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0
Review: Systems of Linear Equations

The primary objective of linear algebra is to solve the linear equation
Ax = b. Many practical linear problems can be modelled in this
manner. I expect you to know the very basics of

matrices; this includes sums, multiplica-
tion etc.0.1 Matrices and Linear Systems

An array of objects is a collection where we track the row and col-
umn of each object. Formally, a finite sequence is a function from
{1, . . . , n} to a set S. Similarly, an m × n array of objects in S corre-
sponds to a function a : {1, . . . , m} × {1, . . . , n} → S, where a(i, j) is
the entry in the i-th row and j-th column.

Definition 0.1. Matrix.
An m×n matrix is an array of objects with m rows and n columns. If
A is an m × n matrix, then Aij denotes the entry in the i-th row and
j-th column. We write:

A = [Aij] =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn


The i-th row of A is denoted rowi(A), and the j-th column is colj(A).
The set of m×n matrices with entries in a set S is denoted Sm×n. Specif-
ically, Rm×n and Cm×n denote matrices with real and complex entries,
respectively.

定義

Note

Distinguish between the matrix A (the array) and the entry Aij (a
scalar). The notation A = [Aij] indicates that A is the collection of
all such components.
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Example 0.1. Matrix Types.

· Let A =

1 2 3
4 5 6
7 8 9

 ∈ R3×3.

· Let B =

 i 10
0 3 + i

11 12

 ∈ C3×2.

· Matrices may contain objects other than numbers. For f , g, h :

R → R, M =

[
f g
h f

]
is a matrix of functions.

範例

Definition 0.2. Vector.
A vector in Rn is an ordered list of n real numbers. We write vectors
as columns:

v =


v1
...

vn

 ∈ Rn.

定義

Definition 0.3. System of Linear Equations.
We use matrices to solve linear problems. Let A ∈ Rm×n. Let b ∈ Rm

be a given vector, often called the right-hand side vector. We seek an
unknown vector x ∈ Rn such that

Ax = b.

Explicitly, this represents a system of m linear equations in n unknowns:

n

∑
j=1

Aijxj = bi for i = 1, . . . , m.

定義

Definition 0.4. Matrix Equality.
Two matrices A and B are equal, written A = B, if and only if they
have the same dimensions and corresponding entries are identical: Aij =

Bij for all i, j.
定義

Notation 0.1. Block Matrices We often construct larger matrices by con-
catenating smaller ones. If A is m × n and B is m × k, we write [A |
B] for the m× (n+ k) matrix formed by placing B to the right of A.

記法
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To develop intuition for linear systems, we first consider the case
where n = m = 2, allowing for geometric visualization. Each equa-
tion in the system Ax = b represents a line in the Euclidean plane
R2.
Consider the system:

2x1 + 3x2 = 1,

3x1 + 2x2 = 2.

Here, A =

[
2 3
3 2

]
and b =

[
1
2

]
.

· The first line passes through (1/2, 0) and (0, 1/3).
· The second line passes through (2/3, 0) and (0, 1).
Since the slopes are distinct (−2/3 vs −3/2), the lines are not par-
allel and must intersect at a unique point. This point represents the
unique solution to the system.

x1

x2

2x1 + 3x2 = 1

3x1 + 2x2 = 2

(0.8,−0.2)

Figure 1: Geometric interpreta-
tion of a unique solution.

However, not all systems possess a unique solution. Consider the
system:

2x1 + 3x2 = 1,

4x1 + 6x2 = 2.

The second equation is merely twice the first. Geometrically, these
equations describe the same line. Consequently, every point on the
line is a solution. The solution set S is infinite:

S =

{
(α, β) ∈ R2

∣∣∣∣ β =
1
3
(1 − 2α), α ∈ R

}
.

Finally, consider the inconsistent system:

2x1 + 3x2 = 1,

4x1 + 6x2 = 3.

Here, the lines have identical slopes but distinct intercepts. They are
parallel and never intersect. The solution set is empty.

x1

x2

L1

L2

Figure 2: Parallel lines repre-
sent an inconsistent system.

This geometric intuition is valuable but limited to two or three di-
mensions. For systems with many variables, we require an algebraic
method that can be automated.

0.2 Gaussian Elimination

We aim to formalise the method of elimination familiar from ele-
mentary algebra. The goal is to transform a system Ax = b into
an equivalent system Cx = d where the matrix C has a structure
that makes the system easy to solve. Specifically, we seek a C that is
upper triangular.
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Definition 0.5. Upper Triangular Matrix.
A square matrix C is called upper triangular if all entries below the prin-
cipal diagonal (the entries C11, C22, . . . , Cnn) are zero, i.e., Cij = 0 for
all i > j.

定義

Consider the reduction of our first example:

(System 1)

2x1 + 3x2 = 1

3x1 + 2x2 = 2

Multiplying the first equation by 3 and the second by 2 yields 6x1 +

9x2 = 3 and 6x1 + 4x2 = 4. Subtracting the modified second from
the first eliminates x1. A more systematic approach (Gaussian elim-
ination) typically proceeds to eliminate variables from subsequent
equations. Subtracting 3

2 times the first equation from the second
yields:

(System 2)

2x1 + 3x2 = 1

− 5
2 x2 = 1

2

The coefficient matrix is now C =

[
2 3
0 −2.5

]
, which is upper trian-

gular.

Back Substitution

Once the system is in the form Cx = d with C upper triangular, we
can solve it by backward substitution. Writing out the equations for
an n × n system:

C11x1 + C12x2 + · · ·+ C1nxn = d1

C22x2 + · · ·+ C2nxn = d2

... =
...

Cnnxn = dn

Provided Cnn ̸= 0, we find xn = dn/Cnn. We then substitute this into
the (n − 1)-th equation to find xn−1, and proceed recursively:

xi =
1

Cii

(
di −

n

∑
j=i+1

Cijxj

)
.

Elementary Row Operations

To perform this reduction systematically, we define specific opera-
tions on the rows of the matrix A. These are the Elementary Row
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Operations (EROs). We view an elementary row operation as a func-
tion e : Rm×n → Rm×n. There are three types of operations.

Definition 0.6. Type I: Scaling.
Multiply the s-th row by a non-zero constant α ∈ R \ {0}. The func-
tion e1 acts on A to produce a matrix A′ with entries:

A′
ij =

αAsj if i = s,

Aij if i ̸= s.

定義

Definition 0.7. Type II: Replacement.
Replace the s-th row by the sum of the s-th row and a multiple α of the
t-th row (where s ̸= t). The function e2 produces A′ with entries:

A′
ij =

Asj + αAtj if i = s,

Aij if i ̸= s.

定義

Definition 0.8. Type III: Interchange.
Interchange the s-th row and the t-th row. The function e3 produces A′

with entries:

A′
ij =


Atj if i = s,

Asj if i = t,

Aij otherwise.

定義

These operations are fundamental because they preserve the solution
set of the linear system. Furthermore, they are reversible.

Proposition 0.1. Invertibility of EROs.
Each elementary row operation e is a bijection. Its inverse e−1 is also
an elementary row operation of the same type.

命題

Proof

We construct the inverses explicitly:

1. If e1 multiplies row s by α ̸= 0, then the operation that multi-
plies row s by 1/α recovers the original matrix. This is a Type I
operation.

2. If e2 adds α times row t to row s, then adding −α times row t to
row s reverses the effect. This is a Type II operation.
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3. If e3 swaps rows s and t, applying the same swap again restores
the original order. This is a Type III operation.

Since an inverse exists for every A, the map is a bijection.
■

Proposition 0.2. EROs Preserve Solution Sets.
Let [A | b] be the augmented matrix of a system Ax = b, and let [A′ |
b′] be obtained from [A | b] by a single elementary row operation. Then
Ax = b and A′x = b′ have the same solution set.

命題

Proof

Each elementary row operation replaces one equation by an equiv-
alent linear combination of the equations, or swaps equations. Any
solution of Ax = b satisfies all linear combinations of its equa-
tions, so it satisfies the transformed system. Since the operation is
invertible, the reverse implication also holds. Thus the solution sets
agree.

■

These operations allow us to transform matrices into simpler forms
(Row Echelon Form) without altering the underlying relationships
between variables.

Definition 0.9. Row Echelon Form.
A matrix is in row echelon form if:
1. All non-zero rows are above any zero rows.
2. The leading (first non-zero) entry of each non-zero row is to the right

of the leading entry of the row above it.
3. All entries below each leading entry are zero.

定義

0.3 Equivalent Systems

We now investigate the conditions under which two distinct systems
of linear equations possess the same solution set. This concept is
central to justifying the Gaussian elimination process.

Linear Combinations of Equations

Consider the system of m linear equations in n variables, denoted by
(1):

n

∑
j=1

Aijxj = bi for i = 1, . . . , m.
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Definition 0.10. Linear Combination.
Given equations E1, . . . , Em, a linear combination is any equation of
the form

α1E1 + α2E2 + · · ·+ αmEm,

where α1, . . . , αm are scalars.
定義

We can form a new equation by taking a linear combination of these
m equations. Let α1, . . . , αm be scalars. Multiplying the i-th equation
by αi and summing over all i yields:

m

∑
i=1

αi

(
n

∑
j=1

Aijxj

)
=

m

∑
i=1

αibi.

Rearranging the terms to group coefficients of each xj, we obtain a
new linear equation:

n

∑
j=1

(
m

∑
i=1

αi Aij

)
xj =

m

∑
i=1

αibi.

It is immediate that any solution x satisfying the original system (1)
must also satisfy this new combined equation.
Now, consider a second system of k equations, denoted by (2):

n

∑
j=1

Cpjxj = dp for p = 1, . . . , k.

If every equation in system (2) can be obtained as a linear combina-
tion of the equations in system (1), then any solution to (1) is auto-
matically a solution to (2). The converse holds if every equation in (1)
is a linear combination of the equations in (2). This mutual depen-
dency leads to the definition of equivalent systems.

Definition 0.11. Equivalent Systems.
Two linear systems are said to be equivalent if every equation of each
system can be expressed as a linear combination of the equations of the
other system.

定義

Theorem 0.1. Equivalence Theorem.
Equivalent linear systems have the same solution set.

定理

Proof

Let S1 and S2 be the solution sets of system (1) and system (2)
respectively. If every equation in (2) is a linear combination of equa-
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tions in (1), then any x ∈ S1 satisfies all equations in (2). Thus
S1 ⊆ S2. Conversely, if every equation in (1) is a linear combination
of equations in (2), then any x ∈ S2 satisfies all equations in (1).
Thus S2 ⊆ S1. Therefore, S1 = S2.

■

Example 0.2. Non-Equivalent Systems. Consider system (1):

x1 + 2x2 + 5x3 = 0

x1 + 3x2 + 8x3 = 0

−x1 + x2 + 4x3 = 0

And system (2):

x2 + 2x3 = 0

x1 − x3 = 0

x1 + x3 = 0

System (2) has the unique solution x1 = x2 = x3 = 0. System (1),
however, admits the non-trivial solution x1 = 1, x2 = −3, x3 = 1.
Since the solution sets differ (S2 ⊊ S1), the systems are not equiva-
lent. Specifically, the third equation of system (2) cannot be a linear
combination of the equations of system (1).

範例

Row Equivalence

The algebraic process of taking linear combinations of equations
corresponds directly to performing row operations on the augmented
matrix of the system. We now formalise the relationship between
matrices.

Definition 0.12. Row Equivalence.
A matrix A is row equivalent to a matrix B, denoted A ∼ B, if B can
be obtained from A by a finite sequence of elementary row operations.

定義

Since each elementary row operation is invertible (proposition 0.1),
the relation ∼ is symmetric. Since the identity operation is an ERO,
it is reflexive. Since the composition of finite sequences is a finite
sequence, it is transitive. Thus, row equivalence is an equivalence
relation on the set of m × n matrices.
The connection between these two concepts is fundamental.
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Theorem 0.2. Row Equivalence and Solutions.
If two matrices A and C are row equivalent, then the homogeneous sys-
tems Ax = 0 and Cx = 0 have the same solution set.

定理

Proof

It suffices to prove this for a single elementary row operation, as the
general result follows by induction. Let C be obtained from A by
one operation e.

1. Each row of C is a linear combination of the rows of A (by def-
inition of EROs). Thus, any solution to Ax = 0 is a solution to
Cx = 0.

2. Since e is invertible, A can be obtained from C by the inverse
operation e−1. Thus, each row of A is a linear combination of the
rows of C. Hence, any solution to Cx = 0 is a solution to Ax = 0.

The solution sets are therefore identical.
■

Remark.

For non-homogeneous systems Ax = b and Cx = d, the systems
are equivalent if the augmented matrices [A|b] and [C|d] are row
equivalent.

Remark.

Equivalence in this sense is stronger than merely having the same
solution set, but it is the notion naturally preserved by row opera-
tions.

Row Reduced Echelon Form

We now define the specific "simple structure" we aim to achieve
through Gaussian elimination.

Definition 0.13. Row Reduced Echelon Form (RREF).
A matrix R is called a row reduced echelon matrix (i.e., it is in row re-
duced echelon form, RREF) if it satisfies the following four conditions:
Leading Ones: The first non-zero entry of each non-zero row is 1. This

entry is called the leading entry or pivot.
Zero Rows: All rows consisting entirely of zeros appear below all non-

zero rows.
Pivot Columns: If a column contains a leading entry of some row, then

all other entries in that column are 0.
Stepped Structure: Let the leading entry of the i-th non-zero row ap-

pear in column ci. Then c1 < c2 < c3 < · · · < cr. That is, the
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leading entry of a lower row always appears to the right of the lead-
ing entry of a higher row.

定義

Example 0.3. Examples of RREF. The matrix

I3 =

1 0 0
0 1 0
0 0 1


is in row reduced echelon form. The matrix

R =

1 0 2 0
0 1 −1 0
0 0 0 1


is also in RREF. The pivot columns are 1, 2, and 4.

範例

Example 0.4. Non-Examples.

·
[

0 0 1
1 0 0

]
: Fails condition 4 (stepped structure). The pivot in

row 2 is to the left of the pivot in row 1.

·
[

1 0 0
0 2 0

]
: Fails condition 1. The leading entry of row 2 is 2, not

1.

·

1 0 0
0 1 1
0 1 0

: Fails condition 3. Column 2 contains a leading entry

but is not zero elsewhere.

範例

The utility of the RREF lies in the ease of reading off the solution set.
For a system Rx = 0, the variables corresponding to pivot columns
are called basic variables, while the others are free variables. The
basic variables can be expressed explicitly in terms of the free vari-
ables.

Example 0.5. Solving a System. Solve Ax = 0 where

A =

1 1 −1 0
3 −1 2 3
0 −4 5 3

 .

範例

Solution
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Using row operations, we reduce A to the RREF:

R =

1 0 1/4 3/4
0 1 −5/4 −3/4
0 0 0 0

 .

The pivot columns are 1 and 2. Thus x1, x2 are basic, and x3, x4 are
free. The equations are:

x1 +
1
4

x3 +
3
4

x4 = 0 =⇒ x1 = −1
4

x3 −
3
4

x4

x2 −
5
4

x3 −
3
4

x4 = 0 =⇒ x2 =
5
4

x3 +
3
4

x4

Setting x3 = α, x4 = β, the general solution is:

x = α


−1/4
5/4

1
0

+ β


−3/4
3/4

0
1

 , α, β ∈ R.

■

0.4 Matrix Rank and System Consistency

We have seen that reducing a matrix to its Row Reduced Echelon
Form (RREF) provides a systematic way to solve linear systems. A
central concept emerging from this process is the "rank" of a matrix,
which essentially counts the number of independent constraints
imposed by the linear system.
Before we rely on RREF for theoretical results, we must ensure that
every matrix actually possesses one.

Theorem 0.3. Existence of RREF.
Any m×n matrix A is row equivalent to a matrix in Row Reduced Ech-
elon Form (RREF).

定理

Proof

We proceed by induction on the number of rows m. If A is the zero
matrix, it is already in RREF. Suppose A is non-zero. Let k be the
index of the first non-zero column of A. Select a row i such that
Aik ̸= 0. By interchanging row 1 and row i, we ensure the entry
in position (1, k) is non-zero. Multiply row 1 by 1/A1k to make the
leading entry 1. Then, for each row j > 1, subtract Ajk times row 1

from row j. This clears all entries in column k below the first row.
Now, consider the submatrix consisting of rows 2 through m. By
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the induction hypothesis, this submatrix can be reduced to RREF.
Finally, use row operations to clear any non-zero entries in the
pivot columns of the submatrix that lie in row 1. The result satisfies
all conditions of an RREF.

■

Remark.

While we stated existence, it is a non-trivial fact that the RREF of a
matrix is unique. That is, row operations can take different paths,
but they always lead to the same reduced matrix. We will assume
this uniqueness for now.

Homogeneous Systems

Consider the homogeneous system Ax = 0. Let R be the RREF of
A. Let r be the number of non-zero rows in R. This integer r is called
the row rank of A. We will use rank(A) to mean this number. The
variables corresponding to the leading ones (pivots) are determined
by the system, while the remaining n − r variables are "free".

Theorem 0.4. Non-Trivial Solutions.
A homogeneous system of linear equations with fewer equations than
unknowns always has a non-trivial solution.

定理

Proof

Let the system be Ax = 0, where A is m × n with m < n. Let R be
the RREF of A. The number of non-zero rows r satisfies r ≤ m < n.
The number of free variables is n − r > 0. Since there is at least
one free variable, we can assign it a non-zero value (e.g., 1), which
determines the pivot variables uniquely. This constructs a solution
where x ̸= 0.

■

This result is fundamental. It tells us, for instance, that any set of
n + 1 vectors in Rn must be linearly dependent, a concept we will
formalise in the next chapter.

The Square Case

For a square matrix (n equations in n unknowns), the existence of
non-trivial solutions is linked to the invertibility of the matrix.

Theorem 0.5. Square Homogeneous Systems.
Let A be an n×n matrix. The system Ax = 0 has only the trivial so-
lution x = 0 if and only if A is row equivalent to the identity matrix
In.

定理
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(⇐)

If A ∼ In, then the system Ax = 0 is equivalent to Inx = 0, which
implies x = 0.

証明終

(⇒)

Suppose Ax = 0 has only the trivial solution. Let R be the RREF
of A. The system Rx = 0 also has only the trivial solution. This
implies there are no free variables. Thus, every column must be a
pivot column. Since R is n × n and has n pivots, it must be In.

証明終

Non-Homogeneous Systems

We now turn to the general case Ax = b. To analyse this, we form the
augmented matrix [A | b] by appending b as an extra column. We
perform row operations on this augmented matrix to obtain [R | d],
where R is the RREF of A.
The system Ax = b is equivalent to Rx = d. Let r be the number of
non-zero rows of R. The equations corresponding to the zero rows of
R (rows r + 1 to m) take the form:

0 · x1 + · · ·+ 0 · xn = di for i = r + 1, . . . , m.

These equations are satisfied if and only if di = 0.

Theorem 0.6. Consistency Condition.
The system Ax = b is consistent (has a solution) if and only if the vec-
tor d in the reduced augmented matrix satisfies di = 0 for all i > r,
where r is the number of non-zero rows in the RREF of A.

定理

Proof

Let [A | b] be the augmented matrix and let [R | d] be its RREF,
where R is the RREF of A. Row operations preserve solution sets,
so Ax = b is consistent if and only if Rx = d is consistent.
By definition of r, the rows r + 1, . . . , m of R are zero rows. The cor-
responding equations in Rx = d are

0 = di for i = r + 1, . . . , m.

If any di ̸= 0 for i > r, the system is inconsistent. Conversely, if all
di = 0 for i > r, then the remaining r equations (the non-zero rows)
involve the pivot and free variables and always admit a solution.
Hence Ax = b is consistent exactly when di = 0 for all i > r.

■

This condition effectively says that the rank of the augmented matrix
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[A | b] must equal the rank of A. If rank([A | b]) > rank(A), the
system is inconsistent.

Example 0.6. Consistent and Inconsistent Systems. Consider the
system Ax = b with

A =

1 −2 1
2 −4 2
1 1 −3

 and b =

2
4
2

 .

範例

Solution

Row reducing the augmented matrix: 1 −2 1 2
2 −4 2 4
1 1 −3 2

 R2−2R1, R3−R1−−−−−−−−−→

 1 −2 1 2
0 0 0 0
0 3 −4 0

 .

The system is consistent since no row of the form [0 0 0 | k] with
k ̸= 0 appears.

Now keep the same A but take b =

2
1
2

. Row reduction yields a

row of the form [0 0 0 | k] with k ̸= 0, so the system is inconsistent.
■

Example 0.7. Consistency condition. Find the condition on b1, b2, b3

for the following system to be consistent:

x + y + z = b1

2x + 2y + 2z = b2

3x + 3y + 3z = b3

Row reduction yields zero rows on the left. Consistency requires
b2 − 2b1 = 0 and b3 − 3b1 = 0.

範例

0.5 Elementary Matrices

We now introduce the concept of elementary matrices, which pro-
vides a matrix-algebraic perspective on elementary row operations.
This formalisation is not only theoretically elegant but also practical,
as it allows us to represent row reduction as matrix multiplication—a
form readily implemented in computational algorithms.
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Definition 0.14. Elementary Matrix.
An elementary matrix of order n is a matrix obtained by performing
a single elementary row operation on the n × n identity matrix In.

定義

Note

The order (or size) of a matrix is its number of rows by number
of columns. An m × n matrix has order m × n, a square matrix of
order n is an n × n matrix.

Definition 0.15. Identity Matrix.
The identity matrix in Rn×n is the n × n matrix I with entries

Iij = δij =

1 if i = j,

0 if i ̸= j.

We write In when the size needs emphasis. The symbol δij is called the
Kronecker delta.

定義

Since there are three types of elementary row operations, there are
three types of elementary matrices.

Example 0.8. Examples of 2× 2 Elementary Matrices. Starting from

I2 =

[
1 0
0 1

]
:

1. Type I (Scaling): Multiply row 1 by α ̸= 0:

E1 =

[
α 0
0 1

]
.

2. Type II (Replacement): Add α times row 2 to row 1:

E2 =

[
1 α

0 1

]
.

3. Type III (Interchange): Swap row 1 and row 2:

E3 =

[
0 1
1 0

]
.

範例

The fundamental property of elementary matrices is that they imple-
ment row operations via left multiplication.
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Theorem 0.7. Matrix Multiplication Implements Row Operations.
Let A be an m×n matrix, and let e be an elementary row operation.
Let E = e(Im) be the corresponding elementary matrix. Then perform-
ing the operation e on A is equivalent to pre-multiplying A by E. That
is:

e(A) = EA.

定理

Proof

We verify this for the Type II operation (Replacement). Let e be the
operation "Replace row s by row s + α× row t". The entries of the
elementary matrix E = e(Im) are given by:

Eik =


1 if i = k,

α if i = s, k = t,

0 otherwise.

Using the definition of matrix multiplication, the (i, j)-th entry of
the product EA is:

(EA)ij =
m

∑
k=1

Eik Akj.

• If i ̸= s, the only non-zero term in the sum is when k = i, where
Eii = 1. Thus (EA)ij = 1 · Aij = Aij. This matches the fact that
rows other than s are unchanged.

• If i = s, the sum has two non-zero terms: k = s (where Ess = 1)
and k = t (where Est = α). Thus:

(EA)sj = 1 · Asj + α · Atj.

This is precisely the definition of the row operation e applied to
A.

The proofs for Type I and Type III operations follow similarly.
■

This theorem allows us to view row reduction as a factorisation pro-
cess. If a matrix B is obtained from A by a sequence of operations
corresponding to elementary matrices E1, E2, . . . , Ek, then:

B = EkEk−1 . . . E1 A.

Invertibility

The relationship between elementary matrices and invertibility is
central to linear algebra.
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Proposition 0.3. Identity Acts as a Multiplicative Unit.
If X ∈ Rn×p, then XIp = X and InX = X.

命題

Proof

For brevity, write I = Ip. The (i, j) entry of XI is

(XI)ij =
p

∑
k=1

Xik Ikj =
p

∑
k=1

Xikδkj = Xij,

since all other terms vanish. Thus XI = X. The proof of InX = X is
analogous.

■

Thus

Definition 0.16. Invertible Matrix.
A square matrix A of order n is invertible if there exists a square ma-
trix B of order n such that

AB = In and BA = In.

In this case, B is unique and is called the inverse of A, denoted A−1.

定義

Proposition 0.4. Invertibility of Elementary Matrices.
Every elementary matrix is invertible, and its inverse is an elementary
matrix of the same type.

命題

Proof

Let E be an elementary matrix corresponding to the row operation
e. From our discussion on row operations, we know e is a bijection
with an inverse operation e−1 which is also an elementary row
operation. Let E′ = e−1(I). Then for any matrix X, E′X performs
e−1 on X. Consider the product E′E. This corresponds to perform-
ing e on I (getting E), and then performing e−1 on the result. Thus
E′E = e−1(e(I)) = I. Similarly, EE′ = I. Thus E is invertible with
inverse E′.

■

Characterisation of Invertible Matrices

We can now state the main theorem linking systems of equations,
row reduction, and matrix inversion.
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Theorem 0.8. The Invertible Matrix Theorem.
Let A be a square matrix of order n. The following statements are equiv-
alent:
1. A is invertible.
2. A is row equivalent to the identity matrix In.
3. A is a product of elementary matrices.
4. The homogeneous system Ax = 0 has only the trivial solution x =

0.
5. The system Ax = b has a solution for every b ∈ Rn.

定理

Proof

We prove the cyclic implications (1) =⇒ (2) =⇒ (3) =⇒ (1),
and link (4) and (5) separately.
(1) =⇒ (2): Suppose A is invertible. Let R be the row reduced

echelon form of A. Since row operations correspond to multi-
plication by invertible elementary matrices, R = PA for some
invertible matrix P. Since P and A are invertible, R is invertible.
As established previously (theorem 0.5), the only invertible matrix
in RREF of order n is In. Thus A ∼ In.

(2) =⇒ (3): If A ∼ In, then In = Ek . . . E1 A for elementary matrices
Ei. Multiplying by inverses:

A = E−1
1 . . . E−1

k In = E−1
1 . . . E−1

k .

Since the inverse of an elementary matrix is an elementary ma-
trix, A is a product of elementary matrices.

(3) =⇒ (1): If A is a product of elementary matrices, and each ele-
mentary matrix is invertible, then their product A is invertible.

(1) ⇐⇒ (4): If A is invertible, Ax = 0 =⇒ A−1 Ax = A−10 =⇒
x = 0. Conversely, if Ax = 0 has only the trivial solution, then
A ∼ In (by theorem 0.5), which implies A is invertible by (2).

(1) ⇐⇒ (5): If A is invertible, for any b, let x = A−1b. Then
Ax = A(A−1b) = b. Thus a solution exists. Conversely, if Ax = b
always has a solution, then for each column ej of the identity
matrix In, there exists a vector cj such that Acj = ej. Let C be the
matrix with columns c1, . . . , cn. Then:

AC = A
[
c1 . . . cn

]
=
[

Ac1 . . . Acn

]
=
[
e1 . . . en

]
= In.

Now consider the homogeneous system Cx = 0. Multiplying by
A gives ACx = A0 = 0. Since AC = In, we have Inx = 0, so
x = 0. Thus, the homogeneous system Cx = 0 has only the triv-
ial solution. By the equivalence (1) ⇐⇒ (4) applied to C, the
matrix C is invertible. Since C is invertible and AC = In, we have
A = C−1. Therefore, A is invertible.
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■

Proposition 0.5. One-Sided Inverses.
Let A be a square matrix.
1. If BA = I, then B = A−1.

2. If AC = I, then C = A−1.
In other words, for square matrices, a left or right inverse suffices to
prove invertibility.

命題

Remark.

The proof of this relies on the rank arguments from the homoge-
neous systems section. If AC = I, then for any x, ACx = x. If
Cx = 0, then x = 0. Thus the homogeneous system Cx = 0 has
only the trivial solution, implying C is invertible. Then A = C−1 is
uniquely determined.

Proof

We prove (2); the proof of (1) is analogous. Assume AC = In.
Then for any x, ACx = x. If Cx = 0, then x = ACx = A0 = 0,
so the homogeneous system Cx = 0 has only the trivial solution. By
theorem 0.5, this implies C is invertible.
Multiply AC = In on the left by C−1 to get C−1 AC = C−1 In, hence
A = C−1. Therefore C = A−1.

■

Computing the Inverse

The equivalence (1) ⇐⇒ (2) provides a practical algorithm for
computing A−1. Since Ek . . . E1 A = In, we have A−1 = Ek . . . E1. This
means the same sequence of row operations that reduces A to In will
transform In into A−1.
Algorithm: Form the augmented matrix [A | In]. Apply row opera-
tions to reduce the left side to In. The right side will become A−1.

[A | In]
RREF−−−→ [In | A−1].

If the left side cannot be reduced to In (i.e., a row of zeros appears),
then A is not invertible.

Example 0.9. Inverse Calculation. Compute the inverse of

A =

1 1 0
0 1 1
1 0 1

 .

範例
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Solution

Form [A | I]:  1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1


R3 → R3 − R1:  1 1 0 1 0 0

0 1 1 0 1 0
0 −1 1 −1 0 1


R3 → R3 + R2:  1 1 0 1 0 0

0 1 1 0 1 0
0 0 2 −1 1 1


Scale R3 by 1/2, then clear the columns above the pivots to get: 1 0 0 1/2 −1/2 1/2

0 1 0 1/2 1/2 −1/2
0 0 1 −1/2 1/2 1/2

 .

Thus A−1 = 1
2

 1 −1 1
1 1 −1
−1 1 1

.

■

0.6 Exercises

1. System Solving. Use Gaussian elimination (row reduction) to
solve the following systems.

(a) 
x1 + 2x2 + 3x3 = 1

2x1 + 2x2 + 5x3 = 2

3x1 + 5x2 + x3 = 3

(b) 
x2 + x3 + x4 = 1

x1 + x3 + x4 = 2

x1 + x2 + x4 = 3

x1 + x2 + x3 = 4

2. Intersection of Planes. Find the set of common points (the inter-
section) of the three planes in R3 given by:

9x − 3y + z = 20, x + y + z = 0, −x + 2y + z = −10.
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3. Quadratic Fitting. Determine whether the data points (1, 27), (2, 16), (3, 29), (4, q)
can lie on a quadratic curve y = ax2 + bx + c. Find the necessary
condition on q and determine the quadratic function.

4. Homogeneous vs Non-Homogeneous. Consider the system:
x + 3y + 2z = 4

2x + 5y − 3z = −1

4x + 11y + z = 7

Solve this system over R. Let S be its solution set. Now replace
the constants (4,−1, 7) with (0, 0, 0) to form the associated homo-
geneous system. Let S0 be its solution set. Describe both S and S0

explicitly.

5. Underdetermined System. Solve the system and express the
solution set as a linear combination of vectors:x1 + x2 + x3 + x4 = 0

2x1 + x2 − x3 + 3x4 = 0

6. General Solution. Find the general solution of the system:
x1 + x2 + x3 + x4 + x5 = 1

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 6

x1 − x3 − 2x4 − 3x5 = −4

7. Triviality Check. Without fully solving, determine whether each
homogeneous system has a non-zero solution. Explain your rea-
soning based on rank or variable counts.

(a) x + y + z = 0

2x + y + 5z = 0

(b) 
x + y + z = 0

2x + y + 5z = 0

3x + 2y + 6z = 0

8. Parameter Analysis. For which values of λ does the following
system have a solution?

λx1 + x2 + x3 = 1

x1 + λx2 + x3 = λ

x1 + x2 + λx3 = λ2
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Identify the values of λ for which the solution is unique, and
those for which there are infinitely many solutions.

9. Consistency Condition. For which values of t is the system con-
sistent? When consistent, describe the solution set.

x + y + z = 1

2x + 3y + z = 2

3x + 4y + 2z = t

10. RREF Analysis. Let A and b be defined as:

A =

1 2 −1
2 4 −2
1 1 0

 , b =

1
2
t

 .

