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0
Algebraic Foundations

We begin by establishing the fundamental algebraic structures that
underpin the study of Number Theory and Linear Algebra. We
denote the set of positive integers (or natural numbers) by Z+ =

{1, 2, 3, . . . }. While the rigorous construction of these numbers via
the Peano axioms is foundational, we shall restrict our attention to
their operational and order-theoretic properties.

0.1 The Integers

Addition and multiplication are well-defined operations on Z+. For
any a, b ∈ Z+, their sum a + b and product ab satisfy the following
fundamental laws:

Axiom 1. Associativity of Addition.
For all a, b, c ∈ Z+, (a + b) + c = a + (b + c).

公理

Axiom 2. Commutativity of Addition.
For all a, b ∈ Z+, a + b = b + a.

公理

Axiom 3. Associativity of Multiplication.
For all a, b, c ∈ Z+, (ab)c = a(bc).

公理

Axiom 4. Commutativity of Multiplication.
For all a, b ∈ Z+, ab = ba.

公理

Axiom 5. Distributivity.
For all a, b, c ∈ Z+, a(b + c) = ab + ac.

公理
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Axiom 6. Multiplicative Identity.
There exists an element 1 ∈ Z+ such that for all a ∈ Z+, a · 1 = a.

公理

The set Z+ is also endowed with a strict total ordering, denoted by
<. For any a, b ∈ Z+, exactly one of the following holds:

a < b, a = b, or b < a.

This order respects the arithmetic operations:
(i) If a < b, then a + c < b + c for any c.

(ii) If a < b, then ac < bc for any c.
(iii) If a < b and b < c, then a < c (Transitivity).

The structural essence of the positive integers is captured by the
Induction Axiom.

Axiom 7. Induction Axiom.
Let S ⊆ Z+. If S satisfies:

(i) 1 ∈ S, and
(ii) For any k ∈ Z+, k ∈ S =⇒ k + 1 ∈ S,

then S = Z+.
公理

This axiom provides the basis for the First Principle of Mathematical
Induction.

Theorem 0.1. First Principle of Mathematical Induction.
Let P(n) be a proposition regarding positive integers. If:

(i) P(1) is true, and
(ii) P(k) =⇒ P(k + 1) for any k ∈ Z+,

then P(n) is true for all n ∈ Z+.
定理

An equivalent and equally powerful property of Z+ is the existence
of minimal elements in non-empty subsets. To establish this, we first
state a preliminary result.

Lemma 0.1. Lower Bound Property If a subset S ⊆ Z+ has no least
element, then for every n ∈ Z+, n /∈ S.

引理

Proof

We proceed by induction on n. If 1 ∈ S, then 1 would be the least
element (as 1 ≤ x for all x ∈ Z+), contradicting our hypothesis.
Thus 1 /∈ S. Assume 1, 2, . . . , k /∈ S. If k + 1 ∈ S, then since all inte-
gers smaller than k+ 1 are not in S, k+ 1 would be the least element
of S, again a contradiction. Thus k + 1 /∈ S. By the induction axiom,
S = ∅.
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■

Theorem 0.2. Least Number Principle.
Let S be a non-empty subset of Z+. Then there exists m ∈ S such that
for all x ∈ S, m ≤ x. We call m the least element of S.

定理

Proof

Suppose S has no least element. By the preceding lemma, n /∈ S for
all n ∈ Z+, which implies S is empty. This contradicts the assump-
tion that S is non-empty. Thus, S must possess a least element.

■

Conversely, if a set is bounded from above, it possesses a maximal
element.

Theorem 0.3. Greatest Number Principle.
Let S ⊆ Z+ be non-empty. If S has an upper bound (i.e., there exists
M ∈ Z+ such that x ≤ M for all x ∈ S), then there exists g ∈ S such
that for all x ∈ S, x ≤ g.

定理

The Least Number Principle allows us to establish the Second Principle
of Mathematical Induction (often called Strong Induction), which is
frequently more useful when the recursive step depends on multiple
preceding terms.

Theorem 0.4. Second Principle of Mathematical Induction.
Let P(n) be a proposition regarding positive integers. If:

(i) P(1) is true, and
(ii) For any k ∈ Z+, if P(j) holds for all 1 ≤ j ≤ k, then P(k + 1)

holds,
then P(n) is true for all n ∈ Z+.

定理

By adjoining the neutral element 0 and the additive inverses (nega-
tive integers) to Z+, we obtain the set of integers, denoted by Z. The
addition operation extends to Z such that a + 0 = a for all a, and for
every a ∈ Z, there exists a unique element −a such that a + (−a) = 0.
This allows for the definition of subtraction: a − b = a + (−b). We
formalise the algebraic structure of Z using the language of abstract
algebra.

Definition 0.1. Group.
A set G equipped with a binary operation · is called a group if it sat-
isfies:

(i) Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).
(ii) Identity: There exists an element e ∈ G (often denoted 1) such
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that for all a ∈ G, a · e = e · a = a.
(iii) Inverses: For every a ∈ G, there exists an element a−1 ∈ G such

that a · a−1 = a−1 · a = e.
If the operation is also commutative (i.e., a · b = b · a for all a, b ∈ G),
the group is called abelian.

定義

Definition 0.2. Additive Group.
A set G equipped with an operation + is called an additive group if
it satisfies:

(i) Associativity and Commutativity of +.
(ii) Existence of an identity element 0.

(iii) Existence of additive inverses for every element.
Thus, Z forms an additive group.

定義

Definition 0.3. Commutative Ring.
A set R equipped with addition (+) and multiplication (·) is called a
commutative ring if:

(i) R is an additive group under +.
(ii) Multiplication is associative and commutative.

(iii) Multiplication distributes over addition: a(b + c) = ab + ac.
(iv) There exists a multiplicative identity 1.

定義

Definition 0.4. Zero Divisors and Integral Domains.
Let R be a commutative ring. A non-zero element a ∈ R is called a
zero divisor if there exists a non-zero element b ∈ R such that ab =

0. A commutative ring that contains no zero divisors is called an in-
tegral domain.

定義

The set of integers Z is an integral domain. Furthermore, Z pos-
sesses a crucial property regarding products: ab = 0 if and only if
a = 0 or b = 0. Consequently, the cancellation law holds in Z: if
ab = ac and a ̸= 0, then b = c.
The order properties of Z+ extend naturally to Z. We also define the
absolute value function | · | : Z → Z+ ∪ {0} by:

|a| =

a if a ≥ 0

−a if a < 0

The absolute value satisfies the Triangle Inequality:

|a + b| ≤ |a|+ |b|. (1)
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Definition 0.5. Floor Function.
For any real number x, the floor function (or integer part), denoted by
⌊x⌋, is defined as the largest integer n such that n ≤ x. That is, ⌊x⌋ ∈
Z and ⌊x⌋ ≤ x < ⌊x⌋+ 1.

定義

The set of rational numbers is defined as Q = {p/q | p, q ∈ Z, q ̸= 0},
where p/q = r/s if and only if ps = qr. The integers are embed-
ded in Q by identifying n with n/1. In Q, every non-zero element x
possesses a multiplicative inverse x−1 such that x · x−1 = 1.
This property distinguishes Q from Z.

Definition 0.6. Field.
A set F is called a field if:

(i) F is a commutative ring.
(ii) For every a ∈ F \ {0}, there exists a multiplicative inverse a−1 ∈

F.
In other words, a field is a structure where addition, subtraction, mul-
tiplication, and division (by non-zero divisors) are well-defined.

定義

Thus, Q, R, and C are fields, whereas Z is not. We call Q the field of
quotients of Z.
The real numbers R may be constructed as the completion of Q (via
Cauchy sequences or Dedekind cuts), enabling the treatment of lim-
its. The complex numbers C = {a + bi | a, b ∈ R} extend R to an
algebraically closed field, meaning that every non-constant polynomial
in C[x] has a root in C. We recall Euler’s formula, which connects the
exponential function to trigonometry:

eiθ = cos θ + i sin θ,

where θ is the argument of the complex number.
Since Q ⊂ R ⊂ C, we say that R is an extension field of Q, and C is an
extension field of R (in general, a field E is an extension of F if F is a
subfield of E).

0.2 Polynomials

Let K represent a field (such as Q, R, or C). A univariate polynomial
over K is a formal expression of the form:

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, (2)

where n is a non-negative integer and the coefficients ai belong to K.
The symbol x is called an indeterminate. It is not an unknown number
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to be solved for, but a formal symbol that commutes with elements of
K and satisfies the laws of exponents.
The set of all such polynomials is denoted by K[x].

Definition 0.7. Degree and Terms.
Consider the polynomial in Equation 2.
· The term akxk is the term of degree k.
· anxn is the leading term and an is the leading coefficient, provided an ̸=

0.
· The degree of f (x), denoted deg( f ), is the largest integer n such that

an ̸= 0.
Two polynomials are equal if and only if the coefficients of terms of the
same degree are identical. The polynomial with all coefficients equal
to zero is the zero polynomial, denoted by 0. Its degree is undefined.

定義

Let f (x) = ∑n
i=0 aixi and g(x) = ∑m

j=0 bjxj. We define addition and
multiplication as follows:
Addition: f (x) + g(x) = ∑(ak + bk)xk, where we assume ak = 0 for

k > n and bk = 0 for k > m.
Multiplication: f (x)g(x) = ∑k ckxk, where ck = ∑i+j=k aibj.
Under these operations, K[x] forms a commutative ring. The additive
identity is the zero polynomial, and the multiplicative identity is the
constant polynomial 1. Unlike functions in calculus, where equal-
ity depends on the values taken, in algebra, polynomial equality is
purely structural (coefficient-wise).

Example 0.1. Univariate Polynomial Addition. Consider the poly-
nomials f (x) = 3x2 + 2x + 5 and g(x) = 4x − 1 in the ring Q[x].
Their sum is calculated by combining coefficients of terms with
matching degrees: f (x) + g(x) = 3x2 + (2 + 4)x + (5 − 1) =

3x2 + 6x + 4.

範例

We extend these concepts to polynomials in n indeterminates x1, . . . , xn.
The set of all such multivariate polynomials is denoted by K[x1, . . . , xn].
A monomial is an expression of the form axk1

1 . . . xkn
n , where a ∈ K

and ki are non-negative integers. An n-variate polynomial is a finite
formal sum of monomials.
Addition and subtraction are performed by combining coefficients
of like terms (monomials with identical exponents for all indetermi-
nates). Multiplication is defined distributively: the product of two
polynomials is the sum of the products of their constituent monomi-
als, where

(xp1
1 . . . xpn

n ) · (xq1
1 . . . xqn

n ) = xp1+q1
1 . . . xpn+qn

n .
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The set K[x1, . . . , xn] also forms a commutative ring.
Example 0.2. Multivariate Polynomial Multiplication. Con-
sider the polynomials f (x, y) = x + 2y and g(x, y) = 3x − y
in R[x, y]. The product is obtained by distributing the terms:
(x + 2y)(3x − y) = x(3x) + x(−y) + 2y(3x) + 2y(−y) =

3x2 − xy + 6xy − 2y2 = 3x2 + 5xy − 2y2.

範例

0.3 Divisibility and Ideals in Z

While addition, subtraction, and multiplication are always defined
within Z, division is not. That is, for integers a and b with b ̸= 0, the
quotient a

b is not necessarily an integer. This observation gives rise to
the fundamental concept of divisibility in number theory.

Definition 0.8. Divisibility.
Let a, b ∈ Z with b ̸= 0. We say that b divides a, denoted b | a, if there
exists an integer c such that a = bc. In this case, b is called a divisor
or factor of a, and a is a multiple of b. If no such integer c exists, then
b does not divide a, denoted b ∤ a.

定義

Remark (Divisor Search and Order Comparison).

To determine the set of all positive divisors of a ∈ Z+, it is suffi-
cient to examine integers in the interval [1,

√
a]. Furthermore, while

the strict total ordering of Z satisfies trichotomy, the divisibility
relation does not. For integers a, b ∈ Z+, it is possible that a ∤ b,
b ∤ a, and a ̸= b, as exemplified by the set {2, 7}.

From this definition, several basic properties of divisibility follow
directly.

Theorem 0.5. Properties of Divisibility.
Let a, b, c ∈ Z.

(i) If b | a and a | c, then b | c.
(ii) If b | a, then b | ca for any c ∈ Z.

(iii) If c | a and c | b, then c | (xa + yb) for any integers x, y ∈ Z.
This property indicates that any integer linear combination of mul-
tiples of c is also a multiple of c.

(iv) If b | a and a ̸= 0, then |b| ≤ |a|. Consequently, if a | b and
b | a, then a = ±b. If additionally a, b ∈ Z+, then a = b.

定理

Proof
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(i) If b | a, then a = bk for some k ∈ Z. If a | c, then c = al for
some l ∈ Z. Substituting a, we get c = (bk)l = b(kl). Since
kl ∈ Z, we conclude b | c.

(ii) If b | a, then a = bk for some k ∈ Z. Then ca = c(bk) = b(ck).
Since ck ∈ Z, we conclude b | ca.

(iii) If c | a, then a = ck for some k ∈ Z. If c | b, then b = cl
for some l ∈ Z. Then for any integers x, y, xa + yb = x(ck) +
y(cl) = c(xk + yl). Since xk + yl ∈ Z, we conclude c | (xa +
yb).

(iv) If b | a and a ̸= 0, then a = bk for some k ∈ Z. Since a ̸= 0, we
must have k ̸= 0. Thus |k| ≥ 1. Taking absolute values, |a| =
|b||k|. As |k| ≥ 1, it follows that |a| ≥ |b|. If a | b and b | a,
then |a| ≤ |b| and |b| ≤ |a|. This implies |a| = |b|, so a = ±b.
If a, b ∈ Z+, then a = b.

■

The cornerstone of integer arithmetic is the Division Algorithm,
which formalises the process of division with a remainder.

Theorem 0.6. The Division Algorithm.
Let a ∈ Z and b ∈ Z+. Then there exist unique integers q and r such
that a = qb + r, where 0 ≤ r < b.

定理

Proof

We first prove the existence of q and r. Consider the set S = {a −
xb | x ∈ Z, a − xb ≥ 0}. If a ≥ 0, then choosing x = 0 yields a ∈ S,
so S is non-empty. If a < 0, we can choose x such that a − xb ≥ 0.
For instance, if b = 1, a − x ≥ 0 =⇒ x ≤ a. We can choose x = a to
get 0 ∈ S. More generally, choose x such that xb ≤ a. For a < 0, we
can choose a sufficiently negative x. For example, x = a − 1 implies
a − (a − 1)b = a − ab + b. If a is negative, say a = −5 and b = 2,
then a − (a − 1)b = −5 − (−6)2 = −5 + 12 = 7 ≥ 0. So S is always
non-empty.
Since S is a non-empty subset of non-negative integers (which can
be viewed as Z+ ∪ {0}), by the Least Number Principle (extended to
include 0), S has a least element, say r. By definition of S, r = a − qb
for some integer q, and r ≥ 0. We must show that r < b. As-
sume, for contradiction, that r ≥ b. Then r − b ≥ 0. We can write
r − b = (a − qb) − b = a − (q + 1)b. Since r − b ≥ 0, r − b is an
element of S. However, r − b < r (because b > 0), which contradicts
the choice of r as the least element of S. Thus, our assumption r ≥ b
must be false, so r < b. This establishes existence.
For uniqueness, suppose there exist two such pairs (q1, r1) and
(q2, r2) satisfying the conditions: a = q1b + r1, with 0 ≤ r1 < b, and
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a = q2b + r2, with 0 ≤ r2 < b. Subtracting the two equations gives
0 = (q1 − q2)b + (r1 − r2). Thus, r2 − r1 = (q1 − q2)b. This implies
that b | (r2 − r1). From 0 ≤ r1 < b and 0 ≤ r2 < b, it follows that
−b < r2 − r1 < b. The only multiple of b that lies strictly between
−b and b is 0. Therefore, r2 − r1 = 0, which means r1 = r2. Substi-
tuting r1 = r2 back into r2 − r1 = (q1 − q2)b, we get 0 = (q1 − q2)b.
Since b ̸= 0, we must have q1 − q2 = 0, so q1 = q2. Hence, q and r
are unique.

■

Remark (Quotient and Remainder).

In Theorem 0.6, q is called the quotient and r is the remainder when
a is divided by b. The condition r = 0 signifies that a is divisible by
b.

A direct consequence of Theorem 0.6 is that any integer can be classi-
fied by its remainder upon division by a given positive integer. For
instance, integers divided by 2 yield remainders of 0 or 1. Those with
remainder 0 are even, and those with remainder 1 are odd. Simi-
larly, for division by 3, any integer n can be expressed in one of three
forms: 3k, 3k + 1, or 3k + 2, for some integer k.
The concept of divisibility leads naturally to the study of subsets of Z

with particular closure properties.

Definition 0.9. Ideal.
A non-empty subset I of a ring R is called an ideal of R if:

(i) For any a, b ∈ I, a − b ∈ I (closure under subtraction).
(ii) For any a ∈ I and r ∈ R, ra ∈ I (closure under multiplication

by ring elements).
定義

For the ring of integers Z, the second condition implies closure under
multiplication by any integer. From the first condition, if I is non-
empty, let a ∈ I. Then a − a = 0 ∈ I. For any a ∈ I, 0 − a = −a ∈ I.
And if a, b ∈ I, then a − (−b) = a + b ∈ I, so I is also closed under
addition. Combined, I is an additive subgroup of Z.

Theorem 0.7. Structure of Ideals in Z.
Let I be a non-empty ideal of Z. Then there exists a unique non-negative
integer d such that I consists of all multiples of d. That is, I = {kd |
k ∈ Z}. We denote this ideal as ⟨d⟩.

定理

Proof

If I = {0}, then we can take d = 0, and I = {k · 0 | k ∈ Z} = {0}. In
this case, d = 0 is uniquely determined.
Now, suppose I ̸= {0}. Since I is non-empty and contains non-zero
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elements, and if x ∈ I then −x ∈ I, it must contain positive inte-
gers. By the Least Number Principle, there exists a smallest positive
integer in I. Let this smallest positive integer be d.
We claim that I = {kd | k ∈ Z}. First, consider any multiple of d,
say kd for k ∈ Z. By the second property of an ideal (closure under
multiplication by ring elements), since d ∈ I and k ∈ Z, kd ∈ I. So,
{kd | k ∈ Z} ⊆ I.
Conversely, let a be an arbitrary element of I. By Theorem 0.6, since
d ∈ Z+, we can write a = qd + r for unique integers q, r such that
0 ≤ r < d. Since a ∈ I and qd ∈ I (as shown above), and I is
closed under subtraction, it follows that r = a − qd ∈ I. However,
d was chosen as the smallest positive integer in I. Since r ∈ I and
0 ≤ r < d, for r not to contradict the minimality of d, r must be
0. Thus, a = qd, which means a is a multiple of d. This shows that
I ⊆ {kd | k ∈ Z}.
Combining both inclusions, we have I = {kd | k ∈ Z}. The unique-
ness of d follows from its definition as the smallest positive integer
in I. If there were another such non-negative integer d′, it would
also be the smallest positive element, thus d′ = d.

■

Remark (Principal Ideal Ring).

An ideal generated by a single element, such as ⟨d⟩ = {kd | k ∈ Z},
is called a principal ideal. Theorem 0.7 demonstrates that every ideal
in Z is a principal ideal. For this reason, Z is known as a principal
ideal domain, or PID, a concept we shall revisit in ring theory.

0.4 Exercises

1. Power Inheritance. Let a, b ∈ Z, with a ̸= 0, and let k be a positive
integer. Prove that if a | b, then a | bk.

2. Common Remainders. Let n be a positive integer. We say two
integers a and b are related if n divides their difference a − b.

(i) Prove that n | (a− b) if and only if a and b leave the same re-
mainder when divided by n (as per the Division Algorithm).

(ii) Let a be an odd integer. Prove that 8 divides a2 − 1.

3. Cubic Divisibility and Sums.

(i) Prove that for any integer n, n3 − n is divisible by 6.
(ii) If n3 − n is divisible by 6, does it strictly follow that n itself

is divisible by 6? Provide a proof or a counter-example.
(iii) Using the result in (i), prove that if the sum of integers

a1, a2, . . . , ak is divisible by 6, then the sum of their cubes
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a3
1 + · · ·+ a3

k is also divisible by 6.

4. Squares of Odd Integers. Let a, b ∈ Z be odd. Prove that a2 − b2

is divisible by 8.

5. Counting Multiples. The notation ⌊x⌋ denotes the largest integer
not exceeding x (i.e., x − 1 < ⌊x⌋ ≤ x). Let n, k ∈ Z+. Prove that
the number of elements in the set {1, 2, . . . , n} that are divisible by
k is exactly ⌊n/k⌋.

6. The Quotient Formula.

(i) Let a ∈ Z and b ∈ Z+. Using the Division Algorithm
(a = qb + r with 0 ≤ r < b), prove that the quotient is given
explicitly by q = ⌊a/b⌋.

(ii) Derive a similar expression for q when b is a negative inte-
ger.

7. Parity and Quadratic Residues. Let n ∈ Z.

(i) Prove that n can be uniquely represented as n = 2q + r
where r ∈ {0, 1}.

(ii) Prove that if n leaves a remainder r when divided by 2, then
n2 leaves a remainder r2 when divided by 4. Conclude that
a perfect square leaves a remainder of either 0 or 1 when
divided by 4.

8. Quintic Divisibility. Prove that n5 − n is divisible by 30 for any
integer n.

9. Septic Divisibility. Prove that n7 − n is divisible by 42 for any
integer n.

10. Integral Harmonic Sums. Let n > 1 be an odd integer. Prove that
the integer

S =

(
1 +

1
2
+

1
3
+ · · ·+ 1

n − 1

)
(n − 1)!,

where (n − 1)! denotes the factorial product 1 · 2 · · · · · (n − 1), is
divisible by n.

11. Exponential Non-Divisibility. Let m, n be positive integers with
m > 2. Prove that 2m − 1 does not divide 2n + 1.

12. Base-q Representation. Let q > 1 be an integer.

(i) Prove that any positive integer n can be uniquely repre-
sented in the form:

n = akqk + ak−1qk−1 + · · ·+ a1q + a0,

where each coefficient satisfies 0 ≤ ai ≤ q − 1 and ak ̸= 0.
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(ii) Prove that the coefficients are given explicitly by the for-
mula:

ai =

⌊
n
qi

⌋
− q

⌊
n

qi+1

⌋
.

13. Inequalities of the Integer Part. Let x, y, α, β be real numbers and
n be a positive integer. Prove the following properties of the floor
function:

(i) For any real numbers a1, . . . , an:

n

∑
i=1

⌊ai⌋ ≤
⌊

n

∑
i=1

ai

⌋
≤

n

∑
i=1

⌊ai⌋+ n − 1.

(ii) ⌊2α⌋+ ⌊2β⌋ ≥ ⌊α⌋+ ⌊β⌋+ ⌊α + β⌋.

14. Hermite’s Identity. Prove that for any real number x and any
integer n ≥ 2:

⌊x⌋+
⌊

x +
1
n

⌋
+ · · ·+

⌊
x +

n − 1
n

⌋
= ⌊nx⌋.

15. ⋆ The Euclidean Ideal. Let a and b be integers, not both zero.
Consider the set of all integer linear combinations of a and b:

I = {ax + by | x, y ∈ Z}.

(a) Prove that I is an ideal of Z.
(b) By Theorem 0.7, I is generated by a unique positive integer d

(i.e., I = ⟨d⟩). Prove that d divides both a and b.
(c) Prove that if c is any integer such that c | a and c | b, then

c | d.

16. ⋆ Polynomial Integrity. Let K be a field and let f (x), g(x) ∈ K[x]
be non-zero polynomials with degrees n and m respectively.

(a) Prove that the degree of the product f (x)g(x) is exactly n +

m.
(b) Deduce that the ring of polynomials K[x] contains no zero

divisors. That is, if f (x)g(x) = 0, then either f (x) = 0 or
g(x) = 0.
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Greatest Common Divisor and Least Common Multiple

We now turn to the constructive aspects of divisibility for a finite
collection of integers. Let a1, a2, . . . , an be integers, not all of which
are zero.

1.1 GCD

Definition 1.1. Greatest Common Divisor.
The greatest common divisor of a1, . . . , an, denoted by (a1, . . . , an), is
the unique integer d satisfying:
Common Divisor: d | ak for all k = 1, . . . , n.
Maximality: If d′ is any positive integer such that d′ | ak for all k, then

d′ ≤ d.
Since the set of positive common divisors is finite (bounded by min |ak|
where ak ̸= 0) and includes 1, the greatest common divisor exists. Fur-
thermore, if d is a common divisor, so is −d; thus, the greatest common
divisor is always a positive integer.

