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0
Sets and Fundamentals

We begin by formalising the definitions and operations of set theory
that serve as the foundation for ring theory.

0.1 Sets and Subsets

Definition o.1. Set.

A set is a collection of distinct objects, referred to as elements. We de-
note sets by uppercase letters (A, B, ...) and elements by lowercase let-
ters (a,b,...).

- If an element a belongs to a set A, we write a € A.

- If a does not belong to A, we write a ¢ A.

A set may be defined by listing its elements or by specifying a prop-
erty P(x) satisfied by all members: A = {x | P(x)}. For example,
the set of even integers is written as {a € Z | a =0 (mod 2)}.

Definition o.2. Subsets and Equality.

Let A and B be sets.

1. Ais a subset of B, denoted A C B or B D A, if every element of
A is also an element of B (see figure 1).

2. A and B are equal, denoted A = B, if A C Band B C A.

3. If A C Bbut A # B, then A is a proper subset of B, denoted A C
Bor A C B.

Two specific concepts regarding the size and emptiness of sets are
essential.

Definition 0.3. Empty and Finite Sets.

- The empty set, denoted o, is the set containing no elements. It is a
subset of every set and a proper subset of every non-empty set.

- A set A is finite if it contains a finite number of elements. This num-
ber is called the cardinality or order of A, denoted |A|.

- If A is not finite, we define its order as |A| = co.

)

Figure 1: Visualisation of inclu-
sion: A C B.
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Remark.

One may conceptualise these definitions through an analogy: a
Class corresponds to a Set, the Students are the Elements, and a
Study Group forms a Subset. The set of all classes constitutes a
family of sets.

Definition 0.4. Power Set.
The power set of a set A, denoted P(A), is the set of all subsets of A.

Operations on Sets

We define the standard algebraic operations on sets. Let A and B be
sets, and let {A;};c; be a family of sets indexed by I.

Definition o.5. Intersection.
The intersection of A and B, illustrated in figure 2, is the set of elements
common to both:

ANB:={x|xe€ Aand x € B}.
For an indexed family, the intersection is defined as:

(Ai:={x|x€ Aforallie I}
il

e
S

Definition 0.6. Union.
The union of A and B is the set of elements belonging to at least one
of them:

AUB:={x|x€ Aorxe B}

For an indexed family:
JAi == {x| x € A for some i € I}.
iel

If the sets A; are pairwise disjoint (i.e, A; N A; = & fori # j), their ANB

union is called a disjoint union, denoted | ;- A;. <7
QD

Definition o.7. Difference.

Let A and B be subsets of a universal set U. The difference (or rela- Figure 2: The intersection ANB.
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tive complement) of B in A is:
A\B:={x|x€ Aand x ¢ B}.
The complement of A in U is:

A ={xelU|x¢ A}

It follows directly from the definitions that a set can be partitioned by
any subset:

A= (ANB)U(A\B).
For finite sets, the sizes of unions and intersections are related by the
Inclusion-Exclusion Principle. The base case for two sets is given by:

|AUB| = |A|+ |B| — |ANB].
This generalises to arbitrary finite collections.

Proposition o.1. Inclusion-Exclusion Principle.
Let Aq,..., A, be finite subsets of a set U. Then:
n i1
[ AL U U A = ) (=1)" Y |Ajy M- NAG
]:1 {l’l,.‘.,l']'}g{l,...,l’l}

Proof

We proceed by induction on 7, the number of sets. The base case

n = 2 is stated above. The inductive step involves applying the base
case to the union of A, and the set S = J}_; Ay, then expanding
using the inductive hypothesis.

The interaction between union, intersection, and complements is
governed by De Morgan’s laws.

Proposition o0.2. De Morgan’s Laws.
Let {A;}ic be a family of subsets of U. Then:

A = (UAi)C-

i€l iel

<
&

Proof

A\B

&0

Figure 3: The set difference
A\ B.
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We track the logical equivalence of element membership:

xe(Af <= Viel,xe Af <= Viel, x¢ A; < —(Jiel, xc 4
iel

— x¢|JA <= xe <UAZ->C.

iel i€l

Algebraic structures often involve pairs or tuples of elements.

Definition 0.8. Cartesian Product.
The Cartesian product of two sets A and B is the set of all ordered pairs:

AxB:={(ab)|acAbe B}

More generally, for a family {A;};c, the product is the set of sequences
(or functions I — UA;):

[TA4i = {(a)icr | ai € A;}.

iel

Throughout these notes, we adhere to the following standard nota-

tion for numerical sets:

- Z4: The set of positive integers {1,2,3,... }.

- IN = Z U {0}: The set of natural numbers (including 0).

- Z: The set of integers.

- Q: The set of rational numbers.

- R: The set of real numbers.

- F[X]: The set of polynomials in variable X with coefficients in a
field (or ring) F.

0.2 Mappings and Binary Operations

The concept of a function, central to analysis, is generalised in alge-
bra to the notion of a mapping between arbitrary sets.

Definition 0.9. Mapping.

Let A and B be sets. A mapping (or map) f : A — B is arule that
assigns to every element a € A a unique element b € B, denoted by
f(a) =b.

- A is the domain of f.

- The set f(A) = {f(a) | a € A} C B is the image (or range) of f.

- If f(a) = b, then b is the image of a4, and a is a preimage of b.

&,

Two mappings f,g : A — B are equal, denoted f = g, if f(a) = g(a)



8 GUDFIT

foralla € A.

Definition o.10. Properties of Mappings.
A mapping f : A — Bis:

A.

Surjective (or onto) if for every b € B, there exists at least one a €
A such that f(a) = b. Equivalently, f(A) = B.

Bijective (or a one-to-one correspondence) if it is both injective and
surjective.

Mappings can be combined sequentially.

Definition o.11. Composition.
Letf : A — Band g : B — C be mappings. The composite map-
ping go f : A — Cis defined by:

(g0 f)(a) = g(f(a)) foralla e A.

While composition is not commutative in general (i.e.,, go f # fog),
it satisfies a fundamental stability property known as associativity.

Proposition 0.3. Associativity of Composition.
Letf:A—B,g:B— C,and h: C = D be mappings. Then:

(hog)of=ho(gof).

»
&

Proof

For any a € A, we evaluate both sides:
(o g)o f)(a) = (hog)(F(a)) = h(g(f(a))).
(ho (g0 f))(a) = h((go £)(a)) = h(g(f(a)).

Since the mappings agree on every element of the domain, they are
equal.

Algebraic structures are essentially sets equipped with operations
that combine elements.

Definition o0.12. Binary Operation.

Let X be a set. An algebraic binary operation (or composition law) on

X is a function T : X x X — X. For every ordered pair (a,b) € X x

Injective (or one-to-one) if f(ay) = f(ay) implies a; = a, for all ay,a; €

f

A———>B——C
gof

Figure 4: Composition of map-
pings.



X, this map assigns a unique element T(a,b) € X.
Rather than writing T(a,b), we typically use infix notation such as
axb,aob,a+Db,orsimply ab. In group theory, we most frequently
use multiplicative notation (ab) or additive notation (a + b).
A set X equipped with a specific binary operation * is called an alge-
braic structure or algebraic system, denoted (X, *). It is important to
note that a single set can support multiple distinct operations. For in-
stance, the integers Z form different structures under addition (Z, +)
and multiplication (Z, -). One could even define exotic operations
like n * m = n +m — nm, creating yet another structure.
While one can define endless arbitrary operations, algebra focuses
on those satisfying specific, powerful axioms. One such fundamental
property is the existence of a neutral element.

Definition o0.13. Unit Element.
An element e € X is called a unit element (or neutral element) rela-
tive to the operation * if ex x = x xe = x for all x € X.

J%’(]

A

It follows immediately that such an element, if it exists, is unique.

Proposition o0.4. Uniqueness of Unit Element.
An algebraic structure (X, %) possesses at most one unit element.

>

A
Proof

Suppose e and ¢’ are unit elements. By the defining property of e,
we have e x ¢/ = ¢/. By the defining property of ¢/, we have e x ¢/ = e.
Thus e = ¢

|
Example o0.1. Arithmetic Operations. The standard operations of
addition (+), subtraction (—), and multiplication (x) are binary
operations on R. Division is not a binary operation on R because
division by zero is undefined; however, it is a binary operation on
the set of non-zero real numbers R \ {0}.

#o )
Example o.2. Function Spaces. Let X4 be the set of all mappings
from a set A to itself. The composition of mappings o is a binary
operation on X 4. Similarly, let S4 be the set of all bijections from A
to itself. Since the composition of bijections is a bijection, o is also a
binary operation on S 4.

E X

RINGS INTRODUCTION

9
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Definition o0.14. Associativity and Commutativity.
Let * be a binary operation on S.
1. The operation is associative if for all a,b,c € S:

(axb)xc=uax(bxc).

2. The operation is commutative if for all a,b € S:

axb=>bxa.

bl
2

0.3 Equivalence Relations and Partitions

In many contexts, we wish to treat distinct elements as “effectively
equal” if they share a specific property (e.g., integers with the same
parity). This leads to the concept of equivalence relations.

Definition 0.15. Equivalence Relation.

A relation ~ on a set A is an equivalence relation if it satisfies three
axioms for all a,b,c € A:

Reflexivity: a ~ a.

Symmetry: If a ~ b, then b ~ a.

Transitivity: If a ~ band b ~ c, thena ~ c.

An equivalence relation allows us to group elements together.

Definition 0.16. Partition.
A partition of a set A is a decomposition of A into a disjoint union of
non-empty subsets. That is, A = | J;c; A;.

These two concepts are mathematically dual. Given an equivalence
relation ~, we define the equivalence class of a as:

[a] ={x € A|x ~a}.

Lemma o.1. Properties of Classes.
For any a,b € A, either [a] = [b] (if a ~ b) or [a] N [b] = & (if a = D).
7132

Proof
If x € [a] N [b], then x ~ aand x ~ b. By symmetry a ~ x, and by

transitivity a ~ b. Ifa ~ b,lety € [a]. Theny ~aanda ~ b =
y~b = y € [b]. Thus [a] C [b]. By symmetry, [b] C [a], s0 [a] =
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[b].
|

Consequently, the distinct equivalence classes form a partition of A:

A=l

acA

Theorem o.1. Equivalence and Partitions.
There is a one-to-one correspondence between equivalence relations
on a set A and partitions of A.
- Every equivalence relation induces a partition into equivalence classes.
- Conversely, given a partition A = | |;c; A;, the relation defined by
“a ~ bif a and b belong to the same subset A;” is an equivalence
relation.
i

Example o0.3. Parity. Let A = Z. The relationa = b (mod 2) is an
equivalence relation. It partitions Z into two classes:

- [0]={...,-2,0,2,...} (the even integers).

- [1]={...,—1,1,3,... } (the odd integers).

#2145

Partitions Induced by Mappings

A natural source of equivalence relations is the “fiber” structure of
a mapping. Let f : A — B be a mapping. For any b € f(A), the
preimage or fiber of b is:

fHb) ={a€ Al f(a) =0}.

Since every element a € A maps to exactly one image, the fibers are
pairwise disjoint and cover A. Thus, we have the partition:

A= ] fFH).

bef(A)

The corresponding equivalence relation is defined by a ~ 4’ <=

f(a) = f(a').

Example 0.4. Geometric Partition. Let f : R> — R be defined by

f(x,y) = x —y. For any real number ¢ € R, the fiber f~1(c) is the

set of points satisfying x —y = ¢, ory = x — c. Geometrically, this ¢
partitions the plane R? into a family of parallel lines with slope 1 c=1
(see figure 5). Points are equivalent if they lie on the same line.

$o.45

Figure 5: The equivalence
classes of f(x,y) = x —y form
parallel lines.
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Exercises

1. Distributive Laws. Let B and {A;};c; be subsets of a universal set
Q. Prove:

@ BN (Uier Ai) = Uier(BN A;).

(b) BU (Nier Ai) = Nier(BU Aj).
2. Power Set Cardinality. Let A be a finite set with n elements. Let Consider the correspondence between
P(A) be the set of all subsets of A. Prove that |[P(A)| = 2". subsets and binary strings of length 7.

3. One-Sided Inverses. Let f : A — B be a map with A # @.

(a) Prove that f is injective if and only if there exists a left inverse
g:B — Asuchthat go f =idy.

(b) Prove that f is surjective if and only if there exists a right
inverse h : B — A such that f o h = idp. (Uses the Axiom of
Choice to pick one preimage for each b € B.)

4. Inverse of Composition. Let f : A — Band g : B —+ Cbe

bijections. Prove that g o f is a bijection and that (go f)~! =

frleg™
5. Counting Functions. Let A and B be finite sets with |A| = m and
|B| = n.
(a) How many distinct maps f : A — B exist?
(b) How many distinct binary operations can be defined on A?
6. Kernel Equivalence. Let f : A — B be a map. Define a relation
~on Abya ~ a' if and only if f(a) = f(a’). Prove that this is an
equivalence relation. What are the equivalence classes?

7. Independence of Axioms. Prove that the three axioms of an For example, find a relation that is
equivalence relation (reflexivity, symmetry, transitivity) are inde- SYE“HT““C and transitive but not
reriexive.

pendent. Specifically, for each axiom, construct a relation that fails
that axiom but satisfies the other two.



1
Rings and Fields

We now turn our attention to algebraic structures equipped with

two binary operations. In the study of elementary number theory,

the integers Z form the prototypical example of such a structure,

possessing both addition and multiplication. Specifically, the set of

polynomials F[X] and the set of n x n matrices M, (F) share these

arithmetic properties. We formalise this commonality through the

definition of a ring.

Rings unify arguments across distinct contexts:

Number Theory. Extensions of Z facilitate the solution of Diophan-
tine equations. For example, n = x? + y? factors as (x + iy)(x — iy)
in the Gaussian integers Z[i].

Algebraic Geometry. Geometric shapes defined by polynomial sys-
tems are analysed via their rings of functions.

Topology. Cohomology classes of topological spaces form rings,
translating topological structure into algebra.

1.1 Definitions and Examples

Definition 1.1. Ring.

A ring is a set R equipped with two binary operations, denoted by ad-
dition (+) and multiplication (-), and two distinguished elements 0 €
R (the zero) and 1 € R (the identity), satisfying the following axioms:
(R, +) is an Abelian group with identity 0. That is:

(Associativity) (a+b)+c=a+ (b+c) foralla,b,c € R.
(Commutativity) a+b=>b+aforalla,be R.
(Identity) a+0 =aforalla € R.

(Inverse) For every a € R, there exists —a € R such that a+ (—a) =
0.

(R, -) is a monoid with identity 1. That is:
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(Associativity) (a-b)-c=a-(b-c) foralla,b,c € R.
(Identity) a-1=1-a=aforalla € R.
Distributivity That is:

Multiplication distributes over addition a-(b+c) =a-b+a-cand
(a+b)-c=a-c+b-cforalla,b,ceR.

If the multiplication operation is commutative (i.e., a-b = b - a for
all a,b € R), then R is called a commutative ring.
Remark.

We adhere to the convention that a ring must possess a multi-
plicative identity 1. Some authors refer to structures without a
multiplicative identity as rngs, but we shall not consider them here.

Proposition 1.1. Basic Properties of Rings.
Let R be a ring. For any 4,b € R:

1. a-0=0-a=0.

2. (—a)-b=a-(=b)=—(a-b).

3. (—a)-(=b)=a-b.

4. If 1 =0, then R = {0}.

=4
&

Proof
1. We observe that 0 4- 0 = 0. Distributivity implies:

a-0=a-(0+0)=a-0+a-0.

Adding —(a - 0) to both sides (using the group property of addi-
tion) yields 0 = a - 0. The proof for 0 - a is similar.
2. We computea-b+a-(—=b) = a-(b+ (-b)) = a-0 = 0. Thus
a- (—b) is the additive inverse of a - b.
3. Apply (2) twice: (—a)(—b) = —(a(—b)) = —(—(ab)) = ab.
4. If1=0,thenforanyr e R, r=r-1=r-0=0.
|
The simplest possible ring is the zero ring, R = {0}, where 1 = 0. In
all other cases, we assume 1 # 0.

Example 1.1. Standard Numerical Rings. The sets Z,Q, R, and C
are all commutative rings under the standard operations.

e
Example 1.2. Matrix Rings. Let R be a commutative ring. The

set M,(R) of n X n matrices with entries in R forms a ring under
matrix addition and multiplication.

- The zero element is the zero matrix 0,,.



- The identity element is the identity matrix I;;.

Ifn > 2, matrix multiplication is generally not commutative, so
M, (R) is a non-commutative ring. The group of units of this ring,
U(M;(R)), is called the general linear group, denoted GL,(R).

#bl
Example 1.3. Quaternions. The quaternions are a subring of
M;(C). We denote the ring of quaternions by H. Let

w- (] 8 iasec)

Then H forms a non-commutative ring under matrix addition and
multiplication. Similarly, the subset

H(Q) = { [_‘"B ’3] ape Q(i)}

is also a non-commutative ring, where Q(i) = {a +bi | a,b € Q}.
#b)
Example 1.4. Ring of Functions. Let X be a non-empty set and R a

ring. The set RX of functions f : X — R is a ring under pointwise
addition and multiplication:

(f+8)(x) = f(x) +g(x), (fg)(x) = f(x)g(x).

