vector spaces underpins
modern coding theory.

49

Non-Examples

It is instructive to examine sets that fail to be vector spaces.

{(x,:2) €
x1 + 1}. This set is a line in the plane but does not

Example 1.11. Affine Lines. Consider theset S =
]Rz | Xy =
pass through the origin (since 0 # 0 + 1). Consequently, it does
not contain the zero vector and cannot be a vector space. Further-
more, it is not closed under addition: if we take x = (0,1) € S and
y = (1,2) € S, theirsumx +y = (1,3) satisfies3 # 1+ 1, so
x+y¢S.

Eid)
Example 1.12. Polynomials of Fixed Degree. Let V be the set of
polynomials with degree exactly 2. This is not a vector space. Con-
sider p(t) = t*+tandq(t) = —t>+ t. Bothare in V, but their
sum (p + q)(t) = 2thasdegree1,sop+ g ¢ V. The setisnot

closed under addition. Moreover, the zero polynomial (degree —oo
or undefined) is not in V.

.41
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Subspace I1; C F3

33

Figure 1.2: The even-parity sub-

space 113 forms a tetrahedron

within the hypercube.

Figure 1.3: A line through the

origin is a vector space (teal),

while an affine line (red) is not.
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Example 1.13. Hermitian Matrices. Consider the set of Hermitian
matrices H = {A € M,(C) | A* = A}, where A* denotes the
conjugate transpose.

While H is closed under addition, it is not a subspace of the com-
plex vector space M, (C). Taking A = I (which is Hermitian) and
scalar A = i, we find (AA)* = (il)* = —il # AA. However, if we
regard M, (C) as a vector space over R, then H forms a subspace,
as AA remains Hermitian for all real A.

Fufl
Speaking of transpose:

Definition 1.5. Transpose.
Let A be an m x n matrix. The transpose of A, denoted AT, is the n x
m matrix defined by:

(AT)]'Z' :Aij foralll §i§m,1 §]§n

Intuitively, the transpose converts rows into columns and columns into

rOwWsS.
Proposition 1.3. Properties of Transpose.
Let A, B be matrices of appropriate sizes and a be a scalar.

1 (AN =

2. (A+B)T AT + BT and (¢A)T = aAT.

3. (AB)T = BTAT.
4. row;(AT) = (col;j(A))T and col;(AT) = (row;(A))T.
Proof
1. The (i,j) entry of (AT)T is the (j, i) entry of AT, which is Ajj.
2. Follows from the linearity of the entry-wise operations.
3. Let A € F"*k and B € F**". Then

T ! T T T 4T
((AB)");; = Z =Y (BN (A"),; = (B"A");;.

r=1
4. The k-th entry of rowj(AT) is (AT)jk = Ayj, which is the k-th en-

try of (colj(A))T. Similarly, the k-th entry of col;(AT) is (AT); =
Ajx, which is the k-th entry of (row;(A))T.
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1.2 Linear Dependence and Dimension

The structure of a vector space is determined by the relationships
between its elements. The most fundamental such relationship is
whether one vector can be built from others.

Definition 1.6. Linear Dependence.
A finite set of vectors {vy,...,v,} in a vector space V is called linearly
dependent if there exist scalars a4, ...,a, € F, not all zero, such that:

w101 + - +wyo, =0.

Such a relation is called a non-trivial linear relation. If the only solu-
tion to }_w;v; = 0 is the trivial solution a1 = - - - = a, = 0, the set is
called linearly independent.

Remark.

If a set contains the zero vector, it is automatically linearly depen-

dent. For instance, if v; = 0, we can choose a7 = 1 and all other
a; = 0 to satisfy the equation.

Proposition 1.4. Basic Properties of Independence.

Let S be a set of vectors in V.

1. The empty set & is linearly independent.

2. If 0 € S, then § is linearly dependent.

3. If Sis linearly independent, then every subset of S is linearly inde-

pendent.

4. If S is linearly dependent, then every superset of S is linearly de-
pendent.

Proof

1. The condition for linear dependence requires the existence of
non-zero scalars «; such that )" a;v; = 0. Since there are no

vectors in &, no such sum exists. Thus, the condition for depen-
dence can never be satisfied.

2. LetS = {0,vy,...,v,}. Consider the linear combination 1 - 0 +
0-vp+---4+0-v, = 0. Since the coefficient of the zero vector is
non-zero (1 # 0), this is a non-trivial relation.

3. Let A C S.If A were dependent, there would be a non-trivial
relation among elements of A. This same relation serves as a
non-trivial relation for S (by setting coefficients of vectors in
S\ A to zero), contradicting the independence of S.

4. Let S C  B. Since S is dependent, there exists a non-trivial re-

lation }_wa;s; = Owiths; € S. This same sum is a linear com-
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bination of vectors in B (with other coefficients zero), so B is
dependent.

Lemma 1.1. Dependence of Two Vectors.
Two vectors u,v € V are linearly dependent if and only if one is a scalar

multiple of the other.
7132

(=)
Suppose u,v are dependent. Then au 4 fv = 0 with not both «,
zero. If &« # 0,thenu = (—pB/a)v.Ifa = 0,then B # 0,s0 v =
0 = v=0.Inthiscasev =0-u.

FER #
(=)
Suppose u = Av. Then1-u + (—A)v = 0. Since the coefficient of u
is 1 # 0, this is a non-trivial relation.

BELES

Example 1.14. Polynomial Independence via Differentiation. Con-
sider the set {1,t,t?,t3} in the space of real polynomials. Suppose

ao 4 aqt + axt? +aztt =0

forallt € IR. This is an identity of functions. Differentiating with
respect to t repeatedly yields:

w0 + 200t + 3azt? =0
20y + 6a3t =0
6063 =0

From the last equation, a3 = 0. Substituting back gives ay = 0, then
®1 = 0, and finally 9 = 0. Thus, the monomials are linearly inde-
pendent. This method avoids the Fundamental Theorem of Algebra
(roots).

El

Proposition 1.5. Characterisation of Dependence.

A set of non-zero vectors {v1,...,v,} is linearly dependent if and only
if at least one vector vy (k > 2) can be written as a linear combination
of the preceding vectors vy,..., Uk 1.

¥

P

(=)
Suppose the set is dependent. Let k be the largest index such that
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ar # 0in a non-trivial relation } ;' ; a;v; = 0. Since v; # 0, we must
have k > 2. Then:

k-1
U = —uc,;l Z ;0;.
i=1
3E 9 4

(=)
If vy is a linear combination of preceding vectors, then vy —}_ B;v; =
0 is a non-trivial relation (coefficient of v is 1), so the set is depen-
dent.

Bk
The size of linearly independent sets is bounded by the "capacity”
of the space. The following theorem, fundamental to the theory,

formalises this.

Lemma 1.2. Underdetermined Homogeneous Systems.
Let F be a field and consider a homogeneous linear system with ¢ equa-
tions in s unknowns over F. If s > t, then the system has a non-trivial

solution (recall theoren 0.4).
5132

Proof

Row-reduce the coefficient matrix to echelon form. There are at
most ¢ pivots, so with s > ¢ there is at least one free variable. As-
signing a non-zero value to a free variable produces a non-trivial
solution.

Theorem 1.1. Steinitz Exchange Lemma.
Let {eq,...,es} be a linearly independent setin V, and let { f1,..., fi}
be a set of vectors such that every e; lies in span({fy,..., ft}). Then s <

t.
e

Proof
Suppose for contradiction that s > ¢. Since each ¢; is in the span of
the f’s, we can write:

t
e]:zacl]fl fOI'jzl,...,S.
i=1

Consider a linear combination of the ¢’s equal to zero:

S
2 x]-e]- =0.
j=1
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Substituting the expressions for e;:

ij (Z aijfi) = Z (Z D‘ijxj> fi=0.
j=1 i=1 i=1 \j=1

This equation is satisfied if the coefficients of each f; vanish. Thus,
we seek a solution to the homogeneous linear system:

S
Z(xinj:O fOI'iZl/-'~/t'
j=1

This is a system of t equations in s unknowns. Sinces > ¢, there
are more unknowns than equations, so a non-trivial solution
(x1,...,%s) exists by the previous lemma. This non-trivial solu-

tion implies }_ xje; = 0, contradicting the linear independence of the

ej’s. Thus, we must have s < t.
|

Corollary 1.1. Invariance of Independent Set Size. If two finite sets in V/
are equivalent (each spans the other) and linearly independent, they
must have the same cardinality.

ek
Proof
LetE = {ey,...,esyand F = {fy,..., f} be linearly indepen-
dent and assume each spans the other. Since E C span(F) and E is
independent, Steinitz Exchange Lemma gives s < t. Similarly, F C

span(E) and F independent implies t < s. Hence s = t.
|

We classify vector spaces by the size of their maximal independent
sets.

Definition 1.7. Dimension.

A vector space V is called n-dimensional, denoted dim V = n, if there
exists a set of n linearly independent vectors, and every set with more
than n vectors is linearly dependent. If V' contains arbitrarily large lin-
early independent sets, it is called infinite-dimensional. The zero space
{0} has dimension o.

Definition 1.8. Basis.
Let V be an n-dimensional space. A set of vectors {el, el en} is called
a basis if it is linearly independent.
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Example 1.15. Infinite Dimensionality of C[0,1]. The space C[0,1]
of continuous real-valued functions on [0, 1] is infinite-dimensional.
Consider the set of monomials S = {1,t,#?,...}. As shown pre-
viously, any finite subset of S is linearly independent (via differ-
entiation). If C[0,1] had a finite dimension 7, then any linearly
independent set could have size at most n. However, S contains in-
dependent subsets of arbitrary size k > n, which is a contradiction.
Thus, no finite basis exists.

ERl

By definition, a basis is a maximal linearly independent set. It is
also a minimal spanning set. The utility of a basis lies in the unique
representation of vectors.

Theorem 1.2. Basis Representation and Extension.

Let V be a vector space of dimension n.

1. If {e1,...,e,} is a basis, then every vector v € V can be uniquely
expressed as v = Y1 ; Aje;.

2. Any linearly independent set {fi, ..., fs} with s < n can be extended

to a basis of V.
il

Proof

1. Existence: Since dimV = n, the set {v,ey,...,e,} contains n +
1 vectors and must be linearly dependent. Thus av + Y aje; =
0 for scalars not all zero. If « = 0, the ¢; would be dependent,
which is false. Thus « # 0, and we can solve for v:

o=y (—a"tw)e;.

M-

i=1

Uniqueness: Suppose v = Y Aje; = Y uje;. Subtracting gives
Y-(A; — pi)e; = 0. By independence, A; — y; = 0 for all i.

2. Consider theset S = {f,...,fs}. If Sspans V, thens = nby
theorem 1.1. If not, there exists ek, in a basis of V that is not in
span(S). Adjoin it to form {fy,..., fs, e, }. Repeat this process
until the set contains n vectors. The resulting set is independent

and has size n, so it is a basis.
|

Corollary 1.2. Subspace Dimensions. If U is a subspace of a finite-dimensional
space V, then dimU < dim V. If dimU =dimV, then U = V.
e
Proof
LetdimV = nand let {uy,...,u;} be abasis of U. SinceU C V,
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this set is linearly independent in V, so it can be extended to a basis
of V of size n (by the extension part of t/icoremn 1.2). Hence k < n, so
dimU < dimV.IfdimU = dimYV, then a basis of U already has
size n and thus is a basis of V, which implies U = V.

[ |

Corollary 1.3. Basis Check by Size. Let V be a vector space with dim V =
n. If S is a linearly independent subset of V with |S| = n, then S is
a basis for V. (That is, spanning is automatic).

ek
Proof
If S were not a spanning set, we could extend it to a basis by
adding at least one vector, resulting in a basis of size > n, which
contradicts the unique dimension of V.
|

Example 1.16. Examples of Dimension.
- dimRR" = n. The standard basis is {ej,...,e,} where ¢; has a 1 in
the i-th position and o elsewhere.
- The space of m x n matrices has dimension mn.
- The space of polynomials P, (degree < n) has dimension n + 1. A
basis is {1,x,...,x"}.
E
Example 1.17. Subspaces of R3. We can classify all subspaces W of
R by dimension:
- dim W = 0: The zero subspace {0} (the origin).
- dim W = 1: A line passing through the origin.
- dim W = 2: A plane passing through the origin.
- dim W = 3: The entire space R>.
ER
Example 1.18. Homogeneous Polynomials. The space of homo-

geneous polynomials of degree k in m variables has dimension
(k).

E
Proof

Write a homogeneous polynomial of degree k in m variables as a
linear combination of monomials

xpteeexgr o owith w4+ =k, 4 € N

These monomials are linearly independent and span the space, so

they form a basis. The number of m-tuples of nonnegative integers



with sum k equals (k“,’z*l) (stars-and-bars), hence the dimension is
k+m—1
F )
|
Remark.

For function spaces, the index set of a basis need not be finite.
For a finite set X, the space FX has dimension |X| with basis
{6x | x € X}, where 6x(y) = 1 if y = x and 0 otherwise.

1.3 Coordinates and Isomorphisms

A basis provides a bridge between abstract vector spaces and the
concrete coordinate spaces IR".

Definition 1.9. Coordinates.
Let (eq,...,ex) be a basis of a vector space V over R. For any vector v €
V, the unique scalars Aq,...,A; € R such that

v =Ae1+ -+ Auey

are called the coordinates of the vector v relative to the given basis.

This definition implies linearity: if x = ) a;e; and y = }_ B;e;, then x +
y = Y.(a; + Bi)e;. Thus, adding vectors corresponds to adding their
coordinates. Similarly, multiplying a vector by a scalar multiplies

its coordinates by that scalar. The zero vector corresponds to the
coordinates (0,...,0).

Example 1.19. Polynomials. In the space P, of polynomials of
degree < n, the set (1,¢,...,#") is a basis. The coordinates of
f(t) = ap+ayt+ - - - + a,t" are its coefficients ay, ..., ay,.

However, using Taylor’s formula, we can write:

(n=1)(n B
£ = £@) + £ @)= )+ T g
Relative to the basis (1, — &, ..., (t — tx)”’l), the coordinates of the

[0V @)

same polynomial are f(«), f'(x),..., TSR

ERil)
A single vector space may have infinitely many bases. We investigate

how coordinates change when we switch from one basis to another.
Let & = (e,...,en) and & = (¢}, ..., ¢},) be two bases of V. Each new
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basis vector e} can be written uniquely in terms of the old basis &:
n
¢ = 2 ajje;.
i=1
The coefficients 4;; € R form the transition matrix A from the basis
(e}) to the basis (¢;):

a1 a4 a1n

a1 a4 A
A= (a;) =

ap1  An2 Ann

It is crucial to note that the coordinates of the new basis vector e;-
relative to the old basis lie in the j-th column of A.

Let a vector v have coordinates Ay, ..., A, in the basis (¢;) and A/, ..., A},
in the basis (e}). We have:

v= i Aiej = i/\;e;.
i=1 =1

Substituting the expressions for e;.:

n n n n
0= 2/\; <Z al-]-ei) = Z (Z ﬂl])\;> €;.
j=1 i=1 i=1 \j=1

Comparing the coefficients of ¢;, we obtain:
Ai = anAy +aphy + -+ ap Ay,

In matrix notation, let X and X’ be the columns of coordinates:

Then the relationship is X = AX’. Since both sets are bases, we
can also express (e;) in terms of (e), which implies the matrix A is
invertible. Thus, we have the inverse relationship:

Theorem 1.3. Coordinate Transformation.
In the transition from basis (e, ..., e,) to basis (¢, ..., e},) determined
by matrix A, the new coordinates are expressed in terms of the orig-
inal coordinates by:

X'=A'X.
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Proof
From the preceding computation, the coordinate columns satisfy
X = AX'. Since the change-of-basis matrix A is invertible, multiply
both sides by A~! to obtain X’ = A~1X.
|
Remark.
The matrix A is invertible because it sends the coordinate basis
in R" to the coordinate columns of the new basis vectors, so its

columns are linearly independent.

Isomorphisms

Using coordinates, we can identify any n-dimensional space with R".

Definition 1.10. Isomorphism.
Two vector spaces V and W over R are isomorphic if there exists a bi-
jection f : V — W such that forall o, € Rand u,v € V:

flau+ po) = af(u) + Bf(v).

Such a map f is called an isomorphism.

e
S

Note

Amap f:V = Wis:
e Injective (or one-to-one) if f(u) = f(v) = u =vforallu,v €

V.
* Surjective (or onto) if for every w € W, there exists v € V such
that f(v) = w.

* Bijective if it is both injective and surjective.

If f is an isomorphism, then f~! : W — V is also an isomorphism.
Dimension is invariant under isomorphism: if (e;) is a basis for V,
then (f(e;)) is a basis for W.

Theorem 1.4. Classification of Finite Dimensional Spaces.
All vector spaces of the same dimension # over R are isomorphic. Specif-
ically, they are all isomorphic to the coordinate space R".

il
Proof
Let (e1,...,e) be a basis for V. Define themap f : V — R"by
mapping a vector x = Y a;e; to its coordinate tuple (ay,...,ay).

Since coordinates are unique, f is a bijection. Linearity follows from
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the properties of coordinates:

flax +py) = a(ar, ... o) + B(B1, -, Bn) = af(x) + Bf(y)-

Thus V is isomorphic to IR".

Note

While any two spaces of dimension 7 are isomorphic, the isomor-
phism depends on the choice of basis. An isomorphism defined
without arbitrary choices is called canonical or natural.

1.4 Operations on Subspaces

We now consider how subspaces interact. Let U, W < V be sub-
spaces.

Intersection: The set U N W is always a subspace. It is the largest
subspace contained in both U and W.

Union: The set U U W is generally 70t a subspace (e.g., the union of
the x-axis and y-axis in IR? is not closed under addition).

Sum: The sum of subspaces is defined as:
U+W={u+w|ueclweW}

This is the smallest subspace containing both U and W. In fact,
U+ W =span(UUW).

The dimensions of these spaces are related by a fundamental formula
analogous to the inclusion-exclusion principle for sets.

Theorem 1.5. Grassmann’s Formula.
Let U and W be finite-dimensional subspaces of V. Then:

dim(U + W) = dimU 4+ dim W — dim(U N W).

b
Proof
Let {v1,...,vn} be a basis for U N W, where m = dim(U N W). By
theorem 1.2, we can extend this to a basis of U:

By =A{v1,...,omu1,..., ux_p}, wherek=dimU.

Similarly, we extend it to a basis of W:

By ={v1,...,0m,w1,...,w_y}, wherel =dimW.
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We claim that the set S = {v1,...,Um, U1, ..., Up_p, W1, ..., Wj_p} 1S
a basis for U + W. Clearly S spans U + W. To check independence,

suppose:
Y yivi+ Y aui+ Y prw, =0.

Rewrite this as:

Zﬂéjuj + Z’Yivi = - Z,Brwr-

The left side is in U, and the right side is in W. Thus, the vector
represented by this sum liesin U N W. Hence, —}_ B,w, can be
written as a linear combination of the basis vectors v; of U N W:

- Zﬁrwr = Z(Sivi — Zﬁywy + 2(51'01‘ =0.

Since {v;} U {w,} is a basis for W, all coefficients B, (and J;) must
be zero. The original equation reduces to }_vy;0; + Yaju; = 0.
Since {v;} U {u;} is a basis for U, all ; and «; are zero. Thus S is
independent. The dimension of U 4 W is the size of S:

dim(U+W) =m+ (k—m)+(I—m) =k+1—m.
]

Corollary 1.4. Nontrivial Intersection. If dim U +dim W > dim V, then
U and W must have a non-trivial intersection (i.e., dim(UNW) > 0).
For example, two planes in R® through the origin must intersect in at
least a line.

e
Proof
By theorem 1.5,
dim(UNW) =dimU + dim W — dim(U + W).
Since U + W < V, we have dim(U + W) < dim V. Hence
dim(UNW) > dimU + dimW — dim V.

If dimU 4 dimW > dimV, then the right-hand side is positive, so
dim(UNW) > 0.
|

Definition 1.11. Codimension.
The codimension of a subspace U < V is defined as codim U = dim V' —
dim U. A subspace of codimension 1 is called a hyperplane.

45
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Direct Sums and Quotient Spaces

We have seen that the sum of subspaces U + W is not always "effi-
cient," in the sense that a vector in the sum may have multiple repre-
sentations u + w. When representations are unique, the sum is called
direct.

Definition 1.12. Direct Sum.

Let Uy, ..., Uy be subspaces of V. The sum U = Uj + - - - + Uy, is called
a direct sum, denoted U = Uy @ - - - @ Uy, if every vector u € U can

be uniquely written as:

u=uy+---+uy, whereu; € U;.

7 &
Proposition 1.6. Criteria for Direct Sums.
The following conditions are equivalent for a sum U =} ; U;:
1. The sum is direct.
2. The zero vector has a unique representation: if } ' ; u; = 0 with

u; € U;, then u; = 0 for all i.
3. For each k, the intersection of Uy with the sum of the other subspaces
is zero:
UenN (Z U]> = {0}.
j#k

4. If the spaces are finite-dimensional, the dimensions add up:

m m
dim (2 ul-> =) dimU;

i=1 i=1

s

Proof
(1) = (2): If thesumis directand }}" ;u; = Owithu; € U,
then also0 = ;-":1 0. Uniqueness of representation in a direct

sum forces u; = 0 for all i.

(2) = (3): Suppose x € U N (Ljx Uj). Thenx = upand x =
Yj4k uj for some u; € Uj. Thus 0 = (—ug) + Ljz uj. By (2), each
term is zero, so x = 0.

(B) = (1): Given "y u; = Y";v; withu;,v; € Uj, subtract to
get Y | (u; — v;) = 0. Fix k and rewrite

U — U = —2(1/{]‘—"0]') € ukﬂzu]'.
7k 7

By (3), ux — vx = 0. Since this holds for each k, all coordinates

agree, so the representation is unique and the sum is direct.
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(1) = (4) (finite-dimensional): For m = 2, U; N U, = {0}, so theo-

rem 1.5 gives
dim(U; + Uz) = dim Uy + dim Uo.

Assume the formula holds for m - 1 subspaces and let
W = Y™ 'U,. Directness implies W N U, = {0}, so apply-
ing theorem 1.5 to W and Uy, gives

m—1

m _
dim(Z Ui) =dimW +dim U, = dim U; 4+ dim U,,,.
i=1 =1

1

(4) = (1) (finite-dimensional): Againlet W = Y™ 'U,. By theo-
rem 1.5,

dim(W + U,,) = dim W + dim Uy, — dim(W N Uy,).

Using (4) and the inductive hypothesis for W gives
m m—1
Y dimU; = (Y dimU;) + dim Uy, — dim(W 0 Uy),
i=1 i=1

sodim(WnNU,) = 0. Thus WN U, = {0}, and by them = 2
case, the sum is direct. Inducting on m completes the proof.
[ |

Remark.
For two subspaces, the condition simplifies: V.= = U & W if and
onlyif U+ W = VandUNW = {0}. In this case, W is called a
complement of U in V. By the theorem 1.2, every subspace has a
complement (extend a basis of U to a basis of V), but complements

are not unique.

Quotient Space

The non-uniqueness of complements suggests we should look for
an intrinsic object that captures the "difference" between V and a
subspace U.

Definition 1.13. Quotient Space.
Let U be a subspace of V. We define an equivalence relation on V:

v~w <— v—weEe U.

The equivalence class of v is the set v+ U = {v+u | u € U}, called
a coset. The set of all such cosets is denoted V /U. We define vector op-

47
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erations on cosets:
w+U)+(w+U)=@w+w)+U, AMov+U) = (Av)+U.

These operations are well-defined (independent of the representative).
The space V /U is called the quotient space of V by U.

Theorem 1.6. Isomorphism of Complements.
Let U be a subspace of V. If W is any complement of U (so V =U®

W), then W is isomorphic to V /U.

il
Proof
Define the map 7 : W — V/U by n(w) = w + U. This map is lin-

ear.

Injectivity: If m(w) = 0+ U, thenw € U. Sincew € Wand UN
W = {0}, we have w = 0.

Surjectivity: Letv+U € V/U. Since V = U ® W, we can write v =
u+wwithu € U,w € W. Then

v+U=(u+w)+U=w+ (u+U)=w+U=n(w).

Thus 7 is an isomorphism.
[

Corollary 1.5. Dimension of Quotients. For finite-dimensional spaces:
dim(V/U) = dimV — dim U = codim U.