定義

Definition 1.2. Coprimality.
Integers a1, . . . , an are said to be coprime (or relatively prime) if (a1, . . . , an) =

1. They are said to be pairwise coprime if (ai, aj) = 1 for all i ̸= j. Clearly,
pairwise coprimality implies coprimality, but the converse does not hold.

定義

Example 1.1. Coprimality versus Pairwise Coprimality. Consider
the set of integers {6, 10, 15}. The greatest common divisor of the
set is (6, 10, 15) = 1, which satisfies the condition for the integers to
be coprime. However, the pairs within the set are not coprime:

(6, 10) = 2

(6, 15) = 3

(10, 15) = 5.

Since there exists at least one pair (i, j) such that (ai, aj) > 1, the set
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is not pairwise coprime.

範例

The greatest common divisor exhibits several elementary invariance
properties.

Theorem 1.1. Basic Properties of GCD.
Let a, b, . . . , c be integers.

(i) Sign Invariance: (a, b, . . . , c) = (|a|, |b|, . . . , |c|).
(ii) Symmetry: The value is independent of the order of the argu-

ments.
(iii) Idempotence: If a ̸= 0, then (a, a, . . . , a) = |a|.
(iv) Linearity: For any integers x, . . . , y,

(a, b, . . . , c) = (a, b + ax, . . . , c + ay).

In particular, (a, b) = (a, b + a).
定理

Proof

Properties (1)-(3) follow directly from the definition. For (4), let d =

(a, b, . . . , c) and d′ = (a, b + ax, . . . , c + ay). Since d divides a, b, . . . , c,
it divides any linear combination of them. Thus d | (b + ax), and so
d is a common divisor of the set in the right-hand side. Hence d ≤
d′. Conversely, since a is in the set, d′ divides a. Thus d′ divides b =

(b + ax) − x(a). It follows that d′ is a common divisor of the origi-
nal set, so d′ ≤ d. Therefore d = d′.

■

The following theorem connects the geometric notion of the GCD
with the algebraic structure of ideals in Z.

Theorem 1.2. GCD as a Linear Combination.
Let a1, . . . , an be integers, not all zero. The set of all integer linear com-
binations

S = {a1x1 + · · ·+ anxn | xi ∈ Z}

consists exactly of all multiples of d = (a1, . . . , an). That is, S = ⟨d⟩.
定理

Proof

The set S is closed under subtraction and multiplication by integers.
Since some aj ̸= 0, we have aj ∈ S and hence |aj| ∈ S, so S has a
positive element. By Theorem 0.7, S is a principal ideal generated by
its smallest positive element, say D. Thus S = {kD | k ∈ Z}. We
must show D = d.
First, since D ∈ S, there exist integers xi such that D = ∑ aixi. Let
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d = (a1, . . . , an). Since d | ai for all i, by Theorem 2.3.1 (iii), d di-
vides any linear combination of the ai. Thus d | D. Since both are
positive, d ≤ D.
Conversely, since each ai can be written as a trivial linear combi-
nation (e.g., a1 = 1 · a1 + 0 · . . . ), ai ∈ S for all i. Therefore, every
ai is a multiple of D. This implies D is a common divisor of all ai.
By the maximality property of the GCD, D ≤ d. Combining these
inequalities, D = d.

■

Corollary 1.1. Bézout’s Identity. Let a1, . . . , an be integers, not all zero.
There exist integers x1, . . . , xn such that

a1x1 + · · ·+ anxn = (a1, . . . , an).

In particular, a1, . . . , an are coprime if and only if there exist integers
xi such that ∑ aixi = 1.

推論

With this algebraic characterisation, we derive powerful arithmetic
properties.

Theorem 1.3. Algebraic Properties of GCD.
Let a, b, c be integers.

(i) Divisibility by GCD: Every common divisor of a, . . . , c divides
(a, . . . , c).

(ii) Associativity: (a, b, c) = ((a, b), c).
(iii) Homogeneity: For any m ∈ Z+, (ma, mb, . . . , mc) = m(a, b, . . . , c).
(iv) Reduction: If (a, b, . . . , c) = d, then (a/d, b/d, . . . , c/d) = 1.
(v) Coprimality with Products: If (a, m) = 1 and (b, m) = 1, then

(ab, m) = 1.
(vi) Euclid’s Lemma Variant: If c | ab and (c, b) = 1, then c | a.

定理

Proof

(i) Let k be a common divisor. Then k divides any linear combi-
nation of a, . . . , c. By Bézout’s Identity, (a, . . . , c) is such a linear
combination, so k | (a, . . . , c).

(ii) Let d = (a, b, c) and d′ = ((a, b), c). Since d′ | (a, b) and d′ | c,
and (a, b) | a and (a, b) | b, it follows that d′ is a common divi-
sor of a, b, c. Thus d′ ≤ d. Conversely, d | a and d | b implies
d | (a, b) by part (1). Since d | c, d is a common divisor of (a, b)
and c, so d ≤ d′. Thus d = d′.

(iii) Let d = (a, . . . , c). By Bézout’s Identity, d = ∑ aixi. Multiply-
ing by m gives md = ∑(mai)xi. Thus (ma, . . . , mc) divides md,
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so (ma, . . . , mc) ≤ md. Conversely, md | mai, so md is a com-
mon divisor of the scaled integers. Thus md ≤ (ma, . . . , mc).
Equality follows.

(iv) Using Homogeneity: d = (d · a/d, . . . , d · c/d) =

d(a/d, . . . , c/d). Cancelling d yields the result.
(v) Since (a, m) = 1, there exist x, y such that ax + my = 1. Simi-

larly, bx′ + my′ = 1. Multiplying these equations:

(ax + my)(bx′ + my′) = ab(xx′) + m(axy′ + bx′y + myy′) = 1.

Thus, 1 is a linear combination of ab and m, implying
(ab, m) = 1.

(vi) Since (c, b) = 1, we can write cx + by = 1. Multiplying by a:
acx + aby = a. Clearly c | acx. By hypothesis c | ab, so c | aby.
Thus c | (acx + aby), which means c | a.

■

1.2 Euclid’s Algorithm

Theorem 3.1.3 (ii) implies that computing the GCD of multiple inte-
gers reduces to the case of two integers. We employ Euclid’s Algo-
rithm, which exploits the property (a, b) = (a, b − qa).
Let a, b be integers with b ̸= 0. We apply the Division Algorithm
repeatedly:

a = bq0 + r0, 0 ≤ r0 < |b|
b = r0q1 + r1, 0 ≤ r1 < r0

r0 = r1q2 + r2, 0 ≤ r2 < r1

...

rn−2 = rn−1qn + rn, 0 ≤ rn < rn−1

rn−1 = rnqn+1 + 0.

If r0 = 0, the algorithm stops at the first step; otherwise continue
until the first zero remainder occurs. Since the remainders form a
decreasing sequence of non-negative integers and a zero remainder
terminates the process, the algorithm must stop. By the recursive
property of the GCD:

(a, b) = (b, r0) = (r0, r1) = · · · = (rn−1, rn) = (rn, 0) = rn.

Thus, the last non-zero remainder is the greatest common divisor.
By working backwards from the penultimate equation, we can ex-
press rn as a linear combination of a and b, providing a constructive
method for finding the coefficients in Bézout’s Identity:

(a, b) = rn = rn−2 − rn−1qn.
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Substituting rn−1 = rn−3 − rn−2qn−1 yields (a, b) in terms of rn−2 and
rn−3, and so on, until a and b are reached.

Example 1.2. Extended Euclidean Algorithm. To find d = (240, 46)
and express it as a linear combination of 240 and 46, we apply the
division algorithm repeatedly:

240 = 5 · 46 + 10

46 = 4 · 10 + 6

10 = 1 · 6 + 4

6 = 1 · 4 + 2

4 = 2 · 2 + 0.

The last non-zero remainder is 2, so (240, 46) = 2. By back-
substitution:

2 = 6 − 1 · 4

2 = 6 − 1 · (10 − 1 · 6) = 2 · 6 − 10

2 = 2 · (46 − 4 · 10)− 10 = 2 · 46 − 9 · 10

2 = 2 · 46 − 9 · (240 − 5 · 46) = 47 · 46 − 9 · 240.

Thus, x = −9 and y = 47 are the Bézout coefficients.

範例

Least Common Multiple

The dual concept to the greatest common divisor is the least common
multiple.

Definition 1.3. Least Common Multiple.
Let a1, . . . , an be non-zero integers. The least common multiple, denoted
by [a1, . . . , an], is the unique integer D satisfying:

(i) Common Multiple: D ≥ 1 and ak | D for all k.
(ii) Minimality: If D′ is any positive integer such that ak | D′ for

all k, then D ≤ D′.
定義

Theorem 1.4. Properties of LCM.
Let a, b, . . . , c be non-zero integers.

(i) Universal Multiple: Every common multiple of a, . . . , c is divis-
ible by [a, . . . , c].

(ii) Associativity: [a, b, . . . , c] = [[a, b], . . . , c].
(iii) Homogeneity: For m ∈ Z+, [ma, mb, . . . , mc] = m[a, b, . . . , c].
(iv) Product Formula: (a, b)[a, b] = |ab|.
(v) If a, b, . . . , c are pairwise coprime, then [a, b, . . . , c] = |ab . . . c|.
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定理

Proof

1. Let S ⊆ Z be the set of all integer common multiples of
a1, . . . , an. Since 0 ∈ S and |a1 . . . an| ∈ S, the set is nonempty.
The set S is an ideal, so S = ⟨D⟩ where D is its least positive
element. By definition, D = [a1, . . . , an].

2. Follows from (1) and the definition, analogous to Theorem 3.1.3
(ii).

3. Let D = [ma, . . . , mc]. Since m[a, . . . , c] is a common multiple of
the scaled set, D ≤ m[a, . . . , c]. Conversely, D is a multiple of
ma, so D/m is an integer multiple of a. Repeating for all terms,
D/m is a common multiple of a, . . . , c, so [a, . . . , c] ≤ D/m. Thus
m[a, . . . , c] ≤ D.

4. Since (a, b) = (|a|, |b|) and [a, b] = [|a|, |b|], it suffices to assume
a, b > 0. If (a, b) = 1, then ax = [a, b] = by implies b | ax. By The-
orem 3.1.3 (vi), b | x. Thus x = kb, so [a, b] = akb. The product ab
is a common multiple, so [a, b] ≤ ab, hence k = 1, and [a, b] = ab.
Generally, let d = (a, b). Then (a/d, b/d) = 1.

[a, b] = d[a/d, b/d] = d(a/d · b/d) = ab/d.

Therefore, d[a, b] = |ab|.
5. Follows from (2) and (4) by induction.

■

1.3 Prime Numbers and Unique Factorisation

The study of the integers is fundamentally concerned with the multi-
plicative building blocks known as prime numbers.

Definition 1.4. Prime and Composite Numbers.
An integer p > 1 is called a prime number (or simply a prime) if its only
positive divisors are 1 and p. An integer n > 1 that is not prime is called
composite. The set of positive integers Z+ is thus partitioned into three
disjoint classes: the unit {1}, the primes, and the composite numbers.

定義

It is an elementary observation that every integer n > 1 possesses at
least one prime divisor. Indeed, the set of divisors of n strictly greater
than 1 is non-empty (containing n itself). By the Least Number Princi-
ple, this set has a least element, say q. If q were composite, it would
have a divisor 1 < d < q, which would also divide n, contradict-
ing the minimality of q. Thus, the smallest non-trivial divisor of any
integer is prime.
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Remark (Distribution of Primes).

The density of primes decreases as n → ∞. Empirical counts in-
dicate there are 25 primes up to 100, 168 primes up to 1,000, and
1,229 primes up to 10,000.

Theorem 1.5. Euclid’s Theorem.
There are infinitely many prime numbers.

定理

Proof

Assume, for the sake of contradiction, that there exists only a finite
number of primes, enumerated as {p1, p2, . . . , pn}. Consider the
integer

N = p1 p2 . . . pn + 1.

Since N > 1, it must have a prime divisor q. By hypothesis, q must
be one of the pi. Consequently, q divides the product p1 . . . pn.
Since q divides both N and the product, it must divide their differ-
ence:

q | (N − p1 . . . pn) =⇒ q | 1.

This is impossible. Therefore, the set of primes is infinite.
■

Factorial Variation Proof

For any n ∈ Z+, consider the integer N = n! + 1. Since N > 1,
it possesses at least one prime divisor p. If p ≤ n, then p divides n!,
which implies p | (N − n!), or p | 1, which is impossible. Therefore,
p > n, demonstrating that for any integer n, there exists a prime
strictly greater than n.

■

To establish the uniqueness of factorisation, we require a critical
property of primes regarding divisibility.

Theorem 1.6. Euclid’s Lemma.
Let p be a prime and a, b ∈ Z. If p | ab, then p | a or p | b.

定理

Proof

Suppose p | ab and p ∤ a. Since the only positive divisors of p
are 1 and p, and p does not divide a, the greatest common divisor
(a, p) = 1. By Theorem 3.1.3 (vi), if p divides a product and is
coprime to one factor, it must divide the other. Thus p | b.

■

Generalising by induction, if a prime p divides a product a1 . . . an,
then p must divide at least one ai.



algebra iiic: number theory (structures) 23

Theorem 1.7. The Fundamental Theorem of Arithmetic.
Every integer n > 1 can be represented as a product of prime num-
bers. This representation is unique, up to the ordering of the factors.
Specifically, every n > 1 can be written uniquely in the standard form:

n = pα1
1 pα2

2 . . . pαk
k ,

where p1 < p2 < · · · < pk are primes and αi ∈ Z+.
定理

Proof

We prove the existence first then uniqueness:

Existence: We proceed by strong induction on n. For n = 2, the
statement holds. Assume every integer k with 1 < k < n has a
prime factorisation. If n is prime, we are done. If n is composite,
n = ab with 1 < a, b < n. By the induction hypothesis, a and b
are products of primes; thus their product n is also a product of
primes.

Uniqueness: Suppose n has two factorisations: n = p1 p2 . . . ps =

q1q2 . . . qt. Consider p1. Since p1 | n, it divides the product
q1 . . . qt. By Theorem 1.6, p1 must divide some qj. Since qj is
prime, p1 = qj. We can reorder the q’s so that p1 = q1. Dividing
both sides by p1, we obtain: p2 . . . ps = q2 . . . qt. Repeating this
argument (formally, by induction on the number of factors), we
find that each pi matches a unique qi, and s = t.

■

Remark (Hilbert’s Example).

While the existence of factorisation follows from the well-ordering
of Z+, uniqueness is non-trivial and relies heavily on the Euclidean
property (specifically Theorem 1.6). Consider the set of integers
S = {4k + 1 | k ∈ Z≥0} = {1, 5, 9, 13, 17, 21, . . . }. This set is closed
under multiplication. An element x ∈ S \ {1} is "irreducible" in S if
it cannot be written as ab with a, b ∈ S \ {1}. In this system, 9, 21, 49
are irreducibles. However, 441 ∈ S has two distinct factorisations
into irreducibles:

441 = 21 × 21 = 9 × 49.

Thus, unique factorisation fails in S because it lacks the division
algorithm and the resulting property that irreducibles are prime (in
the sense of Theorem 1.6). Integers possess the unique factorisation
property because Z is a Principal Ideal Domain.

The standard factorisation allows for a precise arithmetic characteri-
sation of divisors, GCDs, and LCMs.
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Corollary 1.2. Divisors, GCD, and LCM via Factorisation. Let the stan-
dard factorisations of two positive integers a and b be given by:

a =
k

∏
i=1

pαi
i , b =

k

∏
i=1

pβi
i ,

where we allow exponents to be zero to use a common set of primes.
(i) d | a if and only if d = ∏ pδi

i with 0 ≤ δi ≤ αi for all i.

(ii) (a, b) = ∏k
i=1 pmin(αi ,βi)

i .

(iii) [a, b] = ∏k
i=1 pmax(αi ,βi)

i .
推論

Proof

(i) Let d be a positive divisor of a. By Theorem 1.7, any prime
divisor of d must be among {p1, . . . , pk}. Thus d can be writ-
ten as d = ∏k

i=1 pδi
i . The condition d | a is equivalent to the

existence of an integer c such that dc = a. Let c = ∏ pγi
i . Then

∏ pδi
i ∏ pγi

i = ∏ pδi+γi
i = ∏ pαi

i .

By the uniqueness of prime factorisation in Theorem 1.7,
δi + γi = αi. Since γi ≥ 0, it follows that 0 ≤ δi ≤ αi for
all i. Conversely, if 0 ≤ δi ≤ αi, then a/d = ∏ pαi−δi

i is an
integer, so d | a.

(ii) Let g = ∏ pmin(αi ,βi)
i . Since min(αi, βi) ≤ αi and

min(αi, βi) ≤ βi for all i, g is a common divisor of a and
b by part (i). Let d = ∏ pδi

i be any common divisor. Then
δi ≤ αi and δi ≤ βi, which implies δi ≤ min(αi, βi). Thus d | g,
and by the maximality property in the definition of the GCD,
g = (a, b).

(iii) Let L = ∏ pmax(αi ,βi)
i . Since max(αi, βi) ≥ αi and

max(αi, βi) ≥ βi for all i, both a and b divide L by part (i),
so L is a common multiple. Let M be any positive common
multiple. The exponent of pi in the factorisation of M must
be at least αi and at least βi, so it is at least max(αi, βi). Thus
L | M, and by the minimality property in the definition of the
LCM, L = [a, b].

■
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Arithmetic Functions

We conclude this chapter by introducing functions defined on Z+,
known as number-theoretic functions.

Definition 1.5. Divisor Functions.
For n ∈ Z+, let τ(n) denote the number of positive divisors of n, and
σ(n) denote the sum of positive divisors of n. If n = pα1

1 . . . pαk
k , then

by corollary 1.2:

τ(n) = (α1 + 1)(α2 + 1) . . . (αk + 1) =
k

∏
i=1

(αi + 1), (1.1)

σ(n) =
k

∏
i=1

(
αi

∑
j=0

pj
i

)
=

k

∏
i=1

pαi+1
i − 1
pi − 1

. (1.2)

定義

Example 1.3. Computing Divisor Functions. Let n = 360. The stan-
dard prime factorisation is 360 = 23 · 32 · 51. Using the formulas for
τ and σ:

τ(360) = (3 + 1)(2 + 1)(1 + 1) = 4 · 3 · 2 = 24.

σ(360) =
24 − 1
2 − 1

· 33 − 1
3 − 1

· 52 − 1
5 − 1

= 15 · 26
2

· 24
4

= 15 · 13 · 6 = 1170.

There are 24 positive divisors of 360, and their sum is 1170.

範例

Definition 1.6. Multiplicative Functions.
A function f : Z+ → C is called multiplicative if f (mn) = f (m) f (n)
whenever (m, n) = 1. If f is multiplicative and not identically zero,
it is completely determined by its values on prime powers:

f (n) = f (pα1
1 ) f (pα2

2 ) . . . f (pαk
k ).

From Equation 1.1 and Equation 1.2, it is evident that both τ and σ are
multiplicative functions.

定義

1.4 Exercises

1. General Solution. Let a, b, c be integers such that (a, b) | c. Prove
that if (x0, y0) is a particular integer solution to ax + by = c, then
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the set of all integer solutions is given by:

x = x0 +
b

(a, b)
t, y = y0 −

a
(a, b)

t, for all t ∈ Z.

2. Euclidean Algorithm Practice. Use Euclid’s algorithm to find
d = (963, 657). Then find one integer solution (x0, y0) and the
general solution to:

963x + 657y = d.

3. The Frobenius Coin Problem (Two Variables). Let a, b be coprime
positive integers.

(a) Prove that if n > ab − a − b, the equation ax + by = n has a
non-negative integer solution.

(b) Show that for n = ab − a − b, the equation ax + by = n has no
non-negative integer solution.

4. Solving Linear Systems. Find all integer solutions to the follow-
ing equations:

(a) x + 2y + 3z = 10
(b) 6x + 20y − 15z = 23
(c) 9x + 24y − 5z = 4
(d) 25x + 13y + 7z = 2

5. The
√

n Test. Let n ≥ 2 be an integer. Prove that if n is not divisi-
ble by any prime p such that p ≤

√
n, then n is prime.

6. Alternative Characterisation. Let n > 1. Prove that n is prime
if and only if for every integer m, either m is a multiple of n or
(m, n) = 1.

7. Bertrand’s Postulate (Weak Form). Let n > 2. Prove that there
exists at least one prime p such that n < p < n!. Use this to
deduce that there are infinitely many primes.

8. Prime Gaps. Let n ≥ 2. Prove that there exist n consecutive Consider the sequence starting with
(n + 1)! + 2.positive integers, none of which is prime.

9. Primes in Arithmetic Progressions.

(a) Prove that there are infinitely many primes of the form 4m +

3.
(b) Prove that there are infinitely many primes of the form 6m +

5.

10. Prime Triplets. Prove that the only triplet of prime numbers of the
form (p, p + 2, p + 4) is (3, 5, 7).

11. Repunits. Let Rn be the integer consisting of n ones:

Rn = 10n−1 + 10n−2 + · · ·+ 1 =
10n − 1

9
.
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(a) Prove that if Rn is prime, then n must be prime.
(b) Show that the converse is false by finding a counter-example

(i.e., a prime n for which Rn is composite).

12. Fermat Primes.

(a) Let m be a positive integer. Prove that if 2m + 1 is prime, then
m must be a power of 2.

(b) Let Fn = 22n
+ 1 be the n-th Fermat number. Prove that if

m > n, then Fn | (Fm − 2).
(c) Deduce that for m ̸= n, (Fm, Fn) = 1. Conclude that there are

infinitely many primes.

13. Mersenne Primes.

(a) Let m, n > 1. Prove that if mn − 1 is prime, then m = 2 and n
is prime.

(b) Let Mp = 2p − 1 where p is prime. Prove that if p and q are
distinct primes, then (Mp, Mq) = 1.

14. ⋆ The GCD of Powers. Let a > 1 be an integer and let m, n be This generalizes the result on Mersenne
numbers. Hint: Use the Euclidean
algorithm logic on the exponents.

positive integers. Prove that:

(am − 1, an − 1) = a(m,n) − 1.

15. Composite Sum of Powers. Let a, b, c, d be positive integers sat- Consider the parametrisation a =
kux, b = lvy, c = kvy, d = lux or similar
structures derived from (a, c) and (a, d).

isfying ab = cd. Prove that N = a4 + b4 + c4 + d4 is a composite
number.

16. Legendre’s Formula. Let n be a positive integer and p be a prime.
We write pk ∥ n (read as "pk exactly divides n") if pk | n but
pk+1 ∤ n (i.e., k is the exponent of p in the factorisation of n). Let e
be the exponent of p in n!. Prove:

(a) e =
∞

∑
k=1

⌊
n
pk

⌋
.

(b) If Sp(n) is the sum of the digits of n in base p, then

e =
n − Sp(n)

p − 1
.

17. Integrality of Multinomial Coefficients.

(a) Let a1, . . . , ak be positive integers. Prove that the multinomial
coefficient

(a1 + · · ·+ ak)!
a1! . . . ak!

is an integer.
(b) Let m, n be positive integers. Prove that the following expres-

sion is an integer:
(2m)!(2n)!

m!n!(m + n)!
.
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18. Difference-Quotient Divisibility. Let a, b be distinct integers and
n be a positive integer. Prove that if n | (an − bn), then

n | an − bn

a − b
.

19. Divisor Function Properties. Let τ(n) denote the number of posi-
tive divisors of n. Prove:

(a) n is a perfect square if and only if τ(n) is odd.
(b) The product of the positive divisors of n is equal to nτ(n)/2.
(c) τ(n) ≤ 2

√
n. (Can you improve this to τ(n) ≤ 2

√
n + 1?)

20. ⋆ Harmonic Sums. Let Consider the term with the highest
power of 2 in the denominator. Let
2k be the largest power of 2 such that
2k ≤ n. Show that 2k divides the least
common multiple of 1, . . . , n but 2k+1

does not, and use this to analyse the
numerator of the sum.

Hn =
n

∑
k=1

1
k

.

Prove that for any integer n > 1, Hn is not an integer.



2
Congruences

We shift our focus from the multiplicative building blocks of integers
(primes) to the arithmetic properties of remainders. While questions
regarding the distribution of primes within polynomial values remain
deep, exemplified by Euler’s polynomial n2 + n + 41, which yields
primes for 0 ≤ n ≤ 40 but fails at n = 41, the theory of congruences,
introduced by Gauss, provides a nice framework for "clock arith-
metic" and is the backbone for the study of Diophantine equations
and algebraic structures.

2.1 The Congruence Relation

Let n be a fixed positive integer, referred to as the modulus.