The zero element is the constant function x +— 0, and the identity is
x— 1

#o )
A fundamental class of rings in number theory arises from the equiv-
alence classes of integers.
Example 1.5. Integers Modulo n. Let n be a positive integer. Recall
from the definition of an Equivalence Relation that the relation de-
finedbya = b (mod n) (meaning n | (a — b)) partitions Z into n
distinct equivalence classes. We denote the set of these classes by
Z/nZ.

z/nZ ={[0],[1],...,[n—1]}.

We define operations on these classes by:
[a] +[b] = [a+b], [a] - [b] = [ab].

One may verify that these operations are well-defined (independent
of the choice of representatives). Under these operations, Z/nZ is a
commutative ring.

RINGS INTRODUCTION
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Exia

For commutative rings, the algebraic expansion of powers behaves as
it does in elementary algebra.

Theorem 1.1. Newton’s Binomial Theorem.
Let R be a commutative ring. For any x,y € Rand n € Z:

) =Y ()t

k=0
i
Proof
The proof proceeds by induction on 7, using the property
M+ (") = ("h. We rely on the commutativity of R to rear-
range terms such that x"y? = yPx*.
|

Special Elements and Structures

In Z, the product of two non-zero integers is always non-zero. This
property does not hold for arbitrary rings.

Definition 1.2. Zero Divisors and Units.

Let R be a ring.

1. A non-zero element a € R is a zero divisor if there exists a non-
zero b € R such that ab = 0 or ba = 0.

that ab = ba = 1. This inverse is unique and denoted a1
Remark.

Not to be confused with the "unit element’ (identity) of Chapter o;
here "unit’ means invertible.

Example 1.6. Zero Divisors in Z/6Z. In Z/6Z, we observe that
[2] - [3] = [6] = [0]. Thus, both [2] and [3] are zero divisors.

b
Lemma 1.1. Group of Units.

der multiplication.

Proof

verse 2~ !, then a1 is a unit with inverse a. If a,b are units, then

2. An element a € R is a unit (or invertible) if there exists b € R such

The set of units of a ring R, denoted U(R) or R*, forms a group un-

5] 32

Identity 1 is clearly a unit (1 - 1 = 1). If a is a unit with in-

®°®
@@

Figure 1.1: The elements of the
ring Z./6Z.
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(ab)(b~'a™1) = a(bb=')a=! = a(1)a"! =1, so ab is a unit.
]

We classify commutative rings based on the behaviour of their zero
divisors and inverses.

Definition 1.3. Integral Domains and Fields.

Let R be a commutative ring with 1 # 0.

1. R is an integral domain if it has no zero divisors. That is, ab =0 —
a=0orb=0.

2. Ris a field if every non-zero element is a unit.

TR,
Commutative

The standard inclusions are visualised in figure 1.2. Note that every
field is an integral domain (since units cannot be zero divisors), but

Ipfegral Domains

the converse is not true (e.g., Z is a domain but not a field).

Proposition 1.2. Cancellation Law.
Let R be a commutative ring. R is an integral domain if and only if the

cancellation law holds: for all 4,b,¢ € R with a # 0, if ab = ac, then Figure 1.2: Hierarchy of ring
b=c. structures.
Proof

Suppose R is a domain and ab = ac witha # 0. Then a(b — ¢) = 0.
Since a is not a zero divisor, b —c¢ = 0,s0b = c. Conversely, if the
cancellation law holds and ab = QO witha # 0, thenab = a-0 —
b = 0. Thus R has no zero divisors.

Polynomial Rings

A very important class of rings that we will study are the polyno-
mial rings. Given a ring R, we can construct a new ring consisting of
polynomials with coefficients in R.

Definition 1.4. Polynomial Ring.
The polynomial ring R[X] consists of formal sums

n .
f(X) =Y aiX' =ag+m X+ +a,X",
i=0
where q; € Randn > 0. Addition and multiplication are defined
naturally:
Sum: Y a; X'+ Y. b; X' = Y (a; + b)) X'.
Product: (Za;X") (LbjX') = ¥ cxX¥, where ¢, = Yt jk ibj.

17
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We may extend this construction to multiple variables. The ring

R[X, Y] can be viewed as (R[X])[Y]. If R is an integral domain, then
R[X] is also an integral domain.

Example 1.7. Gaussian Integers as a Quotient. Consider the poly-
nomial ring Z[X]. The set of numbers a + bi witha,b € Z (the
Gaussian integers) has the same algebraic structure as the quotient
structure Z[X]/(X? + 1), a concept we shall define in subsequent
chapters.

.49

Substructures and New Rings from Old

Having established the definitions of rings and fields, we now exam-
ine how to locate these structures within larger ones (subrings) and
how to construct new rings from existing ones (direct products and
fractions).

Subrings and Subfields

Just as subgroups are central to group theory, we define subsets of
rings that preserve the algebraic structure.

Definition 1.5. Subring.

Let R be a ring. A subset S C R is a subring of R if S is a ring under
the induced operations of addition and multiplication from R, and S
shares the same multiplicative identity as R. Specifically, S must sat-
isfy:

1. Og € Sand 1 € S.

2. Foralla,be S, wehavea+be Sanda-b € S.

3. Forallae S, —a € S.

Similarly, a subset K of a field F is a subfield if K is a field under the
induced operations. This requires K to be a subring where every non-
zero element has a multiplicative inverse in K.

Remark.

Some definitions of subrings do not require the presence of the
identity 1g, but in these notes, all subrings are assumed to contain
the identity element.

Example 1.8. Rational Quaternions. Recall the ring of quaternions
H (example 1.3). The subset

H(Q) = { [_"‘B ﬁ] o Q(i)}




forms a subring of H.
el
It is a routine verification that the intersection of subrings is itself a
subring.

Lemma 1.2. Intersections of Subrings.
Let {S;}ics be a family of subrings of a ring R. Then the intersection
Nic1 Si is a subring of R.

7132

Proof
Sincel € S;foralli,1 € NS;.Ifa,b € NS;, thena,b € S; for all i,

implyinga — b € S; and ab € S;. Thus the intersection is closed un-

der subtraction and multiplication.
|

This lemma allows us to define the smallest subring satisfying certain
properties.

Definition 1.6. Generated Subring.

Let S be a subring of R and let « € R. The subring generated by «
over S, denoted S[zx], is the intersection of all subrings of R containing
both S and a. Explicitly, elements of S[a] are polynomials in « with co-
efficients in S:

n
S[a] = {Zsktxk neN,s; € S}.
k=0
We say we obtain S[a] by adjoining « to S.

Example 1.9. Gaussian Integers. Adjoining the imaginary unit

i = +/—1to Z yields the ring of Gaussian integers Z|i]. Elements
are of the form Y}, a;i*. Since > = —1, powers of i cycle through
1,i,—1, —i. Thus, any polynomial expression reduces to a linear

form.
.45

Proposition 1.3. Structure of Gaussian Integers.
Every element in Z[i] can be uniquely expressed as a + bi where a,b €
Z.

P

¥

Proof

Given a polynomial expression Y- ; a,i", we separate terms by the
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parity of the exponent:
N
Y api" =(ag—ap+az—...)+i(a —az+as—...).
n=0

Let A = Zk(—l)kazk and B = Zk(—l)ka2k+1. Then the sum equals
A + Bi with A, B € Z. Uniqueness follows from the linear indepen-
dence of 1 and i over R. If a + bi = ¢+ di, then (a —¢) = (d — b)i.
Squaring gives (a — c¢)? = —(d — b)2. Since squares of real numbers
are non-negative, this forces a = cand b = 4.

If the element « satisfies no polynomial equation with coefficients in
S (i-e., a is transcendental), the structure of S[a] has the same alge-
braic structure as the polynomial ring S[X].

Example 1.10. Adjoining 7r. Consider Z[7r] C R. Since 7 is tran-
scendental, no non-zero polynomial in Z[X] vanishes at 7r. Thus,
the representation of elements is unique:

k m
Y ayn" =Y b,n" = a, = b, forall n.
n=0 n=0

Direct Products

We can construct a new ring from two existing rings by defining
operations component-wise.

Definition 1.7. Direct Product.
Let Ry and R; be rings. The direct product R = R; X R; is the set of
pairs (r1, ) with operations:

(x1,%2) + (y1,y2) = (x1 +y1, %2 + ¥2),

(x1,x2) - (y1,¥2) = (%191, X242).

Remark.

The direct product of two non-zero rings is never an integral do-
main. Consider 2 = (1,0) and b = (0,1). Both 4 and b are non-zero,
yet their product is (0,0).

The additive identity is (Og,,0r,) and the multiplicative identity is (1g,, 1g,).
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Fields of Fractions and Localisation

For the integers Z, division is not always possible. To resolve this,
we construct the rationals Q. We can generalise this process to any
integral domain.

Definition 1.8. Field of Fractions.

Let R be an integral domain. The field of fractions of R, denoted K(R)
or Frac(R), is the set of equivalence classes of pairs (4,b) € R x (R
{0}), typically written as fractions a/b. The equivalence relation is de-
fined by:

% ~ 2 < ad = bc.

Addition and multiplication are defined as in elementary arithmetic:

a ¢ ad+bc

ac

e _adtbe ac
b d bd ~ b d bd
We identify r € R with the fraction r/1 € K(R), making R a subring
of K(R).

The field of fractions is the “smallest” field containing R. However,
sometimes we do not wish to invert every non-zero element, but only
a specific subset.

Definition 1.9. Multiplicative System.

A subset S C R is a multiplicative system if:
1. 1€S.

2. 0¢S.

3. Ifa,b €S, then ab € S.

e
S

Definition 1.10. Localisation.

Let R be an integral domain and S a multiplicative system. The local-
isation of R at S, denoted S™!R, is the subring of K(R) consisting of
fractions with denominators in S:

s—lR:{ﬁeK(R)‘aeR,bes}.

b
Example 1.11. Dyadic Rationals. LetR = Z andletS = {2" | n € K(R)
IN'} be the set of powers of 2. The localisation S™'Z = Z[}] consists Sig
of rational numbers whose denominators are powers of 2. 7
#b !

Figure 1.3: Embeddings of a
domain into its localisation and
field of fractions, where < de-
notes inclusion.
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Example 1.12. Localisation at Odd Integers. Let S be the set of odd
integers in Z. Then S~'Z is the ring of rational numbers a/b where
b is odd. In this ring, 2 is not invertible, but 3,5,7, ... are units.

.41

1.3 Exercises

In the following exercises, R denotes a ring with identity 1 # 0 unless
otherwise specified.

1. Invertibility in Z/nZ. Let n > 2 be a positive integer.

(a) The necessary and sulfficient condition for element [a] in the
ring Z/nZ to be invertible is ged(a, n) = 1.

(b) If p is a prime number, then Z/pZ is a field. If n > 2 is not a
prime number, then Z/nZ is not an integral domain.

2. Quaternions. Prove that any non-zero element in H is multiplica-
tively invertible.

3. Quadratic Integers.

(a) Letd > 1 be a positive integer. Use R = Z[\/Td] C Cto
explain that R is an integral domain and determine the unit
group of R.

(b) Now consider the real quadratic case. For d = 2, find a unit
in Z[v/2] of infinite order, contrasting with the finite unit
groups found in (1).

4. Endomorphism Ring. Let A be an Abelian group, and let End(A)
be the set of all functions f : A — A such that f(a +b) = f(a) +
f(b) foralla,b € A. For f,g € End(A), define

(f +8)(a) = fla) +g(a), (f-g)(a)=f(g(a)) (aeA).
Prove that End(A) is a ring with identity under the above opera-
tions, and find its unit group.

5. Group Rings. Let G be a multiplicative group, and R be a ring
with identity. Define the set

R[G] = { Y r¢g | r¢ € R, and there are only finitely many rq # 0} .
g€G
Define on the set R[G]:

et Dhe= Elnis (L) (Dos) - £ ( y t) ¢

geG geG geG 8<G g€G 8€G \ g'9"=¢
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(a) Prove: The addition and multiplication defined above are
binary operations in R[G]|, and R[G] forms a ring, called the
group ring of group G over ring R.

(b) R[G] is commutative if and only if R is a commutative ring
and G is an Abelian group.

(c) If the identity of ring R is 1g and the identity of group G is ¢,
then 1ge is the identity element of the group ring R[G].

(d) R can be naturally viewed as a subring of R[G].

(e) Try to determine the unit groups of Z[C;] (where C; = {1,0}
is the cyclic group of order 2) and R[Z], where R is an inte-
gral domain.

6. p-adic Integers. Let R = {a = (ay,a2,...) | ap € Z,0 < a, <
p" —1,ay, =a,1 (mod p")}. Leta, b € R. Define

a+b=c¢, 0<c, <p"—-1,cpn=a,+b, (modp"),

a-b=d, 0<d,<p"-1,d, =ay,b, (mod p").

(a) R becomes a commutative ring with identity, called the p-adic
integer ring, denoted as Z,,.

(b) Z can be naturally viewed as a subring of Z,,.

(c) Try to determine the unit group of Z,.

7. Quadratic Fields. Let d € Q* \ (Q*)2. Prove Q[vd] = {a +bVd |
a,b € Q} is a subfield of C, and determine all subfields of Q[v/d].

8. Centralizer and Centre. Let R be a ring, 2 € R.

(a) Prove {r € R | ra = ar} is a subring of R (called the central-
izer of a).

(b) The centre of a ring R, denoted Z(R), is the set of elements
that commute with every element of R. Prove that Z(R) is a
subring of R.

(c) Let R = M(R). Determine Z(R).

(d) Let R = H, the ring of real quaternions. Determine Z(H).

9. Power Set Ring. Let U be a set. S is the family of all subsets of U,
ie, S={V |V CU}. For A,B € S, define
A\B={celU|ceAcc¢B},

A+B=(A\B)U(B\A), A-B=ANB.
Prove that (S, +, ) is a commutative ring with identity.

10. Boolean Rings. Let R be a ring. If every element 2 € R satisfies

2

a- = a, R is called a Boolean ring. Prove:

(a) A Boolean ring R must be commutative, and 2 4+ a = O (for
every a € R); For (1): Consider (x +y)2.
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11.

12.

13.

14.

15.

16.

17.

(b) The ring S in item 9. is a Boolean ring.
Finite Fields. A non-zero finite integral domain must be a field.

Nilpotent Elements. An element a in ring R is called nilpotent if
there exists a positive integer m such that 2™ = 0.

(a) Prove that when R is a commutative ring, if @ and b are both
nilpotent elements, then a + b is also a nilpotent element.

(b) If R is not a commutative ring, does the conclusion in (1) still
hold?

(c) Prove that if x is nilpotent, then 1 + x is a unit.

Jacobson’s Lemma. Let a,b be elements in a ring R with identity.
Then 1 — ab is invertible is equivalent to 1 — ba being invertible.

Right Inverses. If an element in a ring with identity has more
than one right inverse, then it must have infinitely many right
inverses.

Ring of Continuous Functions. Let C(RR) denote the set of all
continuous real functions f : R — R. Define

(f+8)(a) = f(a)+g(a), (fg)(a) = f(a)g(a),Vf,g € C(R),a € R.

Prove that C(R) thereby becomes a commutative ring with iden-
tity. Is C(R) an integral domain? Does it contain nilpotent ele-
ments? What is the group of units?

Frobenius Map. Let R be a commutative ring where p - 1z = 0 for
a prime number p. Define the map ¢ : R — R by ¢(x) = x*.

(a) Prove that ¢ satisfies ¢(x +y) = ¢(x) + ¢(y) and ¢p(xy) =
(x)p(v).

(b) If R is a finite field, prove that ¢ is a bijection.

(c) Conclude that for any finite field D and any a € D, alPl = .

Intersections of Localisations.

(a) Let Z[%] denote the localisation of Z at the set of powers of 2.
Characterise the elements of Z[31].

(b) Let « be an algebraic number (a root of a polynomial with
integer coefficients). Specifically, let & = 1%\/5 (the golden
ratio). Determine the intersection Z[1] N Z[a].

(c) * Generalise the above: For which pairs a,b € Z[}] does the
element a + ba belong to the ring Z[«]?
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Homomorphisms and Isomorphisms

In the previous chapter, we established the structural definitions of
rings and fields. We now turn to the relationships between these
structures. Just as linear transformations relate vector spaces and
group homomorphisms relate groups, ring homomorphisms allow us
to compare rings, transport properties between them, and construct
new rings from old ones.

Ring Homomorphisms

A ring homomorphism is a map that preserves the algebraic struc-
ture — addition, multiplication, and the identity elements.

Definition 2.1. Ring Homomorphism.

Let R and S be rings. A map ¢ : R — S is a ring homomorphism if
it satisfies the following axioms for all 2,b € R:

Preservation of Identity: ¢(1g) = 1s.

Preservation of Addition: ¢p(a+b) = ¢(a) + ¢(b).

Preservation of Multiplication: ¢(a-b) = ¢(a)- ¢(b).

Remark.
While the preservation of the additive identity (¢(0g) = 0s) fol-
lows from the additivity property (since $(0) = ¢(0 + 0) =

$(0) + ¢(0)), the preservation of the multiplicative identity does not
follow from the multiplicative property alone.