Eit
Proof

Choose a complement W of U in V,so V = U @& W. By the previous
theorem, V /U is isomorphic to W, hence dim(V/U) = dimW. By
theorem 1.5,

dimV =dimU + dim W,

so dim(V/U) = dim V — dim U.

This formalises the idea that the quotient space "subtracts" the sub-
space U from V.
Example 1.20. Visualising Quotients. Let V. = R? and U be the x-
axis (liney = 0). The cosets of U are lines parallel to the x-axis, of
the form {(x,c) | x € R}.
Each coset is uniquely determined by its y-intercept c. Thus, the set
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of cosets V /U can be identified with the y-axis (the complement
x = 0), which is isomorphic to IR.

.41

1.6 Exercises

1. Vector Space Verification. Determine whether the following sets
form vector spaces over IR:
(a) The set of all polynomials p(x) € R[x] with p(0) = 1.
(b) The set of all functions f : R — R such that f(x) — 0 as

X — Q.

(c) The set of all n x n matrices with trace zero (the trace of
matrix A = (a;;) is defined by tr A = aj; +axn + -+ + aun).

(d) The set of all n x n matrices with positive trace.
2. Finite Fields and Subspace Counts.

(a) Let IF; be a finite field with g elements (where g is a prime
power). Show that |F}| = g".

(b) Let W be a k-dimensional vector space over IF;. Count the
number of ordered bases of W.

(c) Conclude that the number of k-dimensional subspaces of
an n-dimensional [F;-vector space is the Gaussian binomial
coefficient (’;)q

3. Dimension of Matrix Spaces. Determine the dimension of the
following subspaces of M, (R):

(a) Symmetric matrices (A = A").
(b) Skew-symmetric matrices (A = —A").
(c) Traceless matrices (tr(A) = 0).

4. Polynomial Subspace. Let P, be the space of polynomials of
degree at most n. Let W = {f € P, | f(1) = 0}. Find dim W and
construct a basis for it.

5. The Space Q[G] For (a): To prove uniqueness, suppose
there are two; consider their difference
and use a degree argument.

(a) A polynomial f € Q[t] is irreducible if it cannot be factored
into two non-constant polynomials in Q[t]. The minimal
polynomial of 6 is the monic polynomial of lowest degree in
Q[t] having 6 as a root. Explain why the minimal polynomial
is unique (and irreducible).

(b) Let d be the degree of the minimal polynomial of . Show
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that 1,0,...,07 1 are linearly independent over Q.

(c) Show that every element of Q[f] can be written as a Q-linear
combination of 1,6, ...,09"! and conclude dimg Q[f] = d.

6. Change of Basis. Find the transition matrix from the standard
basis (1,t,...,t") of P, to the Taylor basis (1, (t —«),..., (t —a)").

7. Coordinate Isomorphism. Let V be the space of 2 x 2 symmetric
matrices. Construct an explicit isomorphism from V to R3. What
are the coordinates of the identity matrix under your map?

8. Cancellation Failure. Prove by counterexample that the cancella-
tion law for direct sums fails: U © W; = U © W, does not imply
Wi = W,.

9. Quotients of R[f].

(a) Describe a natural basis for IR[t] as a vector space over R, and
recall the definition of a coset p(t) + L.

(b) Give a criterion for when R[t] /L is finite-dimensional in
terms of L.

(c) Apply your criterion to determine whether the following
quotient spaces are finite-dimensional, and find the dimen-
sion when it is finite:

(i) L = P, (polynomials of degree < n),
(if) L is the subspace of polynomials divisible by ",

(iii) L is the subspace of polynomials in > (even polynomi-
als).

10. Codimension Formula.

(a) If U < V has finite codimension, explain how codim U can be
defined using dim(V /U).

(b) Prove the formula
codim(U + W) + codim(U N W) = codim U + codim W

for finite-dimensional V.

(c) Extend the argument to the case where V may be infinite-
dimensional but U and W have finite codimension.

11. Intersection of Subspaces. Let V3, ..., Vi be subspaces of an n-
dimensional space V. Prove that if Z?:l dimV; > n(k — 1), then
the intersection ﬂ;‘:l V; is non-trivial (contains a non-zero vector).

12. Magic Squares. Following the terminology of example 1.9, we

Consider lines in R2.



single out the obvious semi-magic matrices:

Determine the dimensions dim SMag,, (Q) and dim Mag, (Q).
Clearly, SMag,(Q) = (E,D)q. In this case, S = E + D is the only
(up to a rational factor) magic matrix. For n = 3, consider the
magic matrix:

1 20

A=10 1 2

2 01

Calculate the dimensions mentioned above for n = 3 and n = 4.

13. Direct Sum Decomposition. Prove the direct sum decomposition:

SMag, (Q) = Mag, (Q) & QE & QD.

14. Basis Extension. Let S = {1+¢,1+ #*} be a subset of P; (polyno-
mials of degree < 3).

(a) Prove that S is linearly independent.
(b) Extend S to a basis for P;.

15. Row and Column Spaces. Let A be the matrix

1
A=]1
2

= NN

01
1 2
1 3

(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Verify that dim(row(A)) = dim(col(A)).

16. Geometric Intersection. Let W be the plane x +y +z = 0 and W,
be the plane x —y = 0 in R®.

(a) Find a basis for the intersection Wi N Wh.
(b) Determine dim W; and dim W;.

(c) Verify Grassmann’s formula: dim(W; + W) = dim W; +
dim W, — dim(W1 N Wz).
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For (c): What must Wy + W, be if it
contains two distinct planes?
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2
Linear Maps

Linear Maps and Operators

We now turn our attention from the internal structure of vector
spaces to the relationships between them. Linear maps are the fun-
damental functions that preserve the algebraic structure of vector
spaces.

Definition 2.1. Linear Map.

Let V and W be vector spaces over the same field F. A function T: V —
W is called a linear map (or linear transformation) if it satisfies the fol-
lowing two conditions for all u,v € V and « € F:

Additivity: T(u+v) = T(u) + T(v).

Homogeneity: T(au) = aT(u).

These conditions can be combined into a single requirement:

T(au+ pv) = aT(u)+ BT(v) forallu,v € Vanda,p € F.

If W = V, the map T is often called a linear operator. The set of all
linear maps from V to W is denoted by £(V, W) or Hom(V, W).
Note

We use Oy and Oy to denote the zero vectors in V and W respec-
tively. When there is no ambiguity, we simply write 0.

Proposition 2.1. Vector Space Structure of Maps.
The set £L(V, W) forms a vector space over F under pointwise opera-
tions. For f,¢ € L(V,W) and A € F, we define:

(f+8)(x) = f(x) +g(x),  (Af)(x) = Af(x).

>
a8



Proof

The verification of the axioms is direct. For instance, additivity
of thesum f + g follows from the additivity of f and g and the
commutativity of vector addition in W.

[ |
Proposition 2.2. Basic Properties.
Let T € £(V, W).
1. T(Ov) = Ow.
2. T(u—v)=T(u)—T(v).
3. Linearity extends to finite sums: T (Zﬁ-‘zl txivi> = Zé‘:l o; T(v;).

Proof

1. T(0) = T(0+0) = T(0) + T(0). Adding —T(0) to both sides
yields T(0) = 0.

2. T(u—0)=T(u+ (=1)v) = T(u) + (=1)T(v) = T(u) — T(v).

3. Follows by induction on k.

]
Example 2.1. Trivial Maps.
- The zero map O : V — W defined by O(v) = Oy for all v.
- The identity map € : V — V defined by £(v) = v.
Fe0)

Example 2.2. Geometric Transformations in R?. Consider maps T :
R? — R2.

Reflection: Let T(x1,x2) = (x1, —x2). This reflects a vector across
the xq-axis.

Rotation: Let Ty rotate a vector by an angle 6 counter-clockwise.
Using polar coordinates, if x = (rcosa, rsina), the rotated vector
yis (rcos(a+6),rsin(a + 6)). Expanding this:

y1 =rcosacosf —rsinasinf = x1 cosf — xp sinf

Y2 = rsinacos® + rcosasinf = x cosf 4 x; sinf

This can be written as matrix multiplication y = Ayx, where

Ag=| .
sinf  cos@

cosfl —sin 9]

Since matrix multiplication is linear, rotation is a linear map.

Exia
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X2

y = Tyx

X1

Figure 2.1: Rotation of a vector
x by angle 6.
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Example 2.3. Projections and Inclusions. Let m < n.

Projection: P :R" — R™ defined by P(x1,...,x,) = (X1,..., Xm).

Natural Inclusion: 1 : R™ — R" defined by i(xy,...,x,) =
(x1,.+.,%Xm,0,...,0).

Ideally, projections "flatten" the space onto a subspace, while inclu-

sions embed a smaller space into a larger one.

$o19]

Example 2.4. Differentiation and Integration. Let C![0,1] be
the space of continuously differentiable real functions. The map
D : C'0,1] — C[0,1] defined by D(f) = f’ is linear:

D(af +63) = 2 (af +p3) = af + B’ = aD(f) + BD(3)

Similarly, the integral map I : C[0,1] — R definedby I(f) =
fol f(t)dt is a linear functional.

£
Note

A linear functional on a vector space V over F is a linear map f
V —F.

Example 2.5. The Transpose Map. Consider the space of matrices
F™<" The map T : F"*" — F"™" defined by T(A) = AT is linear.
T(aA + BB) = (aA + BB)T =« AT + BBT = aT(A) + BT(B).

$45)
Remark.

Not all geometric transformations are linear. The translation map
T(x) = x + b with b # 01is not linear, as T(0) = b # 0. Such maps
are called affine.

2.2 Kernel and Image

Associated with any linear map are two fundamental subspaces.

Definition 2.2. Kernel and Image.

Let f : V — W be a linear map.

- The kernel (or nullspace) of f isKer f = {v € V| f(v) = 0}.

- The image (or range) of fisImf ={w e W | Jv eV, f(v) = w}.
It is routine to verify that Ker f is a subspace of V and Im f is a sub-
space of W. For the image, if w; = f(u1) and wy = f(uy), then
awy + pwy = f(auq + Pup) € Im f.



Lemma 2.1. Injectivity and Kernel.
A linear map f is injective if and only if Ker f = {0}.

7|32
(=)
Since f(0) = 0, if f is injective, 0 is the unique element mapping to
0.
LB 4
(=)

Suppose Ker f = {0} and f(x) = f(y). By linearity, f(x —y) =0, so
x —y € Ker f. Thus x —y = 0, implying x = v.
BLES

Example 2.6. Injectivity and Dimension. We investigate maps de-
fined by variations of f(x,y) = x =£ y to illustrate how dimension
influences injectivity and surjectivity.

Higher to Lower Dimension (n > m): Let T : R®> — R? be defined
by T(x) = (x1 + x2,x1 — x2). The kernel is determined by the sys-
tem x; +xp = Oand x; — xp = 0, which implies x; = x, = 0.
However, x3 is unconstrained. Thus Ker T = span(e3) # {0}, so
T is not injective. The system T(x) = y is solvable for all y € R?
(as the defining matrix is invertible), so T is surjective.

Lower to Higher Dimension (n < m): Let T : R?> — R3 be defined
by T(x) = (x1 + x2,x1 — x2,0). The kernel requires x; + x, = 0
and x; — xp = 0, yielding x = 0. Thus T is injective (lernma 2.1).
The range consists only of vectors with a zero third component
(e.g., (0,0,1) is not in the image), so T is not surjective.

Equal Dimension (n = m): Let T : R? — R? be defined by T(x) =
(x1 + x2,%1 — x2). The kernel is trivial (x = 0), so T is injective.
The defining matrix is invertible, ensuring T is also surjective.

This highlights a general principle: a linear map cannot be injective

if the domain is 'larger’ than the codomain, nor surjective if the

domain is 'smaller” (proved later in this section).

o451

Theorem 2.1. Mapping of Spanning Sets.
Let f : V — Whbelinearand U = (ey,...,e;s) be a subspace of V.
Then:

fU) = {fler),.... f(es))-
Consequently, dim f(U) < dim U.
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Proof

Any u € Uis of the form Y aje;. Then f(u) = Y a;f(e;), which
lies in span({f(e;)}). Thus f(U) < (f(e;)). Conversely, any lin-
ear combination of f(e;) is the image of the corresponding com-
bination of e;. Let B be a basis of U. Then f(B) spans f(U), so

dim f(U) < |B| = dim U.

Definition 2.3. Rank.
The rank of a linear map f, denoted rank f, is the dimension of its im-
age, dim(Im f).

2.3 Matrix Representation

We have seen that m x n matrices induce linear maps. Conversely, ev-
ery linear map between finite-dimensional spaces can be represented
by a matrix.

Theorem 2.2. Map Determined by Basis.
Let V and W be vector spaces, with V finite-dimensional. Let {vy,...,v,}
be a basis for V. For any vectors wy, ..., w, € W, there exists a unique
linear map f : V — W such that f(v;) = w; for all i.

i

Proof

Existence: For any x € V, write x = }_a;v; uniquely. Define f(x) =
Y a;w;. Linearity is easily checked.

Uniqueness: If g is another such map, then for any x = ) «a;v;, lin-
earity forces g(x) = Y a;g(v;) = Lajw; = f(x).

Note

This theorem implies that two linear maps are equal if and only if
they agree on a basis.

Remark.

The uniqueness of the coordinate representation x = ) a;v; is essen-
tial for the existence proof. It ensures the map f is well-defined: if
a vector x had multiple representations, the formula f(x) = Y a;w;
could yield different results for the same vector, violating the defi-
nition of a function.
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Example 2.7. Constructing the Map. Let T : R3> — R? be defined
by its action on the standard basis:

T(er) =(—1,0), T(ex) =(1,1), T(e3) =(0,1).

For an arbitrary vector x = (xl, X7, x3) = x1e1 + X202 + x3e3, we have:

T(x) = x1T(e1) + x2T(e2) + x3T (e3)
%1(=1,0) + x2(1,1) + x3(0, 1)

(—xl + xp, X0 + X3).

E
Example 2.8. Matrix of Differentiation Operator. Consider the dif-
ferentiation map D : P3 — P,, where P is the space of polynomials
of degree at most k. Let B = (L,¢, t2,t3) be the basis for P3 and
c = (1, t2) be the basis for P,. We compute the image of each
basis vector from B:

D(1)=0=0-1+0-t+0-¢
D(t)=1=1-140-t+0-
D(f*) =2t=0-14+2-t40-f
D() =32 =0-1+0-t+3-

The coordinate columns are [0,0,0]", [1,0,0], [0,2,0]", and
[0,0, B]T. Thus, the matrix is:

Mp =

o © O
S O =
S N O
W o O

E X

Let V and W be spaces with fixed bases By = (v1,...,v,) and By =
(wy,...,wy). Let f : V. — W be a linear map. We decompose the
images of the basis vectors of V into the basis of W:

m
f(v) = Zﬂi]’wi forj=1,...,n
i=1

The m x n matrix My = (a;;) is called the matrix of f relative to these
bases. Specifically, the j-th column of My contains the coordinates of
f(©j).
If x = } xjv; is a vector in V with coordinate column X, and y =
f(x) = Yy;w; has coordinate column Y, then the linearity of f im-
plies:

Y = M¢X.

57
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Theorem 2.3. Isomorphism of Maps and Matrices.

Let V and W be finite-dimensional vector spaces over F with fixed bases.
The map @ : L(V,W) — F"*" given by f — Mjy is a vector space
isomorphism. Consequently,

dim £(V, W) = (dim V) (dim W).

T
Proof
The map is linear: M,r,5, = aMy + BMg because coordinates
satisfy (f + g)(vj) = f(vj) + g(v;). Bijectivity follows from t/ico-

rem 2.2: every matrix defines a unique set of images for the basis of
V, which defines a unique map.
n

Theorem 2.4. Row Rank Equals Column Rank.

For any matrix A € F"™*", the dimension of the column space of A
equals the dimension of the row space of A. This common value is the
number of pivots in the RREF of A.

T
Proof
Let R be the RREF of A. We know that Ax = 0 if and only if
Rx = 0. This implies that the linear dependence relations among

the columns of A are identical to those among the columns of R.
The pivot columns of R are the standard basis vectors ¢y, ..., e,
(truncated to size m) and are clearly linearly independent. Thus,
the corresponding columns of A are linearly independent. Ev-
ery non-pivot column of R is a linear combination of the pivot
columns to its left. Because the dependence relations are the same,
the corresponding columns of A are linear combinations of the
pivot columns of A. Therefore, the pivot columns of A form a basis
for col(A). The size of this basis is the number of pivots, which is
exactly the row rank of A (the number of non-zero rows in R).

|

Proposition 2.3. Consistency of Rank.
Let f € L(V,W) and let My be its matrix representation relative to
any choice of bases. Then

rank f = rank(Mjy).

%
]
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Proof

Fix bases By and By. For any x € V with coordinate column X, the
image f(x) has coordinate column Y = M;X. Thus the coordinate
map ¢ : W — F™ restricts to an isomorphism

¢ Im f — Im(Mj),
where Im(Mjy) denotes the column space of My in F". Hence
dimIm f = dim col(Mjy).

By theorem 2.4, dim col(My) equals the row rank of My (the number
of pivots). Therefore rank f = rank(Mjp).
|

Proposition 2.4. Composition and Matrix Multiplication.

Let U, V, W be vector spaces with bases. Let g: U — Vand f: V —
W be linear maps with matrices Mg and My. Then the composition f o
g: U — W corresponds to the matrix product:

Myoq = MyMs.
Proof
Let x € U with coordinate column X in the chosen basis of U. Then
g(x) has coordinates Y = MX in the basis of V, and the image

f(g(x)) has coordinates Z = MY = M¢(MyX) in the basis of W.
Thus Z = (MM, )X for all X, so the matrix of f o g is MfM,.

[ |
This correspondence allows us to derive properties of maps from
matrices and vice versa.

Theorem 2.5. Rank Inequalities.

Let f: V—+Wandg:U — V. Then:

1. dimIm(fog) < dimIm f.

2. dimIm(fog) < dimImg.

il

Proof

1. Since Im(f o g) C Im f, the dimension inequality is immedjiate.

2. Note thatIm(f o g) = f(Img). By the "Mapping of Spanning
Sets" theorem, applying f to the subspace Im g cannot increase
its dimension. Thus dim f(Img) < dimImg.

[
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2.4 Dimension Theorem

The dimensions of the kernel and image are fundamentally linked by
the dimension of the domain.

Theorem 2.6. Rank-Nullity Theorem.
Let V be a finite-dimensional vector space over the field F,and f : V —
W be a linear map. Then Ker f and Im f are both finite-dimensional,

and
dimKer f +dimIm f = dim V.
i
Proof
Since Ker f is a subspace of V, dimKer f < dimV. Let (e, ..., ¢)
be a basis for Ker f (where k = dimKer f). Extend this to a basis

(e1,..., €k €xs1,---,€n) Of V. Any vector in Im f is of the form

n n n
f (Z “i€i> =Y wif(e) = ), aif(e),
i=1 i=1 i=k+1
since f(¢;) = Ofori < k.Thus,S = {f(exy1),...,f(en)} spans
Im f. To show independence, suppose 3" (1 Ajf(¢;) = 0. Then
f(XAjej) = 0,implying v = Y Aje; € Ker f. Thus v can be written
as a linear combination of the kernel basis: Z?:k A = Zi-{:l Hie;.
Rearranging gives a linear dependence relation among the basis

vectors of V:
n

(—yi)ei + Z /\je]- =0.
i=1 j=k+1

1=

Since the basis of V is independent, all coefficients must be zero,
specifically A; = 0. Thus S is a basis for Im f, and dimIm f =
n—k=dimV — dimKer f.

[ |

Corollary 2.1. Injectivity in Finite Dimensions. If dim V < oo, the fol-
lowing are equivalent for a linear map f : V — W:

1. f is injective.

2. dimV = dimIm f.

s
Proof
By the Rank-Nullity Theorem, dimV =  dimIm f if and only if
dim Ker f = 0, which is equivalent to Ker f = {0}, i.e., injectivity.

u

Corollary 2.2. Dimensional Constraints. Let f : V — W be a linear

map between finite-dimensional spaces with dim V = n and dim W =



m.
1. If n > m, then f is not injective.
2. If n < m, then f is not surjective.

Ham

Proof

1. By Rank-Nullity (theoren 2.6), dimIm f = n — dimKer f. Since
Imf < W,wehaven — dimKerf < m.If f were injective,
Ker f = {0}, implying n < m. Thus n > m forces a non-trivial
kernel.

2. Therankisatmostn. If n < m,thendimImf < n < m =

dim W, so the image cannot be all of W.
[ |

Remark.

If dimV = dim W (e.g., a linear operator f : V — V), then injectiv-
ity implies dimIm f = dimV = dim W, so Im f = W (surjectivity).
Thus, for operators on finite-dimensional spaces, injectivity <=
surjectivity <= bijectivity.

2.5 Isomorphisms

We end this chapter with some proofs for the properties of isomor-
phism. We recall the definition of an isomorphism from the previous
chapter. A linear map T : V — W is an isomorphism if it is bijective.

Proposition 2.5. Linearity of Inverse.
If f : V — W is a bijective linear map, then its set-theoretic inverse
f~1:W — V is also linear.

3

Al

Proof

Letx,y € Wanda € F. Since f is surjective, there exist unique
u,v € Vsuch that f(u) = xand f(v) = y. Thus f~'(x) = u and
f~(y) = v. Using the linearity of f:

flutv)=fu)+fo) =x+y = f'(x+y)=uto=f1x)+f(y).

Similarly, f(au) = af(u) = ax = f'(ax) =au=af 1(x).
n

Proposition 2.6. Isomorphisms Preserve Bases.
Let f : V — W be an isomorphism. If {ey,...,e,} is a basis for V,
then {f(e1),..., f(en)} is a basis for W.

T

3
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Proof

Let B = {f(e1),...,f(en)}. Since f is surjective and {e;} spans V,
the image of the span is the span of the image (t/:corem 2.1), so B’

spans W. For independence, suppose Y A;f(e;) = 0. By linearity,
f(XAje;) = 0. Since f is injective, Ker f = {0} (lenmma 2.1), so
Y_Aje; = 0. The independence of {e;} implies all A; = 0.
|
Consequently, isomorphic finite-dimensional spaces have the same
dimension.
Exercises

1. Verification of Linearity. Determine whether the following maps
are linear:

(@ f:V — V/L, where L <V, defined by f(v) = v+ L (the
canonical projection).

(b) f: P, — P, defined by f(u(t)) = tu'(t) — u(t) for n > 1. Find
Ker f and rank f (for the trivial case n = 0, f(c) = —c has
trivial kernel and rank 1).

(©) fc: My(F) — My(F) defined by fc(X) = C"1XC, where C is
invertible. Verify that fc(XY) = fc(X)fc(Y) (automorphism
property).

2. Geometric Transformations. Find the matrix representation of the

linear map T : R? — R? that reflects vectors across the line y = 2x.

3. Rank-Nullity Practice. Let T : R? — RR? be defined by T(x,y,z) =
(x +y,y+z,z+ x). Find a basis for Ker T and Im T. Verify the
Rank-Nullity Theorem.

4. Injection and Surjection. Let T : V — W.

(a) If T is injective and {vq, ..., v} is linearly independent in V,
! y P
prove that {T(vy1),..., T(vg)} is linearly independent in W.

(b) If T is surjective and {v, ..., v} spans V, prove that {T(v;),...

spans W.
5. Map from Basis. Let V = R Let e, ¢; be the standard basis.
Define T by T(e1) = (2,1) and T(ez) = (1, —1). Find T(3,4).
6. Left/Right Multiplication Matrices (a.k.a. Kronecker product

block form). Identify the space M, (IR) with R* via the coordinate
vector x = [x1,xp,x3,%4] | corresponding to

X X
X=["1 "2,
X3 X4
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Let
A =

ap 4z
as a4 '
Define two linear maps on M (RR):

fi(X) = AX,  fa(X) = XA.

Verify that the matrix representations My, and My, relative to the
standard basis of R* are:

a 0 a 0 ap 4as 0 0

M, — 0 a 0 ar M, — ay a4 0 0
fu as 0 ag 0 ’ fr 0 0 ap das

0 as 0 ay 0 0 ay a4

. Idempotent Maps. A linear map P : V — V is called a projection
if P2 = P.

(a) Prove that V =Im P @ Ker P.

(b) If P is a projection, show that £ — P is also a projection. What
are its image and kernel?