Reduce the augmented matrix [A | b] to Row Reduced Echelon
Form. Use the result to determine the values of t for which the
system Ax = b is consistent, and describe the number of solutions.

11. Row Equivalence and Rank. Prove that if A and B are row-
equivalent matrices, then rank(A) = rank(B). (Hint: compare
the number of non-zero rows in their RREFs.)



1
Abstract Vector Spaces

Definition 1.1. Vector Space.
Let F be a field (typically R or C). A set V is called a vector space over
F if it is equipped with two operations:
Vector Addition: A map V × V → V, denoted (x, y) 7→ x + y.
Scalar Multiplication: A map F × V → V, denoted (λ, x) 7→ λx.
These operations must satisfy the following axioms for all x, y, z ∈ V
and α, β ∈ F:

定義

Axiom 1. Commutativity.
x + y = y + x.

公理

Axiom 2. Associativity of Addition.
(x + y) + z = x + (y + z).

公理

Axiom 3. Zero Vector.
There exists an element 0 ∈ V such that x + 0 = x for all x ∈ V.

公理

Axiom 4. Additive Inverses.
For every x ∈ V, there exists an element −x ∈ V such that x+(−x) =
0.

公理

Axiom 5. Unital Property.
1 · x = x, where 1 is the multiplicative identity of F.

公理



algebra iv: linear 27

Axiom 6. Associativity of Scalar Multiplication.
(αβ)x = α(βx).

公理

Axiom 7. Distributivity over Vectors.
α(x + y) = αx + αy.

公理

Axiom 8. Distributivity over Scalars.
(α + β)x = αx + βx.

公理

The first four axioms assert that (V,+) is an Abelian group. The
remaining axioms govern the interaction between the field F and the
group V.

Remark.

Strictly speaking, one should distinguish the symbols for operations
in V from those in F. For instance, one might write ⊕ for vector
addition and ⊙ for scalar multiplication, reserving + and · for the
field operations. The distributive law (axiom 8) would then read
(α + β) ⊙ x = (α ⊙ x) ⊕ (β ⊙ x). However, in practice, the context
almost always clarifies which operation is intended.

To illustrate that vector spaces encompass more than just column
vectors, we examine some non-standard structures.

Example 1.1. The Space of Positive Reals. Let V = R+ be the set
of strictly positive real numbers. We define the vector operations as
follows:
Vector Addition (⊕): For x, y ∈ R+, define x ⊕ y = xy (standard

real multiplication).
Scalar Multiplication (⊙): For λ ∈ R and x ∈ R+, define λ ⊙ x =

xλ.

範例

Solution

We verify the axioms. The "zero vector" is the element e ∈ V such
that x ⊕ e = x, which corresponds to x · e = x; thus, the zero vector
is the real number 1. The additive inverse of x is x−1. Distributivity
holds:

λ ⊙ (x ⊕ y) = (xy)λ = xλyλ = (λ ⊙ x)⊕ (λ ⊙ y).

Thus, (R+,⊕,⊙) is a vector space over R. In this context, standard
expressions like 2x would formally evaluate to x2.

■



28 gudfit

Example 1.2. The Complex Conjugate Space. Let V be a vector
space over the complex numbers C. We can construct a new vector
space V which shares the same underlying set and additive group
as V, but possesses a modified scalar multiplication.

範例

Solution

For any λ ∈ C and x ∈ V, we define the operation ⊙ by:

λ ⊙ x = λx,

where λ denotes the complex conjugate. Since the conjugation map
λ 7→ λ is a field automorphism (respecting addition and multipli-
cation in C), the vector space axioms are preserved. For example,
associativity of scalar multiplication becomes:

(αβ)⊙ x = (αβ)x = (αβ)x = α(βx) = α ⊙ (β ⊙ x).

This structure is particularly important in the study of antilinear
maps and dual spaces in quantum mechanics.

■

Re

Im

v

iv

īv = −iv

Scalar multiplication in V
(red) vs V (teal) by λ = i.

Figure 1.1: Visualising the ac-
tion of scalars in the conjugate
space V.

Several properties that appear intuitive from arithmetic can be rigor-
ously derived from the axioms. These properties hold for any vector
space, regardless of the nature of its elements.

Proposition 1.1. Basic Vector Arithmetic.
Let V be a vector space over a field F. For all x ∈ V and λ ∈ F:
1. The zero vector is unique.
2. 0 · x = 0. (The scalar 0 times any vector yields the zero vector).
3. λ · 0 = 0. (Any scalar times the zero vector yields the zero vector).
4. If λx = 0, then either λ = 0 or x = 0.
5. (−1)x = −x. (The scalar −1 produces the additive inverse).

命題

Proof

1. Suppose 0 and 0′ both satisfy x + 0 = x and x + 0′ = x for all x ∈
V. Then

0 = 0 + 0′ = 0′,

so the zero vector is unique.
2. Using axiom 8:

0 · x = (0 + 0)x = 0 · x + 0 · x.

Adding the additive inverse −(0 · x) to both sides yields 0 = 0 · x.
3. Similarly, using axiom 7:

λ · 0 = λ(0 + 0) = λ · 0 + λ · 0 =⇒ 0 = λ · 0.
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4. Suppose λx = 0 and λ ̸= 0. Since F is a field, λ has a multiplica-
tive inverse λ−1. Then:

x = 1 · x = (λ−1λ)x = λ−1(λx) = λ−10 = 0.

Thus, if λ ̸= 0, we must have x = 0.
5. We calculate the sum of x and (−1)x:

x + (−1)x = 1 · x + (−1)x = (1 + (−1))x = 0 · x = 0.

If y is any element with x + y = 0, then

y = y+ 0 = y+(x+(−1)x) = (y+ x)+ (−1)x = 0+(−1)x = (−1)x,

so the additive inverse of x is (−1)x.
■

Remark.

Property 5 allows us to define subtraction in vector spaces naturally
as x − y = x + (−1)y. Furthermore, for any natural number n, the
notation nx represents the n-fold sum x + · · · + x, which is consis-
tent with scalar multiplication by the integer n (interpreted as an
element of the field F). If F has finite characteristic p, then px = 0
for all vectors x.

Remark.

The characteristic of a field F is the smallest positive integer p such
that p · 1 = 0 in F, i.e., 1 added to itself p times equals 0; if no
such p exists, the characteristic is 0. For example, Q, R, and C have
characteristic 0, while Fp has characteristic p.

1.1 Linear Combinations and Subspaces

Definition 1.2. Linear Span.
Let V be a vector space over a field F. Let S ⊆ V be a subset of vec-
tors (possibly infinite). A vector v ∈ V is a linear combination of el-
ements of S if it can be written as a finite sum:

v =
n

∑
i=1

λixi,

where λi ∈ F and xi ∈ S. The set of all such linear combinations is
called the linear span of S, denoted ⟨S⟩ or span(S).

定義

It is immediate from the axioms that ⟨S⟩ is closed under vector addi-
tion and scalar multiplication. If v = ∑ λixi and w = ∑ µixi (padding
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with zero coefficients if necessary to use the same vectors), then:

v + w = ∑(λi + µi)xi and αv = ∑(αλi)xi.

This closure property is fundamental.

Definition 1.3. Subspace.
Let V be a vector space. A subset U ⊆ V is a subspace of V, denoted
U ≤ V, if U is non-empty and closed under the operations of V:
· If u, v ∈ U, then u + v ∈ U.
· If u ∈ U and λ ∈ F, then λu ∈ U.
A subspace U is called a proper subspace if U ̸= {0} and U ̸= V.

定義

Definition 1.4. Row and Column Space.
Let A ∈ Fm×n. The row space of A is the subspace of Fn spanned by
the rows of A. The column space of A is the subspace of Fm spanned
by the columns of A.

定義

Remark.

To check if a subset is a subspace, it suffices to verify closure un-
der addition and scalar multiplication. The existence of the zero
vector follows from scalar multiplication by 0 (0 · u = 0 ∈ U),
and additive inverses follow from scalar multiplication by −1
((−1)u = −u ∈ U).

The restriction of the operations of V to a subspace U makes U a
vector space in its own right. The zero vector of V must lie in U
(since 0 · u = 0). Furthermore, the intersection of any collection of
subspaces is itself a subspace.

Proposition 1.2. Span as Smallest Subspace.
For any subset S ⊆ V, the linear span ⟨S⟩ is the smallest subspace of
V containing S. If S is already a subspace, then ⟨S⟩ = S.

命題

Proof

First, ⟨S⟩ is a subspace: it is non-empty (if S ̸= ∅, then 0 = 0 · x ∈
⟨S⟩ for any x ∈ S; if S = ∅, then ⟨S⟩ = {0}) and is closed under
addition and scalar multiplication by construction of linear combi-
nations. Also S ⊆ ⟨S⟩ since each x ∈ S equals 1 · x. Let U ≤ V be
any subspace with S ⊆ U. Since U is closed under linear combi-
nations, every finite linear combination of elements of S lies in U,
hence ⟨S⟩ ⊆ U. Therefore ⟨S⟩ is the smallest subspace containing
S. If S is already a subspace, then by the same argument ⟨S⟩ ⊆ S,
while always S ⊆ ⟨S⟩, so ⟨S⟩ = S.
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■

Example 1.3. Solution Space (Nullspace). As seen in chapter 0, the
solution set of a homogeneous linear system Ax = 0 is a subset
of Rn closed under addition and scalar multiplication. Thus, the
solution set forms a subspace of Rn, often called the nullspace of
A.

範例

Example 1.4. Calculus Subspaces. Let V = RR be the space of all
functions from R to R.
· C(R), the set of continuous functions, is a subspace of V.
· C1(R), the set of differentiable functions with continuous deriva-

tives, is a subspace of C(R).
· C∞(R), the set of infinitely differentiable (smooth) functions, is a

subspace of C1(R).
These nested subspaces play a crucial role in analysis.

範例

The universality of the vector space axioms allows us to treat diverse
mathematical objects within the same framework.

Example 1.5. The Zero Space. Let V = {0} and F be any field. De-
fine 0 + 0 = 0 and α · 0 = 0 for all α ∈ F. This forms the trivial vec-
tor space.

範例

Example 1.6. Field Extensions. If K is a field extension of F (de-
noted K/F), then K is naturally a vector space over F.
· C is a vector space over R. For example, {1, i} spans C over R.
· R is a vector space over Q. This space is infinite-dimensional.

範例

Remark.

We say K is a field extension of F if F is a subfield of K (written
F ⊆ K), meaning the operations on F agree with those in K. Equiva-
lently, K is a field that contains a copy of F.

Example 1.7. Function Spaces. Let X be any non-empty set and F
a field. The set of all functions FX = { f : X → F} forms a vector
space under pointwise operations:

( f + g)(x) = f (x) + g(x), (λ f )(x) = λ f (x).

範例
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Solution

If X = {1, . . . , n}, this space is isomorphic to Fn. The function f
corresponds to the tuple ( f (1), . . . , f (n)). The standard coordinate
functions are the Kronecker delta functions δk, where

δk(j) =

1 if j = k,

0 if j ̸= k.

Thus any function can be written as

f =
n

∑
k=1

f (k)δk.

For infinite X, such a sum would be infinite, which is not defined
in purely algebraic vector spaces. We typically study specific sub-
spaces of FX , such as:
• C(a, b): Continuous functions on an interval (a, b).
• C1(a, b): Continuously differentiable functions on (a, b).
• Polynomials F[x] or polynomials of degree at most n, denoted

Pn.
■

Example 1.8. Integrable Functions. Let R[a, b] be the set of all
Riemann-integrable functions on [a, b]. Standard results from calcu-
lus ensure that if f and g are integrable, then f + g and α f are also
integrable. Thus, R[a, b] is a vector space.

範例

Example 1.9. Matrix Spaces. The set of m × n matrices with entries
in F, denoted Fm×n, is a vector space under matrix addition and
scalar multiplication. A particularly interesting subspace of the
square matrices Mn(Q) is the set of semi-magic squares: matrices
where every row and column sums to the same constant σ(A).

SMagn(Q) =

{
A ∈ Mn(Q)

∣∣∣∣∣ ∀i, j : ∑
k

aik = ∑
k

akj = σ(A)

}
.

A magic square requires the main diagonal and anti-diagonal to
also sum to σ(A). These conditions define linear constraints, so the
sets of semi-magic and magic squares form subspaces:

Magn(Q) ⊆ SMagn(Q) ⊆ Mn(Q).

範例
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Geometric Interpretations

When F = R, we refer to V as a real vector space. The most intuitive
model is the set of geometric vectors (directed segments) in physical
space. Addition follows the parallelogram law, and scalar multiplica-
tion scales length and reverses direction if negative.
When F = C, we have a complex vector space. The one-dimensional
space C1 can be visualised as the Argand plane R2. Scalar multiplica-
tion by a complex number z = reiθ scales a vector by r and rotates it
by θ.
However, the field need not be continuous.

Example 1.10. Finite Fields and Coding Theory. Let F = F2 =

{0, 1} be the binary field. The space V = Fn
2 consists of binary

strings of length n. Geometrically, these are the vertices of a unit
hypercube in Rn.
The subspace defined by the parity check equation:

Πn = {(ϵ1, . . . , ϵn) ∈ Fn
2 | ϵ1 + · · ·+ ϵn = 0}

consists of all strings with an even number of 1s (since 1 + 1 = 0 in
F2). This is a simple error-detecting code. If a single bit is flipped
during transmission, the parity sum becomes 1, alerting the receiver
to an error. This geometric view of finite vector spaces underpins
modern coding theory.

範例

000

110

101

011

Subspace Π3 ⊂ F3
2

Figure 1.2: The even-parity sub-
space Π3 forms a tetrahedron
within the hypercube.Non-Examples

It is instructive to examine sets that fail to be vector spaces.

Example 1.11. Affine Lines. Consider the set S = {(x1, x2) ∈
R2 | x2 = x1 + 1}. This set is a line in the plane but does not
pass through the origin (since 0 ̸= 0 + 1). Consequently, it does
not contain the zero vector and cannot be a vector space. Further-
more, it is not closed under addition: if we take x = (0, 1) ∈ S and
y = (1, 2) ∈ S, their sum x + y = (1, 3) satisfies 3 ̸= 1 + 1, so
x + y /∈ S.

範例
x1

x2

x2 = x1

Vector Space

x2 = x1 + 1

Not a V.S.

u

v

u + v/∈ S

Figure 1.3: A line through the
origin is a vector space (teal),
while an affine line (red) is not.

Example 1.12. Polynomials of Fixed Degree. Let V be the set of
polynomials with degree exactly 2. This is not a vector space. Con-
sider p(t) = t2 + t and q(t) = −t2 + t. Both are in V, but their
sum (p + q)(t) = 2t has degree 1, so p + q /∈ V. The set is not
closed under addition. Moreover, the zero polynomial (degree −∞
or undefined) is not in V.

範例
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Example 1.13. Hermitian Matrices. Consider the set of Hermitian
matrices H = {A ∈ Mn(C) | A∗ = A}, where A∗ denotes the
conjugate transpose.
While H is closed under addition, it is not a subspace of the com-
plex vector space Mn(C). Taking A = I (which is Hermitian) and
scalar λ = i, we find (λA)∗ = (iI)∗ = −iI ̸= λA. However, if we
regard Mn(C) as a vector space over R, then H forms a subspace,
as λA remains Hermitian for all real λ.

範例

Speaking of transpose:

Definition 1.5. Transpose.
Let A be an m×n matrix. The transpose of A, denoted AT , is the n×
m matrix defined by:

(AT)ji = Aij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Intuitively, the transpose converts rows into columns and columns into
rows.

定義

Proposition 1.3. Properties of Transpose.
Let A, B be matrices of appropriate sizes and α be a scalar.
1. (AT)T = A.
2. (A + B)T = AT + BT and (αA)T = αAT .
3. (AB)T = BT AT .
4. rowj(AT) = (colj(A))T and coli(AT) = (rowi(A))T .

命題

Proof

1. The (i, j) entry of (AT)T is the (j, i) entry of AT , which is Aij.
2. Follows from the linearity of the entry-wise operations.
3. Let A ∈ Fm×k and B ∈ Fk×n. Then

((AB)T)ij = (AB)ji =
k

∑
r=1

AjrBri =
k

∑
r=1

(BT)ir(AT)rj = (BT AT)ij.

4. The k-th entry of rowj(AT) is (AT)jk = Akj, which is the k-th en-
try of (colj(A))T . Similarly, the k-th entry of coli(AT) is (AT)ki =

Aik, which is the k-th entry of (rowi(A))T .
■
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1.2 Linear Dependence and Dimension

The structure of a vector space is determined by the relationships
between its elements. The most fundamental such relationship is
whether one vector can be built from others.

Definition 1.6. Linear Dependence.
A finite set of vectors {v1, . . . , vn} in a vector space V is called linearly
dependent if there exist scalars α1, . . . , αn ∈ F, not all zero, such that:

α1v1 + · · ·+ αnvn = 0.

Such a relation is called a non-trivial linear relation. If the only solu-
tion to ∑ αivi = 0 is the trivial solution α1 = · · · = αn = 0, the set is
called linearly independent.

定義

Remark.

If a set contains the zero vector, it is automatically linearly depen-
dent. For instance, if v1 = 0, we can choose α1 = 1 and all other
αi = 0 to satisfy the equation.

Proposition 1.4. Basic Properties of Independence.
Let S be a set of vectors in V.
1. The empty set ∅ is linearly independent.
2. If 0 ∈ S, then S is linearly dependent.
3. If S is linearly independent, then every subset of S is linearly inde-

pendent.
4. If S is linearly dependent, then every superset of S is linearly de-

pendent.
命題

Proof

1. The condition for linear dependence requires the existence of
non-zero scalars αi such that ∑ αivi = 0. Since there are no
vectors in ∅, no such sum exists. Thus, the condition for depen-
dence can never be satisfied.

2. Let S = {0, v2, . . . , vn}. Consider the linear combination 1 · 0 +

0 · v2 + · · · + 0 · vn = 0. Since the coefficient of the zero vector is
non-zero (1 ̸= 0), this is a non-trivial relation.

3. Let A ⊆ S. If A were dependent, there would be a non-trivial
relation among elements of A. This same relation serves as a
non-trivial relation for S (by setting coefficients of vectors in
S \ A to zero), contradicting the independence of S.

4. Let S ⊆ B. Since S is dependent, there exists a non-trivial re-
lation ∑ αisi = 0 with si ∈ S. This same sum is a linear com-
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bination of vectors in B (with other coefficients zero), so B is
dependent.

■

Lemma 1.1. Dependence of Two Vectors.
Two vectors u, v ∈ V are linearly dependent if and only if one is a scalar
multiple of the other.

引理

( =⇒ )

Suppose u, v are dependent. Then αu + βv = 0 with not both α, β

zero. If α ̸= 0, then u = (−β/α)v. If α = 0, then β ̸= 0, so βv =

0 =⇒ v = 0. In this case v = 0 · u.
証明終

( ⇐= )

Suppose u = λv. Then 1 · u + (−λ)v = 0. Since the coefficient of u
is 1 ̸= 0, this is a non-trivial relation.

証明終

Example 1.14. Polynomial Independence via Differentiation. Con-
sider the set {1, t, t2, t3} in the space of real polynomials. Suppose

α0 + α1t + α2t2 + α3t3 = 0

for all t ∈ R. This is an identity of functions. Differentiating with
respect to t repeatedly yields:

α1 + 2α2t + 3α3t2 = 0

2α2 + 6α3t = 0

6α3 = 0

From the last equation, α3 = 0. Substituting back gives α2 = 0, then
α1 = 0, and finally α0 = 0. Thus, the monomials are linearly inde-
pendent. This method avoids the Fundamental Theorem of Algebra
(roots).

範例

Proposition 1.5. Characterisation of Dependence.
A set of non-zero vectors {v1, . . . , vn} is linearly dependent if and only
if at least one vector vk (k ≥ 2) can be written as a linear combination
of the preceding vectors v1, . . . , vk−1.

命題

( =⇒ )

Suppose the set is dependent. Let k be the largest index such that
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αk ̸= 0 in a non-trivial relation ∑n
i=1 αivi = 0. Since v1 ̸= 0, we must

have k ≥ 2. Then:

vk = −α−1
k

k−1

∑
i=1

αivi.

証明終

( ⇐= )

If vk is a linear combination of preceding vectors, then vk −∑ β jvj =

0 is a non-trivial relation (coefficient of vk is 1), so the set is depen-
dent.

証明終

The size of linearly independent sets is bounded by the "capacity"
of the space. The following theorem, fundamental to the theory,
formalises this.

Lemma 1.2. Underdetermined Homogeneous Systems.
Let F be a field and consider a homogeneous linear system with t equa-
tions in s unknowns over F. If s > t, then the system has a non-trivial
solution (recall theorem 0.4).

引理

Proof

Row-reduce the coefficient matrix to echelon form. There are at
most t pivots, so with s > t there is at least one free variable. As-
signing a non-zero value to a free variable produces a non-trivial
solution.

■

Theorem 1.1. Steinitz Exchange Lemma.
Let {e1, . . . , es} be a linearly independent set in V, and let { f1, . . . , ft}
be a set of vectors such that every ei lies in span({ f1, . . . , ft}). Then s ≤
t.

定理

Proof

Suppose for contradiction that s > t. Since each ej is in the span of
the f ’s, we can write:

ej =
t

∑
i=1

αij fi for j = 1, . . . , s.

Consider a linear combination of the e’s equal to zero:

s

∑
j=1

xjej = 0.
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Substituting the expressions for ej:

s

∑
j=1

xj

(
t

∑
i=1

αij fi

)
=

t

∑
i=1

(
s

∑
j=1

αijxj

)
fi = 0.

This equation is satisfied if the coefficients of each fi vanish. Thus,
we seek a solution to the homogeneous linear system:

s

∑
j=1

αijxj = 0 for i = 1, . . . , t.

This is a system of t equations in s unknowns. Since s > t, there
are more unknowns than equations, so a non-trivial solution
(x1, . . . , xs) exists by the previous lemma. This non-trivial solu-
tion implies ∑ xjej = 0, contradicting the linear independence of the
ej’s. Thus, we must have s ≤ t.

■

Corollary 1.1. Invariance of Independent Set Size. If two finite sets in V
are equivalent (each spans the other) and linearly independent, they
must have the same cardinality.

推論

Proof

Let E = {e1, . . . , es} and F = { f1, . . . , ft} be linearly indepen-
dent and assume each spans the other. Since E ⊆ span(F) and E is
independent, Steinitz Exchange Lemma gives s ≤ t. Similarly, F ⊆
span(E) and F independent implies t ≤ s. Hence s = t.

■

We classify vector spaces by the size of their maximal independent
sets.

Definition 1.7. Dimension.
A vector space V is called n-dimensional, denoted dim V = n, if there
exists a set of n linearly independent vectors, and every set with more
than n vectors is linearly dependent. If V contains arbitrarily large lin-
early independent sets, it is called infinite-dimensional. The zero space
{0} has dimension 0.

定義

Definition 1.8. Basis.
Let V be an n-dimensional space. A set of vectors {e1, . . . , en} is called
a basis if it is linearly independent.

定義
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Example 1.15. Infinite Dimensionality of C[0, 1]. The space C[0, 1]
of continuous real-valued functions on [0, 1] is infinite-dimensional.
Consider the set of monomials S = {1, t, t2, . . . }. As shown pre-
viously, any finite subset of S is linearly independent (via differ-
entiation). If C[0, 1] had a finite dimension n, then any linearly
independent set could have size at most n. However, S contains in-
dependent subsets of arbitrary size k > n, which is a contradiction.
Thus, no finite basis exists.

範例

By definition, a basis is a maximal linearly independent set. It is
also a minimal spanning set. The utility of a basis lies in the unique
representation of vectors.

Theorem 1.2. Basis Representation and Extension.
Let V be a vector space of dimension n.
1. If {e1, . . . , en} is a basis, then every vector v ∈ V can be uniquely

expressed as v = ∑n
i=1 λiei.

2. Any linearly independent set { f1, . . . , fs} with s < n can be extended
to a basis of V.

定理

Proof

1. Existence: Since dim V = n, the set {v, e1, . . . , en} contains n +

1 vectors and must be linearly dependent. Thus αv + ∑ αiei =

0 for scalars not all zero. If α = 0, the ei would be dependent,
which is false. Thus α ̸= 0, and we can solve for v:

v =
n

∑
i=1

(−α−1αi)ei.

Uniqueness: Suppose v = ∑ λiei = ∑ µiei. Subtracting gives
∑(λi − µi)ei = 0. By independence, λi − µi = 0 for all i.

2. Consider the set S = { f1, . . . , fs}. If S spans V, then s = n by
theorem 1.1. If not, there exists ek1 in a basis of V that is not in
span(S). Adjoin it to form { f1, . . . , fs, ek1}. Repeat this process
until the set contains n vectors. The resulting set is independent
and has size n, so it is a basis.

■

Corollary 1.2. Subspace Dimensions. If U is a subspace of a finite-dimensional
space V, then dim U ≤ dim V. If dim U = dim V, then U = V.

推論

Proof

Let dim V = n and let {u1, . . . , uk} be a basis of U. Since U ⊆ V,
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this set is linearly independent in V, so it can be extended to a basis
of V of size n (by the extension part of theorem 1.2). Hence k ≤ n, so
dim U ≤ dim V. If dim U = dim V, then a basis of U already has
size n and thus is a basis of V, which implies U = V.

■

Corollary 1.3. Basis Check by Size. Let V be a vector space with dim V =

n. If S is a linearly independent subset of V with |S| = n, then S is
a basis for V. (That is, spanning is automatic).

推論

Proof

If S were not a spanning set, we could extend it to a basis by
adding at least one vector, resulting in a basis of size > n, which
contradicts the unique dimension of V.

■

Example 1.16. Examples of Dimension.
· dim Rn = n. The standard basis is {e1, . . . , en} where ei has a 1 in

the i-th position and 0 elsewhere.
· The space of m × n matrices has dimension mn.
· The space of polynomials Pn (degree ≤ n) has dimension n + 1. A

basis is {1, x, . . . , xn}.

範例

Example 1.17. Subspaces of R3. We can classify all subspaces W of
R3 by dimension:
· dim W = 0: The zero subspace {0} (the origin).
· dim W = 1: A line passing through the origin.
· dim W = 2: A plane passing through the origin.
· dim W = 3: The entire space R3.

範例

Example 1.18. Homogeneous Polynomials. The space of homo-
geneous polynomials of degree k in m variables has dimension
(k+m−1

k ).

範例

Proof

Write a homogeneous polynomial of degree k in m variables as a
linear combination of monomials

xα1
1 · · · xαm

m with α1 + · · ·+ αm = k, αi ∈ N.

These monomials are linearly independent and span the space, so
they form a basis. The number of m-tuples of nonnegative integers
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with sum k equals (k+m−1
k ) (stars-and-bars), hence the dimension is

(k+m−1
k ).

■

Remark.

For function spaces, the index set of a basis need not be finite.
For a finite set X, the space FX has dimension |X| with basis
{δx | x ∈ X}, where δx(y) = 1 if y = x and 0 otherwise.

1.3 Coordinates and Isomorphisms

A basis provides a bridge between abstract vector spaces and the
concrete coordinate spaces Rn.

Definition 1.9. Coordinates.
Let (e1, . . . , en) be a basis of a vector space V over R. For any vector v ∈
V, the unique scalars λ1, . . . , λn ∈ R such that

v = λ1e1 + · · ·+ λnen

are called the coordinates of the vector v relative to the given basis.
定義

This definition implies linearity: if x = ∑ αiei and y = ∑ βiei, then x +

y = ∑(αi + βi)ei. Thus, adding vectors corresponds to adding their
coordinates. Similarly, multiplying a vector by a scalar multiplies
its coordinates by that scalar. The zero vector corresponds to the
coordinates (0, . . . , 0).

Example 1.19. Polynomials. In the space Pn of polynomials of
degree ≤ n, the set (1, t, . . . , tn) is a basis. The coordinates of
f (t) = a0 + a1t + · · ·+ antn are its coefficients a0, . . . , an.
However, using Taylor’s formula, we can write:

f (t) = f (α) + f ′(α)(t − α) + · · ·+ f (n−1)(α)

(n − 1)!
(t − α)n−1.

Relative to the basis (1, t − α, . . . , (t − α)n−1), the coordinates of the

same polynomial are f (α), f ′(α), . . . , f (n−1)(α)
(n−1)! .

範例

A single vector space may have infinitely many bases. We investigate
how coordinates change when we switch from one basis to another.
Let E = (e1, . . . , en) and E ′ = (e′1, . . . , e′n) be two bases of V. Each new
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basis vector e′j can be written uniquely in terms of the old basis E :

e′j =
n

∑
i=1

aijei.

The coefficients aij ∈ R form the transition matrix A from the basis
(e′i) to the basis (ei):

A = (aij) =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

It is crucial to note that the coordinates of the new basis vector e′j
relative to the old basis lie in the j-th column of A.
Let a vector v have coordinates λ1, . . . , λn in the basis (ei) and λ′

1, . . . , λ′
n

in the basis (e′i). We have:

v =
n

∑
i=1

λiei =
n

∑
j=1

λ′
je
′
j.

Substituting the expressions for e′j:

v =
n

∑
j=1

λ′
j

(
n

∑
i=1

aijei

)
=

n

∑
i=1

(
n

∑
j=1

aijλ
′
j

)
ei.

Comparing the coefficients of ei, we obtain:

λi = ai1λ′
1 + ai2λ′

2 + · · ·+ ainλ′
n.

In matrix notation, let X and X′ be the columns of coordinates:

X =


λ1
...

λn

 , X′ =


λ′

1
...

λ′
n

 .

Then the relationship is X = AX′. Since both sets are bases, we
can also express (ei) in terms of (e′i), which implies the matrix A is
invertible. Thus, we have the inverse relationship:

Theorem 1.3. Coordinate Transformation.
In the transition from basis (e1, . . . , en) to basis (e′1, . . . , e′n) determined
by matrix A, the new coordinates are expressed in terms of the orig-
inal coordinates by:

X′ = A−1X.

定理



algebra iv: linear 43

Proof

From the preceding computation, the coordinate columns satisfy
X = AX′. Since the change-of-basis matrix A is invertible, multiply
both sides by A−1 to obtain X′ = A−1X.

■

Remark.

The matrix A is invertible because it sends the coordinate basis
in Rn to the coordinate columns of the new basis vectors, so its
columns are linearly independent.

Isomorphisms

Using coordinates, we can identify any n-dimensional space with Rn.

Definition 1.10. Isomorphism.
Two vector spaces V and W over R are isomorphic if there exists a bi-
jection f : V → W such that for all α, β ∈ R and u, v ∈ V:

f (αu + βv) = α f (u) + β f (v).

Such a map f is called an isomorphism.
定義

Note

A map f : V → W is:
• Injective (or one-to-one) if f (u) = f (v) =⇒ u = v for all u, v ∈

V.
• Surjective (or onto) if for every w ∈ W, there exists v ∈ V such

that f (v) = w.
• Bijective if it is both injective and surjective.

If f is an isomorphism, then f−1 : W → V is also an isomorphism.
Dimension is invariant under isomorphism: if (ei) is a basis for V,
then ( f (ei)) is a basis for W.

Theorem 1.4. Classification of Finite Dimensional Spaces.
All vector spaces of the same dimension n over R are isomorphic. Specif-
ically, they are all isomorphic to the coordinate space Rn.

定理

Proof

Let (e1, . . . , en) be a basis for V. Define the map f : V → Rn by
mapping a vector x = ∑ αiei to its coordinate tuple (α1, . . . , αn).
Since coordinates are unique, f is a bijection. Linearity follows from
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the properties of coordinates:

f (αx + βy) = α(α1, . . . , αn) + β(β1, . . . , βn) = α f (x) + β f (y).

Thus V is isomorphic to Rn.
■

Note

While any two spaces of dimension n are isomorphic, the isomor-
phism depends on the choice of basis. An isomorphism defined
without arbitrary choices is called canonical or natural.