Consider the map f : R — M;(R) defined by x +— [g 01. This

0

0 0
I). Thus, f is not a ring homomorphism under our definition.

map preserves addition and multiplication, but f(1) = 1 01 #

We classify homomorphisms based on their behaviour as set maps.
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Definition 2.2. Types of Homomorphisms.

Let ¢ : R — S be a ring homomorphism.

- If ¢ is injective, it is a monomorphism (or embedding).

- If ¢ is surjective, it is an epimorphism.

- If ¢ is bijective, it is an isomorphism. We write ¢ : R = S for the
map and R = S to indicate that R and S are isomorphic.

- An isomorphism from a ring to itself is an automorphism.

The structural properties of elements are preserved under homomor-
phisms.

Proposition 2.1. Properties of Homomorphisms.

Let ¢ : R — S be a ring homomorphism. Then:

1. (/)(OR) = 0g.

2. ¢(—a) = —¢(a) foralla € R.

3. If u € R* is a unit, then ¢(u) € S* is a unit and ¢p(u~1) = ¢p(u) 1.
Consequently, ¢ restricts to a group homomorphism ¢|gx : R* —
S*.

3

2
Proof
1. As noted in the remark, ¢(0) = ¢(0+0) = ¢(0) + ¢(0), implying
¢(0) = 0 by cancellation in the additive group (S, +).
2. ¢(a) +¢(—a) = ¢(a+ (—a)) = ¢(0) = 0. Thus ¢(—a) = —¢(a).
3. Since uu~! = 1, we have ¢(u)p(u~!) = ¢(1) = 1. Similarly
p(u=)p(u) = 1.
[
Example 2.1. Embeddings of Subrings. If R is a subring of S, the
inclusionmap: : R — Sdefinedby((r) = risessentiallya
monomorphism. The standard chain of number systems gives a
sequence of inclusions:

Z—Q—R<—C.

#o )
Example 2.2. Modular Arithmetic. The projectionmap 7 : Z —
Z/nZ defined by m(a) = [a] is a surjective homomorphism
(epimorphism). The conditions 7(a + b) = m(a) + m(b) and
nm(ab) = m(a)m(b) correspond to the definition of modular arith-
metic operations.

ERil)
| Example 2.3. Block Matrices. Let Rbearingandm,n € Z,. We




construct a map into the larger matrix ring:

A 0

f: Mu(R) X My(R) = My in(R), (AB) = [\ o

This map is a monomorphism. If R is commutative, restricting f to
the groups of units yields an embedding of general linear groups:

GLn(R) X GLy(R) < GLy1n(R).

E X

The Characteristic of a Ring

The ring of integers Z plays a universal role in ring theory. There is a
canonical way to map Z into any arbitrary ring R.

Proposition 2.2. The Unique Homomorphism from Z.

Let R be a ring. There exists a unique ring homomorphism ¢ : Z —
R.

Proof
If ¢ is a homomorphism, it must satisfy ¢(1) = 1g. By additivity,

for any positive integer n:

p(n) =Lt +1) =g+ +¢(1) =n-1g.

n times

n times

Since ¢(0) = Og and ¢p(—n) = —¢(n), the value of ¢ is determined
for all z € Z by the additive structure of R. Explicitly,

n-1g n>0,
¢(n) = 0g n =0,
—(|n]-1g) n<O.

It is routine to verify that this map preserves multiplication (i.e.,
(nm)-1g = (n-1g)(m - 1g)) and is thus a homomorphism.

This proposition allows us to classify rings by the kernel of this
unique map. Since every ideal of Z is generated by a single inte-
ger, the kernel is of the form nZ for a unique non-negative integer
n>0.

Definition 2.3. Characteristic.
The characteristic of a ring R, denoted char(R), is the non-negative in-
teger n such that ker(¢) = nZ, where ¢ : Z — R is the unique ho-
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momorphism.

- If ¢ is injective (i.e., n = 0), R has characteristic 0. This implies Z
embeds into R.

- If n > 0, then n is the smallest positive integer such that

I +---4+1g = 0g.
N ——

n times

Evaluation Homomorphisms

Polynomial rings satisfy a universal property that characterises them:
to define a map from R[X], it suffices to define it on R and specify
where the variable X is sent.

Definition 2.4. Evaluation Homomorphism.

Let ¢ : R — S be aring homomorphism and let s € S. The evalu-
ation homomorphism at s (extending ¢) is the map ®; : R[X] — S
defined by:

D, (i al-Xi> = irp(ai)si.
i=0 i=0

e
S

This construction effectively “substitutes” s for X.

Proposition 2.3. Universal Property of Polynomial Rings.
The map & is the unique ring homomorphism from R[X] to S such
that ®s|g = ¢ and O5(X) =s.

>

i RA
Proof

That ®; is a homomorphism follows from the properties of ¢ and
the commutativity of s with elements in the image of ¢ (if R is com-
mutative, or if s is central). Uniqueness is guaranteed because any
homomorphism is determined by its values on the generators R
and X.

[

A specific case of immense utility is when R is a subring of S and ¢ is
the inclusion. Then @, : R[X] — S maps f(X) — f(s). The image of
this map is the subring R[s] generated by s.

Automorphisms of R

While many rings possess rich automorphism groups (for instance,
Aut(C) is infinite and non-trivial, containing the conjugation map
z > Z), the real numbers are algebraically rigid.

R —— R[X]
|
-
|
s
Figure 2.1: The universal

property of polynomial rings:
;01 =¢ and O5(X) =s.
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Theorem 2.1. Rigidity of Real Numbers.
The only automorphism of the field of real numbers R is the identity
map. That is, Aut(R) = {id}.

g
Proof
Let o € Aut(R).
o fixes Q: Since 0(1) = 1, by the uniqueness of the map from Z,

o(n) = n for all n € Z. For any rational g = m/n,

-1

o(m/n) =c(m)e(n™1) = mo(n)~t = m/n.

Thus o|g = id.
o preserves order: Let x > 0. Then x = y? for some y € R.

Since ¢ is injective and ¢(0) = 0,if x > 0 then o(x) > 0. Con-
sequently, ifa > b, thena —b > 0,soc(a—0b) > 0, implying
o(a) > o(b).

o is the identity: Suppose, for contradiction, that c(x) #  «x for
some x € R. Assume c(x) < x (thecasec(x) > xissimi-
lar). By the density of rationals, there exists 4 €  Q such that
o(x) < q < x. Applying the order-preserving ¢ to the inequality
g < x, we get 0(q) < o(x). Since o fixes rationals, o(q) = g. Thus
g < o(x), which contradicts o(x) < g.

Therefore, o(x) = x for all x € R.

2.2 Kernels and Ideals

A homomorphism ¢ : R — S identifies a substructure of R that
collapses to the zero element in S. This substructure, known as the
kernel, plays a role analogous to normal subgroups in group theory,
allowing us to construct quotient rings.

Definition 2.5. Image and Kernel.
Let ¢ : R — S be a ring homomorphism.
1. The image of ¢ is the set of values taken by ¢ in S:

im¢p = {¢(r)|r € R} CS.

2. The kernel of ¢ is the set of elements in R mapped to zero:

ker¢ = {r € R| ¢(r) =05} C R.
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' % &
Note

The image of a homomorphism is easily seen to be a subring of S.

Example 2.4. Evaluation Image. If R is a subringof 5,1 : R — S
is the inclusion, and s € S, then the image of the evaluation homo-
morphism ®; : R[X] — S is precisely the subring R[s] of S gener-
ated by s.

kR
Since ¢(0r) = Og, the kernel is non-empty. Moreover, the kernel
satisfies strong closure properties.

Proposition 2.4. Structure of the Kernel.

Let ¢ : R — S be a ring homomorphism. The set K = ker ¢ satisfies:
1. Additive Subgroup: For any x,y € K, the difference x —y € K.
2. Absorption: For any k € K and any r € R, both vk € K and kr €

K.
Additive Subgroup.
Linearity implies ¢p(x —y) = ¢(x) —¢p(y) =0—-0=0.
EXLES

Absorption.
The multiplicative property implies ¢(rk) = ¢(r)p(k) = ¢(r) -0 = 0.
Similarly, ¢(kr) = 0.

LB 4
This leads to the general definition of an ideal. While subrings are
closed under multiplication within the subset, ideals are closed under

multiplication by any element of the ambient ring.

Definition 2.6. Ideal.

(R,+) and absorbs multiplication from R. That is:

- I # @ (usually ensured by 0 € I).

- Forallx,yel,x—yel

- Forallae€ Iandr € R,bothra € I and ar € L.

If I # R, itis called a proper ideal. The ideals {0} and R are called
trivial ideals.

Proposition 2.5. Injectivity and Kernels.
A ring homomorphism ¢ : R — S is a monomorphism (injective) if
and only if ker¢ = {0}.

A subset I of a ring R is an ideal if it is a subgroup of the additive group

Figure 2.2: The kernel collapses
to the zero element.



RINGS INTRODUCTION

Proof
If ker ¢ = {0}, suppose ¢p(x) = ¢(y). Thenp(x —y) =0,s0x —y €
ker ¢, implying x —y = Oand x = y. Conversely, if ¢ is injective
and x € ker ¢, then ¢(x) =0 = ¢(0), so x = 0.

[ |
Example 2.5. Ideals in Fields. Let F be a field. The only ideals of F
are {0} and F itself.

Fobl
Proof
Let I be a non-zero ideal of F. Take any non-zero element x € 1.
Since F is a field, x has an inverse x ! € F. By the absorption prop-
ertyl=x"1-x€l Foranyac F,a=a-1€1l,s0l=F.
[ |

Consequently, any homomorphism from a field to a non-zero ring is
injective.

Example 2.6. Ideals in Z. The ideals of Z are exactly the sets

nZ = {nk | k € Z} for n > 0. Since ideals are additive subgroups,
this follows immediately from the classification of subgroups of
cyclic groups.

ERl

2.3 Principal Ideals and Domains

The simplest ideals are those generated by a single element.

Definition 2.7. Generated Ideals.

Let S be a subset of a ring R. The ideal generated by S, denoted (S),
is the smallest ideal of R containing S. It is the intersection of all ide-
als containing S. If S = {ay,...,a,} is finite, we write (a3, ...,a,) and
say the ideal is finitely generated.

Definition 2.8. Principal Ideal.

An ideal generated by a single element x € R, denoted (x), is called
a principal ideal.

- If R is commutative, this is the set of multiples of x:

(x) = Rx = {rx|r € R}.

- If R is non-commutative, the generated ideal is the set of all finite sums
Y rixs;.
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We focus primarily on commutative domains where ideal theory
behaves most like arithmetic.

Definition 2.9. Principal Ideal Domain (PID).

An integral domain R is called a Principal Ideal Domain (PID) if ev-
ery ideal in R is a principal ideal.

Example 2.7. Non-PID Example. Consider the ring Z[X]. The ideal
generated by 2 and X, denoted I = (2,X) = {2p(X) + Xq(X) |
p,q € Z[X]}, consists of polynomials with an even constant term.

Suppose I = (f) forsome f € Z[X]. Then f must divide 2, so
fe{+1,+2}.
- Iff = =£1,thenl € I. Butconstant terms of elements in I are

even, a contradiction.
- If f = 2, then f must divide X, which is impossible in Z[X].
Thus I is not principal.

.49

2.4 Applications and Further Examples

We can use the concepts of kernel and ideals to deduce structural
properties of rings.

Characteristic of Integral Domains

Recall from proposition 2.2 that for any ring R, there is a unique ho-
momorphism ¢ : Z — R. The kernel of this map, ker ¢, is an ideal of
Z, hence of the form nZ. The non-negative integer 7 is the character-
istic of R.

Proposition 2.6. Characteristic of a Domain.
If R is an integral domain, then char(R) is either 0 or a prime number

p.

¥

P
Proof

Let n = char(R). Thus n - 1g = Og. Suppose n is composite, say n =
abwith 1 < a,b < n. Then:

(a-1g)(b-1g) = (ab) - 1g = n-1g = Og.

Since R is an integral domain, it has no zero divisors, so either
a-1g = 0orb-1g = 0. This implies n divides a or n divides b (by
the definition of characteristic as the generator of the kernel), which

contradicts a,b < n. Thus n must be prime or zero.
[




Example 2.8. Finite Fields. Every finite field F must have prime
characteristic p, and it contains Z/pZ = F,, as a subfield.

Eal

Isomorphisms of Polynomial Rings

Using the universal property of polynomial rings (proposition 2.3), we
can derive isomorphisms between different polynomial constructions.

Corollary 2.1. Multivariate Isomorphism. Let R be a ring. There is a canon-

ical isomorphism
R[X,Y] = (R[X])[Y].

e

Proof
Let S = (R[X])[Y].
(i) There is a homomorphism ¢ : R — S (inclusion).
(ii) By the universal property of R[X], identifying X with the
constant polynomial X € S gives a map R[X] — S.
(iii) By the universal property of (R[X])[Y], identifying Y with
Y € S extends this to ® : R[X, Y] — S.
Conversely, we construct the inverse by mapping coefficients in
R[X] to the corresponding terms in R[X, Y]. The bijection implies
the rings are isomorphic.
|
Example 2.9. Adjoining Elements. Let« & C. The evaluation ho-
momorphism ®, : Z[X] — C defined by f(X) — f(a) has image

Z[u].

- If a is transcendental (e.g., 77), then ker &, = {0}. Thus Z[X] =
Z[n].

- If « is algebraic (e.g., i), the kernel is non-zero. For a = i

ker®; = (X2 +1),and Z[X]/(X? +1) = Z]i].

2.5 Exercises

In the following exercises, R denotes a ring with identity 1 # 0 unless
otherwise specified.

1. Ideals in Quadratic Integers. Prove that any non-zero ideal of the
integral domain Z[+/d] contains a non-zero integer.

2. Automorphism Groups. Determine the automorphism groups

Aut(Q[Vd]) ford € Q* \ (Q*)?, and Aut(Z/mZ).
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10.

Matrix Embedding of C. Prove that the complex field C can be
embedded into the ring of 2 x 2 real matrices M,(R).

Kernels of Evaluation Maps. Find the generators of the kernel of
the following homomorphisms:

(@) R[X,Y] = R: f(X,Y) — £(0,0);

(b) R[X] = C: f(X) = f(2+1);

© Z[X] = R: f(X)— f(1+V2);

(d) C[X,Y,Z] = C[T]: X~ T,Y v T?,Z > T5.

Geometric Kernel. Find the kernel K of the ring homomorphism
¢ : C[X,Y] — C[T] defined by X ++ T+ 1and Y + T® — 1. Prove
that every ideal I of C[X, Y] containing K can be generated by 2
elements.

Ideal Arithmetic. Let I, | be ideals of a ring R. Prove:

(@) The product IT = {Y}_; axby | ax € I, by € J} is an ideal of R,
and I] CINJ.

(b) The sum I + | is an ideal of R, and it is the smallest ideal
containing both I and J.

(c) Let] = nZ and ] = mZ (with n,m > 1) be ideals of Z.
Determine I], I 4+ J, and I N ] in terms of n and m.

The Radical Ideal. Let I be an ideal in a commutative ring R. The
radical of I is defined as:

V1= {r € R|3n>1such that " € I}.

Prove the following;:

(@) VT is an ideal of R.

(b) VI=Rifand only if I = R.

© VVI=VIL

(d) VI+] =/ VI+V]and VIN] =vVINV] = VI].
Homomorphisms from Skew Fields. Let f : R — S be a ring
homomorphism. If R is a skew field (a ring where every non-zero
element is a unit, also known as a division ring), prove that f is
either the zero homomorphism or an embedding.

Ascending Chains. Let [; C I, C --- C [, C ... be an ascending
chain of ideals in a ring R. Prove that the union |J;Z; I; is also an
ideal of R.

Ideals in Matrix Rings.

(a) Let R be a commutative ring with identity. Prove that every
ideal in the ring M, (R) is of the form M, (I), where I is an
ideal of R.

(b) Deduce that if F is a field, then M,,(F) is a simple ring (i.e., it
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12.

possesses no non-trivial ideals).

a

,bceZ
b a,b,c }
is a subring of M (Z). Determine all ideals of the ring T.

Triangular Matrices. Prove that the set T =

Ring of Germs. Let z be a point in the complex plane C. Two
functions f and g that are analytic at z (expressible as a conver-
gent power series in a neighbourhood of z) are said to be equiva-
lent if they agree on some open neighbourhood of z. Let O, denote
the set of equivalence classes (germs) of functions analytic at z.

(a) Verify that O, forms a ring under pointwise addition and
multiplication.

(b) Determine the group of units O..

(c) Determine all ideals of O,.
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3
Quotient Rings and Homomorphism Theorems

We have previously established that ideals are the kernels of ring
homomorphisms. In group theory, normal subgroups allow us to
construct quotient groups. Similarly, ideals allow us to construct
quotient rings. This construction provides a framework for modular
arithmetic and enables the simplification of algebraic structures by
"modding out" specific properties.