. Rank Inequalities. Let A, B be nn x n matrices. Prove Sylvester’s
Rank Inequality:

rank(A) + rank(B) — n < rank(AB) < min(rank(A), rank(B)).



3
Linear Operator Algebra

We now shift our perspective from the general mapping between
distinct vector spaces to the rich internal structure of maps from a
space to itself. These endomorphisms form an algebraic structure
that allows us to apply the tools of polynomial ring theory to linear
algebra.

The Algebra of Operators

Throughout this chapter, let V be a vector space over a field F. We
abbreviate the space of linear maps £(V, V) as L(V). The elements of
this space are called linear operators or simply operators.

Notation 3.1. Operator Notation We adopt the convention of using cal-
ligraphic Latin letters (A, B,C, . ..) to denote linear operators. Their cor-
responding matrix representations with respect to a fixed basis (e;) will

to (e}), the matrices will be denoted A’, B/, .... We denote the identity
operator by £ (where £x = x for all x) and the corresponding iden-
tity matrix by E = (4;;). The action of an operator .4 on a vector x is

written as Ax, omitting parentheses where no ambiguity arises.
ik

Algebraic Structure

We have previously established that £(V) is a vector space. However,
operators can also be composed. This introduces a multiplicative
structure compatible with vector addition.

Definition 3.1. Algebra over a Field.

A ring K is called an algebra over a field F if K is equipped with a vec-
tor space structure over F such that scalar multiplication is compati-
ble with ring multiplication:

AMxy) = (Ax)y = x(Ay)

be denoted by standard Roman capitals (A, B,C, .. .). If the basis is changed
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forallA € Fand x,y € K. If the multiplication is associative, it is

an associative algebra.

Proposition 3.1. The Operator Algebra.

The set £(V) forms an associative algebra over F with identity £. For
all A,B,C € L(V) and «, B € F, the following hold:

Linearity: a(A+ B) =aA+aBand (« + B)A=aA+ BA.
Associativity: A(BC) = (AB)C.

Distributivity: A(B+C) = AB+ AC and (A + B)C = AC + BC.
Scalar Compatibility: A(AB) = (AA)B = A(AB).

Furthermore, if dim V = n, then dim £(V) = n?.
Proof
The vector space properties (1) follow from the definition of lin-
ear maps. The ring properties (2, 3) follow from the properties of
function composition. For (4), we observe:

(A(AB))x = A(A(Bx)) = A(ABx) = A((AB)x),
which verifies the compatibility.

n

The correspondence between operators and matrices preserves this
algebraic structure. If A and B are operators with matrices A = (a;;)
and B = (b;;) relative to a basis (ex), then the product operator

C = AB corresponds to the matrix product C = AB.

Proof
Let Aey = )} aje; and Be; = Y Dyjex. The action of the composite
operator on a basis vector ¢; is:

(AB)ej = A (Z bk]'ek> =) _ by Aex
k k
=) by <2 ﬂik€i> =) <2aikbkj> ¢
k i i \k

The coefficient of e; is exactly the (i, j)-th entry of the matrix prod-
uct AB.

3.2 Fundamental Examples

We examine several fundamental classes of operators.
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Example 3.1. Zero and Scalar Operators.

1. The zero operator O maps every vector to the zero vector. Its
rank is o.

2. The scalar operator A, is defined by 4)x = Ax for a fixed A € F.
Its matrix in any basis is AE.

el
Example 3.2. Rotation in the Plane. Recall the rotation map from
Chapter 2. While we previously derived its matrix using coordi-
nates, we can now view it algebraically by identifying V = R? with
the complex field C. Identifying R? with C via the basis {1,i}, this
operation corresponds to multiplication by ¢’®. Explicitly, the map
z > €'z yields:

A(1) = cosa +isinw, A(i) =i(cosa+isina) = —sina + icosa.

Thus, relative to the basis (1,7) (identified with standard basis

vectors ey, €7), the matrix is: Im

A _ |cosa — sin oc] if

sina cosa | Al R A
el L .\ Re

Example 3.3. Projections. LetV = U @& W. Every vector x has a !
unique decomposition x = xy + xw withxy € Uxwy € W.
The projection operator P onto U along W is defined by Px = xy. Figure 3.1: Action of the rota-
Since Pxy = xy, applying the operator twice yields the same result: tion operator .4 on the basis
P2 = P. Operators satisfying this idempotence property are charac- elements 1 and i.

teristic of projections.

E Xl

Invertibility

An operator B is the inverse of A if AB = BA = £. If such an
operator exists, it is unique and denoted .A~!. By previous results on
linear maps, A is invertible if and only if Ker A = {0}. For operators
on finite-dimensional spaces, this is equivalent to rank A = dim V, or
having nullity zero.

Example 3.4. The Differentiation Operator. Let P, be the space of
polynomials over F of degree at most n — 1. Let D be the differen-
tial operator defined by D(f) = f’. The kernel of D is the subspace
of constant polynomials, (1), which has dimension 1. The image

of DisP,_1 = (1,t,...,t"72). Note that while the Rank-Nullity




Theorem holds:
dimKerD+dimImD =1+ (n—1) = n = dim P,,

it is not true that P, = KerD & Im D. Indeed, KerD C Im D (since
constants are polynomials of degree 0), so their intersection is non-
trivial. One must not conflate the arithmetic sum of dimensions
with the direct sum of subspaces.

Eid)
Example 3.5. Infinite Dimensional Counterexamples. The equiv-
alence between injectivity and surjectivity fails for infinite-
dimensional spaces. Let P be the space of all real polynomials.
Define the differentiation operator D : P — P by D(f) = f’. Since
D(1) = 0, the kernel is non-trivial (KerD # {0}), so D is not in-
jective. However, every polynomial has an antiderivative, so D is
surjective. Conversely, define the integration operator § : P — P
by (Sf)(t) = fotf(x)dx. If Sf = 0, differentiating yields f = 0,
so S is injective. However, the image of S consists only of polyno-
mials with a zero constant term, so it is not surjective. Observe that
DS = & (Fundamental Theorem of Calculus), so S is a right inverse
of D. However, SD # & since SD(1) = S(0) =0 # 1.

E X

3.3 Polynomials of Operators

The algebraic structure of £(V') allows us to substitute operators into
polynomials. Let f(t) = Y1 a;t' € F[t]. We define the operator f(A)
by:

f(A) = ag A" + ag A" o g, A+ ap€.
Here, A* denotes the k-fold composition of A, with A =¢.

Definition 3.2. Generated Subalgebra.

The set of all polynomials in .4, denoted F[.A], forms a subalgebra of

L(V). It is the smallest subalgebra containing .4 and €£.
Unlike the general algebra £(V), the subalgebra F[A] is commuta-
tive. For any f, g € F[t], we have f(A)g(A) = ¢(A)f(A), which fol-
lows from the fact that powers of A commute (A A! = A+ = Al AR,

The Minimal Polynomial

Since £(V) has finite dimension n?, the powers £, A, A2, ..., A

cannot be linearly independent. There must exist a non-trivial linear

ALGEBRA IV: LINEAR
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combination equal to the zero operator O. Thus, there exists a non-
zero polynomial annihilating A.

Definition 3.3. Minimal Polynomial.
The minimal polynomial of A, denoted y 4(t), is the unique monic poly-
nomial of lowest degree such that y 4(A) = O.

Theorem 3.1. Properties of the Minimal Polynomial.

Let A € £(V)and let pg(t) = t"™ + uyt™ ' + -+ + py, be its mini-

mal polynomial.

1. The set {€, 4,..., A" 1} is linearly independent.

2. dimF[A] = m = deg 4.

3. If f(t) € F[t] annihilates A (i.e., f(A) = O), then p 4(t) divides
£,

4. Ais invertible if and only if the constant term p;; 7 0.

i

Proof

1. Suppose Y./ ;' A; A" = O. This corresponds to a polynomial P(t)
of degree less than m annihilating 4. By the minimality of m,
P(t) must be the zero polynomial.

2. The powers Af fork > m can be reduced to combinations of
lower powers using the relation A" = — Z?:Ol tm_i Al Thus
{&,..., A"1} spans F|A]. With independence established in (1),
it is a basis.

3. Perform Euclidean division: f(f) = q(t)ua(t) + r(t), where
degr < degpu 4 or r = 0. Substituting A:

O = f(A) = g(A)pa(A) +7(A) = g(A)O +r(A) = r(A).

Since r(t) has degree strictly less than m, r(A) = O implies
r(t) =0. Thus py | f.
4. (=) Suppose pm # 0. We have:

A"+ 1A+ € = 0.
Rearranging terms:
A(.Amil 4+ ‘umilg) — _#mg

Dividing by —u,;, we find an explicit inverse:

1
A= _%TMHH + o U E).
m

(<= ) Suppose pm = 0. Then pu4(t) = tq(t) for some polyno-
mial g(t) of degree m — 1. Thus O = Agq(.A). Since degg < m,
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q(A) # O. Therefore, A is a zero divisor in the algebra
L(V), which implies it cannot be invertible. (Specifically, there

exists a non-zero vectory = ¢(A)xsuchthat Ay = 0,so
Ker A # {0}).
u
Remark.

The degree of the minimal polynomial satisfies m <  n? simply
because dim L(V) = n2. However, a much stronger bound, m < n,
holds. This is the content of the Cayley-Hamilton theorem, which

we will explore in subsequent chapters.

3.4 Operators and Change of Basis

We have seen that a linear operator A : V — V can be represented
by a matrix A relative to a chosen basis. Since the choice of basis is
arbitrary, it is crucial to understand how this matrix representation
changes when the basis changes.

Note

Strictly speaking, when defining the matrix of an operator (or vec-
tor), the basis must be an ordered basis. Changing the order of
vectors in the basis permutes the rows and columns of the corre-
sponding matrix. We assume all bases are ordered sequences.

Definition 3.4. Similar Matrices.
Let A and A’ be n x n matrices over F. We say A’ is similar to A, de-
noted A’ ~ A, if there exists an invertible matrix B such that:

A" =B 1AB.

Similarity is an equivalence relation. It is reflexive (A = E~'AE),
symmetric (A’ = B"'AB = A = (B~!)"1A’B~!), and transitive
(A7 ~A"and A’ ~ A = A" ~ A). This partitions the set of n X n
matrices into equivalence classes.

Theorem 3.2. Change of Basis for Operators.

Let A be a linear operator on V. Let A be the matrix of A relative to
a basis B = (ey,...,ey), and let A’ be the matrix of A relative to a ba-
sis B/ = (¢},...,¢),). Then A’ = B~1AB, where B is the transition ma-
trix from B to B’ (i.e., the columns of B are the coordinate vectors of
e; in the basis B). Consequently, two matrices represent the same lin-
ear operator in different bases if and only if they are similar.

T
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Proof

Let X and X’ be the coordinate column vectors of x € V in bases
B and B’ respectively. The coordinate transformation is given by

X = BX'.LetY and Y’ be the coordinates of Ax in the respective
bases. The operator action is represented by matrix multiplication:
Y =AXand Y/ = A’X’. Since Y = BY’, we have:

BY' =Y = AX = A(BX') = (AB)X.

Multiplying by B! gives Y/ = (B~'AB)X'. Since this holds for all
X', we must have A’ = B~ 1AB.

|
Example 3.6. Numerical Coordinate Change. Consider V. = R
Let x = (e, 7,0). Relative to the standard basis By = (ey, ez, ¢3), the

coordinate vector is simply [x]z, = [e,71,0] ". Now consider the ba-
sis By = (uq,up,u3) where u; = (1,1,0), u; = (1,—1,0), and uz =
(0,0,1). We wish to find coordinates aq, a5, a3 such that x = aquq +

apup + azuz. Writing this out:

(e, ,0) = a1(1,1,0) +a2(1,—1,0) +a3(0,0,1) = (a1 +ap, 01 — 2, a3).

Solving the system yields a3 = 0,207 = e+ ,and 2ap = e — 7.
Thus, the coordinate vector relative to B, is [x]5, = [¢5%, 5%,0] .
#o )

Example 3.7. Powers of Matrices. Similarity is a powerful tool for
computation. If A’ = B"'AB, then

(AF = (B'AB)* =B 'A(BB™')A...AB =B 'A*B.

Ideally, we seek a basis where the matrix A’ is diagonal, say A’ =
diag(A1, ..., An). Then (A")k = diag(A%, ..., AK), making the com-
putation of A¥ = B(A’)¥B~! trivial. This naturally extends to poly-
nomials: if f(t) € F[t], then f(A) = Bf(A’)B~ .

.49

Invariants: Determinant and Trace

Since similar matrices represent the same underlying operator, prop-
erties shared by all matrices in a similarity class can be attributed to
the operator itself.

Definition 3.5. Determinant and Trace of an Operator.
Let A be a linear operator on a finite-dimensional space V. Let A be
the matrix of A in any basis.
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1. The determinant of A is det A = det A. (We assume familiarity with
the matrix determinant and its property det(XY) = detXdetY;
a coordinate-free treatment will be provided in a later chapter).

2. The traceof AistrA=trA=Y",a.

A
S8

Proposition 3.2. Well-Definedness.
The determinant and trace are independent of the choice of basis.

Proof
For the determinant, let A’ = B~ !AB. Using the multiplicative
property:

det A’ = det(B~'AB) = det(B~!) det(A) det(B) = det(A) det(B~!B) = det A.
For the trace, we use the cyclic property tr(XY) = tr(YX).
tr(B~1AB) = tr(B"}(AB)) = tr((AB)B™!) = tr(ABB™!) = tr A.

These invariants carry structural information. For instance, A is
invertible if and only if det A # 0. The trace is a linear functional on
L(V):

tr(a A+ BB) =atr A+ ftrB.

Nilpotent Operators and Commutators

A special class of operators plays a significant role in the structure
theory of linear maps.

Definition 3.6. Nilpotent Operator.

A linear operator A is called nilpotent if there exists a positive inte-
ger m such that A" = O. The smallest such m is called the nilpotency
index.

For a nilpotent operator of index m, the minimal polynomial is
uA(t) = t". Examples include the differentiation operator D on
P, (where D" = ) and strictly upper triangular matrices.

Lie Algebras

The algebra £(V) is associative. However, we can define a new non-
associative product that captures the "failure" of commutativity.
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Definition 3.7. Commutator.
The commutator of two operators A, B is defined as:

[A,B] = AB — BA.

&
Equipped with this operation, £(V) becomes a Lie algebra, denoted
gl(V) or gl,,(F). The bracket satisfies:

Antisymmetry: [A,B] = —[B, A] (which implies [A, A] = 0).

Jacobi Identity: [[A,B],C]+[[B,C], Al +[[C,A],B] = O.

Example 3.8. The Heisenberg Relation. In quantum mechanics, the
position operator X (multiplication by x) and momentum opera-
tor P (differentiation) satisfy the canonical commutation relation
[P,X] = £&E.LetV = FJt]. Let D; be differentiation and F; be
multiplication by ¢. Then:

[De, Felf(t) = De(tf (1)) — tDef(£) = (f(£) + £ (1)) — tf'(t) = f(1).
Thus [Dt,ft] =¢.
1)

Proposition 3.3. Trace Obstruction.

If F has characteristic o (e.g., R or C), there exist no operators A, B on
a finite-dimensional space V such that [4, B] = £.

Proof

Suppose such operators exist. Taking the trace of both sides:
tr[A, B] = tr(AB — BA) = tr(AB) — tr(BA) = 0.

However, tr(£) = dimV = n. Since F has characteristic o, n # 0, a
contradiction.

[ |
Remark.

This result fails in characteristic p if p divides n. For example, if
n = p, the matrices

01 0 --- 0 00 0 0
00 1 0 10 0 0
Jp=1{ t o i, Np=|0 20 0
00 0 --- 1 . . .
00 0 --- 0 00 -~ p—10

satisfy [J,, Ny] = Ep, as tr(E,) = p =0 (mod p).
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3.6 Exercises

1.

Kernel and Image Equality. Let V be a finite-dimensional vector
space and T € L(V) such that Ker 7 =Im 7.

(a) Prove that dim V must be even.
(b) Construct an example of such an operator on R?.
(c) Show that such an operator satisfies T? = 0.

One-Sided Inverses. Let V be the space of all polynomials. Let D
and S be the differentiation and integration operators defined in
the text.

(a) Verify explicitly that D is surjective.
(b) Verify explicitly that S is not surjective.

Trace Obstruction Matrices. Verify that the matrices J, and N,
introduced in the "Trace Obstruction" remark are indeed nilpotent
of order p. Specifically, show that ]5 = Nﬁ =0.

Cyclic Property of Trace. Prove that if A, B, C are matrices of size

nxp,pxq,and g x n respectively, then:

tr(ABC) = tr(BCA) = tr(CAB).

Finite Field Automorphisms. Interpret GL,(IF,) as the group of
automorphisms of an n-dimensional vector space V over the finite
field IF,.

(a) Show that determining an automorphism is equivalent to
choosing a basis for V.

(b) Count the number of possible bases to find the order |GL,(Fy)|.
The Special Linear Algebra. Let sl,(F) = {4 € L(V) | tr A =0}.
(a) Prove that sl,(F) is a subspace of £(V) of codimension 1.

(b) Prove that it is a subalgebra of the Lie algebra gl,,(F) (i.e.,
closed under the commutator bracket).

Rank Intersection Formula. Prove that for any linear operators

.A, BonV: Consider the restriction of B to the
subspace Im A.

dim(Im .A N Ker B) = rank A — rank BA.

Frobenius Inequality. Use the previous exercise to prove that for
any operators A, B,C on V:

rank BA + rank AC < rank A + rank BAC.

Iterated Kernels. Prove that for any linear operator A and integer
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i>1
dim(Im A"~! N Ker A) = dim Ker A’ — dim Ker A" L.
10. Field Extension and Similarity. Prove that if two real matrices Write P = X + iY and consider the
A,B € M,(R) are similar over C (i.e., P"!AP = B for some polynomial det(X + £Y).

P € M,(C)), then they are similar over R.

11. Minimal Polynomial of a Vector. Let ji4(f) be the minimal poly-
nomial of A. For a vector v € V, let ji 4 ,(t) be the monic polyno-
mial of lowest degree such that y 4 ,(A)v = 0.

(a) Prove that p 4, (f) divides p 4(t) for any v.

(b) Prove that for any u,v € V, j4,45(t) is the least common
multiple of y 4, (t) and p 4 ,(t), provided the latter two are
coprime.

(c) Conclude that there exists a vector a € V such that pi4,(t) =
u4(f). (This vector is often called a cyclic vector if the degree
is n).

12. Trace Zero and Main Diagonal. Let F be a field of characteristic
zero. Prove that if tr(A) = 0, then A is similar to a matrix with all
zeros on the main diagonal. Proceed by induction:

(@) Show that if A is not a scalar multiple of the identity and
tr(A) = 0, there exists a vector x such that x and Ax are
linearly independent.

(b) Use x as the first basis vector to show A is similar to a block

. *
matrix Al

(c) Apply the induction hypothesis to A’.
(d) Explain why the characteristic zero assumption is necessary.

13. Direct Sum Projections. Let V = V; & V, and W = W; & W, with
W; C V. Let P, be the projection onto V, along Vj. Prove:

(@ Vi =W+ (UNV;y)and Vo = W +Po(U), then V = W+ U.
(b) If V=W + U and P,(U) N W, = {0}, then the decomposition
in (a) holds.

14. The Center of the Algebra. The center of an algebra is the set of
elements that commute with all other elements. Prove that the
center of £(V) consists exactly of the scalar operators {A£ | A €

F}.



4
Dual Spaces

We have previously studied linear maps between arbitrary vector
spaces. We now focus on the case where the codomain is the under-
lying field itself. This special class of maps reveals a deep symmetry
inherent in vector spaces.

Definition 4.1. Linear Functional.
Let V be a vector space over a field F. Amap f : V — Fiscalled a
linear functional (or linear form) if it satisfies:

flax+ By) =af(x)+Bf(y) foralla,p€ Fand x,y € V.

Let (e1,...,e) be a basis for V. Any vector x € V can be uniquely
expressed as x = } ' ; Aje;. Applying a linear functional f to x yields:

fx) = f (p) - émf(ei).

Let B; = f(e;). These scalars are determined solely by the func-
tional f and the choice of basis. Conversely, for any choice of scalars
B1,...,Bn € F, there exists a unique linear functional f such that
f(e;) = Bi. Thus, relative to a fixed basis, a linear functional is com-
pletely determined by the n-tuple (B1,...,Bn).

Change of Basis

While the definition of a linear functional is independent of the ba-
sis, its coordinate representation depends on it. It is instructive to
see how the coefficients B; transform under a change of basis. Let
(e1,...,en) and (¢, ..., e),) be two bases of V related by the transfor-
mation:
n
e;' = Zai]-ei, i=1,...,n
i=1
Let f be a linear functional. We define its coefficients with respect
to the two bases as p; = f(e;) and p; = f(¢}). Substituting the



76 GUDFIT

expression for e;:

Bi=fle) =f <iai]‘ei>
= é“ijf(ei)
= Z:aijﬁi-
i=1

In coordinate form, covector coefficients satisfy g’ = A' B, whereas
vector coordinates satisfy A’ = A~!A. Covectors thus transform with
AT (covariantly), contrasting with vectors, which transform with A~!
(contravariantly).

Remark.

This distinction leads to the terminology used in tensor calculus.
Elements of V are often called contravariant vectors (indices up-
stairs) because their components transform inversely to the basis
change. Elements of the dual space (linear functionals) are called
covariant vectors or covectors (indices downstairs) because their
components transform consistently with the basis change. In the
language of tensors, a vector is a type (0,1) tensor, and a linear
functional is a type (1,0) tensor.

Example 4.1. Standard Functionals.

- Coordinate Space: For V' = RR”, any linear functional f takes the
form f(x) = Y.I',a;x; for fixed scalars a;. This can be written as
the dot product f(x) = a'x or matrix multiplication [a]x.

- Trace: On the space M, (R) of square matrices, the trace map
tr(A) = Y A;; is a linear functional.

- Integration: On the space C[0, 1] of continuous functions, the
definite integral 1(g) = fol g(#) dt is a linear functional.

- Evaluation: On a function space such as Py, the map E;(p) = p(t)
for a fixed t € R is a linear functional.

$o.451

4.1 The Dual Space

The set of all linear functionals on V can be equipped with vector
space operations.

Definition 4.2. Dual Space.
The set of all linear functionals on V, denoted by V* (or sometimes V'),
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forms a vector space over F with the operations:

(af +Bg)(x) = af(x) + g (x).

This space is called the dual space of V.
Since a linear functional is determined by its values on a basis of
V, there is a natural bijection between V* and the coordinate space
F". Specifically, fixing a basis (eq,...,ey) of V, themap 6 : f —
(f(e1),..., f(en)) is an isomorphism. Consequently:

dimV* =dimV = n.
We can construct a specific basis for V* associated with a given basis
of V.

Theorem 4.1. The Dual Basis.
Let (e, ...,ex) be a basis of an n-dimensional vector space V. Define
the linear functionals ¢!, ...,e" € V* by their action on the basis vec-

tors:
- 1 iti=j,
e'(ej) = dij = !
0 ifi#j.
Then (e!,...,e") forms a basis for V*, called the dual basis to (¢;).
i
Proof
Since dim V* = n, it suffices to show that {e!,...,¢"} is linearly

independent. Consider a linear combination equal to the zero func-
tional:

Applying this functional to the basis vector ¢, € V:

i=1 i=1

(i)‘iei> (ex) = i)\iei(ek) = i/\iéik = A
i=1 .

Since the functional is zero, it must evaluate to zero on all vectors.
Thus Ay = Oforallk = 1,...,n. Hence the set is linearly indepen-

dent and forms a basis.
[ |

Example 4.2. Lagrange Interpolation. Consider V = Py(R),
the space of polynomials of degree at most n (dimensionn + 1).
Let £y, ..., t; be distinct real numbers. The evaluation func-

tionals L;(p) =  p(t;) form a basis for V*. The basis of V dual
to {Lo,...,Lu} consists of the polynomials y, ..., I, such that

Li(l;) = ¢;j. Explicitly, [;(t;) = 6;;. These are precisely the Lagrange
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interpolating polynomials:

t—ty

L =11

kA i~ tk

This establishes that any polynomial p can be reconstructed from
its samples: p = Y. p(t;)1;.

