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Chapter 1

Ideas & Motivations

Welcome to Algebra I: Matrices and Applications by me (Gudfit). The goal here is to build a clean bridge
between the mechanics of solving equations and the geometry of high-dimensional space. Instead of jumping
straight into abstraction, we build the theory constructively.

I aim for each set of notes to be max 50 pages, as rigorous as possible, and far-reaching too. That means I’ll
cover the axioms and proofs of the most interesting stuff plus I’ll pull in concepts we’ve touched on in my
informal logic and earlier notes to show how math builds on itself like funky Lego.

It’ll be a mix of algorithmic recipes and deep structural theorems. The original idea was a dry, fully axiomatic
intro, but that felt too grindy. Why slog through abstract definitions without motivation when we can derive
them from solving actual problems? So this will be efficient, blending computation with deduction, assuming
you’ve got some mathematical maturity. Either way, let’s dive in and enjoy!


https://www.gudfit.xyz/notes/informal_logic-notes/

Chapter 2

Linear Equations

The central problem of linear algebra is the resolution of systems of linear equations. Practically every
problem in the field eventually reduces to solving a single matrix equation:

Ax =b.

Here, A is a known m x n matrix (an array of numbers with m rows and n columns), b is a known column of
constants, and x is a column of unknowns that we seek to determine. Our primary objectives are threefold:
to determine the existence of a solution, to establish its unigqueness (or lack thereof), and to provide a
constructive algorithm for finding the solution set.

2.1 Systems of Linear Equations

A system of linear equations is a collection of linear constraints on a set of variables.

Definition 2.1.1. System of Linear Equations. A system of m linear equations in n unknowns
T1,Ts,...,T, 1S a set of equations of the form:

1121 + 1222 + -+ A1 Ty = by

G21%1 + a22%2 + -+ + G2, Ty = by
(2.1)

Am1%1 + Gm2T2 + -+ + AmpTn = bm

where a;; € R are the coefficients and b; € R are the constant terms. If all b; = 0, the system is termed
homogeneous; otherwise, it is inhomogeneous.

The scalar a;; denotes the coefficient in the i-th equation associated with the j-th variable. It is cuambersome
to manipulate these equations in algebraic form. We therefore adopt matrix notation to handle the data
efficiently.

Notation 2.1.1. Matrix Representation We define the coefficient matrix A, the column of unknowns x, and
the column of constants b as:

aii 12 -t Qln x1 b1

azi Q22 - Q2pn €2 bo
A= , x= ., b=

Am1 Am2 o Omn Tn bm

The system (2.1) is concisely written as Ax = b. To capture the entire system including the right-hand side,
4
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we form the augmented matriz [A | b]:

a1 a2z -+ aip | b
21 Q22 aopn | bo

4] b] = .
Am1 Am2 o Omn bm

Remark. What is a solution? The solution set of a system of linear equations is the set of all ordered
lists of numbers (c1,...,¢,) that, when substituted for (z1,...,,), satisfy every equation in the system
simultaneously. If S = {), the system is inconsistent. If |S| = 1, the solution is unique. If |S| > 1, there are
infinitely many solutions.

Geometric Interpretation

Before formalising the solution method, it is instructive to visualise the problem in low dimensions. Consider
a system of two equations in two unknowns (m =n = 2):

1121 + a12x2 = by

a21%1 + azxy = by

Each equation defines a line in the Cartesian plane. The solution set consists of points (z1,z2) that lie on
both lines simultaneously. There are exactly three possibilities:

(i) Unique Solution: The lines are not parallel and intersect at exactly one point. The system is
consistent and independent.
(ii) No Solution: The lines are distinct but parallel. They never intersect. The system is inconsistent.
(iii) Infinitely Many Solutions: The lines are coincident (one equation is a scalar multiple of the other).
Every point on the line is a solution. The system is consistent but dependent.

Example 2.1.1. Intersection of Lines. Consider the system:

201+ 322 =1
3x1 + 229 =2

The slopes are —2/3 and —3/2. Since the slopes differ, the lines are not parallel and must intersect at a
unique point. Solving yields 1 = 4/5, 22 = —1/5. Contrast this with:

2561 + 3582 =1
4xr1 + 620 = 2
Here, the second equation is simply twice the first. The lines are identical, yielding infinitely many solutions.

Finally, if the second equation were 4x; + 6x2 = 5, the lines would be parallel with distinct intercepts,
resulting in no solution (S = 0).

o T2 T2
Lo o L1 =1Lo
L2 4
L1 y 4
/ ’
4
4
4
4
4
T X1 . Tl
Ly

(i) Unique Solution (ii) No Solution (iii) Infinite Solutions

Figure 2.1: Geometric interpretation of linear systems in 2D. The solution set corresponds to the intersection
of the lines defined by the equations.
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While this geometric intuition is powerful in 2D or 3D, it fails to scale to higher dimensions or practical
computational problems. We require an algebraic method that systematically simplifies the system without
altering its solution set.

2.2 Gaussian Elimination

The standard algorithm for solving linear systems is Gaussian elimination. The strategy is to transform
the system into a simpler form (specifically, an upper triangular form) where the solution can be found by
back-substitution.

Remark. (Upper Triangular Structure). While the term "upper triangular" strictly applies to square
matrices (m = n), Gaussian elimination generalises this structure to matrices of any shape (m x n). We aim
for a "staircase" pattern where the non-zero entries (pivots) cascade downwards and to the right.

e Square Case (m = n): The matrix reduces to a full triangle.

* k%
0 * =
0 0 =«

e Overdetermined Case (m > n): The matrix reduces to an upper triangle followed by zero rows.

S O O *
O O ¥ ¥

In all cases, we seek a form where all entries below the pivots are zero.

The Logic of Equivalent Systems

We achieve this upper triangular form by manipulating the equations. However, we must ensure that these
manipulations do not alter the set of valid solutions.

Definition 2.2.1. Linear Combination of Equations. A linear combination of a set of equations
Ey, ..., E,, is a new equation formed by the sum:

m

> NE;i = (MEr+ -+ AnEn),

=1

where \; are scalars.

Two systems of equations are considered equivalent if they have the exact same solution set. A sufficient
condition for equivalence is mutual derivability: if every equation in System A is a linear combination of
equations in System B, and every equation in System B is a linear combination of equations in System A,
the systems are equivalent.

Example 2.2.1. Equivalence vs. Extraneous Roots. To understand why Gaussian elimination works, we
compare a valid linear transformation against a flawed algebraic one.

1. Valid Linear Combination (Reversible) Consider System I:

r+y=3 (E)
r—y=1 (E)
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If we replace Fy with the sum F; + Es, we obtain System II:

z+y=3 (E)
20 =4 (E3:E1 +E2)

Any solution to I is clearly a solution to II. Crucially, we can reverse the process to recover System I from
System II. Since Ey = E3 — E7, the information from the original system is preserved. Thus, System II is
equivalent to System I (Solution: z =2,y = 1).

2. Invalid Non-Linear Operation (Irreversible) Consider the equation:
vV =—1 (Epaa)
In the real numbers, this has no solution. If we square both sides (a non-linear operation), we derive:
r=1 (Enew)

This new equation has the solution = 1. However, checking back, v/1 = 1 # —1. The solution z = 1 is an
extraneous root.

Remark. Gaussian elimination relies strictly on linear combinations (scaling and adding). Because these
operations are reversible (we can always subtract the row back), we are guaranteed never to create extraneous
roots or lose valid solutions. This is why we do not need to "check our answers" for existence in Linear Algebra
in the same way we do for radical or rational equations.

To apply this logic systematically to matrices, we define operations that correspond exactly to these linear
combinations.

Definition 2.2.2. Elementary Row Operations. Let A be a matrix. The three types of elementary row
operations are:

Type 1: Scaling: Multiply a row R; by a non-zero scalar o # 0.
R, = aR;.
Type 2: Replacement: Replace a row R; with the sum of itself and a scalar multiple of another row R;.
R; = R;+aR; (i#j).
Type 3: Interchange: Swap the positions of two rows R; and R;.
R; < R;.

Two matrices A and B are said to be row-equivalent, denoted A ~ B, if one can be obtained from the other
by a finite sequence of elementary row operations.

Theorem 2.2.1. Invariance of Solution Set. If the augmented matrices of two linear systems are row-
equivalent, then the systems have the exact same solution set.

Proof. Each elementary row operation is reversible.

o If Rl = aR; (with a # 0), then R; = (1/«a)R..
e If R, = R; + aRj, then R; = R, — aR; (since R; is unchanged).
o If R; &+ R;, applying the swap again restores the original order.

Since the operations are reversible, any solution satisfying the initial system satisfies the transformed system,
and vice versa. ]
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Example 2.2.2. Gaussian Elimination. Solve the system associated with the augmented matrix:

1 1 1 6
2 4 2|16
-1 5 —4]-3

We seek to eliminate entries below the first pivot ay; = 1.

1. Replace Ry with Ry — 2Ry:

1 1 1 6
0 2 0 4
-1 5 —4|-3
2. Replace R3 with Rs + Ry:
11 1|6
0 2 0|4
0 6 -3|3

3. Now we focus on the sub-matrix beginning at ase = 2. Eliminate the entry below it (6) by replacing
R3 with Rg — 3R21
11 1 6
0 2 0 4
0 0 -3]-9
The matrix is now in Row Echelon Form (upper triangular). We solve by back-substitution:

e From R3: —3z3=-9 = z3=3.
e From Rs: 229 +0x3 =4 — 229 =4 — x5 = 2.
e From Ri: z1+29+23=6 —= 21 +24+3=6 — z1 =1.

The unique solution is S = {(1,2,3)}.

The Gauss-Jordan Algorithm

While Gaussian elimination reduces a matrix to Row Echelon Form (REF), the Gauss-Jordan algorithm
extends this process to produce a canonical form known as the Reduced Row Echelon Form (RREF). This
form is unique for any given matrix, removing the ambiguity associated with the choice of operations in the
standard REF.

Definition 2.2.3. Reduced Row Echelon Form. A matrix is in Reduced Row Echelon Form (RREF) if
it satisfies the following conditions:

1. Tt is in Row Echelon Form (all non-zero rows are above any rows of all zeros, and the leading entry of
each row is strictly to the right of the leading entry of the row above).

2. The leading entry (or pivot) in each non-zero row is equal to 1.

3. Each pivot is the only non-zero entry in its column.

The algorithm proceeds in two phases: a forward pass to reach REF, and a backward pass to reach RREF.

Definition 2.2.4. Gauss-Jordan Algorithm. Let A be an m X n matrix.

Step 1: Forward Pass (Elimination):
(i) Identify the leftmost non-zero column. This is a pivot column.

(ii) Select a non-zero entry in this column as the pivot. If necessary, perform a row interchange to
move this entry to the top of the active sub-matrix.

(iii) Use row replacement operations to create zeros in all positions below the pivot.

(iv) Ignore the row containing the pivot and repeat the process on the remaining sub-matrix until
1O NON-Zero rows remain.
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Step 2: Backward Pass (Reduction):

(i) Working from the rightmost pivot upwards and to the left: scale the pivot row so the pivot
entry becomes 1.

(ii) Use row replacement operations to create zeros in all positions above each pivot.

The resulting matrix is denoted rref(A).

Unlike the Row Echelon Form, which depends on the specific sequence of row operations chosen, the Reduced
Row Echelon Form is an invariant of the matrix.

Theorem 2.2.2. Uniqueness of RREF. Every matrix A is row-equivalent to a unique matrix in reduced
row echelon form.

Proof. Suppose, for the sake of contradiction, that A is row-equivalent to two distinct reduced row echelon
matrices R and S. Since row equivalence is an equivalence relation, R is row-equivalent to S. By Theo-
rem 2.2.1, the homogeneous systems Rx = 0 and Sx = 0 share the exact same solution set. We show R =5
by induction on the number of columns n of A.

Base Case (n =1): If A has one column, the RREF is either the zero column (if A = 0) or a column with
a 1 in the top position and Os elsewhere (if A # 0). In either case, R and S are identical.

Inductive Step: Assume the claim holds for any matrix with & columns. Consider a matrix with & + 1
columns. Let Ry and Sy denote the sub-matrices consisting of the first k£ columns of R and S respectively.
These are RREFs of the first k£ columns of A. By the induction hypothesis, Ry = Sj.

We need only check the (k + 1)-th column. Let r and s be the (k + 1)-th columns of R and S.

e Case 1: The system Ry = r is consistent. This implies r is a linear combination of the pivot columns
of Rj,. The coefficients of this combination are unique and determined entirely by the solution set of
Rx = 0. Since S has the same solution set and S, = Ry, s must be the same linear combination of
the same pivot columns. Thus r = s.

e Case 2: The system Rpy = r is inconsistent. Then r is a new pivot column. In RREF, a new pivot
column must take the form of a column with a 1 in the (p + 1)-th position (where p is the number of
non-zero rows in Ry) and zeros elsewhere. The same logic applies to S, so s is the same column. Thus
r=s.

Since all columns match, R = S. |

Computation Examples

We illustrate the algorithm with specific examples. Note that while the forward pass targets entries below
the diagonal, the backward pass clears the entries above.

Example 2.2.3. Unique Solution. Calculate rref(A) for:

1 2 -3 1
A=12 4 0 7
-1 3 2 0
Forward Pass: Eliminate below the first pivot a;; = 1:
1 2 -3 1
Ry - Ry —2Ry, R3—>R3+ R, =— |0 0O 6 5
0 5 -1 1

The second column has zeros below the first row, so we move to the third column. However, to maintain
the echelon structure (pivots moving right), we require a non-zero entry in the (2,2) position if possible.
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Noticing the non-zero entry in the second column of R3, we swap Ry <> Rs:

1 2 -3 1
05 -1 1
00 6 5

This is a Row Echelon Form.