The Quotient Ring Construction

Let R be a ring and let I be an ideal of R. Since I is an additive sub-
group of (R, +), the quotient group R/I is well-defined as an abelian
group. We denote the coset of an element 2 € R by @ = a + I. Recall
that congruence modulo I is defined by a = b (mod I) <= a—b €
I

To endow the additive group R/ with a ring structure, we define
multiplication of cosets using representatives.

Theorem 3.1. Existence of Quotient Ring.

Let I be an ideal of a ring R.

1. There exists a unique ring structure on the set of cosets R/ such
that the canonical projection 7 : R — R/I, defined by a — a + I,
is a surjective ring homomorphism.

2. The kernel of this homomorphism is exactly I.

L

Proof

The additive structure of R/ I follows immediately from the fact
that I is a subgroup of the abelian group R. We define multiplica-
tion on R/ by:

(a+I)(b+1)=ab+1.

We must prove this operation is well-defined; that is, it is indepen-
dent of the choice of representatives. Suppose 11 = a (mod I) and
by = b (mod I). Thena —a; € Iandb — by € I. Consider the
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difference of the products:
ab—aby =ab—a1b+a1b—mby = (a—ay)b+ay(b—by).

Since I is an ideal, (¢ —a1)b € Iand ay(b — b;) € I. Because I is
closed under addition, the sum lies in I. Thus ab = a1b; (mod I),
and the multiplication is well-defined. The ring axioms (associativ-

ity, distributivity, identity) for R/I are inherited directly from R via
the map 7. For instance:

m(a)t(b) = (a+1)(b+ 1) =ab+ 1= rt(ab).

Finally, kerm={a € R|a+1=0+1}={a€R|ac I} =1

Remark.

It is crucial to distinguish between the product of cosets in a quo-
tient ring and the set-theoretic product of subsets. In group theory,
if H is a subgroup, aH - bH = abH holds as an equality of sets. In
rings, for the ideal I, the set product is:

(a+1)(b+1)={(a+i)(b+j) |i,je I} ={ab+aj+ib+ij|ije I}.

This set is a subset of the coset ab + I, but they are not necessarily
equal. The definition of the quotient ring operation selects the coset
containing the set product.

Note

The requirement that I be an ideal is necessary. If S is merely

a subring (or additive subgroup) and we attempt to define

(a4 S)(b+S) = ab+ S, well-definedness fails unless S absorbs
multiplication. Specifically, taking a; € S (soa; = 0)and b € R, we
would require 0 - b = a1b € S, enforcing the ideal condition.

Example 3.1. Finite Fields Construction. Consider the polynomial
ring R[X] and the ideal generated by X? + 1, denoted I = (X? + 1).
The quotient ring K = R[X]/I consists of cosets represented by
polynomials a + bX.

The multiplication is defined by (X + )2 = X?> 4+ 1 = —1 + I. Iden-
tifying X + I with i, we see that K is isomorphic to the field of com-
plex numbers C.

Eid)
The relationship between homomorphisms, ideals, and quotient rings
is encapsulated in the Fundamental Homomorphism Theorem (or

First Isomorphism Theorem). It states that the image of a homomor-
phism is structurally identical to the quotient of the domain by the
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kernel.

Theorem 3.2. First Isomorphism Theorem.

Let ¢ : R — S be a ring homomorphism.

1. The kernel ker ¢ is an ideal of R, and the image im ¢ is a subring
of S.

2. There is a unique isomorphism ¢ : R/ ker ¢ — im ¢ such that ¢ =
to¢om, where m: R — R/ ker ¢ is the canonical projection and
t:im¢ — S is the inclusion.

i
Proof
Let K = ker¢. We definethemap¢$p : R/K — im¢ by
p(a + K) = ¢(a). From the group-theoretic First Isomorphism

Theorem, we know that ¢ is a well-defined isomorphism of addi-
tive groups. We need only verify the multiplicative property and
identity preservation.

Identity: ¢(1gr +K) = ¢(1g) = 1s.

Multiplication: For any cosets 4,b € R/K:

¢(ab) = ¢(ab +K) = ¢(ab) = p(a)p(b) = ¢(a)p(D).

Thus ¢ is a ring isomorphism.
|

This theorem allows us to define standard rings as quotients. For
example, Z /nZ is isomorphic to the image of Z under the modulo n
map.

When we form a quotient ring R/, the ideal structure of the quotient
is directly linked to the ideal structure of R. This relationship is often
called the Lattice Isomorphism Theorem or the Correspondence
Theorem.

Theorem 3.3. Correspondence Theorem.

Let R be a ring and [ an ideal of R. Let t : R — R/] be the canoni-

cal projection.

1. There is a one-to-one correspondence between the set of ideals of
R containing ] and the set of ideals of R/ ], given by:

I<—mn(l)=1/], where[CICRandI/]={a+]]|aclI}.

The inverse map is I+ 7~ 1(I).
2. If anideal I D J corresponds to I C R/], then there is an isomor-
phism:
R/1= (R/])/(1/]).

R/ ker ¢ 47» im¢
Figure 3.1: Commutative dia-

gram for the First [somorphism
Theorem.
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The Bijection.

We must show that the maps are well-defined inverses.
(i) If I is an ideal of R, then 7t(I) is an ideal of R/ ] because 7t is

a surjective homomorphism.

(ii) Conversely, let I be an ideal of R/]. Consider the preimage
K = 7~ 1(I). Since I is the kernel of the map R/] — (R/])/I,
the composition R = R/] — (R/])/Iis a homomor-
phism with kernel K. Thus K is an ideal of R. Clearly
J=n"1({0}) CK

(iii) We verify the bijection. First, w(r~!(I)) = I follows from the
surjectivity of 71. Second, we show 7= ((I)) = IforI 2 ].
The inclusion I C 7~ !(m(I)) is clear. Let x € 7 1(7(I)).
Then t(x) € mt(I), so there exists y € I such that w(x) =
7(y). This implies 7(x —y) = 0,sox —y € kerm = ]. Since
JCI,wehavex —y €I, and thusx =y + (x —y) € L.

FE B 4

The Third Isomorphism Theorem.

Let¢ : R/] — R/Ibe defined by mapping r + [ to r + I. This is
well-defined because | C I. The kernel of thismapis {r +] | r €

I} = 1/]. By the First Isomorphism Theorem, R----T __53RyJ
(R/])/ ker¢ =im¢p = (R/])/(I/]) = R/I. ‘
[--=------~ >1/]
- \ \
Example 3.2. Ideals in Quotients. Consider R = Zand ] = 127Z. A > {0}
The ideals of Z containing 127 are nZ where n divides 12 (i.e, n €
{1,2,3,4,6,12}). The quotient ring is R = Z/12Z. The ideals of Figure 3.2: Lattice correspon-
R correspond exactly to these divisors. For instance, the ideal I = dence of ideals.

47 correspondsto I = {[0],[4],[8]} C Z/12Z. The quotient
(Z/127)/(4Z/12Z) is isomorphic to Z /4Z.

Eal

3.2 Applications of the Homomorphism Theorems

We now illustrate the power of the Fundamental Homomorphism
Theorem through several concrete examples. These applications
range from determining the structure of specific quotient rings to
defining universal maps in characteristic p.

A common problem in ring theory is to identify the structure of

a quotient ring R/ I by finding a simpler, isomorphic ring S. The
strategy is to construct a surjective homomorphism ¢ : R — S whose
kernel is exactly I. By the First Isomorphism Theorem, R/I = S.



40 GUDFIT

Example 3.3. Gaussian Integers Modulo 1 + 3i. We assert that the
quotient ring Z[i]/ (1 + 3i) is isomorphic to Z/10Z.

E
Proof

Consider the natural homomorphism from the integers:
¢:Z— Z[i|/(1+3i), nw—n+(1+3i).

We must determine the kernel and verify surjectivity.
Kernel: Letn € ker ¢. Then n € (1 + 3i), meaning n = (1 + 3i)(x +
yi) for some x,y € Z. Expanding the product:

n=(x-3y)+iBx+y).

For the imaginary part to vanish, we require 3x +y = 0,ory =
—3x. Substituting this into the real part:

n=x—3(—3x) = 10x.

Thus, n must be a multiple of 10. Conversely, 10 = (1 + 3i)(1 —
3i) € ker ¢. Hence, ker ¢ = 10Z.

Surjectivity: The image of ¢ is the subring generated by 1. In the
quotient ring, we have the relation 1 + 3i = 0, or 3i = —1. Note
that in Z/10Z, 3 is invertible (since 3 -7 = 21 = 1). Multiplying
3i = —1 by 7 gives:

2li=—-7 = i=—-7=3.

Thus, the element i is effectively the integer 3 in the quotient.
Any element a + bi maps to a +3b (mod 10). Therefore, the map
is surjective.
By the First Isomorphism Theorem, Z[i]/ (1 + 3i) = Z/10Z.
u

Example 3.4. The Union of Axes. Let R = C[X,Y] and let I = (XY)
be the ideal generated by the product of the variables. Geometri-
cally, the condition XY = 0 corresponds to the union of the X-axis
(Y = 0) and the Y-axis (X = 0) in C2.

We claim that R/ is isomorphic to the subring of the product

C[X] x C[Y] consisting of pairs of polynomials that agree at the
origin:

S ={(p(X),q(Y)) € C[X] x C[Y] | p(0) = q(0)}.

X



Proof
Consider the homomorphism ® : C[X,Y] — C[X] x C[Y] defined
by:

FX,Y) o (F(X,0), £(0,Y).
The kernel consists of polynomials vanishing on both axes, i.e.,
f(X,0) = Oand f(0,Y) = 0. This implies every term in f must
contain both X and Y, so f € (XY). The image is clearly contained
in S because evaluating f(X,0) at X = Oand f(0,Y) atY = 0 both
yield the constant term f(0,0). Conversely, any pair (p,q) € S with
common constant term ¢ can be written as p(X) = ¢+ XP(X) and
q(Y) = ¢+ YQ(Y). The polynomial f(X,Y) = ¢+ XP(X) + YQ(Y)
maps to (p,q).

The Frobenius Homomorphism

In rings of prime characteristic, the algebraic expansion of powers
simplifies dramatically.

Proposition 3.1. Freshman’s Dream.

for any x,y € R:
(x+y)P =xP +yP.

Proof
By the Binomial Theorem (x + y)? = x? +y” + Zi:ll (P)xkyP =K. Re-
call that the binomial coefficient is (i) = #Lk)' For1<k<p-1,

the prime p divides the numerator but not the denominator. Thus
p | (§), which means (}) = 0 in R. The sum collapses to x* + y?.
|

Corollary 3.1. The Frobenius Endomorphism. Let R be an integral do-
main of characteristic p. The map ¢ : R — R defined by o(x) = x*
is a ring monomorphism, called the Frobenius map.

e
Proof
By proposition 3.1, o(x +y) = o(x) + o(y). Clearly o(xy) = (xy)? =
xPy? = o(x)o(y) and o(1) = 1. To show injectivity, let x € kero.
Then x? = 0. Since R is an integral domain, x¥ = 0 = x = 0.

Thus ker o = {0}.
]

Let R be an integral domain of characteristic p, where p is a prime. Then
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\
4

XY =0

Figure 3.3: The ideal (XY) cor-
responds to the union of the
axes. Functions on this vari-
ety are pairs (p(X),q(Y)) that
agree at the intersection point.
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The Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) allows us to decompose
a ring R modulo an intersection of ideals into a direct product of
quotient rings, provided the ideals are "coprime". This generalizes
the classical number-theoretic result for integers.

Definition 3.1. Comaximal Ideals.
Two ideals I, | of a ring R are comaximal (or coprime) if I + ] = R.
That is, there exista € I and b € | such thata+b = 1.

Theorem 3.4. Chinese Remainder Theorem.

I; = R for all i # j). Then:

n n
R/ L=]][R/L
i=1 i=1

gl
We proceed in three steps: establishing the comaximality of products,
constructing the map, and verifying the kernel.

Claim 3.1.. For any i, I; + 1—[]-#1- 1]- = R.
EXi 3
Proof

Without loss of generality, leti = 1. We prove I; + I, ---1, = Rby
induction. The base case n = 2 is given. Assume I; + ] = R where
J=1- I. We know I; 4+ I; ;1 = R. Then

R=(L+])(h+ Lesr) = I+ Dleer + T+ JTiga.

Since the first three terms lie in I;, and [l = Ir--: Ix;1, we have
_ k+1
]
Surjectivity.
By the claim, for each k, we can find y;, € [ and zx € [Tjzk L such
that yi + zx = 1. Observing congruences:

zt =1 (mod Iy), z=0 (mod I;) forj # k.

Define themap¢ : R — JIR/Libyx — (x+L,...,x+ I).
Given any element (a; + Ij,...,a, + I) in the product, construct
x = Y }_q axzx- Modulo I, the term a;z; = a; -1 = ai, and all other
terms vanish. Thus ¢(x) = (ax + Ix ), proving surjectivity.

LB 4

Let R be a ring and let I3, ..., I, be pairwise comaximal ideals (i.e., I; +
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Kernel.

The kernel is simply the set of elements mapping to zero in every
component:

n

xekergp < xelh,....I, < xe (I
i=1
EXLES

The result follows from the First Isomorphism Theorem.
Remark.
If R is commutative, the intersection of pairwise comaximal ideals

is equal to their product: I; = ]I This recovers the familiar
form R/ (L ---I,) 2TIR/I.

Exercises

In the following exercises, R denotes a ring with identity 1 # 0 unless
otherwise specified.

1. The Nilradical. Let R be a commutative ring. The set of nilpotent
elements is called the nilradical, denoted Nil(R) = {r € R |
r" = 0 for some n > 1}. Recall from Chapter 2, Exercise 7 that
Nil(R) = /(0) is an ideal. Prove that the quotient ring R/Nil(R)
has no non-zero nilpotent elements (i.e., its nilradical is zero).

2. Matrix Rings over Quotients. Let R be a commutative ring with
identity and I be an ideal of R. Let M, (I) denote the set of matri-

ces with entries in I. Prove the ring isomorphism M, (R)/M,(I) =
M, (R/I).

3. Induced Homomorphisms. Let f : R — S be a ring homomor-
phism. Let I and | be ideals of R and S respectively, such that
f(I) C J. Define the map between quotient rings:

f:R/I—S/], a+1— f(a)+].

(a) Prove that f is well-defined and is a ring homomorphism.
(b) Prove that f is an isomorphism if and only if f(R) +] = S
(surjectivity condition) and I = f~1(J) (kernel condition).
4. Affine Ring Structure. Let (R, +, ) be a ring with identity. For
a,b € R, define new operations:

adb=a+b+1, aGb=ab+a+b.

Prove that (R, ®, ®) forms a ring with identity, and construct an
explicit isomorphism to (R, +, -).
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|

Product Structure

Figure 3.4: If I; + I = R, the in-
tersection decomposes the ring.
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5.

10.

11.

Principal Ideal Rings. A ring is a principal ideal ring if every
ideal is principal.

(a) Prove that every homomorphic image of a principal ideal ring
is also a principal ideal ring.
(b) Deduce that Z/mZ. is a principal ideal ring for any m > 1.

Universal Property of Product Rings. Let {R;};c; be a family of
rings, and let R = [];<; R; be their Cartesian product.

(a) Let 7; : R — R; be the projection map (a;);cs + a;. Prove that
7; is a ring homomorphism (the canonical projection).

(b) Let S be any ring. Suppose that for every i € I, there exists a
homomorphism ¢; : S — R;. Prove that there exists a unique
ring homomorphism ¢ : S — R such that 77,0 ¢ = ¢;, Vi € L.

Roots in Domains. Let D be an integral domain. Let m, n be Use Bézout's identity for the exponents.
coprime positive integers. Prove that if a,b € D satisty a” = b
and a" = b", thena = b.

Internal Direct Products. Let Iy, ..., I, be ideals of a ring R sat-
isfying two conditions: (a) The sum is the whole ring: I; + - -- +

I, =R, (b) Foreach k, [ N (L +-- -+ L1+ Ly +---+ 1) = {0}
Prove that R is isomorphic to the product ring [T\, I;.

Central Idempotents. An element e € R is idempotent if > = e.
It is central if it commutes with all elements of R. Let R be a ring
with identity and e a central idempotent.

(a) Prove that 1 — e is also a central idempotent.

(b) Prove that the principal ideals eR and (1 — )R are themselves
rings (with identity elements e and 1 — e respectively), and
establish the isomorphism R = ¢R x (1 —e)R.

Decomposition via Ideals. Let I, | be ideals of a commutative ring
R such that I + ] = R (comaximal) and I] = {0}.

(a) Prove that R= R/I x R/].
(b) Identify the idempotent element in R corresponding to the
component (1g,7,0r/;) in the product.

Orthogonal Idempotents. A set of idempotents {ej,...,e,} is
called orthogonal if eiej =0 fori # j. Let R, Ry, ..., R, be rings with
identity. Prove that the following are equivalent:
(@) R=Z Ry X -+ XRy.
(b) R contains a set of orthogonal central idempotents {ey, ..., e, }
summing to 1g, such that the ideal ¢;R is isomorphic to R; for
each i.
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Prime and Maximal Ideals

In the preceding chapter, we explored how the quotient construc-
tion R/I allows us to define new rings. A central motivation in ring
theory — and indeed, in algebraic geometry and number theory —
is the construction of fields, which facilitate the use of linear alge-
bra. Since a field is a specific type of integral domain, we investigate
the conditions on an ideal I such that the quotient R/I becomes an
integral domain or a field.