1.4 Operations on Subspaces

We now consider how subspaces interact. Let U, W ≤ V be sub-
spaces.

Intersection: The set U ∩ W is always a subspace. It is the largest
subspace contained in both U and W.

Union: The set U ∪ W is generally not a subspace (e.g., the union of
the x-axis and y-axis in R2 is not closed under addition).

Sum: The sum of subspaces is defined as:

U + W = {u + w | u ∈ U, w ∈ W}.

This is the smallest subspace containing both U and W. In fact,
U + W = span(U ∪ W).

The dimensions of these spaces are related by a fundamental formula
analogous to the inclusion-exclusion principle for sets.

Theorem 1.5. Grassmann’s Formula.
Let U and W be finite-dimensional subspaces of V. Then:

dim(U + W) = dim U + dim W − dim(U ∩ W).

定理

Proof

Let {v1, . . . , vm} be a basis for U ∩ W, where m = dim(U ∩ W). By
theorem 1.2, we can extend this to a basis of U:

BU = {v1, . . . , vm, u1, . . . , uk−m}, where k = dim U.

Similarly, we extend it to a basis of W:

BW = {v1, . . . , vm, w1, . . . , wl−m}, where l = dim W.
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We claim that the set S = {v1, . . . , vm, u1, . . . , uk−m, w1, . . . , wl−m} is
a basis for U + W. Clearly S spans U + W. To check independence,
suppose:

∑ γivi + ∑ αjuj + ∑ βrwr = 0.

Rewrite this as:

∑ αjuj + ∑ γivi = −∑ βrwr.

The left side is in U, and the right side is in W. Thus, the vector
represented by this sum lies in U ∩ W. Hence, −∑ βrwr can be
written as a linear combination of the basis vectors vi of U ∩ W:

−∑ βrwr = ∑ δivi =⇒ ∑ βrwr + ∑ δivi = 0.

Since {vi} ∪ {wr} is a basis for W, all coefficients βr (and δi) must
be zero. The original equation reduces to ∑ γivi + ∑ αjuj = 0.
Since {vi} ∪ {uj} is a basis for U, all γi and αj are zero. Thus S is
independent. The dimension of U + W is the size of S:

dim(U + W) = m + (k − m) + (l − m) = k + l − m.

■

Corollary 1.4. Nontrivial Intersection. If dim U +dim W > dim V, then
U and W must have a non-trivial intersection (i.e., dim(U ∩W) > 0).
For example, two planes in R3 through the origin must intersect in at
least a line.

推論

Proof

By theorem 1.5,

dim(U ∩ W) = dim U + dim W − dim(U + W).

Since U + W ≤ V, we have dim(U + W) ≤ dim V. Hence

dim(U ∩ W) ≥ dim U + dim W − dim V.

If dim U + dim W > dim V, then the right-hand side is positive, so
dim(U ∩ W) > 0.

■

Definition 1.11. Codimension.
The codimension of a subspace U ≤ V is defined as codim U = dim V −
dim U. A subspace of codimension 1 is called a hyperplane.

定義
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1.5 Direct Sums and Quotient Spaces

We have seen that the sum of subspaces U + W is not always "effi-
cient," in the sense that a vector in the sum may have multiple repre-
sentations u + w. When representations are unique, the sum is called
direct.

Definition 1.12. Direct Sum.
Let U1, . . . , Um be subspaces of V. The sum U = U1 + · · ·+Um is called
a direct sum, denoted U = U1 ⊕ · · · ⊕Um, if every vector u ∈ U can
be uniquely written as:

u = u1 + · · ·+ um, where ui ∈ Ui.

定義

Proposition 1.6. Criteria for Direct Sums.
The following conditions are equivalent for a sum U = ∑m

i=1 Ui:
1. The sum is direct.
2. The zero vector has a unique representation: if ∑m

i=1 ui = 0 with
ui ∈ Ui, then ui = 0 for all i.

3. For each k, the intersection of Uk with the sum of the other subspaces
is zero:

Uk ∩
(

∑
j ̸=k

Uj

)
= {0}.

4. If the spaces are finite-dimensional, the dimensions add up:

dim

(
m

∑
i=1

Ui

)
=

m

∑
i=1

dim Ui.

命題

Proof

(1) =⇒ (2): If the sum is direct and ∑m
i=1 ui = 0 with ui ∈ Ui,

then also 0 = ∑m
i=1 0. Uniqueness of representation in a direct

sum forces ui = 0 for all i.
(2) =⇒ (3): Suppose x ∈ Uk ∩ (∑j ̸=k Uj). Then x = uk and x =

∑j ̸=k uj for some uj ∈ Uj. Thus 0 = (−uk) + ∑j ̸=k uj. By (2), each
term is zero, so x = 0.

(3) =⇒ (1): Given ∑m
i=1 ui = ∑m

i=1 vi with ui, vi ∈ Ui, subtract to
get ∑m

i=1(ui − vi) = 0. Fix k and rewrite

uk − vk = − ∑
j ̸=k

(uj − vj) ∈ Uk ∩ ∑
j ̸=k

Uj.

By (3), uk − vk = 0. Since this holds for each k, all coordinates
agree, so the representation is unique and the sum is direct.
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(1) =⇒ (4) (finite-dimensional): For m = 2, U1 ∩ U2 = {0}, so theo-
rem 1.5 gives

dim(U1 + U2) = dim U1 + dim U2.

Assume the formula holds for m − 1 subspaces and let
W = ∑m−1

i=1 Ui. Directness implies W ∩ Um = {0}, so apply-
ing theorem 1.5 to W and Um gives

dim
( m

∑
i=1

Ui

)
= dim W + dim Um =

m−1

∑
i=1

dim Ui + dim Um.

(4) =⇒ (1) (finite-dimensional): Again let W = ∑m−1
i=1 Ui. By theo-

rem 1.5,

dim(W + Um) = dim W + dim Um − dim(W ∩ Um).

Using (4) and the inductive hypothesis for W gives

m

∑
i=1

dim Ui =
(m−1

∑
i=1

dim Ui

)
+ dim Um − dim(W ∩ Um),

so dim(W ∩ Um) = 0. Thus W ∩ Um = {0}, and by the m = 2
case, the sum is direct. Inducting on m completes the proof.

■

Remark.

For two subspaces, the condition simplifies: V = U ⊕ W if and
only if U + W = V and U ∩ W = {0}. In this case, W is called a
complement of U in V. By the theorem 1.2, every subspace has a
complement (extend a basis of U to a basis of V), but complements
are not unique.

Quotient Space

The non-uniqueness of complements suggests we should look for
an intrinsic object that captures the "difference" between V and a
subspace U.

Definition 1.13. Quotient Space.
Let U be a subspace of V. We define an equivalence relation on V:

v ∼ w ⇐⇒ v − w ∈ U.

The equivalence class of v is the set v + U = {v + u | u ∈ U}, called
a coset. The set of all such cosets is denoted V/U. We define vector op-
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erations on cosets:

(v + U) + (w + U) = (v + w) + U, λ(v + U) = (λv) + U.

These operations are well-defined (independent of the representative).
The space V/U is called the quotient space of V by U.

定義

Theorem 1.6. Isomorphism of Complements.
Let U be a subspace of V. If W is any complement of U (so V = U ⊕
W), then W is isomorphic to V/U.

定理

Proof

Define the map π : W → V/U by π(w) = w + U. This map is lin-
ear.

Injectivity: If π(w) = 0 + U, then w ∈ U. Since w ∈ W and U ∩
W = {0}, we have w = 0.

Surjectivity: Let v +U ∈ V/U. Since V = U ⊕W, we can write v =

u + w with u ∈ U, w ∈ W. Then

v + U = (u + w) + U = w + (u + U) = w + U = π(w).

Thus π is an isomorphism.
■

Corollary 1.5. Dimension of Quotients. For finite-dimensional spaces:

dim(V/U) = dim V − dim U = codim U.

推論

Proof

Choose a complement W of U in V, so V = U ⊕ W. By the previous
theorem, V/U is isomorphic to W, hence dim(V/U) = dim W. By
theorem 1.5,

dim V = dim U + dim W,

so dim(V/U) = dim V − dim U.
■

This formalises the idea that the quotient space "subtracts" the sub-
space U from V.

Example 1.20. Visualising Quotients. Let V = R2 and U be the x-
axis (line y = 0). The cosets of U are lines parallel to the x-axis, of
the form {(x, c) | x ∈ R}.
Each coset is uniquely determined by its y-intercept c. Thus, the set
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of cosets V/U can be identified with the y-axis (the complement
x = 0), which is isomorphic to R.

範例

1.6 Exercises

1. Vector Space Verification. Determine whether the following sets
form vector spaces over R:

(a) The set of all polynomials p(x) ∈ R[x] with p(0) = 1.

(b) The set of all functions f : R → R such that f (x) → 0 as
x → ∞.

(c) The set of all n × n matrices with trace zero (the trace of
matrix A = (aij) is defined by tr A = a11 + a22 + · · ·+ ann).

(d) The set of all n × n matrices with positive trace.

2. Finite Fields and Subspace Counts.

(a) Let Fq be a finite field with q elements (where q is a prime
power). Show that |Fn

q | = qn.

(b) Let W be a k-dimensional vector space over Fq. Count the
number of ordered bases of W.

(c) Conclude that the number of k-dimensional subspaces of
an n-dimensional Fq-vector space is the Gaussian binomial
coefficient (n

k)q.

3. Dimension of Matrix Spaces. Determine the dimension of the
following subspaces of Mn(R):

(a) Symmetric matrices (A = A⊤).

(b) Skew-symmetric matrices (A = −A⊤).

(c) Traceless matrices (tr(A) = 0).

4. Polynomial Subspace. Let Pn be the space of polynomials of
degree at most n. Let W = { f ∈ Pn | f (1) = 0}. Find dim W and
construct a basis for it.

5. The Space Q[θ]. For (a): To prove uniqueness, suppose
there are two; consider their difference
and use a degree argument.(a) A polynomial f ∈ Q[t] is irreducible if it cannot be factored

into two non-constant polynomials in Q[t]. The minimal
polynomial of θ is the monic polynomial of lowest degree in
Q[t] having θ as a root. Explain why the minimal polynomial
is unique (and irreducible).

(b) Let d be the degree of the minimal polynomial of θ. Show
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that 1, θ, . . . , θd−1 are linearly independent over Q.

(c) Show that every element of Q[θ] can be written as a Q-linear
combination of 1, θ, . . . , θd−1, and conclude dimQ Q[θ] = d.

6. Change of Basis. Find the transition matrix from the standard
basis (1, t, . . . , tn) of Pn to the Taylor basis (1, (t − α), . . . , (t − α)n).

7. Coordinate Isomorphism. Let V be the space of 2 × 2 symmetric
matrices. Construct an explicit isomorphism from V to R3. What
are the coordinates of the identity matrix under your map?

8. Cancellation Failure. Prove by counterexample that the cancella- Consider lines in R2.

tion law for direct sums fails: U ⊕ W1 = U ⊕ W2 does not imply
W1 = W2.

9. Quotients of R[t].

(a) Describe a natural basis for R[t] as a vector space over R, and
recall the definition of a coset p(t) + L.

(b) Give a criterion for when R[t]/L is finite-dimensional in
terms of L.

(c) Apply your criterion to determine whether the following
quotient spaces are finite-dimensional, and find the dimen-
sion when it is finite:

(i) L = Pn (polynomials of degree ≤ n),

(ii) L is the subspace of polynomials divisible by tn,

(iii) L is the subspace of polynomials in t2 (even polynomi-
als).

10. Codimension Formula.

(a) If U ≤ V has finite codimension, explain how codim U can be
defined using dim(V/U).

(b) Prove the formula

codim(U + W) + codim(U ∩ W) = codim U + codim W

for finite-dimensional V.

(c) Extend the argument to the case where V may be infinite-
dimensional but U and W have finite codimension.

11. Intersection of Subspaces. Let V1, . . . , Vk be subspaces of an n-
dimensional space V. Prove that if ∑k

i=1 dim Vi > n(k − 1), then
the intersection

⋂k
i=1 Vi is non-trivial (contains a non-zero vector).

12. Magic Squares. Following the terminology of example 1.9, we
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single out the obvious semi-magic matrices:

0, E =


1

1
. . .

1

 , D =


1

1
. . .

1

 , S =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 .

Determine the dimensions dim SMagn(Q) and dim Magn(Q).
Clearly, SMag2(Q) = ⟨E, D⟩Q. In this case, S = E + D is the only
(up to a rational factor) magic matrix. For n = 3, consider the
magic matrix:

A =

1 2 0
0 1 2
2 0 1

 .

Calculate the dimensions mentioned above for n = 3 and n = 4.

13. Direct Sum Decomposition. Prove the direct sum decomposition:

SMagn(Q) = Magn(Q)⊕ QE ⊕ QD.

14. Basis Extension. Let S = {1 + t, 1 + t2} be a subset of P3 (polyno-
mials of degree ≤ 3).

(a) Prove that S is linearly independent.

(b) Extend S to a basis for P3.

15. Row and Column Spaces. Let A be the matrix

A =

1 2 0 1
1 2 1 2
2 4 1 3

 .

(a) Find a basis for the row space of A.

(b) Find a basis for the column space of A.

(c) Verify that dim(row(A)) = dim(col(A)).

16. Geometric Intersection. Let W1 be the plane x + y + z = 0 and W2

be the plane x − y = 0 in R3.

(a) Find a basis for the intersection W1 ∩ W2.

(b) Determine dim W1 and dim W2.

(c) Verify Grassmann’s formula: dim(W1 + W2) = dim W1 +

dim W2 − dim(W1 ∩ W2). For (c): What must W1 + W2 be if it
contains two distinct planes?
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Linear Maps

2.1 Linear Maps and Operators

We now turn our attention from the internal structure of vector
spaces to the relationships between them. Linear maps are the fun-
damental functions that preserve the algebraic structure of vector
spaces.

Definition 2.1. Linear Map.
Let V and W be vector spaces over the same field F. A function T : V →
W is called a linear map (or linear transformation) if it satisfies the fol-
lowing two conditions for all u, v ∈ V and α ∈ F:
Additivity: T(u + v) = T(u) + T(v).
Homogeneity: T(αu) = αT(u).
These conditions can be combined into a single requirement:

T(αu + βv) = αT(u) + βT(v) for all u, v ∈ V and α, β ∈ F.

If W = V, the map T is often called a linear operator. The set of all
linear maps from V to W is denoted by L(V, W) or Hom(V, W).

定義

Note

We use 0V and 0W to denote the zero vectors in V and W respec-
tively. When there is no ambiguity, we simply write 0.

Proposition 2.1. Vector Space Structure of Maps.
The set L(V, W) forms a vector space over F under pointwise opera-
tions. For f , g ∈ L(V, W) and λ ∈ F, we define:

( f + g)(x) = f (x) + g(x), (λ f )(x) = λ f (x).

命題
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Proof

The verification of the axioms is direct. For instance, additivity
of the sum f + g follows from the additivity of f and g and the
commutativity of vector addition in W.

■

Proposition 2.2. Basic Properties.
Let T ∈ L(V, W).
1. T(0V) = 0W .
2. T(u − v) = T(u)− T(v).
3. Linearity extends to finite sums: T

(
∑k

i=1 αivi

)
= ∑k

i=1 αiT(vi).

命題

Proof

1. T(0) = T(0 + 0) = T(0) + T(0). Adding −T(0) to both sides
yields T(0) = 0.

2. T(u − v) = T(u + (−1)v) = T(u) + (−1)T(v) = T(u)− T(v).
3. Follows by induction on k.

■

Example 2.1. Trivial Maps.
· The zero map O : V → W defined by O(v) = 0W for all v.
· The identity map E : V → V defined by E(v) = v.

範例

Example 2.2. Geometric Transformations in R2. Consider maps T :
R2 → R2.

Reflection: Let T(x1, x2) = (x1,−x2). This reflects a vector across
the x1-axis.

Rotation: Let Tθ rotate a vector by an angle θ counter-clockwise.
Using polar coordinates, if x = (r cos α, r sin α), the rotated vector
y is (r cos(α + θ), r sin(α + θ)). Expanding this:

y1 = r cos α cos θ − r sin α sin θ = x1 cos θ − x2 sin θ

y2 = r sin α cos θ + r cos α sin θ = x2 cos θ + x1 sin θ

This can be written as matrix multiplication y = Aθ x, where

Aθ =

[
cos θ − sin θ

sin θ cos θ

]
.

Since matrix multiplication is linear, rotation is a linear map.

範例

x1

x2

x

α

y = Tθ x

θ

Figure 2.1: Rotation of a vector
x by angle θ.
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Example 2.3. Projections and Inclusions. Let m < n.
Projection: P : Rn → Rm defined by P(x1, . . . , xn) = (x1, . . . , xm).
Natural Inclusion: ι : Rm → Rn defined by ι(x1, . . . , xm) =

(x1, . . . , xm, 0, . . . , 0).
Ideally, projections "flatten" the space onto a subspace, while inclu-
sions embed a smaller space into a larger one.

範例

Example 2.4. Differentiation and Integration. Let C1[0, 1] be
the space of continuously differentiable real functions. The map
D : C1[0, 1] → C[0, 1] defined by D( f ) = f ′ is linear:

D(α f + βg) =
d
dt
(α f + βg) = α f ′ + βg′ = αD( f ) + βD(g).

Similarly, the integral map I : C[0, 1] → R defined by I( f ) =∫ 1
0 f (t) dt is a linear functional.

範例

Note

A linear functional on a vector space V over F is a linear map f :
V → F.

Example 2.5. The Transpose Map. Consider the space of matrices
Fm×n. The map T : Fm×n → Fn×m defined by T(A) = AT is linear.

T(αA + βB) = (αA + βB)T = αAT + βBT = αT(A) + βT(B).

範例

Remark.

Not all geometric transformations are linear. The translation map
T(x) = x + b with b ̸= 0 is not linear, as T(0) = b ̸= 0. Such maps
are called affine.

2.2 Kernel and Image

Associated with any linear map are two fundamental subspaces.

Definition 2.2. Kernel and Image.
Let f : V → W be a linear map.
· The kernel (or nullspace) of f is Ker f = {v ∈ V | f (v) = 0}.
· The image (or range) of f is Im f = {w ∈ W | ∃v ∈ V, f (v) = w}.

定義

It is routine to verify that Ker f is a subspace of V and Im f is a sub-
space of W. For the image, if w1 = f (u1) and w2 = f (u2), then
αw1 + βw2 = f (αu1 + βu2) ∈ Im f .
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Lemma 2.1. Injectivity and Kernel.
A linear map f is injective if and only if Ker f = {0}.

引理

( =⇒ )

Since f (0) = 0, if f is injective, 0 is the unique element mapping to
0.

証明終

( ⇐= )

Suppose Ker f = {0} and f (x) = f (y). By linearity, f (x − y) = 0, so
x − y ∈ Ker f . Thus x − y = 0, implying x = y.

証明終

Example 2.6. Injectivity and Dimension. We investigate maps de-
fined by variations of f (x, y) = x ± y to illustrate how dimension
influences injectivity and surjectivity.
Higher to Lower Dimension (n > m): Let T : R3 → R2 be defined

by T(x) = (x1 + x2, x1 − x2). The kernel is determined by the sys-
tem x1 + x2 = 0 and x1 − x2 = 0, which implies x1 = x2 = 0.
However, x3 is unconstrained. Thus Ker T = span(e3) ̸= {0}, so
T is not injective. The system T(x) = y is solvable for all y ∈ R2

(as the defining matrix is invertible), so T is surjective.
Lower to Higher Dimension (n < m): Let T : R2 → R3 be defined

by T(x) = (x1 + x2, x1 − x2, 0). The kernel requires x1 + x2 = 0
and x1 − x2 = 0, yielding x = 0. Thus T is injective (lemma 2.1).
The range consists only of vectors with a zero third component
(e.g., (0, 0, 1) is not in the image), so T is not surjective.

Equal Dimension (n = m): Let T : R2 → R2 be defined by T(x) =

(x1 + x2, x1 − x2). The kernel is trivial (x = 0), so T is injective.
The defining matrix is invertible, ensuring T is also surjective.

This highlights a general principle: a linear map cannot be injective
if the domain is ’larger’ than the codomain, nor surjective if the
domain is ’smaller’ (proved later in this section).

範例

Theorem 2.1. Mapping of Spanning Sets.
Let f : V → W be linear and U = ⟨e1, . . . , es⟩ be a subspace of V.
Then:

f (U) = ⟨ f (e1), . . . , f (es)⟩.

Consequently, dim f (U) ≤ dim U.
定理
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Proof

Any u ∈ U is of the form ∑ αiei. Then f (u) = ∑ αi f (ei), which
lies in span({ f (ei)}). Thus f (U) ⊆ ⟨ f (ei)⟩. Conversely, any lin-
ear combination of f (ei) is the image of the corresponding com-
bination of ei. Let B be a basis of U. Then f (B) spans f (U), so
dim f (U) ≤ |B| = dim U.

■

Definition 2.3. Rank.
The rank of a linear map f , denoted rank f , is the dimension of its im-
age, dim(Im f ).

定義

2.3 Matrix Representation

We have seen that m × n matrices induce linear maps. Conversely, ev-
ery linear map between finite-dimensional spaces can be represented
by a matrix.

Theorem 2.2. Map Determined by Basis.
Let V and W be vector spaces, with V finite-dimensional. Let {v1, . . . , vn}
be a basis for V. For any vectors w1, . . . , wn ∈ W, there exists a unique
linear map f : V → W such that f (vi) = wi for all i.

定理

Proof

Existence: For any x ∈ V, write x = ∑ αivi uniquely. Define f (x) =
∑ αiwi. Linearity is easily checked.

Uniqueness: If g is another such map, then for any x = ∑ αivi, lin-
earity forces g(x) = ∑ αig(vi) = ∑ αiwi = f (x).

■

Note

This theorem implies that two linear maps are equal if and only if
they agree on a basis.

Remark.

The uniqueness of the coordinate representation x = ∑ αivi is essen-
tial for the existence proof. It ensures the map f is well-defined: if
a vector x had multiple representations, the formula f (x) = ∑ αiwi

could yield different results for the same vector, violating the defi-
nition of a function.
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Example 2.7. Constructing the Map. Let T : R3 → R2 be defined
by its action on the standard basis:

T(e1) = (−1, 0), T(e2) = (1, 1), T(e3) = (0, 1).

For an arbitrary vector x = (x1, x2, x3) = x1e1 + x2e2 + x3e3, we have:

T(x) = x1T(e1) + x2T(e2) + x3T(e3)

= x1(−1, 0) + x2(1, 1) + x3(0, 1)

= (−x1 + x2, x2 + x3).

範例

Example 2.8. Matrix of Differentiation Operator. Consider the dif-
ferentiation map D : P3 → P2, where Pk is the space of polynomials
of degree at most k. Let B = (1, t, t2, t3) be the basis for P3 and
C = (1, t, t2) be the basis for P2. We compute the image of each
basis vector from B:

D(1) = 0 = 0 · 1 + 0 · t + 0 · t2

D(t) = 1 = 1 · 1 + 0 · t + 0 · t2

D(t2) = 2t = 0 · 1 + 2 · t + 0 · t2

D(t3) = 3t2 = 0 · 1 + 0 · t + 3 · t2

The coordinate columns are [0, 0, 0]⊤, [1, 0, 0]⊤, [0, 2, 0]⊤, and
[0, 0, 3]⊤. Thus, the matrix is:

MD =

0 1 0 0
0 0 2 0
0 0 0 3

 .

範例

Let V and W be spaces with fixed bases BV = (v1, . . . , vn) and BW =

(w1, . . . , wm). Let f : V → W be a linear map. We decompose the
images of the basis vectors of V into the basis of W:

f (vj) =
m

∑
i=1

aijwi for j = 1, . . . , n.

The m × n matrix M f = (aij) is called the matrix of f relative to these
bases. Specifically, the j-th column of M f contains the coordinates of
f (vj).
If x = ∑ xjvj is a vector in V with coordinate column X, and y =

f (x) = ∑ yiwi has coordinate column Y, then the linearity of f im-
plies:

Y = M f X.
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Theorem 2.3. Isomorphism of Maps and Matrices.
Let V and W be finite-dimensional vector spaces over F with fixed bases.
The map Φ : L(V, W) → Fm×n given by f 7→ M f is a vector space
isomorphism. Consequently,

dimL(V, W) = (dim V)(dim W).

定理

Proof

The map is linear: Mα f+βg = αM f + βMg because coordinates
satisfy ( f + g)(vj) = f (vj) + g(vj). Bijectivity follows from theo-
rem 2.2: every matrix defines a unique set of images for the basis of
V, which defines a unique map.

■

Theorem 2.4. Row Rank Equals Column Rank.
For any matrix A ∈ Fm×n, the dimension of the column space of A
equals the dimension of the row space of A. This common value is the
number of pivots in the RREF of A.

定理

Proof

Let R be the RREF of A. We know that Ax = 0 if and only if
Rx = 0. This implies that the linear dependence relations among
the columns of A are identical to those among the columns of R.
The pivot columns of R are the standard basis vectors e1, . . . , er

(truncated to size m) and are clearly linearly independent. Thus,
the corresponding columns of A are linearly independent. Ev-
ery non-pivot column of R is a linear combination of the pivot
columns to its left. Because the dependence relations are the same,
the corresponding columns of A are linear combinations of the
pivot columns of A. Therefore, the pivot columns of A form a basis
for col(A). The size of this basis is the number of pivots, which is
exactly the row rank of A (the number of non-zero rows in R).

■

Proposition 2.3. Consistency of Rank.
Let f ∈ L(V, W) and let M f be its matrix representation relative to
any choice of bases. Then

rank f = rank(M f ).

命題
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Proof

Fix bases BV and BW . For any x ∈ V with coordinate column X, the
image f (x) has coordinate column Y = M f X. Thus the coordinate
map ψ : W → Fm restricts to an isomorphism

ψ : Im f → Im(M f ),

where Im(M f ) denotes the column space of M f in Fm. Hence

dim Im f = dim col(M f ).

By theorem 2.4, dim col(M f ) equals the row rank of M f (the number
of pivots). Therefore rank f = rank(M f ).

■

Proposition 2.4. Composition and Matrix Multiplication.
Let U, V, W be vector spaces with bases. Let g : U → V and f : V →
W be linear maps with matrices Mg and M f . Then the composition f ◦
g : U → W corresponds to the matrix product:

M f ◦g = M f Mg.

命題

Proof

Let x ∈ U with coordinate column X in the chosen basis of U. Then
g(x) has coordinates Y = MgX in the basis of V, and the image
f (g(x)) has coordinates Z = M f Y = M f (MgX) in the basis of W.
Thus Z = (M f Mg)X for all X, so the matrix of f ◦ g is M f Mg.

■

This correspondence allows us to derive properties of maps from
matrices and vice versa.

Theorem 2.5. Rank Inequalities.
Let f : V → W and g : U → V. Then:
1. dim Im( f ◦ g) ≤ dim Im f .
2. dim Im( f ◦ g) ≤ dim Im g.

定理

Proof

1. Since Im( f ◦ g) ⊆ Im f , the dimension inequality is immediate.
2. Note that Im( f ◦ g) = f (Im g). By the "Mapping of Spanning

Sets" theorem, applying f to the subspace Im g cannot increase
its dimension. Thus dim f (Im g) ≤ dim Im g.

■



60 gudfit

2.4 Dimension Theorem

The dimensions of the kernel and image are fundamentally linked by
the dimension of the domain.

Theorem 2.6. Rank-Nullity Theorem.
Let V be a finite-dimensional vector space over the field F, and f : V →
W be a linear map. Then Ker f and Im f are both finite-dimensional,
and

dim Ker f + dim Im f = dim V.

定理

Proof

Since Ker f is a subspace of V, dim Ker f ≤ dim V. Let (e1, . . . , ek)

be a basis for Ker f (where k = dim Ker f ). Extend this to a basis
(e1, . . . , ek, ek+1, . . . , en) of V. Any vector in Im f is of the form

f

(
n

∑
i=1

αiei

)
=

n

∑
i=1

αi f (ei) =
n

∑
i=k+1

αi f (ei),

since f (ei) = 0 for i ≤ k. Thus, S = { f (ek+1), . . . , f (en)} spans
Im f . To show independence, suppose ∑n

j=k+1 λj f (ej) = 0. Then
f (∑ λjej) = 0, implying v = ∑ λjej ∈ Ker f . Thus v can be written
as a linear combination of the kernel basis: ∑n

j=k+1 λjej = ∑k
i=1 µiei.

Rearranging gives a linear dependence relation among the basis
vectors of V:

k

∑
i=1

(−µi)ei +
n

∑
j=k+1

λjej = 0.

Since the basis of V is independent, all coefficients must be zero,
specifically λj = 0. Thus S is a basis for Im f , and dim Im f =

n − k = dim V − dim Ker f .
■

Corollary 2.1. Injectivity in Finite Dimensions. If dim V < ∞, the fol-
lowing are equivalent for a linear map f : V → W:
1. f is injective.
2. dim V = dim Im f .

推論

Proof

By the Rank-Nullity Theorem, dim V = dim Im f if and only if
dim Ker f = 0, which is equivalent to Ker f = {0}, i.e., injectivity.

■

Corollary 2.2. Dimensional Constraints. Let f : V → W be a linear
map between finite-dimensional spaces with dim V = n and dim W =
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m.
1. If n > m, then f is not injective.
2. If n < m, then f is not surjective.

推論

Proof

1. By Rank-Nullity (theorem 2.6), dim Im f = n − dim Ker f . Since
Im f ≤ W, we have n − dim Ker f ≤ m. If f were injective,
Ker f = {0}, implying n ≤ m. Thus n > m forces a non-trivial
kernel.

2. The rank is at most n. If n < m, then dim Im f ≤ n < m =

dim W, so the image cannot be all of W.
■

Remark.

If dim V = dim W (e.g., a linear operator f : V → V), then injectiv-
ity implies dim Im f = dim V = dim W, so Im f = W (surjectivity).
Thus, for operators on finite-dimensional spaces, injectivity ⇐⇒
surjectivity ⇐⇒ bijectivity.

2.5 Isomorphisms

We end this chapter with some proofs for the properties of isomor-
phism. We recall the definition of an isomorphism from the previous
chapter. A linear map T : V → W is an isomorphism if it is bijective.

Proposition 2.5. Linearity of Inverse.
If f : V → W is a bijective linear map, then its set-theoretic inverse
f−1 : W → V is also linear.

命題

Proof

Let x, y ∈ W and α ∈ F. Since f is surjective, there exist unique
u, v ∈ V such that f (u) = x and f (v) = y. Thus f−1(x) = u and
f−1(y) = v. Using the linearity of f :

f (u+ v) = f (u)+ f (v) = x+ y =⇒ f−1(x+ y) = u+ v = f−1(x)+ f−1(y).

Similarly, f (αu) = α f (u) = αx =⇒ f−1(αx) = αu = α f−1(x).
■

Proposition 2.6. Isomorphisms Preserve Bases.
Let f : V → W be an isomorphism. If {e1, . . . , en} is a basis for V,
then { f (e1), . . . , f (en)} is a basis for W.

命題
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Proof

Let B′ = { f (e1), . . . , f (en)}. Since f is surjective and {ei} spans V,
the image of the span is the span of the image (theorem 2.1), so B′

spans W. For independence, suppose ∑ λi f (ei) = 0. By linearity,
f (∑ λiei) = 0. Since f is injective, Ker f = {0} (lemma 2.1), so
∑ λiei = 0. The independence of {ei} implies all λi = 0.

■

Consequently, isomorphic finite-dimensional spaces have the same
dimension.

2.6 Exercises

1. Verification of Linearity. Determine whether the following maps
are linear:

(a) f : V → V/L, where L ≤ V, defined by f (v) = v + L (the
canonical projection).

(b) f : Pn → Pn defined by f (u(t)) = tu′(t)− u(t) for n ≥ 1. Find
Ker f and rank f (for the trivial case n = 0, f (c) = −c has
trivial kernel and rank 1).