$o.451

Example 4.3. Calculating the Dual Basis. Let V = > with basis

up = (1,0,-1)T,u, = (1,1,1)T,anduz = (2,2,0)". To find

the dual basis f1, f2, f3, we express each functional as f;(x) = c¢/x

for some coefficient vector ¢;. The condition f;(u;) = J;; becomes
Tu: =6

¢; uj = dj.

Arranging the basis vectors as columns of a matrix U = [u; |

uy | uz] and the coefficient vectors as rows of a matrix C, we require

CU=1 ThusC=U""1

1 -1 0
C= 1 -1 1
-05 1 =05

The rows of C give the functionals:

1

1
hl)=x1=x, fp)=x-x+tx, f3(x)=-3x+x-x

o451

Canonical Pairing

The relationship between V and V* is symmetric. We introduce the
notation (f, x) to denote the evaluation f(x). This defines a map
V*xV = F:

(f,x) = f(x).

This map is bilinear, meaning it is linear in both arguments:
(af +Bg x) = a(f, x) + (g, %),
(f ax +By) = a(f,x) + B(f.y)-

Such a pairing is called canonical because it depends only on the
definition of the spaces, not on a choice of basis.
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Using dual bases, we can express the pairing in terms of coordinates.
Let x =) aje; and f = Zﬁiei. Then:

n

n oon non
(f,x) =Y Bj (61, Z“i&‘) =Y ) Bjidii =) aiPy-
j=1 i=1 j=li=1 k=1
Furthermore, the coordinates themselves can be recovered via the
pairing:

ap = (¢,x) and B = (f,er).

Example 4.4. Polynomials and Derivatives. LetV = P, be the
space of polynomials over IR of degree less than n, with basis
(1,t,...,t""1). For any A € R, the evaluation map f) : ¢ — ¢(A) is
a linear functional. However, a more convenient basis for V* relates
to derivatives. Define ek € V* by:

For the basis vector ej = t/, we have:

dkﬂ k! ifj=k,

a0 if j £ k.

Thus ek(tf) = 5ka o) (eO, . ..,e"’l) is the dual basis to (1,¢,. ..,t”’l).
Generally, expanding ¢ in this basis corresponds to the Maclau-

rin series coefficients. If we instead use the basis (1, — A,..., (¢ —
A)*=1), the dual basis consists of functionals ¢+~  ¢*)(A)/k!,
corresponding to Taylor expansion at A.

E X

The Double Dual and Reflexivity

Since V* is a vector space, we can consider ifs dual space, V** =
(V*)*, called the double dual or bidual. Elements of V** are linear
functionals on V*. While V* is isomorphic to V (as they have the
same dimension), constructing such an isomorphism requires choos-
ing a basis. Remarkably, there exists a nafural isomorphism between
V and V** that requires no basis choice.

Theorem 4.2. Reflexivity.
Define the map ¢ : V — V** by ¢(x) = &, where ey actson f € V*

by:
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Then ¢ is a linear isomorphism.

&
Proof
First, we verify linearity. For x,y € V and a,f € F, and for any f €
v

Eax+py(f) = flax+ By)
=af(x)+ Bf(y) (linearity of f)
= aex(f) + Pey(f)
= (aex + Bey) (f)-

Thus €4+ gy = aex + Bey.
To prove bijectivity, let (e;) be a basis for V and (e') be the dual
basis for V*. We evaluate €e; on the basis vectors of V*:

e, (¢) = €'(ej) = &

The functionals (e, ..., ¢, ) in V** satisfy the condition of being
the dual basis to (el, ...,e"). By theorem 4.1, they form a basis for
V**. Since € maps a basis of V to a basis of V**, it is an isomor-
phism.

Definition 4.3. Reflexive Space.

A vector space V is called reflexive if the natural mape : V. — V**
is an isomorphism.

Note

theorem 4.1 implies that all finite-dimensional vector spaces are
reflexive. This property allows us to treat V and V** as identical.
The equation x(f) =  f(x) becomes an identity, reinforcing the
symmetry of the pairing (f, x).

Anmnihilators and Linear Independence

The dual space provides powerful tools for characterizing linear
independence and subspaces. We can associate a set of vectors in V
with a determinant of values of functionals.

Definition 4.4. Annihilator.
Let S be a subset of V. The annihilator of S, denoted S°, is the set of
linear functionals in V* that vanish on S:

S°={feV"|f(x)=0forall x € S}.
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It is immediate that S° is a subspace of V*.

Theorem 4.3. Dimension of the Annihilator.
Let V be finite-dimensional and W be a subspace of V. Then:
dim W + dim W° = dim V.
g

Proof

Let (eq,...,e) be a basis for W. Extend this to a basis (ey,...,e,)
for V. Let (e!,...,e") be the corresponding dual basis for V*. We
claim that (e*+1,.
any w = Zile wje; € W, we have e/ (w) = Zile ;0 = 0. Thus
e/ € We°.Conversely,let f = Y, Bl € W° Foranyj < k
wehave 0 = f(¢j) = pBj.Thusf = Y} .. pie. Thisshows
K

..,e") is a basis for W°. First, forany j > kand

We° = span( ..,e"). Since these are basis elements, they are
independent, so dimW° =n —k = dim V — dim W.

Definition 4.5. Hyperspace.
A subspace of V with codimension 1 (dimension n — 1) is called a hy-
perspace (or hyperplane).

Corollary g4.1. Kernels and Hyperspaces. The kernel of any non-zero lin-
ear functional f € V* is a hyperspace. Conversely, every hyperspace
is the kernel of some non-zero linear functional.

T
Proof

Iff # O0thenlmf = F (dimension 1). By Rank-Nullity (t/e0-
rem 2.6), dimKer f = dimV — 1. Conversely, if W is a hyperspace,
dimW° = dimV — (n — 1) = 1. Let f be a non-zero element of W°.
Then W C Ker f. Since dimensions match, W = Ker f.

]

Theorem 4.4. Dual Basis Independence Criterion.

Let (f1,..., fx) be a basis of V*. A set of vectors {ay,...,a,} in V is lin-

early independent if and only if the matrix M = (f;(a;)) is invertible.
i

Proof

Define the linear map ® : V — F" by evaluating the basis function-
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als on a vector:
fi(v)
@(v)=|

fn(0)

We first show that @ is an isomorphism.

Injectivity: Suppose ®(v) = 0. Then fi(v) = Oforalli =
1,...,n. Since {f;} is a basis for V*, any functional ¢ € V* can be
expressed as § = Y c;f;. Thus g(v) = Y. ¢;fi(v) = 0. Since g(v) =
0 for all g € V*, we must have v = 0. Thus Ker® = {0}, so @ is
injective.

Surjectivity: Since dimV = n and dimF" = n, an injective linear
map between them is automatically an isomorphism.

Observe that the j-th column of the matrix M is exactly the coordi-
nate vector ®(a;). Thus M = [®(ay) | --- | ®(ay)]. The vectors {a;}
are linearly independent in V' if and only if their images {®(a;) }
are linearly independent in F" (as ® is an isomorphism). By the
Invertible Matrix Theorem (t/icoremn 0.5), the columns of a square

matrix M are linearly independent if and only if M is invertible.
[ |

These results lead to a general rank criterion.

Theorem 4.5. Rank via Duality.
Let (f1,..., fx) be a basis of V*. For any set of vectors {ay,...,a;} C
V, the rank of the set of vectors is equal to the rank of the n x k ma-

trix M = (fi(a;))-

A
Proof
Letd : V —  F"Dbe the isomorphism defined in theorem 4.4.
The rank of the set {ay,...,a;} is the dimension of their span
U = (ay,...,a,). Since ® is an isomorphism, it preserves dimen-

sions of subspaces:
dim(ay, ..., a) = dim(®(ay),..., P(ag)).

The vectors ®(a;) are exactly the columns of the matrix M. The
dimension of the span of these columns is the column rank of M,
which is simply the rank of M.
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Geometric Interpretation of Homogeneous Systems

We can reinterpret homogeneous linear systems using dual spaces. A
system of m linear equations in n# unknowns can be written abstractly
as:

filx) =0, ..., fm(x)=0,

where x € V and f; € V*. The solution set is the subspace U =
", Ker f;.

Theorem 4.6. Annihilators and Solution Spaces.
Let S ={f1,..., fm} C V* be a set of functionals with rank r.
1. The subspace U = {x € V| fij(x) =0 Vi} has dimension n —r.
2. Every subspace U C V of dimension k is the solution set of a sys-
tem of n — k independent linear equations.
L
Proof
1. Assume without loss of generality that fi, ..., f, are lin-
early independent. They can be extended to a basis
(fi,-- s frofre1s- -, fu) of V*. Let (eq, ..., e,) be the dual ba-
sis in V. The condition fj(x) = Ofori = 1,...,r implies that
the first r coordinates of x in the basis (e;) must be zero. Thus
X = Z;’:r 11 Ajej. The vectors ey11, ..., e, are linearly independent
and span U. Hence dimU =n —r.
2. Let U be a subspace with basis (ey, ..., e;). Extend this to a basis
(e1,...,en) of V. Let (f1,..., fu) be the dual basis of V*. A vector
x = Y Ajejliesin U ifand only if Ay, = -+ = A, = 0. Since
Aj = fi(x), this is equivalent to the system:

fivr(x) =0, ..., fa(x)=0.

These are n — k linearly independent equations.

4.2 The Transpose Map

The dual space construction allows us to define the "dual" of a lin-
ear map. This is the abstract operator-theoretic origin of the matrix
transpose.

Definition 4.6. Transpose Operator.
Let T : V — W be a linear map. The transpose of T is the map T :
W* — V* defined by pre-composition:

(TTg)(v) = g(Tv) forallgc W*,ve V.
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Thatis, T g =goT.
It is straightforward to verify that T is a linear map. If ¢,h € W*,
then (TT (g +1))(v) = (g +h)(Tv) = g(To) + h(Tv) = (T'g)(v) +
(TTh)(0).

Theorem 4.7. Matrix of the Transpose.
Let V, W De finite-dimensional with bases B, C respectively, and let B*,C*
be their dual bases. If A is the matrix of T relative to B, C, then the ma-
trix of TT relative to C*, B* is the matrix transpose AT.

3L

Proof

Let B = (vj)andC = (w;). The matrix entries A;; are defined by
Tv; = Y Ajw;. Let B* = (v/) and C* = (w'). We compute the co-
ordinates of T Twk:

(Tka) (’U]) = wk(Tv]) = wk (ZAUZU1> = ZAij(Ski = Ak]

Thus TTw* = )W Akjvj . The coefficient of v/ is Ayj, which is the
(j,k) entry of AT.
|

Theorem 4.8. Annihilator Relations and Rank.
Let T: V — W be linear.
1. Ker(T") = (ImT)°.
2. Im(T") = (Ker T)°.
3. rank(T) = rank(T").

i

Proof

1. g €Ker(T") <= Tlg=0 <= ¢(To) =0¥0 € V <+
¢ImT)=0 < g€ (ImT)°.

2. We use the double annihilator property. Im(T ") is a subspace of
V.

(ImT")° ={oeV|(T'g)(v)=0Vge W} ={veV|g(Tv)=0Ygc W}

The only vector annihilated by all functionals is the zero vector,
so To = 0, meaning v € KerT. Thus (ImT")° = Ker T. Taking
annihilators again yields In T™ = (Ker T)°.

3. rank(T') = dimIm(T") = dim(KerT)° = dimV — dimKer T.
By Rank-Nullity (//icoren 2.6), this equals rank(T).
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Remark.

The equality rank(T) = rank(T ") provides a conceptual proof that
the row rank of a matrix equals its column rank (tieoremn 2.4). The
column rank of A is rank(T), and the row rank of A is the column
rank of AT, which is rank(TT).

4.3 Multilinear Maps

The concept of a linear functional, which maps a single vector to
a scalar, can be generalised to functions accepting multiple vector
arguments.

Definition 4.7. Multilinear Map.
Let Vi,...,V, and U be vector spaces over a field F. A map

f:leV2x~--><Vp—>U

is called p-linear (or multilinear) if it is linear in each argument inde-
pendently. That is, for any fixed index i and fixed vectors a; € V; (for
j # i), the induced map

v fay,...,a-1,V,ai41,...,ap)
is a linear map from V; to U. Explicitly:

flooax+By,...)=af(...,x,...)+Bf(...,y,...).

The set of all such maps is denoted L(V4, ..., V,; U).

It is routine to verify that the sum of two p-linear maps and the scalar
multiple of a p-linear map remain p-linear. Thus, £(V;,..., Vi, u)
forms a vector space.

Multilinear Forms

A particularly important case arises when the codomain is the un-
derlying field itself, ie, V; = --- =V, = U = F. Such amap is
called a multilinear form on V; x --- x V). The simplest example is
the product map f(vy,...,vp) = v1---vp on FP. More generally, let
I e V* be linear functionals on V;. We can construct a multilinear
form by taking the product of their evaluations:

f1,. - 0p) = o0 P(02) - 1P (o).

This specific form is called the tensor product of the functionals and
is denoted by I' ® 2@ - - - ® IP.
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Note

We define the tensor product here concretely as a multilinear map.
This is a specific instance of the general tensor product of vector
spaces.

When all domains are identical, say V; = V, we denote the space of
multilinear forms as £,(V, F). In the language of tensors, elements of
this space are tensors of type (p,0), also known as covariant tensors
of order p.

Definition 4.8. Symmetry and Alternation.

Let S, denote the set of all permutations of {1,...,p}, known as the

symmetric group. For 7 € S, let sgn(7r) be the sign of the permu-

tation (+1 if even, —1 if odd). A multilinear form f € £,(V, F) is called:

Symmetric if its value remains unchanged under any permutation of
its arguments:

fOr) - On(p)) = f(v1,...,0p) forall €Sy

Skew-symmetric (or alternating) if swapping arguments introduces
a sign determined by the parity of the permutation:

f@r@), -1 Vn(p) = sgn(m)f(o1,...,vp).

Example 4.5. Determinant as a Form. The determinant of a square
matrix, when viewed as a function of its n column vectors, is the
prototypical example of an alternating n-linear form on F”.

$o.451

4.4 Bilinear Forms

We now restrict our attention to the case p =2 with V; =V, = V.

Definition 4.9. Bilinear Form.
A bilinear form on a vector space Visamap f : V x V — F thatis
linear in both arguments. For all u,v,w € V and &, € F:

flau+ Bo,w) = af(u,w)+ Bf (v, w),
f(w, 0+ Bo) = af (w, 1) + Bf (w,0).

Note
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In general, bilinear forms need not be commutative; that is, f(u,v)
is not necessarily equal to f (v, u).

Matrix Representation

Let (eq,...,ex) be a basis for V. Any two vectors x,y € V can be
expanded in coordinates as x = } x;e; and y = } yje;. Using the
bilinearity of f:

n

n
i€, Z%’%‘)
i=1

i=1 j=

n n
Z%vaZ%ﬁ>
i=1 =1

= i f xiy;f(ei ef).

i=1j=1

ﬂ%w=f<

The n? scalars fij = f(ei,ej) completely determine the form. We
arrange these scalars into a matrix F = (f;;). Let X and Y be the col-
umn vectors of coordinates for x and y respectively. The expression
above can be written using matrix multiplication:

flx,y) = infij]/j =X'FY.
i

Proposition 4.1. Isomorphism with Matrices.
Fixing a basis for V, there is a bijective linear correspondence between
the space of bilinear forms £,(V, F) and the space of matrices M, (F).

Proof
The map f +— F = (f(e; ¢j)) is clearly linear. Conversely, given any
matrix M, the function g(x,y) = X' MY defines a bilinear form.

Since the scalars f(e;, ¢;) are uniquely determined, this correspon-

dence is an isomorphism.
|

Change of Basis and Congruence

The matrix representing a bilinear form depends on the choice of
basis. We determine the transformation law for this matrix. Let
(e1,...,en) be a basis for V and let (¢}, ..., e),) be a new basis defined
by the transition matrix A = (a;;), such that:

n

e;- = Z al-]-ei.

i=1
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Let X and X’ be the coordinate columns of a vector x in the old and
new bases, respectively. The relationship between coordinates is
given by X = AX'. Let F be the matrix of the form f in the basis (e;),
and let F’ be the matrix in the basis (¢}). We must have:

f(x,y) = X"FYy = (X')TFY

Substituting the coordinate transformation X = AX' and Y = AY’
into the left-hand side:

XTFY = (AX)TF(AY") = (X)TATFAY'.

Comparing this with (X’) T F'Y’, and noting that this holds for all
X',Y', we deduce the relationship between F and F'.

Theorem 4.9. Transformation of Bilinear Forms. prcpn 254
Let F be the matrix of a bilinear form relative to a basis B, and let A
be the transition matrix from B to a new basis 13’. The matrix of the form
relative to B’ is:
F' = ATFA.
7
PI‘OOf Change of basis for bilinear
. . . . f ds to matri
Let X, Y’ be coordinate columns of x,y in the new basis B’. Coordi- Ocrcr)rrl\;z;ecs ep ;fl :s 2\? ; Ar.lx

nates in the old basis satisfy X = AX’ and Y = AY’. Evaluating f in
the old coordinates gives Figure 4.1: Commutative dia-
gram illustrating the coordinate
flx,y) = X"FY = (AX")TF(AY') = (X')TATFAY'. change.
By definition, f(x,y) = (X’)"F'Y’ in the new basis. Equality for all
X',Y" forces F' = ATFA.

|

Definition 4.10. Congruence.
Two square matrices A and B are called congruent if there exists an in-
vertible matrix P such that B = P" AP.

This transformation differs significantly from the similarity transfor-
mation B = P~' AP used for linear operators.
Rank of a Bilinear Form

Since congruent matrices are related by multiplication with invertible
matrices, their ranks are identical.
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Corollary 4.2. Invariance of Rank. The rank of the matrix representing
a bilinear form is independent of the basis. We define the rank of the
form f to be the rank of any of its matrix representations.

e
Proof

If F/ and F are matrices of the same form in two bases, the transfor-
mation result above gives F/ = ATFA with A invertible. Multiply-
ing by invertible matrices on the left or right does not change rank,
so rank F/ = rank F.

|

We can characterise the rank intrinsically without reference to matri-
ces using the concept of the radical.

Definition 4.11. Left Radical.
The left radical (or left kernel) of a bilinear form f is the set:

Ly={xeV|f(x,y)=0foralye V}.

T &
It is straightforward to verify that L is a subspace of V.
Proposition 4.2. Rank-Nullity for Bilinear Forms.
For a bilinear form f on an n-dimensional space V:
rank f =n —dimLy.
Proof
Fix a basis (ey,...,ex). A vector x belongs to L ¢ if and only if
f(x, ej) = Oforallj = 1,...,n Foreach j, define the linear
functional f;(x) = f(x,¢;). The conditionx € Ly is equivalent

tox € ﬂ;-;l Ker f] The coordinates of the functional f] in the dual
basis correspond to the j-th row of the matrix F = (f(e;, ¢;)). Specif-
ically, fi(e;) = f(ei,ej)) = fij- LetS = span(f1,...,fu) € V*. The
dimension of S is the row rank of F, which equals rank f. By the
theory of annihilators (specifically t/coren 2.6), the dimension of the
solution space to fj(x) = 0 (whichis Ly)isdimV — dimS. Thus,
dimL; =n —rank f.

[ |

4.5 Anmnihilator Consequences

The following corollaries are immediate from t/icorem 4.3.
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Corollary 4.3. Hyperplane Intersection. If dimV =n and dim W =k,
then W = ﬂ?;lk Ker f; for suitable non-zero functionals f;. Each Ker f;
is a hyperplane.

e
Proof
Let (fx41,-- ., fn) be the dual functionals corresponding to a basis
extension as in theorem 4.3. Then W = {x | fi(x) = Ofori =
k+1,...,n}.
[ ]

Corollary 4.4. Equality via Annihilators. For subspaces Wi, W, < V,
Wi = W, if and only if W} = W5.

e
Proof
The forward implication is immediate. For the converse, dimW; =
dimV — dimW; = dimV —dimW; = dimW,. AlsoW; C

(Wp)° = (W3)° (see theorem 4.10 below), so Wy € W, and the di-
mensions force equality.
|

Example 4.6. Three Functionals in R*. Let fi(x) = x1+x—x3+
x4, fo(x) = x1 — 2xp, f3(x) = 3xp + 2x4. The annihilated subspace
W = {x | filx) = 0,i = 1,2,3} has basis {(—4,2,3,3)"}, so
dimW =1 and W° = span(fy, f2, f3).

.49

Example 4.7. Annihilator in R%. Let W =
span{(1,1,-1,-1,1),(1,1,-1,-1,-1),(1,1,0,0,0),(0,0,0,0,2) }.

Row reduction gives dimW = 3. Functionals in W*° have coordi-
nates (—a, a0, — B, B,0), so W° = span{x — xp — x1, X — x4 — X3}.
E

Theorem 4.10. Double Annihilator.
For any subset S C V, 5°° = span(S). In particular, if W < V then
Wee = W.

T
Proof
The inclusion span(S) C S°° holds because every f € S° vanishes
on S, hence on its span. For finite-dimensional V, theorem 4.3 ap-
plied to W = span(S) gives dim W°® = dim W, so equality follows.

|

The isomorphism V — V** given by x +— &, (see Reflexivity above)
yields the following.
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Corollary 4.5. Representation of V**. Every L € V** equals ¢, for a unique

xeV.
e

Corollary 4.6. Realising a Dual Basis. Given any basis (fi,..., fn) of V¥,
there exists a unique basis (u1, ..., un) of V such that fi(u;) = J;;.

e
Proof
Let (¢1,...,¢,) be the dual basis of (f;) in V**. By reflexivity there
are unique u; € V with ey, = {;. Then f;(u;) = ey (fi) = {;(fi) = i,
and the u; are independent since the /; form a basis.

|
Definition 4.12. Right Radical.
The right radical of f is
Re={yeV|f(x,y)=0forall x € V}.
Remark.
If f is symmetric (or alternating with a sign flip), then Ly = Ry

For a general bilinear form they may differ, so both radicals are

relevant.

4.6 Exercises

1. Trace Functional Representation. Let V = M, (R). It is known
thattr : V — R is a linear functional. Prove that any linear
functional f € V* can be uniquely represented as f(X) = tr(AX)
for some fixed matrix A € M, (R).

2. Functionals on Polynomials. Let P, be the space of real polyno-
mials of degree < n. Let a(t) be a fixed polynomial. Determine
which of the following maps f : P, — R are linear functionals:

@ f(u) :fola Hu(t) dt
(b) f(u) = fo u(t?) dt.
(c) f( fo zdt

(d) f(u) = g [a(f u(t)] It:,l-
3. Proportional Functionals. Let f,g € V*. Prove that if Ker f =
Ker g, then ¢ = Af for some scalar A.

4. Coordinate Functional. Prove that for any non-zero linear func-
tional f on an n-dimensional space V, there exists a basis (ey, ..., ey)
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10.

11.

12.

13.

14.

15.

of V such that f(Y aje;) = ay.
Determining Functionals. Let x € V be non-zero. Does the

condition f(x) = 1 uniquely determine a functional f € V*?

Map Representation. Let f1,..., fy € V*. Define T : V — F" by
T(x) = (f1(x),..., fm(x)). Show T is linear. Conversely, show any
linear map V — [F™ is of this form.

Polynomial Dual Basis. Let V = P»(R). Define three functionals:

1 1

P, fop) = [ p)dn filp) = [ px)ax

-1

filp) = |

0

Show that { f1, f2, f3} is a basis for V*. Find the basis of V to
which it is dual.

Evaluation Basis. Let W be an n-dimensional subspace of the
space of functions S — [F. Show there exist points x1,...,x;, € S
and functions fi, ..., fs € W such that f;(x;) = J;.

Annihilator of a Sum Subspace. Let W < [F" be the subspace of
vectors with coordinate sum zero: ) x; = 0.

(a) Describe W°. Show it consists of functionals f(x) = ¢} x;.

(b) Show that W* can be identified with functionals on IF" of the
form f(x) =Y c;x; where }_¢; = 0.

Concrete Annihilator. Let W = span{(1,0,-1,2),(2,3,1,1)} C
R*. Which functionals f(x) = ¥ c;x; belong to W°?

Annihilator Algebra. Let Wi, W, < V. Prove:
(@) (Wy +W,)° =Wy Ny,
(b) (WiNW,)° = Wy +W;.

Extension of Functionals. Let W < V. If f € W¥, prove there
exists ¢ € V* such that gl = f.

Zero Product implies Zero Factor. Let f, g be linear functionals on
a complex vector space V. If the product map h(x) = f(x)g(x) is
also linear, prove that either f =0 or g = 0.