Prime Ideals and the Spectrum

We begin by identifying ideals that yield integral domains upon
taking quotients. In the ring of integers Z, the quotient Z/nZ is an
integral domain if and only if # is a prime number (or zero). This
observation motivates the general definition.

Definition 4.1. Prime Ideal.
Let R be a commutative ring. A proper ideal p C R is called a prime
ideal if for any a,b € R,

abep — a€porbenyp.

The set of all prime ideals of R is denoted by Spec(R) and is referred
to as the spectrum of R.

The definition of a prime ideal generalises Euclid’s Lemma for inte-
gers. We now establish the fundamental relationship between prime
ideals and integral domains, along with an equivalent condition in-
volving ideal multiplication.

Proposition 4.1. Characterisation of Prime Ideals.

Let R be a commutative ring and p a proper ideal. The following con-
ditions are equivalent:

1. p is a prime ideal.

2. Foranyideals I, ] of R, if [ Cp,thenI Cpor ] Cp.
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3. The quotient ring R/p is an integral domain.

4
&=

Proof

(1) = (2): Suppose I € pand ] Z p. Then there exist elements
a € I\pandb € J\p. The product ab lies in I]. If I] C p, then
ab € p. Since p is prime, this forcesa € porb € p, a contradic-
tion.

(2) = (3): Leta,b € R/psuchthatab = 0. This implies
ab € p. Consider the principal ideals (a) and (b). We have
(a)(b) = (ab) C p. By hypothesis, either (a) C por (b) C p,

which impliesa € por b € p. Thus @ = 0 or b = 0, so R/p has no
zero divisors.

(3) = (1): Suppose ab € p. Then in the quotient ring, ab = ab =
0. Since R/p is an integral domain, @ = 0 or b = 0, which means
aeporbenp.

To obtain a field, we require a stronger condition on the ideal.

Definition 4.2. Maximal Ideal.

A proper ideal m C R is called a maximal ideal if there exists no ideal
Jsuch thatm C | C R. In other words, m is a maximal element in

the set of proper ideals partially ordered by inclusion. The set of all max-
imal ideals of R is denoted by Max(R).

The maximality of an ideal is intrinsically linked to the field structure

of its quotient.

Proposition 4.2. Maximal Ideals and Fields.
Let R be a commutative ring and m a proper ideal. Then m is a max-
imal ideal if and only if R/m is a field.

TS

=4
Proof

We rely on the Correspondence Theorem from the previous chap-

ter. There is a one-to-one correspondence between ideals of R/m

and ideals of R containing m.

e R/mis a field if and only if its only ideals are the zero ideal {0}
and the ring itself.

e Under the correspondence, {0} corresponds to m, and the ring
R/m corresponds to R.

* Thus, R/m is a field if and only if the only ideals of R contain-




ing m are m and R. This is precisely the definition of a maximal
ideal.
|

Since every field is an integral domain, the relationship between
these classes of ideals is immediate.

ideal. Consequently, Max(R) C Spec(R).

e
Proof
If m is maximal, R/m is a field. Fields are integral domains, so by

proposition 4.1, m is a prime ideal.
|
We illustrate these concepts with the standard rings of number the-
ory and polynomials.
Example 4.1. Spectrum of the Integers. In Z, the quotient Z/nZ is
a domain if and only if # is prime or n = 0. It is a field if and only
if n is prime.
- The ideal (0) is prime but not maximal (since Z is a domain but
not a field).
- The ideals (p) for prime p are maximal.
Thus, Spec(Z) = {(0)} U{(p) | p is prime}.
B
Example 4.2. Polynomial Rings over Fields. Let F be a field and

R = F[X]. In this ring, every ideal is generated by a single polyno-
mial f(X).

The zero ideal (0) is prime (as F[X] is a domain) but not maxi-

mal.
- A non-zero ideal (f(X)) is prime if and only if f(X) is irre-
ducible (i.e., f(X) is a non-unit and f(X) = g(X)h(X) =

g(X) € F* or h(X) € F*).
- If f(X) is irreducible, the quotient F[X]/(f(X)) is a field (see
proposition 4.2). Thus, non-zero prime ideals are maximal.
Explicitly,

Spec(F[X]) = {(0)} U{(f(X)) | f(X) is monic irreducible}.

For the specific case F = C, the Fundamental Theorem of Algebra
(to be proved later) implies the only irreducibles are linear terms
X — «. Hence:

Spec(C[X]) = {(0)} U{(X —a) [a € C}.

Corollary g4.1. Maximal implies Prime. Every maximal ideal is a prime
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Figure 4.1: The hierarchy of
ideals in a commutative ring.
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In rings with higher dimension, such as Z[x], strictly prime (non-

maximal) ideals are more common.

Example 4.3. Spectrum of Z[X]. Consider the ring R = Z[X].

- The ideal (2) is prime because Z[X]/(2) = (Z/2Z)[X], which is
an integral domain.

- However, (2) is not maximal, as it is strictly contained in the ideal
(2,X).

- The quotient Z[X]/(2,X) = Z/2Z is a field, so (2, X) is maximal.

This gives a chain of prime ideals (0) € (2) C (2,X), illustrating

that the spectrum can have a complex poset structure.

.41

A natural question arises: does every ring possess a maximal ideal?
For Noetherian rings (where every ideal is finitely generated), this
can be proven directly. For general rings, we require the Axiom of
Choice, typically in the form of Zorn’s Lemma.

Definition 4.3. Partial Order and Chains.

A partial order on a set P is a relation < that is reflexive (a < a), an-

tisymmetric (¢ < band b <4 = a = b), and transitive (2 < b and

b <c = a <c). A setequipped with a partial order is a partially

ordered set (or poset).

- A subset C C P is a chain (or totally ordered subset) if for any a,b €
C,eithera<borb<a.

- An element u € P is an upper bound for a subset S C Pifs < u

forall s € S.

Lemma 4.1. Zorn’s Lemma. Let P be a non-empty partially ordered
set. If every totally ordered subset (chain) of P has an upper bound in

P, then P contains at least one maximal element.
532

Remark.
The proof of this lemma is a standard result in set theory (equiva-
lent to the Axiom of Choice) and is omitted here.

We use this to prove Krull’s Theorem, which asserts the ubiquity of
maximal ideals.

Theorem 4.1. Existence of Maximal Ideals (Krull’s Theorem).
Let R be a commutative ring and a C R a proper ideal. Then there

=

exists a maximal ideal m of R such that a C m.

T
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Proof

Let S be the set of all proper ideals of R that contain a. The set is

non-empty since a € S. We order S by set inclusion. Let {I) }ca be

a totally ordered subset of S. Define ] = Uyca Ix- We claim [ is a

proper ideal.

Jis anideal: If x,y € ], there exist indices «, B such thatx € I,
and y € Iﬁ. Since the set is totally ordered, assume I, C Iﬂ. Then
X,y € Iﬁ, sox—y € Iﬁ C J. Similarly, absorption holds.

] is proper: Since each I is proper, 1 ¢ I, for all A. Consequently,
1¢UI)=]. Thus ] # R.

Since | € Sand Iy C ] forall A, | is an upper bound for the chain.

By Zorn’s Lemma, S has a maximal element m. This m is a maximal

ideal of R, for if K were an ideal with m C K C R, then K would be

in S, contradicting the maximality of m in S.
n

4.2 Universal Properties of Fractions

In definition 1.8, we introduced the field of fractions K of an integral
domain D. We now provide a analysis of this construction and char-
acterise K via its universal property.

Construction and Well-Definedness

Recall that K consists of equivalence classes of pairs (r,s) with s # 0,
denoted £, under the relation (r,s) ~ (r',s') <= rs’ = t's. The
operations were defined as:

r v rs'+r's v !

s s sst T s s ss”

For these operations to define a field structure, they must be indepen-
dent of the choice of representatives.

Lemma 4.2. Well-Definedness of Addition.

The addition operation on K is well-defined.
7 3

Proof

/ /
T T « ey o . .
N —"2agnd 1+ = 2. By definition, this implies:
S1 S Sl 52

Suppose
ris; =181 and  rish = r5s).
We must show that the sums are equivalent:

7’15/1 + 1’351 _ 1’25& + 1”/252

515} $25%
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This requires proving:
(r15] +7151)(s257) = (s151)(r2s) + 1252).-

Expanding the left-hand side and applying the equivalence rela-
tions:

/ ! !/ /!
(r18] + 1151)5255 = 1152815y + 11595152
! ! ! !
= (r281)s153 + (1251)81%2
!/ ! /
= 5157 (1255 + 1352).

Thus, the operation is independent of the representatives.
[

The verification that multiplication is well-defined and that K satisfies
the field axioms is similar and omitted.

The Universal Property

The field of fractions is not merely a field containing D; it is, in a
precise sense, the smallest such field. Any embedding of D into a
field F factors uniquely through K.

Theorem 4.2. Universal Property of the Field of Fractions.
Let D be an integral domain and let K be its field of fractions.
1. The map f : D — K defined by a +— { is a ring monomorphism.
2. For any field F and any ring monomorphism ¢ : D — F, there
exists a unique field homomorphism ¢ : K — F such that ¢ =
pof.
i
Proof
Injectivity of f: Since f is a homomorphism, we examine its ker-
nel:
r 0
kerf:{r€D|1:1}:{r€D|r~1:0-1}:{0}.
Thus f is a monomorphism, identifying D as a subring of K.
Existence of ip: We are given ¢ : D — F. If ¢ extends ¢ to fractions,
it must satisfy ¥(r/s) = ¢p(r/1-(s/1)71) = @(r)p(s)~!. Accord-
ingly, we define ¢ : K — F by:

9 (2) =o0els) ™.

Note that ¢(s) # 0 because ¢ is an embedding and s # 0. To
show 1 is well-defined, suppose r/s = r'/s’. Thenrs' = 1's, so
9(r)g(s) = 9(r')g(s), which implies ¢(r)g(s) ™! = ¢(r')g(s") .
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It is routine to verify that ¢ is a homomorphism. Since the do-
main K is a field, ker ¢ is either {0} or K. Since (1) =1 # 0, the f
kernel is trivial, so ¢ is an embedding. bD——K
Uniqueness: Any such map must satisfy ¢(§) = ¢(r) and (1) = |
#(5)~! = @(s) 1. The structure of ¥ is therefore forced. ¢ 3 4
" F

Recall from Chapter 1 that this process of inverting elements can

be generalised by inverting a specific multiplicative system S. This
erty: every embedding into a

yields the localisation S~'D, which forms an integral domain inter-
field F factors through K.

mediate between the original domain D and its full field of fractions
K.
DCS'DCK

This technique, known as localisation, is fundamental in algebraic
number theory and geometry, allowing us to focus on the properties
of a ring "locally" at a prime ideal.

Exercises

1. Prime Avoidance Lemma. Let R be a commutative ring with
identity. Let p1,...,p; be prime ideals of R and A an ideal of R.
Prove that if A C U p;, then A C p; for some 1 <i <m.

2. Primes in Finite Rings. Prove that in a finite commutative ring
with identity, every prime ideal is a maximal ideal.

3. Nilradical Containment. Recall the definition of the nilradical
Nil(R) from Chapter 3. Prove that every prime ideal in a commu-
tative ring R must contain Nil(R).

4. Intersection Property. Let p be a prime ideal of a commutative
ring R with identity, and let I, ..., I, be ideals of R. Prove that if
p =N I, then p = I; for some i.

5. Correspondence Under Homomorphisms. Let f : R — Sbea
surjective ring homomorphism with kernel K. Prove:

(a) If p is a prime ideal of R containing K, then f(p) is a prime
ideal of S.

(b) If q is a prime ideal of S, then f~1(q) is a prime ideal of R
containing K.

(c) There is a bijection between Spec(S) and the set {p € Spec(R) |
K Cp}.

(d) The same correspondence holds for maximal ideals.

6. Spectrum of Quotients. Let I be an ideal of R.

(a) Prove that prime ideals in R/ I are of the form p/I, where
p € Spec(R) and I C p.

51

Figure 4.2: The universal prop-
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10.

11.

12.

13.

14.

(b) Use this to establish a bijection between Spec(R) and Spec(R/Nil(R)).

Structure of Z/mZ. Let m > 2. Explicitly determine the sets
Spec(Z/mZ) and Max(Z/mZ).

Finite Quotients. Determine the structure of the ring Z|[x] /(x> +
3, p) for the cases p = 3 and p = 5. Are these quotient rings fields?

Maximal Ideals in Quotients. Identify all maximal ideals in the
following rings:

(a) RxR

(b) R[x]/(x?)

(c) R[x]/(x*> —3x+2)

(d) R[x]/(x®>+x+1)

Specific Quotient Rings. Describe the isomorphism class of the
following rings:

(@) Z[x]/(x*>—3,2x +4)
(b) Z2[i}/(2+1)

p-adic Integers. Let Z, denote the ring of p-adic integers (or
consider the localization at p). Prove that Z, is a Principal Ideal
Domain with a unique maximal ideal pZ,.

Local Rings. A ring with a unique maximal ideal is called a /ocal
ring. Let R be a ring and m a proper ideal. Prove that if every
element in R \ m is a unit, then R is a local ring with maximal
ideal m.

Localisation Properties. Let D be an integral domain with field of
fractions K, and let S C D be a multiplicative system.

(@) Prove that the construction S~1D satisfies the axioms of a
subring of K containing D.

(b) Prove that prime ideals in S~'D are of the form S~!p =
{m/n|méecp,neS} wherep € Spec(D) and pN S = @.

(c) Establish a bijection between Spec(S~'D) and {p € Spec(D) |

pNS =0}
(d) For D = Zand p = pZ,letS = Z\ p. Show that Z/pZ =
S~z /s 1.

(e) Generally, determine when D/p = S—1py S’lp.

Localisation at a Prime. Let R be an integral domain and p €
Spec(R). The localisation of R at p, denoted Ry, is the ring (R \
p) !R. Determine all maximal ideals of Ry.



5
Factorisation

In this chapter, we extend the fundamental theorem of arithmetic to
more general algebraic structures. Unless explicitly stated otherwise,
we assume throughout this chapter that R is a commutative ring with
identity.

Unique Factorisation Domains

The study of divisibility in general rings requires us to formalise the
notions of factors, primes, and irreducibles, distinguishing between
properties that coincide in Z but diverge in other settings.

Factors, Prime Elements, and Irreducible Elements

We begin by defining the divisibility relation in terms of the ring
operations.

Definition 5.1. Divisors and Associates.

Leta,b € R.

1. We say 4 is a divisor (or factor) of b, denoted a | b, if there exists
x € R such that b = ax. In this case, b is called a multiple of a.

2. Ifa|band b | a, we say a and b are associates, denoted a ~ b.

3. If b = ax where x is not a unit, then a is called a proper divisor
of b.

The language of divisibility translates directly into the language of
principal ideals established in the previous chapter.

Proposition 5.1. Properties of Divisibility.

Leta,b € R and let u € R* be a unit.

1. a | bif and only if the principal ideal generated by b is contained
in that of a: (b) C (a).

2. a ~ b if and only if (b) = (a).

3. The unit u is a factor of every element r € R. If r is not a unit, then

u is a proper divisor of r (often called a trivial divisor).

(@)

alb < (b)C (a)

Figure 5.1: Divisibility corre-
sponds to reverse inclusion of
ideals.
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4. If a = bu, then a ~ b. If R is an integral domain, the converse holds:
a ~ b implies a = bu for some unit u.

5. If R is an integral domain, then a is a proper divisor of b if and only
if (b) < (a).

¥

Proof

1. This follows immediately from the definition of a principal ideal:
be(a) <= b=ax <= a|b.

2. This follows from applying (1) in both directions.

1

3. Since r = u(u~'r), u | r. If r is not a unit, the factor u~'r cannot

be a unit (otherwise r would be the product of units), so u is
proper.

4. Ifa = bu,thena | b.Sinceb = au™',b | a. Thusa ~ b. Con-
versely, let R be an integral domain and assume a ~ b. Thena =
bx and b = ay for some x,y € R. Substituting, we get a = axy, or
a(l—xy) = 0.Ifa = 0,thenb = 0,s0a = b-1.Ifa # 0, the
cancellation law implies 1 — xy = 0, so xy = 1. Thus x is a unit.

5. Let b = ax. If x is not a unit, then a ¢ (b). Indeed, if a € (b), then
a = by, implying a = axy. As in (4), this forces x to be a unit (as-
suming a # 0;ifa = 0then b = 0, and 0 is not a proper divisor
of 0). Conversely, if (b) C (a), then b = ax for some x. If x were a
unit, we would have a ~ b and (a) = (b), a contradiction.

[ |

In the integers, primes are defined by their inability to be factored. In
general rings, we must distinguish between elements that cannot be
factored and elements that divide products in a specific way.

Definition 5.2. Prime and Irreducible Elements.

1. A non-zero, non-unit element p € R is a prime element if p | ab
implies p |aor p | b.

2. A non-zero, non-unit element a € R is an irreducible element (or
maximal element) if it has no non-trivial factors. That is, if 2 = xy,
then either x or v is a unit.