Definition 2.1. Congruence.
Let a, b ∈ Z. We say that a is congruent to b modulo n, denoted by
a ≡ b (mod n), if n divides the difference a− b. If n does not divide
a− b, we say a is incongruent to b modulo n, denoted a ̸≡ b (mod n).

定義

By the The Division Algorithm, a ≡ b (mod n) if and only if a and
b leave the same remainder upon division by n. Visually, if one ar-
ranges the integers on a circle of size n, congruent numbers occupy
the same position.

Example 2.1. Congruence Examples. Consider the modulus n = 12.
· 1 ≡ 13 (mod 12) since 12 | (1 − 13).
· −3 ≡ 9 (mod 12) since 12 | (−3 − 9).
· 52 = 25 ≡ 1 (mod 12) since 12 | (25 − 1).

範例

Theorem 2.1. Equivalence Relation.
Congruence modulo n is an equivalence relation on Z. That is, for all
a, b, c ∈ Z:

(i) Reflexivity: a ≡ a (mod n).
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(ii) Symmetry: If a ≡ b (mod n), then b ≡ a (mod n).
(iii) Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c

(mod n).
定理

Proof

(i) Since a − a = 0 and n | 0, reflexivity holds.
(ii) If n | (a − b), then n | −(a − b) = b − a.

(iii) If n | (a − b) and n | (b − c), then by linearity of divisibility, n
divides (a − b) + (b − c) = a − c.

■

The utility of congruences stems from their compatibility with the
standard arithmetic operations of Z.

Theorem 2.2. Modular Algebraic Properties.
Let n ∈ Z+ and let a, b, c, d ∈ Z. If a ≡ b (mod n) and c ≡ d (mod n),
then:

(i) a ± c ≡ b ± d (mod n).
(ii) ac ≡ bd (mod n).

(iii) ak ≡ bk (mod n) for any k ∈ Z+.
定理

Proof

By hypothesis, a − b = kn and c − d = ln for some k, l ∈ Z.
(i) (a ± c)− (b ± d) = (a − b)± (c − d) = n(k ± l). Thus n divides

the difference.
(ii) Consider the difference ac − bd. We add and subtract bc:

ac− bd = ac− bc+ bc− bd = c(a− b)+ b(c− d) = c(kn)+ b(ln) = n(ck+ bl).

Since ck + bl ∈ Z, n | (ac − bd).
(iii) Follows from (ii) by induction on k.

■

Repeated application of Theorem 2.2 leads to the following result for
polynomials.

Corollary 2.1. Polynomial Congruence. Let f (x) ∈ Z[x] be a polyno-
mial with integer coefficients. If a ≡ b (mod n), then f (a) ≡ f (b)
(mod n).

推論

Theorem 2.3. Multivariate Polynomial Congruence.
Let F(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a k-variate polynomial with inte-
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ger coefficients. If ai ≡ bi (mod n) for 1 ≤ i ≤ k, then

F(a1, . . . , ak) ≡ F(b1, . . . , bk) (mod n).

定理

We proceed by induction on the structure of F.

Base cases.

If F is a constant C ∈ Z, then F(a) = C = F(b), so the congruence
holds. If F(x1, . . . , xk) = xi, then F(a) = ai ≡ bi = F(b) (mod n).

証明終

Inductive steps.

Assume the theorem holds for polynomials G and H.
Addition: For F = G + H,

F(a) = G(a) + H(a)

≡ G(b) + H(b) (mod n) (by Theorem 2.2(i))

= F(b).

Multiplication: For F = G · H,

F(a) = G(a) · H(a)

≡ G(b) · H(b) (mod n) (by Theorem 2.2(ii))

= F(b).

証明終

Since every polynomial is constructed from variables and constants
by finitely many additions and multiplications, the result follows.

Remark (Root Finding).

This theorem provides a necessary condition for the existence of
integer roots. If the congruence f (x) ≡ 0 (mod n) has no solution,
then the polynomial equation f (x) = 0 has no integer solution.

As an arithmetic application, we prove that no non-constant polyno-
mial with integer coefficients can generate only prime numbers.

Theorem 2.4. Composite Values of Polynomials.
Let f (x) ∈ Z[x] be a non-constant polynomial. There exists an inte-
ger x0 such that | f (x0)| is composite.

定理

Proof

Assume, for contradiction, that | f (x)| is prime for all x ∈ Z. Let y
be an integer such that f (y) ̸= 0 and let p = | f (y)|. Since p is
prime, p ≥ 2. For any integer k, consider the evaluation at y + kp.
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By Theorem 2.3:

y + kp ≡ y (mod p) =⇒ f (y + kp) ≡ f (y) (mod p).

Since f (y) = ±p ≡ 0 (mod p), it follows that p divides f (y + kp)
for all k ∈ Z. By hypothesis, | f (y + kp)| is prime. The only prime
divisible by p is p itself. Thus, for all k,

| f (y + kp)| = p.

This implies that the polynomial f (x) assumes the values p or −p
infinitely many times. By the pigeonhole principle, at least one of
these values is attained infinitely often. However, a non-constant
polynomial of degree d can assume any given value at most d
times. This is a contradiction.

■

Unlike in Q or R, the cancellation law (ac = bc =⇒ a = b for c ̸= 0)
does not hold unrestrictedly in modular arithmetic.

Example 2.2. Failure of Cancellation. Consider the congruence
4 · 2 ≡ 10 · 2 (mod 12). This simplifies to 8 ≡ 20 (mod 12), which
holds as 12 | −12. However, cancelling the factor 2 yields 4 ≡ 10
(mod 12), which is false since 12 ∤ −6.

範例

The correct formulation of cancellation requires adjusting the mod-
ulus by the greatest common divisor of the cancelled factor and the
modulus.

Theorem 2.5. Cancellation Law.
Let a, b, c ∈ Z and n ∈ Z+. If ac ≡ bc (mod n), then

a ≡ b (mod
n

(c, n)
),

where (c, n) is the greatest common divisor of c and n. In particular,
if (c, n) = 1, then a ≡ b (mod n).

定理

Proof

The congruence ac ≡ bc (mod n) implies n | c(a − b). Let d = (c, n).
We can write c = dc′ and n = dn′ where (c′, n′) = 1 (by Theorem
3.1.3 (iv)). The divisibility condition becomes dn′ | dc′(a − b), which
simplifies to n′ | c′(a − b). By Euclid’s Lemma, since (n′, c′) = 1, we
must have n′ | (a − b). Thus a ≡ b (mod n′). Since n′ = n/d =

n/(c, n), the result follows.
■

We conclude this section with standard properties regarding the
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change of modulus.

Theorem 2.6. Properties of the Modulus.
Let a, b ∈ Z and m ∈ Z+.

(i) If a ≡ b (mod m) and d | m, then a ≡ b (mod d).
(ii) For any k ∈ Z \ {0}, a ≡ b (mod m) if and only if ka ≡ kb

(mod km).
(iii) If a ≡ b (mod mi) for i = 1, . . . , r, then a ≡ b (mod [m1, . . . , mr]),

where [·] denotes the least common multiple.
定理

Proof

(i) If m | (a − b) and d | m, then by transitivity of divisibility, d |
(a − b).

(ii) a ≡ b (mod m) ⇐⇒ m | (a − b) ⇐⇒ km | k(a − b) ⇐⇒
ka ≡ kb (mod km).

(iii) Let L = [m1, . . . , mr]. Since a ≡ b (mod mi), we have
mi | (a − b) for all i. By the universal property of the LCM
(Theorem 1.4(i)), L | (a − b).

■

To analyse congruences modulo a composite number n, it is often
effective to decompose the modulus into its prime power factors. The
following proposition relies on the properties of the least common
multiple and the unique factorisation of integers.

Proposition 2.1. Reduction to Prime Powers.
Let n > 1 have the standard prime factorisation n = pα1

1 pα2
2 . . . pαk

k .
For any integers a and b:

a ≡ b (mod n) ⇐⇒ a ≡ b (mod pαi
i ) for all i = 1, . . . , k.

命題

Proof

Let L = [pα1
1 , . . . , pαk

k ]. Since the prime powers pαi
i are pairwise co-

prime, their least common multiple is their product (Theorem 3.2.3
(v)). Thus L = n.

( =⇒ ) If a ≡ b (mod n), then n | (a − b). Since pαi
i | n, it follows by

transitivity that pαi
i | (a − b) for all i.

( ⇐= ) If pαi
i | (a − b) for all i, then a − b is a common multiple

of all pαi
i . By the universal property of the LCM (Theorem 3.2.3

(i)), a − b must be divisible by L. Since L = n, we have a ≡ b
(mod n).

■
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This result allows us to solve polynomial congruences f (x) ≡ 0
(mod n) by solving them modulo each prime power component pαi

i
and combining the results. This necessary condition is recorded in
the Root Finding remark following corollary 2.1.

Remark.

Testing modulo primes p alone may yield false positives, as a poly-
nomial may have roots modulo every prime yet fail to have roots
modulo a prime power.

Example 2.3. Non-existence of Integer Roots. Consider the polyno-
mial f (x) = x5 − x2 + x − 3. We investigate its roots modulo small
integers.
Modulo 2:

f (0) = −3 ≡ 1 (mod 2)

f (1) = 1 − 1 + 1 − 3 = −2 ≡ 0 (mod 2).

Thus, x ≡ 1 is a root modulo 2.
Modulo 3:

f (0) = −3 ≡ 0 (mod 3).

Thus, x ≡ 0 is a root modulo 3.
Modulo 4: We test all residue classes in Z/4Z:

f (0) = −3 ≡ 1 (mod 4)

f (1) = 1 − 1 + 1 − 3 = −2 ≡ 2 (mod 4)

f (2) = 32 − 4 + 2 − 3 = 27 ≡ 3 (mod 4)

f (3) ≡ (−1)5 − (−1)2 + (−1)− 3 (mod 4)

= −1 − 1 − 1 − 3 = −6 ≡ 2 (mod 4).

Since f (x) ≡ 0 (mod 4) has no solution, the equation f (x) = 0
has no integer solutions, despite having solutions modulo 2 and
modulo 3.

範例

2.2 Residue Classes

Since congruence modulo n is an equivalence relation (Theorem 2.1), it
partitions the set of integers into disjoint equivalence classes. We now
formalise this structure, which forms the basis of modular arithmetic.

Definition 2.2. Congruence Class.
The congruence class of a modulo n, denoted [a], is the set of all inte-
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gers congruent to a modulo n:

[a] = {x ∈ Z | x ≡ a (mod n)} = {kn + a | k ∈ Z}.

Any element x ∈ [a] is called a representative of the class.
定義

By Theorem 2.1, for any integers a and b, either [a] = [b] (if a ≡ b
(mod n)) or [a] ∩ [b] = ∅. This partition is exhaustive and finite.

Theorem 2.7. Partition of Integers.
The set of integers Z is partitioned into exactly n distinct residue classes
modulo n. These classes are given by:

[0], [1], [2], . . . , [n − 1].

定理

Proof

By the The Division Algorithm, for any integer a, there exist unique
integers q, r such that a = nq + r with 0 ≤ r < n. Thus, a ≡ r
(mod n), which implies [a] = [r]. This demonstrates that every
integer belongs to one of the classes {[0], . . . , [n − 1]}.
To establish that these classes are distinct, suppose [r1] = [r2] with
0 ≤ r1 ≤ r2 < n. Then r2 ≡ r1 (mod n), which implies n | (r2 − r1).
Since 0 ≤ r2 − r1 < n, the only multiple of n in this interval is 0.
Thus r2 − r1 = 0, or r1 = r2.

■

Definition 2.3. Complete Set of Residues.
A set {x1, . . . , xn} ⊂ Z is called a complete set of residues modulo n if
the elements are pairwise incongruent modulo n. The set {0, 1, . . . , n−
1} is the least non-negative complete system modulo n.

定義

The set of all congruence classes modulo n is denoted by Z/nZ.
While constructed from integers, these classes are abstract objects in
their own right. For example, modulo 2, there are two classes: [0] (the
even integers) and [1] (the odd integers).

Definition 2.4. Operations on Z/nZ.
We define addition and multiplication of residue classes by represen-
tatives:

[a] + [b] = [a + b], [a] · [b] = [ab].

These operations are well-defined by Theorem 2.2. That is, the result is
independent of the choice of representatives a and b.

定義

Consequently, Z/nZ forms a commutative ring with identity [1].
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When n is a prime p, every non-zero class [a] possesses a multiplica-
tive inverse, making Z/pZ a field.

Remark (Ill-defined Operations).

One must be cautious not to treat the exponent in modular arith-
metic as a residue class. The expression [a][b] is ill-defined because
b ≡ d (mod n) does not imply ab ≡ ad (mod n). For instance, with
n = 3, we have 1 ≡ 4 (mod 3). However, taking [2] as the base:

21 = 2 ≡ 2 (mod 3), but 24 = 16 ≡ 1 (mod 3).

Thus, exponentiation is an operation of Z on Z/nZ, defined as
[a]k = [ak] for integer k, not an operation between two residue
classes.

2.3 Reduced Residue Systems

The multiplicative structure of Z/nZ is of particular interest. By
Theorem 3.1.1 (iv), (a, n) = (a + kn, n) for any integer k. Therefore, if
a representative a of a class [a] is coprime to n, then every element of
that class is coprime to n.

Definition 2.5. Reduced Congruence Class.
A residue class [a] ∈ Z/nZ is called a reduced congruence class if (a, n) =
1. The set of all such classes is the set of units of the ring Z/nZ, de-
noted by (Z/nZ)×.

定義

Definition 2.6. Euler’s Totient Function.
The Euler φ-function, denoted φ : Z+ → Z+, counts the number of
integers in {1, . . . , n} that are coprime to n. In the context of rings, it
is the cardinality of the set of units:

φ(n) =
∣∣(Z/nZ)×

∣∣ = ∑
1≤k≤n
(k,n)=1

1.

定義

The set (Z/nZ)× is closed under multiplication: if (a, n) = 1 and
(b, n) = 1, then (ab, n) = 1 by Theorem 3.1.3 (v). Furthermore, it
contains the multiplicative identity [1].

Definition 2.7. Reduced Residue System.
A subset R ⊆ Z is a reduced residue system modulo n if:

(i) |R| = φ(n).
(ii) For every r ∈ R, (r, n) = 1.

(iii) The elements of R are pairwise incongruent modulo n.
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Equivalently, R is a set of representatives for the classes in (Z/nZ)×.
The least positive reduced residue system consists of those integers in {1, . . . , n−
1} coprime to n.

定義

Example 2.4. Reduced System Modulo 12. Let n = 12. The inte-
gers in [1, 12] coprime to 12 are {1, 5, 7, 11}. Thus φ(12) = 4, and
this set forms a reduced residue system. Another such system is
{1,−1, 5,−5}, since 7 ≡ −5 (mod 12) and 11 ≡ −1 (mod 12).

範例

A fundamental property of residue systems is their invariance (as a
set) under multiplication by a unit.

Theorem 2.8. Permutation of Residues.
Let a, b ∈ Z with (a, n) = 1.

(i) If {c1, . . . , cn} is a complete set of residues modulo n, then the
set of affine transforms {ac1 + b, . . . , acn + b} is also a complete
set of residues modulo n.

(ii) If R = {r1, . . . , rφ(n)} is a reduced residue system modulo n, then
the set of multiples aR = {ar1, . . . , arφ(n)} is also a reduced residue
system modulo n.

定理

Proof

(i) The set {aci + b} contains n integers. Suppose aci + b ≡ acj + b
(mod n) for some indices i, j. Subtracting b yields aci ≡ acj

(mod n). Since (a, n) = 1, the Cancellation Law implies
ci ≡ cj (mod n). As the original set {ck} was a complete
system, we must have i = j. Thus, the elements of the new set
are pairwise incongruent modulo n. Being a set of n incon-
gruent integers, it forms a complete residue system.

(ii) Let R = {r1, . . . , rφ(n)}. Since (a, n) = 1 and (ri, n) = 1 for
all i, it follows that (ari, n) = 1. Thus, every element of aR is
coprime to n. Suppose ari ≡ arj (mod n). Since (a, n) = 1,
cancellation yields ri ≡ rj (mod n), which implies i = j. The
set aR therefore consists of φ(n) distinct integers coprime to
n, satisfying the definition of a reduced residue system.

■

2.4 Linear Congruences and Inverses

The permutation property of complete residue systems allows us to
determine the solvability of linear congruences.
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Theorem 2.9. Existence and Multiplicity of Solutions.
The linear congruence ax ≡ b (mod n) admits a solution if and only
if d = (a, n) divides b. If solutions exist, there are exactly d distinct
solutions modulo n, given by:

x = x0 + t · n
d

, for t = 0, 1, . . . , d − 1,

where x0 is any particular solution.
定理

Proof

By definition, a solution exists if and only if the linear Diophantine
equation ax + ny = b is solvable for integers x, y. By Theorem 1.2,
the linear combinations of a and n generate the ideal ⟨d⟩. Thus,
ax + ny = b has a solution if and only if b ∈ ⟨d⟩, i.e., d | b.
Now assume d | b. Since d | a and d | n, we may divide the entire
congruence by d to obtain the equivalent form:

a
d

x ≡ b
d

(mod
n
d
).

Let a′ = a/d, b′ = b/d, and n′ = n/d. Since (a′, n′) = 1, the element
[a′] is invertible in (Z/n′Z)× (by corollary 1.1). Multiplying by its
inverse yields a unique solution x0 modulo n′. In terms of the orig-
inal modulus n, the integers satisfying x ≡ x0 (mod n′) are of the
form x = x0 + kn′. We seek the number of distinct classes modulo
n. Two solutions x0 + k1n′ and x0 + k2n′ are congruent modulo n if
and only if:

(k1 − k2)n′ ≡ 0 (mod n) ⇐⇒ (k1 − k2)
n
d
= mn ⇐⇒ k1 − k2 = md.

Thus, the solutions are distinct for k ∈ {0, 1, . . . , d − 1}.
■

This theorem provides a constructive algorithm for solving linear
congruences: reduce the coefficients by their greatest common divi-
sor, invert the leading coefficient modulo the reduced modulus, and
then lift the solution to the original modulus.

Example 2.5. Solving a Linear Congruence. Consider the congru-
ence 10x ≡ 6 (mod 14). Here a = 10, b = 6, n = 14. The greatest
common divisor is d = (10, 14) = 2. Since 2 | 6, solutions exist, and
there are exactly d = 2 distinct solutions modulo 14. Dividing the
congruence by 2:

5x ≡ 3 (mod 7).

Since (5, 7) = 1, we compute the inverse of 5 modulo 7. Observing
that 3 × 5 = 15 ≡ 1 (mod 7), the inverse is 3. Multiplying both
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sides by 3:
x ≡ 3 · 3 ≡ 9 ≡ 2 (mod 7).

The general integer solution is x = 2 + 7k. The solutions modulo 14
correspond to k = 0 and k = 1: x1 = 2, x2 = 9. Thus, the solution set
is {[2], [9]} ⊂ Z/14Z.

範例

We can prove a more general theorem:

Corollary 2.2. Existence of Solutions.
Let a, b ∈ Z and n ∈ Z+. If (a, n) = 1, then the linear congruence

ax ≡ b (mod n)

has a solution x. Moreover, all such solutions belong to a single con-
gruence class modulo n.

推論

Proof

Let {c1, . . . , cn} be a complete residue system modulo n (for in-
stance, {0, 1, . . . , n − 1}). By Theorem 5.4.1 (i), since (a, n) = 1, the
set {ac1, . . . , acn} (taking the affine shift b = 0) is also a complete
residue system modulo n. Consequently, the integer b must be
congruent to exactly one element in this set. That is, there exists a
unique index i such that aci ≡ b (mod n). Then x = ci is a solu-
tion. If x and x′ are two solutions, then ax ≡ b ≡ ax′ (mod n). By
the cancellation law, x ≡ x′ (mod n), so they reside in the same
congruence class.

■

Definition 2.8. Modular Inverse.
Let (a, n) = 1. The unique solution class [x] to the congruence ax ≡
1 (mod n) is called the multiplicative inverse of a modulo n. We denote
the representative by a−1 or sometimes 1/a. Thus, a · a−1 ≡ 1 (mod n).

定義

The existence of inverses is what endows (Z/nZ)× with its specific
algebraic structure (that of an abelian group). Computationally, the
inverse can be found using the Extended Euclidean Algorithm.

Example 2.6. Calculation of Inverse and Solution. Find all x satis-
fying 24x ≡ 7 (mod 59). Since 59 is prime and 59 ∤ 24, we have
(24, 59) = 1. We first find 24−1 (mod 59). Using the Euclidean
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algorithm on 59 and 24:

59 = 2 · 24 + 11

24 = 2 · 11 + 2

11 = 5 · 2 + 1.

Back-substituting to express 1:

1 = 11 − 5(2)

= 11 − 5(24 − 2 · 11) = 11 · 11 − 5 · 24

= 11(59 − 2 · 24)− 5 · 24 = 11 · 59 − 27 · 24.

Thus, −27 · 24 ≡ 1 (mod 59). The inverse is −27 ≡ 32 (mod 59).
The solution to the original congruence is:

x ≡ 24−1 · 7 ≡ (−27) · 7 ≡ −189 (mod 59).

Reducing −189 modulo 59:

−189 = −4(59) + 47.

So x ≡ 47 (mod 59).

範例

Theorem 2.10. Properties of Modular Inverses.
Let m ∈ Z+ and a, b ∈ Z with (a, m) = (b, m) = 1.

(i) (ab)−1 ≡ a−1b−1 (mod m).
(ii) a−1 ≡ b−1 (mod m) if and only if a ≡ b (mod m).

(iii) If R = {r1, . . . , rφ(m)} is a reduced residue system modulo m,
then the set of inverses R−1 = {r−1

1 , . . . , r−1
φ(m)

} is also a reduced
residue system modulo m.

定理

Proof

(i) We verify the product: (ab)(a−1b−1) = (aa−1)(bb−1) ≡ 1 · 1 ≡
1 (mod m). By uniqueness, a−1b−1 is the inverse of ab.

(ii) If a−1 ≡ b−1 (mod m), multiplying by ab gives b ≡ a
(mod m). The converse holds similarly.

(iii) Since each ri is coprime to m, its inverse r−1
i exists and is co-

prime to m. Suppose r−1
i ≡ r−1

j (mod m). By part (ii), this

implies ri ≡ rj (mod m), so i = j. The set R−1 contains φ(m)

distinct residues coprime to m, so it is a reduced system.
■
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Example 2.7. Sum of Inverse Squares. Let p ≥ 5 be a prime. We
show that

p−1

∑
k=1

(k−1)2 ≡ 0 (mod p).

Let S = ∑
p−1
k=1 (k

−1)2. Since {1, . . . , p − 1} is a reduced residue
system modulo p, for any integer a not divisible by p, the set
{a · 1, . . . , a(p − 1)} is also a reduced residue system. Consequently,
the sum of the squares of their inverses must be congruent to S
modulo p:

p−1

∑
k=1

((ak)−1)2 ≡ S (mod p).

Distributing the inverse:

p−1

∑
k=1

a−2k−2 ≡ a−2
p−1

∑
k=1

k−2 ≡ a−2S (mod p).

Thus, S ≡ a−2S (mod p), which implies (1 − a−2)S ≡ 0 (mod p).
Multiplying by a2, we get (a2 − 1)S ≡ 0 (mod p). To deduce S ≡ 0
(mod p), we must find an a such that a2 − 1 ̸≡ 0 (mod p). The con-
gruence a2 ≡ 1 (mod p) is equivalent to a ≡ 1 (mod p) or a ≡
−1 (mod p). Since p ≥ 5, the set {1, . . . , p − 1} contains at least 4

elements. We can choose an a ∈ {2, . . . , p − 2}, ensuring a ̸≡ ±1
(mod p). For such an a, p ∤ (a2 − 1). By Euclid’s Lemma, it follows
that p | S, i.e., S ≡ 0 (mod p).
Alternatively, this can be proved more directly: Since 1, 1

2 , · · · , 1
p−1

is a reduced system modulo p, the sum of squares of inverses is
congruent to the sum of squares of the integers themselves. We
have (for p ≥ 5):

p−1

∑
i=1

(
1
i

)2
≡

p−1

∑
i=1

i2 =
1
6

p(p − 1)(2p − 1) ≡ 0 (mod p),

since p is coprime to 6.

範例

2.5 Exercises

1. Clock Arithmetic.
(a) Find the remainder when 250 is divided by 7.
(b) Determine whether 1234567 is congruent to 3 modulo 10.
(c) Find an integer x such that x ≡ −25 (mod 11) and 0 ≤ x <

11.
2. Modular Exponentiation. Let a, b, n be integers with n > 0. Give
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a counter-example to show that a ≡ b (mod n) does not imply
ka ≡ kb (mod n).