Backward Pass: Scale R3 to make the pivot 1 (R3 — +R3):

12 -3 1
05 —1 1
00 1 5/6

Clear entries above this pivot (Ry — Ra + R3, R1 — R1 + 3R3):

1 2 0 1+15/6 1 2 0 21/6
050 1+45/6|=1|0 5 0 11/6
0 0 1 5/6 0 01 5/6
Scale Rs to make the pivot 1 (Ry — %RQ):
120 7/2
0 1 0 11/30
001 5/6
Clear the entry above the second pivot (R — Ry — 2R»):
1 0 0 7/2-—22/30 1 0 0 83/30
010 11/30 =10 1 0 11/30
00 1 5/6 00 1 5/6

Remark. It is permissible to deviate slightly from the strict algorithmic order (e.g., scaling rows earlier) to
avoid arithmetic with fractions, provided the final structure adheres to the definition.

Proposition 2.2.1. Zero Columns. If a column of a matrix consists entirely of zeros, it remains a zero
column throughout the Gauss-Jordan process. Consequently, rref([A | 0]) = [rref(A) | 0].

Proof. Let ci be the k-th column of the matrix A. Suppose ¢, = 0, meaning every entry a;; = 0 for all rows
i. We examine the effect of the three elementary row operations on the entries of this column:

(i) Scaling: R; — aR;. The new entry in the column is «- 0 = 0.
(ii) Interchange: R; <+ R;. Since the entries in both row ¢ and row j of this column are 0, swapping
them leaves 0 in both positions.
(iii) Replacement: R; — R; + aR;. The new entry is a;; + cajr = 0+ a(0) = 0.

Since no elementary row operation can change a zero entry in a zero column to a non-zero value, the column
remains a zero column throughout the entire Gaussian elimination process. Consequently, for a homogeneous
system [A | 0], the last column (the constant column) is a zero column. Since row operations do not alter this
column, the RREF will also have a zero column in the last position. Thus rref([4 | 0]) = [rref(A4) |0]. W

Theorem 2.2.3. RREF of Augmented Columns. Suppose that A € R™*™ and B € R™*P. Then the
first n columns of rref(A) and rref([A | B]) are identical.

Proof. The Gauss-Jordan algorithm processes a matrix from left to right (column by column). The decisions
to swap rows, scale rows, or add multiples of rows to eliminate entries are determined entirely by the entries
in the current column and the columns to its left. Therefore, when reducing [A | B], the operations performed
on the first n columns depend exclusively on the entries within those first n columns (which form A). The
presence of the extra columns B to the right does not influence the choice of pivots or the sequence of row
operations for the columns of A. |
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2.3 Classification of Solutions

The Reduced Row Echelon Form provides immediate insight into the structure of the solution set of a linear
system Ax = b. By identifying the pivot positions in rref([A | b]), we can classify the system’s behaviour.

e Basic Variables: Variables corresponding to columns containing pivots.
e Free Variables: Variables corresponding to columns without pivots.

When a system has infinitely many solutions, we express the basic variables in terms of the free variables.

Definition 2.3.1. General and Particular Solutions. The presence of free variables implies the system
has infinitely many solutions. We distinguish between two ways of describing them:

e General Solution: A formula expressing the solution components (z1,...,z,) in terms of the free
variables (parameters). This single expression covers the entire solution set.

e Particular (or Special) Solution: A specific solution obtained by assigning numerical values to the
free variables in the general solution (e.g., setting all free variables to 0).

Remark. One might ask why specific variables are chosen as "free". For example, if x —y = 0, why is
y free and = basic? Algebraically, one could define y in terms of z. However, we require a systematic
choice to avoid circular definitions in complex systems. We customarily choose the pivot variables as the
"dependent" or "basic" variables and the non-pivot variables as the "free" variables (or parameters). This
distinction is analogous to identifying independent variables in calculus, though here the choice is dictated
by the algorithm’s echelon structure.

Theorem 2.3.1. Trichotomy of Solutions. Given a system of m linear equations and n unknowns, the
solution set S falls into exactly one of the following cases:

1. S = 0 (The system is inconsistent).
2. |S| =1 (The solution is unique).
3. S is infinite (The system has infinitely many solutions).

Proof. We analyze the position of pivots in the reduced augmented matrix.

1. If the last column (the constants) contains a pivot, we have a row [0...0 | 1]. This implies 0 = 1, so
S =0.
2. If the last column does not contain a pivot, the system is consistent.
e If every variable column has a pivot (no free variables), each variable is determined uniquely by
the constants. Thus |S| = 1.
e If at least one variable column lacks a pivot (at least one free variable), we can assign any real
number to that free variable. Since R is infinite, there are infinitely many solutions.

There is no case where the algorithm produces exactly two, or exactly seventeen solutions. |

Theorem 2.3.2. Unique Solutions for Square Systems. Given n linear equations in n unknowns
Ax = b, a unique solution x exists if and only if rref([A | b]) = [I | x]. Moreover, if rref(A) # I, then there
is no unique solution to the system.

Proof.

(=) Suppose a unique solution exists. By the previous theorem, there must be no free variables. Since there
are n columns and n variables, there must be n pivots. In an n x n matrix, n pivots in RREF implies
the matrix is the identity I. Thus rref([A | b]) looks like [I | ¢], where ¢ is the column of solution
values.

(<) Suppose rref([A | b]) = [I | c¢]. This explicitly gives the equations z; = ¢1,...,2, = ¢, which is a
unique solution.
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For the second part: If rref(A) # I (for a square matrix), then there are fewer than n pivots. This means
there is at least one free variable (infinite solutions) or a row of zeros resulting in inconsistency (no solution).
In either case, the solution is not unique. |

Example 2.3.1. System with Free Variables. Consider the augmented matrix:

1 1 1 11
1 -1 1 0|1
-1 0 1 1|1

Swap Rs <+ R3 to simplify the pivot to 1 immediately (optional but convenient):

1 1 1 1|1
0o 1 2 2
0 -2 0 —-110

Eliminate below the new pivot (Rs — R3 + 2R»):

111 1)1
01 2 2|2
0 0 4 3|4

Backward Pass: Scale R3 — %Rg. Then eliminate above:

10 0 0|0
rref(A)=10 1 0 1/2|0
0 0 1 3/4|1

The pivots are in columns 1, 2, and 3 (21,29, x3), while column 4 has no pivot (z4 is free). From row 1:
z1 = 0. From row 2: xg—l—%m =0 = a9 = —%x4. From row 3: x3+%x4 =1 = x3= 1—%m4. We express
the basic variables in terms of the free ones, thus the solution set is S = {(0, —%m, 1- %m, x4) | x4 € R}.

Example 2.3.2. Inconsistent System. Solve the system:

rz—y=1
3 —3y=20
2z — 2y = -3
The augmented matrix reduces as follows:
1 -1] 1 R 3R R 2R 1 -1] 1 1 =110
3 3|0 | BTN 0 | -3 |~ 0|1
2 -2| -3 0 0| -5 0 0|0
The second row reads 0z + Oy = 1. The system has no solution (S = ().
Example 2.3.3. Infinite Solutions (Choice of Variables). Solve:
T-y+2=0 1 -1 110
3¢ —3y=0 Auemented g3 5 |
20 — 2y — 3z =0 2 =2 =310

Gaussian elimination yields the RREF:

—_
\
—_
= O
o O

rref([A|b))=1 0 0
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The pivots are in columns 1 and 3, corresponding to variables = and z. Thus, z and z are basic variables,
and y is a free variable. From row 2: z = 0. From row 1: x —y =0 = =z = y. The solution set is

S ={(y,4,0) | y € R}.

Example 2.3.4. Parametric Solutions. Solve the system:

£L'1+.’E3:0

QIQZO

3r3+x4 =0

31+ 229 =0

Form the augmented matrix and reduce:

1 01 010 1 0 0 010
0200{0] |0100]0
0 03 1]0 0 01 0f0
32 0 0]0 0 0 0 1(0

Here, every variable column has a pivot. The unique solution is the trivial solution (zy = 0,29 = 0,25 =
0, T4 = 0)

Example 2.3.5. Hyperplanes in R®. Consider the system corresponding to the augmented matrix:

10 01 010
[Alb]=2 2 0 0 10
4 4 4 0 0]1
Applying Gauss-Jordan elimination yields:
1 0 0 1 0 0
rref([A|b))=]10 1 0 -1 1/2 0
001 0 —1/2]1/4

Thus, the solution set is S = {(,1;4’ Ty — %:175, % + %5657 T4, 15) | z4, 5 € R}.

Remark. The choice of which variables are free is determined by the algorithm (non-pivot columns). While
one could algebraically solve for x4 in terms of x;, the convention of expressing pivot variables in terms
of non-pivot variables is standard because it guarantees a consistent dependency structure without cyclic
definitions.

Note. It is crucial to distinguish between reducing the coefficient matrix A and the augmented matrix
[A]Db].

e rref(A) reveals the dependency structure of the variables (which are basic vs. free) but ignores the
target values b. It effectively solves only the homogeneous equation Ax = 0.

e rref([A | b]) applies the operations to both the coefficients and the constants. This preserves the
equality of the system at every step, allowing us to determine the specific solution set for Ax = b.

To find the solution set of a general linear system, one must always use the augmented matrix.
Example 2.3.6. Importance of Augmentation. Consider the system:

r+y=1
T+y=2

This is obviously inconsistent (parallel lines).
1. Reducing Coefficient Matrix A:
1 1 1 1
S R
Looking only at this, one might mistakenly conclude the system has a free variable (infinite solutions),
as there is a non-pivot column.
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2. Reducing Augmented Matrix [A | b]:

14

1 1|1 | Re—ms 1 111
=[] == [0 o]

The second row reveals Ox + Oy = 1, which is a contradiction.

By failing to augment, we missed the inconsistency in the constants. Thus, the solution set is S = {).

2.4 Exercises

. Parametric Analysis. Consider the system of linear equations in unknowns z,y, z dependent on a
parameter k € R:

r+y+z=1
r+2y+4z=k
x4+ 4y + 10z = k2

Use Gaussian elimination to determine the values of k for which the system has:

(a) A unique solution.
(b) No solution.
(¢) Infinitely many solutions.

In the case of infinitely many solutions, express the solution set in terms of a free variable.

. The Fundamental Theorem of Homogeneous Systems. A homogeneous system is one where
the constant terms are zero, i.e., Ax = 0. Such a system always possesses the trivial solution. Prove
that if a homogeneous system has strictly fewer equations than unknowns (m < n), it must possess a
non-trivial solution (a solution where not all x; are zero).

Remark. Consider the Reduced Row Echelon Form of the matrix. How many pivots can there be at
most? What does this imply about the existence of free variables?

. The Affine Structure of Solutions. Let A be an m x n matrix and let b be a column of constants.

Let S}, denote the solution set of the homogeneous equation Ax = 0. Suppose the inhomogeneous
equation Ax = b is consistent and let p be one specific solution (called a particular solution). Prove
that the solution set .S of the inhomogeneous system is exactly the set of all solutions of the form p+h,
where h € Sj,.

S={p+h|heS,}

. Intersection of Planes. In a spatial Cartesian coordinate system, three planes are given by the
equations:

9r — 3y + 2 =20
z+y+z2=0
—x+2y+2z=-10

(a) Use Gaussian elimination to determine the set of common points (the intersection) of these three
planes.
(b) Geometrically, do these planes meet at a point, a line, or nowhere?

. Rationality of Solutions. One of the strengths of Gaussian elimination is that it relies solely on
the arithmetic operations of addition, subtraction, multiplication, and division. Prove that if the
coefficients a;; and the constants b; of a linear system are all rational numbers (i.e., elements of Q),
and if the system has a unique solution, then the solution components z1, ..., z, must consist entirely
of rational numbers.

Remark. Contrast this with finding roots of polynomials, where x? — 2 = 0 has rational coefficients
but irrational solutions.
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6. Polynomial Interpolation. Complex problems can often be reduced to finding coefficients that
satisfy a set of linear constraints.

(a) Suppose we wish to find a parabola with equation y = az? + bx + ¢ that passes through the three
specific points (—3,20), (1,0), and (2,10). Substitute the coordinates of these points into the
equation to obtain a system of three linear equations in the unknowns a, b, c. Solve this system
to determine the explicit equation of the parabola.

(b) Now, consider the general case. Let (t1,y1), (t2,92),..., (tn,yn) be n points in the plane with
distinct t-coordinates. We seek a polynomial of degree at most n— 1, defined by P(t) = ¢o+c1t +
-4 c,_1t"" 1, that passes through all these points. Write down the system of n linear equations

that the coefficients ¢y, ..., c¢,_1 must satisfy.
(c) Show that the system derived in (b) is equivalent to the single matrix equation V¢ =y, where
Co Y1
C1 Y2 . .
the columns ¢ and y are ¢ = . , y=| .| and V is the Vandermonde matriz:
Cn—1 Yn
1t 8 - !
v 1ty t3 - 5!
1 t, t3 ... ¢l

(d) Given that the homogeneous system V¢ = 0 has only the trivial solution (a fact you may assume),
what can you conclude about the existence and uniqueness of such a polynomial for any set of n
distinct points?

(e) Overdetermined Systems: Suppose we are given n = 4 points, but we still wish to fit a
quadratic polynomial (degree 2, which has only 3 coefficients). Write down the associated matrix
equation. What is the shape of the matrix V7 Based on your knowledge of linear systems, is it
guaranteed that such a parabola exists?

7. Curve Fitting and Consistency. Suppose we suspect a functional relationship y = f(z) between
two variables is quadratic (i.e., of the form y = ax? + bx + ¢). We collect the following data:

z|1 2 3 4
y |2 7 16 29

(a) By substituting the data points into the quadratic equation, set up a system of 4 linear equations
in the unknowns a, b, c.

(b) Form the augmented matrix and solve the system. Is there a unique set of coefficients a, b, ¢ that
satisfies all four data points perfectly, or is the system inconsistent?