Example 5.1. Primes in Integers. In the ring Z, the set of prime

elements coincides with the set of irreducible elements, which are

exactly {£p | p is a prime number}.

e
The relationship between these elements and the ideal structure of R
is central to ring theory.

Proposition 5.2. Primes, Irreducibles, and Ideals.
Let R be an integral domain.
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1. An element p is prime if and only if the principal ideal (p) is a prime
ideal.

2. An element 4 is irreducible if and only if the ideal (a) is maximal
amongst the set of proper principal ideals of R.

3. Every prime element is irreducible.

4. If R is a Principal Ideal Domain (PID), then every irreducible ele-
ment is a prime element.

Proof

1. Recall that an ideal P is primeifab € P = a € Porbe P. If p
is a prime element and ab € (p), then p | ab, which implies p | a
or p | b. In terms of ideals, (a) C (p) or (b) C (p),soa € (p) or
b € (p). Conversely, if (p) is a prime ideal and p | ab, then ab €
(p). By definition of prime ideals, 2 € (p) orb € (p),sop | aor
plb.

2. Let a be irreducible. Suppose there exists a principal ideal (b)
such that (a) C (b) € R. Thenb | a,soa = bx. Since (a) # (b),
b is not an associate of 4, so x is not a unit. Since (b) # R, bis
not a unit. This contradicts the irreducibility of a. Conversely,
assume (a) is maximal among principal ideals. Leta = bx. If
b is a proper divisor, then (a) C (b). By maximality, (b)) = R,
implying b is a unit. Thus a4 has no proper divisors.

3. Let p be prime. Suppose p = ab. Thenp | ab,sop | aorp | b.
Without loss of generality, assume p | a. Thena = px for some
x. Substituting back, p = pxb. Since R is a domain and p # 0, we
cancel p to get 1 = xb. Thus b is a unit. Hence p is irreducible.

4. Let R be a PID and let a be irreducible. By (2), (a) is maximal
among principal ideals. Since every ideal in a PID is principal,
(a) is a maximal ideal in R. Maximal ideals are prime ideals, so

(a) is a prime ideal. By (1), 4 is a prime element.

5.2 Unique Factorisation Domains

Having defined the fundamental building blocks of divisibility we
now formulate the definition of a domain where arithmetic behaves
analogously to the integers.

Definition 5.3. Unique Factorisation Domain.

An integral domain R is a Unique Factorisation Domain (UFD) if it
satisfies two conditions:

1. Existence of Factorisation: Every non-zero non-unit 2 € R can be

55
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written as a product of irreducible elements:
a=cicy...Cn,

where each ¢; is irreducible.

ducibles
a=c1...cp =dqy...dy,

then n = m, and there exists a permutation ¢ € S, such that ¢; ~
dy ;) for all i.

To appreciate the strength of this definition, it is instructive to exam-
ine rings where these properties fail.

Example 5.2. Failure of Existence. Let F be a field and consider the
ring R = F[x1,X,...] modulo the relations 9(7214rl = x, foralln > 1.
In this ring, we have an infinite chain of roots:

xX] = x% = xé =
The element x; admits no finite factorisation into irreducibles, as
any potential factor can be further decomposed.

E
Example 5.3. Failure of Uniqueness in Z[v/—5]. Consider the ring
R = Z[+/—5|. We examine the number 6:

6=2-3=(1+V-5)(1-V-5).

To determine if these factorisations are distinct, we introduce the

norm map N : R — N defined by N(a + by/—5) = a® + 5b°.

- The norm is multiplicative: N(af) = N(a)N(B).

- Units in R are elements with norm 1. Since 4% + 5b%> = 1 has inte-
ger solutions only for 2 = +1,b = 0, the units are U(R) = {£1}.

We claim that 2 is irreducible. If 2 = & with non-units «, , then
N(2) = N(a)N(B) = 4. Thisimplies N(a) = 2. However, the
equation > + 5b> = 2 has no integer solutions. Thus, no proper

splitting exists. Similarly, 3and 1 + /-5 are irreducible (having
norms 9 and 6 respectively; no elements exist with norms 3 or 2).
Since N(2) = 4 and N(1+ +/=5) = 6, 2 is not associate to 1 + /—5.
Thus, factorization is not unique.

$o19]
Remark.

example 5.3 also demonstrates that irreducible elements need not
be prime.

2. Uniqueness of Factorisation: If 2 has two factorisations into irre-

//\\

2 - 314y-51-y-5

Figure 5.2: Two distinct decom-
positions of 6 into irreducibles

in Z[/-5].
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Note that 2 | (1++/—5)(1 — v/—5). However, 2 1 (1 + 1/—5) because
N(2) = 4 does not divide N(1 + +/—5) = 6 in Z? No, 4 1 6 is false
logic for divisibility. Rather,

%ﬁm.

Thus 2 is irreducible but not prime.

Greatest Common Divisors

In a general ring, the greatest common divisor is defined via divisi-
bility rather than magnitude.

Definition 5.4. Greatest Common Divisor.

Let Rbearingand a,b € R. An elementd € R is a Greatest Com-
mon Divisor (GCD) of a and b, denoted (a,b), if:

1. d |aand d | b (it is a common divisor).

2. If &’ is any element such that d’ | a and d’ | b, then d’ | d.

If (a,b) ~ 1, we say a and b are coprime.

If a GCD exists, it is unique only up to associates. We typically abuse
notation and write d = (4,b) to mean d is a GCD.

Definition 5.5. Least Common Multiple.

Let R be aring and 4,b € R. An element m € R is a Least Common
Multiple (LCM) of a and b, denoted |[a, b], if:

1. a | mand b | m (it is a common multiple).

2. If n is any element such thata | n and b | n, then m | n.

Lemma 5.1. Properties of GCDs.

Let R be an integral domain where GCDs exist. For any 4,b,c € R:

1. c(a,b) ~ (ca,ch).

2. If (a,b) ~1and (a,c) ~ 1, then (a,bc) ~ 1.

7|32

Proof

1. Letd = (a,b). Since d divides a and b, cd divides ca and cb. Thus
cd is a common divisor. Let k be any common divisor of ca and
cb. Thenca = kxand cb = ky. Let (ca,cb) = g. Thencd | g.
Conversely, sincec | caandc¢ | cb, we must have c | g. Write
g=cy. Thency |ca = y|aandcy|cb = y|Db. Thusyis
a common divisor of a,b, so y | d. Hence cy | cd, or g | cd. Since
¢ | cd and cd | g, they are associates.

2. Since (a,b) ~ 1, using property (1) we have (ac, bc) ~ c(a,b) ~ c.
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We compute (a, bc). Since (a,ac) ~ a:

(a,bc) ~ ((a,ac),bc) ~ (a, (ac,bc)) ~ (a,c) ~ 1.

Characterisation of UFDs

To determine whether a domain is a UFD without explicit factorisa-
tion, we rely on two properties: the Noetherian property (ensuring
factorisation terminates) and the primal property of irreducibles (en-
suring uniqueness).

Theorem 5.1. Properties of UFDs.

Let R be a UFD. Then:

1. Ascending Chain Condition (ACC) for Principal Ideals: Any chain
of principal ideals (a1) C (a2) C ... must stabilize (i.e., there ex-
ists N such that (a,) = (ay) for all n > N).

2. Every irreducible element is prime.

3. For any non-zero a,b € R, a GCD exists.

i

Proof

1. Let (1) C (a2) C ... be a chain. This implies a;;1 | 4;. Thus 4;
is a factor of a;. Let a1 = up; ... py be the factorization of a; into
irreducibles. Any divisor of a; is associated to a sub-product of
these factors. Since the number of factors is finite (k), the length
of any strictly increasing chain of divisors is bounded by k. Thus
the chain must stabilize.

2. Let p be irreducible and suppose p | ab. Then ab = px for some
x. Leta = []c;and b = []d; be factorisations into irreducibles.

Then
[TeiIldi=rITve

where x = []yk. By the uniqueness of factorisation in R, p must
be associate to one of the factors on the left. Thus p ~ ¢; (implies
p | a) or p ~ d; (implies p | b). Hence p is prime.

3. Leta = uJ] pf" andb = oJ] pif " where p; are distinct non-
associate irreducibles and exponents are non-negative. Set g; =
min(e;, ;). Thend = []p} is clearly a common divisor. If 4’ di-
vides both, its prime factorization exponents t; must satisfy ¢; <
e; and t; < f; (by uniqueness), so t; < g;, implying d’ | d.

The converse also holds, providing a powerful criteria for identifying
UFDs.



Theorem 5.2. Equivalence of Definitions.

Let R be an integral domain. The following are equivalent:

1. R

2. R satisfies the ACC for principal ideals, and every irreducible ele-

is a Unique Factorisation Domain.

ment is prime.

3. R satisfies the ACC for principal ideals, and GCDs exist for all pairs.

Proof

T

We have proven (1) = (2) and (1) = (3) above. We prove the
reverse implications.

(2) = (1): We prove both existence and uniqueness.

Existence: Let a be a non-unit. If a is irreducible, we are done.

Uniqueness: Suppose py...pn =

If not, a =
ducible, done. If not, continue factoring. This generates a

a1by with proper factors. If these are irre-

sequence of divisors a,ay,az,...
(a) € (a1) € (a2).... By ACC, this chain stabilizes, meaning
the process terminates in irreducibles.

corresponding to ideals

q1 .. .qm with all factors irre-
ducible. Since p; is irreducible, by hypothesis (2) it is prime.
Thus p1 | q1...qm,s0 p1 | q;j for some j. Reordersoj = 1.
Since g is irreducible, its only factors are units and associates.
Thus pP1~1q1.

Cancelling these (in a domain) gives py...py ~ 4g2...4m. By
induction, n = m and factors are associates.

(3) = (2): It suffices to show that if GCDs exist, irreducibles are
prime. Let p be irreducible and p | ab. Suppose p 1 a. Since p

has no factors other than units and associates, the only common

divisors of p and a are units. Thus (p,a) ~ 1.

By lemma 5.1(2), since (p,a) ~ 1, we have (p,ab) ~ (p,b). Since

p | ab, (p,ab) ~ p. Thus (p,b) ~ p, which implies p | b. Hence

p is prime.

Principal Ideal Domains are UFDs

We now connect the theory of ideals to factorization. We previ-

ously showed that in a Principal Ideal Domain (PID), irreducibles
are prime. To show a PID is a UFD, we need only establish the As-

cending Chain Condition.

RINGS INTRODUCTION

ACC Principal Iceals

UFD
+ Irreducible

is Prime

Figure 5.3: The Noetherian

condition is necessary but not

sufficient for a UFD.

59
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Theorem 5.3. PIDs are UFDs.

Every Principal Ideal Domain is a Unique Factorisation Domain.
il

Proof

Let R be a PID. By theorem 5.2, we must show that R satisfies the

ACC for principal ideals. (Recall we already proved Irreducible
= Prime for PIDs). Consider an ascending chain:

(a1) C(a2) € - C(an) C...

Let I = U;_;(ax). We claim [ is an ideal. If x,y € I, there exist k, m
such thatx € (ax) andy € (an). Let N = max(k,m). Then x,y €
(an),sox —y € (ay) C I Similarly for absorption. Since R is a
PID, I is principal, so I = (a) for some a € I. By definition of the
union, 4 € (ay) for some integer N. Thus, for all n > N

(@) € (an) € (an) € 1= (a).

This forces (a,) = (ay) for all n > N, proving stabilisation.

Remark.

It is important to distinguish between the existence of a GCD and
the ability to express it as a linear combination (the Bezout iden-
tity). In a PID, (a,b) is generated by some d,sod € (a,b) =
d = ax + by. However, in a general UFD, this need not hold. Con-
sider R = Z][x]. The elements 2 and x have GCD 1. However, the
ideal generated by 2 and x, (2, x), is not the whole ring (elements
have even constant term). Thus 1 ¢ (2,x), so we cannot write
1 =2f(x) + xg(x). Rings where the Bezout identity holds are called
Bezout domains.

5.3 Euclidean Domains
We have established a hierarchy of integral domains:
Fields C Principal Ideal Domains (PIDs) C Unique Factorisation Domains (UFDs).

We now abstract the property of division with remainder (as seen in
Z) to define a class of rings where such a "size" function exists.

Definition 5.6. Euclidean Domain.
Let R be an integral domain. R is a Euclidean Domain (ED) if there
exists a function

¢:R\{0} = Z
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such that for any a,b € R with a # 0, there exist q,7 € R satisfying:
b=ag+r,

where either r = 0 or ¢(r) < ¢(a).

The function ¢ is often called a Euclidean valuation or norm.

Theorem 5.4. ED implies PID.
Every Euclidean Domain is a Principal Ideal Domain. Consequently,

every Euclidean Domain is a Unique Factorisation Domain.
%2

Proof
Let R be a Euclidean Domain and I be a non-zero ideal of R.
We must show that [ is generated by a single element. Let
S = {e(x) | x € I\{0}} € IN,. By the Well-Ordering Princi-
ple of the integers, S contains a minimal element. Leta € Ibean
element such that ¢(a) is minimal in S. We claim I = (a). Since
a € I, clearly (a) C I. Conversely, let b € I. Since R is an ED, there
existq,r € Rsuchthatb = ag+r,withr = Oor ¢(r) < ¢(a).
Rearranging, we haver = b —aq. Sinceb € ITanda € I, and [is
anideal,r € L Ifr # 0, then ¢(r) would be defined. However,
¢(r) < ¢(a) would contradict the minimality of ¢(a) in the set of
norms of non-zero elements of I. Therefore, we must haver = 0.
Thus b = agq, implying b € (a). Hence I = (a), so R is a PID. The
fact that R is a UFD follows immediately from t/icorem 5.3.

|
Example 5.4. Gaussian Integers. The ring of Gaussian integers
Z]i] = {a+bi|abc Z)} (where i> = —1) is a Euclidean Domain.

ERl
Solution

We define the function ¢ : Z[i] \ {0} — N by the norm map:
@(a+bi) = a® +b* = |a+bi]*.

Leta,p € Z[i] with B # 0. We perform the division in the field of
fractions Q(i):

% =x+yi, wherex,ycQ.
Let x¢, yo be the integers closest to x and y respectively. That is, |x —
xo| < 3 and |y —yo| < 1. Set g = xo + yoi € Z[i]. Then

%:‘7"‘5/ where § = (x — xq) + (¥ — yo)i.
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The distance satisfies |6]2 = (x —x0)> + (y —y0)> < 1 + 1 = 1. Now,
setr =a — Bg = Bo. Clearly r € Z[i]. If r # 0, we calculate its size:

o(r) = |r? = |Bo]* = 1BI*|6]* < |BI*- 5 = %@(ﬁ)'

Since ¢(B) > 0, we have ¢(r) < ¢(B). Thus Z][i] is an ED.

NI~

This result confirms that arithmetic in Z[i] supports a Euclidean algo-
rithm, allowing us to compute greatest common divisors effectively.
This structure is essential in Number Theory, particularly for charac-
terising sums of two squares.

Gaussian Integers and the Two-Square Problem

We apply the general theory of Unique Factorisation Domains to the
specific case of the Gaussian integers, Z[i]. This ring provides the
natural setting for solving the classical number theoretic problem of
representing integers as sums of two squares.

Definition 5.7. Gaussian Integers.
The ring of Gaussian integers, denoted Z[i], is the subring of complex
numbers given by:

Z[i|={a+bi|abeZ}, wherei®=—1.

Its prime elements are referred to as Gaussian primes. We employ the
norm function defined in the previous section:

N(a+bi) = a* +b* = (a + bi)(a — bi).

Recall from example 5.4 that Z[i] is a Euclidean Domain, and thus by
theorem 5.4, it is a Principal Ideal Domain and a Unique Factorisation
Domain.

Units and Primes

We first characterise the invertible elements and the prime elements
of this ring.

Lemma 5.2. Units of Gaussian Integers.
The group of units of the Gaussian integers is cyclic of order 4:

u(zlil) = {1, -1,i, —i}.

5] 3%
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Proof

Anelement « € Z[i] is a unit if and only if it divides 1, which im-
plies N(«) | N(1) = 1. Since the norm is a non-negative integer, we
must have N(a + bi) = a? + b*> = 1. The only integer solutions are
(+1,0) and (0, £1), corresponding to the stated elements.

The classification of Gaussian primes reveals a deep connection be-
tween the algebraic structure of Z[i] and modular arithmetic in Z.

Theorem 5.5. Classification of Gaussian Primes.
Let p be a rational prime (i.e., a prime in Z).
1. If p = 2, then p ramifies in Z[i]:

2 = —i(1+1i)%

The element 1+ i is a Gaussian prime.