3. Cancellation Caution. Use Theorem 2.5 to simplify the congruence
24x ≡ 36 (mod 50).

4. Linear Congruences. Solve the following linear congruences.
If no solution exists, state why. If solutions exist, list all distinct
solutions modulo n.
(a) 3x ≡ 2 (mod 7)
(b) 6x ≡ 15 (mod 21)
(c) 15x ≡ 9 (mod 12)

5. Polynomial Roots. Consider the polynomial f (x) = x2 − 1.
(a) Find all roots of f (x) ≡ 0 (mod 5).
(b) Find all roots of f (x) ≡ 0 (mod 8).
(c) Explain why the number of roots differs from the degree of

the polynomial in the second case.
6. Prime Power Reduction.

(a) Verify that x ≡ 7 (mod 12) implies x ≡ 1 (mod 3) and x ≡ 3
(mod 4).

(b) Use this decomposition to check if x2 ≡ 1 (mod 12) has any
solutions.

7. Composite Polynomial Values. Let f (x) = x2 + x + 41.
(a) Verify that f (n) is prime for n = 0, 1, 2.
(b) Prove that f (41) is composite.
(c) Prove generally that for any polynomial P(x) ∈ Z[x] with

constant term a0 ̸= 0, P(a0) is divisible by a0. Use this to
construct a composite value for f (x).

8. ⋆ The Square Root of Unity.
(a) Let p be a prime. Prove that the congruence x2 ≡ 1 (mod p)

has exactly two distinct solutions: x ≡ 1 and x ≡ −1.
For (a): Factorise x2 − 1 and use Eu-
clid’s Lemma, which holds in Z and
implies properties in Z/pZ.

(b) Let n = pq where p and q are distinct odd primes. Prove that
x2 ≡ 1 (mod n) has exactly four distinct solutions. For (b): Use proposition 2.1 to decom-

pose the problem into systems: x ≡ ±1
(mod p) and x ≡ ±1 (mod q). Count
the valid combinations.



3
The Multiplicative Group of Integers

The transition from the integers Z to the quotient structure Z/nZ

introduces new algebraic phenomena, most notably the existence of
zero divisors and the formation of finite fields.

3.1 The Ring Structure of Z/nZ

The set of congruence classes Z/nZ, equipped with the addition and
multiplication operations defined in chapter 2, satisfies the axioms of
a commutative ring with identity [1]. However, the arithmetic in this
ring differs fundamentally from that of Z when n is composite.

Definition 3.1. Zero Divisors.
An element [a] ∈ Z/nZ is called a zero divisor if [a] ̸= [0] and there
exists a non-zero element [b] ∈ Z/nZ such that

[a] · [b] = [0].

If a commutative ring with identity 1 ̸= 0 contains no zero divisors,
it is called an integral domain.

定義

The existence of zero divisors obstructs the cancellation law and the
existence of multiplicative inverses. If [a] is a zero divisor, suppose
for contradiction that it possesses an inverse [a]−1. Then [a][b] = [0]
implies:

[b] = ([a]−1[a])[b] = [a]−1([a][b]) = [a]−1[0] = [0],

contradicting the hypothesis that [b] ̸= [0]. Consequently, zero divi-
sors are never units.

Proposition 3.1. Structure of Residue Rings.
The ring Z/nZ is an integral domain if and only if n is prime.

命題
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Proof

We consider the cases based on the primality of n.

(n is composite): If n is composite, there exist integers a, b such that
n = ab with 1 < a, b < n. In Z/nZ, the classes [a] and [b] are
non-zero, yet [a][b] = [n] = [0]. Thus, Z/nZ possesses zero
divisors and is not an integral domain.

(n is prime): Let n = p be a prime. Suppose [a][b] = [0] in Z/pZ.
This implies p | ab. By Euclid’s Lemma, p | a or p | b, which
means [a] = [0] or [b] = [0]. Thus, Z/pZ contains no zero divi-
sors.

■

When n = p is prime, every non-zero element [a] is coprime to p,
and thus by Bézout’s Identity, possesses a multiplicative inverse. A
commutative ring in which every non-zero element is invertible is
called a field.

Definition 3.2. The Finite Field Fp.
For a prime p, the ring Z/pZ is a field, denoted by Fp. It consists of
p elements and admits the four fundamental arithmetic operations: ad-
dition, subtraction, multiplication, and division by non-zero elements.
The set of non-zero elements forms the multiplicative group of the field,
denoted F×

p = Fp \ {[0]}. This is an abelian group of order p − 1.
定義

We distinguish the field of residue classes Fp (or Z/pZ) from the
ring of p-adic integers Zp

1. 1 The ring of p-adic integers arises by
completing Z with respect to the p-adic
absolute value; we will not develop this
theory here.

Wilson’s Theorem

The group structure of F×
p imposes strong constraints on products of

its elements. Since every element a ∈ F×
p has a unique inverse a−1,

we can analyze the product of all elements in the group by pairing
them with their inverses. The only elements that do not pair with a
distinct inverse are those that are their own inverse.

Lemma 3.1. Self-Inverses Modulo p.
For a prime p, the congruence x2 ≡ 1 (mod p) has exactly two so-
lutions: x ≡ 1 (mod p) and x ≡ −1 (mod p), provided p > 2. If
p = 2, the unique solution is x ≡ 1 (mod 2).

引理

Proof

The congruence x2 ≡ 1 (mod p) is equivalent to x2 − 1 ≡ 0
(mod p), or (x − 1)(x + 1) ≡ 0 (mod p). Since Fp is a field, it has
no zero divisors. Therefore, either x − 1 ≡ 0 (mod p) or x + 1 ≡ 0
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(mod p). For p > 2, [1] and [−1] are distinct classes. For p = 2, 1 ≡
−1, yielding a single solution.

■

This lemma provides the mechanism for proving one of the classical
theorems of number theory.

Theorem 3.1. Wilson’s Theorem.
An integer n > 1 is a prime number if and only if

(n − 1)! ≡ −1 (mod n).

定理

Proof

We prove the necessary and sufficient conditions separately.

( =⇒ ) Let n = p be a prime. If p = 2, then (2 − 1)! = 1 ≡ −1
(mod 2), so the statement holds. Assume p ≥ 3. Consider the
product P = 1 · 2 · · · · · (p − 1) modulo p. This product ranges
over all elements of F×

p . We pair each element a ∈ {2, . . . , p − 2}
with its multiplicative inverse a−1. By lemma 3.1, the only ele-
ments equal to their own inverses are [1] and [p − 1] = [−1].
Thus, for every a ∈ {2, . . . , p − 2}, the inverse a−1 is distinct
from a and lies in the same set. The product of these pairs is
1. The product of the entire set is therefore determined by the
self-inverses:

(p − 1)! ≡ 1 ·

 ∏
a∈F×

p

a ̸=a−1

a

 · (−1) ≡ 1 · 1 · (−1) ≡ −1 (mod p).

( ⇐= ) Suppose (n − 1)! ≡ −1 (mod n). We proceed by contradic-
tion. Assume n is composite. Then n has a prime divisor q such
that q < n. Since q ≤ n − 1, the integer q appears as a factor
in the product (n − 1)!. Therefore, q | (n − 1)!. By hypothesis,
(n − 1)! ≡ −1 (mod n), which implies (n − 1)! = kn − 1 for
some integer k. Since q | n, we have q | kn. It follows that q
divides the linear combination kn − (n − 1)! = 1. This implies
q = 1, contradicting that q is prime. Thus, n must be prime.

■

Example 3.1. Verification of Wilson’s Theorem. Consider p = 7. We
evaluate the factorial modulo 7:

6! = 1 × 2 × 3 × 4 × 5 × 6.
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In F×
7 , we identify the inverses:

· 2 × 4 = 8 ≡ 1 (mod 7), so 2−1 = 4.
· 3 × 5 = 15 ≡ 1 (mod 7), so 3−1 = 5.
The elements 1 and 6 ≡ −1 are self-inverses. Rearranging the prod-
uct:

6! = 1 × (2 × 4)× (3 × 5)× 6 ≡ 1 × 1 × 1 × (−1) ≡ −1 (mod 7).

Conversely, consider the composite number n = 6: (6 − 1)! = 5! =

120. Since 120 = 20 × 6, we have 120 ≡ 0 (mod 6). This confirms
0 ̸≡ −1 (mod 6). In general, for any composite n > 4, (n − 1)! ≡ 0
(mod n) because both factors a and b (where n = ab) appear in the
factorial product.

範例

3.2 Theorems of Fermat and Euler

Recall from definition 2.6 that φ(n) counts the number of positive
integers not exceeding n that are coprime to n. We first establish
the multiplicative nature of this function, which permits its efficient
evaluation via prime factorisation.

Theorem 3.2. Multiplicativity of φ.
The function φ is multiplicative. That is, if m, n ∈ Z+ with (m, n) =
1, then

φ(mn) = φ(m)φ(n).

定理

Proof

Consider the set of integers S = {1, 2, . . . , mn}. We arrange these in-
tegers in a grid with n rows and m columns:

1 2 · · · m
m + 1 m + 2 · · · 2m

...
...

. . .
...

(n − 1)m + 1 (n − 1)m + 2 · · · (n − 1)m + m

An integer x in this grid is coprime to mn if and only if (x, m) = 1
and (x, n) = 1.
We first determine the number of entries coprime to m. Since x ≡ x′

(mod m) implies (x, m) = (x′, m), and every column consists of
integers congruent modulo m, coprimality with m is a property of
the column index. There are exactly φ(m) columns whose entries
are coprime to m.
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Now, consider such a column corresponding to a value r with 1 ≤
r ≤ m and (r, m) = 1. The elements of this column are of the form

{qm + r | 0 ≤ q ≤ n − 1}.

Since (m, n) = 1, as q ranges from 0 to n − 1, the values qm + r form
a complete set of residues modulo n (by Theorem 5.4.1 (i)). Thus,
exactly φ(n) elements in this column are coprime to n. Since there
are φ(m) such columns, and each contains φ(n) valid integers, the
total number of integers in S coprime to mn is φ(m)φ(n).

■

Example 3.2. Calculation of φ. Using multiplicativity, we compute
φ(72). Since 72 = 23 · 32 and (23, 32) = 1,

φ(72) = φ(23)φ(32) = (23 − 22)(32 − 3) = 4 · 6 = 24.

Equivalently, using the product formula derived below:

φ(72) = 72
(

1 − 1
2

)(
1 − 1

3

)
= 24.

範例

Theorem 3.3. Euler’s Product Formula.
Let n ≥ 2 have the prime factorisation n = pα1

1 pα2
2 . . . pαk

k . Then

φ(n) = n
k

∏
i=1

(
1 − 1

pi

)
.

定理

Proof

We proceed by induction on the number of distinct prime fac-
tors. First, consider a prime power pα. The integers in {1, . . . , pα}
that are not coprime to pα are precisely the multiples of p:
{p, 2p, . . . , pα−1 p}. There are pα−1 such multiples. Thus:

φ(pα) = pα − pα−1 = pα

(
1 − 1

p

)
.

Since φ is multiplicative (Theorem 3.2) and distinct prime powers are
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pairwise coprime,

φ(n) = φ(pα1
1 ) . . . φ(pαk

k )

=
k

∏
i=1

pαi
i

(
1 − 1

pi

)

=

(
k

∏
i=1

pαi
i

)
k

∏
i=1

(
1 − 1

pi

)

= n
k

∏
i=1

(
1 − 1

pi

)
.

■

The totient function satisfies a beautiful summation identity known
as Gauss’s Sum.

Theorem 3.4. Gauss’s Summation Formula.
For any n ∈ Z+,

∑
d|n

φ(d) = n.

定理

Proof

Let f (n) = ∑d|n φ(d). This is the Dirichlet convolution of φ with
the constant function 1(n) = 1, where the convolution of arithmetic
functions g and h is defined by (g ∗ h)(n) = ∑d|n g(d)h(n/d). Be-
cause both φ and 1 are multiplicative and convolution preserves
multiplicativity, f is multiplicative. It suffices to evaluate f on
prime powers. For n = pα:

f (pα) =
α

∑
k=0

φ(pk)

= 1 +
α

∑
k=1

(pk − pk−1)

= 1 + (p − 1) + (p2 − p) + · · ·+ (pα − pα−1).

This is a telescoping sum, reducing to pα. Since f (n) = ∏ f (pαi
i ) =

∏ pαi
i = n, the identity holds.

■

Alternative Set-Theoretic Proof

Consider the set of integers S = {1, 2, . . . , n}. We partition S based
on the greatest common divisor with n. For each divisor d of n,
let Ad = {k ∈ S : (k, n) = d}. Since every integer k ∈ S has a
unique gcd with n, and that gcd must be a divisor of n, we have the
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disjoint union
S =

⊔
d|n

Ad.

Consequently, summing the cardinalities yields n = ∑d|n |Ad|.
The condition (k, n) = d is equivalent to ( k

d , n
d ) = 1, where

1 ≤ k
d ≤ n

d . Thus, the elements of Ad are in one-to-one corre-
spondence with the integers up to n/d that are coprime to n/d.
Therefore, |Ad| = φ(n/d). Substituting this into the sum:

n = ∑
d|n

φ
(n

d

)
.

As d runs through all divisors of n, the term n/d also runs
through all divisors of n. Thus, the summation is equivalent to
∑d|n φ(d) = n.

■

We now apply the structure of the group (Z/nZ)× to derive Euler’s
Theorem.

Theorem 3.5. Euler’s Theorem.
Let n ∈ Z+ and a ∈ Z with (a, n) = 1. Then

aφ(n) ≡ 1 (mod n).

定理

Proof

Let R = {r1, r2, . . . , rφ(n)} be a reduced residue system modulo n.
Since (a, n) = 1, the set aR = {ar1, ar2, . . . , arφ(n)} is also a reduced
residue system modulo n (by Theorem 5.4.1 (ii)). Consequently,
the product of the elements in R is congruent to the product of the
elements in aR:

φ(n)

∏
i=1

ri ≡
φ(n)

∏
i=1

(ari) (mod n).

Factoring out a from the right-hand side yields:

φ(n)

∏
i=1

ri ≡ aφ(n)

(
φ(n)

∏
i=1

ri

)
(mod n).

Let P = ∏ ri. Since each ri is coprime to n, their product P is co-
prime to n. By the Cancellation Law, we may cancel P from both
sides, leaving 1 ≡ aφ(n) (mod n).

■

Restricting Euler’s Theorem to prime moduli yields Fermat’s Little
Theorem. Since φ(p) = p − 1, the result follows immediately.
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Corollary 3.1. Fermat’s Little Theorem. Let p be a prime.
(i) If p ∤ a, then ap−1 ≡ 1 (mod p).

(ii) For any integer a, ap ≡ a (mod p).
推論

Proof

Part (i) is a direct instance of Theorem 3.5. For part (ii), if p ∤ a, mul-
tiplying (i) by a yields ap ≡ a (mod p). If p | a, then a ≡ 0
(mod p), so ap ≡ 0 ≡ a (mod p). Thus the congruence holds for all
a.

■

We provide an alternative, self-contained proof of Fermat’s Little
Theorem that relies on the binomial expansion rather than group the-
ory. This approach highlights the arithmetic properties of binomial
coefficients modulo p.

Lemma 3.2. Prime Divisibility of Binomial Coefficients Let p be a prime
and k an integer such that 1 ≤ k ≤ p − 1. Then

p |
(

p
k

)
.

引理

Proof

Since 1 ≤ k ≤ p − 1, none of the prime factors appearing in
k!(p − k)! equals p, so the denominator is coprime to p even though
it divides (p − 1)!. Writing(

p
k

)
=

p(p − 1)!
k!(p − k)!

,

the numerator supplies a factor of p that cannot be cancelled by the
denominator. Hence p | (p

k).
■

Remark (The Carmichael Function).

The exponent φ(n) in Euler’s Theorem is not always the smallest
integer k such that ak ≡ 1 (mod n) for all units a. The smallest such
universal exponent is given by the Carmichael function, λ(n). For
n = pα1

1 . . . pαk
k , λ(n) = [λ(pα1

1 ), . . . , λ(pαk
k )], where λ(pα) = φ(pα)

for odd primes or pα = 2, 4, and λ(2α) = 1
2 φ(2α) for α ≥ 3. For

example, modulo 8, we have φ(8) = 4, yet a2 ≡ 1 (mod 8) for all
odd a. Here λ(8) = 2.
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3.3 Exercises

1. Group Tables.
(a) Construct the addition and multiplication tables for the ring

Z/6Z. Identify the units and zero divisors.
(b) Construct the multiplication table for the field F7.

2. Counting Zero Divisors. Let n > 1 be an integer. Determine the A zero divisor is a non-zero class [a]
with 1 < (a, n) < n, which is equivalent
to (a, n) > 1 and [a] ̸= [0].

number of zero divisors in the ring Z/nZ.
3. Group Cancellation. Let n > 1. Prove that the cancellation law

holds in the multiplicative group (Z/nZ)×. That is, if a, b, c ∈
(Z/nZ)× and ab ≡ ac (mod n), then b ≡ c (mod n).

4. The Cayley Property. Let n > 1. Prove that for any fixed unit
u ∈ (Z/nZ)×, the map x 7→ ux is a bijection from (Z/nZ)×

to itself. Conclude that the product of u with all elements of the
group yields exactly the elements of the group.

5. Field Properties. Let p be a prime.
(a) Prove that for any a ∈ Fp, the sum of a with itself p times is

zero (i.e., pa ≡ 0 (mod p)).
(b) Let n ∈ Z and a ∈ Fp with a ̸= 0. Prove that if na ≡ 0

(mod p), then p | n.
(c) Prove the "Freshman’s Dream" in characteristic p: for any

α, β ∈ Fp, (α + β)p = αp + βp.
6. Reduced Residue Systems. Let p be a prime.

(a) Let R = {r1, . . . , rp−1} and R′ = {r′1, . . . , r′p−1} be two reduced
residue systems modulo p. Prove that the set of products
{r1r′1, . . . , rp−1r′p−1} is not a reduced residue system modulo
p for p > 2.

(b) Prove that 12 · 32 · · · (p − 2)2 ≡ (−1)(p+1)/2 (mod p) for any
odd prime p.

7. Computation.
(a) Calculate φ(360) and φ(429).
(b) Find the last two digits of 3999 in its decimal representation.

8. Properties of φ.
(a) Prove that φ(n) is even for all n ≥ 3.
(b) Prove that the sum of positive integers less than n and co-

prime to n is 1
2 nφ(n) for n > 1.

9. Applications of Euler’s Theorem.
(a) Let m, n be coprime positive integers. Prove that mφ(n) +

nφ(m) ≡ 1 (mod mn).
(b) Let (a, 10) = 1. Prove that a100 ≡ 1 (mod 1000). (Note: The

text exercise said 100, but 1000 is a stronger result implied by
λ(1000) = 100).

(c) Use Euler’s theorem to provide an explicit formula for the
modular inverse a−1 (mod n) in terms of a and φ(n).
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10. Power Towers. Let a be an odd integer. Prove that for any n ≥ 1:

a2n ≡ 1 (mod 2n+2).

11. The Möbius Function. Define µ(n) as 0 if n is not square-free,
and (−1)k if n is the product of k distinct primes (with µ(1) = 1).
(a) Prove that µ is a multiplicative function.

(b) Prove the fundamental identity: ∑d|n µ(d) =

1 n = 1

0 n > 1
.

12. Möbius Inversion Formula. Let f and F be arithmetic functions.
(a) Prove that if F(n) = ∑d|n f (d), then f (n) = ∑d|n µ(d)F(n/d).
(b) Use this to invert Gauss’s Sum ∑d|n φ(d) = n, deriving the

formula φ(n) = ∑d|n µ(d) n
d .

(c) From the derived formula, provide an alternative proof of
Euler’s Product Formula (Theorem 3.3).

13. Summation Identities.
(a) Prove that ∑d|n

µ(d)
d = φ(n)

n .

(b) Prove that ∑d|n
µ(d)
φ(d) =

n
φ(n) .

14. Binomials Modulo p. Let p be a prime.

(a) Prove that
(

p − 1
k

)
≡ (−1)k (mod p) for 0 ≤ k ≤ p − 1.

(b) Prove Lucas’s Theorem (Base Case):
(

n
p

)
≡ ⌊n/p⌋ (mod p).

15. GCD of Sums. Let a, b be coprime integers with a + b ̸= 0, and let
p be an odd prime. Prove that:(

a + b,
ap + bp

a + b

)
∈ {1, p}.

16. Factorials and Divisibility. Let a, b, n ∈ Z with n > 0. Prove that: Consider the polynomial P(x) =
x(x + 1) · · · (x + n − 1). What are its
roots modulo n? Alternatively, consider
the combinatorial interpretation of the
generalized binomial coefficient.

n! | bn−1a(a + b)(a + 2b) · · · (a + (n − 1)b).

17. ⋆ Composite Sums. Let S1 = {0, 1, . . . , n − 1} be a complete set of
residues modulo n.
(a) If n is odd, show that the sum of elements in S1 is divisible

by n.
(b) Let n be even. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be

two complete systems of residues modulo n. Prove that the
set of sums {a1 + b1, . . . , an + bn} is not a complete system of
residues modulo n.



4
Polynomial Congruences and Systems

We address the general problem of finding integer roots of polyno-
mial congruences. Having established the theory for linear congru-
ences in Theorem 5.3.1, we extend our scope to systems of congru-
ences and higher-degree polynomials.

4.1 Polynomial Congruences Modulo p

Let f (x) ∈ Z[x] be a polynomial with integer coefficients. A funda-
mental problem is to determine the number of solutions to f (x) ≡ 0
(mod n). We count solutions as the number of distinct residue
classes modulo n that satisfy the congruence.
For a general modulus n, this problem can be intricate. However,
when the modulus is a prime p, the ring Z/pZ is a field (Fp). This
allows us to import results regarding polynomials over fields, most
notably the restriction on the number of roots.

Theorem 4.1. Lagrange’s Theorem.
Let p be a prime and let f (x) = anxn + · · · + a1x + a0 be a polyno-
mial with integer coefficients such that p ∤ an (i.e., the degree of f mod-
ulo p is n). Then the congruence

f (x) ≡ 0 (mod p)

has at most n solutions.
定理

Proof

We proceed by induction on the degree n.

Base Case (n = 1): The congruence is a1x + a0 ≡ 0 (mod p) with p ∤
a1. By Theorem 5.3.1, since (a1, p) = 1, there is exactly one solu-
tion.

Inductive Step: Assume the theorem holds for all polynomi-
als of degree n − 1. Let f (x) be of degree n. If f (x) ≡ 0
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(mod p) has no solutions, the theorem holds. Suppose there
exists a solution x1. Then f (x1) ≡ 0 (mod p). We can write
f (x)− f (x1) = ∑n

k=1 ak(xk − xk
1). Using the algebraic identity

xk − xk
1 = (x − x1)(xk−1 + xk−2x1 + · · ·+ xk−1

1 ),

we can factor out (x − x1):

f (x) ≡ f (x)− f (x1) ≡ (x − x1)g(x) (mod p),

where g(x) is a polynomial of degree n − 1 with leading coeffi-
cient an. Now, if x is any solution of f (x) ≡ 0 (mod p), then

(x − x1)g(x) ≡ 0 (mod p).

Since p is prime, Z/pZ has no zero divisors (Proposition 6.1.1).
Thus, either x − x1 ≡ 0 (mod p) or g(x) ≡ 0 (mod p). The first
case yields the solution x ≡ x1. By the induction hypothesis,
the congruence g(x) ≡ 0 (mod p) has at most n − 1 solutions.
Therefore, f (x) ≡ 0 (mod p) has at most 1 + (n − 1) = n
solutions.

■

Remark (Composite Moduli Failure).

The primality of the modulus is essential. If n is composite, a
polynomial of degree k may have more than k roots. Consider
f (x) = x2 − 1 modulo 8. The congruence x2 ≡ 1 (mod 8) admits
four solutions:

x ≡ 1, 3, 5, 7 (mod 8).

Here, the degree is 2, but there are 4 roots. This occurs because
Z/8Z contains zero divisors (e.g., (3 − 1)(3 + 1) = 2 · 4 = 8 ≡ 0),
preventing the crucial inference that (x − x1)g(x) ≡ 0 =⇒ x ≡ x1

or g(x) ≡ 0.

Corollary 4.1. Roots of xp−1 − 1. Let p be a prime. The polynomial xp−1 −
1 has exactly p − 1 distinct roots modulo p, namely 1, 2, . . . , p − 1.

推論

Proof

By Fermat’s Little Theorem, every integer a with (a, p) = 1 satisfies
ap−1 ≡ 1 (mod p). Thus the residue classes 1, . . . , p − 1 are roots.
Since the degree is p − 1, Theorem 4.1 shows there are no other
roots.