8. x Redundancy of Row Interchange. The definition of Elementary Row Operations includes three
types: Scaling, Replacement, and Interchange. Prove that the Interchange operation is theoretically
redundant. Specifically, show that the row swap R; <+ Ry can be achieved by a sequence of Scaling
and Replacement operations alone.

Remark. Attempt to construct the swap using the operations Ry — Ry + Rs, R — Ry — Ry, etc. Be
careful with signs.

9. x Simultaneous Systems and Matrix Algebra. Suppose we wish to solve two linear systems that
share the same coeflicient matrix but have different right-hand sides:

Ax=Db and Ay =c.
Instead of performing Gaussian elimination twice, we can augment the matrix with both columns:

[A|b c]. Row operations applied to this array effectively solve both systems simultaneously.

1 2

Consider the system where A = {3 4

] . Find the columns u and v such that Au = [ﬂ and Av =

[(1) . Form the matrix X whose columns are u and v, i.e., X = [u v]. What is the significance of the

matrix X in relation to A7



Chapter 3

Vectors and Matrices

In the preceding chapter, we treated the linear system Ax = b primarily as an algebraic obstacle to be
overcome via Gaussian elimination. We found solutions by manipulating arrays of numbers. However, to
understand the deeper structure of these solutions we must formalise the objects we are manipulating.

But before formalising, what about some revision of the previous notes. A field F is a set of elements (in our
case scalars elements) equipped with two binary operations, addition (4) and multiplication (-), satisfying
the following axioms for all x,y,z € F:

1. Commutativity: x +y =y + x and zy = yx.

2. Associativity: z+ (y+ 2) = (x + y) + z and z(yz) = (zy)=z.

3. Identities: There exist distinct elements 0 (additive identity) and 1 (multiplicative identity) such that
r+0=zand z-1==x.

4. Inverses:

e For every x € F, there is a unique (—x) such that 4+ (—z) = 0.
e For every z € F\ {0}, there is a unique 2! such that zz=! = 1.

5. Distributivity: z(y + z) = 2y + xz.

Remark. The most familiar fields are the rational numbers Q, the real numbers R, and the complex numbers
C. The integers Z do not form a field because distinct non-zero integers (like 2) generally lack multiplicative
inverses within the set. Throughout this text, unless specified otherwise, F' denotes the field R.

3.1 The Vector Space R"

Last notes we introduced vectors in 2D and 3D now we generalise these vectors to n-dimensions.

Definition 3.1.1. n-Dimensional Vector. Let n be a positive integer. An n-dimensional vector over a
field F is an ordered n-tuple (z1,za,...,2,) where each component x; € F. The set of all such vectors is

the vector space F™.
F* ={(z1,...,2n) | @ € F}.

Two vectors are equal if and only if their corresponding components are identical.

Remark. (Universality of Gaussian Elimination). In Chapter 1, we solved linear systems where the coeffi-
cients were real numbers. However, the algorithm of Gaussian Elimination relies solely on the four arithmetic
operations (addition, subtraction, multiplication, and division by non-zero elements). Since these operations
are exactly what define a field F, the entire theory of Chapter 1, including Row Echelon Form, Pivot vari-
ables, and the distinction between unique/infinite solutions, holds true for linear systems over any field F.
For example, we can solve systems with complex coefficients (F = C) or rational coefficients (F = Q) using
the exact same steps.

16
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Notation 3.1.1. Column Vector Convention. There is a bijection between row tuples and column arrays.
To ensure compatibility with matrix multiplication (defined later), we adopt the standard convention that
vectors in F™ are column vectors.

Z1
Z2
X =
Ln
To conserve vertical space in text, we often write x = (z1,...,2,) or use the transpose notation x =
T
[Il, e ,$n] .

Algebraic Structure

The set R™ is not merely a collection of points; it possesses an algebraic structure induced by the underlying
field. We define two fundamental operations: vector addition and scalar multiplication.

Definition 3.1.2. Vector Operations. Let u,v € R" and ) € R.

1. Addition: We add vectors component-wise.
(A U1 w1 + v
utv= ||| =
Up, Up, Up, + Up
2. Scalar Multiplication: We scale a vector by multiplying every component by the scalar.
Uy Aug
Au=XA| | =

U, AUy,

The zero vector, denoted 0, is the vector consisting entirely of zeros. It serves as the additive identity. These
operations inherit the properties of the field F'.

Theorem 3.1.1. Vector Space Axioms. For all u,v,w € R" and scalars r, s € R:

Proof. The proofs follow directly from the properties of the underlying field. For instance, commutativity of
vector addition relies on the commutativity of addition in R: the i-th component of u + v is u; + v;, which
equals v; + u;, the i-th component of v + u. |

Remark. (Abstract Vector Spaces). In this chapter, we defined "vectors" concretely as ordered lists of
numbers in R™. However, in broader mathematics, a Vector Space is defined abstractly as any set V
equipped with addition and scalar multiplication that satisfies the eight axioms listed in the theorem above.
This generalization allows us to treat diverse mathematical objects as vectors, including:

e The set of all polynomials (e.g., 1 + x + x2).
e The set of all continuous functions on an interval.
e The set of all m x n matrices (as noted in Section 3).

While this text focuses primarily on R™, we might briefly revisit these general spaces in later chapters and
definitely introduce it in later notes to show how linear algebra unifies geometry and analysis.
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3.2 Subspaces and Linear Combinations

A central concept in linear algebra is the construction of new vectors from a given set using only the operations
of addition and scaling.

Definition 3.2.1. Linear Combination. A vector w is a linear combination of vectors vy, ..., vy if there
exist scalars ¢y, ..., c, such that:

k
W = C1V] +CoVy + -+ CpVE = E CiVi.
i=1

In the previous chapter, solving Ax = b was equivalent to asking: "Is b a linear combination of the columns
of A?". The set of all possible linear combinations of a set of vectors generates a structure known as a
subspace.

Subspaces

Often we are interested in subsets of R™ that act like smaller vector spaces tucked inside the larger one. For
a subset to preserve the algebraic structure, one must not be able to "escape" the set via addition or scaling.

Definition 3.2.2. Subspace. A subset S of R" is a subspace if it satisfies three conditions:

1. The zero vector 0 is in S.
2. Closure under Addition: If ue Sand ve S, thenu+v e S.
3. Closure under Scaling: If u € S and ¢ € R, then cu € S.

The first condition ensures the set is non-empty and contains the additive identity. The latter two can be
compressed into a single criterion.

Theorem 3.2.1. Subspace Criterion. A non-empty subset S C R™ is a subspace if and only if for all
u,v € S and scalars ¢, d € R, the linear combination cu + dv is in S.

Proof.

(=) If S is a subspace, it is closed under scaling (cu,dv € S) and addition (cu+ dv € S).
(<) Suppose S is closed under linear combinations.
e Takingc=1,d=1,u+v €S (Closure under Addition).
e Taking d =0, cu € S (Closure under Scaling).
e Takingc=0,d=0,0¢€ S.
Thus S satisfies the definition.

Example 3.2.1. Trivial Subspaces. For any n, R™ has two trivial subspaces:

1. The set R™ itself (the largest subspace).
2. The set {0} (the zero subspace, the smallest subspace).

Example 3.2.2. Solution Spaces. Let A be an m X n matrix. The set of solutions to the homogeneous
equation Ax = 0 is a subspace of R™. Verification: Let S = {x € R" | Ax = 0}.

1. A0=0,500¢ S.
2. Ifu,vesS, then Alu+v)=Au+Av=0+0=0. Thusu+ves.
3. If ue S, then A(cu) = ¢(Au) =0 =0. Thus cu € S.

Note that the solution set to an inhomogeneous system Ax = b (with b # 0) is not a subspace, as it fails to
contain the zero vector.
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Remark. (Foreshadowing Dimension). In the earlier Chapter, we observed that the solution set is deter-
mined by the free variables (the columns without pivots). If a system has n variables and the elimination
process yields r pivots, then there must be n—r free variables left over. Geometrically, this count determines
the "size" of the solution set. If n — 7 = 1, the solution is a line; if n — 7 = 2, it is a plane. One might be
tempted to define the "dimension" of a subspace simply as this number n — r. However, to formalise this
rigorously, we need the tools of Linear Independence and Basis, which we will develop in the next chapter.

Operations on Subspaces

Just as we operate on vectors, we can operate on the sets containing them.

Theorem 3.2.2. Intersection of Subspaces. If U and V are subspaces of R", then their intersection
U NV is also a subspace of R™.

Proof. Since 0 e U and 0 € V, 0 € UNV. Let x,y € UNV and ¢ € R. Since x,y € U (a subspace),
cx+y € U. Since x,y € V (a subspace), cx+y € V. Therefore, cx+y € UNV. By the Subspace Criterion,
U NV is asubspace. |

Note. The union of two subspaces U UV is generally not a subspace. Consider R?. Let U be the z-axis
(generated by e;) and V be the y-axis (generated by es). Both are subspaces. However, e; € U UV and
ex € UU YV, but their sum e; + e; = (1,1) is in neither U nor V. The union is not closed under addition.

Instead of the union, the smallest subspace containing both U and V is their sum.

Definition 3.2.3. Sum of Subspaces. Let U and V' be subspaces of R™. The sum U + V is defined as:
U+V={u+v]juelUveV}

It is straightforward to verify that U 4+ V is a subspace.

3.3 Matrix Arithmetic

We have used matrices as shorthand for linear systems. We now formally define them and their internal
structure.

Definition 3.3.1. Matriz. An m X n matrix A is a rectangular array of scalars with m rows and n columns.
The entry in the ¢-th row and j-th column is denoted a;; (or A;;).

aix a2 - Qin

a21 Qg2 -+ Q2n
A =

Am1 Am2 o Omn

The set of all m x n matrices with real entries is denoted R™*™.
Notation 3.3.1. Submatrices A matrix is effectively a collection of vectors.

e The j-th column vector of A, denoted col;(A), is the m x 1 vector [alj amj]T
e The i-th row vector of A, denoted row;(A), is the 1 x n vector [ail ... am].

We may write A as a row of columns or a column of rows:

rp
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Definition 3.3.2. Transpose. The transpose of an m x n matrix A, denoted AT, is the n x m matrix
obtained by swapping rows and columns. Formally, (A7);; = Aj;.

1 2 3

1 4
, then AT = |2 5|. Notice that row;(A) = (col;(AT))T.
4 5 6 3 6

Example 3.3.1. Transpose. If A = {

Basic matrix arithmetic (addition and scalar multiplication) follows the same component-wise logic as vector
arithmetic.

e Equality: A = B if they have the same dimensions and A;; = B;; for all 4, j.
e Addition: (A+ B);; = A;; + B;;. Defined only if dimensions match.
e Scalar Multiplication: (AA);; = AA4,;.

Consequently, R™*"™ itself forms a vector space of dimension mn. The arithmetic of multiplying two matrices
is more complex and corresponds to the composition of linear maps, which we shall explore in the subsequent
chapter.

The Zero Matrix

Just as the number 0 serves as the additive identity in the field of real numbers, there exists a matrix that
performs the same role in the vector space of matrices.

Definition 3.3.3. Zero Matrix. The zero matriz in R™*™ denoted 0,,x, (or simply 0 when dimensions
are clear), is the matrix for which every entry is zero:

(O)ij =0 for all 7,,]

For any matrix A € R™*", the additive inverse — A is the matrix obtained by negating every entry of A. It
satisfies A + (—A4) = 0.

Theorem 3.3.1. Properties of Zero Matrix. For any A € R™*"™:
1. A+0=A.
2. A—-A=0.
3. 0- A =0 (scalar zero times matrix A).

3.4 Matrix Multiplication

While addition and scalar multiplication are defined component-wise, matrix multiplication is structurally
distinct. It is not obtained by multiplying corresponding entries. Instead, it is defined to facilitate the
composition of linear transformations, a connection we will formalise in later chapters.

Definition 3.4.1. Matrix Product. Let A be an m X n matrix and B be an n X p matrix. The product
AB is the m x p matrix defined by:

(AB)i; =Y AuBu;
k=1

foralll1 <i<mand1<j<p.

Note. The product AB is defined if and only if the number of columns of A equals the number of rows of
B. The resulting matrix has the number of rows of A and the number of columns of B.

The Dot Product Perspective

The summation in the definition of matrix multiplication corresponds exactly to the Euclidean dot product
(or scalar product) of vectors.
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Definition 3.4.2. Dot Product. Let u,v € R™. The dot product u- v is defined as:

n
u-v= E UV :uTV.
k=1

Using this notation, the entry (AB);; is the dot product of the i-th row of A and the j-th column of B.
rowi(A) -coly(B) -+ rowy(A) - col,(B)

AB = : ;
row,, (A) - coli(B) -+ row,,(A) - col,(B)

Example 3.4.1. Non-Commutativity. Matrix multiplication is generally not commutative. That is, AB #

BA in general, even when both products are defined. Let A = B ﬂ and B = [? g]

NG +27) 16)+2®)] 19 22
AB = [3(5)+4(7) 3(6) +4(8)] = {43 50} :
51 +6(3) 5(2)+6(4)]  [23 34
BA= [7(1)4—8(3) 7(2) —|—8(4)] = {31 46} :

Clearly AB # BA.

The Identity Matrix

Just as 1 is the multiplicative identity for real numbers, the identity matrix acts as the neutral element for
matrix multiplication.

Definition 3.4.3. Identity Matrixz. The identity matrix of size n, denoted I,, (or simply I), is the n x n
square matrix with 1s on the main diagonal and Os elsewhere.

1 ifi=j,
In)ij =0i5 =
(Tn)ig / {0 if i # j.

Proposition 3.4.1. Multiplicative Identity. For any A € R"™*™:
I,A=A and AI, = A.

Matrix-Vector Products and Linear Combinations

A particularly important case of matrix multiplication arises when B is a column vector x € R™*!. The
product Ax yields a vector in R™.