2. If p =3 (mod 4), then p remains prime in Z[i] (it is inert).

3. If p=1 (mod 4), then p splits into the product of two distinct con-
jugate Gaussian primes:

p=nr,

where 7 is not associate to 7.
Consequently, the Gaussian primes are exactly the associates of 141,
the rational primes g4 = 3 (mod 4), and the factors 7t of rational primes

p=1 (mod 4).
i
Proof
We establish this classification through the following steps.
Rational primes and Gaussian norms. Let 7t be a Gaussian
prime. Since 7t | N(7m) and N(r) is an integer, 7t divides
some rational prime p. Since p is a prime in Z, its decom-
position in Z[i] is of the form p = 7my... ;. Taking norms,

N(p) = p* = N(m)...N(m). Since N(71;) > 1, there are two
possibilities for any factor 7t
e N(7m) = p?. Then 7t ~ p, meaning p remains prime in Z[i].
e N(m) = p. Then p = 7 (since p = N(m)).
The case p = 2. We observe 2 = (1+1i)(1—1i). Since1 —i = —i(1+

i), we have 2 ~ (1+1)2. Since N(1+ i) = 2, which is prime in Z,
1+ i must be irreducible (and hence prime) in Z[i].

The splitting condition. A rational prime p splits (i.e., is not prime
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in Z[i]) if and only if p = 77 for some 7 = a + bi.
p=nn < p:az—l—bz <= p is a sum of two squares.

By standard modular arithmetic, a2 +bp2 =012 (mod 4). Thus,
ifp = 3 (mod 4), p cannot be written as a sum of two squares,
s0 p must remain prime in Z[i].

Conversely, suppose p = 1 (mod 4). By Euler’s Criterion, the
Legendre symbol satisfies:

(F)-c o

Thus, the congruence x> = —1 (mod p) has an integer solution
x. This implies p | x> +1 = (x +1i)(x —i). If p were prime in Z[i],
thenp | (x+1i)orp | (x —i). However, ’%i = % + %i is not in

Zi]. Contradiction.

Therefore, p is not prime in Z[i], so it must split as p = 77t

Sum of Two Squares

The algebraic structure of Z[i] provides a complete solution to the
problem of determining which integers can be written as a sum of
two squares. An integer 1 is a sum of two squares if and only if

n = N(«) for some a € Z[i].

Theorem 5.6. Sum of Two Squares.
Let 1 be a positive integer with prime factorisation

s ot
n=2"TTp T g
j=1 m=1
where p; =1 (mod 4) and g, =3 (mod 4).
the exponent y,, iseven forallm =1,...,¢.
x? + y? (distinguishing signs and order) is given by:

ro(n) = 411(/% +1).
e

Proof

1. The integer n can be written as a sum of two squares if and only if

2. If this condition holds, the number of distinct representations n =

Figure 5.4: Lattice of Z[i]. Units
(blue), primes above 2 (red),
and primes above 5 (orange).



We analyse the factorisation of n in Z[i]. We substitute the rational
primes with their Gaussian factorisations:

e 2= —i(1+i)%

* pj =TT (split).

* g remains prime (inert).

Thus, the unique factorisation of n in Z[i] (up to units) is:

s t
ne~ (141)% H(njﬁj)ﬁf 1T am
j=1 m=1

An integer 1 is a sum of two squares if and only if n = a& = N(«a)
for some a € Z[i]. Let & = u(1+ i) ] n;jﬁ{j 14" Then the norm

is:
N(&) =2 TTp) " TT o
Matching this with the factorisation of n:
1. The exponent of g, in n is y,, = 2hy,. Thus, v, must be even for
a solution to exist.

2. The exponent of p; is B; = ¢; + f;.
3. The exponent of 2 is k = k.
If the condition on 1, is met, we construct «. For each split prime
pj, we must choose exponents ¢;, f; such that ¢; + f; = B;. There are
B; + 1 choices for the pair (e;, f;) (specifically, e; € {0,...,B;}). For
the inert primes g, the exponent h,, is fixed as 7, /2. For the ram-
ified prime 2, the exponent is fixed as k. Finally, there are 4 choices
for the unit u € {1,—1,i, —i}. By the uniqueness of factorisation in
Z[i], distinct choices of exponents and units yield distinct Gaussian
integers a. Thus, the total number of solutions is 4[T(B; + 1).

[ |

Example 5.5. Representations of 45 and 49.

- n =45=3?.5. The prime 3 = 3 (mod 4) has even exponent, and
5 = 1 (mod 4). Thus solutions exist. The number of solutions is
4(1+41) = 8. They are (43)? + (£6)? = 9+ 36 = 45 and (+6)* +
(£3)2.

- n =49 = 72. Here 7 = 3 (mod 4) has even exponent. Number of
solutions is 4(1) = 4. Solutions are (+7)2 + 0.

- n = 21 = 3-7. Exponents are odd for primes = 3 (mod 4). No
solution.

~—

E X
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Exercises

1. Divisibility and LCM in a UFD. Let R be a Unique Factorisation
Domain. For non-zero elements 4,b, ¢ € R, prove:

(a) The product relates to the GCD and LCM via associates:
ab ~ (a,b)[a,b].
(b) Ifa | bcand (a,b) ~ 1, thena]c.

2. Ideal Arithmetic in a PID. Let R be a Principal Ideal Domain.
Prove the following properties of ideals generated by a,b € R:

(a) The intersection corresponds to the LCM: (a) N (b) = ([a, b]).
(b) The intersection equals the product, (a) N (b) = (a)(b), if and
only if 2 and b are coprime (i.e., (a,b) ~ 1).
(c) The linear Diophantine equation ax + by = c has a solution
(x,y) € R? if and only if the GCD (a, b) divides c.
3. Polynomial Rings over Non-Fields. Let D be an integral domain Consider the ideal generated by X and
a non-unit constant.

that is not a field. Prove that the polynomial ring D[X] is not a
Principal Ideal Domain.

4. Properties of Associates. Let R be an integral domain and let
a,b € R\ {0} be associates (a ~ b). Prove:

(a) If a is irreducible, then b is irreducible.
(b) If a is prime, then b is prime.
5. Prime vs. Irreducible Quotients. Let a4 be a non-zero element in a

PID D.

(a) Prove that if a is a prime element, then the quotient ring
D/(a) is a field.

(b) Prove that if a is not a prime element (and not a unit), then
D/(a) is not an integral domain.

6. Classifying Quadratic Rings. Determine which of the following
rings are Principal Ideal Domains (PIDs) and which are Euclidean
Domains (EDs). Justify your answers.

(@) Z[v-2]

(b) Z[v-3]

(c) The ring of polynomials in two variables, R[X, Y]
(d) Z[w], where w = —Hf\ﬁ (the Eisenstein integers)

7. GCD Preservation in Extensions. Let D be a PID and E be an Use the Bezout identity available in the
integral domain such that D is a subring of E. Let a,b € D\ {0}. PID D.
Let d be a GCD of 2 and b computed in D. Prove that d remains a
GCD of a and b when considered as elements of the larger ring E.

8. Unique Representations. Let p be an odd prime such that p = 1



10.

11.

(mod 4). Prove that if (a,b) is an integer solution to the Diophan-
tine equation x> + y?> = p, then the complete set of integer solu-
tions is given by (+a, +b) and (£b, £a).

Gaussian Factorisation. Perform the factorisation into irreducible
elements for the following in the ring Z[i]:

(a) The integer 6o0.
(b) The Gaussian integer 81 + 8i.

Sum of Squares Solutions. Determine all integer solutions (x,y)
to the equation x? + y? = 585.

Generalised Quadratic Forms. Using the methods developed for
Z[i] (Euclidean domains and norms), investigate the following
Diophantine problems:

(a) For a positive integer 1, determine the necessary and suffi-
cient conditions for the equation x? + 2y? = n to have integer
solutions. Derive a formula for the number of such solutions.

(b) For a positive integer 7, determine the conditions for the
equation x? + xy + y*> = n to have integer solutions, and find
the number of solutions.
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First find the prime factorisation of
585 in Z, then apply the method of
Gaussian integers.

For (a): Work in the ring Z[/—2].

For (b): Work in the ring of Eisenstein
integers Z[w] where w = _1%‘/?3,
noting that x> + xy + 1> = N(x — wy).



6.1

6
Polynomials

We now narrow our focus to a specific and crucial class of rings:
polynomial rings. While we introduced the definition of R[X] in def-
inition 1.4, we now investigate their arithmetic properties in greater
depth. Throughout this chapter, unless specified otherwise, R de-
notes a commutative ring.

Degree and Arithmetic

We begin by formalising the "size" of a polynomial.

Definition 6.1. Degree and Leading Coefficient.

Let f(X) = ayX" 4+ a, 1 X"~ + - + ap be a non-zero polynomial

in R[X] with a, # 0.

1. The integer 7 is the degree of f, denoted deg f.

2. The coefficient a, is the leading coefficient of f.

3. If a, =1, the polynomial f is called monic.

For the zero polynomial f(X) = 0, we adopt the convention deg0 =
—oo. Elements of R (regarded as polynomials of degree < 0) are called
constant polynomials.

The behaviour of the degree function under addition and multipli-
cation is governed by the structural properties of the coefficient ring
R.

Proposition 6.1. Degree Properties.
Let f,g € R[X]. Then:
1. deg(f +g) < max(deg f,degg).

2. deg(fg) < degf +degg.
Equality holds in (2) if the leading coefficient of either f or g is not a

zero divisor in R. In particular, if R is an integral domain, equality al-
ways holds.
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Proof

This follows directly from the definition of polynomial multiplica-
tion. The leading term of the product is the product of the leading
terms, provided this product is non-zero. The details are left as an
exercise.

When the coefficient ring is an integral domain, the polynomial ring
inherits this property. Furthermore, the units of the polynomial ring
are constrained to the units of the base ring.

Proposition 6.2. Units in Polynomial Rings.
Let D be an integral domain. Then D[X] is an integral domain, and the
group of units is exactly the group of units of D:

Proof

Let f,¢ € DI[X] be non-zero. Since D is a domain, the product of
the leading coefficients of f and g is non-zero. Thus the leading
coefficient of fg is non-zero, implying f¢ # 0. Hence D[X] has no
zero divisors.

Now, suppose f € U(D[X]). Then there exists ¢ € D[X] such that
fg = 1. Applying the degree formula for domains:

deg(fg) = deg f + degg = deg1 = 0.

Since degrees are non-negative for non-zero polynomials, we must
have deg f = degg = 0. Thus f and g are constant polynomials
in D, and their product is 1. Therefore f €  U(D). The reverse
inclusion U(D) C U(D[X]) is immediate.

6.2 The Division Algorithm and Roots

While R[X] is not generally a Euclidean Domain (unless R is a field),
a division algorithm exists provided the divisor has a "nice" leading
coefficient.

Proposition 6.3. Polynomial Division.
Let f, g € R[X]. If the leading coefficient of g is a unit in R, then there
exist unique polynomials g (quotient) and r (remainder) in R[X] such
that:

f(X)=q(X)g(X)+r(X), with degr < degg.
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>

Proof
The existence is proven by induction on deg f, mirroring the stan-
dard long division of polynomials over a field. Uniqueness follows

from the fact that the leading coefficient of g is not a zero divisor.
[

This result yields the fundamental link between the algebra of poly-
nomials and the values they take.

Corollary 6.1. Remainder Theorem. Let f € R[X] and let ¢ € R. Then
there exists a unique polynomial 4 € R[X] such that

f(X) = q(X)(X =) + f(e).

Consequently, c is a root of f (i.e., f(c) = 0) if and only if (X —c¢) di-
vides f(X).

e
Proof
Apply the polynomial division proposition with ¢(X) = X — c.
Since the leading coefficient of g is 1 (a unit), there exist unique g, r
with f(X) = g(X)(X —c) 4+ r(X), where degr < 1. Thusrisa
constant. Evaluating at X = c:

f©) =q()c—c)+r=r.

Thus f(X) = q(X)(X —¢) + f(c). The equivalence follows immedi-

ately.
[

This allows us to bound the number of roots a polynomial may pos-
sess, a property that distinguishes integral domains from general

rings.

Corollary 6.2. Roots in Integral Domains. Let D be an integral domain
and let E be an integral domain containing D. A non-zero polynomial
f € D[X] has at most deg f distinct roots in E.

El)
Proof
We proceed by inductiononn = degf.lfn = 0, f is a non-zero
constant and has no roots. Suppose the result holds for degree
n — 1. If f has no roots in E, the statement is trivial. If f has a root
c1 € E, thenby corollary 6.1, f(X) = (X — c1)q1(X) for some
g1 € E[X]. Note thatdegq; = n —1.If c; € E is another distinct
root, then

0= f(c2) = (c2 —c1)q1(c2).
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Since E is an integral domain and ¢, # c¢1, we must have g1 (c2) = 0.
Thus, any other root of f is a root of ;. By the inductive hy-
pothesis, g1 has at mostn ~ — 1 roots. Therefore, f has at most
14 (n—1) = n roots.

|
Remark.

The commutativity of the ring E is essential. For instance, in the
ring of quaternions H (which is a non-commutative division

ring), the polynomial X?> + 1 has infinitely many roots of the form
ai + bj + ck where a% + b? + ¢ = 1.

Rational Roots Figure 6.1: A polynorfuaI over
D may factor further in a larger

When solving polynomial equations, it is often useful to test for domain E.

roots in the field of fractions. The following proposition restricts the

possible candidates for such roots.

Proposition 6.4. Rational Root Test.

Let D be a Unique Factorisation Domain (UFD) and let F be its field
of fractions. Let f(X) = Y ya;,X € D[X] with a, #0. If u = SEF
(where ¢,d € D and (c,d) ~ 1) is a root of f, then:

clag and d|ay.

¥

Proof

Since f(c/d) = 0, we substitute and clear the denominator by mul-
tiplying by d":
c\" c _ - ign—i _
an(a) —|—---+a1<g)+ao—0:>1§)ﬂ10d =0.

Isolating the terms divisible by c and d respectively:

1. apc" = —d (ay_1c" '+ +apd"1). Thus d | a,c". Since ¢ and
d are coprime, d | ay,.
2. apd" = —c (anc”_ld”_l + .- +a1d”_1). Thusc | agd". Since

(c,d) ~ 1, c| ap.
]

6.3 Derivatives and Multiplicity

We can detect multiple roots algebraically using formal differentia-
tion.
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Definition 6.2. Formal Derivative.
Let f(X) = Y, aX* € D[X]. The formal derivative of f, denoted
f'(X), is defined by:

n
f/(X) = Z kﬂka_l — nllan_l 4. +a1'
k=1

It is a routine verification that the standard rules of differentiation
(linearity and the product rule) apply:

(f+8) =f+¢, (f9)'=fg+fs.

Definition 6.3. Multiplicity.
Let ¢ € E be a root of f € D[X]. We say c is a root of multiplicity n
if:

f(X) = (X=¢)"g(X)

where g(c) # 0.

Theorem 6.1. Roots and Derivatives.

Let D C E be integral domains and let f € D[X] have a root ¢ € E.

1. If ¢ is a root of multiplicity n, then f(c) = f'(c) = --- = f*=D(c) =
0and f("(c) # 0.

2. If D has characteristic zero, the converse holds: if the first n — 1 deriva-
tives vanish at ¢ but the n-th does not, then ¢ has multiplicity n.

3. If D is a field and ged(f, f') = 1, then f has no multiple roots in
any extension E.

T
Proof
1. Suppose f(X) = (X — ¢)"g(X). Differentiating using the product
rule:

FI(X) = n(X=c)"g(X) +(X—)"g'(X) = (X = )"} [ng(X) + (X — )g'(X)] .

Thus c is a root of f’ of multiplicity at least n — 1. Repeating
this argument inductively, we find that derivatives up to order
n — 1 vanish at c. The n-th derivative involves a term n!g(c) plus
terms vanishing at c. Since E is a domain, f(")(c) # 0 (assuming
appropriate characteristic or checking the specific expansion).

2. Conversely, expand f(X) as a polynomial in (X —  ¢) (Taylor
expansion):

f(X)=by+b(X—c)+--+bu(X—0c)".
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Evaluating the derivatives at c yields f¥) (c) = k!b. If fK)(c) =0
fork < nand f(c) #0,thenby = --- = b,_; = 0 and b, # 0.
Thus

fX)=(X=0)"[ba+bya1(X—c)+...],

so ¢ has multiplicity n.

3. If ged(f, f') = 1, there exist polynomials a,b such that af + bf’ =
1. If ¢ were a multiple root (multiplicity > 2), then f(c) = 0and
f'(c) =0, implying 1 = 0, a contradiction.

|

6.4 Gauss’s Lemma and Unique Factorisation

We now address a fundamental question: if D is a Unique Factorisa-
tion Domain, is the polynomial ring D[X] also a UFD? While D[X]

is generally not a PID (as seen with Z[X]), it turns out that the UFD
property is preserved. The bridge between factorisation in D[X] and
the typically simpler factorisation in F[X] (where F is the field of
fractions) is provided by Gauss’s Lemma.

Throughout this section, let D be a Unique Factorisation Domain and
let F be its field of fractions.

Content and Primitive Polynomials

To compare polynomials over D with those over F, we separate the
"scalar" factors from the polynomial part.

Definition 6.4. Content and Primitive Polynomials.
Let f(X) = Y" ,a;X' € D[X] be a non-zero polynomial.
1. The content of f, denoted c(f), is the greatest common divisor of
its coefficients:
c(f) =ged(ag,ay,...,an).

Since D is a UFD, this GCD exists and is unique up to multiplica-
tion by a unit.

2. The polynomial f is called primitive if c(f) ~ 1 (i.e., the coefficients
are coprime).

Remark.