(c) fC : Mn(F) → Mn(F) defined by fC(X) = C−1XC, where C is
invertible. Verify that fC(XY) = fC(X) fC(Y) (automorphism
property).

2. Geometric Transformations. Find the matrix representation of the
linear map T : R2 → R2 that reflects vectors across the line y = 2x.

3. Rank-Nullity Practice. Let T : R3 → R3 be defined by T(x, y, z) =
(x + y, y + z, z + x). Find a basis for Ker T and Im T. Verify the
Rank-Nullity Theorem.

4. Injection and Surjection. Let T : V → W.

(a) If T is injective and {v1, . . . , vk} is linearly independent in V,
prove that {T(v1), . . . , T(vk)} is linearly independent in W.

(b) If T is surjective and {v1, . . . , vk} spans V, prove that {T(v1), . . . , T(vk)}
spans W.

5. Map from Basis. Let V = R2. Let e1, e2 be the standard basis.
Define T by T(e1) = (2, 1) and T(e2) = (1,−1). Find T(3, 4).

6. Left/Right Multiplication Matrices (a.k.a. Kronecker product
block form). Identify the space M2(R) with R4 via the coordinate
vector x = [x1, x2, x3, x4]

⊤ corresponding to

X =

[
x1 x2

x3 x4

]
.
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Let

A =

[
a1 a2

a3 a4

]
.

Define two linear maps on M2(R):

fL(X) = AX, fR(X) = XA.

Verify that the matrix representations M fL and M fR relative to the
standard basis of R4 are:

M fL =


a1 0 a2 0
0 a1 0 a2

a3 0 a4 0
0 a3 0 a4

 , M fR =


a1 a3 0 0
a2 a4 0 0
0 0 a1 a3

0 0 a2 a4

 .

7. Idempotent Maps. A linear map P : V → V is called a projection
if P2 = P.

(a) Prove that V = Im P ⊕ Ker P.

(b) If P is a projection, show that E − P is also a projection. What
are its image and kernel?

8. Rank Inequalities. Let A, B be n × n matrices. Prove Sylvester’s
Rank Inequality:

rank(A) + rank(B)− n ≤ rank(AB) ≤ min(rank(A), rank(B)).



3
Linear Operator Algebra

We now shift our perspective from the general mapping between
distinct vector spaces to the rich internal structure of maps from a
space to itself. These endomorphisms form an algebraic structure
that allows us to apply the tools of polynomial ring theory to linear
algebra.

3.1 The Algebra of Operators

Throughout this chapter, let V be a vector space over a field F. We
abbreviate the space of linear maps L(V, V) as L(V). The elements of
this space are called linear operators or simply operators.

Notation 3.1. Operator Notation We adopt the convention of using cal-
ligraphic Latin letters (A,B, C, . . . ) to denote linear operators. Their cor-
responding matrix representations with respect to a fixed basis (ei) will
be denoted by standard Roman capitals (A, B, C, . . . ). If the basis is changed
to (e′i), the matrices will be denoted A′, B′, . . . . We denote the identity
operator by E (where Ex = x for all x) and the corresponding iden-
tity matrix by E = (δij). The action of an operator A on a vector x is
written as Ax, omitting parentheses where no ambiguity arises.

記法

Algebraic Structure

We have previously established that L(V) is a vector space. However,
operators can also be composed. This introduces a multiplicative
structure compatible with vector addition.

Definition 3.1. Algebra over a Field.
A ring K is called an algebra over a field F if K is equipped with a vec-
tor space structure over F such that scalar multiplication is compati-
ble with ring multiplication:

λ(xy) = (λx)y = x(λy)
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for all λ ∈ F and x, y ∈ K. If the multiplication is associative, it is
an associative algebra.

定義

Proposition 3.1. The Operator Algebra.
The set L(V) forms an associative algebra over F with identity E . For
all A,B, C ∈ L(V) and α, β ∈ F, the following hold:
Linearity: α(A+ B) = αA+ αB and (α + β)A = αA+ βA.
Associativity: A(BC) = (AB)C.
Distributivity: A(B+ C) = AB+AC and (A+ B)C = AC + BC.
Scalar Compatibility: λ(AB) = (λA)B = A(λB).
Furthermore, if dim V = n, then dimL(V) = n2.

命題

Proof

The vector space properties (1) follow from the definition of lin-
ear maps. The ring properties (2, 3) follow from the properties of
function composition. For (4), we observe:

(λ(AB))x = λ(A(Bx)) = A(λBx) = A((λB)x),

which verifies the compatibility.
■

The correspondence between operators and matrices preserves this
algebraic structure. If A and B are operators with matrices A = (aij)

and B = (bij) relative to a basis (ek), then the product operator
C = AB corresponds to the matrix product C = AB.

Proof

Let Aek = ∑i aikei and Bej = ∑k bkjek. The action of the composite
operator on a basis vector ej is:

(AB)ej = A

(
∑
k

bkjek

)
= ∑

k
bkjAek

= ∑
k

bkj

(
∑

i
aikei

)
= ∑

i

(
∑
k

aikbkj

)
ei.

The coefficient of ei is exactly the (i, j)-th entry of the matrix prod-
uct AB.

■

3.2 Fundamental Examples

We examine several fundamental classes of operators.
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Example 3.1. Zero and Scalar Operators.
1. The zero operator O maps every vector to the zero vector. Its

rank is 0.
2. The scalar operator Aλ is defined by Aλx = λx for a fixed λ ∈ F.

Its matrix in any basis is λE.

範例

Example 3.2. Rotation in the Plane. Recall the rotation map from
Chapter 2. While we previously derived its matrix using coordi-
nates, we can now view it algebraically by identifying V = R2 with
the complex field C. Identifying R2 with C via the basis {1, i}, this
operation corresponds to multiplication by eiα. Explicitly, the map
z 7→ eiαz yields:

A(1) = cos α + i sin α, A(i) = i(cos α + i sin α) = − sin α + i cos α.

Thus, relative to the basis (1, i) (identified with standard basis
vectors e1, e2), the matrix is:

A =

[
cos α − sin α

sin α cos α

]
.

範例 Re

Im

1

i
A(1)A(i)

α

Figure 3.1: Action of the rota-
tion operator A on the basis
elements 1 and i.

Example 3.3. Projections. Let V = U ⊕ W. Every vector x has a
unique decomposition x = xU + xW with xU ∈ U, xW ∈ W.
The projection operator P onto U along W is defined by Px = xU .
Since PxU = xU , applying the operator twice yields the same result:
P2 = P . Operators satisfying this idempotence property are charac-
teristic of projections.

範例

Invertibility

An operator B is the inverse of A if AB = BA = E . If such an
operator exists, it is unique and denoted A−1. By previous results on
linear maps, A is invertible if and only if KerA = {0}. For operators
on finite-dimensional spaces, this is equivalent to rankA = dim V, or
having nullity zero.

Example 3.4. The Differentiation Operator. Let Pn be the space of
polynomials over F of degree at most n − 1. Let D be the differen-
tial operator defined by D( f ) = f ′. The kernel of D is the subspace
of constant polynomials, ⟨1⟩, which has dimension 1. The image
of D is Pn−1 = ⟨1, t, . . . , tn−2⟩. Note that while the Rank-Nullity
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Theorem holds:

dim KerD+ dim ImD = 1 + (n − 1) = n = dim Pn,

it is not true that Pn = KerD ⊕ ImD. Indeed, KerD ⊂ ImD (since
constants are polynomials of degree 0), so their intersection is non-
trivial. One must not conflate the arithmetic sum of dimensions
with the direct sum of subspaces.

範例

Example 3.5. Infinite Dimensional Counterexamples. The equiv-
alence between injectivity and surjectivity fails for infinite-
dimensional spaces. Let P be the space of all real polynomials.
Define the differentiation operator D : P → P by D( f ) = f ′. Since
D(1) = 0, the kernel is non-trivial (KerD ̸= {0}), so D is not in-
jective. However, every polynomial has an antiderivative, so D is
surjective. Conversely, define the integration operator S : P → P
by (S f )(t) =

∫ t
0 f (x) dx. If S f = 0, differentiating yields f = 0,

so S is injective. However, the image of S consists only of polyno-
mials with a zero constant term, so it is not surjective. Observe that
DS = E (Fundamental Theorem of Calculus), so S is a right inverse
of D. However, SD ̸= E since SD(1) = S(0) = 0 ̸= 1.

範例

3.3 Polynomials of Operators

The algebraic structure of L(V) allows us to substitute operators into
polynomials. Let f (t) = ∑m

i=0 aiti ∈ F[t]. We define the operator f (A)

by:
f (A) = a0Am + a1Am−1 + · · ·+ am−1A+ amE .

Here, Ak denotes the k-fold composition of A, with A0 = E .

Definition 3.2. Generated Subalgebra.
The set of all polynomials in A, denoted F[A], forms a subalgebra of
L(V). It is the smallest subalgebra containing A and E .

定義

Unlike the general algebra L(V), the subalgebra F[A] is commuta-
tive. For any f , g ∈ F[t], we have f (A)g(A) = g(A) f (A), which fol-
lows from the fact that powers of A commute (AkAl = Ak+l = AlAk).

The Minimal Polynomial

Since L(V) has finite dimension n2, the powers E ,A,A2, . . . ,An2

cannot be linearly independent. There must exist a non-trivial linear
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combination equal to the zero operator O. Thus, there exists a non-
zero polynomial annihilating A.

Definition 3.3. Minimal Polynomial.
The minimal polynomial of A, denoted µA(t), is the unique monic poly-
nomial of lowest degree such that µA(A) = O.

定義

Theorem 3.1. Properties of the Minimal Polynomial.
Let A ∈ L(V) and let µA(t) = tm + µ1tm−1 + · · · + µm be its mini-
mal polynomial.
1. The set {E ,A, . . . ,Am−1} is linearly independent.
2. dim F[A] = m = deg µA.
3. If f (t) ∈ F[t] annihilates A (i.e., f (A) = O), then µA(t) divides

f (t).
4. A is invertible if and only if the constant term µm ̸= 0.

定理

Proof

1. Suppose ∑m−1
i=0 λiAi = O. This corresponds to a polynomial P(t)

of degree less than m annihilating A. By the minimality of m,
P(t) must be the zero polynomial.

2. The powers Ak for k ≥ m can be reduced to combinations of
lower powers using the relation Am = −∑m−1

i=0 µm−iAi. Thus
{E , . . . ,Am−1} spans F[A]. With independence established in (1),
it is a basis.

3. Perform Euclidean division: f (t) = q(t)µA(t) + r(t), where
deg r < deg µA or r = 0. Substituting A:

O = f (A) = q(A)µA(A) + r(A) = q(A)O+ r(A) = r(A).

Since r(t) has degree strictly less than m, r(A) = O implies
r(t) = 0. Thus µA | f .

4. ( =⇒ ) Suppose µm ̸= 0. We have:

Am + · · ·+ µm−1A+ µmE = O.

Rearranging terms:

A(Am−1 + · · ·+ µm−1E) = −µmE .

Dividing by −µm, we find an explicit inverse:

A−1 = − 1
µm

(Am−1 + · · ·+ µm−1E).

( ⇐= ) Suppose µm = 0. Then µA(t) = tq(t) for some polyno-
mial q(t) of degree m − 1. Thus O = Aq(A). Since deg q < m,



algebra iv: linear 69

q(A) ̸= O. Therefore, A is a zero divisor in the algebra
L(V), which implies it cannot be invertible. (Specifically, there
exists a non-zero vector y = q(A)x such that Ay = 0, so
KerA ̸= {0}).

■

Remark.

The degree of the minimal polynomial satisfies m ≤ n2 simply
because dimL(V) = n2. However, a much stronger bound, m ≤ n,
holds. This is the content of the Cayley-Hamilton theorem, which
we will explore in subsequent chapters.

3.4 Operators and Change of Basis

We have seen that a linear operator A : V → V can be represented
by a matrix A relative to a chosen basis. Since the choice of basis is
arbitrary, it is crucial to understand how this matrix representation
changes when the basis changes.

Note

Strictly speaking, when defining the matrix of an operator (or vec-
tor), the basis must be an ordered basis. Changing the order of
vectors in the basis permutes the rows and columns of the corre-
sponding matrix. We assume all bases are ordered sequences.

Definition 3.4. Similar Matrices.
Let A and A′ be n×n matrices over F. We say A′ is similar to A, de-
noted A′ ∼ A, if there exists an invertible matrix B such that:

A′ = B−1 AB.

定義

Similarity is an equivalence relation. It is reflexive (A = E−1 AE),
symmetric (A′ = B−1 AB =⇒ A = (B−1)−1 A′B−1), and transitive
(A′′ ∼ A′ and A′ ∼ A =⇒ A′′ ∼ A). This partitions the set of n × n
matrices into equivalence classes.

Theorem 3.2. Change of Basis for Operators.
Let A be a linear operator on V. Let A be the matrix of A relative to
a basis B = (e1, . . . , en), and let A′ be the matrix of A relative to a ba-
sis B′ = (e′1, . . . , e′n). Then A′ = B−1 AB, where B is the transition ma-
trix from B to B′ (i.e., the columns of B are the coordinate vectors of
e′j in the basis B). Consequently, two matrices represent the same lin-
ear operator in different bases if and only if they are similar.

定理
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Proof

Let X and X′ be the coordinate column vectors of x ∈ V in bases
B and B′ respectively. The coordinate transformation is given by
X = BX′. Let Y and Y′ be the coordinates of Ax in the respective
bases. The operator action is represented by matrix multiplication:
Y = AX and Y′ = A′X′. Since Y = BY′, we have:

BY′ = Y = AX = A(BX′) = (AB)X′.

Multiplying by B−1 gives Y′ = (B−1 AB)X′. Since this holds for all
X′, we must have A′ = B−1 AB.

■

Example 3.6. Numerical Coordinate Change. Consider V = R3.
Let x = (e, π, 0). Relative to the standard basis B1 = (e1, e2, e3), the
coordinate vector is simply [x]B1 = [e, π, 0]⊤. Now consider the ba-
sis B2 = (u1, u2, u3) where u1 = (1, 1, 0), u2 = (1,−1, 0), and u3 =

(0, 0, 1). We wish to find coordinates α1, α2, α3 such that x = α1u1 +

α2u2 + α3u3. Writing this out:

(e, π, 0) = α1(1, 1, 0)+ α2(1,−1, 0)+ α3(0, 0, 1) = (α1 + α2, α1 − α2, α3).

Solving the system yields α3 = 0, 2α1 = e + π, and 2α2 = e − π.
Thus, the coordinate vector relative to B2 is [x]B2 = [ e+π

2 , e−π
2 , 0]⊤.

範例

Example 3.7. Powers of Matrices. Similarity is a powerful tool for
computation. If A′ = B−1 AB, then

(A′)k = (B−1 AB)k = B−1 A(BB−1)A . . . AB = B−1 AkB.

Ideally, we seek a basis where the matrix A′ is diagonal, say A′ =

diag(λ1, . . . , λn). Then (A′)k = diag(λk
1, . . . , λk

n), making the com-
putation of Ak = B(A′)kB−1 trivial. This naturally extends to poly-
nomials: if f (t) ∈ F[t], then f (A) = B f (A′)B−1.

範例

Invariants: Determinant and Trace

Since similar matrices represent the same underlying operator, prop-
erties shared by all matrices in a similarity class can be attributed to
the operator itself.

Definition 3.5. Determinant and Trace of an Operator.
Let A be a linear operator on a finite-dimensional space V. Let A be
the matrix of A in any basis.
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1. The determinant of A is detA = det A. (We assume familiarity with
the matrix determinant and its property det(XY) = det X det Y;
a coordinate-free treatment will be provided in a later chapter).

2. The trace of A is trA = tr A = ∑n
i=1 aii.

定義

Proposition 3.2. Well-Definedness.
The determinant and trace are independent of the choice of basis.

命題

Proof

For the determinant, let A′ = B−1 AB. Using the multiplicative
property:

det A′ = det(B−1 AB) = det(B−1)det(A)det(B) = det(A)det(B−1B) = det A.

For the trace, we use the cyclic property tr(XY) = tr(YX).

tr(B−1 AB) = tr(B−1(AB)) = tr((AB)B−1) = tr(ABB−1) = tr A.

■

These invariants carry structural information. For instance, A is
invertible if and only if detA ̸= 0. The trace is a linear functional on
L(V):

tr(αA+ βB) = α trA+ β trB.

3.5 Nilpotent Operators and Commutators

A special class of operators plays a significant role in the structure
theory of linear maps.

Definition 3.6. Nilpotent Operator.
A linear operator A is called nilpotent if there exists a positive inte-
ger m such that Am = O. The smallest such m is called the nilpotency
index.

定義

For a nilpotent operator of index m, the minimal polynomial is
µA(t) = tm. Examples include the differentiation operator D on
Pn (where Dn = O) and strictly upper triangular matrices.

Lie Algebras

The algebra L(V) is associative. However, we can define a new non-
associative product that captures the "failure" of commutativity.
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Definition 3.7. Commutator.
The commutator of two operators A,B is defined as:

[A,B] = AB− BA.

定義

Equipped with this operation, L(V) becomes a Lie algebra, denoted
gl(V) or gln(F). The bracket satisfies:
Antisymmetry: [A,B] = −[B,A] (which implies [A,A] = 0).
Jacobi Identity: [[A,B], C] + [[B, C],A] + [[C,A],B] = O.

Example 3.8. The Heisenberg Relation. In quantum mechanics, the
position operator X (multiplication by x) and momentum opera-
tor P (differentiation) satisfy the canonical commutation relation
[P ,X ] = E . Let V = F[t]. Let Dt be differentiation and Ft be
multiplication by t. Then:

[Dt,Ft] f (t) = Dt(t f (t))− tDt f (t) = ( f (t) + t f ′(t))− t f ′(t) = f (t).

Thus [Dt,Ft] = E .

範例

Proposition 3.3. Trace Obstruction.
If F has characteristic 0 (e.g., R or C), there exist no operators A,B on
a finite-dimensional space V such that [A,B] = E .

命題

Proof

Suppose such operators exist. Taking the trace of both sides:

tr[A,B] = tr(AB− BA) = tr(AB)− tr(BA) = 0.

However, tr(E) = dim V = n. Since F has characteristic 0, n ̸= 0, a
contradiction.

■

Remark.

This result fails in characteristic p if p divides n. For example, if
n = p, the matrices

Jp =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 , Np =


0 0 0 · · · 0
1 0 0 · · · 0
0 2 0 · · · 0
...

...
. . . . . .

...
0 0 · · · p − 1 0


satisfy [Jp, Np] = Ep, as tr(Ep) = p ≡ 0 (mod p).
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3.6 Exercises

1. Kernel and Image Equality. Let V be a finite-dimensional vector
space and T ∈ L(V) such that Ker T = Im T .

(a) Prove that dim V must be even.

(b) Construct an example of such an operator on R2.

(c) Show that such an operator satisfies T 2 = O.

2. One-Sided Inverses. Let V be the space of all polynomials. Let D
and S be the differentiation and integration operators defined in
the text.

(a) Verify explicitly that D is surjective.

(b) Verify explicitly that S is not surjective.

3. Trace Obstruction Matrices. Verify that the matrices Jp and Np

introduced in the "Trace Obstruction" remark are indeed nilpotent
of order p. Specifically, show that Jp

p = Np
p = 0.

4. Cyclic Property of Trace. Prove that if A, B, C are matrices of size
n × p, p × q, and q × n respectively, then:

tr(ABC) = tr(BCA) = tr(CAB).

5. Finite Field Automorphisms. Interpret GLn(Fp) as the group of
automorphisms of an n-dimensional vector space V over the finite
field Fp.

(a) Show that determining an automorphism is equivalent to
choosing a basis for V.

(b) Count the number of possible bases to find the order |GLn(Fp)|.

6. The Special Linear Algebra. Let sln(F) = {A ∈ L(V) | trA = 0}.

(a) Prove that sln(F) is a subspace of L(V) of codimension 1.

(b) Prove that it is a subalgebra of the Lie algebra gln(F) (i.e.,
closed under the commutator bracket).

7. Rank Intersection Formula. Prove that for any linear operators
A,B on V: Consider the restriction of B to the

subspace ImA.

dim(ImA∩ KerB) = rankA− rankBA.

8. Frobenius Inequality. Use the previous exercise to prove that for
any operators A,B, C on V:

rankBA+ rankAC ≤ rankA+ rankBAC.

9. Iterated Kernels. Prove that for any linear operator A and integer



74 gudfit

i ≥ 1:

dim(ImAi−1 ∩ KerA) = dim KerAi − dim KerAi−1.

10. Field Extension and Similarity. Prove that if two real matrices Write P = X + iY and consider the
polynomial det(X + tY).A, B ∈ Mn(R) are similar over C (i.e., P−1 AP = B for some

P ∈ Mn(C)), then they are similar over R.

11. Minimal Polynomial of a Vector. Let µA(t) be the minimal poly-
nomial of A. For a vector v ∈ V, let µA,v(t) be the monic polyno-
mial of lowest degree such that µA,v(A)v = 0.

(a) Prove that µA,v(t) divides µA(t) for any v.

(b) Prove that for any u, v ∈ V, µA,u+v(t) is the least common
multiple of µA,u(t) and µA,v(t), provided the latter two are
coprime.

(c) Conclude that there exists a vector a ∈ V such that µA,a(t) =
µA(t). (This vector is often called a cyclic vector if the degree
is n).

12. Trace Zero and Main Diagonal. Let F be a field of characteristic
zero. Prove that if tr(A) = 0, then A is similar to a matrix with all
zeros on the main diagonal. Proceed by induction:

(a) Show that if A is not a scalar multiple of the identity and
tr(A) = 0, there exists a vector x such that x and Ax are
linearly independent.

(b) Use x as the first basis vector to show A is similar to a block

matrix

[
0 ∗
∗ A′

]
.

(c) Apply the induction hypothesis to A′.

(d) Explain why the characteristic zero assumption is necessary.

13. Direct Sum Projections. Let V = V1 ⊕ V2 and W = W1 ⊕ W2 with
Wi ⊆ Vi. Let P2 be the projection onto V2 along V1. Prove:

(a) If V1 = W1 +(U ∩V1) and V2 = W2 +P2(U), then V = W +U.

(b) If V = W + U and P2(U) ∩ W2 = {0}, then the decomposition
in (a) holds.

14. The Center of the Algebra. The center of an algebra is the set of
elements that commute with all other elements. Prove that the
center of L(V) consists exactly of the scalar operators {λE | λ ∈
F}.



4
Dual Spaces

We have previously studied linear maps between arbitrary vector
spaces. We now focus on the case where the codomain is the under-
lying field itself. This special class of maps reveals a deep symmetry
inherent in vector spaces.

Definition 4.1. Linear Functional.
Let V be a vector space over a field F. A map f : V → F is called a
linear functional (or linear form) if it satisfies:

f (αx + βy) = α f (x) + β f (y) for all α, β ∈ F and x, y ∈ V.

定義

Let (e1, . . . , en) be a basis for V. Any vector x ∈ V can be uniquely
expressed as x = ∑n

i=1 λiei. Applying a linear functional f to x yields:

f (x) = f

(
n

∑
i=1

λiei

)
=

n

∑
i=1

λi f (ei).

Let βi = f (ei). These scalars are determined solely by the func-
tional f and the choice of basis. Conversely, for any choice of scalars
β1, . . . , βn ∈ F, there exists a unique linear functional f such that
f (ei) = βi. Thus, relative to a fixed basis, a linear functional is com-
pletely determined by the n-tuple (β1, . . . , βn).

Change of Basis

While the definition of a linear functional is independent of the ba-
sis, its coordinate representation depends on it. It is instructive to
see how the coefficients βi transform under a change of basis. Let
(e1, . . . , en) and (e′1, . . . , e′n) be two bases of V related by the transfor-
mation:

e′j =
n

∑
i=1

aijei, j = 1, . . . , n.

Let f be a linear functional. We define its coefficients with respect
to the two bases as βi = f (ei) and β′

j = f (e′j). Substituting the
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expression for e′j:

β′
j = f (e′j) = f

(
n

∑
i=1

aijei

)

=
n

∑
i=1

aij f (ei)

=
n

∑
i=1

aijβi.

In coordinate form, covector coefficients satisfy β′ = A⊤β, whereas
vector coordinates satisfy λ′ = A−1λ. Covectors thus transform with
A⊤ (covariantly), contrasting with vectors, which transform with A−1

(contravariantly).
Remark.

This distinction leads to the terminology used in tensor calculus.
Elements of V are often called contravariant vectors (indices up-
stairs) because their components transform inversely to the basis
change. Elements of the dual space (linear functionals) are called
covariant vectors or covectors (indices downstairs) because their
components transform consistently with the basis change. In the
language of tensors, a vector is a type (0, 1) tensor, and a linear
functional is a type (1, 0) tensor.

Example 4.1. Standard Functionals.
· Coordinate Space: For V = Rn, any linear functional f takes the

form f (x) = ∑n
i=1 aixi for fixed scalars ai. This can be written as

the dot product f (x) = a⊤x or matrix multiplication [a]x.
· Trace: On the space Mn(R) of square matrices, the trace map

tr(A) = ∑ Aii is a linear functional.
· Integration: On the space C[0, 1] of continuous functions, the

definite integral I(g) =
∫ 1

0 g(t) dt is a linear functional.
· Evaluation: On a function space such as Pn, the map Et(p) = p(t)

for a fixed t ∈ R is a linear functional.

範例

4.1 The Dual Space

The set of all linear functionals on V can be equipped with vector
space operations.

Definition 4.2. Dual Space.
The set of all linear functionals on V, denoted by V∗ (or sometimes V′),
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forms a vector space over F with the operations:

(α f + βg)(x) = α f (x) + βg(x).

This space is called the dual space of V.
定義

Since a linear functional is determined by its values on a basis of
V, there is a natural bijection between V∗ and the coordinate space
Fn. Specifically, fixing a basis (e1, . . . , en) of V, the map θ : f 7→
( f (e1), . . . , f (en)) is an isomorphism. Consequently:

dim V∗ = dim V = n.

We can construct a specific basis for V∗ associated with a given basis
of V.

Theorem 4.1. The Dual Basis.
Let (e1, . . . , en) be a basis of an n-dimensional vector space V. Define
the linear functionals e1, . . . , en ∈ V∗ by their action on the basis vec-
tors:

ei(ej) = δij =

1 if i = j,

0 if i ̸= j.

Then (e1, . . . , en) forms a basis for V∗, called the dual basis to (ei).
定理

Proof

Since dim V∗ = n, it suffices to show that {e1, . . . , en} is linearly
independent. Consider a linear combination equal to the zero func-
tional:

n

∑
i=1

λiei = 0.

Applying this functional to the basis vector ek ∈ V:(
n

∑
i=1

λiei

)
(ek) =

n

∑
i=1

λiei(ek) =
n

∑
i=1

λiδik = λk.

Since the functional is zero, it must evaluate to zero on all vectors.
Thus λk = 0 for all k = 1, . . . , n. Hence the set is linearly indepen-
dent and forms a basis.

■

Example 4.2. Lagrange Interpolation. Consider V = Pn(R),
the space of polynomials of degree at most n (dimension n + 1).
Let t0, . . . , tn be distinct real numbers. The evaluation func-
tionals Li(p) = p(ti) form a basis for V∗. The basis of V dual
to {L0, . . . , Ln} consists of the polynomials l0, . . . , ln such that
Li(lj) = δij. Explicitly, lj(ti) = δij. These are precisely the Lagrange
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interpolating polynomials:

lj(t) = ∏
k ̸=j

t − tk
tj − tk

.

This establishes that any polynomial p can be reconstructed from
its samples: p = ∑ p(ti)li.

範例

Example 4.3. Calculating the Dual Basis. Let V = R3 with basis
u1 = (1, 0,−1)⊤, u2 = (1, 1, 1)⊤, and u3 = (2, 2, 0)⊤. To find
the dual basis f1, f2, f3, we express each functional as fi(x) = c⊤i x
for some coefficient vector ci. The condition fi(uj) = δij becomes
c⊤i uj = δij.
Arranging the basis vectors as columns of a matrix U = [u1 |
u2 | u3] and the coefficient vectors as rows of a matrix C, we require
CU = I. Thus C = U−1.

U =

 1 1 2
0 1 2
−1 1 0

 .

Inverting U (e.g., by row reduction [U | I] → [I | U−1]) yields:

C =

 1 −1 0
1 −1 1

−0.5 1 −0.5

 .

The rows of C give the functionals:

f1(x) = x1 − x2, f2(x) = x1 − x2 + x3, f3(x) = −1
2

x1 + x2 −
1
2

x3.

範例

Canonical Pairing

The relationship between V and V∗ is symmetric. We introduce the
notation ( f , x) to denote the evaluation f (x). This defines a map
V∗ × V → F:

( f , x) = f (x).

This map is bilinear, meaning it is linear in both arguments:

(α f + βg, x) = α( f , x) + β(g, x),

( f , αx + βy) = α( f , x) + β( f , y).

Such a pairing is called canonical because it depends only on the
definition of the spaces, not on a choice of basis.
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Using dual bases, we can express the pairing in terms of coordinates.
Let x = ∑ αiei and f = ∑ βiei. Then:

( f , x) =
n

∑
j=1

β j

(
ej,

n

∑
i=1

αiei

)
=

n

∑
j=1

n

∑
i=1

β jαiδji =
n

∑
k=1

αkβk.

Furthermore, the coordinates themselves can be recovered via the
pairing:

αk = (ek, x) and βk = ( f , ek).

Example 4.4. Polynomials and Derivatives. Let V = Pn be the
space of polynomials over R of degree less than n, with basis
(1, t, . . . , tn−1). For any λ ∈ R, the evaluation map fλ : φ 7→ φ(λ) is
a linear functional. However, a more convenient basis for V∗ relates
to derivatives. Define ek ∈ V∗ by:

ek(φ) =
φ(k)(0)

k!
.

For the basis vector ej = tj, we have:

dk

dtk (t
j)

∣∣∣∣
t=0

=

k! if j = k,

0 if j ̸= k.

Thus ek(tj) = δkj, so (e0, . . . , en−1) is the dual basis to (1, t, . . . , tn−1).
Generally, expanding φ in this basis corresponds to the Maclau-
rin series coefficients. If we instead use the basis (1, t − λ, . . . , (t −
λ)n−1), the dual basis consists of functionals φ 7→ φ(k)(λ)/k!,
corresponding to Taylor expansion at λ.

範例

The Double Dual and Reflexivity

Since V∗ is a vector space, we can consider its dual space, V∗∗ =

(V∗)∗, called the double dual or bidual. Elements of V∗∗ are linear
functionals on V∗. While V∗ is isomorphic to V (as they have the
same dimension), constructing such an isomorphism requires choos-
ing a basis. Remarkably, there exists a natural isomorphism between
V and V∗∗ that requires no basis choice.

Theorem 4.2. Reflexivity.
Define the map ε : V → V∗∗ by ε(x) = εx, where εx acts on f ∈ V∗

by:
εx( f ) = f (x).
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Then ε is a linear isomorphism.
定理

Proof

First, we verify linearity. For x, y ∈ V and α, β ∈ F, and for any f ∈
V∗:

εαx+βy( f ) = f (αx + βy)

= α f (x) + β f (y) (linearity of f )

= αεx( f ) + βεy( f )

= (αεx + βεy)( f ).

Thus εαx+βy = αεx + βεy.
To prove bijectivity, let (ei) be a basis for V and (ei) be the dual
basis for V∗. We evaluate εej on the basis vectors of V∗:

εej(e
i) = ei(ej) = δij.

The functionals (εe1 , . . . , εen) in V∗∗ satisfy the condition of being
the dual basis to (e1, . . . , en). By theorem 4.1, they form a basis for
V∗∗. Since ε maps a basis of V to a basis of V∗∗, it is an isomor-
phism.