Algebraically, the i-th component is (Ax); = 2;21 Aijzj. However, we can reinterpret this sum geometri-
cally. Note that A;; is the i-th component of the j-th column of A.

Theorem 3.4.1. Linear Combination of Columns. For any A € R™*" and x € R™, the product Ax is
a linear combination of the columns of A, with weights given by the entries of x.

Ax = x1 col1 (A) + za cola(A) + - - - + @, col, (A).

Proof. Let ¢; = col;(A). The i-th entry of the linear combination 2?21 zjc; is:
Dowies | =D wile)i =Y widy =y Aya;.
j=1 ; J=1 j=1 j=1

This matches the definition of (Ax);. |
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This perspective is crucial. It transforms the problem "Does Ax = b have a solution?" into "Is b in the
subspace spanned by the columns of A?".

Proposition 3.4.2. Concatenation. Multiplication distributes over column concatenation. If B = [by | - |
b,], then:
AB = Afby |-+ | byl =[Aby | Abs | - - - | Aby].

In other words, the j-th column of the product AB is the product of A and the j-th column of B:
col;(AB) = Acol;(B).

Example 3.4.2. Column Concatenation. Consider the matrix A and two vectors by, bo:

1 2 1 -1
A=l 3 el e ]
We construct the matrix B by concatenating these vectors: B = [by | ba] = [(1) _21] To find AB, we can

compute the product column by column:

e First column: Ab;, = [é i] [(1)} _ {1(1)

e Second column: Aby = B ﬂ {_21] - Bg_i

Properties of Matrix Algebra

Despite the lack of commutativity, matrix operations satisfy most standard arithmetic laws.

Theorem 3.4.2. Matrix Arithmetic Laws. Let A, B,C be matrices of appropriate sizes such that the
operations below are defined, and let A be a scalar.

Associativity of Addition: (A+B)+C=A+ (B+C).
Associativity of Multiplication: (AB)C = A(BC).
Distributivity: A(B+C) = AB+ AC and (A+ B)C = AC + BC.
Scalar Commutativity: A(AB) = (A)B = A(\B).

Transpose of Product: (AB)T = BT AT,

CU W

Proof. We prove associativity of multiplication, as it is non-trivial. Let A € R™*" B € R"*P, (' € RP*9,
The (7,1)-th entry of (AB)C is:

P p

p n n
((AB)C)y = Z(AB)ikal = Z ZAiijk Cr = ZZAU'BJ’CCM'

k=1 k=1 \j=1 k=1j=1
Since scalar multiplication is associative and sums are finite, we can swap the order of summation:

ZAZ-]- ( Bjkc,d> = ZAij(BC)jl = (A(BC))q.
k=1

=1 =1

Thus (AB)C = A(BC). [ |
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3.5 The Standard Basis

The structure of R™ is most easily analysed by decomposing vectors into fundamental building blocks.

Definition 3.5.1. Kronecker Delta. The Kronecker delta é;; is a function of two integers ¢ and j defined

by:
1 ifi=y,
dij = e
0 ifi#j.
Definition 3.5.2. Standard Basis Vectors. The standard basis vectors eq, ..., e, in R™ are the columns
of the identity matrix I,,. That is, the j-th component of e; is d;;.

e; = (1,0,0,...,0)"
e, = (0,1,0,...,0)7

e, = (0,0,0,...,1)7

Theorem 3.5.1. Standard Basis Expansion. Every vector v = (vq,...,v,)7 € R™ can be uniquely

expressed as a linear combination of the standard basis vectors:

n
vV = E v,€; = vie1 +vgseo + - -+ vpen,.
i=1

Proof. By the definition of vector addition and scalar multiplication:

U1 v1 0 1 0
Vg 0 0 0 0
=1 RS S| =], +odu, |,
Un 0 Un 0 1

Example 3.5.1. Any vector in R™ can be written as a sum of these basic vectors. For example,
v=(1,2,3) = (1,0,0) 4+ (0,2,0) + (0,0, 3)

= 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1)
=e1 + 2eo + ez

1 0 0
=10 +2|1| +3 (0
0 0 1

Example 3.5.2. Vector Equations. The system of linear equations

r+y+z=3
T+y=2
r—y—z=-1

can be decomposed into a single vector equation involving the standard basis of variables or the columns of
the coefficient matrix:

1 1 1 3
z|1|+y |1 | +2z|0]|=]2
1 -1 -1 -1

This explicitly demonstrates that solving the system is equivalent to finding coefficients x, y, z that express
the target vector as a linear combination of the column vectors.
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3.6 The Standard Matrix Basis

We have established that any vector in R™ can be decomposed into a linear combination of the standard
basis vectors ey, ..., e,. This concept extends naturally to the space of matrices R™*", allowing us to trade
complex matrix equations for elegant scalar operations involving indices.

Definition 3.6.1. Standard Basis Matriz. The ij-th standard basis matrix for R™*", denoted E;;, is
the matrix with a 1 in the (¢, j)-th position and 0 elsewhere. Formally,

(Eij)kt = 6ikdji.

Just as the vectors e, form the building blocks of R™, the matrices E;; constitute the fundamental units of
]Rm)(n.
Proposition 3.6.1. Matrixz Decomposition. Every matrix A € R™*™ can be uniquely expressed as a linear
combination of the basis matrices Ej;:
m n
4=3

i=1 j=1

Proof. Let B =331", 377 | AijEij. We examine the (k,[)-th entry of B:
B = Z Z Aij(Eij)kl = Z Z Aijéikéﬂ.
i=1j=1 i=1j=1

The factor d;;, is zero unless ¢ = k, and §;; is zero unless j = [. Thus, the double sum collapses to the single

term where ¢ = k and j = [:

Since By = Ay for all k, 1, we have B = A. [ |

Selection and Construction

The interaction between the standard vector basis {ex} and the matrix basis {E;;} provides powerful tools
for extracting specific components of a matrix. This notation is frequently employed in proofs to reduce
matrix algebra to index arithmetic (a precursor to tensor calculus).

Proposition 3.6.2. Column and Row Selection. Let A € R™*".
1. Multiplication by a basis vector on the right extracts a column:
Aej = col;(A).
2. Multiplication by a transposed basis vector on the left extracts a row:
el A = row;(A).

Proof. For the first claim, consider the k-th component of the vector Ae;:

(Aej)i = ZAkp(ej)p = ZAkpépj = Ay;.

p=1 p=1
Thus, the resulting vector consists of the entries A;;, Aoj, ..., Ayy, which is exactly the j-th column of A.
The proof for the row extraction is analogous. |

Combining these operations allows us to isolate a single scalar entry from a matrix.
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Corollary 3.6.1. Entry Selection
For any matrix A, the (¢, j)-th entry is given by:
Aij = eiTAej.

Proof. Using the previous proposition, Ae; is the j-th column of A. Premultiplying this column by e
extracts its i-th component, which is A4;;. ]

Furthermore, we can construct the basis matrices F;; directly from the basis vectors using the outer product.
Proposition 3.6.3. Outer Product Construction. For e; € R™ and e; € R™:

T

Eij = eiej .

Proof. The (k,1)-th entry of the product eie;-r is:

(eie] Ju = (ei)r(e] )i = (ei)k(e;) = Sindji.
This matches the definition of (E;;). [ ]

Algebra of Basis Matrices

When manipulating sums involving F;;, it is often necessary to multiply two basis matrices. The result is
elegantly determined by the "inner indices".

Lemma 3.6.1. Product of Basis Matrices. Let E;; € R™*™ and Ej; € R™*P. Then:
EiiEy = 0;1E;.

That is, the product is zero unless the column index of the first matches the row index of the second (j = k),
in which case the result is the basis matrix FE;;.

Proof. We compute the (r, s)-th entry of the product:

n

(EijEkl)rs = Z(E'Lj rt Ekl Z 517“531& 5kt§l5)
t=1

t=1

The term is non-zero only if ¢ = j (from the first delta) and ¢t = k (from the second delta). Thus, if j # k,
the sum is zero. If j = k, the sum has exactly one non-zero term (where ¢t = j = k):

(Bij Ext)rs = 0ir01s0,-
This is exactly the (r, s)-th entry of §;,E;. -

Example 3.6.1. Matrix Manipulation with Basis Matrices. The basis matrices can be used to perform
elementary row and column operations algebraically.

1. Right Multiplication (AE;;): Let A = Zk,l A Ey;. Then:

AEjj = | Y AuBu | Eij =Y Au(EnEij) = AwbiiBi;.
kol ol

The sum over [ collapses to | = 1, yielding:

AE;j =Y AgiEy;.
k

This matrix has the entries of column ¢ of A moved to column j, with zeros everywhere else.
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2. Left Multiplication (E;;A): Similarly,
Ei;A = E;; Z ApEy = Z ApojnEy = Z A Ey.
k.l k.l l
This matrix consists of the j-th row of A moved to the i-th row, with zeros elsewhere.

1 2

For instance, if A = [3 1

],then:
1 2]fo 1 0 1
AE”:{?, 4} {0 0]:{0 3}

}) has been moved to the second column.

Here, the first column of A (B

Theorem 3.6.1. Summary of Basis Identities. For matrices A € R™*" and standard basis vectors e;:

eiTej = (Sij
Eij = eiejT
A=>"AyE;
4,3
EijEw =k Ei

3.7 Exercises

1. Parameter Analysis (Two Parameters). For what values of a,b does the following system have a
solution? Find the solution in these cases.

3r1 + 2x0+axs + x4 —3x5 =4
5x1 + 4xo+3x3 + 34 —x5 =3
T+ o +3x3+ 2204 +25 =1

To +2x3 + 2x4+625 = —3
T3+ bry +x5=1

2. Parameter Analysis (Cyclic System). Discuss for what values of A the following system has a
unique solution, infinite solutions, or no solution. In the cases where solutions exist, find the general
solution.

Ar1+2x2 Fu3=1
T1 + Are +x3 =X\
X1 + i) +>\l’3 = AZ

3. Lattice Properties of Subspaces. Let X,Y, A and B be subspaces of R™. The operations of
intersection and sum allow us to order subspaces by containment. Prove the following fundamental
containment laws:

a) fAC X and ACY, prove that AC X NY.
(a)
(b) If X C Band Y C B, prove that X +Y C B.

4. Subspace Absorption. Let X and Y be subspaces of R”. Prove that X +Y = X if and only if
Y CX.

Remark. This mirrors the arithmetic property of sets where AUB = A <= B C A, replacing the
union with the subspace sum.



CHAPTER 3. VECTORS AND MATRICES 27

5. Finite Intersections. We have established that the intersection of two subspaces is a subspace.

(a) By induction, prove that the intersection of any finite collection of subspaces Wy,..., Wy is a
subspace of R™.

(b) Is the complement R™\ W ever a subspace? Prove that if W is a proper subspace (i.e., W # R"),
its complement is never a subspace.

6. Symmetric Decomposition. A matrix A is called symmetric if AT = A and skew-symmetric if
AT = —A.

(a) Let A be any square matrix. Prove that S = A + AT is symmetric and K = A — AT is skew-
symmetric.

(b) Deduce that any square matrix A can be uniquely expressed as the sum of a symmetric matrix
and a skew-symmetric matrix.

(¢c) Subspace Property: Prove that the set of all n x n symmetric matrices is a subspace of R™**™.

7. Commuting with Diagonals. Let D be an n x n diagonal matrix with distinct entries on the main
diagonal (i.e., D;; # Dj; for i # j). Let A be an n x n matrix.

(a) Compute the (4, j)-th entry of the product AD and the product DA in terms of A;; and the
diagonal entries Dy.

(b) Prove that if A commutes with D (i.e., AD = DA), then A must itself be a diagonal matrix (i.e.,
Aij =0 for all ¢ 7& j)

8. Matrix Arithmetic and Commutativity. Let A and B be the following matrices:
1 2 3 1 0 -1

A=14 5 6/, B=1|0 1 0

7 8 9 1 0 1

(a) Compute the products AB and BA. Are they equal?
(b) Compute the vector Ax where x = [1,-2,1]7.
(¢) Find the matrix X such that 2(A — X) + 3B = 0.

9. Nilpotency and Matrix Powers. A matrix N is called nilpotent if there exists a positive integer k
such that N¥ = 0. The smallest such k is called the index of nilpotency. Consider the matrix:

N =

o O O

1
0
0

S W N

(a) Calculate N2 and N3. What is the index of nilpotency for N?
(b) Compute (I — N)(I + N + N?).
(c) Generalise the result from (b). If N¥ = 0, prove that the matrix (I — N) is invertible and find an

expression for its inverse in terms of powers of N.

10. The Trace of a Matrix. The trace of a square matrix A € R"*"  denoted tr(A), is the sum of its
diagonal entries:

Using the summation definition of matrix multiplication (or index notation), prove the following prop-
erties:

(a) tr(A+ B) = tr(A) + tr(B).

(b) tr(cA) = ctr(A) for any scalar c.

(¢) Cyclic Property: tr(AB) = tr(BA), even though AB # BA in general.

(d) Show that for any distinct matrices A, B, it is impossible to have AB — BA = I,,.
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11.

12.

13.

14.

15.

16.

17.

Remark. This result has profound implications in quantum mechanics, demonstrating that
bounded operators for position and momentum cannot satisfy the canonical commutation re-
lation.

The Centre of the Matrix Ring. A matrix A € R™*" is said to be in the centre of the algebra if
it commutes with every matrix in R™*™. That is, AX = X A for all X € R"*". Prove that A must be
a scalar multiple of the identity matrix, i.e., A = A, for some A € R.

Remark. Hint: Test the condition AF;; = E;;A using the standard basis matrices. Recall that right-
multiplication AFE;; moves column % to column j, while left-multiplication F;; A moves row j to row
i.

Idempotent Matrices. A matrix P € R™*" is called idempotent if P2 = P. Such matrices usually
represent projection operators.

(a) Prove that if P is idempotent, then I — P is also idempotent.

(b) Show that P(I — P)= (I — P)P =0.