Separating Vector. Let vy, ..., v, be non-zero vectors in V. Prove
there exists a functional f € V* such that f(v;) # 0 for all i.

Trace Pairing Nondegeneracy. Let (X,Y) = tr(XY) on M, (F).
(a) Show that (-, ) is a bilinear form.
(b) Prove nondegeneracy: if (X,Y) = 0 for all Y, then X = 0.

(c) Conclude that the induced map M, (F) — M, (F)*, X —
(Y — tr(XY)), is an isomorphism (i.e., the trace pairing
identifies M,,(F) with its dual).



5
Eigenvalues and Diagonalisation

We now address the structure of linear operators on a finite-dimensional
vector space V. Consistent with Linear Operator Algebra, calligraphic
letters denote operators; fix 7 € L(V) and use A (or T when ex-
plicitly stated) for a matrix representing 7. Having established the
correspondence between operators and matrices, a natural question
arises: can we find a basis B of V such that the matrix representa-

tion of an operator is simple? The simplest non-scalar matrices are
diagonal matrices.

Definition 5.1. Diagonalisable Operator.

A linear operator 7 € £(V) is said to be diagonalisable if there ex-
ists a basis B of V such that the matrix of 7 relative to B is a diagonal
matrix.

Explicitly, if B = (uy,...,u,) and the matrix is diagonal with entries
A1, ..., Ay, the action of the operator is described by:

Tuj :/\ju]- fOI‘jZ 1,...,71.

This equation completely characterizes the operator.

Eigenvalues and Eigenvectors

The equation Tx = Ax is central to the problem of diagonalisation.

Definition 5.2. Eigenvalue and Eigenvector.

Let 7 € L(V) where V is a vector space over a field F. A scalar A €
F is called an eigenvalue (or characteristic value) of 7 if there exists
a non-zero vector x € V such that:

Tx = Ax.

Any vector x satisfying this equation is called an eigenvector correspond-

ing to A.
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: % &
Note
We explicitly require x # 0. If x = 0, the equation T(0) = A - 0 holds

for any A, which is trivial.

Definition 5.3. Spectrum.
The set of all eigenvalues of 7 is called the spectrum of 7 and is de-
noted by Spec(T).

This condition is equivalent to requiring that the kernel of the opera-
tor 7 — A€ is non-trivial. That is,

(T —AE)x =0 for some x # 0.

For finite-dimensional spaces, a non-trivial kernel implies the opera-
tor is not invertible.

Example 5.1. Rotation in the Plane. Consider the rotation operator
T : R?> — R? which rotates vectors by 90° counter-clockwise:

T (x1,x2) = (—x2,%1).

We seek a scalar A € R and a non-zero vector x such that Tx = Ax.

—Xp = )LX]
(—x2,x1) = (Ax1, Axp) =
X1 = Axp
Substituting the second equation into the first: —x; = A(Axp) =
A?xp,50 (1 4+ A%)xp = 0.Since A € R, 1+ A2 # 0. Thus x; = 0,
which implies x; = 0. Since the only solution is the zero vector, T

has no eigenvalues over R. The polynomial > + 1 has no roots in
R. This highlights that the existence of eigenvalues depends on the
algebraic closure of the underlying field F.

Fuf xz
Remark.

x and Tx are

An algebraic closure F of a field F is a field extension in which never parallel
every non-constant polynomial with coefficients in F has a root. For

X
example, C is the algebraic closure of R.

X1

The Characteristic Polynomial

Figure 5.1: A 90° rotation has

To determine the eigenvalues, we use the determinant function (as- . ) . ) o
no invariant directions in IR-.

sumed known from prior matrix theory; see chapter 2 for our no-
tation). The condition that 7 — Al is not invertible is equivalent to



ALGEBRA IV: LINEAR

the vanishing of the characteristic determinant of any representing
matrix A:

det(AI—A) =0.
Let A be the matrix of 7 relative to some fixed basis. The eigenvalues
are the roots of the equation det(AI — A) = 0.

Definition 5.4. Characteristic Polynomial.
The characteristic polynomial of a matrix A € M, (F) is defined as:

pa(A) = det(Al — A).

This is a monic polynomial of degree 7.

Definition 5.5. Algebraic Multiplicity.
Let A be a root of p4. Its algebraic multiplicity is its multiplicity as a
root of p4.

We must verify this definition is intrinsic to the operator T and not
dependent on the choice of basis. Recall that if A and B represent the
same operator in different bases, they are similar: B = PAP~! for
some invertible P.
pp(A) = det(AI — B) = det(APIP~! — PAP7!)

= det(P(AI — A)P71)

— detP-det(Al — A) - det P!

=det(AI — A) = pa(A).
Thus, similar matrices have the same characteristic polynomial and
the same eigenvalues. We may define pr(A) = pa(A).

Example 5.2. Algebraic vs Geometric Multiplicity. Consider the
matrix A representing an operator T on R>:

11
A=10 1
00

N © O

The characteristic polynomial is
pa(d) = (A=1)*(A-2).

The eigenvalues are A1 = 1 (algebraic multiplicity 2) and A, = 2 (al-

gebraic multiplicity 1).

Eigenvectors:

1. ForA = 1: (A—I)x = 0gives xp free, x; = 0,x3 = 0, so the
eigenspace is span{(0,1,0)} (geometric multiplicity 1).
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2. For A = 2: (A —2I)x = 0givesx = (0,0,1) up to scaling (geo-
metric multiplicity 1).

Although the eigenvalues account for dimension 3 algebraically, the

eigenspaces provide only two independent eigenvectors. There is

no basis of eigenvectors, so T is not diagonalisable.

E X

5.2 Conditions for Diagonalisability

The previous example demonstrates that the existence of eigenvalues
is not sufficient for diagonalisability. We require enough eigenvectors
to span the space.

Definition 5.6. Eigenspace.
Let A be an eigenvalue of T. The eigenspace corresponding to A is the
set of all eigenvectors corresponding to A, together with the zero vec-
tor:

W) = Ker(T — AE).

This is a subspace of V. Its dimension is called the geometric multi-
plicity of A.

Proposition 5.1. Polynomials of Operators.
Let f(t) € F[t] be a polynomial. If x is an eigenvector of T with eigen-
value A, then x is an eigenvector of the operator f(T) with eigenvalue

f(A).

>

il
Proof

Let f(t) = X" o axt*. Then f(T) = YL a;T*. Since Tx = Ax, by induc-
tion TFx = A¥x. By linearity:

f(T)x = <i aka> x = i a(TFx) = i aAfx = F(A)x.
k=0 k=0 k=0

Theorem 5.1. Independence of Eigenvectors.
Eigenvectors corresponding to distinct eigenvalues of 7 are linearly in-
dependent.

%2
Proof

Let Ay, ..., A be distinct eigenvalues and uy, .. ., uy be correspond-
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ing eigenvectors. Suppose there is a linear dependence relation:

k
2 Kiju; = 0.
i=1

We prove all a; = 0. For a specific index j, construct the polynomial:

it = T] =

m#j 7]

Since A; are distinct, the denominators are non-zero. Observe that
fi(Am) = O (Kronecker delta). Apply the operator f;(T) to the
dependence relation:

k k k
fi(T) (Z "‘i”i) =Y aifj(Tu; = Y a;fj(A;)u;.
i=1 i=1 i=1
Since f;(A;) = 0 for i # j and 1 for i = j, the sum collapses to:

0(]"1'1/1]':0.

Since uj # 0, we must have aj = 0. This holds for all j, so the vec-
tors are linearly independent.

This theorem implies that if dim V = n and 7 has n distinct eigenval-
ues, then 7 is necessarily diagonalisable (since the n corresponding
eigenvectors form a basis).

Characterisation of Diagonalisability

In the general case where eigenvalues may repeat, diagonalisability
is determined by the dimensions of the eigenspaces. Let Aq,..., A; be
the distinct eigenvalues of 7 with algebraic multiplicities 4y, . .., dj
(so the characteristic polynomial splits as [T(A — /\i)di). Let W; be the
eigenspace corresponding to A;.

Lemma 5.1. Sum of Eigenspaces.
Let W = W; + - - - 4+ Wj.. The sum is direct, i.e, W=W; D --- B W,

and .
dimW = Z dim W;.
i=1
1
Proof
We must show thatif u; + --- +u, = 0withu; € W;, then each
u; = 0. The non-zero terms in the sum u; + - - - + u; are eigenvec-

tors corresponding to distinct eigenvalues. By f/icorem 5.1, they are

97



98 GUDFIT

linearly independent. The only way their sum can be zero is if there
are no non-zero terms. Thus u; = 0 for all i.
|

Theorem 5.2. Diagonalisability Criterion.

Let T be a linear operator on a finite-dimensional space V of dimen-

sion n. The following are equivalent:

1. T is diagonalisable.

2. The characteristic polynomial splits into linear factors over F, and
for each eigenvalue A;, the geometric multiplicity equals the alge-
braic multiplicity:

dim W)\i = d,’.
3. The sum of the eigenspaces is the whole space: V. =W, & --- &
Wi,
i
Proof

(1) = (2): If T is diagonalisable, there is a basis B such that the
matrix is diagonal with diagonal entries A;. The characteristic
polynomial is [TJ(A —  Aj;), which splits. The number of times
A; appears on the diagonal is d;. The rank of 7 — A;€ is deter-
mined by the non-zero diagonal entries, implying the nullity
(dimension of W;) is exactly d;.

(2) = (3): Weknow Y d; = n (degree of characteristic polyno-
mial). If dimW; = d;, thendim(W; & ---® W) = Yd; = n. A
subspace of dimension 7 in V is V itself.

(3) = (1): fV = @W;, we can form a basis for V by taking the
union of bases for each W;. Since vectors in W; are eigenvectors,
this basis consists entirely of eigenvectors. Thus T is diagonalis-
able.

5.3 The Minimal Polynomial

We have seen that diagonalisability relies on the structural relation-
ship between algebraic and geometric multiplicities. Another per-
spective involves the ideal of polynomials that annihilate 7. Recall
from definition 3.3 in Linear Operator Algebra that the minimal poly-
nomial y7(t) is the unique monic polynomial of lowest degree such
that u7(7) = O. Existence and uniqueness were proved there; we
use them without repetition.



Proposition 5.2. Properties of the Minimal Polynomial.
Let 7 (t) be the minimal polynomial of 7.

1. If f(t) € F[t] satisfies f(7) = O, then puy(t) divides f(t).
2. The roots of yy(t) are exactly the eigenvalues of 7.

>
s

Proof

1. This was established in Properties of the Minimal Polynomial.

2. (A eigenvalue — (1) =0): Let Tx = Ax with x # 0. Then
ur(T)x = pr(A)x. Since u7(T) = O, wehave 0 = py(A)x.
Asx #0, ur(A) =0.

(w7 (A) =0 = A eigenvalue): Write u(t) = (t — A)q(t). Since
degg < degpur, q(T) # O. Thus there exists x # 0 such
thaty = q(7T)x # 0. Then (T — AE)y = (T — A&)q(T)x =
w7 (T)x =0. Thus Ty = Ay, so A is an eigenvalue.

[ |

Example 5.3. Minimal Polynomial Computations.

- Let
1 1
0 1|’
The characteristic polynomial is p(t) = (t — 1)2. Since A — I # 0,

the minimal polynomial cannot be t — 1. Thus 4 (t) = (t —1)2.
- Let

A:

01 01

A 1010

0101

1010
Direct computation gives A3 = 4A while A2 # 2Aand
A? * —2A (indeed A> + 2A has all entries 2). Hence

3 — 4t = t(t — 2)(t + 2) annihilates A, and no quadratic factor
does. Thus p(t) = t(t —2)(t + 2). Since the minimal polynomial
splits into distinct linear factors, A is diagonalisable.

X

Before proving the main theorem, we recall a property of matrices
related to the determinant. For any square matrix B, there exists a
unique matrix called the adjugate of B, denoted adj(B), such that:

Badj(B) = adj(B)B = det(B)I.

The entries of adj(B) are the cofactors of B; if the entries of B are
polynomials in a variable ¢, then the entries of adj(B) are polynomials
of degree one less than those of B.

ALGEBRA IV: LINEAR Q9



100 GUDFIT

Theorem 5.3. Cayley-Hamilton.
Every linear operator satisfies its own characteristic polynomial. That
is, if p(t) is the characteristic polynomial of 7, then p(7) = O.

gl
Proof
Let A be the matrix of 7 in some basis. We consider the matrix
characteristic polynomial p(A) = det(AI — A). Let B(A) = Al — A.
The entries of B(A) are polynomials in A of degree at most 1. Con-
sequently, the entries of the adjugate matrix adj(B(A)) are polyno-
mials in A of degree at most n — 1. We can thus write:

adj(Al — A) = Cu g A" 14 CuoA" 2 4. £ CIA + Cy,
where each Cj is a scalar matrix (independent of A). We use the
adjugate identity:
(AI—A)adj(AI — A) =det(Al — A)I = p(A)L.
Let p(A) = A" +a, 1A" "1 4 ... + ag. Substituting the expressions:

n—1
(AL —A) Y CAF = (A" + 2, (A" 1+ 4ag) L.
k=0

Expanding the left side:
n—1 n—1 n—1 n—1 .
Y CAR = Y AGAR = Y GART = YT AL
k=0 k=0 k=0 j=0

Comparing the coefficients of like powers of A:
Coeffof A": C,_1=1
Coeff of A" 1. C,_p — AC,_1 = a,_11

Coeff of AF: Cpqy — AC, = ai ]

Coeff of A°:  — ACy = agl
To form p(A), we multiply the equation for A¥ by A on the left
and sum them up:
A"(Cyq) = A
A" Cyp — ACy—1) = ay 1AM

A¥(Cr_q — ACk) = g AF

I(—ACO) = LIQI



Summing the left-hand sides creates a telescoping sum:

n—1
A"Cyq+ ) (ARCLy — AFIC) — AC) = A"Cyq = A"Cy 4+ =0,
k=1

Thus, the sum of the right-hand sides is also zero:
A"+ a, (A" 4 agl = p(A) = 0.
[

Corollary 5.1. Divisibility. The minimal polynomial yr(t) divides the
characteristic polynomial pr(t). Since they share the same roots, p7(t)
contains every irreducible factor of pr(t) at least once.

Hem
Proof
By Cayley-Hamilton, pr(T) = O. Property (1) of proposition 5.2 then

forces ur | pr-
[ ]

Theorem 5.4. Diagonalisability and Minimal Polynomial.
A linear operator T is diagonalisable if and only if its minimal poly-
nomial pr(f) splits into distinct linear factors over F.

T

Proof

(== ) Suppose T is diagonalisable with distinct eigenvalues
M, Ap. Letm(t) = TI,(t — A;). Since T is diagonalisable,
there is a basis of eigenvectors v. For any eigenvector v; with
value A;, m(T)v; = m(A;)v; = 0. Since m(T) annihilates a ba-
sis, m(T) = O. Thus uy(t) divides m(t). Since roots of yy are
exactly the eigenvalues, p7(t) must be exactly m(t), which is a
product of distinct linear factors.

(<=) Write u(t) = [T5_, (t — A;) with pairwise distinct roots. Set
gi(t) = TLnzi(t — Am). There exist polynomials a;(t) such that
Zé‘:l a;(t)gi(t) = 1.Define E; = a;(T)gi(T). Then ) E; = &
and E;E; = Ofori # jby commutativity of polynomials in 7.
Moreover, (T — A;E)E; = 0,soImE; C Ker(7T — A€). Ifx €
Ker(T — A€), then ¢;(T)x = gi(A;)x = 0and hence E;x = x.
Thus ImE; = Ker(7 — A€). If x € Ker(T — A€), then g;(T)x =
gi(Aj)x = Oand hence E;x = x. ThusImE; = Ker(T — A€).
IfYu; = Owithu; € ImE; applying E; yields u; = 0, so the
images are independent. Therefore V = @; Ker(7 — A;€), which
furnishes a basis of eigenvectors. Hence 7 is diagonalisable.

ALGEBRA 1V:
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Invariant Subspaces

To delve deeper into the structure of operators, we investigate sub-
spaces that are preserved by the operator.

Definition 5.7. Invariant Subspace.
A subspace W of V is called invariant under an operator 7 if 7 (W) C
W. Thatis, forallw e W, Tw € W.

Example 5.4. Basic Examples.

- The zero subspace {0} and the entire space V are always invari-

ant.
- The kernel Ker 7 and the image Im 7" are invariant.
- Any eigenspace W, = Ker(7 — A€) is invariant.

Fh)

Example 5.5. Differentiation Chain. Let D be the differentiation op-
erator on P, (polynomials of degree at most 7). Let Wy, = Py be the
subspace of polynomials of degree at most k. Since differentiating a

polynomial lowers its degree, D(P;) € Py C Py. Thus, we have a
complete chain (or flag) of invariant subspaces:

{0} CcPhCPC-CP,.

X

The last example can be generalised. If S is an operator that com-
mutes with 7 (i.e.,, ST = TS), then Ker S and Im S are invariant
under 7. Since 7 — A€ commutes with 7, eigenspaces are invariant.
Invariant subspaces allow us to break down the operator into smaller
components. If V = W; © W, where W; and W are invariant under
T, we can study the restrictions 7w, and 7 |, independently.

Example 5.6. Non-Existence of Invariant Subspaces. Consider

again the rotation by 90° in R?, defined by 7 (x1,x) = (—x2,x1).
If W is a non-trivial proper invariant subspace, it must be 1-
dimensional (a line through the origin). Let W = span(v) for

some v # 0. If W is invariant, then Tv € W, so Tv = Av for some
scalar A. This implies v is an eigenvector. However, we established
in figure 5.1 that 7 has no eigenvalues in R. Thus, this operator has
no proper non-trivial invariant subspaces.

X
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The Adjoint Operator

Recall from Dual Spaces that for any linear map 7 : V. — V, the

transpose (or adjoint) map 7' : V* — V* is defined by (T f)(v) =

f(Tw). It satisfies:

S (T+S)T=7T"T+8Tand (a7)" =aT .

(TS =8TTT.

- TTT =T (under the canonical identification V 2 V**).

- If A is the matrix of 7 in basis B, then A" is the matrix of 7' in
the dual basis B*.

Quotient Operators

Let W be an invariant subspace of 7. The operator 7 induces a natu-
ral linear operator on the quotient space V/W.

Definition 5.8. Quotient Operator.
The quotient operator T:V/W — V/W is defined by:

To+W)=To+W.

This is well-defined because if v + W = v + W, thenv — v/ € W.
Since W is invariant, T (v — v') € W,so Tv —Tv' € W, implying
To+W="Tv +W.

If we choose a basis (eq, ..., ¢) for W and extend it to a basis (eq,...,e,)
for V, the matrix of 7 is block upper triangular:

Aw B

A pr—
0 AV/W

,  where Ay represents 7.

Existence of Invariant Subspaces

The existence of eigenvalues (and thus 1-dimensional invariant sub-
spaces) depends on the field.

Theorem 5.5. Invariant Subspaces over R and C.
Let 7 be a linear operator on a finite-dimensional space V.
1. If F = C, T has a 1-dimensional invariant subspace (an eigenspace).
2. If F =R, 7 has an invariant subspace of dimension 1 or 2.
il
Proof
1. Over C, the characteristic polynomial splits into linear factors.
Thus there is at least one root A, providing an eigenvector and a
1-dimensional invariant subspace span(v).
2. Over IR, the minimal polynomial factors into linear terms (¢t — A)
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and irreducible quadratic terms (+> — at — B) with a® + 48 < 0.
If there is a linear factor, we get an eigenvector (dim 1). If not,

u7(t) has a factor q(t) = > — at — B. There exists u such that
g(T)u = Obutu # 0 (since q(7) is not invertible on the kernel
of the full minimal polynomial). Let W = span(u, 7u). Since
T?u = aTu+ Bu, W is invariant. Its dimension is at most 2 (and

at least 1 since u # 0).
|

Theorem 5.6. Invariant Hyperplanes.
Every linear operator 7 on a finite-dimensional complex vector space
has an invariant hyperplane (subspace of codimension 1).

i
Proof

Consider the transpose operator 7' : V* — V*. Since V* is a com-
plex vector space, 7' has an eigenvector f € V*,s0 7' f = Af. Let
W = Ker f. Since f # 0, W is a hyperplane. For any x € W:

f(Tx) = (TTf)(x) = (Af)(x) = Af (x) = 0.

Thus 7x € Ker f = W, so W is invariant.

The T-Conductor

We introduce a set of polynomials associated with a vector and a
subspace, generalising the minimal polynomial.

Definition 5.9. T-Conductor.

Let W be an invariant subspace of 7 and let y € V. The T-conductor
of y into W, denoted S7(y, W), is the set of all polynomials g(t) € F|t]
such that g(7)y € W.

The set S7(y, W) is closed under addition and multiplication by any

polynomial:

1. If g1, g» are in the set, then (g1 + $2)(T)y = g1(Ty+ (T)y € W
(since W is a subspace).

2. If ¢ isin the set and f € F[t], then (fg)(T)y = f(T)(g(T)y). Since
¢(T)y € W and W is invariant under f(7) (polynomials in 7
preserve invariant subspaces), the product is in W.

Among all non-zero polynomials in this set choose one of minimal

degree and scale it to be monic; this generator is unique and is called

the T-conductor of y into W, denoted g(t). Note that the minimal
polynomial p1(t) is always in this set (since p7(7)y = 0 € W), so



g(t) divides py(t).

Lemma 5.2. Linear Conductor Existence.
Suppose the minimal polynomial y7-(t) splits into linear factors over
F. Let W be a proper invariant subspace of 7. Then there exists a vec-
tor x € V \ W such that (7 — AI)x € W for some eigenvalue A.

12
Proof
Pick any y € V \ W. Let g(t) be the T-conductor of y into W. Since
y ¢ W, g(t)is not a constant (otherwise 1 - y &€ W). Since g(t)
divides p7(t), and p7(t) is a product of linear factors, g(t) must
have a linear factor. Write g(t) = (t — A)h(t). Since degh < degg,
the vector x = h(7)y is not in W (by minimality of the conductor).
However,

(T=A8)x = (T = AEMT)y = g(T)y € W.

Thus x satisfies the condition.

Triangulability

While not every operator is diagonalisable, a weaker form of simplifi-
cation is almost always possible.

Definition 5.10. Triangulable Operator.
An operator 7T is triangulable if there exists a basis B such that a rep-

resenting matrix of 7 is upper triangular.

Theorem 5.7. Triangulability Criterion.
An operator 7 is triangulable if and only if its minimal polynomial (or
equivalently, its characteristic polynomial) splits into linear factors over
F.
g

(=)
If T is triangulable, its matrix A is upper triangular. The charac-
teristic polynomial is [[(t — a;;), which clearly splits. The minimal
polynomial divides this, so it also splits.

FE
(=)
We proceed by induction on dim V' = n. For n = 1, every matrix is

triangular. Assume the result for dimension n — 1.
Let Wy = {0}. Using the Linear Conductor Lemma, there exists

ALGEBRA IV: LINEAR
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x1 # Osuchthat (T — M&)x; € {0}, ie,Tx; = Apxq. Let Wy =
span(xp). This is an invariant subspace.

We repeat the process. Consider the quotient space V /Wj. The
operator 7 induces an operator 7 on the quotient. The minimal
polynomial of 7 divides p7(t), so it splits. By the inductive hy-
pothesis, there is a basis (73, ..., 7,) for V/W; that triangulates

T. Lifting these vectors back to V (and including x;) gives a basis

(x1,v2,...,v,) in which a matrix of T is upper triangular.
SERR #

Corollary 5.2. Algebraically Closed Fields. 1f F is algebraically closed
(meaning every non-constant polynomial in F[t] has a root in F, e.g.,
C), every linear operator is triangulable.

Hem
Proof

Over an algebraically closed field, every characteristic polynomial
splits into linear factors. By the Triangulability Criterion, this im-
plies the operator is triangulable.

5.5 Direct Sum Decompositions and Projections

We have characterised diagonalisability using the eigenspace decom-
position V' = @ W,.. This is a specific instance of a more general
structure: the decomposition of a vector space into independent sub-
spaces, and its relationship with projection operators.

Definition 5.11. Independent Subspaces.
A collection of subspaces Wy, ..., Wy of V is called independent if the
equation

w+--+we=0 (withw; € W;)

implies that w; = 0 for all i. Equivalently, every vector in the sum W =
Wi+ - - -+ Wy has a unique representation as a sum of vectors from the
W;.