■

Definition 4.3. Reflexive Space.
A vector space V is called reflexive if the natural map ε : V → V∗∗

is an isomorphism.
定義

Note

theorem 4.1 implies that all finite-dimensional vector spaces are
reflexive. This property allows us to treat V and V∗∗ as identical.
The equation x( f ) = f (x) becomes an identity, reinforcing the
symmetry of the pairing ( f , x).

Annihilators and Linear Independence

The dual space provides powerful tools for characterizing linear
independence and subspaces. We can associate a set of vectors in V
with a determinant of values of functionals.

Definition 4.4. Annihilator.
Let S be a subset of V. The annihilator of S, denoted S◦, is the set of
linear functionals in V∗ that vanish on S:

S◦ = { f ∈ V∗ | f (x) = 0 for all x ∈ S}.
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It is immediate that S◦ is a subspace of V∗.
定義

Theorem 4.3. Dimension of the Annihilator.
Let V be finite-dimensional and W be a subspace of V. Then:

dim W + dim W◦ = dim V.

定理

Proof

Let (e1, . . . , ek) be a basis for W. Extend this to a basis (e1, . . . , en)

for V. Let (e1, . . . , en) be the corresponding dual basis for V∗. We
claim that (ek+1, . . . , en) is a basis for W◦. First, for any j > k and
any w = ∑k

i=1 αiei ∈ W, we have ej(w) = ∑k
i=1 αiδji = 0. Thus

ej ∈ W◦. Conversely, let f = ∑n
i=1 βiei ∈ W◦. For any j ≤ k,

we have 0 = f (ej) = β j. Thus f = ∑n
i=k+1 βiei. This shows

W◦ = span(ek+1, . . . , en). Since these are basis elements, they are
independent, so dim W◦ = n − k = dim V − dim W.

■

Definition 4.5. Hyperspace.
A subspace of V with codimension 1 (dimension n− 1) is called a hy-
perspace (or hyperplane).

定義

Corollary 4.1. Kernels and Hyperspaces. The kernel of any non-zero lin-
ear functional f ∈ V∗ is a hyperspace. Conversely, every hyperspace
is the kernel of some non-zero linear functional.

推論

Proof

If f ̸= 0, then Im f = F (dimension 1). By Rank-Nullity (theo-
rem 2.6), dim Ker f = dim V − 1. Conversely, if W is a hyperspace,
dim W◦ = dim V − (n − 1) = 1. Let f be a non-zero element of W◦.
Then W ⊆ Ker f . Since dimensions match, W = Ker f .

■

Theorem 4.4. Dual Basis Independence Criterion.
Let ( f1, . . . , fn) be a basis of V∗. A set of vectors {a1, . . . , an} in V is lin-
early independent if and only if the matrix M = ( fi(aj)) is invertible.

定理

Proof

Define the linear map Φ : V → Fn by evaluating the basis function-
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als on a vector:

Φ(v) =


f1(v)

...
fn(v)

 .

We first show that Φ is an isomorphism.

Injectivity: Suppose Φ(v) = 0. Then fi(v) = 0 for all i =

1, . . . , n. Since { fi} is a basis for V∗, any functional g ∈ V∗ can be
expressed as g = ∑ ci fi. Thus g(v) = ∑ ci fi(v) = 0. Since g(v) =

0 for all g ∈ V∗, we must have v = 0. Thus Ker Φ = {0}, so Φ is
injective.

Surjectivity: Since dim V = n and dim Fn = n, an injective linear
map between them is automatically an isomorphism.

Observe that the j-th column of the matrix M is exactly the coordi-
nate vector Φ(aj). Thus M = [Φ(a1) | · · · | Φ(an)]. The vectors {aj}
are linearly independent in V if and only if their images {Φ(aj)}
are linearly independent in Fn (as Φ is an isomorphism). By the
Invertible Matrix Theorem (theorem 0.5), the columns of a square
matrix M are linearly independent if and only if M is invertible.

■

These results lead to a general rank criterion.

Theorem 4.5. Rank via Duality.
Let ( f1, . . . , fn) be a basis of V∗. For any set of vectors {a1, . . . , ak} ⊆
V, the rank of the set of vectors is equal to the rank of the n× k ma-
trix M = ( fi(aj)).

定理

Proof

Let Φ : V → Fn be the isomorphism defined in theorem 4.4.
The rank of the set {a1, . . . , ak} is the dimension of their span
U = ⟨a1, . . . , ak⟩. Since Φ is an isomorphism, it preserves dimen-
sions of subspaces:

dim⟨a1, . . . , ak⟩ = dim⟨Φ(a1), . . . , Φ(ak)⟩.

The vectors Φ(aj) are exactly the columns of the matrix M. The
dimension of the span of these columns is the column rank of M,
which is simply the rank of M.

■
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Geometric Interpretation of Homogeneous Systems

We can reinterpret homogeneous linear systems using dual spaces. A
system of m linear equations in n unknowns can be written abstractly
as:

f1(x) = 0, . . . , fm(x) = 0,

where x ∈ V and fi ∈ V∗. The solution set is the subspace U =⋂m
i=1 Ker fi.

Theorem 4.6. Annihilators and Solution Spaces.
Let S = { f1, . . . , fm} ⊆ V∗ be a set of functionals with rank r.
1. The subspace U = {x ∈ V | fi(x) = 0 ∀i} has dimension n − r.
2. Every subspace U ⊆ V of dimension k is the solution set of a sys-

tem of n − k independent linear equations.
定理

Proof

1. Assume without loss of generality that f1, . . . , fr are lin-
early independent. They can be extended to a basis
( f1, . . . , fr, fr+1, . . . , fn) of V∗. Let (e1, . . . , en) be the dual ba-
sis in V. The condition fi(x) = 0 for i = 1, . . . , r implies that
the first r coordinates of x in the basis (ei) must be zero. Thus
x = ∑n

j=r+1 λjej. The vectors er+1, . . . , en are linearly independent
and span U. Hence dim U = n − r.

2. Let U be a subspace with basis (e1, . . . , ek). Extend this to a basis
(e1, . . . , en) of V. Let ( f1, . . . , fn) be the dual basis of V∗. A vector
x = ∑ λiei lies in U if and only if λk+1 = · · · = λn = 0. Since
λj = f j(x), this is equivalent to the system:

fk+1(x) = 0, . . . , fn(x) = 0.

These are n − k linearly independent equations.
■

4.2 The Transpose Map

The dual space construction allows us to define the "dual" of a lin-
ear map. This is the abstract operator-theoretic origin of the matrix
transpose.

Definition 4.6. Transpose Operator.
Let T : V → W be a linear map. The transpose of T is the map T⊤ :
W∗ → V∗ defined by pre-composition:

(T⊤g)(v) = g(Tv) for all g ∈ W∗, v ∈ V.
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That is, T⊤g = g ◦ T.
定義

It is straightforward to verify that T⊤ is a linear map. If g, h ∈ W∗,
then (T⊤(g + h))(v) = (g + h)(Tv) = g(Tv) + h(Tv) = (T⊤g)(v) +
(T⊤h)(v).

Theorem 4.7. Matrix of the Transpose.
Let V, W be finite-dimensional with bases B, C respectively, and let B∗, C∗

be their dual bases. If A is the matrix of T relative to B, C, then the ma-
trix of T⊤ relative to C∗,B∗ is the matrix transpose A⊤.

定理

Proof

Let B = (vj) and C = (wi). The matrix entries Aij are defined by
Tvj = ∑i Aijwi. Let B∗ = (vj) and C∗ = (wi). We compute the co-
ordinates of T⊤wk:

(T⊤wk)(vj) = wk(Tvj) = wk

(
∑

i
Aijwi

)
= ∑

i
Aijδki = Akj.

Thus T⊤wk = ∑j Akjvj. The coefficient of vj is Akj, which is the
(j, k) entry of A⊤.

■

Theorem 4.8. Annihilator Relations and Rank.
Let T : V → W be linear.
1. Ker(T⊤) = (Im T)◦.
2. Im(T⊤) = (Ker T)◦.
3. rank(T) = rank(T⊤).

定理

Proof

1. g ∈ Ker(T⊤) ⇐⇒ T⊤g = 0 ⇐⇒ g(Tv) = 0 ∀v ∈ V ⇐⇒
g(Im T) = 0 ⇐⇒ g ∈ (Im T)◦.

2. We use the double annihilator property. Im(T⊤) is a subspace of
V∗.

(Im T⊤)◦ = {v ∈ V | (T⊤g)(v) = 0 ∀g ∈ W∗} = {v ∈ V | g(Tv) = 0 ∀g ∈ W∗}.

The only vector annihilated by all functionals is the zero vector,
so Tv = 0, meaning v ∈ Ker T. Thus (Im T⊤)◦ = Ker T. Taking
annihilators again yields Im T⊤ = (Ker T)◦.

3. rank(T⊤) = dim Im(T⊤) = dim(Ker T)◦ = dim V − dim Ker T.
By Rank-Nullity (theorem 2.6), this equals rank(T).

■
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Remark.

The equality rank(T) = rank(T⊤) provides a conceptual proof that
the row rank of a matrix equals its column rank (theorem 2.4). The
column rank of A is rank(T), and the row rank of A is the column
rank of A⊤, which is rank(T⊤).

4.3 Multilinear Maps

The concept of a linear functional, which maps a single vector to
a scalar, can be generalised to functions accepting multiple vector
arguments.

Definition 4.7. Multilinear Map.
Let V1, . . . , Vp and U be vector spaces over a field F. A map

f : V1 × V2 × · · · × Vp → U

is called p-linear (or multilinear) if it is linear in each argument inde-
pendently. That is, for any fixed index i and fixed vectors aj ∈ Vj (for
j ̸= i), the induced map

v 7→ f (a1, . . . , ai−1, v, ai+1, . . . , ap)

is a linear map from Vi to U. Explicitly:

f (. . . , αx + βy, . . . ) = α f (. . . , x, . . . ) + β f (. . . , y, . . . ).

The set of all such maps is denoted L(V1, . . . , Vp; U).
定義

It is routine to verify that the sum of two p-linear maps and the scalar
multiple of a p-linear map remain p-linear. Thus, L(V1, . . . , Vp; U)

forms a vector space.

Multilinear Forms

A particularly important case arises when the codomain is the un-
derlying field itself, i.e., V1 = · · · = Vp = U = F. Such a map is
called a multilinear form on V1 × · · · × Vp. The simplest example is
the product map f (v1, . . . , vp) = v1 · · · vp on Fp. More generally, let
li ∈ V∗

i be linear functionals on Vi. We can construct a multilinear
form by taking the product of their evaluations:

f (v1, . . . , vp) = l1(v1)l2(v2) · · · lp(vp).

This specific form is called the tensor product of the functionals and
is denoted by l1 ⊗ l2 ⊗ · · · ⊗ lp.
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Note

We define the tensor product here concretely as a multilinear map.
This is a specific instance of the general tensor product of vector
spaces.

When all domains are identical, say Vi = V, we denote the space of
multilinear forms as Lp(V, F). In the language of tensors, elements of
this space are tensors of type (p, 0), also known as covariant tensors
of order p.

Definition 4.8. Symmetry and Alternation.
Let Sp denote the set of all permutations of {1, . . . , p}, known as the
symmetric group. For π ∈ Sp, let sgn(π) be the sign of the permu-
tation (+1 if even, −1 if odd). A multilinear form f ∈ Lp(V, F) is called:
Symmetric if its value remains unchanged under any permutation of

its arguments:

f (vπ(1), . . . , vπ(p)) = f (v1, . . . , vp) for all π ∈ Sp.

Skew-symmetric (or alternating) if swapping arguments introduces
a sign determined by the parity of the permutation:

f (vπ(1), . . . , vπ(p)) = sgn(π) f (v1, . . . , vp).

定義

Example 4.5. Determinant as a Form. The determinant of a square
matrix, when viewed as a function of its n column vectors, is the
prototypical example of an alternating n-linear form on Fn.

範例

4.4 Bilinear Forms

We now restrict our attention to the case p = 2 with V1 = V2 = V.

Definition 4.9. Bilinear Form.
A bilinear form on a vector space V is a map f : V × V → F that is
linear in both arguments. For all u, v, w ∈ V and α, β ∈ F:

f (αu + βv, w) = α f (u, w) + β f (v, w),

f (w, αu + βv) = α f (w, u) + β f (w, v).

定義

Note



algebra iv: linear 87

In general, bilinear forms need not be commutative; that is, f (u, v)
is not necessarily equal to f (v, u).

Matrix Representation

Let (e1, . . . , en) be a basis for V. Any two vectors x, y ∈ V can be
expanded in coordinates as x = ∑ xiei and y = ∑ yjej. Using the
bilinearity of f :

f (x, y) = f

(
n

∑
i=1

xiei,
n

∑
j=1

yjej

)

=
n

∑
i=1

xi f

(
ei,

n

∑
j=1

yjej

)

=
n

∑
i=1

n

∑
j=1

xiyj f (ei, ej).

The n2 scalars fij = f (ei, ej) completely determine the form. We
arrange these scalars into a matrix F = ( fij). Let X and Y be the col-
umn vectors of coordinates for x and y respectively. The expression
above can be written using matrix multiplication:

f (x, y) = ∑
i,j

xi fijyj = X⊤FY.

Proposition 4.1. Isomorphism with Matrices.
Fixing a basis for V, there is a bijective linear correspondence between
the space of bilinear forms L2(V, F) and the space of matrices Mn(F).

命題

Proof

The map f 7→ F = ( f (ei, ej)) is clearly linear. Conversely, given any
matrix M, the function g(x, y) = X⊤MY defines a bilinear form.
Since the scalars f (ei, ej) are uniquely determined, this correspon-
dence is an isomorphism.

■

Change of Basis and Congruence

The matrix representing a bilinear form depends on the choice of
basis. We determine the transformation law for this matrix. Let
(e1, . . . , en) be a basis for V and let (e′1, . . . , e′n) be a new basis defined
by the transition matrix A = (aij), such that:

e′j =
n

∑
i=1

aijei.
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Let X and X′ be the coordinate columns of a vector x in the old and
new bases, respectively. The relationship between coordinates is
given by X = AX′. Let F be the matrix of the form f in the basis (ei),
and let F′ be the matrix in the basis (e′i). We must have:

f (x, y) = X⊤FY = (X′)⊤F′Y′.

Substituting the coordinate transformation X = AX′ and Y = AY′

into the left-hand side:

X⊤FY = (AX′)⊤F(AY′) = (X′)⊤A⊤FAY′.

Comparing this with (X′)⊤F′Y′, and noting that this holds for all
X′, Y′, we deduce the relationship between F and F′.

Theorem 4.9. Transformation of Bilinear Forms.
Let F be the matrix of a bilinear form relative to a basis B, and let A
be the transition matrix from B to a new basis B′. The matrix of the form
relative to B′ is:

F′ = A⊤FA.

定理

Fn × Fn Fn × Fn

F

F F′

A × A

Change of basis for bilinear
forms corresponds to matrix

congruence F′ = A⊤FA.

Figure 4.1: Commutative dia-
gram illustrating the coordinate
change.

Proof

Let X′, Y′ be coordinate columns of x, y in the new basis B′. Coordi-
nates in the old basis satisfy X = AX′ and Y = AY′. Evaluating f in
the old coordinates gives

f (x, y) = X⊤FY = (AX′)⊤F(AY′) = (X′)⊤A⊤FAY′.

By definition, f (x, y) = (X′)⊤F′Y′ in the new basis. Equality for all
X′, Y′ forces F′ = A⊤FA.

■

Definition 4.10. Congruence.
Two square matrices A and B are called congruent if there exists an in-
vertible matrix P such that B = P⊤AP.

定義

This transformation differs significantly from the similarity transfor-
mation B = P−1 AP used for linear operators.

Rank of a Bilinear Form

Since congruent matrices are related by multiplication with invertible
matrices, their ranks are identical.
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Corollary 4.2. Invariance of Rank. The rank of the matrix representing
a bilinear form is independent of the basis. We define the rank of the
form f to be the rank of any of its matrix representations.

推論

Proof

If F′ and F are matrices of the same form in two bases, the transfor-
mation result above gives F′ = A⊤FA with A invertible. Multiply-
ing by invertible matrices on the left or right does not change rank,
so rank F′ = rank F.

■

We can characterise the rank intrinsically without reference to matri-
ces using the concept of the radical.

Definition 4.11. Left Radical.
The left radical (or left kernel) of a bilinear form f is the set:

L f = {x ∈ V | f (x, y) = 0 for all y ∈ V}.

定義

It is straightforward to verify that L f is a subspace of V.

Proposition 4.2. Rank-Nullity for Bilinear Forms.
For a bilinear form f on an n-dimensional space V:

rank f = n − dim L f .

命題

Proof

Fix a basis (e1, . . . , en). A vector x belongs to L f if and only if
f (x, ej) = 0 for all j = 1, . . . , n. For each j, define the linear
functional f j(x) = f (x, ej). The condition x ∈ L f is equivalent
to x ∈ ⋂n

j=1 Ker f j. The coordinates of the functional f j in the dual
basis correspond to the j-th row of the matrix F = ( f (ei, ej)). Specif-
ically, f j(ei) = f (ei, ej) = fij. Let S = span( f1, . . . , fn) ⊆ V∗. The
dimension of S is the row rank of F, which equals rank f . By the
theory of annihilators (specifically theorem 2.6), the dimension of the
solution space to f j(x) = 0 (which is L f ) is dim V − dim S. Thus,
dim L f = n − rank f .

■

4.5 Annihilator Consequences

The following corollaries are immediate from theorem 4.3.
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Corollary 4.3. Hyperplane Intersection. If dim V = n and dim W = k,
then W =

⋂n−k
i=1 Ker fi for suitable non-zero functionals fi. Each Ker fi

is a hyperplane.
推論

Proof

Let ( fk+1, . . . , fn) be the dual functionals corresponding to a basis
extension as in theorem 4.3. Then W = {x | fi(x) = 0 for i =

k + 1, . . . , n}.
■

Corollary 4.4. Equality via Annihilators. For subspaces W1, W2 ≤ V,
W1 = W2 if and only if W◦

1 = W◦
2 .

推論

Proof

The forward implication is immediate. For the converse, dim W1 =

dim V − dim W◦
1 = dim V − dim W◦

2 = dim W2. Also W1 ⊆
(W◦

1 )
◦ = (W◦

2 )
◦ (see theorem 4.10 below), so W1 ⊆ W2 and the di-

mensions force equality.
■

Example 4.6. Three Functionals in R4. Let f1(x) = x1 + x2 − x3 +

x4, f2(x) = x1 − 2x2, f3(x) = 3x2 + 2x4. The annihilated subspace
W = {x | fi(x) = 0, i = 1, 2, 3} has basis {(−4, 2, 3, 3)⊤}, so
dim W = 1 and W◦ = span( f1, f2, f3).

範例

Example 4.7. Annihilator in R5. Let W =

span{(1, 1,−1,−1, 1), (1, 1,−1,−1,−1), (1, 1, 0, 0, 0), (0, 0, 0, 0, 2)}.
Row reduction gives dim W = 3. Functionals in W◦ have coordi-
nates (−α, α,−β, β, 0), so W◦ = span{x 7→ x2 − x1, x 7→ x4 − x3}.

範例

Theorem 4.10. Double Annihilator.
For any subset S ⊆ V, S◦◦ = span(S). In particular, if W ≤ V then
W◦◦ = W.

定理

Proof

The inclusion span(S) ⊆ S◦◦ holds because every f ∈ S◦ vanishes
on S, hence on its span. For finite-dimensional V, theorem 4.3 ap-
plied to W = span(S) gives dim W◦◦ = dim W, so equality follows.

■

The isomorphism V → V∗∗ given by x 7→ εx (see Reflexivity above)
yields the following.
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Corollary 4.5. Representation of V∗∗. Every L ∈ V∗∗ equals εx for a unique
x ∈ V.

推論

Corollary 4.6. Realising a Dual Basis. Given any basis ( f1, . . . , fn) of V∗,
there exists a unique basis (u1, . . . , un) of V such that fi(uj) = δij.

推論

Proof

Let (ℓ1, . . . , ℓn) be the dual basis of ( fi) in V∗∗. By reflexivity there
are unique uj ∈ V with εuj = ℓj. Then fi(uj) = εuj( fi) = ℓj( fi) = δij,
and the uj are independent since the ℓj form a basis.

■

Definition 4.12. Right Radical.
The right radical of f is

R f = {y ∈ V | f (x, y) = 0 for all x ∈ V}.

定義

Remark.

If f is symmetric (or alternating with a sign flip), then L f = R f .
For a general bilinear form they may differ, so both radicals are
relevant.

4.6 Exercises

1. Trace Functional Representation. Let V = Mn(R). It is known
that tr : V → R is a linear functional. Prove that any linear
functional f ∈ V∗ can be uniquely represented as f (X) = tr(AX)

for some fixed matrix A ∈ Mn(R).

2. Functionals on Polynomials. Let Pn be the space of real polyno-
mials of degree < n. Let a(t) be a fixed polynomial. Determine
which of the following maps f : Pn → R are linear functionals:

(a) f (u) =
∫ 1

0 a(t)u(t) dt.

(b) f (u) =
∫ 1

0 a(t)u(t2) dt.

(c) f (u) =
∫ 1

0 a(t)[u(t)]2 dt.

(d) f (u) = d3

dt3 [a(t)u(t)]
∣∣
t=−1.

3. Proportional Functionals. Let f , g ∈ V∗. Prove that if Ker f =

Ker g, then g = λ f for some scalar λ.

4. Coordinate Functional. Prove that for any non-zero linear func-
tional f on an n-dimensional space V, there exists a basis (e1, . . . , en)
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of V such that f (∑ αiei) = α1.

5. Determining Functionals. Let x ∈ V be non-zero. Does the
condition f (x) = 1 uniquely determine a functional f ∈ V∗?

6. Map Representation. Let f1, . . . , fm ∈ V∗. Define T : V → Fm by
T(x) = ( f1(x), . . . , fm(x)). Show T is linear. Conversely, show any
linear map V → Fm is of this form.

7. Polynomial Dual Basis. Let V = P2(R). Define three functionals:

f1(p) =
∫ 1

0
p(x) dx, f2(p) =

∫ 2

0
p(x) dx, f3(p) =

∫ 1

−1
p(x) dx.

Show that { f1, f2, f3} is a basis for V∗. Find the basis of V to
which it is dual.

8. Evaluation Basis. Let W be an n-dimensional subspace of the
space of functions S → F. Show there exist points x1, . . . , xn ∈ S
and functions f1, . . . , fn ∈ W such that fi(xj) = δij.

9. Annihilator of a Sum Subspace. Let W ≤ Fn be the subspace of
vectors with coordinate sum zero: ∑ xi = 0.

(a) Describe W◦. Show it consists of functionals f (x) = c ∑ xi.

(b) Show that W∗ can be identified with functionals on Fn of the
form f (x) = ∑ cixi where ∑ ci = 0.

10. Concrete Annihilator. Let W = span{(1, 0,−1, 2), (2, 3, 1, 1)} ⊂
R4. Which functionals f (x) = ∑ cixi belong to W◦?

11. Annihilator Algebra. Let W1, W2 ≤ V. Prove:

(a) (W1 + W2)
◦ = W◦

1 ∩ W◦
2 .

(b) (W1 ∩ W2)
◦ = W◦

1 + W◦
2 .

12. Extension of Functionals. Let W ≤ V. If f ∈ W∗, prove there
exists g ∈ V∗ such that g|W = f .

13. Zero Product implies Zero Factor. Let f , g be linear functionals on
a complex vector space V. If the product map h(x) = f (x)g(x) is
also linear, prove that either f = 0 or g = 0.

14. Separating Vector. Let v1, . . . , vm be non-zero vectors in V. Prove
there exists a functional f ∈ V∗ such that f (vi) ̸= 0 for all i.

15. Trace Pairing Nondegeneracy. Let ⟨X, Y⟩ = tr(XY) on Mn(F).

(a) Show that ⟨·, ·⟩ is a bilinear form.

(b) Prove nondegeneracy: if ⟨X, Y⟩ = 0 for all Y, then X = 0.

(c) Conclude that the induced map Mn(F) → Mn(F)∗, X 7→
(Y 7→ tr(XY)), is an isomorphism (i.e., the trace pairing
identifies Mn(F) with its dual).



5
Eigenvalues and Diagonalisation

We now address the structure of linear operators on a finite-dimensional
vector space V. Consistent with Linear Operator Algebra, calligraphic
letters denote operators; fix T ∈ L(V) and use A (or T when ex-
plicitly stated) for a matrix representing T . Having established the
correspondence between operators and matrices, a natural question
arises: can we find a basis B of V such that the matrix representa-
tion of an operator is simple? The simplest non-scalar matrices are
diagonal matrices.

Definition 5.1. Diagonalisable Operator.
A linear operator T ∈ L(V) is said to be diagonalisable if there ex-
ists a basis B of V such that the matrix of T relative to B is a diagonal
matrix.

定義

Explicitly, if B = (u1, . . . , un) and the matrix is diagonal with entries
λ1, . . . , λn, the action of the operator is described by:

T uj = λjuj for j = 1, . . . , n.

This equation completely characterizes the operator.

5.1 Eigenvalues and Eigenvectors

The equation Tx = λx is central to the problem of diagonalisation.

Definition 5.2. Eigenvalue and Eigenvector.
Let T ∈ L(V) where V is a vector space over a field F. A scalar λ ∈
F is called an eigenvalue (or characteristic value) of T if there exists
a non-zero vector x ∈ V such that:

T x = λx.

Any vector x satisfying this equation is called an eigenvector correspond-
ing to λ.
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定義

Note

We explicitly require x ̸= 0. If x = 0, the equation T(0) = λ · 0 holds
for any λ, which is trivial.

Definition 5.3. Spectrum.
The set of all eigenvalues of T is called the spectrum of T and is de-
noted by Spec(T ).

定義

This condition is equivalent to requiring that the kernel of the opera-
tor T − λE is non-trivial. That is,

(T − λE)x = 0 for some x ̸= 0.

For finite-dimensional spaces, a non-trivial kernel implies the opera-
tor is not invertible.

Example 5.1. Rotation in the Plane. Consider the rotation operator
T : R2 → R2 which rotates vectors by 90◦ counter-clockwise:

T (x1, x2) = (−x2, x1).

We seek a scalar λ ∈ R and a non-zero vector x such that Tx = λx.

(−x2, x1) = (λx1, λx2) =⇒

−x2 = λx1

x1 = λx2

Substituting the second equation into the first: −x2 = λ(λx2) =

λ2x2, so (1 + λ2)x2 = 0. Since λ ∈ R, 1 + λ2 ̸= 0. Thus x2 = 0,
which implies x1 = 0. Since the only solution is the zero vector, T
has no eigenvalues over R. The polynomial t2 + 1 has no roots in
R. This highlights that the existence of eigenvalues depends on the
algebraic closure of the underlying field F.

範例

Remark.

An algebraic closure F of a field F is a field extension in which
every non-constant polynomial with coefficients in F has a root. For
example, C is the algebraic closure of R.

x1

x2

x

Tx x and Tx are
never parallel

Figure 5.1: A 90◦ rotation has
no invariant directions in R2.

The Characteristic Polynomial

To determine the eigenvalues, we use the determinant function (as-
sumed known from prior matrix theory; see chapter 2 for our no-
tation). The condition that T − λI is not invertible is equivalent to
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the vanishing of the characteristic determinant of any representing
matrix A:

det(λI − A) = 0.

Let A be the matrix of T relative to some fixed basis. The eigenvalues
are the roots of the equation det(λI − A) = 0.

Definition 5.4. Characteristic Polynomial.
The characteristic polynomial of a matrix A ∈ Mn(F) is defined as:

pA(λ) = det(λI − A).

This is a monic polynomial of degree n.
定義

Definition 5.5. Algebraic Multiplicity.
Let λ be a root of pA. Its algebraic multiplicity is its multiplicity as a
root of pA.

定義

We must verify this definition is intrinsic to the operator T and not
dependent on the choice of basis. Recall that if A and B represent the
same operator in different bases, they are similar: B = PAP−1 for
some invertible P.

pB(λ) = det(λI − B) = det(λPIP−1 − PAP−1)

= det(P(λI − A)P−1)

= det P · det(λI − A) · det P−1

= det(λI − A) = pA(λ).

Thus, similar matrices have the same characteristic polynomial and
the same eigenvalues. We may define pT(λ) = pA(λ).

Example 5.2. Algebraic vs Geometric Multiplicity. Consider the
matrix A representing an operator T on R3:

A =

1 1 0
0 1 0
0 0 2

 .

The characteristic polynomial is

pA(λ) = (λ − 1)2(λ − 2).

The eigenvalues are λ1 = 1 (algebraic multiplicity 2) and λ2 = 2 (al-
gebraic multiplicity 1).
Eigenvectors:
1. For λ = 1: (A − I)x = 0 gives x2 free, x1 = 0, x3 = 0, so the

eigenspace is span{(0, 1, 0)} (geometric multiplicity 1).
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2. For λ = 2: (A − 2I)x = 0 gives x = (0, 0, 1) up to scaling (geo-
metric multiplicity 1).

Although the eigenvalues account for dimension 3 algebraically, the
eigenspaces provide only two independent eigenvectors. There is
no basis of eigenvectors, so T is not diagonalisable.

範例

5.2 Conditions for Diagonalisability

The previous example demonstrates that the existence of eigenvalues
is not sufficient for diagonalisability. We require enough eigenvectors
to span the space.

Definition 5.6. Eigenspace.
Let λ be an eigenvalue of T. The eigenspace corresponding to λ is the
set of all eigenvectors corresponding to λ, together with the zero vec-
tor:

Wλ = Ker(T − λE).

This is a subspace of V. Its dimension is called the geometric multi-
plicity of λ.

定義

Proposition 5.1. Polynomials of Operators.
Let f (t) ∈ F[t] be a polynomial. If x is an eigenvector of T with eigen-
value λ, then x is an eigenvector of the operator f (T) with eigenvalue
f (λ).

命題

Proof

Let f (t) = ∑m
k=0 aktk. Then f (T) = ∑ akTk. Since Tx = λx, by induc-

tion Tkx = λkx. By linearity:

f (T)x =

(
m

∑
k=0

akTk

)
x =

m

∑
k=0

ak(Tkx) =
m

∑
k=0

akλkx = f (λ)x.

■

Theorem 5.1. Independence of Eigenvectors.
Eigenvectors corresponding to distinct eigenvalues of T are linearly in-
dependent.

定理

Proof

Let λ1, . . . , λk be distinct eigenvalues and u1, . . . , uk be correspond-
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ing eigenvectors. Suppose there is a linear dependence relation:

k

∑
i=1

αiui = 0.

We prove all αi = 0. For a specific index j, construct the polynomial:

f j(t) = ∏
m ̸=j

t − λm

λj − λm
.

Since λi are distinct, the denominators are non-zero. Observe that
f j(λm) = δjm (Kronecker delta). Apply the operator f j(T) to the
dependence relation:

f j(T)

(
k

∑
i=1

αiui

)
=

k

∑
i=1

αi f j(T)ui =
k

∑
i=1

αi f j(λi)ui.

Since f j(λi) = 0 for i ̸= j and 1 for i = j, the sum collapses to:

αj · 1 · uj = 0.

Since uj ̸= 0, we must have αj = 0. This holds for all j, so the vec-
tors are linearly independent.

■

This theorem implies that if dim V = n and T has n distinct eigenval-
ues, then T is necessarily diagonalisable (since the n corresponding
eigenvectors form a basis).

Characterisation of Diagonalisability

In the general case where eigenvalues may repeat, diagonalisability
is determined by the dimensions of the eigenspaces. Let λ1, . . . , λk be
the distinct eigenvalues of T with algebraic multiplicities d1, . . . , dk

(so the characteristic polynomial splits as ∏(λ − λi)
di ). Let Wi be the

eigenspace corresponding to λi.

Lemma 5.1. Sum of Eigenspaces.
Let W = W1 + · · ·+ Wk. The sum is direct, i.e., W = W1 ⊕ · · · ⊕ Wk,
and

dim W =
k

∑
i=1

dim Wi.