(¢) If P is idempotent and invertible, prove that P = I.

The Fixed Point Subspace. Let A € R"*" be a fixed matrix. We are interested in vectors that are
not changed by the transformation A. Let W = {x € R" | Ax = x}.

(a) Prove that the condition Ax = x is equivalent to the homogeneous system (A — I)x = 0.
(b) Use the Subspace Criterion (or the result from Exercise 1) to prove that W is a subspace of R".

2 1

(c) Let A= [O .

} . Find a non-zero vector in W.

Triangular Matrices.

a) Let A an e two n X n upper triangular matrices. Use the summation definition of the matrix
Let A and B be t tri 1 tri Use th tion definiti f th tri
product to prove that C' = AB is also upper triangular.

Remark. Consider the entry C;; = > 1_; A;xBy;. Split the range of the sum or analyse when
the terms must be zero.

(b) Prove that the diagonal entries of the product are simply the products of the corresponding
diagonal entries: (AB);; = A;; Bii.

* The Adjoint Property. The transpose allows us to move a matrix from one side of a dot product
to the other. Prove that for any matrix A € R™*"™ and vectors x € R",y € R™:

Ax -y =x-ATly.

Remark. Recall that the dot product u - v can be written as the matrix product u”v. Use the
property (AB)T = BT AT,

* The Geometry of Subspaces in R2. We intuitively understand that subspaces are "flat" sheets
passing through the origin. Prove that the only non-trivial subspaces of R? are lines passing through
the origin. That is, any subspace L C R? where L # {0} and L # R? must be of the form:

L= {[z,y]" € R® | az +by = 0}
for some fixed scalars a, b, not both zero.

* Counter-examples in Topology and Algebra. To test the boundaries of the definition of a
subspace, determine (with justification) whether the following sets X are subspaces of their respective
parent spaces.

(a) The set of vectors with rational components: X = {[r,s,t]T € R3 | r,s,t € Q}.
(b) The set of vectors bounded within a circle: X = {[z,y]T € R? | 22 + y% < 1}.
(¢) The set of discrete integers: X = {...,—2,-1,0,1,2,...} CR.

(d) The union of the axes: X = {[z,y]T € R? | 2y = 0}.



Chapter 4

Linear Spaces

In the previous chapters, we introduced the machinery of vectors and matrices. We now return to the central
problem armed with these new tools. This chapter formalises the connection between algebraic solutions
and geometric concepts such as spanning and linear independence. These ideas culminate in the "Column
Correspondence Property", a powerful tool for understanding the structure of vector spaces.

4.1 Systems of Linear Equations Revisited

A system of linear equations can be compactly written as a single matrix equation Ax = b. This shift from
a list of equations to a single object allows us to treat the entire system as a relationship between vectors.

Proposition 4.1.1. Matriz Form of a Linear System. Consider a system of m equations in n variables
TlyeeeyIp:

1121 + a12%2 + -+ + A1 Ty = by

Am1T1 + Am2®2 + -+ Gy Tn = by,
This is equivalent to the matrix equation Ax = b, where
aip -0 Gin T by
A= i |ox=|i|. b=
Gm1 - Qmn T b
The set of all vectors x satisfying this equation is the solution set, denoted Sol(A4, b)
Sol(4,b) = {x € R" | Ax = b}.
Example 4.1.1. Vector Form of Solutions. Consider the system:

1+ 2x9+2x3=4
T, — X9 +4x3 =1

Using Gaussian elimination, we find the general solution:
x1 =2—3x3, wzo=1+ux3, x3is free.

In vector notation, the solution set is:

273.’,83 2 -3
X = 1+£L’3 = 1 —|—.’L‘3 1
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Geometrically, this describes a line in R? passing through the point (2,1,0) and parallel to the vector
(-3,1,1).

_- Solution Set L

tx h
Xp

// (27 1’ 0)

.

Figure 4.1: The geometry of the general solution. The solution set forms a line (red). Any solution vector
x (purple) is formed by the vector addition triangle of the particular solution x, (blue) and a scaled homo-
geneous vector txy, (red segment).

Simultaneous Resolution of Systems

Often in applications (such as finding a matrix inverse), we need to solve multiple systems Ax = by, Ax =
by, ..., Ax = b that share the same coefficient matrix but have different right-hand sides. Rather than
performing Gaussian elimination k times, we can solve them all simultaneously.

Proposition 4.1.2. Simultaneous Solution. Let A € R™*™. The vectors vy,..., vy are solutions to the

systems Av; = b; (for ¢ = 1,...,k) if and only if the matrix V' = [vy | --- | v}] satisfies AV = B, where

B = [bl | |bk]

Proof. This follows directly from the definition of matrix multiplication. If V= [vy | - -+ | vg], then
AV = Alvy |-+ | vi] = [Avy | -+ | Avg].

Thus AV = B if and only if Av; = b; for all 7. |

Remark. To compute this efficiently, we form the "super-augmented" matrix [A | by ...by] and reduce it
to [rref(A) | ¢1...cx]. If A is invertible (a concept we will define precisely later), the left side becomes I,
and the right side contains the unique solutions.

Example 4.1.2. Simultaneous Solutions. To solve Ax = b; and Ay = b, for

A=l s =l e
we reduce the augmented matrix [A | by | bo]:
{1 123}@[1 123]@[1 012].
2 3|57 0 1|1]1 0 1|1]1
Thus x = (1,1) and y = (2,1).
4.2 Elementary Matrices

Gaussian elimination relies on three elementary row operations. We can represent these operations alge-
braically as matrix multiplications. This perspective is crucial for theoretical developments, particularly in
defining determinants and understanding matrix factorisations.
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Definition 4.2.1. Elementary Matrixz. An elementary matrixz is a matrix obtained by applying a single
elementary row operation to the identity matrix I. The three types correspond to the three row operations:

1. Row Replacement (R; — R; + aR;): The matrix E;;(a) has 1s on the diagonal, « in position (3, j),
and Os elsewhere.

2. Scaling (R; — aR;,a # 0): The matrix D;(«) is diagonal with « in position (,4) and 1s elsewhere.

3. Interchange (R; <> R;): The matrix P;; is the identity with rows ¢ and j swapped.

Theorem 4.2.1. Row Operations as Multiplication. Performing an elementary row operation on a
matrix A is equivalent to multiplying A on the left by the corresponding elementary matrix E.

Proof. Let E be an elementary matrix obtained by applying an operation p to I. That is, E = p(I). Recall
that A = I A. Since row operations are linear (row combination), applying p to the product I A is equivalent
to applying it to the first factor:

p(A) = p(IA) = p(I)A = EA.
This can also be verified explicitly using the standard basis notation F;; introduced in the previous chapter.

Example 4.2.1. Elementary Matrices. Let A = {Ccl Z}

e Replacement: Add 3 times row 1 to row 2.

1 0 1 0|la b a b
E{s 1] ﬁEA{:& 1} L d}{Sa—i—c 3b+d}

e Scaling: Scale row 2 by 7.

p=[s = ma= s Y[ -Ta )

e Swap: Swap row 1 and row 2.

0 1 0 1||a b c d
e e 1 G R P
Remark. Multiplying by elementary matrices on the right performs the corresponding column operations.
For example, AFE;;(a) adds « times column ¢ to column j.

Since every row operation corresponds to an elementary matrix, the entire Gaussian elimination process can
be expressed as a product of matrices.

Proposition 4.2.1. Matriz Decomposition of RREF. For any matrix A, there exists a sequence of elementary
matrices F1, Es, ..., E such that:
Ey ... E3FE A =rref(A).

Since elementary row operations are reversible, each F; is invertible. This implies A = E| Lo E,; L rref (4).

4.3 Spanning and Linear Independence

The two central questions in linear algebra concerning a set of vectors {vy,..., vy} are:

1. Ezistence: Can every vector in the space be built from these vectors? (Spanning)
2. Uniqueness: Is the construction of a vector from these building blocks unique? (Linear Independence)
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Spanning Sets

We formally define the set of all possible vectors that can be constructed from a given collection.

Definition 4.3.1. Span. Let S = {vy,..., v} be a set of vectors in R™. The span of S, denoted span(.5),
is the set of all possible linear combinations of the vectors in S:

span{vy,...,vi} = {c1vi + -+ cve | ¢; € R}

If W = span(S), we say that S spans or generates W.

Recall from Theorem 3.4.1 that Ax is a linear combination of the columns of A. This leads to a crucial
connection between spanning and linear systems.

Proposition 4.3.1. Span and Consistency. A vector b lies in span{vy,..., v} if and only if the linear
system with augmented matrix [vy ... vy | b] is consistent.

Proof. The vector equation cyvy + -+- + ¢x vy = b is equivalent to the matrix equation Ac = b, where
A =[vy...vg]. A solution c exists if and only if the system is consistent. |

Example 4.3.1. Checking the Span. Let v; = (1,1,0)7, vo = (0,1,1)7, and b = (2,3,1)7. Isb ¢

span{vy,va}? We form the augmented matrix and reduce:

Ro—Ry Rs—R»
R S

O~ =

012
113
111

o O =
_ = O
— = N
o~ O
S =N

1
0
0

The system is consistent (¢; = 2,¢3 = 1). Thus b = 2vy + va, and b € span{vy, va}.

Theorem 4.3.1. Spanning R™. Let A be an m x n matrix. The columns of A span R™ if and only if A
has a pivot position in every row.

Proof. If A has a pivot in every row, then for any b, the augmented matrix [A | b] cannot have a pivot in
the last column (since the pivot is already in the A part of that row). Thus, the system is always consistent.
Conversely, if there is a zero row in rref(A), say row m, we can choose a b such that [A | b] reduces to a
form with [0...0] 1] in the last row, making the system inconsistent. [ |

Linear Independence

The second fundamental question asks whether any vectors in our set are redundant. If a vector can be built
from the others, it adds nothing to the span.

Definition 4.3.2. Linear Independence. A set of vectors {vy,..., vy} is linearly independent if the only
solution to the homogeneous equation
cavi+ - 4cepvie =0

is the trivial solution ¢; = ¢g = -+ - = ¢ = 0. If there exists a non-trivial solution (where at least one ¢; # 0),
the set is linearly dependent.

Remark. Geometric Intuition:

e Two vectors are dependent if they lie on the same line (collinear).
e Three vectors are dependent if they lie on the same plane (coplanar).
e In general, a set is dependent if one vector lies within the span of the others.

Theorem 4.3.2. Characterisation of Dependence. An indexed set of vectors S = {vy,..., vy} with
k > 2 is linearly dependent if and only if at least one vector v; is a linear combination of the others.
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Proof.

(=) If dependent, there exist ¢; not all zero such that > ¢;v; = 0. Let ¢; # 0. We can rearrange:

Ci
GV =— ) ¢V, = Vj = —— | v
=g = =g (5
i#] i#]
(<) Ifv; =>2,,;a;vi, then (Z#j aivi) — 1v; = 0. The coefficient of v; is —1 # 0, so the relation is

non-trivial.

Proposition 4.3.2. Independence of Matriz Columns. The columns of a matrix A are linearly independent
if and only if the equation Ax = 0 has only the trivial solution. This occurs if and only if A has a pivot in
every column (no free variables).

Proof. By definition, Ax = ¢;vy+---+¢,v,. If the only weights that produce 0 are all zero, the columns are
independent. In Gaussian elimination, free variables correspond to non-trivial solutions. Thus, independence
requires zero free variables. |

Example 4.3.2. Checking Independence. Are the vectors vi = (1,2,3)7, vo = (4,5,6)7, v3 = (2,1,0)T
independent? We reduce the matrix A = [vivavs]:

1 4 2 1 4 2 1 4 2
2 5 1| ~Jj0 -3 =3|~1|0 1 1
3 6 0 0 —6 —6 0 0 0

There is no pivot in column 3. Thus, the variable x5 is free, and the columns are linearly dependent.
Specifically, the RREF implies o + 23 = 0 = x5 = —x3, and 1 + 4oy + 223 = 0 = z; =
—4(—x3) — 2x3 = 2x3. Setting x3 = 1, we find a dependency relation: 2vy — vy + vz = 0.

The Column Correspondence Property

When we row-reduce a matrix A to its reduced row echelon form R, we drastically change the columns.
However, the linear relationships between the columns are miraculously preserved. This phenomenon is
known as the Column Correspondence Property (CCP).

Theorem 4.3.3. Column Correspondence Property. Let A be a matrix and let R = rref(A).

1. The linear dependence relations among the columns of A are identical to those among the columns of
R. That is, Ac = 0 if and only if Rc = 0.

2. A column a; is a linear combination of the pivot columns of A with coefficients ¢; if and only if the
corresponding column r; is the same linear combination of the pivot columns of R.

Proof. Recall from the previous chapter that R = E'A for some invertible matrix E (a product of elementary
matrices).
Ac=0 < (EA)c=F0 < Rc=0.

Since the homogeneous equations share the same solution set, the coefficients ¢ that create a dependency in
A are exactly those that create a dependency in R. ]

This property allows us to inspect the simple matrix R to deduce facts about the complex matrix A.
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Example 4.3.3. Using CCP to Prune a Spanning Set. Suppose we want to find a linearly independent
subset of S = {vy1,Vva,Vv3,vs} that spans the same space, where

1 2 3 1
A=[vivavgvy] =12 4 7 3
1 2 4 2
The RREF is:
1 2 0 -2
R=10 0 1 1
00 0 O

The pivots are in columns 1 and 3.

1. Identification: By the CCP, the pivot columns of A (columns 1 and 3) form a linearly independent
set. Thus {vy,v3} is linearly independent.
2. Dependencies: The non-pivot columns of R reveal the dependencies:

e Column 2 of R is 2e;. Thus r, = 2r;. By CCP, vy = 2v;y.

e Column 4 of R is —2e; + ley (in terms of pivot columns rq,r3). Thus ry = —2r; + r5. By CCP,
Vg = —2V1 + V3.