■

To solve polynomial congruences modulo composite moduli, we
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often solve modulo prime factors and lift the results to higher pow-
ers. Hensel’s Lemma provides a procedural method for this lifting,
analogous to Newton’s Method in calculus.

Theorem 4.2. Hensel’s Lemma.
Let f (x) be a polynomial with integer coefficients, p be a prime, and
k ≥ 1. Suppose x0 is a solution to the congruence

f (x) ≡ 0 (mod pk).

(i) If f ′(x0) ̸≡ 0 (mod p), then there is a unique integer x1 mod-
ulo pk+1 such that

f (x1) ≡ 0 (mod pk+1) and x1 ≡ x0 (mod pk).

This lift is given by the formula

x1 = x0 − f (x0) · ( f ′(x0))
−1 (mod pk+1),

where ( f ′(x0))
−1 is the modular inverse modulo p.

(ii) If f ′(x0) ≡ 0 (mod p) and f (x0) ≡ 0 (mod pk+1), then x0 lifts
to p distinct solutions modulo pk+1, given by x1 = x0 + tpk for
t = 0, . . . , p − 1.

(iii) If f ′(x0) ≡ 0 (mod p) and f (x0) ̸≡ 0 (mod pk+1), then x0 has
no lifts to modulo pk+1.

定理

Proof

We seek a solution of the form x1 = x0 + tpk for some integer t.
Using the Taylor expansion of polynomials (which terminates for
polynomials):

f (x0 + tpk) = f (x0) + tpk f ′(x0) +
(tpk)2

2
f ′′(x0) + . . .

Modulo pk+1, terms involving (pk)2 and higher vanish (since 2k ≥
k + 1). Thus:

f (x1) ≡ f (x0) + tpk f ′(x0) (mod pk+1).

We want f (x1) ≡ 0 (mod pk+1). This is equivalent to

tpk f ′(x0) ≡ − f (x0) (mod pk+1).

Since x0 is a root modulo pk, we know f (x0) = mpk for some inte-
ger m. Dividing the entire congruence by pk, we seek t solving:

t f ′(x0) ≡ −m ≡ − f (x0)

pk (mod p).

This is a linear congruence in t.
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• If p ∤ f ′(x0), there is a unique solution for t modulo p, yielding
the unique lift x1.

• If p | f ′(x0), the coefficient of t is 0 (mod p).

– If f (x0) ≡ 0 (mod pk+1), the RHS is 0 (mod p). The congru-
ence becomes 0 · t ≡ 0 (mod p), which is satisfied by any t ∈
{0, . . . , p − 1}.

– If f (x0) ̸≡ 0 (mod pk+1), the RHS is non-zero, and 0 · t ≡ c
(mod p) has no solution.

■

Example 4.1. Lifting Solutions. Solve x2 ≡ 2 (mod 49). Let f (x) =

x2 − 2. We first solve modulo p = 7.

x2 ≡ 2 (mod 7)

The squares mod 7 are {0, 1, 4, 2}, so x0 ≡ 3 and x0 ≡ 4 are solu-
tions.Consider x0 = 3. We compute the derivative f ′(x) = 2x.

f ′(3) = 6 ≡ −1 ̸≡ 0 (mod 7).

Since the derivative is non-zero, a unique lift exists.

x1 = x0 − f (x0)( f ′(x0))
−1 (mod 49).

We calculate terms: f (3) = 32 − 2 = 7. The inverse of f ′(3) ≡ −1
(mod 7) is −1.

x1 = 3 − 7(−1) = 10 (mod 49).

Check: 102 = 100 = 2 × 49 + 2 ≡ 2 (mod 49). The second root cor-
responds to lifting x0 = 4 (which is −3), yielding x ≡ −10 ≡ 39
(mod 49).

範例

4.2 Systems of Linear Congruences

We continue the congruence notation from chapter 2 and seek a simul-
taneous solution for a single variable x. The simplest case involves
pairwise coprime moduli.

Theorem 4.3. Chinese Remainder Theorem.
Let m1, m2, . . . , mk be pairwise coprime positive integers. For any se-
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quence of integers b1, . . . , bk, the system of congruences

x ≡ b1 (mod m1)

x ≡ b2 (mod m2)

...

x ≡ bk (mod mk)

has a solution. Moreover, this solution is unique modulo M = m1m2 . . . mk.
定理

Proof

Existence: Let M = ∏k
j=1 mj. For each i, define Mi = M/mi. Since

the moduli are pairwise coprime, (Mi, mi) = 1. By Bézout’s
Identity, Mi possesses a multiplicative inverse modulo mi. Let yi

be an integer such that

Miyi ≡ 1 (mod mi).

Construct the solution

x =
k

∑
i=1

bi Miyi.

We verify that x satisfies the j-th congruence. For any i ̸= j, mj |
Mi, so Mi ≡ 0 (mod mj). Thus, the sum collapses to the j-th
term:

x ≡ bj Mjyj ≡ bj(1) ≡ bj (mod mj).

Uniqueness: Suppose x and x′ are two solutions. Then for each
i, x ≡ x′ (mod mi), which implies mi | (x − x′). Since the mi

are pairwise coprime, their product M must divide x − x′ (by
Theorem 3.2.3 (v)). Thus x ≡ x′ (mod M).

■

Example 4.2. Sun-Tzu’s Problem. This theorem is famously associ-
ated with the Chinese mathematician Sun Zi (c. 3rd century AD),
who posed the problem:

"There are things of an unknown number. If we count them by
threes, we have two left over; by fives, we have three left over; by
sevens, two are left over. How many things are there?"

This corresponds to the system:

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7).

Here n1 = 3, n2 = 5, n3 = 7. The moduli are pairwise coprime. The
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total modulus is N = 3 × 5 × 7 = 105. We compute the partial prod-
ucts Ci and their modular inverses yi:
1. C1 = 5 × 7 = 35. We solve 35y1 ≡ 1 (mod 3). Reducing coef-

ficients, 2y1 ≡ 1 (mod 3). Multiplying by 2 gives 4y1 ≡ y1 ≡ 2
(mod 3). So y1 = 2.

2. C2 = 3 × 7 = 21. We solve 21y2 ≡ 1 (mod 5). Reducing coeffi-
cients, y2 ≡ 1 (mod 5). So y2 = 1.

3. C3 = 3 × 5 = 15. We solve 15y3 ≡ 1 (mod 7). Reducing coeffi-
cients, y3 ≡ 1 (mod 7). So y3 = 1.

Using the construction in the proof of Theorem 4.3:

x = 2(35)(2) + 3(21)(1) + 2(15)(1)

= 140 + 63 + 30

= 233.

Reducing modulo N = 105:

233 = 2 × 105 + 23 =⇒ x ≡ 23 (mod 105).

Checking: 23 ≡ 2 (mod 3), 23 ≡ 3 (mod 5), 23 ≡ 2 (mod 7).

範例

Remark (Practical Reduction).

When solving congruences such as 15y3 ≡ 1 (mod 7) in Exam-
ple 4.2, one can reduce coefficients immediately. If the coefficient
is coprime but greater than 1, for example 3x ≡ 7 (mod 25), add
multiples of the modulus to the right-hand side until divisibility is
achieved:

3x ≡ 7 ≡ 32 ≡ 57 (mod 25).

Since 3 | 57, we divide by 3 to find x ≡ 19 (mod 25).

Example 4.3. System with Composite Moduli. Consider the system:

x ≡ 1 (mod 4)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

Here N = 4 × 3 × 5 = 60.
1. C1 = 15. Congruence: 15y1 ≡ 1 (mod 4) =⇒ 3y1 ≡ −y1 ≡

1 =⇒ y1 = −1 ≡ 3.
2. C2 = 20. Congruence: 20y2 ≡ 1 (mod 3) =⇒ 2y2 ≡ −y2 ≡

1 =⇒ y2 = −1 ≡ 2.
3. C3 = 12. Congruence: 12y3 ≡ 1 (mod 5) =⇒ 2y3 ≡ 1 (mod 5).

Note 2 × 3 = 6 ≡ 1, so y3 = 3.
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Constructing the solution:

x = 1(15)(3) + 2(20)(2) + 3(12)(3)

= 45 + 80 + 108

= 233.

Reducing modulo 60:

233 = 3 × 60 + 53 =⇒ x ≡ 53 (mod 60).

範例

If the moduli are not pairwise coprime, a solution may not exist.
For instance, x ≡ 1 (mod 4) and x ≡ 2 (mod 6) is inconsistent,
as the first implies x is odd while the second implies x is even. In
general, a system x ≡ ai (mod ni) is solvable if and only if ai ≡ aj

(mod (ni, nj)) for all pairs i, j. If solvable, the solution is unique
modulo the least common multiple [n1, . . . , nk].

Corollary 4.2. Solvability of Linear Systems. Let m1, . . . , mk be pairwise
coprime positive integers. The system of linear congruences

aix ≡ bi (mod mi) (1 ≤ i ≤ k)

has a solution if and only if each individual congruence aix ≡ bi (mod mi)

is solvable.
推論

Proof

The condition is clearly necessary. Conversely, if each congru-
ence is solvable, let xi be a particular solution such that aixi ≡ bi

(mod mi). The system then reduces to x ≡ xi (mod mi/di) where
di = (ai, mi). Since the original moduli mi are pairwise coprime, the
reduced moduli mi/di are also pairwise coprime. By Theorem 4.3, a
simultaneous solution exists.

■

Applications and extensions

While the Chinese Remainder Theorem is often employed for sys-
tems x ≡ bi (mod mi) where the coefficients of x are strictly 1, many
problems involve coefficients, such as aix ≡ bi (mod mi), or moduli
that are not pairwise coprime. Consider a system of the form cix ≡ di

(mod ni). Before applying the standard algorithm, each congruence
must be simplified to the form x ≡ ai (mod mi).
1. Check solvability for each congruence using Theorem 5.5.1: verify

(ci, ni) | di.
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2. Divide by (ci, ni) to reduce the modulus and coefficients.
3. Multiply by the modular inverse of the reduced coefficient of x to

isolate x.
Example 4.4. System with Coefficients. Solve the system:

7x ≡ 3 (mod 12)

10x ≡ 6 (mod 14)

For the first congruence, (7, 12) = 1. The inverse of 7 (mod 12) is 7
(since 49 ≡ 1). Thus:

x ≡ 7 · 3 ≡ 21 ≡ 9 (mod 12).

For the second congruence, (10, 14) = 2, which divides 6. Dividing
by 2:

5x ≡ 3 (mod 7).

The inverse of 5 (mod 7) is 3 (since 15 ≡ 1). Thus:

x ≡ 3 · 3 ≡ 9 ≡ 2 (mod 7).

We now solve the reduced system:

x ≡ 9 (mod 12)

x ≡ 2 (mod 7)

Here m1 = 12, m2 = 7 are coprime. M = 84. M1 = 7, M2 = 12.
Inverses: 7y1 ≡ 1 (mod 12) =⇒ y1 = 7. 12y2 ≡ 1 (mod 7) =⇒
5y2 ≡ 1 =⇒ y2 = 3. Solution:

x = 9(7)(7) + 2(12)(3) = 441 + 72 = 513.

Modulo 84: 513 = 6 · 84 + 9. Thus x ≡ 9 (mod 84).

範例

Non-Coprime Moduli If the moduli ni are not pairwise coprime, the
system can be solved by breaking each congruence into prime power
components. A congruence x ≡ a (mod pe1

1 . . . pek
k ) is equivalent to

the system x ≡ a (mod p
ej
j ) for all j. After decomposing all moduli,

one checks for consistency. For a fixed prime p, if we have conditions
x ≡ a (mod pe) and x ≡ b (mod p f ) with e ≤ f , consistency requires
b ≡ a (mod pe). If consistent, keep only the stronger condition x ≡ b
(mod p f ) and discard the weaker one. After this pruning for each
prime, the remaining prime power moduli are pairwise coprime, so
the Chinese Remainder Theorem applies.
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Example 4.5. System with Non-Coprime Moduli. Solve the system

x ≡ 2 (mod 6), x ≡ 5 (mod 9).

Here (6, 9) = 3 and 2 ≡ 5 (mod 3) is false (2 ̸≡ 5), so the system is
inconsistent. However, consider the modified system:

x ≡ 2 (mod 6), x ≡ 5 (mod 9) → Replace with x ≡ 8 (mod 9).

Decompose into prime powers:

x ≡ 2 (mod 6) =⇒ x ≡ 0 (mod 2), x ≡ 2 (mod 3),

x ≡ 8 (mod 9) =⇒ x ≡ 8 ≡ 2 (mod 3).

For the prime 3 we keep the stronger condition x ≡ 8 (mod 9) and
discard x ≡ 2 (mod 3). The reduced system is

x ≡ 0 (mod 2), x ≡ 8 (mod 9).

These moduli are coprime. Solving gives x ≡ 8 (mod 18).

範例

Example 4.6. System with Non-Coprime Moduli and Coefficients.
Consider the system:

5x ≡ 7 (mod 12), 7x ≡ 1 (mod 10).

The moduli 12 and 10 are not coprime, so Theorem 4.3 does not
apply directly. We decompose the congruences into prime powers.
1. 5x ≡ 7 (mod 12) implies:

· 5x ≡ 7 (mod 3) =⇒ 2x ≡ 1 =⇒ x ≡ 2 (mod 3).

· 5x ≡ 7 (mod 4) =⇒ x ≡ 3 (mod 4).
2. 7x ≡ 1 (mod 10) implies:

· 7x ≡ 1 (mod 2) =⇒ x ≡ 1 (mod 2).

· 7x ≡ 1 (mod 5) =⇒ 2x ≡ 1 =⇒ x ≡ 3 (mod 5).
The conditions x ≡ 3 (mod 4) and x ≡ 1 (mod 2) are consistent
(since 3 ≡ 1 (mod 2)), and the condition modulo 4 implies the con-
dition modulo 2. The system reduces to:

x ≡ 2 (mod 3), x ≡ 3 (mod 4), x ≡ 3 (mod 5).

These moduli are pairwise coprime. Applying Theorem 4.3, we find
x ≡ 23 (mod 60).

範例
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4.3 Applications

Square Roots of Unity

Using the reduction to prime powers above together with the Chinese
Remainder Theorem, we enumerate solutions to polynomial congru-
ences. A fundamental case is the number of square roots of unity,
that is, solutions to x2 ≡ 1 (mod n).

Proposition 4.1. Square Roots Modulo Prime Powers.
Let p be a prime and e ≥ 1. The number of solutions to x2 ≡ 1 (mod pe)

is:
· 2 if p is odd.
· 1 if p = 2, e = 1.
· 2 if p = 2, e = 2.
· 4 if p = 2, e ≥ 3.

命題

Proof

The congruence is equivalent to pe | (x − 1)(x + 1).

• Odd prime p: gcd(x − 1, x + 1) divides (x + 1) − (x − 1) = 2.
Since p is odd, p cannot divide both factors. Thus pe must divide
entirely x − 1 or x + 1, yielding x ≡ ±1 (mod pe).

• p = 2: Here gcd(x − 1, x + 1) = 2 (assuming x is odd; if x is even,
x2 ̸≡ 1). Both factors are even. For e = 1, 1 ≡ −1, so one solu-
tion. For e = 2, 1 ≡ −1 (mod 2) but distinct modulo 4. 12 ≡ 1,
32 ≡ 9 ≡ 1. So two solutions. For e ≥ 3, one factor is divisible by
2 and the other by 2e−1. The solutions are x ≡ ±1 and x ≡ 2e−1 ±
1 (mod 2e).

■

Combining this with the Chinese Remainder Theorem, if n = 2e pe1
1 . . . pek

k ,
the number of solutions is the product of the solution counts for each
prime power.

Theorem 4.4. Number of Square Roots.
The number of solutions to x2 ≡ 1 (mod n) is

2ω(n) if n is odd or 4 | n, 8 ∤ n,

2ω(n)−1 if 2 | n, 4 ∤ n,

2ω(n)+1 if 8 | n,

where ω(n) is the number of distinct prime factors of n.
定理



algebra iiic: number theory (structures) 63

Divisibility of Power Sums

The Chinese Remainder Theorem allows us to prove properties of
integers by verifying them modulo prime powers. We apply this to
sums of powers.

Theorem 4.5. Divisibility of Power Sums.
Let n > 1 be an odd integer and k a positive integer. If (p − 1) ∤ k
for every prime divisor p of n, then

n

∑
i=1

ik ≡ 0 (mod n).

定理

Let Sk(n) = ∑n
i=1 ik. We proceed by first establishing a lemma for the

prime factors of n.

Claim 4.1. For every prime divisor p of n, there exists an integer ap such
that p ∤ ap and p ∤ (ak

p − 1).
主張

Proof of Claim

By hypothesis, (p − 1) ∤ k. We apply the division algorithm to write
k = q(p − 1) + r with 0 < r < p − 1. Consider the polyno-
mial xr − 1 over the field Fp. By Lagrange’s Theorem, it has at most
r roots. Since r < p − 1, there exists at least one non-zero residue
ap ∈ {1, . . . , p − 1} such that ar

p ̸≡ 1 (mod p). By Fermat’s Little

Theorem, ap−1
p ≡ 1 (mod p), so

ak
p = (ap−1

p )q · ar
p ≡ 1q · ar

p ≡ ar
p ̸≡ 1 (mod p).

Thus, p ∤ (ak
p − 1) and clearly p ∤ ap.

証明終

General Case (n ∈ Z).

Let p1, . . . , pm be the distinct prime factors of n. By the Claim,
for each j, there exists an integer aj such that (aj, pj) = 1 and
(ak

j − 1, pj) = 1. We use the Chinese Remainder Theorem to con-
struct a single integer a satisfying:

a ≡ aj (mod pj) for all j = 1, . . . , m.

For each prime factor pj, we have a ≡ aj ̸≡ 0 (mod pj) and ak − 1 ≡
ak

j − 1 ̸≡ 0 (mod pj). Consequently, no prime factor of n divides a

or ak − 1, implying

(a, n) = 1 and (ak − 1, n) = 1.

Since (a, n) = 1, the map x 7→ ax permutes any complete set of
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residues modulo n (Theorem 6.1.1 (i)). In particular, {0, 1, . . . , n − 1}
is a complete residue system. Thus:

n−1

∑
x=0

xk ≡
n−1

∑
x=0

(ax)k ≡ ak
n−1

∑
x=0

xk (mod n).

Let S′
k(n) = ∑n−1

x=0 xk. The equivalence above implies (ak − 1)S′
k(n) ≡

0 (mod n). We relate S′
k(n) back to Sk(n). Since k ≥ 1, nk ≡ 0

(mod n). Thus:

Sk(n) =
n−1

∑
i=1

ik + nk ≡
n−1

∑
i=1

ik + 0 =
n−1

∑
x=0

xk = S′
k(n) (mod n).

Substituting this into our previous equation yields:

(ak − 1)Sk(n) ≡ 0 (mod n).

Since (ak − 1, n) = 1, the integer ak − 1 is invertible modulo n. Mul-
tiplying by its inverse gives

Sk(n) ≡ 0 (mod n).

証明終

4.4 Exercises

1. Linear Congruence Solvability. Determine which of the following
linear congruences have solutions. If a solution exists, find the
general solution and the number of distinct solutions modulo the
given modulus.

(a) 12x ≡ 16 (mod 20)
(b) 35x ≡ 14 (mod 91)
(c) 21x ≡ 14 (mod 35)

2. Systematic Solving (CRT). Use the Chinese Remainder Theorem
to solve the following systems. Express your answer as x ≡ a
(mod N).

(a) x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7)
(b) 2x ≡ 1 (mod 5), 3x ≡ 2 (mod 7), 4x ≡ 1 (mod 11)

3. Systems with Non-Coprime Moduli. Solve the following systems.
If inconsistent, state why.

(a) x ≡ 3 (mod 10), x ≡ 8 (mod 15), x ≡ 5 (mod 84)
(b) x ≡ 7 (mod 9), x ≡ 4 (mod 12), x ≡ 16 (mod 21)
(c) x ≡ 3 (mod 8), x ≡ 11 (mod 20), x ≡ 1 (mod 15)

4. High-Power Remainders.
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(a) Compute the remainder when 3323 is divided by 28.
(b) Determine the last two digits of 7100 − 3100 in its decimal

representation.
(c) Calculate the remainder when 2100 is divided by 319. (Note:

319 = 11 × 29).

5. Polynomial Roots and Solutions.

(a) Find all solutions to x3 + 2x + 3 ≡ 0 (mod 5).
(b) Find all solutions to x2 + x + 1 ≡ 0 (mod 7).
(c) Find all solutions to x2 ≡ 1 (mod 360). Determine the total

count using prime factorisation properties.
(d) Determine the number of solutions to x2 ≡ 1 (mod 210).

6. Generalised Chinese Remainder Theorem. Let m1, . . . , mk be pos-
itive integers, not necessarily coprime. Let a1, . . . , ak be integers.

(a) Prove that the system x ≡ ai (mod mi) for i = 1, . . . , k has a
solution if and only if (mi, mj) | (ai − aj) for all i ̸= j.

(b) Prove that if a solution exists, it is unique modulo the least
common multiple [m1, . . . , mk].

7. Structure of Residue Systems. Let m1, . . . , mk be pairwise co-
prime positive integers, and let M = m1 . . . mk. Define Mi =

M/mi.

(a) Prove that the set

S =

{
k

∑
i=1

Mixi

∣∣∣∣∣ 0 ≤ xi < mi

}

forms a complete residue system modulo M.
(b) Prove that if each xi is restricted to a reduced residue system

modulo mi, then S forms a reduced residue system modulo
M.

(c) Use part (b) to provide an alternative proof that the Euler
totient function is multiplicative: φ(M) = φ(m1) . . . φ(mk).

8. Lagrange Interpolation Modulo p. Let p be a prime and let
(x0, y0), . . . , (xn, yn) be n + 1 pairs of integers where xi ̸≡ xj

(mod p) for i ̸= j. Prove that there exists a unique polynomial
f (x) ∈ Fp[x] of degree at most n such that f (xi) ≡ yi (mod p) for
all i.

9. Polynomial Mappings. Let p be a prime and k a positive integer
such that (k, p − 1) = 1.

(a) Prove that the map f : Fp → Fp defined by f (x) = xk is a
bijection.

(b) Conclude that for every a ∈ Fp, the congruence xk ≡ a
(mod p) has a unique solution given by x ≡ au (mod p),
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where u is the modular inverse of k modulo p − 1.

10. Euler’s Criterion for Quadratic Residues. Let p be an odd prime
and a an integer not divisible by p.

(a) Prove that if x2 ≡ a (mod p) has a solution, then a(p−1)/2 ≡ 1
(mod p).

(b) Prove that if x2 ≡ a (mod p) has no solution, then a(p−1)/2 ≡
−1 (mod p).

11. The Legendre Symbol Sum. Let p be an odd prime. The Legen-

dre symbol
(

a
p

)
is defined as 1 if a is a quadratic residue modulo

p, −1 if it is a quadratic non-residue, and 0 if p | a. Prove that:

p−1

∑
x=1

(
x2 + x

p

)
= −1.

12. Linear Congruence Practice. Solve the following congruence
equations.

(a) 32x ≡ 12 (mod 8)
(b) 28x ≡ 124 (mod 116)
(c) 5x ≡ 44 (mod 81)

13. System Practice. Solve the following systems of linear congru-
ences.

(a) x ≡ 1 (mod 3), x ≡ 1 (mod 5), x ≡ 2 (mod 7)
(b) x ≡ 1 (mod 4), x ≡ 2 (mod 5), x ≡ 3 (mod 9)

14. CRT with Coefficients. Use the Chinese Remainder Theorem to
solve the congruence equation 37x ≡ 31 (mod 77).

15. Idempotent Elements. An element e ∈ Z/nZ is called an idempo-
tent if e2 ≡ e (mod n).

(a) Find all idempotents modulo 6 and modulo 12.
(b) Let n = p1 p2 . . . pk be a product of distinct primes. Determine

the number of idempotents modulo n.
(c) Prove that if e is a non-trivial idempotent (e ̸≡ 0, 1), then n

must be composite and gcd(e, n) > 1.

16. CRT Constructions.

(a) Visibility: Use the CRT to prove that for any k ≥ 1, there
exists a k × k square grid of points in Z2, none of which are
visible from the origin (i.e., gcd(x, y) > 1 for all points in the
grid).

(b) Square-Free Blocks: Use the CRT to prove that for any k ≥ 1,
there exist k consecutive integers n, n + 1, . . . , n + k − 1 such
that each integer in the block is divisible by a perfect square
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greater than 1.

17. Coprimes in Arithmetic Progressions. Let a, b be coprime inte-
gers and m a positive integer.

(a) Let P be the product of all prime factors of m that do not
divide b. Construct a linear congruence involving b, P, a.