引理

Proof

We must show that if u1 + · · · + uk = 0 with ui ∈ Wi, then each
ui = 0. The non-zero terms in the sum u1 + · · · + uk are eigenvec-
tors corresponding to distinct eigenvalues. By theorem 5.1, they are
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linearly independent. The only way their sum can be zero is if there
are no non-zero terms. Thus ui = 0 for all i.

■

Theorem 5.2. Diagonalisability Criterion.
Let T be a linear operator on a finite-dimensional space V of dimen-
sion n. The following are equivalent:
1. T is diagonalisable.
2. The characteristic polynomial splits into linear factors over F, and

for each eigenvalue λi, the geometric multiplicity equals the alge-
braic multiplicity:

dim Wλi = di.

3. The sum of the eigenspaces is the whole space: V = Wλ1 ⊕ · · · ⊕
Wλk .

定理

Proof

(1) =⇒ (2): If T is diagonalisable, there is a basis B such that the
matrix is diagonal with diagonal entries λi. The characteristic
polynomial is ∏(λ − λii), which splits. The number of times
λi appears on the diagonal is di. The rank of T − λiE is deter-
mined by the non-zero diagonal entries, implying the nullity
(dimension of Wi) is exactly di.

(2) =⇒ (3): We know ∑ di = n (degree of characteristic polyno-
mial). If dim Wi = di, then dim(W1 ⊕ · · · ⊕ Wk) = ∑ di = n. A
subspace of dimension n in V is V itself.

(3) =⇒ (1): If V = ⊕Wi, we can form a basis for V by taking the
union of bases for each Wi. Since vectors in Wi are eigenvectors,
this basis consists entirely of eigenvectors. Thus T is diagonalis-
able.

■

5.3 The Minimal Polynomial

We have seen that diagonalisability relies on the structural relation-
ship between algebraic and geometric multiplicities. Another per-
spective involves the ideal of polynomials that annihilate T . Recall
from definition 3.3 in Linear Operator Algebra that the minimal poly-
nomial µT (t) is the unique monic polynomial of lowest degree such
that µT (T ) = O. Existence and uniqueness were proved there; we
use them without repetition.
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Proposition 5.2. Properties of the Minimal Polynomial.
Let µT (t) be the minimal polynomial of T .
1. If f (t) ∈ F[t] satisfies f (T ) = O, then µT (t) divides f (t).
2. The roots of µT (t) are exactly the eigenvalues of T .

命題

Proof

1. This was established in Properties of the Minimal Polynomial.
2. (λ eigenvalue =⇒ µT (λ) = 0): Let T x = λx with x ̸= 0. Then

µT (T )x = µT (λ)x. Since µT (T ) = O, we have 0 = µT (λ)x.
As x ̸= 0, µT (λ) = 0.

(µT (λ) = 0 =⇒ λ eigenvalue): Write µT (t) = (t − λ)q(t). Since
deg q < deg µT , q(T ) ̸= O. Thus there exists x ̸= 0 such
that y = q(T )x ̸= 0. Then (T − λE)y = (T − λE)q(T )x =

µT (T )x = 0. Thus T y = λy, so λ is an eigenvalue.
■

Example 5.3. Minimal Polynomial Computations.
· Let

A =

[
1 1
0 1

]
.

The characteristic polynomial is p(t) = (t − 1)2. Since A − I ̸= 0,
the minimal polynomial cannot be t − 1. Thus µA(t) = (t − 1)2.

· Let

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

Direct computation gives A3 = 4A while A2 ̸= 2A and
A2 ̸= −2A (indeed A2 + 2A has all entries 2). Hence
t3 − 4t = t(t − 2)(t + 2) annihilates A, and no quadratic factor
does. Thus µA(t) = t(t − 2)(t + 2). Since the minimal polynomial
splits into distinct linear factors, A is diagonalisable.

範例

Before proving the main theorem, we recall a property of matrices
related to the determinant. For any square matrix B, there exists a
unique matrix called the adjugate of B, denoted adj(B), such that:

B adj(B) = adj(B)B = det(B)I.

The entries of adj(B) are the cofactors of B; if the entries of B are
polynomials in a variable t, then the entries of adj(B) are polynomials
of degree one less than those of B.



100 gudfit

Theorem 5.3. Cayley-Hamilton.
Every linear operator satisfies its own characteristic polynomial. That
is, if p(t) is the characteristic polynomial of T , then p(T ) = O.

定理

Proof

Let A be the matrix of T in some basis. We consider the matrix
characteristic polynomial p(λ) = det(λI − A). Let B(λ) = λI − A.
The entries of B(λ) are polynomials in λ of degree at most 1. Con-
sequently, the entries of the adjugate matrix adj(B(λ)) are polyno-
mials in λ of degree at most n − 1. We can thus write:

adj(λI − A) = Cn−1λn−1 + Cn−2λn−2 + · · ·+ C1λ + C0,

where each Ck is a scalar matrix (independent of λ). We use the
adjugate identity:

(λI − A) adj(λI − A) = det(λI − A)I = p(λ)I.

Let p(λ) = λn + an−1λn−1 + · · ·+ a0. Substituting the expressions:

(λI − A)
n−1

∑
k=0

Ckλk = (λn + an−1λn−1 + · · ·+ a0)I.

Expanding the left side:
n−1

∑
k=0

Ckλk+1 −
n−1

∑
k=0

ACkλk =
n−1

∑
k=0

Ckλk+1 −
n−1

∑
j=0

ACjλ
j.

Comparing the coefficients of like powers of λ:

Coeff of λn : Cn−1 = I

Coeff of λn−1 : Cn−2 − ACn−1 = an−1 I
...

...

Coeff of λk : Ck−1 − ACk = ak I
...

...

Coeff of λ0 : − AC0 = a0 I

To form p(A), we multiply the equation for λk by Ak on the left
and sum them up:

An(Cn−1) = An

An−1(Cn−2 − ACn−1) = an−1 An−1

...

Ak(Ck−1 − ACk) = ak Ak

...

I(−AC0) = a0 I
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Summing the left-hand sides creates a telescoping sum:

AnCn−1 +
n−1

∑
k=1

(AkCk−1 − Ak+1Ck)− AC0 = AnCn−1 − AnCn−1 + · · · = 0.

Thus, the sum of the right-hand sides is also zero:

An + an−1 An−1 + · · ·+ a0 I = p(A) = 0.

■

Corollary 5.1. Divisibility. The minimal polynomial µT(t) divides the
characteristic polynomial pT(t). Since they share the same roots, µT(t)
contains every irreducible factor of pT(t) at least once.

推論

Proof

By Cayley-Hamilton, pT(T) = O. Property (1) of proposition 5.2 then
forces µT | pT .

■

Theorem 5.4. Diagonalisability and Minimal Polynomial.
A linear operator T is diagonalisable if and only if its minimal poly-
nomial µT(t) splits into distinct linear factors over F.

定理

Proof

( =⇒ ) Suppose T is diagonalisable with distinct eigenvalues
λ1, . . . , λk. Let m(t) = ∏k

i=1(t − λi). Since T is diagonalisable,
there is a basis of eigenvectors v. For any eigenvector vj with
value λj, m(T )vj = m(λj)vj = 0. Since m(T ) annihilates a ba-
sis, m(T ) = O. Thus µT (t) divides m(t). Since roots of µT are
exactly the eigenvalues, µT (t) must be exactly m(t), which is a
product of distinct linear factors.

( ⇐= ) Write µT (t) = ∏k
i=1(t − λi) with pairwise distinct roots. Set

gi(t) = ∏m ̸=i(t − λm). There exist polynomials ai(t) such that
∑k

i=1 ai(t)gi(t) = 1. Define Ei = ai(T )gi(T ). Then ∑ Ei = E
and EiEj = 0 for i ̸= j by commutativity of polynomials in T .
Moreover, (T − λiE)Ei = 0, so Im Ei ⊆ Ker(T − λiE). If x ∈
Ker(T − λiE), then gi(T )x = gi(λi)x = 0 and hence Eix = x.
Thus Im Ei = Ker(T − λiE). If x ∈ Ker(T − λiE), then gi(T )x =

gi(λi)x = 0 and hence Eix = x. Thus Im Ei = Ker(T − λiE).
If ∑ ui = 0 with ui ∈ Im Ei, applying Ej yields uj = 0, so the
images are independent. Therefore V =

⊕
i Ker(T − λiE), which

furnishes a basis of eigenvectors. Hence T is diagonalisable.
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■

5.4 Invariant Subspaces

To delve deeper into the structure of operators, we investigate sub-
spaces that are preserved by the operator.

Definition 5.7. Invariant Subspace.
A subspace W of V is called invariant under an operator T if T (W) ⊆
W. That is, for all w ∈ W, T w ∈ W.

定義

Example 5.4. Basic Examples.
· The zero subspace {0} and the entire space V are always invari-

ant.
· The kernel Ker T and the image Im T are invariant.
· Any eigenspace Wλ = Ker(T − λE) is invariant.

範例

Example 5.5. Differentiation Chain. Let D be the differentiation op-
erator on Pn (polynomials of degree at most n). Let Wk = Pk be the
subspace of polynomials of degree at most k. Since differentiating a
polynomial lowers its degree, D(Pk) ⊆ Pk−1 ⊆ Pk. Thus, we have a
complete chain (or flag) of invariant subspaces:

{0} ⊂ P0 ⊂ P1 ⊂ · · · ⊂ Pn.

範例

The last example can be generalised. If S is an operator that com-
mutes with T (i.e., ST = T S), then Ker S and Im S are invariant
under T . Since T − λE commutes with T , eigenspaces are invariant.
Invariant subspaces allow us to break down the operator into smaller
components. If V = W1 ⊕ W2 where W1 and W2 are invariant under
T , we can study the restrictions T |W1 and T |W2 independently.

Example 5.6. Non-Existence of Invariant Subspaces. Consider
again the rotation by 90◦ in R2, defined by T (x1, x2) = (−x2, x1).
If W is a non-trivial proper invariant subspace, it must be 1-
dimensional (a line through the origin). Let W = span(v) for
some v ̸= 0. If W is invariant, then T v ∈ W, so T v = λv for some
scalar λ. This implies v is an eigenvector. However, we established
in figure 5.1 that T has no eigenvalues in R. Thus, this operator has
no proper non-trivial invariant subspaces.

範例
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The Adjoint Operator

Recall from Dual Spaces that for any linear map T : V → V, the
transpose (or adjoint) map T ⊤ : V∗ → V∗ is defined by (T ⊤ f )(v) =
f (T v). It satisfies:
· (T + S)⊤ = T ⊤ + S⊤ and (αT )⊤ = αT ⊤.
· (T S)⊤ = S⊤T ⊤.
· T ⊤⊤ = T (under the canonical identification V ∼= V∗∗).
· If A is the matrix of T in basis B, then A⊤ is the matrix of T ⊤ in

the dual basis B∗.

Quotient Operators

Let W be an invariant subspace of T . The operator T induces a natu-
ral linear operator on the quotient space V/W.

Definition 5.8. Quotient Operator.
The quotient operator T̄ : V/W → V/W is defined by:

T̄ (v + W) = T v + W.

This is well-defined because if v + W = v′ + W, then v − v′ ∈ W.
Since W is invariant, T (v − v′) ∈ W, so T v − T v′ ∈ W, implying
T v + W = T v′ + W.

定義

If we choose a basis (e1, . . . , ek) for W and extend it to a basis (e1, . . . , en)

for V, the matrix of T is block upper triangular:

A =

[
AW B
0 AV/W

]
, where AV/W represents T̄ .

Existence of Invariant Subspaces

The existence of eigenvalues (and thus 1-dimensional invariant sub-
spaces) depends on the field.

Theorem 5.5. Invariant Subspaces over R and C.
Let T be a linear operator on a finite-dimensional space V.
1. If F = C, T has a 1-dimensional invariant subspace (an eigenspace).
2. If F = R, T has an invariant subspace of dimension 1 or 2.

定理

Proof

1. Over C, the characteristic polynomial splits into linear factors.
Thus there is at least one root λ, providing an eigenvector and a
1-dimensional invariant subspace span(v).

2. Over R, the minimal polynomial factors into linear terms (t − λ)
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and irreducible quadratic terms (t2 − αt − β) with α2 + 4β < 0.
If there is a linear factor, we get an eigenvector (dim 1). If not,
µT (t) has a factor q(t) = t2 − αt − β. There exists u such that
q(T )u = 0 but u ̸= 0 (since q(T ) is not invertible on the kernel
of the full minimal polynomial). Let W = span(u, T u). Since
T 2u = αT u + βu, W is invariant. Its dimension is at most 2 (and
at least 1 since u ̸= 0).

■

Theorem 5.6. Invariant Hyperplanes.
Every linear operator T on a finite-dimensional complex vector space
has an invariant hyperplane (subspace of codimension 1).

定理

Proof

Consider the transpose operator T ⊤ : V∗ → V∗. Since V∗ is a com-
plex vector space, T ⊤ has an eigenvector f ∈ V∗, so T ⊤ f = λ f . Let
W = Ker f . Since f ̸= 0, W is a hyperplane. For any x ∈ W:

f (T x) = (T ⊤ f )(x) = (λ f )(x) = λ f (x) = 0.

Thus T x ∈ Ker f = W, so W is invariant.
■

The T-Conductor

We introduce a set of polynomials associated with a vector and a
subspace, generalising the minimal polynomial.

Definition 5.9. T-Conductor.
Let W be an invariant subspace of T and let y ∈ V. The T -conductor
of y into W, denoted ST (y, W), is the set of all polynomials g(t) ∈ F[t]
such that g(T )y ∈ W.

定義

The set ST (y, W) is closed under addition and multiplication by any
polynomial:
1. If g1, g2 are in the set, then (g1 + g2)(T )y = g1(T )y + g2(T )y ∈ W

(since W is a subspace).
2. If g is in the set and f ∈ F[t], then ( f g)(T )y = f (T )(g(T )y). Since

g(T )y ∈ W and W is invariant under f (T ) (polynomials in T
preserve invariant subspaces), the product is in W.

Among all non-zero polynomials in this set choose one of minimal
degree and scale it to be monic; this generator is unique and is called
the T -conductor of y into W, denoted g(t). Note that the minimal
polynomial µT (t) is always in this set (since µT (T )y = 0 ∈ W), so
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g(t) divides µT (t).

Lemma 5.2. Linear Conductor Existence.
Suppose the minimal polynomial µT (t) splits into linear factors over
F. Let W be a proper invariant subspace of T . Then there exists a vec-
tor x ∈ V \ W such that (T − λI)x ∈ W for some eigenvalue λ.

引理

Proof

Pick any y ∈ V \ W. Let g(t) be the T -conductor of y into W. Since
y /∈ W, g(t) is not a constant (otherwise 1 · y ∈ W). Since g(t)
divides µT (t), and µT (t) is a product of linear factors, g(t) must
have a linear factor. Write g(t) = (t − λ)h(t). Since deg h < deg g,
the vector x = h(T )y is not in W (by minimality of the conductor).
However,

(T − λE)x = (T − λE)h(T )y = g(T )y ∈ W.

Thus x satisfies the condition.
■

Triangulability

While not every operator is diagonalisable, a weaker form of simplifi-
cation is almost always possible.

Definition 5.10. Triangulable Operator.
An operator T is triangulable if there exists a basis B such that a rep-
resenting matrix of T is upper triangular.

定義

Theorem 5.7. Triangulability Criterion.
An operator T is triangulable if and only if its minimal polynomial (or
equivalently, its characteristic polynomial) splits into linear factors over
F.

定理

( =⇒ )

If T is triangulable, its matrix A is upper triangular. The charac-
teristic polynomial is ∏(t − aii), which clearly splits. The minimal
polynomial divides this, so it also splits.

証明終

( ⇐= )

We proceed by induction on dim V = n. For n = 1, every matrix is
triangular. Assume the result for dimension n − 1.
Let W0 = {0}. Using the Linear Conductor Lemma, there exists
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x1 ̸= 0 such that (T − λ1E)x1 ∈ {0}, i.e., T x1 = λ1x1. Let W1 =

span(x1). This is an invariant subspace.
We repeat the process. Consider the quotient space V/W1. The
operator T induces an operator T̄ on the quotient. The minimal
polynomial of T̄ divides µT (t), so it splits. By the inductive hy-
pothesis, there is a basis (v̄2, . . . , v̄n) for V/W1 that triangulates
T̄ . Lifting these vectors back to V (and including x1) gives a basis
(x1, v2, . . . , vn) in which a matrix of T is upper triangular.

証明終

Corollary 5.2. Algebraically Closed Fields. If F is algebraically closed
(meaning every non-constant polynomial in F[t] has a root in F, e.g.,
C), every linear operator is triangulable.

推論

Proof

Over an algebraically closed field, every characteristic polynomial
splits into linear factors. By the Triangulability Criterion, this im-
plies the operator is triangulable.

■

5.5 Direct Sum Decompositions and Projections

We have characterised diagonalisability using the eigenspace decom-
position V =

⊕
Wλi . This is a specific instance of a more general

structure: the decomposition of a vector space into independent sub-
spaces, and its relationship with projection operators.

Definition 5.11. Independent Subspaces.
A collection of subspaces W1, . . . , Wk of V is called independent if the
equation

w1 + · · ·+ wk = 0 (with wi ∈ Wi)

implies that wi = 0 for all i. Equivalently, every vector in the sum W =

W1 + · · ·+Wk has a unique representation as a sum of vectors from the
Wi.

定義

Recall that if W1, . . . , Wk are independent, their sum is denoted by the
direct sum symbol: W = W1 ⊕ · · · ⊕ Wk. If W = V, we say we have a
direct sum decomposition of V.

Projections

A linear operator E ∈ L(V) is called a projection (or idempotent)
if E2 = E. Geometrically, E maps any vector onto the range of E by
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"projecting" it, and applying it again changes nothing since the vector
is already in the range.

Proposition 5.3. Properties of Projections.
Let E be a projection.
1. V = Im E ⊕ Ker E.
2. If x ∈ Im E, then Ex = x.
3. The operator E − E is also a projection, with Im(E − E) = Ker E

and Ker(E − E) = Im E.
4. In a basis adapted to the decomposition V = Im E⊕Ker E, the ma-

trix of E is: [
Ir 0
0 0

]
, where r = rank E.

5. tr E = rank E.
命題

Proof

For any v ∈ V, we can write v = Ev + (v − Ev). Clearly Ev ∈ Im E.
Also E(v − Ev) = Ev − E2v = Ev − Ev = 0, so v − Ev ∈ Ker E.
To check independence, let x ∈ Im E ∩ Ker E. Then x = Ey for
some y, and Ex = 0. Thus 0 = Ex = E(Ey) = E2y = Ey = x.
The intersection is trivial, so the sum is direct. The matrix form and
trace property follow immediately from choosing a basis (e1, . . . , er)

for Im E and (er+1, . . . , en) for Ker E.
■

This concept generalises to multiple subspaces.

Theorem 5.8. Decomposition via Projections.
Let V be a finite-dimensional vector space.
1. If V = W1 ⊕· · ·⊕Wk, there exist k linear operators E1, . . . , Ek such

that:
· E = E1 + · · ·+ Ek.
· EiEj = δijEi (so E2

i = Ei and EiEj = O for i ̸= j).
· Im Ei = Wi.

2. Conversely, if there exist operators E1, . . . , Ek satisfying the first two
conditions, then V is the direct sum of their ranges Wi = Im Ei.

定理

Proof

1. For any v ∈ V, write v = w1 + · · · + wk uniquely. Define
Eiv = wi. The properties follow directly from the uniqueness of
the decomposition.

2. Given such operators, for any v, v = Ev = ∑ Eiv, so V = ∑ Wi.
If ∑ wi = 0 with wi ∈ Wi, apply Ej. Since wi ∈ Im Ei, Eiwi = wi

(as E2
i = Ei). Thus Ej(∑ wi) = ∑ Ejwi = ∑i ̸=j EjEiw′

i + Ejwj =
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wj. Since the sum is zero, wj = Ej(0) = 0. Thus the subspaces are
independent.

■

Relationship with Operators

Now we connect this to a linear operator T. We are interested in
decompositions where each subspace Wi is invariant under T.

Proposition 5.4. Commutativity and Invariance.
Let V =

⊕
Wi with associated projections Ei. The subspaces Wi are

invariant under T if and only if T commutes with each projection Ei,
i.e., TEi = EiT.

命題

Proof

If T Ei = EiT , let w ∈ Wi. Then w = Eiw, so T w = T Eiw = Ei(T w).
Thus T w ∈ Im Ei = Wi. Conversely, if Wi is invariant, for any v de-
composed as ∑ wj, T v = ∑ T wj. Since T wj ∈ Wj, the i-th compo-
nent of T v is T wi. Thus EiT v = T wi. Also T Eiv = T wi. Hence
T Ei = EiT .

■

This leads to the spectral decomposition theorem for diagonalisable
operators.

Theorem 5.9. Spectral Resolution.
An operator T is diagonalisable with distinct eigenvalues λ1, . . . , λk if
and only if there exist non-zero projections E1, . . . , Ek such that:
1. E = ∑ Ei.
2. EiEj = 0 for i ̸= j.
3. T = ∑k

i=1 λiEi.
In this case, Im Ei is exactly the eigenspace Wλi .

定理

( =⇒ )

Suppose T is diagonalisable with distinct eigenvalues. Let Wλi

be the eigenspace and let Ei be the projection onto Wλi along the
direct sum

⊕
m ̸=i Wλm (existence by theorem 5.8). Then E = ∑ Ei

and EiEj = 0 for i ̸= j. For x = ∑ xi with xi ∈ Wλi ,
Tx = ∑ λixi = ∑ λiEix, so T = ∑ λiEi and Im Ei = Wλi .

証明終

( ⇐= )

Assume projections Ei satisfy the three conditions. For any x, write
x = ∑ Eix (since E = ∑ Ei). Then Tx = ∑ λiEix. Thus Eix is
an eigenvector with eigenvalue λi, and x is a sum of eigenvectors
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from distinct eigenspaces. Independence of the ranges follows from
EiEj = 0, so V =

⊕
Im Ei, giving a basis of eigenvectors and

therefore diagonalisability.
証明終

This decomposition T = ∑ λiEi allows us to define functions of
operators easily: f (T) = ∑ f (λi)Ei.

Primary Decomposition Theorem

Finally, we state the general decomposition theorem for operators
whose minimal polynomial splits (or in general using irreducible
factors). Recall the minimal polynomial µT(t) = ∏k

i=1 pi(t)ri , where
pi(t) are distinct monic irreducible polynomials (in an algebraically
closed field, pi(t) = t − λi).

Theorem 5.10. Primary Decomposition.
Let T be a linear operator on V with minimal polynomial µT(t) = p1(t)r1 · · · pk(t)rk .
Let Wi = Ker(pi(T)ri ). Then:
1. V = W1 ⊕ · · · ⊕ Wk.
2. Each Wi is invariant under T.
3. Let Ti = T|Wi . The minimal polynomial of Ti is pi(t)ri .

定理

This theorem reduces the study of a general operator to the study
of operators whose minimal polynomial is a power of an irreducible
polynomial. In the case where the field is algebraically closed, each
block corresponds to a single eigenvalue λi, and the operator on Wi is
of the form λi I + Ni where Ni is nilpotent. This leads directly to the
Jordan Canonical Form.

5.6 Exercises

1. Basic Computations. For each of the following matrices, find the
characteristic polynomial, the eigenvalues, and a basis for each
eigenspace.

(a)

A =

 2 0 0
−16 8 7

0 0 1

 over R.

(b)

B =

0 1 0
0 0 1
1 0 0

 over C.
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(c)

C =

[
3 1
−1 1

]
over R.

2. Trivial Operators. Determine the characteristic and minimal poly-
nomials for the identity operator E and the zero operator 0 on an
n-dimensional space V.

3. Triangular Matrices. Prove that the eigenvalues of an upper trian-
gular matrix are exactly its diagonal entries.

4. Differentiation Operator. Let V = Pn(R) be the space of polyno-
mials of degree at most n. Let D : V → V be the differentiation
operator. Find the minimal polynomial of D.

5. Projection Operator. Let P : R2 → R2 be the projection onto
the x-axis along the y-axis (P(x, y) = (x, 0)). Find the minimal
polynomial of P.

6. Nilpotent Growth. Let T be an operator on an n-dimensional
space V. Prove that if Tk = 0 for some k, then Tn = 0. What is the
characteristic polynomial of a nilpotent operator?

7. Restriction Property. Let W be a T-invariant subspace. Prove that
the minimal polynomial of the restriction T|W divides the minimal
polynomial of T.

8. Idempotent Matrices. Let A be an n × n matrix such that A2 = A
(a projection).

(a) Prove that A is similar to a diagonal matrix with entries 0 and
1.

(b) Prove that rank(A) + rank(I − A) = n.

9. Primary Decomposition Detail. Let pT(x) = ∏(x − ci)
di and

µT(x) = ∏(x − ci)
ri . Let Wi = Ker((T − ciE)ri ).

(a) Prove that Wi = {v ∈ V | (T − ciE)mv = 0 for some m ≥ 1}.

(b) Prove that dim Wi = di. For (b): The restriction T|Wi − ciE is
nilpotent.

10. Orthogonal System of Idempotents. Let {A1, . . . , Am−1} be a
set of matrices such that A2

i = Ai and Ai Aj = 0 for i ̸= j. Let
A = ∑ Ai. Prove that A2 = A and AAi = Ai A = Ai. If we define
Am = I − A, prove that {A1, . . . , Am} is a complete orthogonal
system of idempotents (i.e., sum to I).

11. Multiplicative Maps on Matrices. Let D : Mn(R) → Mn(R) be a
non-zero linear map satisfying D(AB) = D(A)D(B). Prove there
exists an invertible matrix C such that D(X) = C−1XC.

12. Stabilisation of Image. Let T : V → V be linear. Suppose Im Tp =

Im Tp+1 for some p. Prove that V = Ker Tp ⊕ Im Tp.
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13. Cyclic Vector. Let V be n-dimensional. Prove that if the operators
E , T, T2, . . . , Tn−1 are linearly independent, then there exists a
vector v such that {v, Tv, . . . , Tn−1v} is a basis for V.

14. Commuting Anti-Involutions. Let A be a real n × n matrix with
no real eigenvalues. Prove there exists a real matrix B such that
AB = BA and B2 = −I. (This implies n is even and A defines a
complex structure).

15. Characteristic Polynomial of Products. Prove that for any A, B ∈
Mn(R), the matrices AB and BA have the same characteristic
polynomial.

16. Circulant Eigenvalues. Find the eigenvalues of the circulant ma-
trix

A =

a0 a1 a2

a2 a0 a1

a1 a2 a0



using the relation A = a0 I + a1P + a2P2, where P =

0 1 0
0 0 1
1 0 0

.

17. Semi-Magic Algebra. Prove that the space of semi-magic squares
SMagn(Q) (matrices with constant row/column sums) is a subal-
gebra of Mn(Q).

18. Signed Similarity. Let A ∈ Mn(K) with char K ̸= 2, and set

S(A) = {DA | D = diag(ε1, . . . , εn), εi = ±1}.

(a) Prove: For any such D, det(DA − I) = ±det(A − D).

(b) Consider the polynomial p(t1, . . . , tn) = det
(

A−diag(t1, . . . , tn)
)
.

Show its highest-degree term is (−1)nt1 · · · tn, so p is not the
zero polynomial.

(c) Deduce that there exists a choice εi ∈ {±1} with p(ε1, . . . , εn) ̸=
0, hence some matrix in S(A) has no eigenvalue 1.

Remark.

Evaluate p on all 2n sign choices; use char K ̸= 2.



6
Jordan Canonical Form

To understand the structure of a linear operator T : V → V, it is
natural to seek a basis of V in which the matrix representation of T
is as simple as possible. We have seen in chapter 5 that if the char-
acteristic polynomial splits into distinct linear factors, the operator
is diagonalisable. However, if eigenvalues repeat, diagonalisation is
not guaranteed. We now assume the underlying field is algebraically
closed (e.g., F = C) and develop a canonical form that applies to all
operators: the Jordan Canonical Form.

6.1 Cayley-Hamilton Theorem

We previously established the Triangulability Criterion in chapter 5.
We recall the result here, noting that over C, the condition of the
characteristic polynomial splitting is always satisfied.

Proposition 6.1. Triangular Form.
Recall from chapter 5 that an operator is triangulable if and only if its
minimal polynomial splits into linear factors. Over an algebraically closed
field like C, this condition is always satisfied. Thus, for any linear op-
erator T ∈ L(V) on a finite-dimensional complex vector space, there
exists a basis B such that the matrix of T relative to B is upper trian-
gular.

命題

Proof (using Invariant Hyperplanes)

We proceed by induction on n = dim V. For n = 1, the matrix is
a scalar, which is trivially triangular. Assume the result holds for
spaces of dimension n − 1. By the theorem on Invariant Hyper-
planes (see Eigenvalues and Diagonalisation), the operator T admits
an invariant hyperplane U (a subspace of dimension n − 1). By the
inductive hypothesis, there exists a basis (e1, . . . , en−1) for U such
that the restriction T |U is upper triangular. Specifically:

T ei ∈ span(e1, . . . , ei) for 1 ≤ i ≤ n − 1.
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We extend this to a basis for V by choosing any vector en /∈ U.
Since T en ∈ V, we can write T en = ∑n

j=1 ajnej. The matrix of T in
the basis (e1, . . . , en) is therefore:

A =


λ1 · · · ∗ a1n

0 λ2 · · · a2n
...

...
. . .

...
0 0 · · · λn

 .

This is upper triangular; its diagonal entries coincide with the di-
agonal entries inherited from the induction step on U (hence are
eigenvalues of T ).

■

This triangular structure allows for a succinct, coordinate-free proof
of the Cayley-Hamilton theorem. Recall that we provided a matrix-
based proof using the adjugate in chapter 5.

Theorem 6.1. Cayley-Hamilton (Alternative Proof).
Let T be a linear operator on a finite-dimensional space V, and let pT (t)
be its characteristic polynomial. Then T annihilates its characteristic
polynomial:

pT (T ) = O.

定理

Proof

We provide an alternative, coordinate-free proof using the triangu-
lar form established above. Since pT (t) is independent of the basis,
we may assume T is represented by an upper triangular matrix A
with diagonal entries λ1, . . . , λn. The characteristic polynomial is
pT (t) = ∏n

i=1(t − λi). Consider the filtration of subspaces defined
by the basis vectors:

Vk = span(e1, . . . , ek), V0 = {0}.

This forms a chain V0 ⊂ V1 ⊂ · · · ⊂ Vn = V. Since A is upper trian-
gular, T ek = λkek + v where v ∈ Vk−1. Consequently, (T − λkE)ek ∈
Vk−1. For any x ∈ Vk, writing x = αek + w with w ∈ Vk−1, we ob-
serve:

(T − λkE)x = α(T − λkE)ek + (T − λkE)w.

Since Vk−1 is invariant under T (and thus under T − λkE), both
terms lie in Vk−1. Hence:

(T − λkE)Vk ⊆ Vk−1.

We evaluate pT (T ) by applying the factors successively to the
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space V:

pT (T )V = (T − λ1E) · · · (T − λnE)Vn

⊆ (T − λ1E) · · · (T − λn−1E)Vn−1

⊆ . . .

⊆ (T − λ1E)V1

⊆ V0 = {0}.

Thus pT (T ) = O.
■

Remark (Minimal Polynomial Divisibility).

As established in chapter 5, the minimal polynomial µT (t) divides
the characteristic polynomial pT (t). Furthermore, every root of
pT (t) (i.e., every eigenvalue) is a root of µT (t).

Remark.

One might be tempted to prove theorem 6.1 by substituting matrix A
for t in det(tI − A), yielding det(AI − A) = det(0) = 0. This rea-
soning is flawed; pA(t) is a scalar polynomial, while substitution of
A yields a matrix equation. The equality must hold in the algebra
of operators, not merely as a scalar value.

6.2 Jordan Blocks and Nilpotent Operators

To refine the triangular form, we analyze the structure of nilpotent
operators.