Therefore, span{vy, vs,v3, v4} = span{vy, v}, and {vy,vs} is a basis for this span.

Proposition 4.3.3. Pivot Columns as a Basis. The pivot columns of a matrix A form a linearly independent
set that spans the column space of A (the set of all linear combinations of its columns). The non-pivot columns
are redundant.

Proof. In R, the pivot columns are standard basis vectors e, es, ... (potentially permuted). These are
clearly independent. By CCP, the corresponding columns in A are independent. Furthermore, every non-
pivot column in R has entries only in rows with pivots, meaning it is a linear combination of the pivot
columns to its left. By CCP, the same holds for A. Thus, removing non-pivot columns does not shrink the
span. |

4.4 Bases and Dimension

We have seen that a set of vectors can span a subspace, but it might contain redundant information (linear
dependencies). Conversely, a set can be linearly independent but fail to span the entire subspace. The
"Goldilocks" set (a set that spans just enough and has no redundancies), is called a basis.

Definition 4.4.1. Basis. A basis for a vector space (or subspace) V is a set of vectors S = {vy,...,v,}
in V that satisfies two conditions:

1. span(S) =V (Spanning).
2. S is linearly independent.

If a vector space V has a basis consisting of n vectors, then every basis for V' has exactly n vectors. This
invariant number is intrinsic to the space.

Definition 4.4.2. Dimension. The dimension of a finite-dimensional vector space V', denoted dim(V'), is
the number of vectors in any basis for V.

e The zero subspace {0} has dimension 0.
e R” has dimension n.
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Matrix Subspaces

Associated with every m X n matrix A are three fundamental subspaces. Their dimensions reveal the
solvability of the system Ax = b.

Definition 4.4.3. Fundamental Subspaces. Let A € R"™*"™.
1. Column Space (Col(A)): The subspace of R™ spanned by the columns of A.
Col(A) = span{col; (A),...,col,(A)}.

The dimension of the column space is called the rank of A, denoted rank(A).
2. Row Space (Row(A)): The subspace of R™ (represented as row vectors) spanned by the rows of A.

Row(A) = span{row; (A),...,row,(A)}.
3. Null Space (Null(A4)): The set of all solutions to the homogeneous equation Ax = 0.
Null(4) = {x € R" | Ax = 0}.

The dimension of the null space is called the nullity of A, denoted nullity(A).

Computing Bases

We can find bases for these subspaces systematically using Gaussian elimination.

Basis for the Column Space We cannot simply use the columns of rref(A) as a basis for Col(A)
because row operations change the column space (e.g., they can zero out a row). However, the Column
Correspondence Property ensures that the positions of the pivot columns remain invariant.

Proposition 4.4.1. Basis for Col(A). The pivot columns of the original matrix A form a basis for Col(A).

Proof. By the CCP, the linear independence of the pivot columns in rref(A) (which are standard basis
vectors) implies the independence of the corresponding columns in A. Furthermore, the non-pivot columns
are linear combinations of the pivot columns, so removing them does not change the span. |

. . 1 20
}. Reducing A yields {O 01

1 2 3

Example 4.4.1. Column Space Basis. Let A = [2 47

} . The pivots are

in columns 1 and 3. Thus, a basis for Col(4) is { B] , ﬁ] } Note that column 2 is 2x column 1, which is

redundant.

Basis for the Row Space Unlike the column space, the row space s preserved under row operations.

Proposition 4.4.2. Basis for Row(A). The non-zero rows of any row-echelon form (REF or RREF) of A
form a basis for Row(A).

Proof. Row operations are linear combinations of rows, so they do not escape the span of the original rows.
Thus Row(A) = Row(rref(A4)). The non-zero rows of the RREF are linearly independent (due to the staircase
pivot structure), so they form a basis. |
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Basis for the Null Space The null space is explicitly found by solving Ax = 0.
Proposition 4.4.3. Basis for Null(A). To find a basis for Null(A):

1. Solve Ax = 0 to find the general solution in terms of free variables.
2. Decompose the general solution into a linear combination of vectors weighted by the free variables.
3. These vectors form a basis for Null(A).

Example 4.4.2. Null Space Basis. Let A = (1) (2) (1) i . This is already in RREF. Basic variables:
x1, 3. Free variables: xo,z4. Equations: 1 +2z9 + 324 =0 = x1 = —2x2 — 324, and 23 + 424 =0 =
r3 = —4x4. Vector form: ;
—2$2 — 31)4 —2 -3
_ xro _ 1 0
X = _4$4 = X9 0 + Ty 4
Xy 0 ] 1

The basis is {(—2,1,0,0)7, (=3,0,—4,1)T}.

The Rank-Nullity Theorem

There is a beautiful conservation law linking the dimensions of these subspaces.
Theorem 4.4.1. Rank-Nullity Theorem. For any matrix A € R"*":

rank(A) + nullity(A) = n.

That is, the number of pivot columns plus the number of free variable columns equals the total number of
columns.

Proof. The columns of A are partitioned into pivot columns and non-pivot columns.

e rank(A) is the number of pivot columns (dimension of Col(A)).
e nullity(A) is the number of free variables, which corresponds exactly to the number of non-pivot
columns.

Since every column is either a pivot column or a non-pivot column, the sum is n. |

Corollary 4.4.1. Row Rank equals Column Rank. For any matrix A, dim(Col(A)) = dim(Row(A)).

Proof. The dimension of Col(A) is the number of pivots. The dimension of Row(A) is the number of non-zero
rows in the RREF. By the definition of RREF, each non-zero row has exactly one leading pivot. Thus, the
number of pivots equals the number of non-zero rows. |

General Linear Systems Theory

We can now fully characterize the solution set of any linear system Ax = b using the language of subspaces.
Proposition 4.4.4. Structure of Solutions. Let Ax = b be a consistent linear system. The general solution
x can be written as:

X = Xp + Xp,
where x,, is a particular solution (any specific vector satisfying Ax, = b) and x; is a solution to the
homogeneous equation Axy = 0 (i.e., x;, € Null(A4)).

Proof. If Ax = b and Ax, = b, then A(x —x,) = Ax — Ax, = b —b = 0. Thus x — x, = x;, € Null(4), so
X = X, + xp,. Conversely, if x = x, + X3, then Ax = Ax, + Ax;, =b+0=b. |
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This structure explains why the general solution involves "parameters". The parameters are simply the
coeflicients of the basis vectors of the null space.

Corollary 4.4.2. Degrees of Freedom. If a consistent system Ax = b has a solution, the number of free
parameters in the general solution is exactly nullity(A).

Example 4.4.3. Summary Example. Consider Ax = b where A is 3 x 5 and has rank 3.

e Since rank is 3 (max possible for 3 rows), the columns span R3. A solution exists for all b.
e By Rank-Nullity, nullity(A) = 5 — 3 = 2. The solution set is a 2-dimensional "plane" (shifted by x,,)
in R,

4.5 Rank and Elementary Transformations

In this final section, we investigate the relationship between the row rank, the column rank, and elementary
transformations. We will establish the fundamental result that row rank and column rank are equal for any
matrix.

Invariance of Rank We begin by showing that elementary operations do not change the dimension of
the row or column spaces.

Theorem 4.5.1. Rank Invariance Under Row Operations. Let A be a matrix and let B be the result
of applying an elementary row operation to A. Then:

1. row_rank(A) = row_rank(B).
2. col_rank(A) = col rank(B).

Proof.

1. Row Rank: The rows of B are linear combinations of the rows of A. Thus Row(B) C Row(A). Since
elementary row operations are reversible, the rows of A are linear combinations of the rows of B, so
Row(A) C Row(B). Therefore, the subspaces are identical, and their dimensions are equal.

2. Column Rank: An elementary row operation corresponds to left-multiplication by an invertible
matrix E: B = FA. Let cq,...,c, be a subset of the columns of A. If these are linearly dependent,
there exist scalars x; not all zero such that Y z;c; = 0. Multiplying by F gives > x;(Ec;) = 0, so the
corresponding columns of B are dependent. Conversely, if > z;(Fc;) = 0, multiplying by E~! gives
> x;c; = 0. Thus, linear independence relationships among columns are preserved. Consequently, the
dimension of the column space (maximum number of independent columns) remains unchanged.

The analogous result holds for elementary column operations (which correspond to right-multiplication by
elementary matrices).

Corollary 4.5.1. Rank Invariance Under Column Operations. Elementary column operations do not alter
the row rank or column rank of a matrix.

Proof. This follows from the previous theorem by considering the transpose AT. |

Equality of Row and Column Rank We are now ready to prove one of the most surprising and
important theorems in linear algebra.

Theorem 4.5.2. Equality of Ranks. For any m x n matrix A, the row rank and the column rank are
equal dim(Row(A)) = dim(Col(A)). This common value is simply called the rank of A.
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Proof. Let r be the row rank of A. We can transform A into its reduced row echelon form R using elementary
row operations. By rank invariance, row rank(R) = r and col rank(R) = col rank(A). In R, the non-
zero rows are linearly independent and form a basis for the row space. Thus, there are exactly r non-zero
rows. By the definition of RREF, each non-zero row has a leading pivot (1). These pivots appear in
distinct columns. These r pivot columns are standard basis vectors eq,. .., e, (up to permutation of rows)
and are clearly linearly independent. The non-pivot columns are linear combinations of the pivot columns.
Thus, the dimension of the column space of R is exactly r. Therefore, col rank(A) = col rank(R) =r =
row _rank(A). |

4.6 Dimension and Basis Construction

We conclude this chapter by summarising how to construct bases for subspaces of R™ and stating some
fundamental properties of dimension.

Theorem 4.6.1. Existence of Basis. Every subspace V' of R™ has a dimension d such that 0 < d < n. If
d > 0, V has a basis consisting of d vectors.

Proof. It V' = {0}, its dimension is 0. If V' contains a non-zero vector vy, let S = {vy}. If S spans V, we
are done. If not, pick vo € V' \ span(S). The set {vy, vz} is linearly independent. We repeat this process.
Since any set of n 4+ 1 vectors in R™ is dependent, the process must terminate at some d < n. |

Proposition 4.6.1. Monotonicity of Dimension. If U and V are subspaces of R™ such that U C V, then
dim(U) < dim(V). Furthermore, if dim(U) = dim(V'), then U = V.

Proof. Let By be a basis for U. These vectors are linearly independent in V. We can extend By to a basis
for V. Thus the size of the basis for U cannot exceed the size of the basis for V. If the sizes are equal, the
basis for U already spans V, so U = V. ]

Example 4.6.1. Finding a Basis. Find a basis for the subspace V of R* generated by:
vi=(1,-1,2,3), vo=1(4,58,-9), vs=(2,1,4,-1), vy=(2,-5,4,13).

Construct a matrix A with these vectors as rows:

1 -1 2 3

4 5 8 -9

A= 2 1 4 -1

2 -5 4 13

Reduce to REF to find a basis for the row space:

1 -1 2 3 1 -1 2 3
A~ o 9 0 -21f |0 3 0 -7
0o 3 0 -7 0o 0 0 O
0o -3 0 7 0o 0 0 O

The non-zero rows r1 = (1,—1,2,3) and ro = (0,3,0,—7) form a basis for V. Thus dim(V) = 2. Note that
these basis vectors are not the original vectors. If a basis consisting of a subset of the original vectors is
required, one would form a matrix with the vectors as columns and select the pivot columns.

4.7 Exercises
1. Bases and Parameters. Consider the matrix A dependent on a scalar parameter k:

111 1
Ay=11 2 k& 3
2 3 4 k2
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(a) Determine the rank and nullity of Ay for all possible values of k.
(b) For the case k = 3, find a basis for the column space consisting of column vectors of Ay, and a
basis for the null space.

2. Basis Transformation. Let {vy, va, v3} be a basis for R3. Determine whether the following sets are
also bases for R3. Give a proof or a counterexample.

(a) The set of cumulative sums: {vq, vi +va, vi +va + v3}.

(b) The set of circular sums: {vy + va, vo + v3, vy + vy}

(c) Generalisation: Let {vy,...,v,} be a basis for R”. Let u; = v; + v;4; for 1 < i < n, and
u,, = v, + vi. For which values of n is the set {uy,...,u,} linearly dependent?

3. Rank Constraints and Geometry. The dimensions of a matrix impose strict limits on the geometry
of its row and column spaces.

(a) Can a 3 x 4 matrix have all its column vectors linearly independent? Can it have all its row
vectors linearly independent? Justify your answer using the definition of rank.

(b) If Ais a 5 x 4 matrix and rank(A) = 3, can the columns of A be linearly independent? Can the
rows?

(¢) Prove that for any m x n matrix where m # n, it is impossible for both the row vectors to be
linearly independent and the column vectors to be linearly independent.

4. The Inverse Problem: Constructing Constraints. Typically, we are given a matrix A and
asked to find its null space. Consider the reverse problem: given a subspace, find a system of equations
defining it. Let W be the subspace of R* spanned by the vectors w; = (1,2,0, —1) and wy = (2,3,1,0).
Construct a matrix A such that Null(4) = W.

Remark. Hint: Use the property that a-x = 0 for all x € W if and only if a is orthogonal to both
w1 and wo. The rows of A must be such vectors.

5. Preservation of Independence. Let {x1,...,X,,} be a linearly independent set of vectors in R™.

(a) Let y be a vector such that y ¢ span{xy,...,X,,}. Prove that the set {x;+y,x24+y,...,Xm+y}
is linearly independent.

(b) Suppose instead that y = >, x;. Prove that {x; +y,...,X,, + y} is linearly independent if
and only if m 4+ 1 # 0. (Note: in R, this is always true, but consider why this condition might
matter in fields with finite characteristic).

6. The Vandermonde Rank. Let x1, x5, ..., x, be pairwise distinct real numbers. Consider the n x n

Vandermonde matrix V: , )

n—
1z zy - .