Recall that if W, ..., Wy are independent, their sum is denoted by the
direct sum symbol: W = Wy @ - - - ® Wy. If W = V, we say we have a
direct sum decomposition of V.

Projections

A linear operator E € £(V) is called a projection (or idempotent)
if E2 = E. Geometrically, E maps any vector onto the range of E by
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"projecting” it, and applying it again changes nothing since the vector
is already in the range.

Proposition 5.3. Properties of Projections.

Let E be a projection.

1. V=ImE®KerE.

2. If x € ImE, then Ex = x.

3. The operator £ — E is also a projection, with Im(€ — E) = KerE
and Ker(€£ — E) =ImE.

4. In a basis adapted to the decomposition V = Im E @ Ker E, the ma-
trix of E is:

L0 , Wherer =rankE.
0 0

5. tr E =rankE.

A

¥

Proof

For any v € V, we can write v = Ev + (v — Ev). Clearly Ev € ImE.
Also E(v — Ev) = Ev—E?>v = Ev—Ev = 0,s0v — Ev € KerE.
To check independence, let x € ImE N KerE. Thenx = Ey for
somey,and Ex = 0. Thus0 = Ex = E(Ey) = E?y = Ey = «x.
The intersection is trivial, so the sum is direct. The matrix form and
trace property follow immediately from choosing a basis (ey, ..., er)

for InE and (e, 1,...,e,) for KerE.
|

This concept generalises to multiple subspaces.

Theorem 5.8. Decomposition via Projections.

Let V be a finite-dimensional vector space.

1. fV =W & -®W,, there exist k linear operators Ej, ..., E; such
that:
- E=E1+---+E.
: EZE] = 51]E1 (SO Elz = Ei and EZE] = O for i 75 ])
- Im Ei = Wi'

2. Conversely, if there exist operators Ey, ..., Ey satisfying the first two
conditions, then V is the direct sum of their ranges W; = Im E;.

T

Proof
1. Foranyv € V,writev = w; + --- + wi uniquely. Define
Eiv = w;. The properties follow directly from the uniqueness of

the decomposition.

2. Given such operators, forany v,v = v = Y} Ejv,so0V = Y W,
It} w; = 0 withw; € W, apply E;. Since w; € ImE;, Ejw; = w;
(as E} = E;). Thus Ej(Yw;) = LEjw; = Y EjEw] + Ejw; =
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w;. Since the sum is zero, w; = E;(0) = 0. Thus the subspaces are

independent.
|

Relationship with Operators

Now we connect this to a linear operator T. We are interested in
decompositions where each subspace W; is invariant under T.

Proposition 5.4. Commutativity and Invariance.

Let V = @ W, with associated projections E;. The subspaces W; are
invariant under T if and only if T commutes with each projection E;,
i.e., TEZ = EIT

Proof
If TE; = E;T,letw € W;. Then w = E;w, so Tw = TE;w = E;(Tw).
Thus Tw € ImE; = W;. Conversely, if W; is invariant, for any v de-
composed as } wj, Tv = ) Tw;. Since Tw; € Wj, the i-th compo-
nent of Tvis Tw;. Thus E;Tv = Tw;. Also TE;jv = Tw;. Hence
TE; = E;T.

|

This leads to the spectral decomposition theorem for diagonalisable

operators.

Theorem 5.9. Spectral Resolution.

An operator T is diagonalisable with distinct eigenvalues Ay, ..., Ay if
and only if there exist non-zero projections Ej, ..., E; such that:

1. &€= EEZ'.

2. EiEj=0fori #j.

3. T=Y% AE:

In this case, Im E; is exactly the eigenspace W) .

(=)
Suppose T is diagonalisable with distinct eigenvalues. Let W),
be the eigenspace and let E; be the projection onto W, along the
direct sum @,,+; W,,, (existence by theorem 5.8). ThenE = Y E;
and E;Ej = Ofori # jPForx = Yxwithxy, € W,
Tx = EAixi = E/\iEix, soT = Z)\iEi and Im Ei = W)\i'

S 4

(=)
Assume projections E; satisfy the three conditions. For any x, write

x = Y Ex(sinceE = Y E) ThenTx = Y AE;x. Thus E;xis
an eigenvector with eigenvalue A;, and x is a sum of eigenvectors
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from distinct eigenspaces. Independence of the ranges follows from
EiEj = 0,50V = €ImE; giving a basis of eigenvectors and
therefore diagonalisability.
E #
This decomposition T = ) A;E; allows us to define functions of
operators easily: f(T) = ¥ f(A;)E;.

Primary Decomposition Theorem

Finally, we state the general decomposition theorem for operators
whose minimal polynomial splits (or in general using irreducible
factors). Recall the minimal polynomial u7(t) = [T pi(t)"i, where
pi(t) are distinct monic irreducible polynomials (in an algebraically
closed field, p;(t) =t — A)).

Theorem 5.10. Primary Decomposition.

Let T be a linear operator on V with minimal polynomial ut(t) = p1(t)™ - - - p(t)'*.
Let W; = Ker(p;(T)"i). Then:

L V=W ®W,.

2. Each W; is invariant under T.

3. Let T; = T|w,. The minimal polynomial of T; is p;(t)":.

il

This theorem reduces the study of a general operator to the study

of operators whose minimal polynomial is a power of an irreducible
polynomial. In the case where the field is algebraically closed, each
block corresponds to a single eigenvalue A;, and the operator on W; is
of the form A;I + N; where N; is nilpotent. This leads directly to the
Jordan Canonical Form.

5.6 Exercises

1. Basic Computations. For each of the following matrices, find the
characteristic polynomial, the eigenvalues, and a basis for each

eigenspace.
(@)
2 00
A= |-16 8 7| over R.
0 01
(b)
010
B=10 0 1| over C.
100
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10.

11.

12.

(©

1
C= [_31 1] over R.

Trivial Operators. Determine the characteristic and minimal poly-
nomials for the identity operator £ and the zero operator 0 on an
n-dimensional space V.

Triangular Matrices. Prove that the eigenvalues of an upper trian-
gular matrix are exactly its diagonal entries.

Differentiation Operator. Let V = P,(R) be the space of polyno-
mials of degree at most n. Let D : V' — V be the differentiation
operator. Find the minimal polynomial of D.

Projection Operator. Let P : R?> — IR? be the projection onto
the x-axis along the y-axis (P(x,y) = (x,0)). Find the minimal
polynomial of P.

Nilpotent Growth. Let T be an operator on an n-dimensional

space V. Prove that if TX = 0 for some k, then T" = 0. What is the
characteristic polynomial of a nilpotent operator?

Restriction Property. Let W be a T-invariant subspace. Prove that
the minimal polynomial of the restriction T|w divides the minimal
polynomial of T.

Idempotent Matrices. Let A be an 1 x n matrix such that A2 = A
(a projection).

(a) Prove that A is similar to a diagonal matrix with entries o and
1.

(b) Prove that rank(A) + rank(I — A) = n.

Primary Decomposition Detail. Let pr(x) = [](x — ¢;)% and
pr(x) =TI(x —¢;)"i. Let W; = Ker((T — ¢;€)").

(a) Prove that W; = {v € V| (T — ¢;€)™v = 0 for some m > 1}.

(b) Prove that dim W; = d;. For (b): The restriction T|y, — ¢;€ is

nilpotent.

Orthogonal System of Idempotents. Let {A1,..., A, 1} bea

set of matrices such that Al2 = Ajand A;A; = Ofori # j. Let

A =Y A;. Prove that A2 = A and AA; = A;A = A,. If we define
Ay = I — A, prove that {A1,..., A} is a complete orthogonal
system of idempotents (i.e., sum to I).

Multiplicative Maps on Matrices. Let D : M, (R) — M,(R) be a
non-zero linear map satisfying D(AB) = D(A)D(B). Prove there
exists an invertible matrix C such that D(X) = C~!XC.

Stabilisation of Image. Let T : V — V be linear. Suppose ImT? =
Im TP*! for some p. Prove that V = Ker T? @ Im T?.



13.

14.

15.

16.

17.

18.
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Cyclic Vector. Let V be n-dimensional. Prove that if the operators
ET,T% ..., T" 1 are linearly independent, then there exists a
vector v such that {v, Tv,..., T" 10} is a basis for V.

Commuting Anti-Involutions. Let A be a real n x n matrix with
no real eigenvalues. Prove there exists a real matrix B such that
AB = BA and B> = —I. (This implies 7 is even and A defines a
complex structure).

Characteristic Polynomial of Products. Prove that for any A, B €
M, (R), the matrices AB and BA have the same characteristic
polynomial.

Circulant Eigenvalues. Find the eigenvalues of the circulant ma-

trix
ap ar az
A= a dg @M
ap a4z 4o
010
using the relation A = apl +a1P + a;P?, whereP= |0 0 1
1 0 0

Semi-Magic Algebra. Prove that the space of semi-magic squares
SMag, (Q) (matrices with constant row /column sums) is a subal-
gebra of M, (Q).

Signed Similarity. Let A € M, (K) with char K # 2, and set
S(A) ={DA | D = diag(ey,...,en), & = £1}.

(a) Prove: For any such D, det(DA — I) = £det(A — D).

(b) Consider the polynomial p(ty,...,t,) = det(A —diag(ty,...,t.)).
Show its highest-degree term is (—1)"t; - - - t,, so p is not the
zero polynomial.

(c) Deduce that there exists a choice ¢; € {£1} with p(eq,...,e4) #
0, hence some matrix in S(A) has no eigenvalue 1.

Remark.

Evaluate p on all 2" sign choices; use char K # 2.
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6
Jordan Canonical Form

To understand the structure of a linear operator 7 : V. — V, itis
natural to seek a basis of V in which the matrix representation of 7
is as simple as possible. We have seen in chapter 5 that if the char-
acteristic polynomial splits into distinct linear factors, the operator

is diagonalisable. However, if eigenvalues repeat, diagonalisation is
not guaranteed. We now assume the underlying field is algebraically
closed (e.g., F = C) and develop a canonical form that applies to al/!
operators: the Jordan Canonical Form.

Cayley-Hamilton Theorem

We previously established the Triangulability Criterion in chapter 5.
We recall the result here, noting that over C, the condition of the
characteristic polynomial splitting is always satisfied.

Proposition 6.1. Triangular Form.

Recall from chapter 5 that an operator is triangulable if and only if its
minimal polynomial splits into linear factors. Over an algebraically closed
field like C, this condition is always satisfied. Thus, for any linear op-
erator 7 € £(V) on a finite-dimensional complex vector space, there
exists a basis B such that the matrix of 7 relative to B is upper trian-
gular.

¥

Proof (using Invariant Hyperplanes)

We proceed by inductionon#n = dimV. Forn = 1, the matrix is
a scalar, which is trivially triangular. Assume the result holds for
spaces of dimensionn — 1. By the theorem on Invariant Hyper-
planes (see Eigenvalues and Diagonalisation), the operator 7 admits
an invariant hyperplane U (a subspace of dimension n — 1). By the
inductive hypothesis, there exists a basis (ey,...,e,_1) for U such
that the restriction 7'y is upper triangular. Specifically:

Te; € span(ey,...,e;) forl1<i<n-—1.
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We extend this to a basis for V by choosing any vectore, ¢  U.
Since Te, € V,we can write Te, = Z]’-‘:l ajpej. The matrix of 7 in
the basis (ey,...,e,) is therefore:

M *  dqy
0 )\2 R
A=1. . }
0 0 - Ay

This is upper triangular; its diagonal entries coincide with the di-
agonal entries inherited from the induction step on U (hence are

eigenvalues of 7).
[ |

This triangular structure allows for a succinct, coordinate-free proof
of the Cayley-Hamilton theorem. Recall that we provided a matrix-
based proof using the adjugate in chapter 5.

Theorem 6.1. Cayley-Hamilton (Alternative Proof).
Let 7 be a linear operator on a finite-dimensional space V, and let py(f)
be its characteristic polynomial. Then 7 annihilates its characteristic
polynomial:

pr(T) = 0.

Proof

We provide an alternative, coordinate-free proof using the triangu-
lar form established above. Since p7(t) is independent of the basis,
we may assume 7 is represented by an upper triangular matrix A
with diagonal entries Ay, ..., A,. The characteristic polynomial is
pr(t) = TT,(t — A;). Consider the filtration of subspaces defined
by the basis vectors:

Vi = span(ey,...,e), Vo= {0}.

This forms a chain Vo C V; C --- C V;; = V. Since A is upper trian-
gular, Te, = Agep + v where v € Vj_1. Consequently, (7 — A €)e, €
Vk—1. Forany x € Vi, writing x = wae; + w withw € Vi_1, we ob-
serve:

(T = ME)x = a(T — ME)ex + (T — M&)w.

Since Vj_q is invariant under 7 (and thus under 7 — A.E), both
terms lie in V;_q. Hence:

(T = ME)Vi C Vi,

We evaluate p7(T) by applying the factors successively to the
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space V:

pr(MV =(T = ME) - (T — M&)Vy

C(T = M&) (T = A1)V
c ...

C(T-MEW;

C Vo = {0}.

Thus p7(T) = O.

|
Remark (Minimal Polynomial Divisibility).
As established in chapter 5, the minimal polynomial p7(t) divides
the characteristic polynomial ps(t). Furthermore, every root of
p7(t) (ie., every eigenvalue) is a root of 7 (t).

Remark.

One might be tempted to prove theorem 6.1 by substituting matrix A
for t in det(t] — A), yielding det(AI — A) = det(0) = 0. This rea-
soning is flawed; p 4 (t) is a scalar polynomial, while substitution of
A yields a matrix equation. The equality must hold in the algebra

of operators, not merely as a scalar value.

6.2 Jordan Blocks and Nilpotent Operators

To refine the triangular form, we analyze the structure of nilpotent
operators.

Example 6.1. Nilpotent Structure. Let N be a nilpotent opera-
tor with index m (so N = Obut N1 £ ). Pick v such that
N™=1y £ 0. The vectors

B=N""1o,N"20,...,Nv,0)

are linearly independent. Applying A to this sequence shifts
each vector to the left, annihilating the first. Letting e; =
N1y .. en = v, we have:

Nep =0, ./\/ek =ep_q fork > 1.
The matrix of NV in this basis is a Jordan block with eigenvalue o.
Fh)

Definition 6.1. Jordan Block.
A Jordan block of size m corresponding to A € C is a matrix of the
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form:
Al 0
0 A 1 0
()= o i ecmm
0o 0o o0 --- 1
00 0 -+ A

A matrix | is a Jordan matrix if it is a block diagonal matrix composed
of Jordan blocks:

J= dlag(]ml (/\l)/ .- -/]mk (Ak))

We say an operator 7 admits a Jordan Canonical Form if there exists
a basis (a Jordan basis) in which its matrix is a Jordan matrix. Note
that J,,(A) = AI + N, where N is the nilpotent matrix with 1s on the
superdiagonal.

Example 6.2. Differentiation Space. Consider the space Dy (A) of
functions of the form e f(t), where f(t) is a polynomial of degree

less than n. The differentiation operator D = % acts on this space.
Using the product rule:

d (15 AR VRN

— | = = A—eM.

dt (k!e G—1¢ ThEe
Setting basis vectors ex1 = %e/\t fork = 0,...,n — 1, we see that
Deri1 = ex + Aegyq (withey = 0). Thus, the matrix of D in this

basis is exactly J,(A). This structure is fundamental to the theory of
linear differential equations.

Eid)
Example 6.3. Functions of a Jordan Block. If f(t) is a polynomial,

the matrix f(J,;(A)) has a convenient structure given by the Taylor
expansion of f at A:

) oy LR fi';:’lﬁ?’
0 fO) FQ) - L
fawy=1| . . .
0 0 - FA)FO
00 0 f(A) |

This demonstrates that operating with Jordan blocks is computa-
tionally tractable.

El
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Theorem 6.2. Existence of Jordan Form.

Any linear operator 7 on a finite-dimensional vector space over an al-
gebraically closed field admits a Jordan Canonical Form. The form is
unique up to the permutation of the Jordan blocks.

g1
Proof by induction on n = dim V.
Base case n = 1.
Trivial: any 1 x 1 matrix is J;(A).
EXLES
Inductive step.
Assume the statement holds for all dimensions < n. Because the

field is algebraically closed, pick an eigenvalue A of 7 and set
U=T—-AE. Let R =ImU and K = KerY{. Since A is an eigenvalue,
K # {0} and dimR = n — dimK < n.

Jordan chains inside R. The subspace R is T-invariant: for y = Ux
we have Ty = UTx € ImU. By the inductive hypothesis, 7 |g has
(i) /

a Jordan basis consisting of disjoint chains C; = (v;,.. ., vg,li)) for
eigenvalues y; (possibly equal or different from A).

Extend the A-chains. If y; = A, take the head vgi) € R. Since vgi) €
ImiU, choose w® with Uw') = U%l). Then

j+1
Thus (w(i),vgi),. . .,vg,il.)) is a A-Jordan chain of length p; + 1. In-

dependence is clear because applying (7 — AE)Pi sends w'?) to
USI.) # 0 while killing the other chains.

If u; # A, we leave C; unchanged. Chains for distinct eigenvalues
are automatically independent (they live in distinct generalized
eigenspaces of T|R).

Let B; be the union of all extended A-chains and the unchanged
ui # A chains. These still form a basis of R together with exactly
one new vector for each A-chain. Denote by c the number of
A-chains in R.

Add missing eigenvectors from K. The tails of the A-chains in 5;
lie in K N R and are independent; extend them to a basis of K by
adding vectors zy, ..., z; chosen outside span B;. Each zj is itself
a A-chain of length 1.

Step 4: Independence and spanning. Independence: Any non-trivial
linear combination of vectors in BB that lies in K must in-
volve only the tail vectors (because applying a suitable power

(T —A&)w) = vgi), (T—/\S)v](i) =o!! (j<vpi), (T—/\S)vg,? =0.
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of U kills earlier vectors but not the tail of its own chain).
Since we extended those tails to a basis of K, adding zj with
zj ¢ span By keeps the whole set independent.

Counting dimensions: |Bi| = dimR + ¢, and we add 4 = dimK —¢
vectors z;. Total size [Bi| + g = dimR + dimK = n, so inde-
pendence implies the set is a basis of V.

In this basis, each extended A-chain is a Jordan block for A, each

unchanged chain is a Jordan block for its y;, and each z; is a

1 x 1 A-block. Hence the matrix of 7 is block diagonal with

Jordan blocks, as desired.

LB
The structure of the Jordan form is intimately tied to the minimal

polynomial. If uy(t) = Hle (t — A;)™i, then m; corresponds to the
size of the /arqest Jordan block associated with A;.

Corollary 6.1. Diagonalisability Criterion. A matrix A is diagonalisable
if and only if its minimal polynomial j4(t) has no repeated roots (i.e.,
it is a product of distinct linear factors).

i

Proof

If 14 has no repeated roots, the largest Jordan block for any eigen-
value has size 1. Thus all blocks are 1 x 1, meaning A is diagonal.
Conversely, if A is diagonal, it satisfies [[(A — A;I) = O where the
product is over distinct eigenvalues, so 4 splits distinctly.

6.3 Root Subspaces

To prove the existence of the Jordan form, we decompose the space V
into subspaces corresponding to each eigenvalue.

Definition 6.2. Root Subspace.
Let A € Spec(T). The root subspace (or generalized eigenspace) V(A)
is defined as:

V(A) ={ve V| (T —AE)*v =0 for some k > 1}.

Since V is finite-dimensional, this is equivalent to V(A) = Ker((7 —
AE)™). Clearly, the eigenspace Ker(7T — A€) is contained in V(A).
We now provide the constructive proof for the Primary Decomposi-
tion Theorem stated in chapter 5.
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Theorem 6.3. Primary Decomposition.

Let 7 be a linear operator with characteristic polynomial py(t) = Hle (t—
A;i)", where A; are distinct. Then V decomposes as the direct sum of
invariant root subspaces:

V=VA)aV) e & V(A,).

Moreover, dim V(A;) = n;, and the restriction of 7 — A;€ to V(A;) is
nilpotent.

gl
Proof
For each i, define the polynomial Q;(t) = pyr(t)/(t — A))" =
[Tj4i(t — A;)". The polynomials Qi(t),. .., Qp(t) share no common
root, so their greatest common divisor is 1. By the Euclidean algo-
rithm for polynomials (Bezout’s identity), there exist polynomials

fi(t),..., fp(t) such that:
P
;fi(t)Qi(t) =1L

Substituting the operator 7

I

fi(T)Qi(T) = ¢.

Let?; = fi(T)Qi(T). Note that P; commutes with 7. We claim
W; = Im(P;) coincides with V(A;). First, observe that Q;(t) contains
the factor (t — A;)" forallj # i. By Cayley-Hamilton, p7(7) =
O. Thus (T — Mi€)"Qi(T) = pr(T) = O. Consequently, for any
v, (T — ME)"Po = fiI(T)(T — ME)Q;(T)v = 0. This implies
Im(P;) € V(A;).
The identity }-P; = & implies V = Y Im(P;) = Y. V(A;). To show
the sum is direct, suppose v € V(A;) N Lz V(). On V(A;), the
operator (7 — A;€) is nilpotent. Because Q; contains (f — A;)"/, we
have Q;(7)|v( Ay =0 for j # i. Conversely, on V(A;) the nilpotent
part of (7 — A;€) commutes with Q;(7), and the scalar Q;(A;) # 0
implies

Qi(T)lv(x,) = Qi(A:)€ + (nilpotent)
which is invertible on V(A;) (a non-zero scalar plus nilpotent is
invertible on a finite-dimensional space). Therefore P; restricts to
an automorphism of V(A;) and vanishes on V(A;) for j # i, so P; is
the projection onto V(A;) along ;.; V(A;). This proves the sum is
direct and W; = V(A;).
Finally, on each V(A;) the restriction of 7 equals A;€ plus a nilpo-
tent operator (because (7 — A;€)" = 0 on that subspace). Thus
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the classification of 7 reduces to nilpotent blocks, giving the Jordan

form.
[ |

6.4 Cyclic Subspaces

To construct the Jordan Canonical Form, we break down nilpotent
operators into simpler components. The fundamental building block
is the cyclic subspace.

Definition 6.3. Cyclic Subspace.
Let \V be a nilpotent operator on V with nilpotency index m. For any
vector v € V, the cyclic subspace generated by v with respect to N/

1S:

Z(;N) = span(v,/\/v,]\/zv,. ) .,Nk_lv),

where k is the smallest integer such that A*v = 0. Note that k < m.

The vectors (v, Nv,...,N*"1v) form a basis for Z(v; ). In the re-

versed order (N*1v,...,v), the matrix of AV restricted to this sub-
space is the Jordan block Ji(0).

Theorem 6.4. Jordan Form for Nilpotent Operators.
Let \V be a nilpotent operator on a finite-dimensional vector space V.
Then V admits a decomposition into a direct sum of cyclic subspaces:

V=Z@uN)®Z(opN) @ - & Z(vs; N).

Consequently, there exists a basis in which the matrix of AV is a direct
sum of Jordan blocks with eigenvalue o.

T3
Proof
We proceed by induction on dim V. The base case is trivial. As-
sume the theorem holds for spaces of dimension less than n. Since
N is nilpotent, its image Im V" is a proper subspace of V (oth-
erwise N would be surjective and thus invertible, contradicting
nilpotency). Let U = ImAN. Since dimU < dimV, the inductive
hypothesis implies U decomposes into cyclic subspaces:

U=ZupN)® - @ Z(us N).

Let k; be the dimension of Z(u; N'), so N%iu; = 0and u; generates
the sequence u;, Nu;, .. .. Since u; € Im N, there exist vectors v; € V
such that Nv; = u;. Consider the new cyclic subspaces Z(v;; V).
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The sequence generated by v; is v;, u;, N'u;, ..., which has length

ki + 1. LetW = "1 Z(vi; N'). We must determine if W covers
all of V. Independence of these subspaces follows from a “highest
nonzero iterate” argument: if ) ;x; = 0withx; € Z(v;N), apply
N*=1 where k is maximal such that some x; has a nonzero N*~1-
iterate. Only one tail term survives (the tail of its chain), forcing all
coefficients to be zero.

If W # V,we can find vectors in Ker NV that are not in W to com-
plete the basis. Specifically, extend the independent set { V" kiui}le
(which forms a basis for In N N KerN) to a full basis of Ker N by
adding vectors zj, ..., z4 chosen outside W. These z; generate cyclic
subspaces of dimension 1 (since N'z; = 0).