(b) Show that there exists an integer k such that (a + kb, m) = 1.
(c) Conclude that the arithmetic progression a, a + b, a + 2b, . . .

contains infinitely many terms coprime to m.

18. Fixed Points of the Inversion Map. Let N(n) denote the number
of solutions to x2 ≡ 1 (mod n). Prove that the product of the solu-
tions to x2 ≡ 1 (mod n) is congruent to −1 (mod n) if N(n) = 2,
and 1 (mod n) if N(n) > 2.



5
Primitive Roots and Group Structure

We now investigate the internal structure of the set of reduced
residue classes modulo m, denoted by (Z/mZ)×. Our primary objec-
tive is to determine when this group is cyclic, a property intimately
linked to the existence of generators known as primitive roots. This
inquiry synthesises the results from chapter 2 regarding Euler’s Theo-
rem and chapter 4 concerning polynomial roots.

5.1 The Order of an Integer

Recall from Euler’s Theorem that for any integer a coprime to m > 1,
we have aφ(m) ≡ 1 (mod m). This implies that the powers of a cycle
periodically. We formalise the length of this cycle.

Definition 5.1. Multiplicative Order.
Let m > 1 and let a be an integer such that (a, m) = 1. The multi-
plicative order of a modulo m, denoted ordm(a), is the smallest positive
integer n such that

an ≡ 1 (mod m).

In the context of the group (Z/mZ)×, this is precisely the order of the
element [a].

定義

The existence of such an integer n ≤ φ(m) is guaranteed by Euler’s
Theorem. The fundamental divisibility property of the order is given
by the following lemma.

Lemma 5.1. Properties of Order.
Let (a, m) = 1.

(i) There exists a positive integer n < m such that an ≡ 1 (mod m).
(ii) Let n = ordm(a). Then for integers k and l,

ak ≡ al (mod m) ⇐⇒ k ≡ l (mod n).

In particular, ak ≡ 1 (mod m) if and only if n | k.
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引理

Proof

(i) Consider the sequence of powers a, a2, . . . , am. Since
(a, m) = 1, each power is coprime to m. By the pigeonhole
principle, there must exist distinct indices 1 ≤ l < k ≤ m such
that ak ≡ al (mod m). This implies

al(ak−l − 1) ≡ 0 (mod m).

Since (al , m) = 1, we may cancel al (by the Cancellation Law)
to obtain ak−l ≡ 1 (mod m). Setting n = k − l, we have 1 ≤
n < m.

(ii) Let n be the smallest positive integer such that an ≡ 1
(mod m). Suppose ak ≡ al (mod m) with k ≥ l. Let
N = k − l. Then aN ≡ 1 (mod m). By the The Division
Algorithm, we can write N = nq + r with 0 ≤ r < n. Then

aN = anq+r = (an)q · ar ≡ 1q · ar ≡ ar (mod m).

Thus ar ≡ 1 (mod m). Since 0 ≤ r < n and n is the minimal
positive exponent yielding 1, we must have r = 0. Therefore,
n | N, or k ≡ l (mod n). The converse is immediate.

■

It follows directly that ordm(a) must divide φ(m).

Definition 5.2. Primitive Root.
If there exists an integer g such that ordm(g) = φ(m), then g is called
a primitive root modulo m. If g is a primitive root, the set of powers {g, g2, . . . , gφ(m)}
contains φ(m) distinct integers coprime to m. Since |(Z/mZ)×| = φ(m),
these powers constitute a reduced residue system modulo m. Algebraically,
this means the group (Z/mZ)× is a cyclic group generated by g.

定義

5.2 Primitive Roots Modulo Primes

Not every modulus admits a primitive root. However, the structure
is particularly elegant when the modulus is a prime p. To establish
existence, we first analyse how the order changes when raising an
element to a power.

Lemma 5.2. Order of Powers.
Let (a, m) = 1 and let n = ordm(a). Then for any integer k,

ordm(ak) =
n

(k, n)
.
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In particular, ordm(ak) = n if and only if (k, n) = 1.
引理

Proof

Let L be the order of ak. By Lemma 8.1.1 (ii), the congruence
(ak)L ≡ 1 (mod m) is equivalent to n | kL. Dividing by d = (k, n),
this condition becomes

n
d

∣∣∣∣ L
k
d

.

Since n/d and k/d are coprime, it follows that n
d | L. Thus the

smallest positive L is exactly n
d .

■

Theorem 5.1. Existence of Primitive Roots Modulo p.
For every odd prime p, there exists a primitive root modulo p.

定理

Proof

The orders of the elements 1, 2, . . . , p − 1 modulo p are all divisors
of φ(p) = p − 1. For each divisor d of p − 1, define the set

S(d) = {x ∈ {1, . . . , p − 1} | ordp(x) = d}.

Let Rd = |S(d)|. Since every element has a unique order, the sets
S(d) partition the non-zero residues:

∑
d|p−1

Rd = p − 1.

We recall Gauss’s Summation Formula: ∑d|p−1 φ(d) = p − 1. Thus,
it suffices to prove that Rd ≤ φ(d) for all d. If this inequality holds,
the equality of the sums forces Rd = φ(d) for all d.
The elements of S(d) satisfy xd ≡ 1 (mod p). By Lagrange’s The-
orem, the polynomial xd − 1 has at most d roots in Z/pZ. If S(d)
is empty, then Rd = 0 ≤ φ(d). If S(d) is not empty, there exists an
element a of order d. By Lemma 8.1.1, the d powers 1, a, . . . , ad−1

are distinct modulo p and satisfy (ak)d = (ad)k ≡ 1 (mod p).
Thus, these powers are precisely the d roots of xd − 1 ≡ 0 (mod p).
Consequently, any element of order d must be of the form ak. By
lemma 5.2, ak has order d if and only if (k, d) = 1. The number of
such exponents k with 1 ≤ k ≤ d is φ(d). Thus, if Rd > 0, then
Rd = φ(d). Since Rd ≤ φ(d) for all d, we conclude that Rd = φ(d)
for all divisors d. In particular, Rp−1 = φ(p − 1) ≥ 1. Hence, there
exists at least one element of order p − 1.

■
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Example 5.1. Finding Primitive Roots. Consider p = 13. We have
φ(13) = 12. The possible orders are divisors of 12: 1, 2, 3, 4, 6, 12. We
test a = 2:

21 ≡ 2

22 ≡ 4

23 ≡ 8

24 = 16 ≡ 3

26 = 24 · 22 ≡ 3 · 4 = 12 ≡ −1.

Since 26 ≡ −1 ̸≡ 1, the order is not 1, 2, 3, or 6. Since 24 ≡ 3 ̸≡ 1, the
order is not 4. Thus ord13(2) = 12, and 2 is a primitive root. There
are exactly φ(φ(13)) = φ(12) = 4 primitive roots modulo 13. They
are 21, 25, 27, 211.

範例

Having established the existence of primitive roots for primes, we
extend this result to powers of primes.

Theorem 5.2. Primitive Roots Modulo pl .
Let p be an odd prime. For any integer l ≥ 1, there exists a primitive
root modulo pl .

定理

Proof

We construct a primitive root modulo pl by lifting a primitive root
modulo p.

Step 1. Selection of generator modulo p2. Let g be a primitive root
modulo p. We claim that either g or g + p is a primitive
root modulo p2. The order of g modulo p2, let us call it d,
must divide φ(p2) = p(p − 1). Also, gd ≡ 1 (mod p2)

implies gd ≡ 1 (mod p), so p − 1 | d. Thus d is either p − 1
or p(p − 1). If d = p(p − 1), g is a primitive root. Suppose
d = p − 1, i.e., gp−1 ≡ 1 (mod p2). Consider g0 = g + p.
Since g0 ≡ g (mod p), g0 is a primitive root modulo p.
Using the Binomial Theorem:

(g+ p)p−1 = gp−1 +(p− 1)gp−2 p+ · · · ≡ 1+(p− 1)pgp−2 (mod p2).

Since (g, p) = 1, we have (p − 1)pgp−2 ̸≡ 0 (mod p2). Thus
(g + p)p−1 ̸≡ 1 (mod p2). It follows that the order of g0

modulo p2 must be p(p − 1). We designate this element (ei-
ther g or g + p) as g.

Step 2. Inductive Lifting. We prove by induction that for any r ≥



72 gudfit

1,
gφ(pr) = 1 + kr pr where p ∤ kr.

For r = 1, this holds by our choice of g in Step 1 (as gp−1 ̸≡
1 (mod p2)). Assume the statement holds for r. Then

gφ(pr+1) = (gφ(pr))p = (1+ kr pr)p = 1+ p(kr pr)+

(
p
2

)
(kr pr)2 + . . .

Modulo pr+2, terms with p2r vanish (since 2r ≥ r + 2 for
r ≥ 2, and the binomial coefficient provides an extra p for
r = 1). Thus:

gφ(pr+1) ≡ 1 + kr pr+1 (mod pr+2).

Setting kr+1 = kr, we have p ∤ kr+1.

Step 3. Conclusion. Let d be the order of g modulo pl . Then
d | φ(pl) = pl−1(p − 1). Since g is primitive modulo p,
p − 1 | d. Thus d = ps(p − 1) for some s < l. By our in-
ductive result, gφ(ps) = 1 + ks ps ̸≡ 1 (mod ps+1). For g to
satisfy gd ≡ 1 (mod pl), we must have the exponent large
enough to cover the modulus. The derivation implies we
need s = l − 1. Thus d = φ(pl).

■

The case for double prime powers follows easily from the odd prime
case.

Theorem 5.3. Primitive Roots Modulo 2pl .
Let p be an odd prime and l ≥ 1. There exists a primitive root mod-
ulo 2pl .

定理

Proof

Let g be a primitive root modulo pl . Let g0 be the odd inte-
ger in {g, g + pl}. Since (g0, 2) = 1 and (g0, pl) = 1, we
have (g0, 2pl) = 1. The order of g0 modulo 2pl , say d, divides
φ(2pl) = φ(2)φ(pl) = φ(pl). Conversely, gd

0 ≡ 1 (mod 2pl) implies
gd

0 ≡ 1 (mod pl). Since g0 ≡ g (mod pl), d must be a multiple of
φ(pl). Therefore d = φ(2pl), and g0 is a primitive root.

■

5.3 Classification and Non-Existence

We have shown that primitive roots exist for moduli 2, 4, pl , 2pl . We
now demonstrate that these are the only moduli that admit primitive
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roots.

Lemma 5.3. Non-Existence Criteria.
There is no primitive root modulo m if:

(i) m = 2l with l ≥ 3.
(ii) m is divisible by two distinct odd primes.

(iii) m = 2l pk where l ≥ 2 and p is an odd prime.
引理

Proof

(i) Let m = 2l with l ≥ 3. The units modulo 2l are the odd
integers. For any odd integer a, induction shows a2l−2 ≡ 1
(mod 2l). Since φ(2l) = 2l−1, the maximum order is at most
φ(m)/2. Thus no element has order φ(m).

(ii) Suppose m = rs where (r, s) = 1 and r, s > 2. For any
a coprime to m, we have aφ(r) ≡ 1 (mod r) and aφ(s) ≡ 1
(mod s). Let L = [φ(r), φ(s)]. Then aL ≡ 1 (mod m). Since
r, s > 2, both φ(r) and φ(s) are even. Therefore:

L =
φ(r)φ(s)

(φ(r), φ(s))
≤ φ(r)φ(s)

2
=

φ(m)

2
.

Thus no integer has order φ(m). This covers cases where m
has two distinct odd primes (take r, s as prime powers) or
m = 2l pk with l ≥ 2 (take r = 2l , s = pk, noting φ(4) = 2 is
even).

■

Theorem 5.4. The Primitive Root Theorem.
An integer m > 1 possesses a primitive root if and only if

m = 2, 4, pl , or 2pl ,

where p is an odd prime and l ≥ 1.
定理

Proof

The sufficiency follows from Theorems 5.1, 5.2, and 5.3, along with
the trivial cases m = 2 (1 is primitive) and m = 4 (3 is primitive).
The necessity is provided by lemma 5.3, which eliminates all other
composite numbers.

■

Example 5.2. Failure of Primitive Roots. Consider m = 15 = 3 × 5.
φ(15) = φ(3)φ(5) = 2 × 4 = 8. The units are {1, 2, 4, 7, 8, 11, 13, 14}.
We compute the orders:
· 24 = 16 ≡ 1 (mod 15).
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· 42 = 16 ≡ 1 (mod 15).
· 72 = 49 ≡ 4, 74 ≡ 16 ≡ 1 (mod 15).
Every element a satisfies a4 ≡ 1 (mod 15). The maximum order is
4 < 8. The group (Z/15Z)× is not cyclic; it is isomorphic to C2 ×
C4.

範例

We this section conclude with a counting result for elements of spe-
cific orders.

Proposition 5.1. Count of Elements of Order d.
If m possesses a primitive root, then for every divisor d of φ(m), there
are exactly φ(d) elements of order d modulo m.

命題

Proof

Let g be a primitive root. The reduced residues are
{g1, g2, . . . , gφ(m)}. By lemma 5.2, the order of gk is

φ(m)

(k, φ(m))
.

This order equals d if and only if

(k, φ(m)) =
φ(m)

d
.

Let k = a · φ(m)
d . Then the condition becomes (a, d) = 1 with 1 ≤ a ≤

d. There are exactly φ(d) such integers a.
■

5.4 Discrete Logarithms

The existence of primitive roots allows us to linearise multiplicative
arithmetic modulo n by transforming exponentiation into multiplica-
tion and multiplication into addition. This structural isomorphism is
analogous to the theory of logarithms in real analysis.

Definition 5.3. Discrete Logarithm.
Let n be an integer admitting a primitive root g. For any integer a co-
prime to n, the unique integer k such that

a ≡ gk (mod n), 0 ≤ k < φ(n),

is called the index or discrete logarithm of a relative to the base g. We de-
note this by indg(a) or simply ind(a) if the base is fixed.

定義
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This mapping establishes a group isomorphism between the multi-
plicative group (Z/nZ)× and the additive group Z/φ(n)Z. Conse-
quently, the properties of indices mirror those of logarithms.

Theorem 5.5. Properties of Indices.
Let n possess a primitive root g, and let a, b be integers coprime to n.

(i) indg(1) ≡ 0 (mod φ(n)) and indg(g) ≡ 1 (mod φ(n)).
(ii) indg(ab) ≡ indg(a) + indg(b) (mod φ(n)).

(iii) indg(ak) ≡ k · indg(a) (mod φ(n)) for any k ∈ Z.
(iv) Change of Base: If g1 is another primitive root modulo n, then

indg(a) ≡ indg1(a) · indg(g1) (mod φ(n)).

定理

Proof

Let u = indg(a) and v = indg(b). Then a ≡ gu and b ≡ gv (mod n).
(i) g0 ≡ 1 and g1 ≡ g are immediate from the definition.

(ii) The product ab ≡ gugv = gu+v (mod n). By Lemma 8.1.1
(ii), gx ≡ gy (mod n) if and only if x ≡ y (mod φ(n)). Thus
ind(ab) ≡ u + v (mod φ(n)).

(iii) Follows from (ii) by induction.
(iv) Let x = indg1(a) and y = indg(g1). Then a ≡ gx

1 and g1 ≡ gy

(mod n). Substitution yields a ≡ (gy)x = gxy (mod n). Thus
indg(a) ≡ xy (mod φ(n)).

■

Discrete logarithms provide a systematic method for analysing bino-
mial congruences of the form xk ≡ a (mod n). If such a congruence
has a solution, a is called a k-th power residue modulo n.

Theorem 5.6. Solvability of xk ≡ a.
Let n be an integer having a primitive root, and let (a, n) = 1. Let d =

(k, φ(n)).
(i) The congruence xk ≡ a (mod n) has solutions if and only if d |

indg(a). Equivalently, solutions exist if and only if Euler’s crite-
rion is satisfied:

aφ(n)/d ≡ 1 (mod n).

(ii) If solutions exist, there are exactly d distinct solutions modulo
n.

(iii) The number of k-th power residues modulo n is φ(n)
d .

定理

Proof

Let g be a primitive root. Taking indices with respect to g, the con-
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gruence xk ≡ a (mod n) transforms into the linear congruence in
y = indg(x):

k · y ≡ indg(a) (mod φ(n)).

(i) By the theory of linear congruences (Theorem 5.3.1), this
equation is solvable if and only if d = (k, φ(n)) divides the
constant term indg(a). To see the equivalence with the power

condition: d | indg(a) implies φ(n)
d indg(a) ≡ 0 (mod φ(n)).

Exponentiating base g:

aφ(n)/d ≡ g0 ≡ 1 (mod n).

(ii) If solvable, the linear congruence in indices has exactly d so-
lutions modulo φ(n). Since the index map is a bijection, these
correspond to d distinct residues x modulo n.

(iii) The indices of k-th power residues are precisely the multiples
of d in {0, . . . , φ(n)− 1}. There are φ(n)/d such multiples.

■

Example 5.3. Cubic Residues Modulo 11. Solve the congruence
x3 ≡ 3 (mod 11). Here n = 11, so φ(11) = 10. We use the prim-
itive root g = 2. We compute the index of 3. Powers of 2 mod 11:
21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 10, 26 = 9, 27 = 7, 28 = 3. Thus
ind2(3) = 8. The discrete logarithm equation is:

3 · ind2(x) ≡ 8 (mod 10).

We check solvability: d = (3, 10) = 1. Since 1 | 8, a solution exists.
Multiplying by the inverse of 3 modulo 10 (which is 7):

ind2(x) ≡ 8 · 7 = 56 ≡ 6 (mod 10).

The unique index is 6. Retrieving x:

x ≡ 26 ≡ 9 (mod 11).

Checking: 93 = 729. 729 = 66 × 11 + 3, so 93 ≡ 3 (mod 11).

範例

5.5 The Structure of (Z/2kZ)×

The Primitive Root Theorem establishes that (Z/2kZ)× is not cyclic
for k ≥ 3. To complete the description of the multiplicative group of
integers, we determine the structure of this group. While it lacks a
single generator, we show it is generated by two elements: −1 and 5.
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Lemma 5.4. Order of 5 Modulo 2k.
For any integer k ≥ 3, the order of 5 modulo 2k is 2k−2.

引理

Proof

We prove by induction that for all integers m ≥ 0:

52m ≡ 1 + 2m+2 (mod 2m+3).

Base Case (m = 0): 51 = 1 + 4 = 1 + 22. The congruence 5 ≡ 5
(mod 8) holds.

Inductive Step: Assume 52m
= 1 + j2m+2 where j is odd. Squaring

both sides:

52m+1
= (1 + j2m+2)2

= 1 + 2(j2m+2) + (j2m+2)2

= 1 + j2m+3 + j222m+4.

Since m ≥ 0, we have 2m + 4 ≥ m + 4. Thus, modulo 2m+4, the
term j222m+4 vanishes:

52m+1 ≡ 1 + j2m+3 (mod 2m+4).

Since j is odd, the induction hypothesis is preserved.

Let n = ord2k (5). Applying the lemma with m = k − 4 (for k ≥ 4),
we find 52k−3

= 1 + j2k−1 ̸≡ 1 (mod 2k). Applying the lemma with
m = k − 3, we find 52k−2

= 1 + j2k ≡ 1 (mod 2k). Thus, the order
divides 2k−2 but does not divide 2k−3. The order is exactly 2k−2.
(For the case k = 3, the order of 5 modulo 8 is 2 = 23−2, consistent
with the result).

■

Theorem 5.7. Structure of (Z/2kZ)×.
For k ≥ 3, the group (Z/2kZ)× is isomorphic to C2 ×C2k−2 . Specifi-
cally, every odd integer a satisfies a unique representation modulo 2k:

a ≡ (−1)s5t (mod 2k),

where s ∈ {0, 1} and t ∈ {0, 1, . . . , 2k−2 − 1}.
定理

Proof

The group (Z/2kZ)× has order φ(2k) = 2k−1. Let H = ⟨5⟩. By
lemma 5.4, |H| = 2k−2. Let K = ⟨−1⟩ = {1,−1}. Since −1 ≡
2k − 1 (mod 2k), its order is 2. We claim H ∩ K = {1}. Elements of
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H satisfy 5t ≡ 1 (mod 4) (since 5 ≡ 1 (mod 4)). However, elements
of K \ {1} satisfy −1 ≡ 3 (mod 4). Thus −1 /∈ H. The product
of the orders is |K| · |H| = 2 · 2k−2 = 2k−1, which equals the or-
der of the full group. Since H ∩ K = {1} and the group is abelian,
(Z/2kZ)× ∼= K × H ∼= C2 × C2k−2 .

■

Example 5.4. Generators of U16. Let n = 16 = 24. The group order
is 8. The powers of 5 modulo 16 are:

51 ≡ 5, 52 = 25 ≡ 9, 53 = 45 ≡ 13, 54 ≡ 1.

Multiplying these by −1 ≡ 15:

15 · 1 ≡ 15, 15 · 5 = 75 ≡ 11, 15 · 9 = 135 ≡ 7, 15 · 13 = 195 ≡ 3.

The set {1, 3, 5, 7, 9, 11, 13, 15} accounts for all units. Any odd num-
ber a can be written as (−1)s5t. For example, 3 ≡ −1 · 53 ≡ 15 · 13
(mod 16).

範例

Combining this with the decomposition for odd prime powers, we
obtain the general structure of the unit group.

Theorem 5.8. General Structure of Unit Groups.
Let the prime factorisation of n be n = 2k pe1

1 . . . per
r . The multiplica-

tive group (Z/nZ)× decomposes as:

(Z/nZ)× ∼= G2 × C
φ(p

e1
1 )

× · · · × Cφ(per
r ),

where

G2 ∼=


{1} if k = 0, 1

C2 if k = 2

C2 × C2k−2 if k ≥ 3.

定理

Proof

This follows directly from the Chinese Remainder Theorem, which
provides the ring isomorphism Z/nZ ∼= Z/2kZ × ∏ Z/pei

i Z.
Restricting to the group of units yields the direct product of the
unit groups of each component. The structure of (Z/pei

i Z)× is
cyclic (Theorem 5.2), and the structure of (Z/2kZ)× is given by
Theorem 5.7.

■
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5.6 Exercises

In the following exercises, unless otherwise specified, p denotes an
odd prime and n denotes a positive integer.
1. Orders of Products and Inverses. Let n be a positive integer.

(a) Prove that for any a coprime to n, the order of a modulo n is
equal to the order of its modular inverse a−1 modulo n.

(b) Let a, b ∈ (Z/nZ)× with multiplicative orders k and m
respectively. Prove that if (k, m) = 1, then the order of the
product ab is km.

(c) Show by example that if (k, m) ̸= 1, the order of ab need not
be lcm(k, m).

(d) Prove generally that there exists an element c ∈ (Z/nZ)×

such that ordn(c) = lcm(k, m).
Remark.

Write k and m in terms of prime powers and construct c
using powers of a and b that have coprime orders.

2. Order Modulo a Product. Let m and n be coprime positive inte-
gers. Let the order of an integer a modulo m be d1 and modulo n
be d2.

(a) Prove that the order of a modulo mn is lcm(d1, d2).
(b) Using this result, prove that for any integer n > 1, φ(n) >√

n.
(c) Prove that n | φ(an − 1) for any a > 1.

3. The Lucas Primality Test. The converse of Fermat’s Little Theo-
rem is false. However, primitive roots provide a deterministic test
for primality.

(a) Prove that an integer n > 1 is prime if and only if there exists
an integer a satisfying:

(i) an−1 ≡ 1 (mod n), and
(ii) a(n−1)/q ̸≡ 1 (mod n) for all prime factors q of n − 1.
Remark.

What does condition (ii) imply about the order of a modulo
n?

(b) Use this criterion (or similar reasoning) to find a primitive
root modulo 72 and modulo 53.

4. ⋆ Special Primes. Primitive roots allow us to analyse divisors of
special forms.

(a) Let a > 2. Prove that any prime divisor of ap − 1 that does
not divide a − 1 must be of the form 2kp + 1.
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(b) Deduce that there are infinitely many primes of the form
2p + 1 (assuming one can vary a). More rigorously, prove
there are infinitely many primes of the form 2px + 1 by con-
sidering Euclidean polynomials.

(c) Let Fn = 22n
+ 1 be the n-th Fermat number. Prove that every

prime divisor of Fn is of the form 2n+1k + 1.

5. Operations on Primitive Roots. Let g be a primitive root modulo
an odd prime p.

(a) Determine the multiplicative order of −g modulo p.
Remark.

Consider the cases p ≡ 1 (mod 4) and p ≡ 3 (mod 4) sepa-
rately.

(b) Prove that if p > 3, the product of any two primitive roots
modulo p is never a primitive root.

Remark.

Consider the parity of the indices.