Example 6.1. Nilpotent Structure. Let N be a nilpotent opera-
tor with index m (so Nm = O but Nm−1 ̸= O). Pick v such that
Nm−1v ̸= 0. The vectors

B = (Nm−1v,Nm−2v, . . . ,N v, v)

are linearly independent. Applying N to this sequence shifts
each vector to the left, annihilating the first. Letting e1 =

Nm−1v, . . . , em = v, we have:

N e1 = 0, N ek = ek−1 for k > 1.

The matrix of N in this basis is a Jordan block with eigenvalue 0.

範例

Definition 6.1. Jordan Block.
A Jordan block of size m corresponding to λ ∈ C is a matrix of the
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form:

Jm(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . .

...
0 0 0 · · · 1
0 0 0 · · · λ

 ∈ Cm×m.

A matrix J is a Jordan matrix if it is a block diagonal matrix composed
of Jordan blocks:

J = diag(Jm1(λ1), . . . , Jmk (λk)).

定義

We say an operator T admits a Jordan Canonical Form if there exists
a basis (a Jordan basis) in which its matrix is a Jordan matrix. Note
that Jm(λ) = λI + N, where N is the nilpotent matrix with 1s on the
superdiagonal.

Example 6.2. Differentiation Space. Consider the space Dn(λ) of
functions of the form eλt f (t), where f (t) is a polynomial of degree
less than n. The differentiation operator D = d

dt acts on this space.
Using the product rule:

d
dt

(
tk

k!
eλt

)
=

tk−1

(k − 1)!
eλt + λ

tk

k!
eλt.

Setting basis vectors ek+1 = tk

k! eλt for k = 0, . . . , n − 1, we see that
Dek+1 = ek + λek+1 (with e0 = 0). Thus, the matrix of D in this
basis is exactly Jn(λ). This structure is fundamental to the theory of
linear differential equations.

範例

Example 6.3. Functions of a Jordan Block. If f (t) is a polynomial,
the matrix f (Jm(λ)) has a convenient structure given by the Taylor
expansion of f at λ:

f (Jm(λ)) =



f (λ) f ′(λ) f ′′(λ)
2! · · · f (m−1)(λ)

(m−1)!

0 f (λ) f ′(λ) · · · f (m−2)(λ)
(m−2)!

...
...

. . . . . .
...

0 0 · · · f (λ) f ′(λ)
0 0 · · · 0 f (λ)


.

This demonstrates that operating with Jordan blocks is computa-
tionally tractable.

範例
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Theorem 6.2. Existence of Jordan Form.
Any linear operator T on a finite-dimensional vector space over an al-
gebraically closed field admits a Jordan Canonical Form. The form is
unique up to the permutation of the Jordan blocks.

定理

Proof by induction on n = dim V.

Base case n = 1.

Trivial: any 1 × 1 matrix is J1(λ).
証明終

Inductive step.

Assume the statement holds for all dimensions < n. Because the
field is algebraically closed, pick an eigenvalue λ of T and set
U = T − λE . Let R = ImU and K = KerU . Since λ is an eigenvalue,
K ̸= {0} and dim R = n − dim K < n.

Jordan chains inside R. The subspace R is T -invariant: for y = Ux
we have T y = UT x ∈ ImU . By the inductive hypothesis, T |R has
a Jordan basis consisting of disjoint chains Ci = (v(i)1 , . . . , v(i)pi ) for
eigenvalues µi (possibly equal or different from λ).

Extend the λ-chains. If µi = λ, take the head v(i)1 ∈ R. Since v(i)1 ∈
ImU , choose w(i) with Uw(i) = v(i)1 . Then

(T −λE)w(i) = v(i)1 , (T −λE)v(i)j = v(i)j+1 (j < pi), (T −λE)v(i)pi = 0.

Thus (w(i), v(i)1 , . . . , v(i)pi ) is a λ–Jordan chain of length pi + 1. In-
dependence is clear because applying (T − λE)pi sends w(i) to
v(i)pi ̸= 0 while killing the other chains.

If µi ̸= λ, we leave Ci unchanged. Chains for distinct eigenvalues
are automatically independent (they live in distinct generalized
eigenspaces of T |R).

Let B1 be the union of all extended λ-chains and the unchanged
µi ̸= λ chains. These still form a basis of R together with exactly
one new vector for each λ-chain. Denote by c the number of
λ-chains in R.

Add missing eigenvectors from K. The tails of the λ-chains in B1

lie in K ∩ R and are independent; extend them to a basis of K by
adding vectors z1, . . . , zq chosen outside spanB1. Each zj is itself
a λ-chain of length 1.

Step 4: Independence and spanning. Independence: Any non-trivial
linear combination of vectors in B1 that lies in K must in-
volve only the tail vectors (because applying a suitable power
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of U kills earlier vectors but not the tail of its own chain).
Since we extended those tails to a basis of K, adding zj with
zj /∈ spanB1 keeps the whole set independent.

Counting dimensions: |B1| = dim R + c, and we add q = dim K − c
vectors zj. Total size |B1| + q = dim R + dim K = n, so inde-
pendence implies the set is a basis of V.

In this basis, each extended λ-chain is a Jordan block for λ, each
unchanged chain is a Jordan block for its µi, and each zj is a
1 × 1 λ-block. Hence the matrix of T is block diagonal with
Jordan blocks, as desired.

証明終

The structure of the Jordan form is intimately tied to the minimal
polynomial. If µT (t) = ∏

p
i=1(t − λi)

mi , then mi corresponds to the
size of the largest Jordan block associated with λi.

Corollary 6.1. Diagonalisability Criterion. A matrix A is diagonalisable
if and only if its minimal polynomial µA(t) has no repeated roots (i.e.,
it is a product of distinct linear factors).

推論

Proof

If µA has no repeated roots, the largest Jordan block for any eigen-
value has size 1. Thus all blocks are 1 × 1, meaning A is diagonal.
Conversely, if A is diagonal, it satisfies ∏(A − λi I) = O where the
product is over distinct eigenvalues, so µA splits distinctly.

■

6.3 Root Subspaces

To prove the existence of the Jordan form, we decompose the space V
into subspaces corresponding to each eigenvalue.

Definition 6.2. Root Subspace.
Let λ ∈ Spec(T ). The root subspace (or generalized eigenspace) V(λ)

is defined as:

V(λ) = {v ∈ V | (T − λE)kv = 0 for some k ≥ 1}.

定義

Since V is finite-dimensional, this is equivalent to V(λ) = Ker((T −
λE)n). Clearly, the eigenspace Ker(T − λE) is contained in V(λ).
We now provide the constructive proof for the Primary Decomposi-
tion Theorem stated in chapter 5.
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Theorem 6.3. Primary Decomposition.
Let T be a linear operator with characteristic polynomial pT (t) = ∏

p
i=1(t−

λi)
ni , where λi are distinct. Then V decomposes as the direct sum of

invariant root subspaces:

V = V(λ1)⊕ V(λ2)⊕ · · · ⊕ V(λp).

Moreover, dim V(λi) = ni, and the restriction of T − λiE to V(λi) is
nilpotent.

定理

Proof

For each i, define the polynomial Qi(t) = pT (t)/(t − λi)
ni =

∏j ̸=i(t − λj)
nj . The polynomials Q1(t), . . . , Qp(t) share no common

root, so their greatest common divisor is 1. By the Euclidean algo-
rithm for polynomials (Bezout’s identity), there exist polynomials
f1(t), . . . , fp(t) such that:

p

∑
i=1

fi(t)Qi(t) = 1.

Substituting the operator T :

p

∑
i=1

fi(T )Qi(T ) = E .

Let Pi = fi(T )Qi(T ). Note that Pi commutes with T . We claim
Wi = Im(Pi) coincides with V(λi). First, observe that Qi(t) contains
the factor (t − λj)

nj for all j ̸= i. By Cayley-Hamilton, pT (T ) =

O. Thus (T − λiE)ni Qi(T ) = pT (T ) = O. Consequently, for any
v, (T − λiE)niPiv = fi(T )(T − λiE)ni Qi(T )v = 0. This implies
Im(Pi) ⊆ V(λi).
The identity ∑Pi = E implies V = ∑ Im(Pi) = ∑ V(λi). To show
the sum is direct, suppose v ∈ V(λi) ∩ ∑j ̸=i V(λj). On V(λj), the
operator (T − λjE) is nilpotent. Because Qi contains (t − λj)

nj , we
have Qi(T )|V(λj)

= 0 for j ̸= i. Conversely, on V(λi) the nilpotent
part of (T − λiE) commutes with Qi(T ), and the scalar Qi(λi) ̸= 0
implies

Qi(T )|V(λi)
= Qi(λi)E + (nilpotent)

which is invertible on V(λi) (a non-zero scalar plus nilpotent is
invertible on a finite-dimensional space). Therefore Pi restricts to
an automorphism of V(λi) and vanishes on V(λj) for j ̸= i, so Pi is
the projection onto V(λi) along

⊕
j ̸=i V(λj). This proves the sum is

direct and Wi = V(λi).
Finally, on each V(λi) the restriction of T equals λiE plus a nilpo-
tent operator (because (T − λiE)ni = 0 on that subspace). Thus
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the classification of T reduces to nilpotent blocks, giving the Jordan
form.

■

6.4 Cyclic Subspaces

To construct the Jordan Canonical Form, we break down nilpotent
operators into simpler components. The fundamental building block
is the cyclic subspace.

Definition 6.3. Cyclic Subspace.
Let N be a nilpotent operator on V with nilpotency index m. For any
vector v ∈ V, the cyclic subspace generated by v with respect to N
is:

Z(v;N ) = span(v,N v,N 2v, . . . ,N k−1v),

where k is the smallest integer such that N kv = 0. Note that k ≤ m.

定義

The vectors (v,N v, . . . ,N k−1v) form a basis for Z(v;N ). In the re-
versed order (N k−1v, . . . , v), the matrix of N restricted to this sub-
space is the Jordan block Jk(0).

Theorem 6.4. Jordan Form for Nilpotent Operators.
Let N be a nilpotent operator on a finite-dimensional vector space V.
Then V admits a decomposition into a direct sum of cyclic subspaces:

V = Z(v1;N )⊕ Z(v2;N )⊕ · · · ⊕ Z(vs;N ).

Consequently, there exists a basis in which the matrix of N is a direct
sum of Jordan blocks with eigenvalue 0.

定理

Proof

We proceed by induction on dim V. The base case is trivial. As-
sume the theorem holds for spaces of dimension less than n. Since
N is nilpotent, its image ImN is a proper subspace of V (oth-
erwise N would be surjective and thus invertible, contradicting
nilpotency). Let U = ImN . Since dim U < dim V, the inductive
hypothesis implies U decomposes into cyclic subspaces:

U = Z(u1;N )⊕ · · · ⊕ Z(ur;N ).

Let ki be the dimension of Z(ui;N ), so N ki ui = 0 and ui generates
the sequence ui,Nui, . . . . Since ui ∈ ImN , there exist vectors vi ∈ V
such that N vi = ui. Consider the new cyclic subspaces Z(vi;N ).
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The sequence generated by vi is vi, ui,Nui, . . . , which has length
ki + 1. Let W =

⊕r
i=1 Z(vi;N ). We must determine if W covers

all of V. Independence of these subspaces follows from a “highest
nonzero iterate” argument: if ∑i xi = 0 with xi ∈ Z(vi;N ), apply
N k−1 where k is maximal such that some xi has a nonzero N k−1-
iterate. Only one tail term survives (the tail of its chain), forcing all
coefficients to be zero.
If W ̸= V, we can find vectors in KerN that are not in W to com-
plete the basis. Specifically, extend the independent set {N ki ui}r

i=1
(which forms a basis for ImN ∩ KerN ) to a full basis of KerN by
adding vectors z1, . . . , zq chosen outside W. These zj generate cyclic
subspaces of dimension 1 (since N zj = 0).
Any vector in W ∩ span(z1, . . . , zq) would lie in both W and kerN ;
applying the same highest-iterate argument shows this forces the
vector to be 0, so the sum remains direct. Finally,

V = W ⊕ span(z1)⊕ · · · ⊕ span(zq),

so V is a direct sum of cyclic subspaces.
■

Combining this with the Primary Decomposition Theorem yields
the full existence result. For any operator T , V =

⊕
V(λi). On each

V(λi), the operator T − λiE is nilpotent. Decomposing V(λi) into
cyclic subspaces for T − λiE yields blocks of the form Jm(λi).
While the existence of the Jordan form is guaranteed, proving unique-
ness requires identifying invariants that do not depend on the choice
of basis.

Theorem 6.5. Uniqueness of Jordan Form.
The Jordan Canonical Form of an operator T is unique up to the or-
der of the Jordan blocks.

定理

Proof

The number and sizes of the Jordan blocks corresponding to an
eigenvalue λ are completely determined by the ranks of the powers
of (T − λE). Let N(m, λ) be the number of Jordan blocks of size
m for the eigenvalue λ. Let rk = rank((T − λE)k). The geometric
multiplicity dim Ker(T − λE) = n − r1 is the total number of Jordan
blocks for λ (since each block contributes exactly one eigenvector).
Generally, for a single block Jm(λ), the rank of (Jm(λ) − λI)k drops
by 1 for each power until it becomes 0 for all k ≥ m. Summing over
all blocks, rk−1 − rk counts the number of blocks of size at least k;
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taking a discrete difference isolates those of exact size m:

N(m, λ) = rm−1 − 2rm + rm+1.

Here rk = rank((T − λE)k), with r0 = n and rk = 0 for sufficiently
large k (specifically for k ≥ dim V). Since the ranks rk are basis-
independent invariants of T , the numbers N(m, λ) are unique.

■

The Jordan-Chevalley Decomposition

The Jordan Canonical Form allows us to decompose any operator
into a diagonalisable part and a nilpotent part.

Theorem 6.6. Jordan-Chevalley Decomposition.
Let T be a linear operator on a finite-dimensional vector space V over
an algebraically closed field. There exist unique operators S (semisim-
ple/diagonalisable) and N (nilpotent) such that:

T = S +N and SN = NS.

Furthermore, S and N can be expressed as polynomials in T .
定理

Proof

Consider the eigenspace decomposition V =
⊕

V(λi) given by the
primary decomposition. Define S to be the operator that acts as
λiE on each subspace V(λi). Since V has a basis of eigenvectors for
S (the union of bases for each V(λi)), S is diagonalisable. Define
N = T − S. On V(λi), N acts as T − λiE , which is nilpotent by the
definition of root subspaces. Since N is nilpotent on each invariant
summand, it is nilpotent on V. Commutativity follows because S
is a polynomial in T (using Lagrange interpolation to match eigen-
values on the blocks), and T commutes with itself. Uniqueness is
proved by observing that if T = S ′ + N ′ is another such decompo-
sition, S − S ′ = N ′ −N . The LHS is diagonalisable and the RHS is
nilpotent; the only operator that is both is the zero operator.

■

Example 6.4. Computing the Decomposition via Polynomials.
Consider the operator T on R3 represented by the lower triangular
matrix:

A =

 2 0 0
−1 2 0
0 0 −1

 .

The characteristic polynomial is p(t) = (t − 2)2(t + 1). Since the
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rank of A − 2I is 2 (nullity 1), the geometric multiplicity of λ = 2
is 1, strictly less than the algebraic multiplicity 2. Thus, A is not
diagonalisable. The minimal polynomial is m(t) = (t − 2)2(t + 1).
To find the semisimple part S and nilpotent part N, we use the
partial fraction decomposition (Bezout’s identity) on the factors
of m(t). Let p1(t) = t + 1 and p2(t) = (t − 2)2. We define
f1(t) = p2(t) = (t − 2)2 and f2(t) = p1(t) = t + 1. We seek
polynomials g1, g2 such that:

f1(t)g1(t) + f2(t)g2(t) = 1.

Using the Euclidean algorithm, we find:

g1(t) =
1
9

, g2(t) =
−t + 5

9
.

Check: 1
9 (t

2 − 4t + 4) + 1
9 (t + 1)(−t + 5) = 1

9 (t
2 − 4t + 4 − t2 + 4t +

5) = 1.
The projections onto the generalized eigenspaces are E1 =

f1(A)g1(A) and E2 = f2(A)g2(A).

E1 =
1
9
(A − 2I)2, E2 =

1
9
(A + I)(5I − A).

Calculating these yields:

E1 =

0 0 0
0 0 0
0 0 1

 , E2 =

1 0 0
0 1 0
0 0 0

 .

The semisimple part S is the weighted sum of projections by eigen-
values:

S = (−1)E1 + 2E2 =

2 0 0
0 2 0
0 0 −1

 .

(In this specific basis, S happens to be diagonal, though usually it is
just diagonalisable). The nilpotent part is N = A − S:

N =

 0 0 0
−1 0 0
0 0 0

 .

One can verify N2 = 0 and SN = NS.

範例

Remark.

The decomposition A = S + N with SN = NS is particularly useful
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for computing matrix exponentials. Since S and N commute, eA =

eS+N = eSeN . eS is easily computed (diagonalise S), and eN is a fi-
nite sum ∑m−1

k=0
Nk

k! since N is nilpotent.

Example 6.5. Calculating Jordan Structure. Let A be a matrix with
characteristic polynomial p(λ) = (λ − 2)4. Suppose the ranks of
(A − 2I)k are: r1 = 2, r2 = 1, r3 = 0. Using the formula:

N(1, 2) = r0 − 2r1 + r2 = 4 − 2(2) + 1 = 1.

N(2, 2) = r1 − 2r2 + r3 = 2 − 2(1) + 0 = 0.

N(3, 2) = r2 − 2r3 + r4 = 1 − 0 + 0 = 1.

Thus, A has one block of size 1 and one block of size 3: J ∼=
diag(J3(2), J1(2)).

範例

When the field is not algebraically closed (e.g., R), the Jordan form
may not exist because eigenvalues might not lie in the field. In this
case, we use the Rational Canonical Form, which relies on cyclic
subspaces for the operator T itself rather than its nilpotent parts.

Definition 6.4. Cyclic Vector.
A vector v is cyclic for an operator T if the vectors v, T v, . . . , T n−1v form
a basis for V. The space is then called a cyclic space.

定義

Example 6.6. Cyclic and Non-Cyclic Vectors. Consider the operator
T on R2 defined by T (x1, x2) = (0, x1).
· Let v = e1 = (1, 0). Then T v = (0, 1) = e2 and T 2v = 0. The set
{e1, e2} spans R2, so e1 is a cyclic vector.

· Let w = e2 = (0, 1). Then T w = (0, 0). The cyclic subspace
Z(w; T ) is span(e2), which is not the whole space. Thus e2 is not
cyclic.

範例

Proposition 6.2. Cyclic Subspace Properties.
Let Z(x; T ) be the cyclic subspace generated by x.
1. Z(x; T ) = span(x) if and only if x is an eigenvector of T .
2. If V is a cyclic space with cyclic vector v, then the minimal polyno-

mial µT (t) equals the characteristic polynomial pT (t), and both equal
the T -annihilator pv(t).

命題

Proof

1. ( =⇒ ) If Z(x; T ) = span(x), then T x ∈ Z(x; T ) implies T x =
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λx for some λ ∈ F. Since x generates the subspace (assumed
non-zero), x is an eigenvector.

( ⇐= ) If T x = λx, then for any polynomial g(t), g(T )x =

g(λ)x ∈ span(x). Thus Z(x; T ) ⊆ span(x), and equality holds.
2. Let n = dim V. Since v is cyclic, the set B = {v, T v, . . . , T n−1v}

is linearly independent and forms a basis. The annihilator
pv(t) is the unique monic polynomial of least degree such that
pv(T )v = 0. If deg pv = k < n, then T kv would be a linear
combination of v, . . . , T k−1v, contradicting the independence of
B. Thus deg pv = n.
Since µT (T ) = O, we have µT (T )v = 0, so pv divides µT . Con-
versely, for any w ∈ V, since v generates V, we can write w =

g(T )v for some polynomial g. Then:

pv(T )w = pv(T )g(T )v = g(T )pv(T )v = g(T )0 = 0.

Thus pv(T ) annihilates all vectors, so µT divides pv. Since they
are both monic and divide each other, µT = pv. Finally, pT is a
monic polynomial of degree n. By Cayley-Hamilton, µT divides
pT . Since deg µT = deg pv = n, we must have µT = pT .

■

If V is cyclic with minimal polynomial tn − ∑n−1
i=0 aiti, the matrix of T

in the basis B = (T n−1v, . . . , v) takes the form of a companion matrix
(or cyclic block):

C(p) =


an−1 1 0 · · · 0
an−2 0 1 · · · 0

...
...

. . . . . .
...

a1 0 0 · · · 1
a0 0 0 · · · 0

 .

Every operator admits a decomposition V = Z1 ⊕ · · · ⊕ Zk where
each Zi is a cyclic subspace. The resulting block diagonal matrix of
companion matrices is the Rational Canonical Form. Unlike Jordan
form, this requires no field extension.

Finding the Similarity Matrix

Finding the matrix C such that C−1 AC = J is equivalent to solving
the linear system AC = CJ. In practice one constructs the basis of
generalized eigenvectors explicitly. For a chain ending in eigenvector
v (where (A − λI)v = 0), one solves (A − λI)v2 = v, (A − λI)v3 = v2,
etc., moving upwards.



algebra iv: linear 125

Example 6.7. Projection Matrix. Consider the matrix S of all ones
(Sij = 1). S2 = nS. The minimal polynomial is t(t − n). Since
roots are distinct (0 and n), S is diagonalisable. Rank is 1, so the
eigenvalue 0 has geometric multiplicity n − 1. J = diag(n, 0, . . . , 0).
The transition matrix C can be found by picking one eigenvector for
λ = n (e.g., (1, . . . , 1)T) and n − 1 independent vectors in the kernel
of S (vectors summing to 0).

範例

6.5 Admissibility and Decomposition

To establish the cyclic decomposition for general operators (including
the Rational Canonical Form), we formalise the conditions under
which a subspace can be "split off" as a direct summand. This leads
to the concept of T-admissibility, which is central to proving the
general structure theorem without assuming field closure.

Definition 6.5. T-Conductor and Annihilator.
Recall from chapter 5 that the T-conductor of a vector v into a subspace
W is the set ST(v, W) = { f ∈ F[t] | f (T)v ∈ W}. This set is non-
empty (it contains the minimal polynomial of T) and is closed under
addition and multiplication by any polynomial. Consequently, there
exists a unique monic polynomial of lowest degree in ST(v, W) that di-
vides every other polynomial in the set. We refer to this specific poly-
nomial as the T-conductor. The T-annihilator of v, denoted pv(t), is
the T-conductor of v into the zero subspace {0}. It is the unique monic
polynomial of lowest degree such that pv(T)v = 0.

定義

Definition 6.6. T-Admissibility.
Let W be a T-invariant subspace of V. We say W is T-admissible if for
every polynomial f (t) and every vector v ∈ V, the condition f (T)v ∈
W implies there exists a vector w ∈ W such that f (T)v = f (T)w.

定義

Remark.

The motivation for this technical definition lies in the problem
of finding invariant complements. If W is a T-invariant sub-
space, there does not necessarily exist a subspace W ′ such that
V = W ⊕ W ′ and W ′ is also invariant. However, if W is part of such
a decomposition, it must be T-admissible.

Lemma 6.1. Invariant Direct Sums imply Admissibility.
Let V = W ⊕ W ′ where both W and W ′ are T-invariant. Then W is



126 gudfit

T-admissible.
引理

Proof

Let v ∈ V and f (t) be a polynomial such that f (T)v ∈ W. Since
V = W ⊕ W ′, we can write v = w + w′ uniquely, with w ∈ W, w′ ∈
W ′. By linearity, f (T)v = f (T)w + f (T)w′. Since W and W ′ are in-
variant, f (T)w ∈ W and f (T)w′ ∈ W ′. We are given that f (T)v ∈
W. Rearranging the equation:

f (T)w′ = f (T)v − f (T)w.

The RHS is in W (difference of two vectors in W). The LHS is in
W ′. Since W ∩ W ′ = {0}, we must have f (T)w′ = 0. Thus
f (T)v = f (T)w. Since w ∈ W, the condition for T-admissibility
is satisfied.

■

Intuitively, T-admissibility ensures that if a vector "looks like" it be-
longs to W relative to the action of polynomials in T, we can find a
representative actually inside W that behaves identically under that
polynomial action.

Theorem 6.7. Cyclic Decomposition Theorem.
Let T be a linear operator on a finite-dimensional vector space V. There
exist non-zero vectors v1, . . . , vr ∈ V with T-annihilators p1, . . . , pr such
that:
1. V = Z(v1; T)⊕ Z(v2; T)⊕ · · · ⊕ Z(vr; T).
2. pk divides pk−1 for k = 2, . . . , r.
Furthermore, the integer r and the polynomials p1, . . . , pr are uniquely
determined by T.

定理

The polynomials pi(t) are called the invariant factors of T. The first
polynomial p1(t) is the minimal polynomial of T, and the product
∏ pi(t) is the characteristic polynomial (up to a scalar factor).

Proof

The proof is constructive and relies on T-admissibility. We proceed
by induction. Let W0 = {0}, which is trivially T-admissible. Sup-
pose we have constructed Wk−1 = Z(v1; T) ⊕ · · · ⊕ Z(vk−1; T).
If Wk−1 ̸= V, we find a vector vk such that the T-conductor
ST(vk, Wk−1) is maximal among all vectors in V \ Wk−1. Let
pk = ST(vk, Wk−1). We define Z(vk; T) and show that Wk =

Wk−1 ⊕ Z(vk; T) is a direct sum and is T-admissible. The divisi-
bility condition pk | pk−1 arises from the maximality of the con-
ductor. Specifically, since vk−1 had a "larger" conductor at the
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previous step, the structure of the cyclic subspaces enforces the
divisibility chain. The process terminates when Wr = V. The
uniqueness of the invariant factors p1, . . . , pr follows from the fact
that they are determined by the greatest common divisors of the
minors of the matrix tI − A. Specifically, if Dk(t) is the greatest
common divisor of all k × k minors of tI − A, then pk(t) can be
recovered from the quotients of these scalar invariants (specifically
pr−j+1(t) = Dn−j+1(t)/Dn−j(t)). Since determinants are basis-
independent, these polynomials are unique to the operator.

■

The cyclic decomposition allows us to represent any operator by a
matrix composed of companion matrices, regardless of whether the
field is algebraically closed.

Theorem 6.8. Rational Canonical Form.
Every square matrix A over a field F is similar to a block diagonal ma-
trix

R =


C(p1) 0 · · · 0

0 C(p2) · · · 0
...

...
. . .

...
0 0 · · · C(pr)

 ,

where C(pi) is the companion matrix of the polynomial pi(t), and pk(t)
divides pk−1(t) for k = 2, . . . , r. This matrix R is called the Rational
Canonical Form of A.

定理

Example 6.8. Rational Form Computation. Consider the matrix

B =

 5 −6 −6
−1 4 2
3 −6 −4

 .

The characteristic polynomial is χB(t) = (t − 1)(t − 2)2. The min-
imal polynomial is µB(t) = (t − 1)(t − 2) = t2 − 3t + 2. Since
µB ̸= χB, there must be more than one invariant factor. The invari-
ant factors must satisfy p1 = µB and ∏ pi = χB, with p2 | p1. The
only possibility is p1(t) = (t − 1)(t − 2) and p2(t) = (t − 2). The
companion matrix for p1(t) = t2 − 3t + 2 is:

C(p1) =

[
0 −2
1 3

]
.

The companion matrix for p2(t) = t − 2 is simply [2]. Thus, the Ra-
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tional Canonical Form is:

R =

0 −2 0
1 3 0
0 0 2

 .

Note that B is diagonalisable (eigenvalues 1, 2, 2 with distinct
eigenvectors), but the Rational Form groups the cyclic components
explicitly.

範例

Remark.

The Rational Canonical Form is "rational" because it requires no
field extension to compute. It relies only on operations within the
field F, unlike the Jordan Canonical Form which may require split-
ting fields to find eigenvalues.

6.6 Exercises

1. Determinant of the Shifted Matrix. Let S be the n × n matrix
of all ones from example 6.7. Compute the determinant of the
matrix:

A =


m −1 · · · −1
−1 m · · · −1

...
...

. . .
...

−1 −1 · · · m


Show that det A = χS(m + 1), where χS(t) is the characteristic
polynomial of S.

2. Classification of Nilpotent Matrices. Up to similarity, the follow-
ing matrices exhaust all nonzero 4 × 4 nilpotent matrices:

A1 = J2(0)⊕ J1(0)⊕ J1(0), A2 = J2(0)⊕ J2(0),

A3 = J3(0)⊕ J1(0), A4 = J4(0).

Determine which Ai each of the following matrices is similar to:

M1 =


0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0

 , M2 =


0 0 1 0
0 0 1 1
0 0 0 0
0 0 0 0

 ,

M3 =


0 0 0 0
1 0 0 0
1 −1 0 0
1 1 1 0

 , M4 =


0 0 0 1
0 0 0 0
1 −1 0 0
0 0 0 0

 .
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3. Reconstruction from Invariants.

(a) Given a characteristic polynomial χA(t) = (t − 3)4(t + 2) and
rank(A − 3I) = 2, find the Jordan Canonical Form J(A).

(b) In the cases where rank(A − 3I) ∈ {1, 3, 4}, can J(A) be
uniquely recovered? Explain why or why not.

4. Comparison of Matrices. Consider the matrices:

A =

 6 2 −2
−2 2 2
2 2 2

 , B =

 6 2 2
−2 2 0
0 0 2

 .

(a) Show that A and B have the same characteristic polynomial.

(b) Find the minimal polynomials µA(t) and µB(t).

(c) Find the Jordan forms J(A) and J(B). Are A and B similar?

5. Self-Duality. Prove that every matrix A ∈ Mn(C) is similar to its It suffices to prove this for a single
Jordan block.transpose AT .

6. Roots of Unity. Prove that for a matrix A ∈ Mn(C), the relation
AN = I holds if and only if A is diagonalisable and its eigenvalues
are all N-th roots of unity.

7. The Ring of Magic Squares. Let Magn(Q) denote the set of n × n
magic squares (matrices where all row sums, column sums, and
main diagonal sums are equal). Verify directly that:

A =

1 2 0
0 1 2
2 0 1

 ∈ Mag3(Q),

but A2 /∈ Mag3(Q). Conclude that the set of magic squares is Use the Cayley-Hamilton theorem to
express Am as a linear combination
of I, A, A2. Note that this property is
specific to n = 3.

not closed under multiplication. (Contrast this with the set of
semi-magic squares, which is closed under multiplication).

8. Higher Order Magic Squares. Verify that for any m ≥ 2, the
matrix Am is not a magic square, where:

A =


2 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

 ∈ Mag4(Q).

Using this, show that for all n ≥ 4, there exists an n × n magic
square matrix whose m-th power (m ≥ 2) is not a magic square.

9. Jordan-Chevalley Computation. Let A =

[
1 1
−1 3

]
∈ M2(R).

(a) Determine the semisimple part S and the nilpotent part N of
the decomposition A = S + N such that SN = NS.
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(b) Express S and N as polynomials in A.

10. Jacobson’s Lemma for 2 × 2. Prove that for any three matrices
X, Y, Z ∈ M2(R), the following identity holds:

[[X, Y]2, Z] = 0,

where [X, Y] = XY − YX is the commutator.

11. Classification via Minimal Polynomials. Let N1 and N2 be 3 × 3
nilpotent matrices over a field F. Prove that N1 and N2 are similar
if and only if they have the same minimal polynomial. Give a
counter-example to show this is false for 4 × 4 matrices.

12. Constructing Jordan Forms. If A is a complex 5 × 5 matrix with
characteristic polynomial f (x) = (x − 2)3(x + 7)2 and minimal
polynomial p(x) = (x − 2)2(x + 7), determine the Jordan Canoni-
cal Form of A.

13. Enumerating Similarity Classes. How many distinct similarity
classes of 6 × 6 complex matrices exist that have the characteristic
polynomial χ(x) = (x + 2)4(x − 1)2?