Any vector in W N span(zy, ... ,zq) would lie in both W and ker \V;
applying the same highest-iterate argument shows this forces the
vector to be 0, so the sum remains direct. Finally,

V =W @span(zy) @ - - - ©span(zg),

so V is a direct sum of cyclic subspaces.

Combining this with the Primary Decomposition Theorem yields

the full existence result. For any operator 7, V = @ V(A;). On each
V(A;), the operator T — A;€ is nilpotent. Decomposing V(A;) into
cyclic subspaces for 7 — A;€ yields blocks of the form [, (A;).

While the existence of the Jordan form is guaranteed, proving unique-
ness requires identifying invariants that do not depend on the choice
of basis.

Theorem 6.5. Uniqueness of Jordan Form.
The Jordan Canonical Form of an operator 7 is unique up to the or-
der of the Jordan blocks.

gl

Proof

The number and sizes of the Jordan blocks corresponding to an
eigenvalue A are completely determined by the ranks of the powers
of (T — AE). Let N(m, A) be the number of Jordan blocks of size
m for the eigenvalue A. Let 1y = rank((7 — A&)X). The geometric
multiplicity dim Ker(7 — AE) = n — rq is the total number of Jordan
blocks for A (since each block contributes exactly one eigenvector).
Generally, for a single block J,;(A), the rank of (J;(A) — AI)* drops
by 1 for each power until it becomes o for all k > m. Summing over

all blocks, r,_1 — 1, counts the number of blocks of size at least k;
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taking a discrete difference isolates those of exact size m:
N(m,A) =11 —2"m + Tyg1.

Here r; = rank((7T — A&)K), with rg = n and 7, = 0 for sufficiently
large k (specifically for k >  dim V). Since the ranks ry are basis-
independent invariants of 7, the numbers N(m, A) are unique.

The Jordan-Chevalley Decomposition

The Jordan Canonical Form allows us to decompose any operator
into a diagonalisable part and a nilpotent part.

Theorem 6.6. Jordan-Chevalley Decomposition.
Let 7 be a linear operator on a finite-dimensional vector space V over
an algebraically closed field. There exist unique operators S (semisim-
ple/diagonalisable) and A (nilpotent) such that:

T=S8S4+N and SN =NS.

Furthermore, S and N can be expressed as polynomials in 7.

Proof

Consider the eigenspace decomposition V. = @ V(A;) given by the
primary decomposition. Define S to be the operator that acts as
A;€ on each subspace V(A;). Since V has a basis of eigenvectors for
S (the union of bases for each V(A;)), S is diagonalisable. Define
N =T-=8.0nV(A), N acts as T — A;E, which is nilpotent by the
definition of root subspaces. Since N is nilpotent on each invariant
summand, it is nilpotent on V. Commutativity follows because S
is a polynomial in 7 (using Lagrange interpolation to match eigen-
values on the blocks), and 7 commutes with itself. Uniqueness is
proved by observing that if 7 = &’ + N’ is another such decompo-
sition, § — 8’ = N’/ — N. The LHS is diagonalisable and the RHS is
nilpotent; the only operator that is both is the zero operator.

|

Example 6.4. Computing the Decomposition via Polynomials.
Consider the operator T on R? represented by the lower triangular

matrix:
2 0 0
A=1-1 2 0
0 0 -1

The characteristic polynomial is p(t) = (t — 2)?(t + 1). Since the
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rank of A — 2I is 2 (nullity 1), the geometric multiplicity of A = 2
is 1, strictly less than the algebraic multiplicity 2. Thus, A is not
diagonalisable. The minimal polynomial is m(t) = (t —2)%(t +1).
To find the semisimple part S and nilpotent part N, we use the
partial fraction decomposition (Bezout’s identity) on the factors

of m(t). Let pi(t) = t+ land pp(t) = (t — 2)%. We define
A@#) = pa(t) = (t—2)2and fo(t) = pi(t) = t+ 1. We seek
polynomials g1, g2 such that:

A1) + fo(t)ga(t) = 1.
Using the Euclidean algorithm, we find:

1 —t+5
gi(t) = 9 (t) = .

O

Check: J(2 —4t+4) + 5(t+1)(—t+5) = J(P2 — 4t +4— 2+ 4t +
5)=1.

The projections onto the generalized eigenspaces are E; =
f1(A)g1(A) and E; = f>(A)g2(A).

E; = %(A —20)?, Ey= é(A+I)(5I—A).

Calculating these yields:

0 00 100
Ey=10 0 0|, E2=1{0 1 0
0 01 0 00
The semisimple part S is the weighted sum of projections by eigen-
values:
20 0
S=(-1)E;+2E,=10 2 0
00 -1

(In this specific basis, S happens to be diagonal, though usually it is
just diagonalisable). The nilpotent partis N = A — S:

0 0 O
N=|-1 00
0 00

One can verify N> = 0 and SN = NS.
#b
Remark.

The decomposition A = S + N with SN = NS is particularly useful
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for computing matrix exponentials. Since S and N commute, e/ =

eStN = %N, ¢S is easily computed (diagonalise S), and eV is a fi-

. ~1 Nk . o
nite sum Z,'(":Ol % since N is nilpotent.

Example 6.5. Calculating Jordan Structure. Let A be a matrix with
characteristic polynomial p(A) = (A — 2)% Suppose the ranks of
(A —2I)are: ry =2, =1, r3 = 0. Using the formula:

N(1,2)270—271+V2:4—2(2)+1:1.

N(2,2)=r —2r+r3=2—-2(1)+0=0.
N(3,2) =r;—2r34+r,=1-0+0=1.

I

Thus, A has one block of size 1 and one block of size 3: |

diag(/3(2),J1(2))-

$o19]

When the field is not algebraically closed (e.g., R), the Jordan form
may not exist because eigenvalues might not lie in the field. In this
case, we use the Rational Canonical Form, which relies on cyclic
subspaces for the operator 7 itself rather than its nilpotent parts.

Definition 6.4. Cyclic Vector.
A vector v is cyclic for an operator 7 if the vectors v, 7o, .. ., 7" 1y form
a basis for V. The space is then called a cyclic space.

Example 6.6. Cyclic and Non-Cyclic Vectors. Consider the operator

T on IR? defined by 7 (x1,x2) = (0, x1).

- Letv = e; = (1,0). Then Tv = (0,1) = e and 7?v = 0. The set
{e1,e2} spans R?, so e; is a cyclic vector.

- Letw = e = (0,1). Then 7w = (0,0). The cyclic subspace
Z(w; T) is span(ey ), which is not the whole space. Thus e; is not
cyclic.

.4

Proposition 6.2. Cyclic Subspace Properties.

Let Z(x; T') be the cyclic subspace generated by x.

1. Z(x;T) = span(x) if and only if x is an eigenvector of 7.

2. If V is a cyclic space with cyclic vector v, then the minimal polyno-
mial y7(t) equals the characteristic polynomial p7(t), and both equal
the T -annihilator p,(t).

A

3

Proof
1. (=) IfZ(x;T) = span(x), then Tx € Z(x;T) implies Tx =

123
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Ax for some A € F. Since x generates the subspace (assumed
non-zero), x is an eigenvector.

(<) If Tx = Ax, then for any polynomial ¢(¢), g(7T)x =
g(A)x € span(x). Thus Z(x; T) C span(x), and equality holds.

2. Letn = dim V. Since v is cyclic, the set B = {v,Tv,.. .,7'"*17)}

is linearly independent and forms a basis. The annihilator

pPo(t) is the unique monic polynomial of least degree such that

po(T)o = 0.1fdegp, = k < n,then T¥v would be a linear

combination of v, ..., T* 1o, contradicting the independence of

B. Thus deg p, = n.

Since u7(7T) = O, we have u7(T)v = 0, so p, divides p7. Con-

versely, for any w € V, since v generates V, we can write w =

g(T)v for some polynomial g. Then:

po(T)w = po(T)g(T)o = g(T)po(T)v = g(T)0 = 0.

Thus po(7) annihilates all vectors, so y7 divides p,. Since they
are both monic and divide each other, 5 = py. Finally, prisa
monic polynomial of degree n. By Cayley-Hamilton, yg divides
pr. Since deg y = deg p, = n, we must have u7 = pr.

If V is cyclic with minimal polynomial " — Z;‘:_Ol a;t!, the matrix of 7
in the basis B = (7" 'v,...,v) takes the form of a companion matrix

(or cyclic block):
a,.1 1 0 0
a,_» 0 1 0
Clp)=1{ : =+ -
ag 0 0 --- 1
ag 0 0 --- 0

Every operator admits a decomposition V. = Z; @ - - - @ Z; where
each Z; is a cyclic subspace. The resulting block diagonal matrix of
companion matrices is the Rational Canonical Form. Unlike Jordan
form, this requires no field extension.

Finding the Similarity Matrix

Finding the matrix C such that C"'AC = ] is equivalent to solving
the linear system AC = C]J. In practice one constructs the basis of
generalized eigenvectors explicitly. For a chain ending in eigenvector
v (Where (A — AI)v = 0), one solves (A — AI)vy = v, (A — Al)vs = vy,
etc., moving upwards.



Example 6.7. Projection Matrix. Consider the matrix S of all ones
Sij = 1. S2 = nS. The minimal polynomial is t(t — n). Since
roots are distinct (0 and n), S is diagonalisable. Rank is 1, so the
eigenvalue o has geometric multiplicity n — 1. ] = diag(n,0,...,0).
The transition matrix C can be found by picking one eigenvector for
A =mn(eg,(1,...,1)T) and n — 1 independent vectors in the kernel
of S (vectors summing to o).

E X

6.5 Admissibility and Decomposition

To establish the cyclic decomposition for general operators (including
the Rational Canonical Form), we formalise the conditions under
which a subspace can be "split off" as a direct summand. This leads
to the concept of T-admissibility, which is central to proving the
general structure theorem without assuming field closure.

Definition 6.5. T-Conductor and Annihilator.

Recall from chapter 5 that the T-conductor of a vector v into a subspace
W is the set Sp(v, W) = {f € F[t] | f(T)v € W}. This set is non-
empty (it contains the minimal polynomial of T) and is closed under
addition and multiplication by any polynomial. Consequently, there
exists a unique monic polynomial of lowest degree in St(v, W) that di-
vides every other polynomial in the set. We refer to this specific poly-
nomial as the T-conductor. The T-annihilator of v, denoted p,(f), is
the T-conductor of v into the zero subspace {0}. It is the unique monic
polynomial of lowest degree such that p,(T)v = 0.

Definition 6.6. T-Admissibility.

Let W be a T-invariant subspace of V. We say W is T-admissible if for
every polynomial f(t) and every vector v € V, the condition f(T)v €
W implies there exists a vector w € W such that f(T)v = f(T)w.

Remark.

The motivation for this technical definition lies in the problem

of finding invariant complements. If W is a T-invariant sub-

space, there does not necessarily exist a subspace W’ such that

V =W @ W' and W' is also invariant. However, if W is part of such
a decomposition, it must be T-admissible.

Lemma 6.1. Invariant Direct Sums imply Admissibility.
Let V. = W @& W’ where both W and W’ are T-invariant. Then W is
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T-admissible.

7132
Proof
Letv € V and f(f) be a polynomial such that f(T)v € W. Since
V =W ® W, we can write v = w + @’ uniquely, withw € W,w' €
W'. By linearity, f(T)v = f(T)w + f(T)w'. Since W and W’ are in-
variant, f(T)w € Wand f(T)w' € W’. We are given that f(T)v €
W. Rearranging the equation:

f(T)w' = f(T)v — f(T)w.

The RHS is in W (difference of two vectors in W). The LHS is in
W'.Since W N W' = {0}, we must have f(T)w’ = 0. Thus
f(T)v = f(T)w.Sincew € W, the condition for T-admissibility
is satisfied.

Intuitively, T-admissibility ensures that if a vector "looks like" it be-
longs to W relative to the action of polynomials in T, we can find a
representative actually inside W that behaves identically under that
polynomial action.

Theorem 6.7. Cyclic Decomposition Theorem.

Let T be a linear operator on a finite-dimensional vector space V. There
exist non-zero vectors vy, ...,vr € V with T-annihilators p;, ..., p; such
that:

1. V=Z(v;T)®Z(v; T) D+ ® Z(vy; T).

2. py divides py_q fork=2,...,r.

Furthermore, the integer r and the polynomials py, ..., pr are uniquely
determined by T.

T3

The polynomials p;(t) are called the invariant factors of T. The first
polynomial py (t) is the minimal polynomial of T, and the product
[1pi(t) is the characteristic polynomial (up to a scalar factor).

Proof

The proof is constructive and relies on T-admissibility. We proceed
by induction. Let Wy = {0}, which is trivially T-admissible. Sup-
pose we have constructed Wy_1 = Z(v;;T) & -+ & Z(vr_1; T).
If Wi + V, we find a vector vj such that the T-conductor
St(vk, Wi_1) is maximal among all vectors in V \ Wi_q. Let
px =  St(vg, Wx_1). We define Z(vg; T) and show that W, =
Wi_1 @ Z(uv; T)isadirect sum and is T-admissible. The divisi-
bility condition py |  px_1 arises from the maximality of the con-
ductor. Specifically, since v;_1 had a "larger" conductor at the
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previous step, the structure of the cyclic subspaces enforces the
divisibility chain. The process terminates when W, = V. The
uniqueness of the invariant factors py, ..., pr follows from the fact
that they are determined by the greatest common divisors of the
minors of the matrix fI —  A. Specifically, if Dy (t) is the greatest
common divisor of all k x k minors of tI — A, then pi(t) can be
recovered from the quotients of these scalar invariants (specifically
pr—j+1(t) = Dy_j41(t)/Dy_j(t)). Since determinants are basis-
independent, these polynomials are unique to the operator.

The cyclic decomposition allows us to represent any operator by a
matrix composed of companion matrices, regardless of whether the
field is algebraically closed.

Theorem 6.8. Rational Canonical Form.
Every square matrix A over a field F is similar to a block diagonal ma-

trix
C(p1) O 0
0 C 0
R= ) ,
0 0 Clp)

where C(p;) is the companion matrix of the polynomial p;(t), and py(t)
divides px_1(t) for k = 2,...,r. This matrix R is called the Rational

Canonical Form of A.
i

Example 6.8. Rational Form Computation. Consider the matrix

5 —6 —6
B=|-1 4 2
3 -6 —4

The characteristic polynomial is xp(t) = (t — 1)(t — 2)2. The min-
imal polynomial is up(t) = (t —1)(t —2) = > — 3t + 2. Since
Up # xp, there must be more than one invariant factor. The invari-
ant factors must satisfy p; = pp and [Ip; = xp, with p» | p1. The
only possibility is p1(t) = (t —1)(t — 2) and po(t) = (t —2). The
companion matrix for py(t) = t? — 3t + 2 is:

Cpm) = [‘1’ ‘32] .

The companion matrix for py(t) = t — 2 is simply [2]. Thus, the Ra-
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tional Canonical Form is:
3
0
Note that B is diagonalisable (eigenvalues 1, 2, 2 with distinct
eigenvectors), but the Rational Form groups the cyclic components
explicitly.

E
Remark.
The Rational Canonical Form is "rational" because it requires no
field extension to compute. It relies only on operations within the

field F, unlike the Jordan Canonical Form which may require split-
ting fields to find eigenvalues.

6.6 Exercises

1. Determinant of the Shifted Matrix. Let S be the n X n matrix
of all ones from example 6.7. Compute the determinant of the

matrix:
m -1 —1
-1 m —1
A p—

Show that det A = xs(m + 1), where xs(f) is the characteristic
polynomial of S.

2. Classification of Nilpotent Matrices. Up to similarity, the follow-
ing matrices exhaust all nonzero 4 x 4 nilpotent matrices:
A1 = J2(0) @ J1(0) & J1(0), Az = J2(0) @ J2(0),
Az = J3(0) ® 1(0), Ay = J4(0).

Determine which A; each of the following matrices is similar to:

000 0 0010

My |00 o011
000 0 0000
00 0 0 000 0
0 0 0 0] 0 0 0 1
1

My — 0 00f 00 00
1 -1 0 0 1 -1 .0 0
1 1 1 0] 0 0 00
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3. Reconstruction from Invariants.

(a) Given a characteristic polynomial x4 (t) = (t —3)*(t +2) and
rank(A — 3I) = 2, find the Jordan Canonical Form J(A).

(b) In the cases where rank(A — 3I) € {1,3,4}, can J(A) be
uniquely recovered? Explain why or why not.

4. Comparison of Matrices. Consider the matrices:

6 2 -2 6 2 2
A=|-2 2 2|, B=|-2 2 0
2 2 2 0 0 2

(a) Show that A and B have the same characteristic polynomial.
(b) Find the minimal polynomials y 4 (f) and pp(t).
(c) Find the Jordan forms J(A) and J(B). Are A and B similar?

5. Self-Duality. Prove that every matrix A € M, (C) is similar to its It suffices to prove this for a single

transpose AT, Jordan block.

6. Roots of Unity. Prove that for a matrix A € M,,(C), the relation
AN = I holds if and only if A is diagonalisable and its eigenvalues
are all N-th roots of unity.

7. The Ring of Magic Squares. Let Mag,(Q) denote the set of n x n
magic squares (matrices where all row sums, column sums, and
main diagonal sums are equal). Verify directly that:

1 2 0
A=10 1 2| € Mag;(Q),
2 01

but A% ¢ Mag,(Q). Conclude that the set of magic squares is Use the Cayley-Hamilton theorem to
express A™ as a linear combination

. . . . o of I, A, A%. Note that this property is
semi-magic squares, which is closed under multiplication). specific to n = 3.

not closed under multiplication. (Contrast this with the set of

8. Higher Order Magic Squares. Verify that for any m > 2, the
matrix A™ is not a magic square, where:

2000
00 1

A= M .
0110

Using this, show that for all n > 4, there exists an n X n magic
square matrix whose m-th power (m > 2) is not a magic square.

1

9. Jordan-Chevalley Computation. Let A = 1 3

1 S Mz(IR)

(@) Determine the semisimple part S and the nilpotent part N of
the decomposition A = S + N such that SN = NS.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

(b) Express S and N as polynomials in A.

Jacobson’s Lemma for 2 x 2. Prove that for any three matrices
X,Y,Z € M,(R), the following identity holds:

(X, Y% z] =0,
where [X, Y] = XY — YX is the commutator.

Classification via Minimal Polynomials. Let N; and N, be 3 x 3
nilpotent matrices over a field F. Prove that N; and N; are similar
if and only if they have the same minimal polynomial. Give a
counter-example to show this is false for 4 x 4 matrices.

Constructing Jordan Forms. If A is a complex 5 x 5 matrix with
characteristic polynomial f(x) = (x —2)3(x + 7)? and minimal
polynomial p(x) = (x —2)?(x +7), determine the Jordan Canoni-
cal Form of A.

Enumerating Similarity Classes. How many distinct similarity
classes of 6 X 6 complex matrices exist that have the characteristic
polynomial x(x) = (x +2)*(x — 1)??

Differentiation Operator. Let V = P—3(C) be the space of poly-
nomials of degree at most 3. Let T : V — V be the differentiation
operator T(f) = f’. Find the Jordan form of T.

Rational Canonical Form Calculation. Find the minimal poly-
nomials and the Rational Canonical Forms for the following real

matrices:
0 -1 -1 0 -1 0 0 o
Ail=11 0 0], Ay=1]1 0 1|, A3= CO,SQ Smg].
— S1In
1 0 0 0 1 Sy cos

Similarity Criteria. Prove that if A and B are 3 x 3 matrices over
a field F, a necessary and sufficient condition for similarity is that
they share the same characteristic and minimal polynomials.

Invariant Complements. Let T be a linear operator on a finite-
dimensional space V, with range R and null space N.

(a) Prove that R has a complementary T-invariant subspace if
and only if RN N = {0}.

(b) If RN N = {0}, prove that N is the unigue T-invariant sub-
space complementary to R.

Non-Splitting Subspaces. Let T be the linear operator on R3
represented by:

BN

|
o = N
o N o
w o o
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Let W be the null space of T — 2£. Prove that W has no comple- Consider the action of T on the gen-
eralized eigenspace associated with

mentary T-invariant subspace. : |
eigenvalue 2.

19. Cyclic Vectors in IF2. Let T be a linear operator on F2. Prove that
any non-zero vector which is not an eigenvector for T is a cyclic
vector. Deduce that T has a cyclic vector unless T is a scalar multi-
ple of the identity.

20. Cyclicity Inheritance. Prove that if T2 has a cyclic vector, then T
has a cyclic vector. Is the converse true?

21. Nilpotent Cyclic Generators. Let N be a nilpotent operator on an
n-dimensional space V. Suppose N"~1 = 0. Leta € V such that
N"=1g £ 0.

(a) Prove that a is a cyclic vector for N.
(b) Describe the matrix of N in the ordered basis {a, Na,..., N""la}.

22. Companion Matrix Characteristic. Give a direct proof (by ex-
panding minors or induction) that the characteristic polynomial of
the companion matrix C(p) is exactly p(t).

23. Diagonalisability and Cyclicity. Let T be a diagonalisable opera-
tor on an n-dimensional space V.

(a) Prove that T has a cyclic vector if and only if T has n distinct
eigenvalues.

(b) If T has distinct eigenvalues, construct a cyclic vector explic-
itly as a sum of eigenvectors.

24. The Double Commutant. Let T be a linear operator on a finite-
dimensional space V. Prove that if T has a cyclic vector, then any
linear operator U which commutes with T (i.e, UT = TU)is a
polynomial in T.

25. Square Roots of Nilpotents. Let N be an n X n matrix such that
N" = 0 but N"~! # 0 (where n > 2). Prove that N has no square
root; that is, there is no matrix A such that A2 = N.

26. Dimension of the Commutant. Let C(A) = {X € M,(C) | XA =
AX} be the commutant of A.

(a) Use the result of Double Commutant to show that if A is
regular (i.e., admits a cyclic vector), then dim C(A) = n.

(b) Prove that in general, dim C(A) > n.

(c) Show that dim C(A) = n if and only if the characteristic and
minimal polynomials of A are identical.

27. Common Eigenvectors. Let {A;};c; be a family of pairwise com- Proceed by induction on dim V. Con-
sider the eigenspace of one non-scalar

muting linear operators on a non-zero finite-dimensional vector
operator Ay.
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space V over an algebraically closed field. Prove that there exists a
non-zero vector v € V that is an eigenvector for every A;.

28. The Matrix Exponential. For A € M,,(C), defined e** = y_3° ) AF/k!.
(a) Use the Jordan form to calculate eln(d),
(b) Prove that det(e?) = e"(4),
(c) Prove that the map exp : M, (C) — GL,(C) is surjective.
(d) Is the map exp : M, (R) — GL,(R) surjective? (Consider a
matrix with negative determinant).
29. Shift Operators and Infinite Dimensions. Let V = CN be the

space of complex sequences. Define the right shift R(xop, x1,...) =
(0,xq,x1,-..) and the left shift L(xg,x1,...) = (xq,x2,...).

(a) Find the point spectrum (eigenvalues) of R and L.

(b) Show that LR = £ but RL # €£.

(c) Contrast the spectral behaviour of these operators with the
finite-dimensional Jordan blocks.

30. Square Roots of the Identity. Let A € M,,(C).

(@) If A2 = I, prove that A is diagonalisable. What are the possi-
ble eigenvalues?

(b) If Ais a2 x 2 matrix such that A> = 0, must A be the zero
matrix?
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Symmetric Bilinear and Quadratic Forms

In this chapter, we restrict our attention to specific classes of bilinear
forms that arise naturally in geometry and physics: those possessing
symmetry properties. This leads to the definition of quadratic forms,
which generalize the notion of length and energy, and the problem of
finding bases that simplify these forms to sums of squares.

Symmetry and Skew-Symmetry

Definition 7.1. Symmetric and Skew-Symmetric Forms.

Let V be a vector space over a field F. A bilinear form f : VxV —
F is called:

Symmetric if f(x,y) = f(y,x) forall x,y € V.

Skew-symmetric if f(x,y) = —f(y,x) forall x,y € V.

Let F be the matrix of f relative to a fixed basis. The symmetry con-
dition translates directly to matrix operations. Since f(x,y) is a scalar,
it equals its own transpose. If f satisfies f(x,y) = ef(y, x) with

€ = +£1, then:

XTFY = f(x,y) =ef(y,x) =e(Y FX) =e(YTFX)" =eXF'Y.