6. ⋆ Aggregate Properties of Primitive Roots. Let p > 3 be a prime.
Let P be the set of all primitive roots modulo p.

(a) Prove that the product of all primitive roots is congruent to 1
modulo p:

∏
g∈P

g ≡ 1 (mod p).

(b) Prove that the sum of all incongruent primitive roots modulo
p is congruent to µ(p − 1) (mod p), where µ is the Möbius
function (defined in Chapter 3 Exercises).

Remark.

Recall that the primitive roots are the roots of xp−1 − 1 that
are not roots of xd − 1 for any d | p − 1.

7. Criteria for Lifting. In the proof of the existence of primitive roots
modulo p2, we often show that if g is a primitive root modulo p,
then either g or g + p is a primitive root modulo p2. Prove the
stronger condition: A primitive root g modulo p is a primitive root
modulo p2 if and only if

gp−1 ̸≡ 1 (mod p2).

Remark.

We proved the forward implication. For the reverse, assume
gp−1 = 1 + mp. What does the condition (m, p) = 1 imply about
the order?
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8. Power Sums. Let p be a prime and k be a positive integer. Let
Sk = ∑

p−1
x=1 xk. Using the existence of a primitive root g modulo p,

prove that:

Sk ≡

−1 (mod p) if (p − 1) | k,

0 (mod p) if (p − 1) ∤ k.

Remark.

Express the sum as a geometric series in terms of g.

9. Wilson’s Theorem and Generalisations.

(a) Use the existence of a primitive root modulo p to provide
a constructive proof of Wilson’s Theorem: (p − 1)! ≡ −1
(mod p).

(b) Let p ≡ 2 (mod 3). Prove that for any integers a, b, the
congruence a3 ≡ b3 (mod p) implies a ≡ b (mod p).

(c) Generalise part (b): Prove that the map x 7→ xk is a permuta-
tion of (Z/pZ)× if and only if (k, p − 1) = 1.

10. Counting Square Roots of Unity. Let n = 2k pe1
1 . . . per

r where pi

are distinct odd primes. Using the structural decomposition of
(Z/nZ)×, prove that the number of solutions to x2 ≡ 1 (mod n)
is 2ω(n)+δ, where ω(n) = r is the number of distinct odd prime
factors, and

δ =


0 if k = 0, 1,

1 if k = 2,

2 if k ≥ 3.

11. The Carmichael Function. The Carmichael function λ(n) is de-
fined as the smallest positive integer m such that am ≡ 1 (mod n)
for all integers a coprime to n. Using the general structure of unit
groups, prove that λ(n) = lcm(λ(2k), φ(pe1

1 ), . . . , φ(per
r )), where

λ(2k) =

φ(2k) if k < 3,
1
2 φ(2k) if k ≥ 3.

Compute φ(120) and λ(120) to demonstrate that the exponent can
be significantly smaller than the group order.

12. Subgroups of (Z/2kZ)×. For k ≥ 3, the group (Z/2kZ)× is
generated by −1 and 5.

(a) Prove that the elements of order 2 in (Z/2kZ)× are precisely
−1, 2k−1 − 1, and 2k−1 + 1.

(b) Prove that the subgroup of squares S = {x2 | x ∈ (Z/2kZ)×}
consists of all units a such that a ≡ 1 (mod 8).
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13. Change of Base. Let g and h be two primitive roots modulo n.
Prove the change of base formula for discrete logarithms: for any
a coprime to n,

indh(a) ≡ indh(g) · indg(a) (mod φ(n)).

Conclude that indh(g) · indg(h) ≡ 1 (mod φ(n)).

14. Quadratic Residues and Indices. Let p be an odd prime and g a
primitive root modulo p.

(a) Prove that x2 ≡ a (mod p) has a solution if and only if
indg(a) is even.

(b) Use properties of indices to show that indg(−1) = (p − 1)/2.
(c) Combine these results to give a one-line proof of the first

supplement to the Law of Quadratic Reciprocity: −1 is a
square modulo p if and only if p ≡ 1 (mod 4).

15. Solving Congruences.

(a) Solve x2 ≡ 3 (mod 13) and x2 ≡ 3 (mod 143).
Remark.

For the latter, solve modulo 11 and 13 separately, then com-
bine.

(b) Solve 6 · 3x ≡ 7 (mod 11) using indices.
(c) Determine all 8th-power residues modulo 37.



6
Quadratic Residues

Having established the theory of linear congruences and the structure
of multiplicative groups modulo n, we turn to polynomial congru-
ences of degree two. Specifically, we investigate the solvability of
quadratic equations in Z/pZ, which leads to the definition of the
Legendre symbol and Euler’s Criterion.

6.1 Quadratic Congruences

We consider the general quadratic congruence modulo an odd prime
p. Let a, b, c ∈ Z with p ∤ a. We seek solutions to:

ax2 + bx + c ≡ 0 (mod p). (6.1)

Since p is an odd prime, (4a, p) = 1. We may multiply Equation 6.1 by
4a to complete the square:

4a(ax2 + bx + c) = 4a2x2 + 4abx + 4ac = (2ax + b)2 − (b2 − 4ac).

Thus, the congruence is equivalent to:

(2ax + b)2 ≡ b2 − 4ac (mod p).

Let y = 2ax + b and D = b2 − 4ac. Since (2a, p) = 1, the linear
transformation x 7→ 2ax + b is a bijection on the residue classes
modulo p. Consequently, finding x is equivalent to finding y such
that:

y2 ≡ D (mod p).

If p | D, there is a unique solution y ≡ 0 (mod p). If p ∤ D, the
problem reduces to determining whether the integer D is a perfect
square modulo p. We generally study the simplified congruence:

x2 ≡ a (mod p), where p ∤ a.
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Definition 6.1. Quadratic Residue.
Let p be an odd prime and a an integer not divisible by p. If the con-
gruence x2 ≡ a (mod p) has a solution, a is called a quadratic residue
modulo p. If it has no solution, a is called a quadratic non-residue mod-
ulo p.

定義

If a is a quadratic residue, there exists x0 such that x2
0 ≡ a (mod p).

Then (−x0)
2 ≡ x2

0 ≡ a (mod p). Since p is odd and p ∤ a, x0 ̸≡ −x0

(mod p). Thus, every quadratic residue has exactly two distinct
square roots modulo p.

Theorem 6.1. Distribution of Quadratic Residues.
Let p be an odd prime. In any complete residue system modulo p, there
are exactly p−1

2 quadratic residues and p−1
2 quadratic non-residues. The

quadratic residues are congruent to the numbers:

12, 22, . . . ,
(

p − 1
2

)2
.

定理

Proof

Every quadratic residue is congruent to the square of some integer
in {1, . . . , p − 1}. Since (p − k)2 ≡ (−k)2 ≡ k2 (mod p), the squares
of the elements in the second half of the range { p+1

2 , . . . , p − 1}
repeat the squares of the first half. Thus, the quadratic residues are
generated by the squares of 1, 2, . . . , p−1

2 .
We show these squares are distinct modulo p. Suppose x2 ≡ y2

(mod p) with 1 ≤ x, y ≤ p−1
2 . Then

x2 − y2 = (x − y)(x + y) ≡ 0 (mod p).

This implies p | (x − y) or p | (x + y). However, 2 ≤ x +

y ≤ p − 1 < p, so p ∤ (x + y). Similarly, −(p − 1)/2 ≤
x − y ≤ (p − 1)/2. The only multiple of p in this range is 0, so
x = y. Therefore, the p−1

2 values listed are distinct incongruent
residues. The remaining (p − 1) − p−1

2 = p−1
2 classes are quadratic

non-residues.
■

Example 6.1. Residues Modulo 13. Let p = 13. The quadratic
residues are the squares of {1, 2, 3, 4, 5, 6}:
· 12 ≡ 1
· 22 ≡ 4
· 32 ≡ 9
· 42 ≡ 16 ≡ 3
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· 52 ≡ 25 ≡ 12
· 62 ≡ 36 ≡ 10
The set of residues is {1, 3, 4, 9, 10, 12}. The non-residues are
{2, 5, 6, 7, 8, 11}.

範例

The arithmetic properties of residues follow a specific algebraic struc-
ture, akin to signs in real multiplication.

Theorem 6.2. Product of Residues.
Let p be an odd prime.

(i) The product of two quadratic residues is a quadratic residue.
(ii) The product of a quadratic residue and a quadratic non-residue

is a quadratic non-residue.
(iii) The product of two quadratic non-residues is a quadratic residue.

定理

Proof

(i) Let a ≡ x2 and b ≡ y2 (mod p). Then ab ≡ (xy)2 (mod p), so
ab is a residue.

(ii) Let a be a residue and b a non-residue. Suppose for contra-
diction that ab is a residue, say ab ≡ y2 (mod p). Let a ≡ x2

(mod p). Since p ∤ a, x is invertible. Then:

b ≡ a−1(ab) ≡ (x−1)2y2 ≡ (x−1y)2 (mod p).

This implies b is a residue, a contradiction.
(iii) Let b be a non-residue. Consider the mapping f : x 7→ bx

(mod p) on the set of units. This map is a bijection. Let R
be the set of quadratic residues and N be the set of non-
residues. By (ii), for every r ∈ R, the product br lies in N.
Since |R| = |N| = p−1

2 , the image of R under multiplication
by b is exactly N. Since f is a bijection on the entire set of
units, the image of N must be the remaining elements, which
is R. Thus, for any n ∈ N, bn ∈ R.

■

6.2 The Legendre Symbol

To facilitate calculations involving quadratic residues, we intro-
duce the Legendre symbol, which encodes the solvability of x2 ≡ a
(mod p).
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Definition 6.2. Legendre Symbol.
Let p be an odd prime and a an integer. The Legendre symbol

(
a
p

)
is de-

fined as:

(
a
p

)
=


1 if a is a quadratic residue modulo p,

−1 if a is a quadratic non-residue modulo p,

0 if p | a.

定義

Using this notation, Theorem 6.2 can be restated as the total multi-
plicativity of the symbol: for any a, b ∈ Z,(

ab
p

)
=

(
a
p

)(
b
p

)
.

Since
(

a
p

)
depends only on a (mod p), it is a periodic function of a

with period p. The number of solutions to x2 ≡ a (mod p) is given

by 1 +
(

a
p

)
.

To evaluate the Legendre symbol without listing all squares, we
utilise Euler’s Criterion.

Theorem 6.3. Euler’s Criterion.
Let p be an odd prime and a an integer not divisible by p. Then(

a
p

)
≡ a

p−1
2 (mod p).

定理

Proof

By Fermat’s Little Theorem, ap−1 ≡ 1 (mod p). We factorise:

ap−1 − 1 =
(

a
p−1

2 − 1
) (

a
p−1

2 + 1
)
≡ 0 (mod p).

Thus a
p−1

2 ≡ ±1 (mod p).
If
(

a
p

)
= 1, then a ≡ x2 (mod p) for some x. Hence:

a
p−1

2 ≡ (x2)
p−1

2 = xp−1 ≡ 1 (mod p).

If
(

a
p

)
= −1, we assume for contradiction that a

p−1
2 ≡ 1 (mod p).

Consider the polynomial f (y) = y
p−1

2 − 1. By Lagrange’s Theo-
rem, f (y) ≡ 0 (mod p) has at most p−1

2 roots. We have already
established that the p−1

2 quadratic residues are roots of f (y). If the
non-residue a were also a root, f (y) would have at least p−1

2 + 1

roots, a contradiction. Therefore, a
p−1

2 ≡ −1 (mod p).

In both cases,
(

a
p

)
≡ a

p−1
2 (mod p).

■
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Example 6.2. Calculation using Euler’s Criterion. Determine
( 3

17
)
.

Here p = 17, so p−1
2 = 8.

38 = (34)2 = 812 ≡ (−4)2 = 16 ≡ −1 (mod 17).

Thus
( 3

17
)
= −1, so 3 is a quadratic non-residue modulo 17.

範例

Euler’s Criterion allows us to explicitly determine when −1 and 2 are
quadratic residues.

Corollary 6.1. The Value of (−1/p). For any odd prime p,

(
−1
p

)
= (−1)

p−1
2 =

1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

推論

Proof

By Theorem 6.3,
(
−1
p

)
≡ (−1)

p−1
2 (mod p). Since both sides are ±1

and p > 2, the congruence implies equality. The exponent is even if
p = 4k + 1 and odd if p = 4k + 3.

■

Corollary 6.2. The Value of (2/p). For any odd prime p,

(
2
p

)
= (−1)

p2−1
8 =

1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).

推論

Proof

Consider the congruences for the first p−1
2 multiples of 2 modulo p:

1 · (−1)1 ≡ −1 ≡ p − 1 (mod p)

2 · (−1)2 ≡ 2 (mod p)

3 · (−1)3 ≡ −3 ≡ p − 3 (mod p)
...

k · (−1)k ≡

k if k is even

p − k if k is odd

Let r = p−1
2 . The set of values on the right-hand side is precisely

the set of even integers E = {2, 4, . . . , 2r}. This is because for any
j ∈ {1, . . . , r}, if j is even, it appears directly; if j is odd, p − j is even
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and 2 ≤ p − j ≤ p − 1. We take the product of these r congruences:

r

∏
k=1

k · (−1)k ≡
r

∏
j=1

(2j) (mod p).

The left side is r!(−1)∑r
k=1 k. The right side is 2rr!. Cancelling r!

(since (r!, p) = 1):

(−1)
r(r+1)

2 ≡ 2r (mod p).

Substituting r = p−1
2 , the exponent becomes (p−1)(p+1)

8 = p2−1
8 .

Thus 2
p−1

2 ≡ (−1)
p2−1

8 (mod p). By Euler’s Criterion, this is
(

2
p

)
.
■

Example 6.3. Composite Legendre Calculation. Determine if 18 is a
quadratic residue modulo 23. We factor 18 = 2 · 32.(

18
23

)
=

(
2

23

)(
32

23

)
.

Since 3 ̸≡ 0 (mod 23),
(

32

23

)
=
( 3

23
)2

= 1. For the factor 2, we check
23 (mod 8). Since 23 = 16+ 7 ≡ 7 ≡ −1 (mod 8), corollary 6.2 gives( 2

23
)
= 1. Thus

(
18
23

)
= 1 · 1 = 1. Indeed, 52 = 25 ≡ 2 (mod 23), so

(3 · 5)2 = 152 = 225 = 9 · 23 + 18 ≡ 18 (mod 23).

範例

6.3 Gauss’s Lemma

While Euler’s Criterion characterises residues theoretically, Gauss’s
Lemma provides a combinatorial approach essential for proving the
Law of Quadratic Reciprocity. It relates the Legendre symbol to the
distribution of multiples of a in the intervals [1, p−1

2 ] and [ p+1
2 , p − 1].

Theorem 6.4. Gauss’s Lemma.
Let p be an odd prime and a an integer such that (a, p) = 1. Consider
the set of multiples

S =

{
a, 2a, . . . ,

p − 1
2

a
}

.

Let l be the number of elements in S whose least positive residues mod-
ulo p exceed p

2 . Then (
a
p

)
= (−1)l .

定理
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Proof

Let r = p−1
2 . For each k ∈ {1, . . . , r}, let uk be the remainder of ka

upon division by p, so 0 < uk < p. We partition the remainders
{u1, . . . , ur} into two sets:

A = {uk | 1 ≤ uk ≤ r},

B = {uk | r < uk < p}.

Let |B| = l. We denote the elements of A by {r1, . . . , rr−l} and the
elements of B by {b1, . . . , bl}. Consider the set C = {p − b1, . . . , p −
bl}. Clearly C ⊆ {1, . . . , r}.
We claim that A ∩ C = ∅. Suppose ri = p − bj for some i, j. Then
ri + bj ≡ 0 (mod p). However, ri ≡ xa and bj ≡ ya for distinct
x, y ∈ {1, . . . , r}. Thus (x + y)a ≡ 0 (mod p), implying x + y is a
multiple of p. But 2 ≤ x + y ≤ 2r = p − 1 < p, a contradiction.
The set A ∪ C contains (r − l) + l = r distinct integers in the range
{1, . . . , r}. Therefore, A ∪ C = {1, . . . , r}. We now compute the
product of these elements:

∏
x∈A

x · ∏
y∈C

y = r!.

Substituting the definitions of A and C:

r−l

∏
i=1

ri ·
l

∏
j=1

(p − bj) = r!.

Working modulo p:

r−l

∏
i=1

ri ·
l

∏
j=1

(−bj) ≡ (−1)l
r

∏
k=1

uk ≡ r! (mod p).

Recall that {u1, . . . , ur} are simply the residues of a, 2a, . . . , ra. Thus:

r

∏
k=1

uk ≡
r

∏
k=1

(ka) = arr! (mod p).

Substituting this back:

(−1)larr! ≡ r! (mod p).

Cancelling r!, we obtain a
p−1

2 ≡ (−1)l (mod p). By Theorem 6.3,(
a
p

)
= (−1)l .

■

Example 6.4. Application of Gauss’s Lemma. Compute
( 7

11
)

us-
ing Gauss’s Lemma. Here p = 11, r = 5, a = 7. The set
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S = {7, 14, 21, 28, 35}. Modulo 11, the residues are:

7 ≡ 7 > 5.5 (∈ B)

14 ≡ 3 ≤ 5.5 (∈ A)

21 ≡ 10 > 5.5 (∈ B)

28 ≡ 6 > 5.5 (∈ B)

35 ≡ 2 ≤ 5.5 (∈ A)

The set B = {7, 10, 6}, so l = 3. Thus
( 7

11
)
= (−1)3 = −1.

範例

6.4 The Law of Quadratic Reciprocity

Gauss’s Lemma serves as the foundation for the most celebrated
theorem in elementary number theory: the Law of Quadratic Reci-
procity. This law connects the Legendre symbol

(
p
q

)
with

(
q
p

)
for

distinct odd primes p and q.

Theorem 6.5. Law of Quadratic Reciprocity.
Let p and q be distinct odd primes. Then(

p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 .

Equivalently,

(
p
q

)
=

−
(

q
p

)
if p ≡ 3 (mod 4) and q ≡ 3 (mod 4),(

q
p

)
otherwise.

定理

Proof

Let r = p−1
2 and s = q−1

2 . We begin by establishing an analytic for-
mulation for the exponent l in Gauss’s Lemma.

Step 1: Eisenstein’s Lemma. Let a be an odd integer coprime to p.
For each k ∈ {1, . . . , r}, the division algorithm yields

ka = p
⌊

ka
p

⌋
+ uk, 1 ≤ uk < p.

Here uk is the least positive residue. If uk ≤ r, then the numeri-
cally least residue is αk = uk (positive). If uk > r, then αk = uk −
p (negative). Let µ be the number of uk such that uk > r. This is

exactly the l in Gauss’s Lemma, so
(

a
p

)
= (−1)µ. Summing the
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division equations:

a
r

∑
k=1

k = p
r

∑
k=1

⌊
ka
p

⌋
+

r

∑
k=1

uk.

Let U = ∑ uk. We partition the residues uk into those
≤ r (say b1, . . . , br−µ) and those > r (say c1, . . . , cµ). Then
U = ∑ bi + ∑ cj. Recall from the proof of Gauss’s Lemma that
{b1, . . . , br−µ} ∪ {p − c1, . . . , p − cµ} = {1, . . . , r}. Summing these
integers:

r

∑
k=1

k = ∑ bi + ∑(p − cj) = ∑ bi + µp − ∑ cj = U − 2 ∑ cj + µp.

Solving for U: U ≡ ∑ k + µp (mod 2). Substituting back into the
sum of multiples:

a ∑ k ≡ p ∑
⌊

ka
p

⌋
+
(
∑ k + µp

)
(mod 2).

Since p and a are odd, p ≡ 1 (mod 2) and a ≡ 1 (mod 2). The
equation simplifies to:

∑ k ≡ ∑
⌊

ka
p

⌋
+∑ k+µ (mod 2) =⇒ µ ≡

r

∑
k=1

⌊
ka
p

⌋
(mod 2).

Thus, for distinct odd primes p, q:(
q
p

)
= (−1)∑r

k=1⌊
kq
p ⌋ and

(
p
q

)
= (−1)∑s

j=1⌊
jp
q ⌋.

Step 2: Lattice Point Counting. We must determine the parity of
the total exponent:

E =
r

∑
k=1

⌊
kq
p

⌋
+

s

∑
j=1

⌊
jp
q

⌋
.

Consider the rectangle R in the xy-plane with vertices
(0, 0), (p/2, 0), (p/2, q/2), (0, q/2). We count the number of
interior lattice points (x, y) such that 1 ≤ x ≤ r and 1 ≤ y ≤ s.
The total number of such points is rs. The diagonal D connecting
(0, 0) to (p/2, q/2) has equation y = q

p x. Since (p, q) = 1, no
integer point lies on D for 0 < x < p/2. The number of lattice
points below the diagonal is given by summing over possible x:

Nbelow =
r

∑
x=1

⌊
qx
p

⌋
.

Similarly, the number of lattice points above the diagonal (count-
ing by y) is:

Nabove =
s

∑
y=1

⌊
py
q

⌋
.
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Since every lattice point is either above or below D:

rs = Nbelow + Nabove =
r

∑
k=1

⌊
kq
p

⌋
+

s

∑
j=1

⌊
jp
q

⌋
.

Therefore:(
q
p

)(
p
q

)
= (−1)Nbelow(−1)Nabove = (−1)rs = (−1)

p−1
2

q−1
2 .

■

Remark (Geometric Interpretation).

The term p−1
2

q−1
2 is odd if and only if both factors are odd, which

requires p ≡ 3 (mod 4) and q ≡ 3 (mod 4). In this case, the prod-
uct of the symbols is −1, implying the reciprocity is "negative". In
all other cases, the product is 1, meaning p is a residue mod q if
and only if q is a residue mod p.

Applications of Reciprocity

The reciprocity law reduces the evaluation of
(

a
p

)
to the evaluation

of symbols with smaller moduli, similar to the Euclidean algorithm.
Example 6.5. Composite Numerator. Determine if the congruence
x2 ≡ 219 (mod 383) is solvable. Note that 383 is prime. We fac-
torise 219 = 3 × 73. (

219
383

)
=

(
3

383

)(
73
383

)
.

1. Evaluate
( 3

383
)
. Since 383 = 4 × 95 + 3 ≡ 3 (mod 4) and 3 ≡ 3

(mod 4), reciprocity implies a sign change:(
3

383

)
= −

(
383

3

)
= −

(
2
3

)
.

Since 3 ≡ 3 (mod 8),
( 2

3
)
= −1. Thus

( 3
383
)
= −(−1) = 1.

2. Evaluate
( 73

383
)
. Since 73 ≡ 1 (mod 4), reciprocity implies no

sign change: (
73

383

)
=

(
383
73

)
.

Reducing modulo 73: 383 = 5 × 73 + 18.(
18
73

)
=

(
2 · 32

73

)
=

(
2
73

)
· 1.

Since 73 ≡ 1 (mod 8),
( 2

73
)
= 1.

Combining these,
(

219
383

)
= 1 · 1 = 1. The congruence is solvable.

範例



algebra iiic: number theory (structures) 93

We can also determine for which primes a specific integer is a quadratic
residue.

Theorem 6.6. Quadratic Character of 3.
Let p > 3 be a prime. Then 3 is a quadratic residue modulo p if and
only if p ≡ ±1 (mod 12).

定理

Proof

By the Reciprocity Law:(
3
p

)
=
( p

3

)
(−1)

3−1
2

p−1
2 =

( p
3

)
(−1)

p−1
2 .

We analyse the cases modulo 12 (since we need conditions modulo
3 and 4).
• If p ≡ 1 (mod 12): p ≡ 1 (mod 3) and p ≡ 1 (mod 4).

( p
3
)
=(

1
3

)
= 1. Exponent p−1

2 is even. Result: 1 · 1 = 1.

• If p ≡ 5 (mod 12): p ≡ 2 (mod 3) and p ≡ 1 (mod 4).
( p

3
)
=( 2

3
)
= −1. Exponent is even. Result: −1 · 1 = −1.

• If p ≡ 7 (mod 12): p ≡ 1 (mod 3) and p ≡ 3 (mod 4).
( p

3
)
= 1.

Exponent is odd. Result: 1 · (−1) = −1.
• If p ≡ 11 ≡ −1 (mod 12): p ≡ 2 (mod 3) and p ≡ 3 (mod 4).( p

3
)
= −1. Exponent is odd. Result: (−1) · (−1) = 1.

Thus
(

3
p

)
= 1 ⇐⇒ p ≡ 1, 11 (mod 12).

■

6.5 Exercises

1. Gauss’s Lemma Calculation. Let p be an odd prime. Use Gauss’s
Lemma to explicitly compute

(
2
p

)
by analysing the number of

elements in the set S = {2, 4, . . . , p − 1} that exceed p/2.