14. Differentiation Operator. Let V = P≤3(C) be the space of poly-
nomials of degree at most 3. Let T : V → V be the differentiation
operator T( f ) = f ′. Find the Jordan form of T.

15. Rational Canonical Form Calculation. Find the minimal poly-
nomials and the Rational Canonical Forms for the following real
matrices:

A1 =

 0 −1 −1
1 0 0
−1 0 0

 , A2 =

0 −1 0
1 0 1
0 1 0

 , A3 =

[
cos θ sin θ

− sin θ cos θ

]
.

16. Similarity Criteria. Prove that if A and B are 3 × 3 matrices over
a field F, a necessary and sufficient condition for similarity is that
they share the same characteristic and minimal polynomials.

17. Invariant Complements. Let T be a linear operator on a finite-
dimensional space V, with range R and null space N.

(a) Prove that R has a complementary T-invariant subspace if
and only if R ∩ N = {0}.

(b) If R ∩ N = {0}, prove that N is the unique T-invariant sub-
space complementary to R.

18. Non-Splitting Subspaces. Let T be the linear operator on R3

represented by:

A =

2 0 0
1 2 0
0 0 3

 .
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Let W be the null space of T − 2E . Prove that W has no comple- Consider the action of T on the gen-
eralized eigenspace associated with
eigenvalue 2.

mentary T-invariant subspace.

19. Cyclic Vectors in F2. Let T be a linear operator on F2. Prove that
any non-zero vector which is not an eigenvector for T is a cyclic
vector. Deduce that T has a cyclic vector unless T is a scalar multi-
ple of the identity.

20. Cyclicity Inheritance. Prove that if T2 has a cyclic vector, then T
has a cyclic vector. Is the converse true?

21. Nilpotent Cyclic Generators. Let N be a nilpotent operator on an
n-dimensional space V. Suppose Nn−1 ̸= 0. Let a ∈ V such that
Nn−1a ̸= 0.

(a) Prove that a is a cyclic vector for N.

(b) Describe the matrix of N in the ordered basis {a, Na, . . . , Nn−1a}.

22. Companion Matrix Characteristic. Give a direct proof (by ex-
panding minors or induction) that the characteristic polynomial of
the companion matrix C(p) is exactly p(t).

23. Diagonalisability and Cyclicity. Let T be a diagonalisable opera-
tor on an n-dimensional space V.

(a) Prove that T has a cyclic vector if and only if T has n distinct
eigenvalues.

(b) If T has distinct eigenvalues, construct a cyclic vector explic-
itly as a sum of eigenvectors.

24. The Double Commutant. Let T be a linear operator on a finite-
dimensional space V. Prove that if T has a cyclic vector, then any
linear operator U which commutes with T (i.e., UT = TU) is a
polynomial in T.

25. Square Roots of Nilpotents. Let N be an n × n matrix such that
Nn = 0 but Nn−1 ̸= 0 (where n ≥ 2). Prove that N has no square
root; that is, there is no matrix A such that A2 = N.

26. Dimension of the Commutant. Let C(A) = {X ∈ Mn(C) | XA =

AX} be the commutant of A.

(a) Use the result of Double Commutant to show that if A is
regular (i.e., admits a cyclic vector), then dim C(A) = n.

(b) Prove that in general, dim C(A) ≥ n.

(c) Show that dim C(A) = n if and only if the characteristic and
minimal polynomials of A are identical.

27. Common Eigenvectors. Let {Ai}i∈I be a family of pairwise com- Proceed by induction on dim V. Con-
sider the eigenspace of one non-scalar
operator Ak .

muting linear operators on a non-zero finite-dimensional vector
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space V over an algebraically closed field. Prove that there exists a
non-zero vector v ∈ V that is an eigenvector for every Ai.

28. The Matrix Exponential. For A ∈ Mn(C), defined eA = ∑∞
k=0 Ak/k!.

(a) Use the Jordan form to calculate eJn(λ).

(b) Prove that det(eA) = etr(A).

(c) Prove that the map exp : Mn(C) → GLn(C) is surjective.

(d) Is the map exp : Mn(R) → GLn(R) surjective? (Consider a
matrix with negative determinant).

29. Shift Operators and Infinite Dimensions. Let V = CN be the
space of complex sequences. Define the right shift R(x0, x1, . . . ) =
(0, x0, x1, . . . ) and the left shift L(x0, x1, . . . ) = (x1, x2, . . . ).

(a) Find the point spectrum (eigenvalues) of R and L.
(b) Show that LR = E but RL ̸= E .
(c) Contrast the spectral behaviour of these operators with the

finite-dimensional Jordan blocks.

30. Square Roots of the Identity. Let A ∈ Mn(C).

(a) If A2 = I, prove that A is diagonalisable. What are the possi-
ble eigenvalues?

(b) If A is a 2 × 2 matrix such that A2 = 0, must A be the zero
matrix?



7
Symmetric Bilinear and Quadratic Forms

In this chapter, we restrict our attention to specific classes of bilinear
forms that arise naturally in geometry and physics: those possessing
symmetry properties. This leads to the definition of quadratic forms,
which generalize the notion of length and energy, and the problem of
finding bases that simplify these forms to sums of squares.

7.1 Symmetry and Skew-Symmetry

Definition 7.1. Symmetric and Skew-Symmetric Forms.
Let V be a vector space over a field F. A bilinear form f : V × V →
F is called:
Symmetric if f (x, y) = f (y, x) for all x, y ∈ V.
Skew-symmetric if f (x, y) = − f (y, x) for all x, y ∈ V.

定義

Let F be the matrix of f relative to a fixed basis. The symmetry con-
dition translates directly to matrix operations. Since f (x, y) is a scalar,
it equals its own transpose. If f satisfies f (x, y) = ϵ f (y, x) with
ϵ = ±1, then:

X⊤FY = f (x, y) = ϵ f (y, x) = ϵ(Y⊤FX) = ϵ(Y⊤FX)⊤ = ϵX⊤F⊤Y.

This holds for all coordinate vectors X, Y, implying F⊤ = ϵF. Thus,
symmetric forms correspond to symmetric matrices (F⊤ = F) and
skew-symmetric forms to skew-symmetric matrices (F⊤ = −F).
Crucially, this property is intrinsic to the form and independent of
the basis. If F′ = A⊤FA is the matrix in a new basis (theorem 4.9):

(F′)⊤ = (A⊤FA)⊤ = A⊤F⊤A = A⊤(ϵF)A = ϵF′.

Assumption. Characteristic Not 2. Throughout this chapter, we assume
that the characteristic of the field F is not 2.

定
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This assumption is necessary to distinguish between symmetry and
skew-symmetry. If char F = 2, then 1 = −1, and the conditions
f (x, y) = f (y, x) and f (x, y) = − f (y, x) are identical. In this case,
the important distinction is between symmetric forms and alternat-
ing forms (where f (x, x) = 0 for all x). Every alternating form is
symmetric, but the converse fails if diagonal elements are non-zero.

Theorem 7.1. Decomposition of Bilinear Forms.
The space of bilinear forms L2(V, F) decomposes as the direct sum of
the subspace of symmetric forms L+

2 and the subspace of skew-symmetric
forms L−

2 :
L2(V, F) = L+

2 (V, F)⊕ L−
2 (V, F).

定理

Proof

First, we show the sum is direct. Let f ∈ L+
2 ∩ L−

2 . Then for any
x, y, we have f (x, y) = f (y, x) and f (x, y) = − f (y, x). Summing
these gives 2 f (x, y) = 0. Since char F ̸= 2, we can divide by 2 to
conclude f (x, y) = 0. Thus the intersection is trivial.
To show they span L2, let f be an arbitrary bilinear form. We con-
struct:

fs(x, y) =
1
2
( f (x, y) + f (y, x)) and fa(x, y) =

1
2
( f (x, y)− f (y, x)).

It is routine to verify that fs is symmetric, fa is skew-symmetric,
and f = fs + fa.

■

7.2 Quadratic Forms

Symmetric bilinear forms are intimately related to functions of a
single vector variable known as quadratic forms.

Definition 7.2. Quadratic Form.
A function q : V → F is called a quadratic form if:
1. q(−v) = q(v) for all v ∈ V.
2. The map f : V × V → F defined by the polarization identity:

f (x, y) =
1
2
(q(x + y)− q(x)− q(y))

is a bilinear form.
The bilinear form f defined in (2) is called the polar form of q. Note
that f is automatically symmetric.

定義

Conversely, given any symmetric bilinear form f , we can define a
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function q f (x) = f (x, x). This function satisfies q f (−x) = f (−x,−x) =
(−1)2 f (x, x) = q f (x). Furthermore, expanding f (x + y, x + y) yields:

f (x+ y, x+ y) = f (x, x)+ f (x, y)+ f (y, x)+ f (y, y) = q f (x)+ 2 f (x, y)+ q f (y).

Rearranging this recovers the polarization identity. Thus, the corre-
spondence is bijective.

Theorem 7.2. Bijection between Quadratic and Symmetric Bilinear Forms.

Every quadratic form q is uniquely determined by its polar bilinear form
f , specifically via q(x) = f (x, x).

定理

Proof

From the definition of polarization, set y = −x:

f (x,−x) =
1
2
(q(0)− q(x)− q(−x)).

Using bilinearity, f (x,−x) = − f (x, x). Using the property q(−x) =

q(x):

− f (x, x) =
1
2

q(0)− q(x).

Since f is bilinear, f (0, 0) = 0, implying q(0) = 0. Thus q(x) =

f (x, x).
■

Notation 7.1. Matrix of a Quadratic Form Let B = (e1, . . . , en) be a
basis for V. The matrix of the quadratic form q is defined to be the ma-
trix F = ( fij) of its polar form f . Explicitly:

fij =
1
2
(q(ei + ej)− q(ei)− q(ej)).

In coordinates, if x has column vector X, then q(x) = X⊤FX = ∑i,j fijxixj.

記法

The rank of q is defined as the rank of its matrix F. This is well-
defined because matrix rank is invariant under congruence F′ =

A⊤FA (corollary 4.2).
The kernel of the polar form f is often called the radical or the null
space of q, denoted Lq:

Lq = {u ∈ V | f (u, v) = 0 ∀v ∈ V}.

Using the relation between rank and nullity for bilinear forms, we
have rank q = dim V − dim Lq.
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7.3 Canonical Forms

We seek a basis in which the expression for q(x) is as simple as possi-
ble. Ideally, we wish to eliminate the "mixed" terms xixj (i ̸= j) in the
polynomial expansion.

Definition 7.3. Canonical Basis.
A basis (e1, . . . , en) is called a canonical basis for q if the matrix of q
in this basis is diagonal. In such a basis,

q(x) =
n

∑
i=1

λix2
i , where λi = f (ei, ei).

定義

Theorem 7.3. Existence of Canonical Basis.
Every symmetric bilinear form (and thus every quadratic form) on a
finite-dimensional space V admits a canonical basis.

定理

We proceed by induction on n = dim V.

Base Case:

For n = 1, any basis vector e1 yields a 1 × 1 matrix, which is diago-
nal.

証明終

Inductive Step:

Assume the result holds for dimension n − 1. If f is the zero form,
any basis is canonical (with all λi = 0). If f ̸= 0, there exists a
vector e1 such that q(e1) = f (e1, e1) ̸= 0. (If f (x, x) = 0 for all x,
then by polarization f (x, y) = 0 for all x, y, contradicting f ̸= 0).
Consider the linear functional ϕ : V → F defined by ϕ(y) =

f (e1, y). Since f (e1, e1) ̸= 0, ϕ is not the zero functional. Let L =

Ker ϕ = {y ∈ V | f (e1, y) = 0}. By the Rank-Nullity Theorem,
dim L = n − 1. We restrict f to the subspace L. By the inductive hy-
pothesis, L has a canonical basis (e2, . . . , en) such that f (ei, ej) = 0
for i ̸= j where i, j ≥ 2.
By the definition of L, f (e1, ei) = 0 for all i ≥ 2. Since f is symmet-
ric, f (ei, e1) = 0 as well. It remains to show that (e1, . . . , en) is a ba-
sis for V. Suppose α1e1 + · · ·+ αnen = 0. Applying the functional ϕ:

ϕ
(
∑ αiei

)
= α1 f (e1, e1) +

n

∑
i=2

αi f (e1, ei) = α1 f (e1, e1) = 0.

Since f (e1, e1) ̸= 0, we must have α1 = 0. The remaining relation
∑n

i=2 αiei = 0 lies in L, and since (e2, . . . , en) is a basis for L, all αi =

0. Thus the matrix of f in this basis is diagonal.
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証明終

Corollary 7.1. Diagonal Congruence. For any symmetric matrix F, there
exists an invertible matrix A such that A⊤FA is diagonal.

推論

Proof

Let f be the symmetric bilinear form on Fn defined by f (x, y) =

X⊤FY relative to the standard basis. By theorem 7.3, there exists
a canonical basis C for Fn such that the matrix of f in this basis,
denote it D, is diagonal. Let A be the transition matrix from the
standard basis to the canonical basis C. According to the change of
basis formula for bilinear forms (see theorem 4.9), the matrix repre-
sentation transforms as D = A⊤FA. Since D is diagonal and A is
invertible (being a transition matrix), the result holds.

■

Lagrange’s Method of Completing the Square

While the theorem above guarantees existence, Lagrange provided
an algorithmic method to compute the canonical basis by explicitly
eliminating mixed terms. Given q(x) = ∑i,j fijxixj, we distinguish two
cases for the recursive step:

Case 1: Pivot Exists ( f11 ̸= 0). We group all terms involving x1:

q(x) = f11x2
1 + 2x1

n

∑
j=2

f1jxj +
n

∑
i,j=2

fijxixj.

We complete the square for x1:

q(x) =
1
f11

(
f11x1 +

n

∑
j=2

f1jxj

)2

+ q′(x2, . . . , xn).

The term q′ contains no x1. We define a coordinate change:

x′1 = f11x1 +
n

∑
j=2

f1jxj, x′k = xk for k ≥ 2.

This transformation is invertible. We then repeat the process for q′

on the remaining variables.

Case 2: No Diagonal Pivot ( fii = 0 for all i). If q is not zero, there
must be a mixed term fijxixj ̸= 0. Without loss of generality,
assume f12 ̸= 0. We apply the coordinate change:

x1 = u1 + u2, x2 = u1 − u2, xk = uk for k ≥ 2.
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The term 2 f12x1x2 becomes 2 f12(u2
1 − u2

2). The new expression
for q now has non-zero coefficients for u2

1 and u2
2, allowing us to

proceed as in Case 1.

Example 7.1. Canonical Reduction. Let q(x) = x1x2 in R2. The ma-
trix is [

0 1/2
1/2 0

]
.

Since diagonal entries are zero, we use Case 2. Let x1 = y1 +

y2, x2 = y1 − y2.

q = (y1 + y2)(y1 − y2) = y2
1 − y2

2.

In the basis corresponding to y, the matrix is diag(1,−1).

範例

7.4 Real Quadratic Forms and Inertia

While theorem 7.3 guarantees that any quadratic form over a field F
(with char F ̸= 2) can be diagonalised, the specific diagonal entries λi

depend on the algebraic structure of F. Over the field of real numbers
R, we can scale the basis vectors to normalize the non-zero coeffi-
cients to ±1. Specifically, if λi > 0, the substitution e′i = λ−1/2

i ei

yields a coefficient of 1. If λi < 0, the substitution e′i = (−λi)
−1/2ei

yields −1.

Theorem 7.4. Standard Form over R.
Let q be a quadratic form on a finite-dimensional real vector space V.
There exists a basis in which q takes the standard form:

q(x) =
s

∑
i=1

x2
i −

r

∑
j=s+1

x2
j ,

where r = rank q and 0 ≤ s ≤ r.
定理

Proof

By theorem 7.3, there exists a basis (u1, . . . , un) in which the matrix
of q is diagonal. That is,

q(x) =
n

∑
i=1

λiy2
i ,

where yi are the coordinates relative to this basis. We reorder the
basis vectors so that the positive coefficients appear first, followed
by the negative coefficients, and finally the zeros. Let s be the num-
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ber of positive coefficients and r − s be the number of negative
coefficients. (The remaining n − r coefficients are zero). We define a
new basis (e1, . . . , en) by scaling the vectors ui:

• If λi > 0 (for 1 ≤ i ≤ s), let ei = 1√
λi

ui. Then f (ei, ei) =
1
λi

f (ui, ui) = 1.

• If λi < 0 (for s < i ≤ r), let ei = 1√
−λi

ui. Then f (ei, ei) =
1

−λi
f (ui, ui) = −1.

• If λi = 0 (for r < i ≤ n), let ei = ui. Then f (ei, ei) = 0.

In this normalised basis, the diagonal entries are exactly s ones,
followed by r − s minus ones, followed by zeros. Thus q takes the
stated form.

■

While the canonical basis is not unique, the integers s and r are in-
variants of the quadratic form. The invariance of the rank r is a
consequence of the invariance of matrix rank. The invariance of s,
the number of positive squares, is the content of Sylvester’s Law of
Inertia.

Theorem 7.5. Sylvester’s Law of Inertia.
Let q be a real quadratic form. The number of positive coefficients s ap-
pearing in any diagonal representation of q is an invariant of q, called
the positive index of inertia.

定理

Proof

Suppose there exist two bases B = (e1, . . . , en) and C = (u1, . . . , un)

giving distinct standard forms:

q(x) = x2
1 + · · ·+ x2

s − x2
s+1 − · · · − x2

r (relative to B),
q(x) = y2

1 + · · ·+ y2
t − y2

t+1 − · · · − y2
r (relative to C).

Assume for contradiction that s ̸= t; without loss of generality, let
s > t. Consider the subspaces defined by the "positive" part of the
first decomposition and the "non-positive" part of the second:

U = span(e1, . . . , es) and W = span(ut+1, . . . , un).

For any non-zero vector u ∈ U, we have q(u) > 0. For any vector
w ∈ W, q(w) ≤ 0. Thus U ∩ W = {0}. We compute the dimen-
sions: dim U = s and dim W = n − t. Using the dimension formula
for sums of subspaces:

dim(U +W) = dim U +dim W −dim(U ∩W) = s+(n− t)− 0 = n+(s− t).
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Since s > t, this implies dim(U + W) > n = dim V, which is impos-
sible. Thus s = t.

■

Definition 7.4. Signature.
The signature of a real quadratic form is the pair (s, r− s), represent-
ing the number of positive and negative terms in its standard form. Some-
times the signature is defined as the integer s− (r− s) = 2s− r. The
integer r − s is called the negative index of inertia.

定義

7.5 Definiteness and Sylvester’s Criterion

In applications such as optimisation and mechanics, the sign of the
values taken by a quadratic form is of critical importance.

Theorem 7.6. Spectral Theorem.
Let A be a real symmetric matrix. Then all eigenvalues of A are real,
and there exists an orthogonal basis of Rn consisting of eigenvectors
of A. In particular, A is diagonalisable by an orthogonal matrix.

定理

Recall that a basis {vi} is orthogonal
if vi · vj = 0 for i ̸= j. A matrix P is
orthogonal if P⊤P = I. The proof of
this fundamental result is developed in
the exercises.

Definition 7.5. Definiteness.
A non-degenerate real quadratic form q on V is called:
Positive definite if q(x) > 0 for all x ̸= 0.
Negative definite if q(x) < 0 for all x ̸= 0.
Indefinite if q takes both positive and negative values.
If degeneracy is allowed, we say q is positive semi-definite if q(x) ≥
0 for all x.

定義

In terms of the standard form invariants, q is positive definite if and
only if s = r = n (signature (n, 0)), and positive semi-definite if
s = r ≤ n (signature (r, 0)). A symmetric matrix A is called positive
definite if its associated form q(x) = x⊤Ax is positive definite.

Theorem 7.7. Factorisation of Positive Definite Matrices.
A real symmetric matrix F is positive definite if and only if there ex-
ists a non-singular matrix A such that F = A⊤A.

定理

Proof

If F is positive definite, its canonical form is the identity matrix I.
Thus F is congruent to I, meaning there is an invertible P such that
P⊤FP = I, or F = (P−1)⊤(P−1). Setting A = P−1 yields the result.
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Conversely, if F = A⊤A with A invertible, then for any x ̸= 0:

x⊤Fx = x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2.

Since A is invertible, Ax ̸= 0, so ∥Ax∥2 > 0.
■

Example 7.2. Stability of Critical Points. Let ϕ : R2 → R be a
smooth function. The local behaviour of ϕ near a critical point x0

(where ∇ϕ(x0) = 0) is determined by the Hessian matrix H of
second derivatives. The Taylor expansion gives:

ϕ(x) ≈ ϕ(x0) +
1
2
(x − x0)

⊤H(x − x0).

The term q(v) = v⊤Hv is a quadratic form.
· If H is positive definite, x0 is a local minimum.
· If H is negative definite, x0 is a local maximum.
· If H is indefinite, x0 is a saddle point.

範例

Figure 7.1: A saddle point
corresponding to an in-
definite quadratic form
q(x, y) = x2 − y2.

Sylvester’s Criterion

While eigenvalues provide a test for definiteness (all λi > 0 by the
Spectral Theorem), computing them is non-trivial. Sylvester’s crite-
rion offers a determinant-based test.

Definition 7.6. Leading Principal Minors.
Let F = ( fij) be an n × n matrix. The leading principal minors are
the determinants of the top-left k × k submatrices:

∆k = det


f11 . . . f1k
...

. . .
...

fk1 . . . fkk

 , k = 1, . . . , n.

By convention, ∆0 = 1.
定義

Theorem 7.8. Jacobi’s Method.
Let q be a quadratic form with matrix F. If all leading principal minors
∆k are non-zero, there exists a basis in which q has the diagonal form:

q(x) =
n

∑
k=1

∆k−1
∆k

y2
k .

定理
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Proof

We proceed by induction on n. Let Vk = span(e1, . . . , ek). The
restriction of q to Vn−1 has matrix Fn−1 (the top-left block) with
minors ∆1, . . . , ∆n−1. By hypothesis, these are non-zero. By the
inductive hypothesis, there exists a basis (u1, . . . , un−1) for Vn−1

diagonalising the restriction:

q|Vn−1(u) =
n−1

∑
k=1

∆k−1
∆k

y2
k .

This implies the polar form f satisfies f (ui, uj) = 0 for i ̸= j in this
range. We seek a final basis vector un such that f (ui, un) = 0 for all
i < n. This requires un to be f -orthogonal to Vn−1. The conditions
f (ei, un) = 0 for i = 1, . . . , n − 1 form a system of n − 1 linear
equations. Since ∆n−1 ̸= 0, the non-degenerate restriction ensures
a solution exists that is linearly independent of Vn−1. Let A be the
change of basis matrix from the standard basis to (u1, . . . , un). Since
the new matrix F′ is diagonal,

det F′ =
n

∏
k=1

f (uk, uk).

Also det F′ = det(A⊤FA) = (det A)2∆n. The product of the first
n − 1 diagonal entries is ∆n−1 (by applying the determinant relation
to the restriction). Thus:

f (un, un) · ∆n−1(det An−1)
2 · (scaling) = ∆n(det A)2.

Proper normalisation of un ensures the term simplifies to
f (un, un) = ∆n/∆n−1.

■

Corollary 7.2. Sylvester’s Criterion. A real quadratic form is positive
definite if and only if all its leading principal minors are strictly pos-
itive:

∆1 > 0, ∆2 > 0, . . . , ∆n > 0.

推論

Proof

If ∆k > 0 for all k, then the ratios ∆k/∆k−1 are all positive. By
Jacobi’s formula, the canonical coefficients are positive, so q is pos-
itive definite. Conversely, if q is positive definite, then restricted to
any subspace Vk, it remains positive definite. The determinant of a
positive definite matrix is positive (product of positive eigenvalues).
Thus ∆k = det(F|Vk ) > 0.

■
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Structure of Skew-Symmetric Forms

We conclude this chapter by returning to skew-symmetric forms. Let
f be a skew-symmetric bilinear form on V (so f (x, y) = − f (y, x)).
As in the symmetric case, we can define the radical V0 = Ker f . We
restrict our attention to the non-degenerate case where V0 = {0}.

Theorem 7.9. Even Dimension of Non-Degenerate Forms.
If V admits a non-degenerate skew-symmetric form f , then dim V must
be even.

定理

Proof

Let F be the matrix of f . Then F⊤ = −F.

det F = det(F⊤) = det(−F) = (−1)n det F.

If n is odd, det F = −det F, implying det F = 0 (since char F ̸= 2).
This contradicts non-degeneracy. Thus n is even.

■

The canonical structure of such forms is built from 2-dimensional
subspaces.

Definition 7.7. Hyperbolic Plane.
A 2-dimensional subspace W equipped with a skew-symmetric form
f is called a hyperbolic plane (or symplectic plane) if f is non-degenerate
on W. It admits a basis (u, v) such that f (u, v) = 1. Since f is skew-
symmetric, f (u, u) = f (v, v) = 0 and f (v, u) = −1. The matrix in

this basis is J2 =

[
0 1
−1 0

]
(or its transpose).

定義

Theorem 7.10. Symplectic Decomposition.
Let V be a finite-dimensional space with a non-degenerate skew-symmetric
form f . Then V decomposes into an orthogonal direct sum of hyper-
bolic planes:

V = W1 ⊕ W2 ⊕ · · · ⊕ Wm,

where dim V = 2m.
定理

Proof

We use induction on dim V. Pick any non-zero vector e1. Since
f is non-degenerate, there exists e2 such that f (e1, e2) ̸= 0.
Scale e2 so that f (e1, e2) = 1. Let W1 = span(e1, e2). The
restriction of f to W1 is non-degenerate (determinant 1). Let
W⊥

1 = {x ∈ V | f (y, x) = 0 ∀y ∈ W1}. Since f is non-degenerate
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on W1, V = W1 ⊕ W⊥
1 . The restriction of f to W⊥

1 remains non-
degenerate. By the inductive hypothesis, W⊥

1 decomposes into
hyperbolic planes.

■

Corollary 7.3. Canonical Form. For any skew-symmetric matrix F, there
exists an invertible matrix A such that

A⊤FA = diag(J2, . . . , J2, 0, . . . , 0).

推論

Proof

Let f be the skew-symmetric bilinear form on Fn represented by
the matrix F. By the Symplectic Decomposition Theorem, the space
decomposes as an orthogonal direct sum of hyperbolic planes
W1, . . . , Wm and a radical subspace V0:

Fn = W1 ⊕ · · · ⊕ Wm ⊕ V0.

For each hyperbolic plane Wk, there exists a basis (uk, vk) such that

the restriction of f to Wk has matrix J2 =

[
0 1
−1 0

]
. For the radical

V0, the form is identically zero, so any basis yields a zero matrix.
We construct a basis B for the entire space by concatenating these
bases:

B = (u1, v1, u2, v2, . . . , um, vm, z1, . . . , zl),

where zi form a basis for V0. Since the decomposition is orthogonal,
f (x, y) = 0 if x and y belong to distinct summands. Thus, the ma-
trix of f relative to B is block diagonal, with m blocks of J2 and zero
blocks elsewhere. Let A be the transition matrix from the standard
basis to B. Then A⊤FA is the matrix of f in the basis B, which is
the desired canonical form.

■

For a skew-symmetric matrix F of even dimension 2m, the deter-
minant is a perfect square of a polynomial in its entries. This poly-
nomial is called the Pfaffian, denoted Pf(F). Specifically, det F =

(Pf(F))2. The Pfaffian satisfies the transformation property:

Pf(A⊤FA) = det(A)Pf(F).

For the standard symplectic block matrix J2m = diag(J2, . . . , J2), we
have Pf(J2m) = 1.

Example 7.3. Pfaffian in Dimension 4. For a 4 × 4 skew-symmetric
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matrix F = ( fij) with f ji = − fij:

Pf(F) = f12 f34 − f13 f24 + f14 f23.

Squaring this expression yields det F.

範例

7.6 Exercises

1. Negative Definiteness via Minors. Let F be the symmetric ma- Consider the connection between F and
−F and apply Sylvester’s criterion.trix of a real quadratic form q. Let ∆1, . . . , ∆n = det F be the

leading principal minors of F. Prove that q and F are negative def-
inite if and only if the signs of the minors alternate, starting with
negative:

(−1)k∆k > 0 for all k = 1, 2, . . . , n.

2. Positive Entries vs. Positive Definite. Give counter-examples to
the following intuitions about positive definiteness:

(a) A positive definite matrix A = (aij) such that some off-
diagonal entry is negative (aij < 0).

(b) A symmetric matrix A = (aij) with strictly positive entries
(aij > 0 for all i, j) that is not positive definite.

3. Parameterised Definiteness. Find all values of λ, µ ∈ R for which
the following matrices are positive definite:

A =

1 λ λ

λ 1 λ

λ λ 1

 , B =

1 1 µ

1 µ 1
µ 1 1

 .

4. Composition of Forms. Let x = [x1, x2, x3] ∈ C3 and consider the
cubic form Q(x) = x3

1 + x3
2 + x3

3 − 3x1x2x3. Let ε be a primitive
cube root of unity.

(a) Verify the factorisation:

Q(x) = (x1 + x2 + x3)(x1 + εx2 + ε2x3)(x1 + ε2x2 + εx3).

(b) Prove the composition law: Q(x)Q(y) = Q(z), where the
components zi are symmetric bilinear forms in x and y (i.e.,
zi = ∑j,k a(i)jk xjyk). Find the explicit expressions for z1, z2, z3.

5. Perturbation of Identity. Let A be an arbitrary real symmetric Consider the eigenvalues of B in rela-
tion to the eigenvalues of A.matrix. Prove that there exists ε0 > 0 such that for all |ε| < ε0, the

matrix B = E + εA is positive definite.
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6. Rank and Signature Calculations. For each of the following real
quadratic forms, find the rank and signature using Lagrange’s
method (completing the square):

(a) q(x) = x2
1 + 2x1x2 + 2x2

2 + 4x2x3 + 5x2
3

(b) q(x) = x1x2 + x2x3 + x3x1

(c) q(x) = ∑1≤i<j≤4 xixj

7. Gram Matrices. Let V be a real vector space equipped with a
positive definite symmetric bilinear form ⟨·, ·⟩ (an inner product).
Let v1, . . . , vk be vectors in V. The Gram matrix is defined as Gij =

⟨vi, vj⟩.

(a) Prove that G is always positive semi-definite.

(b) Prove that G is positive definite if and only if the vectors
v1, . . . , vk are linearly independent.

8. The Spectral Theorem. In this exercise, we prove the Spectral
Theorem for real symmetric matrices. Let A be a real symmetric
matrix.

(a) Prove that if λ ∈ C is an eigenvalue of A, then λ ∈ R. (Hint:
Consider v̄⊤Av).

(b) Prove that eigenvectors corresponding to distinct eigenvalues
are orthogonal with respect to the standard dot product.

(c) Let f (x) = x⊤Ax for x ∈ Rn. Show that the maximum of
f (x) on the unit sphere Sn−1 is attained at an eigenvector of
A. (This establishes the existence of at least one real eigen-
value).

(d) Let v be an eigenvector of A. Show that the subspace W = v⊥

is invariant under A.

(e) Use induction to conclude that there exists an orthogonal
basis of Rn consisting of eigenvectors of A.

9. Simultaneous Diagonalisation. Let A and B be two real symmet-
ric matrices.

(a) Prove that if A is positive definite, there exists an invertible
matrix P such that P⊤AP = I and P⊤BP is diagonal. First reduce A to I, then apply the

Spectral Theorem to the transformed B.
(b) Give a counter-example to show that if neither matrix is pos-

itive definite, they may not be simultaneously diagonalisable
by congruence, even if they are non-singular.
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10. Pfaffian Identity. For the 4 × 4 skew-symmetric matrix:

F =


0 a b c
−a 0 d e
−b −d 0 f
−c −e − f 0

 ,

calculate the Pfaffian Pf(F) = a f − be + cd and verify explicitly
that (Pf(F))2 = det(F).
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