This holds for all coordinate vectors X, Y, implying F' = €F. Thus,
symmetric forms correspond to symmetric matrices (F' = F) and
skew-symmetric forms to skew-symmetric matrices (F' = —F).
Crucially, this property is intrinsic to the form and independent of
the basis. If F/ = A" FA is the matrix in a new basis (/icoren 4.9):

(F)T =(ATFA)T = ATFTA = AT (eF)A = €F'.
Assumption. Characteristic Not 2. Throughout this chapter, we assume

that the characteristic of the field F is not 2.
Z
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This assumption is necessary to distinguish between symmetry and
skew-symmetry. If char F = 2, then 1 = —1, and the conditions
f(x,y) = f(y,x) and f(x,y) = —f(y, x) are identical. In this case,
the important distinction is between symmetric forms and alternat-
ing forms (where f(x,x) = 0 for all x). Every alternating form is
symmetric, but the converse fails if diagonal elements are non-zero.

Theorem 7.1. Decomposition of Bilinear Forms.
The space of bilinear forms £,(V, F) decomposes as the direct sum of
the subspace of symmetric forms £ and the subspace of skew-symmetric

forms L, :
Lo(V,F) =Ly (V,F)& L5 (V,F).

Proof

First, we show the sum is direct. Let f € L£J N £, . Then for any
x,y, wehave f(x,y) = f(y,x)and f(x,y) = —f(y,x). Summing
these gives 2f(x,yy) = 0. Since charF # 2, we can divide by 2 to
conclude f(x,y) = 0. Thus the intersection is trivial.

To show they span £, let f be an arbitrary bilinear form. We con-
struct:

filoy) = 5 (Fy) +f(yx) and filxy) = 5(f(xy) ~ F1,0)

It is routine to verify that f; is symmetric, f, is skew-symmetric,

and f = f; + fa.

7.2 Quadratic Forms

Symmetric bilinear forms are intimately related to functions of a
single vector variable known as quadratic forms.

Definition 7.2. Quadratic Form.

A function g : V — F is called a quadratic form if:

1. q(—v) =q(v) forallv € V.

2. Themap f: V x V — F defined by the polarization identity:

Foy) = 5+ y) —a(x) — ()

is a bilinear form.
The bilinear form f defined in (2) is called the polar form of q. Note
that f is automatically symmetric.

Conversely, given any symmetric bilinear form f, we can define a
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function g¢(x) = f(x, x). This function satisfies q7(—x) = f(—x, —x) =
(=1)2f(x,x) = q¢(x). Furthermore, expanding f(x + y, x +y) yields:

flx+y,x+y) = f(x,x)+f(x,y) + fy,x)+f(v,y) =q7(x) +2f(x,y) + 97 ().

Rearranging this recovers the polarization identity. Thus, the corre-
spondence is bijective.

Theorem 7.2. Bijection between Quadratic and Symmetric Bilinear Forms.

Every quadratic form g is uniquely determined by its polar bilinear form

f, specifically via g(x) = f(x, x).
il

Proof

From the definition of polarization, set y = —x:

£l —x) = 3(4(0) ~ 4(x) — q(~x).
Using bilinearity, f(x, —x) = —f(x, x). Using the property q(—x) =
q(x): )
(%) = 29(0) - q(x)
Since f is bilinear, f(0,0) = 0, implying 4(0) = 0. Thusq(x) =
f(x, x).
]

Notation 7.1. Matrix of a Quadratic Form Let B = (ey,...,e,) be a
basis for V. The matrix of the quadratic form g is defined to be the ma-
trix F = (f;;) of its polar form f. Explicitly:

fi = 5@l + ) — a(es) — (ep).

In coordinates, if x has column vector X, then q(x) = X FX = Y fijxix.

ik

The rank of g is defined as the rank of its matrix F. This is well-
defined because matrix rank is invariant under congruence F/ =
ATEA (corollary 4.2).

The kernel of the polar form f is often called the radical or the null
space of g, denoted L;:

Ly={ueV|f(uv)=0 VoeV}

Using the relation between rank and nullity for bilinear forms, we
have rankg = dim V — dim L.

135
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Canonical Forms

We seek a basis in which the expression for g(x) is as simple as possi-
ble. Ideally, we wish to eliminate the "mixed" terms x;x; (i # j) in the
polynomial expansion.

Definition 7.3. Canonical Basis.
A basis (eq,...,e,) is called a canonical basis for g if the matrix of g
in this basis is diagonal. In such a basis,

n

q(x) — Z/\,»xlz, where A; = f(ei/ei)-
i=1

Theorem 7.3. Existence of Canonical Basis.

Every symmetric bilinear form (and thus every quadratic form) on a
finite-dimensional space V admits a canonical basis.

i
We proceed by induction on n = dim V.
Base Case:

For n = 1, any basis vector ¢ yields a 1 x 1 matrix, which is diago-

nal.

FER &
Inductive Step:
Assume the result holds for dimension n — 1. If f is the zero form,
any basis is canonical (with all A; = 0).If f # 0, there exists a

vector e1 such that g(e;) = f(e;,e1) # 0. (If f(x,x) = 0forall x,
then by polarization f(x,y) = 0 for all x, y, contradicting f # 0).
Consider the linear functional ¢ : V — F defined by ¢(y) =
f(e1,y). Since f(ej,e1) # 0, ¢ is not the zero functional. Let L =
Ker¢p = {y € V | f(e1,y) = 0}. By the Rank-Nullity Theorem,
dim L = n — 1. We restrict f to the subspace L. By the inductive hy-
pothesis, L has a canonical basis (e, ..., en) such that f(e;ej)) = 0
for i # j where i,j > 2.

By the definition of L, f(ej,e;) = 0 forall i > 2. Since f is symmet-
ric, f(e;,e1) = 0 as well. It remains to show that (e, ...,e,) is a ba-
sis for V. Suppose aje; + - - - + aye, = 0. Applying the functional ¢:

¢ (Zaiei) = uclf(el,el) + iaif(el,ei) = lef(el,el) =0.

Since f(e1,e1) # 0, we must have ay = 0. The remaining relation
Yo' ,ae; = 0liesin L, and since (e, ..., ey) is a basis for L, all o; =
0. Thus the matrix of f in this basis is diagonal.
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Corollary 7.1. Diagonal Congruence. For any symmetric matrix F, there
exists an invertible matrix A such that A" FA is diagonal.

e

Proof

Let f be the symmetric bilinear form on F" defined by f(x, ) =
X T FY relative to the standard basis. By theorem 7.3, there exists

a canonical basis C for F" such that the matrix of f in this basis,
denote it D, is diagonal. Let A be the transition matrix from the
standard basis to the canonical basis C. According to the change of
basis formula for bilinear forms (see t/icorem 4.9), the matrix repre-
sentation transforms as D = ATFA. Since D is diagonal and A is

invertible (being a transition matrix), the result holds.
]

Lagrange’s Method of Completing the Square

While the theorem above guarantees existence, Lagrange provided

an algorithmic method to compute the canonical basis by explicitly
eliminating mixed terms. Given g(x) = }; ; fijxix;j, we distinguish two
cases for the recursive step:

Case 1: Pivot Exists (f11 # 0). We group all terms involving x1:
5 n n
q(x) = f11x] +2x9 Zfljx] + Z fl']‘xl‘x]‘.
j=2 ij=2

We complete the square for x;:

2
1 L ,
q(x) = I <f11x1 +]gf1jxj> +q (x2,...,xn).

The term g’ contains no x1. We define a coordinate change:
n
X = fuxn + Zfljxj/ xp = xi for k > 2.
~

]

This transformation is invertible. We then repeat the process for g’
on the remaining variables.

Case 2: No Diagonal Pivot (f;; = 0 for all i). 1f g is not zero, there
must be a mixed term f;jx;x; # 0. Without loss of generality,
assume f1, 7 0. We apply the coordinate change:

X1 =up+upy, xp=u;—up, Xp=ufork>2.
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The term 2f15x1x; becomes 215 (u3 — u3). The new expression
for g now has non-zero coefficients for 1 and 13, allowing us to
proceed as in Case 1.

Example 7.1. Canonical Reduction. Let g(x) = x1x; in R?. The ma-

trix is
0 1/2
1/2 0 |’
Since diagonal entries are zero, we use Case 2. Let x; = 15 +
Y2, %2 = Y1 — Y2-

q=(y1+y2)(y1 —12) = ¥2 — v3.

In the basis corresponding to y, the matrix is diag(1, —1).

Eal

7.4 Real Quadratic Forms and Inertia

While theorem 7.3 guarantees that any quadratic form over a field F
(with char F # 2) can be diagonalised, the specific diagonal entries A;
depend on the algebraic structure of F. Over the field of real numbers
IR, we can scale the basis vectors to normalize the non-zero coeffi-
cients to +1. Specifically, if A; > 0, the substitution ¢ = A;l/ Ze;
yields a coefficient of 1. If A; < 0, the substitution ¢/ = (—A;)~1/2e;
yields —1.

Theorem 7.4. Standard Form over R.
Let g be a quadratic form on a finite-dimensional real vector space V.
There exists a basis in which g takes the standard form:

where r = rankgand 0 <s <.

il
Proof
By theoren 7.3, there exists a basis (i1, ..., u,) in which the matrix
of g is diagonal. That is,

n
2
9(x) = ) Awi,
i=1
where y; are the coordinates relative to this basis. We reorder the

basis vectors so that the positive coefficients appear first, followed
by the negative coefficients, and finally the zeros. Let s be the num-
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ber of positive coefficients and ¥ — s be the number of negative
coefficients. (The remaining n — r coefficients are zero). We define a
new basis (ey, ..., e,) by scaling the vectors u;:

e IfA; > O(forl < i < s)lete; = ﬁui. Then f(e;,¢;) =
xS (i up) = 1.

e IfA; < O(fors < i < 7),lete; = \/%\iui. Then f(e;, e;) =
- f (g u;) = 1.

e If A; =0 (forr <i < mn),lete; = u;. Then f(e;, e;) = 0.

In this normalised basis, the diagonal entries are exactly s ones,
followed by r — s minus ones, followed by zeros. Thus g takes the
stated form.

While the canonical basis is not unique, the integers s and r are in-
variants of the quadratic form. The invariance of the rank r is a
consequence of the invariance of matrix rank. The invariance of s,
the number of positive squares, is the content of Sylvester’s Law of
Inertia.

Theorem 7.5. Sylvester’s Law of Inertia.
Let g be a real quadratic form. The number of positive coefficients s ap-
pearing in any diagonal representation of g is an invariant of g, called
the positive index of inertia.

L
Proof

Suppose there exist two bases B = (ey,...,e,) and C = (uy,...,uy)
giving distinct standard forms:

gx) =3+ 42 =22, — - —x2 (relative to B),
q(x) :y%+ ce —i—yf —y‘fﬂ — —yZ‘ (relative to C).

Assume for contradiction thats # ¢; without loss of generality, let
s > t. Consider the subspaces defined by the "positive" part of the
first decomposition and the "non-positive" part of the second:

U =span(ey,...,es) and W =span(usiq,...,Uy).

For any non-zero vector u € U, we have g(u) > 0. For any vector
w e W,qg(w) < 0.ThusUNW = {0}. We compute the dimen-
sions: dimU = s and dim W = n — t. Using the dimension formula
for sums of subspaces:

dim(U+W) =dimU+dimW —dim(UNW) =s+ (n—t) —0=n+ (s —t).
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Since s > t, this implies dim(U + W) > n = dim V, which is impos-
sible. Thus s = t.
|

Definition 7.4. Signature.

The signature of a real quadratic form is the pair (s, —s), represent-

ing the number of positive and negative terms in its standard form. Some-
times the signature is defined as the integer s — (r —s) = 2s —r. The
integer r — s is called the negative index of inertia.

7.5 Definiteness and Sylvester’s Criterion

In applications such as optimisation and mechanics, the sign of the
values taken by a quadratic form is of critical importance.

Theorem 7.6. Spectral Theorem.
Recall that a basis {v;} is orthogonal

Let A be a real symmetric matrix. Then all eigenvalues of A are real, ifv;-0; = Ofor i # j. A matrix P is

and there exists an orthogonal basis of R" consisting of eigenvectors orthogonal if PTP = I. The proof of
of A. In particular, A is diagonalisable by an orthogonal matrix. this fundamental result is developed in
% the exercises.

Definition 7.5. Definiteness.

A non-degenerate real quadratic form g on V is called:

Positive definite if q(x) > 0 for all x # 0.

Negative definite if q(x) < 0 for all x # 0.

Indefinite if g takes both positive and negative values.

If degeneracy is allowed, we say g is positive semi-definite if q(x) >
0 for all x.

In terms of the standard form invariants, g is positive definite if and
only if s = r = n (signature (n,0)), and positive semi-definite if

s = r < n (signature (r,0)). A symmetric matrix A is called positive
definite if its associated form g(x) = x " Ax is positive definite.

Theorem 7.7. Factorisation of Positive Definite Matrices.
A real symmetric matrix F is positive definite if and only if there ex-
ists a non-singular matrix A such that F = A" A.

g
Proof
If F is positive definite, its canonical form is the identity matrix I.

Thus F is congruent to I, meaning there is an invertible P such that
PTFP = I,or F = (P~1)T(P~1). Setting A = P~! yields the result.
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Conversely, if F = AT A with A invertible, then for any x # 0:
x"Fx=x"ATAx = (Ax) (Ax) = || Ax|]%

Since A is invertible, Ax # 0, so || Ax||? > 0.
n

Example 7.2. Stability of Critical Points. Let¢ : R?> — Rbea
smooth function. The local behaviour of ¢ near a critical point xg
(where V¢(xp) = 0) is determined by the Hessian matrix H of
second derivatives. The Taylor expansion gives:

§(x) = plx0) + 5 (x — x0) TH(x — x0).

The term g(v) = v Ho is a quadratic form.

- If H is positive definite, x( is a local minimum.
- If H is negative definite, xj is a local maximum.
- If H is indefinite, x( is a saddle point.

F]
Sylvester’s Criterion Figure 7.1: A saddle Pomt
corresponding to an in-
While eigenvalues provide a test for definiteness (all A; > 0 by the definite quadratic form
Spectral Theorem), computing them is non-trivial. Sylvester’s crite- q(x,y) = x> — 2.

rion offers a determinant-based test.

Definition 7.6. Leading Principal Minors.
Let F = (fj;) be an n x n matrix. The leading principal minors are
the determinants of the top-left k x k submatrices:

fir - fik
Ap=det| : .|, k=1,...,n

fa - fik

By convention, Ag = 1.

Theorem 7.8. Jacobi’s Method.
Let g be a quadratic form with matrix F. If all leading principal minors
Ay are non-zero, there exists a basis in which g has the diagonal form:

g(x) = i Eyﬁ-
k=1 Ak
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Proof

We proceed by inductiononn. Let Vi, = span(ey,...,e). The
restriction of g to V;,_1 has matrix F,_1 (the top-left block) with
minors Ay, ..., A,_1. By hypothesis, these are non-zero. By the
inductive hypothesis, there exists a basis (u1,...,u,_1) for V,_1
diagonalising the restriction:

v () = ”il Ak-1 o

g1V, = A Yk
This implies the polar form f satisfies f(u;,u;) = 0fori # jin this
range. We seek a final basis vector u, such that f(u;, u,) = 0 for all
i < n. This requires u, to be f-orthogonal to V,,_;. The conditions
f(ei,un) = 0Ofori = 1,...,n — 1form a system of n — 1 linear
equations. Since A,_; # 0, the non-degenerate restriction ensures
a solution exists that is linearly independent of V;,_;. Let A be the
change of basis matrix from the standard basis to (uj, ..., u,). Since
the new matrix F’ is diagonal,

n
det F' = [ T f(uk, ug)-
k=1

AlsodetF’ = det(ATFA) = (detA)?A,. The product of the first
n — 1 diagonal entries is A,,_; (by applying the determinant relation
to the restriction). Thus:

F(tn, ) - Ap_q(det A, _1)? - (scaling) = A, (det A)?.

Proper normalisation of u, ensures the term simplifies to

f(un/ un) =An/A 1.
[ |

Corollary 7.2. Sylvester’s Criterion. A real quadratic form is positive
definite if and only if all its leading principal minors are strictly pos-
itive:
A >0, N >0, ..., A,>0.

Hem
Proof
If Ay > 0 for all k, then the ratios Ay /Ay_ are all positive. By
Jacobi’s formula, the canonical coefficients are positive, so ¢ is pos-
itive definite. Conversely, if g is positive definite, then restricted to
any subspace V4, it remains positive definite. The determinant of a

positive definite matrix is positive (product of positive eigenvalues).
Thus Ay = det(F|y,) > 0.
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Structure of Skew-Symmetric Forms

We conclude this chapter by returning to skew-symmetric forms. Let
f be a skew-symmetric bilinear form on V (so f(x,y) = —f(y, x)).
As in the symmetric case, we can define the radical Vjj = Ker f. We
restrict our attention to the non-degenerate case where V) = {0}.

Theorem 7.9. Even Dimension of Non-Degenerate Forms.
If V admits a non-degenerate skew-symmetric form f, then dim V must

be even.
T3

Proof
Let F be the matrix of f. Then F' = —F.

detF = det(F") = det(—F) = (—1)" detF.

If nis odd, det F = —detF, implying detF = 0 (since char F # 2).
This contradicts non-degeneracy. Thus n is even.

The canonical structure of such forms is built from 2-dimensional

subspaces.

Definition 7.7. Hyperbolic Plane.

A 2-dimensional subspace W equipped with a skew-symmetric form

f is called a hyperbolic plane (or symplectic plane) if f is non-degenerate
on W. It admits a basis (u,v) such that f(u,v) = 1. Since f is skew-
symmetric, f(u,u) = f(v,v) = 0and f(v,u) = —1. The matrix in

this basis is J, = (or its transpose).

0
-1
Theorem 7.10. Symplectic Decomposition.

Let V be a finite-dimensional space with a non-degenerate skew-symmetric
form f. Then V decomposes into an orthogonal direct sum of hyper-

bolic planes:
V=WoW, & O Wy,

where dimV = 2m.

Proof

We use induction on dim V. Pick any non-zero vector e;. Since

f is non-degenerate, there exists e, such that f(eq, ep) # 0.
Scale e; so that f(e1,es) = 1.LetW; = span(ey,ep). The
restriction of f to Wi is non-degenerate (determinant 1). Let

Wi ={x e V] f(y,x) =0 ¥y € Wi}. Since f is non-degenerate

143
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onW, V. = W & Wll. The restriction of f to WlL remains non-
degenerate. By the inductive hypothesis, Wi~ decomposes into
hyperbolic planes.

|

Corollary 7.3. Canonical Form. For any skew-symmetric matrix F, there
exists an invertible matrix A such that

ATFA = diag(Jy,...,]2,0,...,0).
fesh

Proof

Let f be the skew-symmetric bilinear form on F" represented by
the matrix F. By the Symplectic Decomposition Theorem, the space
decomposes as an orthogonal direct sum of hyperbolic planes

Wi, ..., Wy, and a radical subspace Vj:

F'=W1 & - - W, dV.

For each hyperbolic plane W, there exists a basis (uy, vx) such that

- . 0 1 .
the restriction of f to Wy has matrix [, = 1 ol For the radical
Vo, the form is identically zero, so any basis yields a zero matrix.
We construct a basis B for the entire space by concatenating these
bases:

B = (ullvlluZ/UZI‘"/uHZ/UH’l/Z]/"‘/Zl)/

where z; form a basis for Vj. Since the decomposition is orthogonal,
f(x,y) = 0if x and y belong to distinct summands. Thus, the ma-
trix of f relative to B is block diagonal, with m blocks of ], and zero
blocks elsewhere. Let A be the transition matrix from the standard
basis to B. Then AT FA is the matrix of f in the basis B, which is
the desired canonical form.

For a skew-symmetric matrix F of even dimension 2m, the deter-
minant is a perfect square of a polynomial in its entries. This poly-
nomial is called the Pfaffian, denoted Pf(F). Specifically, det F =
(Pf(F))?. The Pfaffian satisfies the transformation property:

Pf(ATFA) = det(A) Pf(F).

For the standard symplectic block matrix [, = diag(J,...,J2), we
have Pf(Jo,,) = 1.
| Example 7.3. Pfaffian in Dimension 4. For a 4 x 4 skew-symmetric



matrix F = (f;;) with f; = —f;;:
PE(F) = fiafss — f1afoa + f1afos.

Squaring this expression yields det F.

E X

7.6 Exercises

1.

5.

Negative Definiteness via Minors. Let F be the symmetric ma-
trix of a real quadratic form 4. Let Aq,...,A, = detF be the
leading principal minors of F. Prove that g and F are negative def-
inite if and only if the signs of the minors alternate, starting with
negative:

(-D)fAr >0 forallk=1,2,...,n

Positive Entries vs. Positive Definite. Give counter-examples to
the following intuitions about positive definiteness:

(a) A positive definite matrix A = (a;j) such that some off-
diagonal entry is negative (a;; < 0).

(b) A symmetric matrix A = (a;;) with strictly positive entries
(a;; > 0 for all , j) that is not positive definite.

Parameterised Definiteness. Find all values of A, 4 € R for which
the following matrices are positive definite:

1
A=A
A

> = >
==

A 1 1
Al, B=|1 u
1 u 1

Composition of Forms. Let x = [x1, X3, x3] € C° and consider the
cubic form Q(x) = x5 + x3 + x3 — 3x1x2x3. Let € be a primitive
cube root of unity.

(a) Verify the factorisation:

Q(x) = (x1 4 x2 + x3) (x1 +ex + €2x3) (x1 + €2xp + x3).

(b) Prove the composition law: Q(x)Q(y) = Q(z), where the
components z; are symmetric bilinear forms in x and y (i.e.,

zi = Zj,k a](;{) X;Yx)- Find the explicit expressions for z1, 23, z3.
Perturbation of Identity. Let A be an arbitrary real symmetric

matrix. Prove that there exists ¢y > 0 such that for all |¢| < ¢, the
matrix B = E + €A is positive definite.
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Consider the connection between F and
—F and apply Sylvester’s criterion.

Consider the eigenvalues of B in rela-
tion to the eigenvalues of A.
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6. Rank and Signature Calculations. For each of the following real
quadratic forms, find the rank and signature using Lagrange’s
method (completing the square):

(@ gq(x) = x% + 2x1x + 2x§ +4xox3 + 5x§

(b) q(x) = x1x2 + x2x3 + X317

(© q(x) = Li<icj<a XiXj

7. Gram Matrices. Let V be a real vector space equipped with a

positive definite symmetric bilinear form (-, -) (an inner product).
Let vy,..., v, be vectors in V. The Gram matrix is defined as G;; =
<Ul', U]>

(a) Prove that G is always positive semi-definite.

(b) Prove that G is positive definite if and only if the vectors
v1,..., U are linearly independent.

8. The Spectral Theorem. In this exercise, we prove the Spectral
Theorem for real symmetric matrices. Let A be a real symmetric
matrix.

(a) Prove thatif A € C is an eigenvalue of A, then A € R. (Hint:
Consider 7' Av).

(b) Prove that eigenvectors corresponding to distinct eigenvalues
are orthogonal with respect to the standard dot product.

(c) Let f(x) = x" Ax for x € R". Show that the maximum of
f(x) on the unit sphere "~ is attained at an eigenvector of
A. (This establishes the existence of at least one real eigen-
value).

(d) Let v be an eigenvector of A. Show that the subspace W = v+

is invariant under A.

(e) Use induction to conclude that there exists an orthogonal
basis of R" consisting of eigenvectors of A.

9. Simultaneous Diagonalisation. Let A and B be two real symmet-
ric matrices.

(a) Prove that if A is positive definite, there exists an invertible

matrix P such that PT AP = [ and P ' BP is diagonal. First reduce A to I, then apply the
. . . o Spectral Theorem to the transformed B.
(b) Give a counter-example to show that if neither matrix is pos-

itive definite, they may not be simultaneously diagonalisable
by congruence, even if they are non-singular.
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10. Pfaffian Identity. For the 4 x 4 skew-symmetric matrix:

0 a b ¢
—a 0 d e

F =
-b —d 0 f|’
—c —e —f 0

calculate the Pfaffian Pf(F) = af — be + cd and verify explicitly
that (Pf(F))? = det(F).
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