1 a9 a3 - b~

V =
2 n—1
1 =z, =z - af

Using elementary column and row operations, prove that rank(V') = n.

Remark. Hint: Use elementary column operations to create zeros in the first row, then factor out
common terms to reduce the problem to a Vandermonde matrix of size (n — 1) x (n — 1). Proceed by
induction.

7. Linear Maps on Pairs. Let u and v be linearly independent vectors in R™. Consider two new vectors
defined by linear combinations:
Xx=au+bv, y=cu+dv,

where a, b, ¢,d € R. Prove that {x,y} is linearly independent if and only if ad — be # 0.

Remark. This result establishes that the determinant determines invertibility for 2 x 2 coordinate
transformations.

8. Rank of a Product. Let A be an m X n matrix and B be an n X p matrix.
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(a) Prove that Col(AB) C Col(A).
(b) Deduce that rank(AB) < rank(A).
(c) By considering row spaces, prove that rank(AB) < rank(B).

9. x One-Sided Inverses and Rank. A matrix A is invertible if there exists B such that AB = I and
BA = 1. If A is not square, it cannot be invertible, but it may possess a one-sided inverse.

(a) Left Inverse: Prove that an m x n matrix A has a left inverse C' (such that CA = I,,) if and
only if rank(A) = n.

Remark. This requires m > n. Recall that Ax = 0 implies x = 0 for full column rank matrices.

(b) Right Inverse: Prove that an m x n matrix A has a right inverse D (such that AD = I,,,) if
and only if rank(A4) = m.
(c¢) Construct 2 x 2 matrices A and B such that rank(A4) = rank(B) = 1 but rank(AB) = 0.

10. Reversibility of Elementary Operations. We stated that every elementary row operation is re-
versible.

(a) For a row replacement operation R; — R; + kR;, write down the matrix E that performs this
operation and the matrix E’ that performs the inverse operation. Verify that EE’ = I.

(b) For a row interchange R; ¢+ R;, show that the corresponding elementary matrix P is its own
inverse, i.e., P2 = 1.

11. The Basis Extension Theorem. Let S = {uy,...,u;} be a linearly independent set in R™ (where
k <mn).

(a) Prove that there exist vectors vi,...,v,_j such that the set SU{vy,...,v,_} forms a basis for
RTL

(b) Constructive Application: Extend the independent set {(1,0,1),(0,1,1)} to a basis for R3.

12. Affine Dimension. Let X be a subspace of R™. Let u be a non-zero vector in R™ such that u ¢ X.
Define the set Y = {au+v |a € R,v € X}.

(a) Prove that Y is a subspace of R".
(b) Prove that dim(Y) = dim(X) + 1.
(¢) Use this result to prove that if X is a subspace of R™ and dim(X) = n, then X = R"™.

13. Grassmann’s Formula. Let U and W be subspaces of R".

(a) Prove that U N W = {0} if and only if for every non-zero u € U and w € W, the vectors u and
w are linearly independent.

(b) Prove the dimension formula for the sum and intersection of subspaces dim(U + W) = dim(U) +
dim(W) — dim(U N W).
Remark. Hint: Start with a basis for U N W, extend it to a basis for U, and separately extend
it to a basis for W. Show that the union of these vectors is a basis for U + W.

(c) Deduce that if U and W are planes through the origin in R* (dimension 2), their intersection
must contain a line (dimension at least 1).

14. x The Left Null Space and Consistency. We have defined three fundamental subspaces of a matrix
A € R™*", There is a fourth: the left null space, defined as Null(AT). This subspace lies in R™.
(a) Prove that y € Null(AT) if and only if y7 A = 07.
(b) Prove the Consistency Theorem: The system Ax = b has a solution if and only if y’b = 0 for
every y € Null(AT).
Remark. For the forward direction, multiply Ax = b by y”. For the reverse, the proof requires
orthogonality concepts we will formalise later, but you may argue using row reduction: if the
system is inconsistent, a row [0...0 | 1] appears. Interpret this row as a vector y.
1 2 1
1 -1 4
basis for Null(AT) (is it trivial?) and check the dot product condition.

(¢) Verify this theorem for the system in Figure 4.1 where A = { ] and b = {ﬂ Find a



Chapter 5

Inverse Matrices

We continue our exploration of matrix algebra by investigating the multiplicative inverse of a matrix. Just
as the reciprocal 1/z allows us to solve ax = b via = a~'b, the matrix inverse A~! provides a powerful
tool for solving linear systems Ax = b.

5.1 Invertible Matrices

While every non-zero real number has a multiplicative inverse, not every non-zero matrix can be inverted.
We restrict our attention to square matrices, as invertibility requires the matrix to map a space to itself
bijectively.

Definition 5.1.1. Invertible Matriz. A square matrix A € R™*™ is invertible (or non-singular) if there
exists a matrix B € R"*™ such that:

AB =1, and BA=1I,.
If such a matrix B exists, it is unique and is denoted by A~!. If no such matrix exists, A is called singular.

Remark. Why "singular"? In the landscape of all n x n matrices, the non-invertible ones are rare—they
form a "singular" subset of lower dimension, much like lines in a plane. Most random matrices are invertible.

Elementary Matrices are Invertible

Recall the elementary matrices introduced in the previous chapter. Since every elementary row operation is
reversible, every elementary matrix must be invertible.

Proposition 5.1.1. Inverses of Elementary Matrices. Every elementary matrix F is invertible, and its
inverse E~! is the elementary matrix of the same type that reverses the operation.

e Replacement: If E adds aR; to R;, then E~! subtracts aR; from R;.
(Eij(a)™" = Eij(—a).
e Scaling: If E scales R; by a # 0, then E~! scales R; by 1/a.
(Di(e)) ™" = Di(1/a).
e Interchange: If E swaps R; and Rj, then E~! swaps them back (it is its own inverse).
(Pij)™" = Py.

41
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10

3 J adds 3 x Row; to Rowsy. Its

Example 5.1.1. Inverse of an Elimination Step. The matrix £ = [
10
-1 _
o [_3 J |

sy [ A=t 1=

inverse must subtract 3 x Row; from Rows:

Verification:

Uniqueness of Solutions

The existence of an inverse is inextricably linked to the uniqueness of solutions for linear systems.

Theorem 5.1.1. Invertibility and Unique Solutions. Let A € R™"*". The homogeneous system Ax = 0
has only the trivial solution x = 0 if and only if A is invertible.

Proof.

(=) Suppose Ax = 0 has only the trivial solution. Then rref(A) = I. By the decomposition theorem,
A=E;'...E;'I. A product of invertible matrices is invertible, so A is invertible.
(<) Suppose A4 is invertible. If Ax = 0, left-multiply by A~!:

AMAx) =470 = (A 'A)x=0 = Ix=0 = x=0.
]

Proposition 5.1.2. Left and Right Inverses. For square matrices, a one-sided inverse implies a two-sided
inverse.

1. f BA=1,then AB=1 (so B=A"!
2. If AB=1,then BA=1 (so B=A"1

~— —

Proof. Suppose BA = 1. If Ax =0, then B(Ax) = B0=0 — (BA)x=0 = Ix=0 = x=0.
Since Ax = 0 has only the trivial solution, A is invertible. Let A~! be its inverse. Then B = B(AA™!) =
(BA)A=! = TA=' — A=!, Thus AB = AA~' = I. -

Properties of the Inverse

Matrix inversion interacts predictably with other matrix operations, though order matters.
Theorem 5.1.2. Algebra of Inverses. Let A, B € R™*" be invertible matrices and ¢ # 0 be a scalar.

Inverse of Inverse: (A71)~1 = A.

Product: (AB)~! = B~tA~!. (Note the reversal of order).
Scaling: (cA)~' =21A4"1
Transpose: (AT)~! = (A~HT.

Ll

Proof. We verify the product property (item 2). We must show that (B=1A~1) is the inverse of (AB):
(AB)(B'A™Y) = A(BB YA ' = A()A ' = A4~ =TI

Similarly, (B~1A~1)(AB) = B-Y(A~*A)B = B~Y(I)B = B~'B = 1. |
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5.2 Computing the Inverse
The 2x2 Formula

For 2 x 2 matrices, there is a simple explicit formula.

Proposition 5.2.1. Inverse of a 222 Matriz. The matrix A = {ZL Z} is invertible if and only if ad — bc # 0.

If so: )
d -b
Al = —— .
ad — be [—C a }

The quantity ad — be is called the determinant of A.

Y

RQV
9‘\ Inverse (—0)
xT
\%

Figure 5.1: Visualising the inverse of a rotation matrix.

cos —sinf

. has determinant cos? 6§ —
sinf cos6

Example 5.2.1. Rotation Matrices. The rotation matrix Ry = {
(—sin® @) = 1. Tts inverse is:

R_l—l cosf sinf|  [cos(—0) —sin(—0) _R
7 1 |—sinf cosf|  |sin(—0) cos(—0) | (=6)

Geometrically, the inverse of rotating by 6 is rotating by —6.

The General Algorithm (Gauss-Jordan)

For larger matrices, we use Gaussian elimination. The problem "Find X such that AX = I" is equivalent
to solving n linear systems simultaneously:

Alxy |- [ xp] =ler |-+ | en].

This can be done by reducing the super-augmented matrix [A4 | I].

Theorem 5.2.1. Algorithm for Inversion. Let A € R™*™. Form the augmented matrix [A | I].

1. Apply the Gauss-Jordan algorithm to reduce [A | I].
2. If A is invertible, the result will be [I | A71].

3. If the left side reduces to a matrix with a zero row (i.e., rref(A) # I), then A is singular (not invertible).

=N O

),
1 0

Example 5.2.2. Computing a 3x3 Inverse. Find the inverse of A = |2 0|. Form [A | I]:
4 4

=N
=N O
= o O
o O =
o = O
= O O
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Eliminate below pivots:

1 0 01 0 O
R2—>R2—2R1, R; - R3s —4R| — 0 2 0}-2 1 0
0 4 4/-4 0 1
1 0 0] 1 0 O
R3; — R3 — 2Ry, = 0 2 0]-=-2 1 0
0 0 4,0 =21
Scale to identity:
1 1 1 0 0] 1 0 0
Ry — §R2, R3 — ZR?’ — 01 0f-1 1/2 0
0 0 1] 0 —1/2 1/4
Thus,
1 0 0
At =|-1 1/2 0
0 -1/2 1/4

This algorithm provides a constructive proof that A is invertible if and only if rref(A) = I.

5.3 Matrices with Special Shapes

We have already encountered diagonal and triangular matrices in the context of Gaussian elimination. In
this section, we formalise these concepts and introduce other structural properties—such as symmetry—that
play a crucial role in both pure mathematics and applications like physics and engineering.

Symmetric and Antisymmetric Matrices

A matrix is symmetric if it is equal to its transpose. This implies the matrix must be square.

Definition 5.3.1. Symmetry. Let A € R"*".

1. Ais symmetric if AT = A. In components, A;; = Aj;.
2. A is antisymmetric (or skew-symmetric) if AT = —A. In components, A;; = —Aj;.

Remark. For an antisymmetric matrix, the diagonal entries must satisfy 4;; = —A;;, which implies A;; = 0.
Thus, all diagonal elements of an antisymmetric matrix are zero.

Example 5.3.1. Examples of Symmetry.

) 1 2
e Symmetric: I, Opxn, Eii, {2 0}

e Antisymmetric: 0,,xn, [_02 (2)]

e Neither: E)) 2}.

The transpose operation interacts with matrix arithmetic in predictable ways, often referred to as the "socks-
shoes" property for products (you put them on in one order, take them off in the reverse).

Proposition 5.3.1. Properties of Transpose. Let A, B € R™*"™ and ¢ € R.

1. (AT)T = A.
2. (AB)T = BT AT (The reverse order law).
3. (cA)T = cAT.
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4. (A+B)T = AT 4+ BT.

5. If A is invertible, (AT)~1 = (41T,
Theorem 5.3.1. Symmetric-Antisymmetric Decomposition. Every square matrix A can be uniquely
expressed as the sum of a symmetric matrix S and an antisymmetric matrix K.

1 1
A=S+K, whereS = 5(A+AT) and K = 5(A — AT,
Proof. We verify the properties:

o ST =1(AT 4 (ATYT) = %(AT + A) = S (Symmetric).

o KT = (AT — (AT)T) = (AT — A) = —K (Antisymmetric).
e S+K=31(A+AT+A-AT)= A

N[ —=

Example 5.3.2. Decomposition Example. Let A = [:1)) Z] Then AT = [; ﬂ

s=3(b 0+b )=ls %
Y (R O Y

Proposition 5.3.2. Symmetry of AT A. For any matrix A € R™*" (not necessarily square), the product
AT A is always a symmetric n X n matrix.

Proof. (ATA)T = AT(AT)T = AT A. ]

Matrix Exponents

For a square matrix A, we can define powers just as we do for scalars.

Definition 5.3.2. Matriz Powers. Let A € R"*",

o A0=1,.
e A= AA...Afor keN.
k ti

e If A is invertible, A=F = (A~ 1)k,

Standard exponent laws hold: APAY = AP'Y and (AP)? = APY. However, due to non-commutativity,
(AB)* # A*B* in general. Instead, (AB)? = ABAB. The binomial theorem (A + B)? = A% + 2AB + B?
only holds if A and B commute (AB = BA).

Proposition 5.3.3. Powers of Symmetric Matrices. If A is symmetric, then A* is symmetric for all integer
k>1.

Proof. By induction. Base case k = 1 is true. If (A¥)T = A¥ then (AF*HT = (AAK)T = (AF)TAT = A*A =
Ak+1, ]

Diagonal and Triangular Matrices

Matrices with many zeros are computationally desirable. The most structured forms are diagonal and
triangular.
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Definition 5.3.3. Structured Matrices. Let A € R*"*"™,

1. Diagonal: A;; =0 for all ¢ # j.
2. Upper Triangular: A;; =0 for all ¢ > j (all entries below the diagonal are zero).
3. Lower Triangular: A;; =0 for all ¢ < j (all entries above the diagonal are zero).