Any non-zero polynomial f € D[X] can be written as f(X) =
c(f)f1(X), where f; is a primitive polynomial. This decomposition
is unique up to units: if f = cg with g primitive, then ¢ ~ ¢(f) and
g~ h.
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The interaction between content and multiplication is described by
Gauss’s Lemma.

Proposition 6.5. Gauss’s Lemma.
Let D be a UFD. If f, g € D[X] are non-zero polynomials, then:

c(fg) ~c(f)e(g)-

In particular, the product of two primitive polynomials is a primitive
polynomial.

v

Proof

We can write f = ¢(f)f; and § = c(g)g1 where f1, g1 are primitive.
Then fg = c(f)c(g)f141. Since content is multiplicative for scalars,
c(fg) ~ c(f)ec(g)e(fig1). Thus, it suffices to prove that if f and g
are primitive, then fg is primitive (i.e., c(fg) ~ 1).

Let f(X) = Yy, X and g(X) = Yo bjXJ. Suppose, for the sake
of contradiction, that fg is not primitive. Then there exists a prime
element p € D that divides every coefficient of the product fg.
Since f is primitive, p does not divide all coefficients ;. Let s be the
smallest index such that p { as (so p | a; for all i < s). Similarly, since
g is primitive, let ¢ be the smallest index such that p { b; (sop | b;
for all j < t).

Consider the coefficient of X*™ in the product fg, denoted cs+:

s+t
Cs+t = Z agbs ik = - +as_1bp1 +asbr +as b1+
k=0
By assumption, p divides the entire coefficient cs;;. We examine the
terms in the sum:
e Fork <s,p|ag sop|agbsyi -
e Fork > s,wehaves+t—k < t,sop | bgys g implyingp |
gbs -
Thus, p divides every term in the sum except possibly a;b;. Since
p divides the sum ¢4+ and all other terms, it must divide asb;.
However, p is prime and p { asand p { b;, which contradicts the
definition of prime elements in a domain. Therefore, no such prime
exists, and fg is primitive.
[

Relations with the Field of Fractions

We can view D|X] as a subring of F[X]. Since F is a field, F[X] is a
Euclidean Domain (and thus a PID and UFD), and its arithmetic is
well-understood. We use Gauss’s Lemma to pull properties from
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F[X] back to D[X]. DIX] —— F[X]

Let f,g € D[X] be primitive polynomials. Then f and g are associates

Lemma 6.1. Associates in D[X] and F[X]. [ O [
in D[X] if and only if they are associates in F[X]. b F

e —

5= Figure 6.2: Embeddings of

Proof polynomial rings.
If f ~ gin D[X], then f = ug for some unit u € D*. Since D* C

F* = F\ {0}, they are associates in F[X]. Conversely, suppose f,g
are associates in F[X]. Then f = ag for some a € F*. Writea = §
witha,b € Dand b # 0. Then bf(X) = ag(X). Taking contents on

both sides and using Gauss’s Lemma:

c(bf) ~c(ag) = b-c(f) ~a-c(g).

Since f and g are primitive, ¢(f) ~ 1 and ¢(g) ~ 1. Thus b ~ ain D.
Therefore, « = a/b is a unit in D, meaning f and g are associates in
D[X].

This lemma allows us to characterise irreducible elements in D[X].
An element can be irreducible in D[X] either because it is a prime
constant, or because it is a polynomial that cannot be factored even
allowing for fractions.

Lemma 6.2. Irreducibility Criteria.
Let f € D[X] be a non-zero polynomial. Then f is irreducible in D[X]
if and only if one of the following holds:
1. deg f = 0 and f is irreducible in D.
2. deg f > 0, f is primitive in D[X], and f is irreducible in F[X].

1z
Proof
Ifdegf = 0,then f € D. The units of D[X] are the units of D, so
f is irreducible in D[X] if and only if it is irreducible in D. Now
assume deg f > 1.

( <= ) Suppose condition (2) holds. If f = ghin D[X], then
g, h € F[X]. Since f is irreducible in F[X], one factor, say g, must
be a unit in F[X]. Thus¢ € F*,sog € D\ {0} (asg € D[X]).
We have f = gh. Taking contents: c(f) = g - c(h). Since f is
primitive, ¢(f) ~ 1, which implies g is a unit in D. Thus the
factorisation is trivial.

(=) Suppose f is irreducible in D[X] with deg f > 1. First,
f = c(f)f1. If ¢(f) is not a unit, then f is reducible (product of
constant and polynomial). Thus ¢(f) ~ 1, so f is primitive. Next,
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suppose f = g(X)h(X) is a factorisation in F[X]. We must show
it is trivial. Write g(X) = §go(X) and h(X) = $ho(X), where
20, hp € D[X] are primitive and a,b,¢,d € D. Then:

ac

f(X) = b*go(X)ho(X) = bdf(X) = acgo(X)ho(X).

By Gauss’s Lemma, gohy is primitive. Comparing contents:
bd - c(f) ~ ac-c(gohy) = bd ~ ac.

Thus 5 isaunitu € D.So f(X) = ugo(X)ho(X) is a factorisa-
tion in D[X]. Since f is irreducible in D[X], either gy or /iy must
be a unit in D[X]. Since deg f > 1, the non-unit factor must
have the same degree as f. Thus either degg = Oordegh = O,
implying g or /1 is a unit in F[X].

Thus f is irreducible in F[X].

Polynomial Rings are UFDs
We are now equipped to prove the main theorem of this section.

Theorem 6.2. Polynomial UFD Theorem.
If D is a Unique Factorisation Domain, then D[X] is a Unique Factori-
sation Domain.

i
We must verify the existence and uniqueness of factorisations into
irreducibles.
Existence.

Let f € D[X]. We proceed by induction on deg f. If deg f = 0,
f € D.Since D is a UFD, f factors into irreducibles in D, which
remain irreducible in D[X]. If deg f > 1, write f = c¢(f)f1 with fy
primitive. The constant ¢(f) factors into irreducibles in D. We focus
on fi. If fi is irreducible in D[X], we are done. If f; is reducible

in D[X], then by lemma 6.2, it must be reducible in F[X] (since it

is primitive). Or simply, if ff = gh with non-units in D[X], then
since fi is primitive, degg > 1 and degh > 1. Since degg < deg f
and degh < deg f, by the induction hypothesis, ¢ and & factor into

irreducibles. Thus f; (and hence f) factors into irreducibles.
LB 4

Uniqueness.

Suppose f has two factorisations into irreducibles:

f=cr...cr - p1(X)...ps(X) =dy...dg - 1(X) ... qm(X),
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where c;, d; are irreducible constants (primes in D) and p;, q; are ir-
reducible polynomials of degree > 1. By lemima 6.2, the polynomials
pi,q; are primitive in D[X] and irreducible in F[X]. Taking contents
on both sides:

C(f) ~Cl1...Cr Ndl...dk.

Since D is a UFD, r = k and the constants c; are associated to d; (af-
ter reordering). We can cancel the constants (up to units), leaving:

p1(X) ... ps(X) ~ q1(X) ... gm(X).

This equality holds in F[X]. Since F[X] is a Euclidean Domain
(hence a UFD), factorisation is unique in F[X]. Thuss = m, and
after reordering, p; is associated to g; in F[X]. Since p; and ¢; are
primitive in D[X], the Lemma on Associates implies they are associ-

ated in D[X]. Thus the factorisation is unique.
FE B

Corollary 6.3. Multivariate Polynomial UFDs. If D is a UFD, then the
polynomial ring in n variables D[Xj, ..., X,] is a UFD.

o
Proof
We proceed by induction on n. The base casen = 1 is the theo-
rem above. For the inductive step, observe that D[Xj, ..., X] =
(D[X,...,Xy-1])[Xn]. By the inductive hypothesis, R =
D[Xj,...,X,—1] is a UFD. Applying the theorem to R[Xj]|, we
conclude that the ring of n variables is a UFD.

|

Example 6.1. Structure of Z[X]. Since Z is a UFD, Z[X] is a UFD.
Its irreducible elements are:

1. Prime numbers p € Z.

2. Primitive polynomials f(X) that are irreducible over Q.

For example, 2X? + 2 = 2(X? + 1) is not irreducible (factor 2), but
X? +1 is irreducible (primitive and irreducible over Q).

Eal

6.5 Irreducibility Criteria

Determining whether a polynomial is irreducible is a fundamental
problem in algebra. While we have established general structural re-
sults, we now present a powerful sufficient condition for irreducibil-
ity over Unique Factorisation Domains, particularly Z.
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Theorem 6.3. Eisenstein’s Criterion.
Let D be a Unique Factorisation Domain and let p € D be an irreducible
element. Let f(X) = Y ,a;X' € D[X] be a polynomial of degree
n > 1. Suppose that:
1. p{ay (the leading coefficient is not divisible by p),
2. p|a;forall 0 <i < n (all other coefficients are divisible by p),
3. p*tag (the constant term is not divisible by p?).
Then f(X) is irreducible in D[X] unless it is the product of a constant
and a polynomial (i.e., reducible only by content). If f is primitive, then
f is irreducible.

il
Proof
Suppose f(X) = g(X)h(X) where g(X) = ¥, bjX/ and h(X) =
Zf(:o ¢t X* are non-constant polynomials in D[X]. Thus m,] < n.
Comparing the leading coefficients, a, = by,c;. Since p 1 a,, we have
p 1 by and p t ¢;. Comparing the constant terms, a9 = bycy. Since
p | ag but p? t a9, p must divide exactly one of by, co. Without loss of
generality, assume p | by and p 1 .
We seek a contradiction. Since p | bp and p 1 by, there exists a small-
est index k such that p { b;. Note that 0 < k < m < n. Consider the
coefficient of X* in the product f = gh:

ar = bocy + bick_1 + - - - + brco.

Since k < n, by hypothesis p | a;. By the choice of k, p divides
bo, b1, ..., bx_1. Thus p divides every term in the sum except pos-
sibly bxcp. Since p | 4y and p divides the initial sum, it implies
p | bxco. However, p is prime (irreducibles are prime in a UFD), and
we know p { by (by choice of k) and p t ¢ (by assumption). This is a
contradiction. Thus no such factorisation exists.

|

Remark.

The monic case a;, = 1 is the most common application. In this
case, since f is primitive, Eisenstein’s Criterion implies irreducibil-
ity in both D[X] and the fraction field F[X].

Example 6.2. Cyclotomic Polynomials. Let p be a prime number.
The p-th cyclotomic polynomial is defined as:

XP—1
@p(X) = g =XP L4 XP 24 X1

Direct application of Eisenstein is not possible since the coefficients
are all 1. However, irreducibility is invariant under translation
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X — X + 1. Consider:

(X+1)P -1 T oMOXr—1 2 p\ i
X) = ®p(X+1) = = = XK1,
§(X) = ®p(X+1) = 73y —7 ,;(k)

The coefficients are (1), (5),..., (pfl), 1. Explicitly:

g(X) = xP~1 4 (pp 1>XP—2+-~+ (’;)

Since pis prime, p | (})for1 < k < p. The constant term is
(1) = p, which is divisible by p but not p?. Thus g(X) is irreducible
by Eisenstein’s Criterion, implying ®,(X) is irreducible in Z[X].

49

Reducibility over Z and Q

Finally, we restate the practical implication of Gauss’s Lemma for
integer polynomials.

Theorem 6.4. Integer vs Rational Irreducibility.

Let f € Z[X]. Then f is irreducible in Z[X] if and only if:

1. f is irreducible in Q[X], and

2. The coefficients of f are coprime (i.e., f is primitive).

Equivalently, a primitive polynomial factors over Z if and only if it fac-
tors over Q.

e

This theorem assures us that searching for factors with integer coeffi-
cients is sufficient to determine reducibility over the rationals, greatly
simplifying the search space by restricting coefficients to divisors of
the constant and leading terms.

6.6 Exercises

1. Degree Properties. Prove proposition 6.1. Specifically, verify

deg(f + ¢) < max(deg f,degg) and deg(fg) < degf + degg,

with equality in the latter if the leading coefficients are not zero
divisors.

2. Special Elements in Polynomial Rings. Let R be a ring and
f(x) =ap+ax+-- -+ a,x" € Rx]. Prove:
(@) f(x) is invertible (a unit) if and only if a9 € U(R) and
ai,...,a are nilpotent.
(b) f(x) is nilpotent if and only if ag, a3, ..., a, are all nilpotent.
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10.

11.

(c) f(x) is a zero divisor if and only if there exists a non-zero
a € R such that af(x) = 0.

Monic Factors in UFDs. Let D be a UFD with field of fractions F.

Let f(x) € D[x] be a monic polynomial. Prove that every monic
polynomial factor of f(x) in F[x] must actually lie in D[x].

Cyclotomic Factorisation. Factor the polynomials x"” — 1 into
irreducible polynomials in Z[x] for all 3 < n < 10.

Derivations. Let F be a field. A linear map d : F[x] — F[x]is
=d(f)g +

called a derivation if it satisfies the Leibniz rule: d(fg
fd(g) for all f, g € F[x]. Find all derivations on F|[x].

Sum of Conjugate Roots. Let f(x) € Q[x] be an irreducible
polynomial of odd degree. Let « and 8 be two distinct roots of
f(x) in some extension field. Prove that a + 8 ¢ Q.

Formal Power Series. Let R be a ring with identity. The ring of
formal power series R[[x]] consists of formal sums } ;> ; a,x"
with coefficients in R, with addition and multiplication defined
analogously to polynomials (but without terminating).

(a) Verify that R[[x]] is a ring containing R[x] as a subring.

(b) Prove that f(x) = Y a,x" is invertible in R[[x]] if and only if
the constant term 4g is a unit in R.

(c) If F is a field, prove that F[[x]] is a Principal Ideal Domain
(in fact, a Euclidean Domain) with a unique maximal ideal
m = (x). Describe all ideals of F[[x]].

Ideals in Polynomial Rings. Determine all prime ideals and max-
imal ideals of R[x| and Z[x].

Automorphisms. Determine the automorphism groups Aut(Z[x])
and Aut(Q|x]).

Lagrange Interpolation. Let D be an integral domain. Let cy,...,c,

be distinct elements in D, and d, ..., d, be arbitrary elements.

(a) Prove that there exists at most one polynomial f(x) € D[x] of

degree < n such that f(c;) = d; for all i.
(b) If D is a field, prove that such a polynomial always exists.

Classification of Elements. Determine whether the following
polynomials are units or irreducible elements in the rings Z[x],
Q[x], R[x], C[x], and Z[[x]]:

(@) 2x+2

(b) x*+1

() x+1

(d) x> +3x+2

Apply Gauss’s Lemma to the factorisa-
tion.

Show that d is determined by its value
on x.

Recall that the minimal polynomial
of § € E over F is the unique monic
irreducible p(x) € F[x] such that
p(6) = 0.
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Reduction Modulo p. Let f(x) € Z[x] be a monic polynomial. Let
f(x) € Fp[x] be its reduction modulo a prime p.

(a) Prove that if f(x) is irreducible in F,[x], then f(x) is irre-
ducible in Z[x].

(b) Does this conclusion hold if f(x) is not monic? Provide a
proof or counter-example.

Affine Transformation. Let F be a field and 4,b € F with a # 0.
Prove that f(x) is irreducible in F[x] if and only if f(ax + b) is
irreducible in F[x].

Coprimality over Q vs Z. Prove that two polynomials in Z[x] are
coprime in Qx| (i.e., generate the unit ideal in Q[x]) if and only if
the ideal they generate in Z[x] contains a non-zero integer.

Generalised Eisenstein Criterion. Let f(x) = Y'ja;x' € Z[x]
with degree n. Suppose there exists a prime p and an integer k
(0 < k < n) such that:

pfan/ pJfﬂk/ p|aifor0§i§k_1, P2'fa0.

Prove that f(x) must have an irreducible factor of degree at least Consider the Newton polygon or adapt
kin Z [ x] the standard Eisenstein proof.

Unique Factorisation of Primitives. Let D be an integral domain.
Let f(x) € D[x] be a non-zero polynomial with coprime coeffi-
cients (primitive). Prove that if an irreducible factorisation of f(x)
exists in D[x], it is unique (up to units and ordering).

Irreducibility of Composition. Let f(x) € Z[x] be irreducible.
Is it true that f(x?) is always irreducible? If not, find a counter-
example. Under what conditions is f(x") irreducible?

Rational Function Fields. Let F(x) be the field of fractions of F[x]
(the field of rational functions). Prove that any automorphism of

F(x) that fixes F is of the form x — ?:;IZ with ad — bc # 0 (a

Mobius transformation).

Resultants. Let f,¢ € F[x] be polynomials of degree m and The Sylvester matrix of f = Y/, a;x’

n. The resultant Res(f, g) is the determinant of the (m + n) x and g = ):;’:}f byl is the (m *f’;) X (erf
. . . . tri icient

(m + n) Sylvester matrix formed by their coefficients. Prove that ZQE‘; rlxv} ;isfgwsaf; coeaent o

Res(f,g) = 0if and only if f and g share a common factor of
positive degree.

Polynomials with Integer Values. Let f € Q[x]. Suppose f(n) €

Z foralln € Z. Prove that f(x) can be written as a Z-linear

combination of the binomial polynomials (}) = w
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