Remark. A diagonal matrix is simultaneously upper and lower triangular.

Proposition 5.3.4. Multiplication of Structured Matrices. Let A and B be n X n matrices.

1. If A, B are diagonal, then AB is diagonal, and (AB);; = A;; Bi;.
2. If A, B are upper triangular, then AB is upper triangular.
3. If A, B are lower triangular, then AB is lower triangular.

Proof. We prove (2). Let A, B be upper triangular. Then A;; = 0if ¢ > k and By; =0 if £ > j. The (4, )
entry of the product is ), A;xBy;. For a term to be non-zero, we need i < k (from A) and k < j (from B).
Thus, we need i < k < j. If ¢ > j, no such k exists, so the sum is zero. Thus AB is upper triangular. |

Block Matrices

It is often useful to partition a large matrix into smaller submatrices (blocks). We can treat these blocks as
single algebraic units, provided the dimensions are compatible.

Definition 5.3.4. Block Multiplication. Let A and B be partitioned matrices:

All A12 Bll Bl2
A = B = .
|:A21 A22:| ’ |:B21 B22:|

If the column partitions of A match the row partitions of B (i.e., width of A7 = height of By, etc.), then
the product is given by:

AB — A1 By + A12Boy A11Bio + A12Boo
A21B11 + AgeBa1 A21Bia + AgeBas|

This rule generalises to partitions of any size. It essentially says "matrix multiplication works block-wise",
treating the blocks as non-commutative scalars.

Example 5.3.3. Block Diagonal Multiplication. If A and B are block diagonal:

4 0 B o
A—[o AJ’ B—{o BQ]'

Then:
AB:[AlBlJrO 040 }_[AlBl 0 ]

0+0 0+AyBs| | O A2 B>

This property is fundamental in quantum mechanics and signal processing, where we decompose systems
into independent subsystems.

A

0 C:| , assuming

Example 5.3.4. Inverse of a Block Triangular Matrix. Suppose we wish to invert M = [

X Y]. We require MM~ = TI:

. . _1 _
A and C are invertible. Let M~ = [ 7 W

A Bl[X Y] [AX+BZ AY+BW] [I 0
0o cllz w|T| ¢z cw | T lo 1)

From the bottom row:

1. CZ =0 = Z =0 (since C is invertible).
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2.CW=I = W=CL
Substituting Z = 0, W = C'~! into the top row:

1. AX =1 = X=A"1
2. AY +BC71'=0 = AY=-BC! = Y =-A"'BC L.

Thus,

A B|™' [A' —a'BC!
o ¢l “|o c-1

5.4 LU Factorisation

We have seen that Gaussian elimination can be described as a sequence of matrix multiplications. This
perspective leads to a powerful tool known as the LU Factorisation, which decomposes a matrix A into the
product of a lower triangular matrix L and an upper triangular matrix U. This factorisation is particularly
useful for solving linear systems Ax = b efficiently, especially when multiple right-hand sides b must be
processed.

The Factorisation

The forward pass of Gaussian elimination transforms a matrix A into a row echelon form U. If we restrict
ourselves to row replacement operations (adding a multiple of one row to a lower row), this process can be

represented as:
Ey...EsE1A=U,

where each F; is a lower triangular elementary matrix. Since the inverse of a lower triangular elementary
matrix is also lower triangular, and the product of lower triangular matrices is lower triangular, we can invert
the operations:

A= (E{'Ey' .. E; MU = LU
Here, L is a lower triangular matrix with 1s on the diagonal (unit lower triangular), and U is the upper
triangular row echelon form of A.
Theorem 5.4.1. LU Decomposition. Let A € R"*™. If A can be reduced to row echelon form without
row interchanges, then A admits a factorisation A = LU, where L is unit lower triangular and U is upper
triangular.

Remark. The entries of L below the diagonal are precisely the multipliers used during elimination. Specif-
ically, if we eliminate the entry A;; by the operation R; — R; — ¢;;R;, then the (7,j)-th entry of L is
lij.

2 4 =2
Example 5.4.1. Calculating LU. Let A= | 4 9 -=3].
-2 -3 7

1. Eliminate below A;; = 2:
e Ry — Ry — 2Ry (multiplier ¢y = 2).
e R3 — R3 — (—1)R; (multiplier /37 = —1).

2 4 -2
Matrix becomes: [0 1 1
01 5

2. Eliminate below Ay = 1:
e R3; — R3 — 1Ry (multiplier ¢35 = 1).
2 4 =2
Matrix becomes U = [0 1 1
0 0 4
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3. Construct L from the multipliers:

One can verify that LU = A.

PLU Factorisation

If row interchanges (permutations) are required during elimination to avoid a zero pivot, we cannot write
A = LU directly. Instead, we perform the permutations first (or track them). This leads to the A = PLU
factorisation.

Theorem 5.4.2. PLU Decomposition. For any square matrix A, there exists a permutation matrix P (a
reordered identity matrix), a unit lower triangular matrix L, and an upper triangular matrix U such that:

A=PLU
or equivalently PT A = LU. The matrix P accounts for the row swaps needed to proceed with elimination.

0 1

Example 5.4.2. PLU Example. Let A = [1 9

]. Elimination fails immediately because the pivot is 0.
Swap R +» Ro: P = 0 1 .
1 0
0 1|10 1 1 2
ra= 0ol o=l 1=

In this trivial case, L = I. Thus A = PTIU = PIU (since PT = P here).

Solving Systems with LU

The primary application of LU factorisation is solving systems Ax = b. The system becomes L(Ux) = b.
We define y = Ux and solve in two steps:

1. Forward Substitution: Solve Ly = b for y. Since L is lower triangular, this is immediate (solve y1,
then ys, etc.).

2. Backward Substitution: Solve Ux = y for x. Since U is upper triangular, this is the standard
back-substitution step.

This method is computationally superior to computing A~! because triangular systems are cheap to solve.

5.5 Applications

Matrix arithmetic appears across diverse fields. We highlight a few illustrative examples.

Stochastic Matrices and Markov Chains Processes that evolve probabilistically over time—such as
population dynamics or web page rankings — are often modelled by Markov chains. The transitions are
described by a matrix.

Definition 5.5.1. Stochastic Matrixz. A matrix P € R"*™ is a stochastic matriz if all its entries are
non-negative (P;; > 0) and the sum of the entries in each column is 1.

If x;, is a probability vector representing the state of a system at step k (where components sum to 1), the
state at the next step is xx4+1 = Pxj. The long-term behaviour is governed by the steady-state vector x*,
satisfying Px* = x* (an eigenvector problem, which we will study later).
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Example 5.5.1. Disease Propagation. Consider a population where individuals are either Healthy (H) or
Infected (I).

e An infected individual stays infected with probability 0.9, recovers with 0.1.

e A healthy individual stays healthy with probability 0.8, gets infected with 0.2.

The transition matrix is:

0.9 0.2
P= [0.1 0.8}

100

If initially xg = [900

] (100 infected), then x; = Pxq = [90 - 180] _ {270}

10 + 720 730

Cryptography Matrices can perform linear transformations on data, serving as a basic form of encryption
(Hill ciphers).

Encoding: Convert a message into a sequence of vectors vi,...,vg. Choose an invertible matrix A. The
encoded vectors are ¢; = Av;. Decoding: The receiver, possessing the key A~!, reconstructs the original
message via v; = A" lc;.

Example 5.5.2. Simple Cipher. Let A = E g] Since det(A) = —1, A is invertible. Message vector
|2 o |4 a1 |-h 2 41  |-204+22] |2
v = L} Encoded: ¢ = Av = [11]. Decoded: v=A""c= [ 3 _1] [11} = [ 1211 } = [J

5.6 The Symmetry of Row Equivalence

In Chapter 2, we defined two matrices to be row-equivalent (A ~ B) if B could be obtained from A via row
operations. At the time, we claimed this relationship was reversible. With the tool of matrix inversion, we
can now prove this rigorously.

Theorem 5.6.1. Symmetry of Row Equivalence. If A ~ B, then B ~ A. Furthermore, if A ~ B and
B~ (C, then A~ C.

Proof. If A ~ B, there exist elementary matrices F1, ..., Fy such that B = Ej ... F1 A. Since every elemen-
tary matrix is invertible, we can multiply by their inverses in reverse order:

A= (E;'...E;")B.

Since the inverse of an elementary matrix is also an elementary matrix (as proven earlier), A is obtained

from B by a sequence of row operations. Thus B ~ A. |
1 1 0
Example 5.6.1. Reversibility of Reduction. Consider the matrix A = [0 1 1|. We reduce A to the
1 0 1
identity I via the sequence:
[1 1 o0
1. Rg — R3 — Rll 0 1 1
0 -1 1
1 1 0
2. R3 — R3 + Rs: 1 1].
0 2

3. Ry — %R35

errPloo

O O =
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4. Ry — Ry — Rj3:

5. Rl‘)Rl*RQ: =1.

OO O
_— o o = OO

Because every step is reversible, we can reconstruct A from I by applying the inverse operations in reverse
order: Ry — Ri + Ry, Ry — R + R3, R3 — 2R3, and so forth.

5.7 Exercises

1. The Neumann Series. A matrix N is called nilpotent if there exists a positive integer k such that
Nk =o0.

(a) Prove that if N is nilpotent, then the matrix I — N is invertible.
(b) Show that the inverse is given by the finite series:

(I-N)"'=I+N+N?+ ...+ N1

1 2 3
(c¢) Use this result to compute the inverse of A= [0 1 2| by writing A=1— N.
0 0 1

2. The Trace and the Commutator. The trace of a square matrix A, denoted tr(A), is the sum of its
diagonal entries: tr(A4) =Y. | Aj;.
(a) Prove that for any A, B € R"*", tr(AB) = tr(BA).

(b) The commutator of A and B is defined as [A, B] = AB — BA. Prove that it is impossible to find
matrices A and B such that [4, B] = I.

Remark. This result is significant in quantum mechanics, implying that the position and mo-
mentum operators cannot be represented by finite-dimensional matrices.

(c) Is it possible to find A and B such that AB — BA is diagonal with non-zero entries?

3. The Isomorphism of Complex Numbers. Let C be the set of 2 x 2 matrices of the form M (a,b) =
[a _ab] where a,b € R.

(a) Prove that this set is closed under addition and multiplication. That is, the sum and product of
matrices in C are also in C.

(b) Show that if M (a,b) # 0, then M (a,b) is invertible and its inverse lies in C.
(c) Establish a correspondence between M(a,b) and the complex number z = a + bi. Show that
matrix multiplication corresponds exactly to complex number multiplication.

4. Symmetric and Skew-Symmetric Forms. Let A be an n X n matrix.

(a) Prove that the matrix B = AT A is always symmetric.
(b) Prove that if A is skew-symmetric (A7 = —A) and n is odd, then A is not invertible.

Remark. Hint: Use the properties of the determinant, specifically det(A”) = det(A) and
det(—A) = (—1)"det(A), assuming the reader is familiar with basic determinant properties, or
prove it via characteristic equations if preferred.

(¢) Let S be a symmetric matrix and K be a skew-symmetric matrix. Prove that tr(SK) = 0.
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5. The Sherman-Morrison Formula. In computational physics, one often needs to update the inverse
of a matrix after a small modification. Let A be an invertible matrix, and let u, v be column vectors.
Prove that if 1 + v A=1u # 0, then the matrix A + uv” is invertible and its inverse is given by:

., AtuvTat

A Tyl — =
(A+uv?) 1+vTA-1lu

Remark. Verify the result by multiplying (A + uv”) by the proposed inverse to obtain I.
. . . o . A B
6. Block Matrix Inversion (The Schur Complement). Consider a partitioned matrix M = C D

where A is invertible.

(a) Verify the following factorisation of M:

A Bl [ I 0][4 o][I A'B
C D| |(cA=t T[]0 S||O I |
where S = D — CA™ B is called the Schur complement of A in M.
(b) Prove that M is invertible if and only if S is invertible.
(c) Derive the formula for M ~! assuming S is invertible.

7. Uniqueness of the LDU Decomposition. We established the existence of the LU decomposition.
A more symmetric form involves a diagonal matrix.

(a) Prove that if a square matrix A admits an LU factorisation where L is unit lower triangular and U
is upper triangular with non-zero diagonal entries, then A can be written uniquely as A = LDU’,
where:

e [ is unit lower triangular,
e D is a diagonal matrix,
e U’ is unit upper triangular (1s on the diagonal).

(b) Use this to prove that if A is a symmetric matrix that allows LDU’ factorisation, then L = (U")7,
and thus A = LDLT.

8. Stochastic Matrices. Let P and @ be n X n stochastic matrices (matrices with non-negative entries
where each column sums to 1).
(a) Prove that the product PQ is also a stochastic matrix.
(b) Let e =[1,1,...,1]7. Show that PTe =e.
(c¢) Use part (b) to show that A =1 is always an eigenvalue of P (i.e., P — I is singular).

9. Orthogonal Matrices. A square matrix Q is called orthogonal if QTQ = I.

(a) Show that if Q is orthogonal, then @ is invertible and @~ = Q7.
(b) Prove that orthogonal matrices preserve the dot product: for any x,y € R", (Qx) - (Qy) =x"Yy.
(¢) Conclude that orthogonal matrices preserve lengths (magnitudes) of vectors and angles between

them.

10. Polynomial Interpolation via Inversion. We wish to find the unique polynomial f(¢) = ¢y +c1t+
cot? passing through three points (1, 1), (t2, y2), (t3,y3) with distinct ¢;.
(a) Set up the system Ve =y where V is the Vandermonde matrix.
(b) For the case t; = 0,t3 = 1,t3 = 2, compute V! using the Gauss-Jordan algorithm.
(c) Use V~1 to find the polynomial passing through (0, 1), (1,0), (2, 4).
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