2. Legendre Symbol Computations. Compute the following Legen-
dre symbols using the properties derived in the text.

(a)
(

17
23

)
(b)

(
19
37

)
(c)

(
60
79

)
(d)

(
92

101

)
3. Residues of Small Integers. Using the Law of Quadratic Reci-

procity, determine all primes p for which:
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(a) −3 is a quadratic residue.
(b) 5 is a quadratic residue.
(c) 15 is a quadratic residue.

4. Constructing Square Roots. While Euler’s Criterion determines
existence, it does not provide the solution.

(a) Let p ≡ 3 (mod 4). Prove that if a is a quadratic residue
modulo p, then x ≡ ±a(p+1)/4 (mod p) are the solutions to
x2 ≡ a (mod p).

(b) Let p ≡ 5 (mod 8). Prove that 2 is a quadratic non-residue
modulo p. Deduce that x = 2(p−1)/4 is a solution to the
congruence x2 ≡ −1 (mod p).

Remark.

For (b), apply Euler’s Criterion to the element 2, observing that
2(p−1)/2 ≡ −1.

5. Primes of Specific Forms. Prove that there are infinitely many
primes of the following forms:

(a) 4n + 1.
Remark.

Consider divisors of N = (n!)2 + 1.

(b) 6n + 1.
(c) 8n + 3, 8n + 5, and 8n + 7.

6. The Least Quadratic Non-Residue. Let p be an odd prime. Let
n be the smallest positive integer that is a quadratic non-residue
modulo p. Prove that n must be prime.

7. Product of Residues. Let p be an odd prime. Prove that the prod-
uct of the quadratic residues modulo p satisfies:

p−1

∏
r=1(
r
p

)
=1

r ≡ −
(
−1
p

)
(mod p).

8. Sums of Residues. Let p be a prime with p ≡ 1 (mod 4). Prove
the following identities:

(a)
p−1

∑
r=1(
r
p

)
=1

r =
p(p − 1)

4
.

(b)
p−1

∑
a=1

a
(

a
p

)
= 0.
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(c)
p−1

2

∑
k=1

⌊
k2

p

⌋
=

(p − 1)(p − 5)
24

.

9. Character Sum of a Linear Polynomial. Let p be an odd prime
and let a, b be integers with p ∤ a. Prove that

p−1

∑
x=0

(
ax + b

p

)
= 0.

Remark.

As x ranges over a complete residue system, so does ax + b.

10. Quadratic Sum with Linear Term. Let p be an odd prime, and a
be an integer with p ∤ a. Prove

p−1

∑
x=0

(
x2 + ax

p

)
= −1.

11. The Hyperbola Equation. Let p be an odd prime, and a be an
integer.

(i) Prove: The congruence equation x2 − y2 ≡ a (mod p)
always has a solution.

(ii) If (x, y) and (x′, y′) are both solutions to the above congru-
ence, we consider them the same solution modulo p when
x ≡ x′ and y ≡ y′ (mod p). Prove: The number of solutions
in part (i) is p − 1 (if p ∤ a) or 2p − 1 (if p | a).

12. Character Sum of a Quadratic. Let p be an odd prime and let a be
an integer such that p ∤ a.

(a) Prove that the number of solutions to y2 ≡ k (mod p) is
given by 1 +

(
k
p

)
.

(b) Evaluate the sum ∑
p−1
x=0

(
x2+a

p

)
by summing the result of part

(a) over all k = x2 + a and adjusting for the count. Specifically,
show that:

p−1

∑
x=0

(
x2 + a

p

)
= −1.

13. The General Quadratic Character Sum. Let p be an odd prime,
f (x) = ax2 + bx + c with p ∤ a. Let D = b2 − 4ac. Prove

p−1

∑
x=0

(
f (x)

p

)
=

−
(

a
p

)
, if p ∤ D,

(p − 1)
(

a
p

)
, if p | D.
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14. Points on a Circle. Let p be an odd prime. Let N be the number
of solutions (x, y) ∈ (Z/pZ)2 to the congruence

x2 + y2 ≡ 1 (mod p).

Using the sum from the previous exercise, prove that

N = p − (−1)
p−1

2 .

Verify this formula explicitly for p = 3 and p = 5.

Remark.

Express N as ∑
p−1
x=0 Ny(1 − x2), where Ny(k) is the number of so-

lutions to y2 ≡ k.

15. Lifting Solutions. Let p be an odd prime and a an integer not
divisible by p. Prove that the congruence x2 ≡ a (mod pk) has a

solution for k ≥ 1 if and only if
(

a
p

)
= 1. When this condition is

met, prove there are exactly two solutions modulo pk.

Remark.

Use mathematical induction and the Taylor expansion
(x0 + tpk)2 ≡ x2

0 + 2x0tpk (mod pk+1).

16. ⋆ Quadratic Residues Modulo Powers of Two. Let a be an odd
integer. Then

(i) x2 ≡ a (mod 2) has a solution for all a.
(ii) x2 ≡ a (mod 4) has a solution if and only if a ≡ 1 (mod 4),

and when this condition is satisfied, there are exactly two
distinct solutions.

(iii) The congruence equation x2 ≡ a (mod 2k) (k ≥ 3) has a
solution if and only if a ≡ 1 (mod 8). When the condition
holds, there are exactly four solutions. If x0 is one solution,
then ±x0,±x0 + 2k−1 are all the solutions.



7
Indeterminate Equations

We now turn our attention to the theory of indeterminate equations,
broadly defined as polynomial equations where the number of un-
knowns exceeds the number of constraints, and the solutions are re-
quired to lie within a specific arithmetic set, typically Z or Q. While
linear indeterminate equations are fully resolved by the theory of
the greatest common divisor and linear congruences, higher-degree
equations present significant challenges.
To analyse the solvability of such equations, particularly quadratic
forms, we first extend the arithmetic of quadratic residues to com-
posite moduli. This generalisation, the Jacobi symbol, provides an
essential computational tool for determining local solvability condi-
tions.

7.1 The Jacobi Symbol

While the Legendre symbol
(

a
p

)
provides a complete arithmetic

characterisation of quadratic residues modulo a prime, its definition
restricts the modulus to be prime. This limitation becomes computa-
tionally cumbersome when evaluating

(
a
p

)
for large p via reciprocity,

as it necessitates the prime factorisation of the numerator at every
inversion step. To mitigate this, we introduce the Jacobi symbol.

Definition 7.1. Jacobi Symbol.
Let n be an odd positive integer with prime factorisation n = pα1

1 pα2
2 . . . pαk

k .
For any integer a, the Jacobi symbol

( a
n
)

is defined as the product of the
Legendre symbols of a with respect to the prime factors of n:

( a
n

)
=

k

∏
i=1

(
a
pi

)αi

.

If (a, n) > 1, then pi | a for some i, implying
(

a
pi

)
= 0, and thus( a

n
)
= 0. Like the Legendre symbol, the Jacobi symbol takes values

in {0, 1,−1}.
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定義
The utility of the Jacobi symbol lies in its preservation of the alge-
braic properties of the Legendre symbol while allowing for composite
moduli.

Theorem 7.1. Properties of the Jacobi Symbol.
Let n, m be odd positive integers and a, b ∈ Z.

(i) Modularity: If a ≡ b (mod n), then
( a

n
)
=
(

b
n

)
.

(ii) Multiplicativity (Numerator):
(

ab
n

)
=
( a

n
) ( b

n

)
.

(iii) Multiplicativity (Denominator):
( a

mn
)
=
( a

m
) ( a

n
)
.

(iv) Square Factors:
(

a
n2

)
= 1 provided (a, n) = 1. Similarly,

(
a2

n

)
=

1 if (a, n) = 1.
定理

Proof

These properties follow directly from the definition and the corre-
sponding properties of the Legendre symbol. For (iii), let m = ∏ pαi

i

and n = ∏ q
β j
j . Then mn = ∏ pαi

i ∏ q
β j
j . The symbol

( a
mn
)

expands
to the product of Legendre symbols for all prime factors count-
ing multiplicity, which partitions into the product for m and the
product for n.

■

Crucially, the Jacobi symbol adheres to a generalised Law of Quadratic
Reciprocity. This allows for the inversion of the symbol

( a
n
)

without
determining the prime factorisation of a, provided a is odd.

Theorem 7.2. Generalised Reciprocity Laws.
Let n and m be odd coprime positive integers.

(i) First Supplement:
(
−1
n

)
= (−1)

n−1
2 .

(ii) Second Supplement:
( 2

n
)
= (−1)

n2−1
8 .

(iii) Quadratic Reciprocity:
(m

n
) ( n

m
)
= (−1)

m−1
2 · n−1

2 .
定理

Proof

Let the prime factorisations of n and m be n = ∏k
i=1 pi and

m = ∏l
j=1 qj, where the primes are listed with multiplicity. Since

n and m are odd, all pi and qj are odd primes. We rely on two
elementary congruences for odd integers a and b:

ab − 1
2

≡ a − 1
2

+
b − 1

2
(mod 2), (7.1)

a2b2 − 1
8

≡ a2 − 1
8

+
b2 − 1

8
(mod 2). (7.2)

Equation 7.1 follows from the identity ab−1
2 − a−1

2 − b−1
2 = (a−1)(b−1)

2 .
Since a, b are odd, a − 1 and b − 1 are even, so their product is divis-
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ible by 4. Similarly, Equation 7.2 follows because a2 ≡ 1 (mod 8) for
odd a, implying 8 | (a2 − 1). By induction, these congruences ex-
tend to finite products.
First Supplement: By definition,

(
−1
n

)
= ∏k

i=1

(
−1
pi

)
. Using the

property for Legendre symbols (corollary 6.1):(
−1
n

)
=

k

∏
i=1

(−1)
pi−1

2 = (−1)∑k
i=1

pi−1
2 .

Applying Equation 7.1 inductively to n = ∏ pi, we have

∑k
i=1

pi−1
2 ≡ n−1

2 (mod 2). Thus,
(
−1
n

)
= (−1)

n−1
2 .

Second Supplement: By definition,
( 2

n
)

= ∏k
i=1

(
2
pi

)
. Using corol-

lary 6.2: (
2
n

)
=

k

∏
i=1

(−1)
p2

i −1
8 = (−1)∑k

i=1
p2

i −1
8 .

Applying Equation 7.2 inductively, ∑k
i=1

p2
i −1
8 ≡ n2−1

8 (mod 2).

Thus,
( 2

n
)
= (−1)

n2−1
8 .

Quadratic Reciprocity: By definition,
(m

n
)

= ∏k
i=1

(
m
pi

)
=

∏k
i=1 ∏l

j=1

( qj
pi

)
. Similarly,

( n
m
)

= ∏l
j=1 ∏k

i=1

(
pi
qj

)
. Multiplying

these expressions and applying the Law of Quadratic Reciprocity
for Legendre symbols to each pair (pi, qj):

(m
n

) ( n
m

)
=

k

∏
i=1

l

∏
j=1

[( qj

pi

)(
pi
qj

)]

=
k

∏
i=1

l

∏
j=1

(−1)
pi−1

2
qj−1

2

= (−1)∑k
i=1 ∑l

j=1
pi−1

2
qj−1

2 .

The exponent factors as a product of sums:

k

∑
i=1

l

∑
j=1

pi − 1
2

qj − 1
2

=

(
k

∑
i=1

pi − 1
2

)(
l

∑
j=1

qj − 1
2

)
.

Using the congruence from part (i), this is congruent modulo 2

to:
n − 1

2
· m − 1

2
.

Therefore,
(m

n

) ( n
m

)
= (−1)

m−1
2

n−1
2 .

■

Remark (Connection to Quadratic Residues).

The arithmetic interpretation of
( a

n
)

for composite n is subtle. If a
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is a quadratic residue modulo n, then x2 ≡ a (mod n) is solvable.
This implies x2 ≡ a (mod p) for every prime p | n. Consequently,(

a
p

)
= 1 for all p | n, leading to

( a
n
)
= 1. The converse is false. If( a

n
)
= 1, a is not necessarily a quadratic residue modulo n.

Example 7.1. Non-Residue with Jacobi Symbol 1. Consider
n = 15 = 3 · 5 and a = 2. The Legendre symbols are:(

2
3

)
= −1 and

(
2
5

)
= −1.

Thus, 2 is not a square modulo 3 (and hence not modulo 15). How-
ever, the Jacobi symbol is:(

2
15

)
=

(
2
3

)(
2
5

)
= (−1)(−1) = 1.

This demonstrates that
( a

n
)

= 1 is a necessary but not sufficient
condition for a to be a quadratic residue modulo n. Conversely,( a

n
)
= −1 strictly implies that a is a quadratic non-residue.

範例

7.2 Local Solvability and the Hasse Principle

We focus on polynomial indeterminate equations of the form

F(x1, . . . , xn) = 0, (7.1)

where F ∈ Z[x1, . . . , xn]. The simplest instance is the linear equation
a1x1 + · · · + anxn = b. By Bézout’s Identity, integer solutions exist
if and only if (a1, . . . , an) divides b. For non-linear polynomials, no
such simple criterion exists.
A necessary condition for the existence of integer solutions is solv-
ability in "local" structures: the field of real numbers R and the rings
Z/mZ for all m.

Definition 7.2. Local Solvability.
The equation F(x1, . . . , xn) = 0 is said to be locally solvable if:

(i) It possesses real solutions in R.
(ii) For every integer m > 1, the congruence F(x1, . . . , xn) ≡ 0 (mod m)

has solutions.
定義

If an integer solution x∗ exists to Equation 7.1, it is trivial that x∗ is
a real solution and reduces to a solution modulo m for all m. Thus,
local solvability is a necessary condition for integer solvability.
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Testing solvability modulo every integer m appears computationally
infeasible. However, the problem reduces to prime powers via the
Chinese Remainder Theorem.

Proposition 7.1. Reduction to Prime Powers.
The congruence F(x) ≡ 0 (mod m) is solvable for all m > 1 if and
only if it is solvable modulo pk for every prime p and every integer k ≥
1.

命題

Proof

The forward implication is immediate. Conversely, let m =

pα1
1 . . . pαr

r . Suppose that for each j ∈ {1, . . . , r}, there exists a so-
lution x(j) satisfying F(x(j)) ≡ 0 (mod p

αj
j ). We construct a solution

modulo m by solving the system of congruences for each coordi-
nate i ∈ {1, . . . , n}:

xi ≡ x(j)
i (mod p

αj
j ) for j = 1, . . . , r.

By the Chinese Remainder Theorem, such integers xi exist. Since
polynomial evaluation commutes with modular reduction,

F(x) ≡ F(x(j)) ≡ 0 (mod p
αj
j ).

Since this holds for all prime power factors, F(x) ≡ 0 (mod m).
■

Consequently, to prove that an equation has no integer solutions, it
suffices to exhibit a single modulus m (often a small prime or prime
power) or show the absence of real solutions.

Example 7.2. Obstruction Modulo 4. Consider the equation
x2 + y2 − 4z2 = 3. Modulo 4, the term 4z2 vanishes, reducing
the equation to x2 + y2 ≡ 3 (mod 4). The quadratic residues mod-
ulo 4 are 0 and 1. The possible sums of two residues are 0 + 0 = 0,
0 + 1 = 1, and 1 + 1 = 2. Since 3 is not a sum of two squares mod-
ulo 4, the congruence has no solution. Hence, the original equation
has no integer solutions.

範例

Example 7.3. Obstruction via Reciprocity. Consider the equation
y2 = x3 + 7. We first determine the parity of x. If x is even, then
x3 ≡ 0 (mod 8) (or (mod 4)), implying y2 ≡ 7 ≡ 3 (mod 4),
which is impossible. Thus x must be odd. We rewrite the equation
as:

y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4) = (x + 2)((x − 1)2 + 3).

Since x is odd, x − 1 is even, so (x − 1)2 ≡ 0 (mod 4). It follows
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that the factor ((x − 1)2 + 3) ≡ 3 (mod 4). An integer congruent
to 3 (mod 4) must have at least one prime factor q such that q ≡ 3
(mod 4). Considering the equation modulo such a prime q, we
have

y2 + 1 ≡ 0 =⇒ y2 ≡ −1 (mod q).

This implies that −1 is a quadratic residue modulo q. By corol-
lary 6.1, this requires q ≡ 1 (mod 4). This contradicts the existence
of a prime factor q ≡ 3 (mod 4). Thus, no integer solutions exist.

範例

The Failure of the Local-Global Principle

For certain classes of polynomials, such as quadratic forms (homo-
geneous polynomials of degree 2), local solvability implies integer
(or rational) solvability. This phenomenon is known as the Hasse
Principle. However, this principle is not universal; for higher degree
equations or specific non-homogeneous cases, local solvability does
not guarantee global solvability.

Example 7.4. Counter-example to Hasse Principle. Consider the
equation:

(x2 − 13)(x2 − 17)(x2 − 221) = 0.

Integer solvability requires 13, 17, or 221 to be a perfect square in
Z, which is false. Thus, there are no integer solutions. However, we
claim the equation is locally solvable.
Real solutions: Trivially exist (e.g., x =

√
13).

Modulo p: We show that for any prime p, the congruence

(x2 − 13)(x2 − 17)(x2 − 221) ≡ 0 (mod p)

is solvable. This requires showing that at least one of 13, 17, or
221 is a quadratic residue modulo p. Using the Legendre symbol
properties: (

221
p

)
=

(
13 · 17

p

)
=

(
13
p

)(
17
p

)
.

If
(

13
p

)
̸= −1 or

(
17
p

)
̸= −1, a solution exists. The only remain-

ing case is
(

13
p

)
= −1 and

(
17
p

)
= −1. But their product is then

(−1)(−1) = 1, implying
(

221
p

)
= 1. Thus, for any p, one of

the factors corresponds to a quadratic residue (or 0), making the
congruence solvable modulo p.

Modulo pk: For odd primes, Hensel’s Lemma lifts the simple roots
from modulo p to pk. For p = 2, we note 17 ≡ 1 (mod 8). By the
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structure of squares modulo 2k, x2 ≡ 17 (mod 2k) is solvable for
all k ≥ 1.

This equation is locally solvable everywhere but has no global
integer solution.

範例

7.3 Pythagorean Triples

We apply the theory of divisibility to the Diophantine equation

x2 + y2 = z2. (7.2)

Positive integer solutions to this equation correspond to the side
lengths of right-angled triangles and are known as Pythagorean triples.

Definition 7.3. Primitive Solutions.
A solution (x, y, z) in positive integers is called primitive if (x, y, z) =
1. Observe that if d divides both x and y, then d2 | (x2 + y2) = z2,
which implies d | z. Consequently, any integer solution can be reduced
to a primitive solution by dividing by the greatest common divisor. In
a primitive solution, the integers are pairwise coprime.

定義

Theorem 7.3. Classification of Pythagorean Triples.
All primitive solutions to x2 + y2 = z2 with y even are given by the
parametrisation

x = a2 − b2, y = 2ab, z = a2 + b2,

where a > b > 0 are coprime integers of opposite parity.
定理

Proof

Let (x, y, z) be a primitive solution. We first determine the parity of
the components. If x and y were both even, then (x, y) ≥ 2, contra-
dicting primitivity. If x and y were both odd, then x2 ≡ 1 (mod 4)
and y2 ≡ 1 (mod 4). This implies z2 = x2 + y2 ≡ 2 (mod 4),
which is impossible for a perfect square. Thus, exactly one of x or y
is even. Without loss of generality, we assume y is even. It follows
that x and z are odd.
We rewrite Equation 7.2 as:

y2 = z2 − x2 = (z − x)(z + x).

Since y is even, y2 is divisible by 4. Dividing the equation by 4
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yields: (y
2

)2
=

(
z − x

2

)(
z + x

2

)
.

Let u = (z − x)/2 and v = (z + x)/2. Since x and z are both odd, u
and v are integers. We compute their greatest common divisor:

(u, v) =
(

z − x
2

,
z + x

2

)
= (u + v, v) =

(
z,

z + x
2

)
.

Since (z, x) = 1, it follows that (z, z + x) = 1. Since z is odd, (z, (z +
x)/2) = 1. Thus, u and v are coprime.
The product uv is a perfect square. By the fundamental theorem of
arithmetic, since (u, v) = 1, both u and v must be perfect squares.
Let v = a2 and u = b2 for some positive integers a, b. Solving for
x, y, z:

z = v + u = a2 + b2,

x = v − u = a2 − b2,

y2 = 4uv = 4a2b2 =⇒ y = 2ab.

The condition (u, v) = 1 implies (a2, b2) = 1, so (a, b) = 1. Finally,
since z = a2 + b2 is odd, a2 and b2 must have opposite parity, imply-
ing a and b have opposite parity.
Conversely, direct substitution confirms that these formulae satisfy
x2 + y2 = z2. To verify primitivity, let d = (x, z) = (a2 − b2, a2 + b2).
Then d divides the sum 2a2 and the difference 2b2. Since (a, b) = 1,
d must divide 2. As x is odd (since a, b have opposite parity), d
must be 1.

■

7.4 Fermat’s Equation

Fermat’s equation refers to the indeterminate equation

xn + yn = zn, n ≥ 3.

Pierre de Fermat famously asserted that this equation possesses no
non-trivial integer solutions (i.e., solutions where xyz ̸= 0). This
claim, known as Fermat’s Last Theorem, remained unproven for over
three centuries until Andrew Wiles provided a complete proof in
1995.
We present Fermat’s own proof for the case n = 4. This proof
utilises the Method of Infinite Descent, a powerful variation of the well-
ordering principle tailored for Diophantine equations.
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Remark (The Method of Infinite Descent).

To prove that a property P holds for no positive integer (or that an
equation has no solution):
1. Assume for the sake of contradiction that a solution exists.
2. Select a solution that is "minimal" with respect to some positive

integer parameter (typically one of the variables, such as z).
3. Construct a new valid solution from the existing one that is

strictly smaller with respect to that parameter.
4. This contradicts the minimality assumption (since a strictly

decreasing sequence of positive integers cannot be infinite),
proving that no such solution exists.

Theorem 7.4. Fermat’s Last Theorem for n = 4.
The equation

x4 + y4 = z2 (7.3)

has no solutions in positive integers. Since any solution to x4 + y4 =

w4 corresponds to a solution of Equation 7.3 with z = w2, it follows
that x4 + y4 = w4 has no non-trivial integer solutions.

定理

Proof

Assume there exists a solution (x0, y0, z0) in positive integers. By
the well-ordering principle, we may choose the solution with the
minimal value of z0.
We first show that we can assume (x0, y0) = 1. If d = (x0, y0) > 1,
then d4 | (x4

0 + y4
0) = z2

0. Thus d2 | z0. The triple (x0/d, y0/d, z0/d2)

would be a solution with a strictly smaller z component (z0/d2 <

z0), contradicting minimality. Hence, we assume the solution is
primitive.
The equation can be written as (x2

0)
2 + (y2

0)
2 = z2

0. Since
(x0, y0) = 1, (x2

0, y2
0) = 1. Thus (x2

0, y2
0, z0) is a primitive

Pythagorean triple. By Theorem 7.3, assuming y2
0 is even (one of

the squares must be even), there exist coprime integers a, b of oppo-
site parity such that:

x2
0 = a2 − b2, y2

0 = 2ab, z0 = a2 + b2.

The first equation rearranges to x2
0 + b2 = a2. Since (a, b) =

1, it follows that (x0, b) = 1. Thus, (x0, b, a) is another primitive
Pythagorean triple.
We must determine the parity of b. Since a2 + b2 = z0 is odd (prim-
itive triple hypotenuse), a and b have opposite parity. Furthermore,
x2

0 = a2 − b2 implies x0 is odd (if x0 were even, x2
0 ≡ 0 (mod 4),

requiring a2 ≡ b2, impossible for opposite parity coprime squares).
Since x0 is odd, b must be even (as part of the triple x2

0 + b2 = a2).
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Applying Theorem 7.3 to x2
0 + b2 = a2, with b even, there exist co-

prime integers c, d of opposite parity such that:

x0 = c2 − d2, b = 2cd, a = c2 + d2.

We substitute these expressions back into the equation for y2
0:

y2
0 = 2ab = 2(c2 + d2)(2cd) = 4cd(c2 + d2).

This implies (y0

2

)2
= cd(c2 + d2).

Since c and d are coprime, they are pairwise coprime to c2 + d2.
Since their product is a perfect square, c, d, and c2 + d2 must each
be perfect squares. Let c = r2, d = s2, and c2 + d2 = t2 for positive
integers r, s, t. Substituting c and d into the last equation yields:

(r2)2 + (s2)2 = t2 =⇒ r4 + s4 = t2.

Thus, (r, s, t) is a solution to the original equation Equation 7.3. We
now compare t to our minimal z0:

t =
√

c2 + d2 =
√

a ≤
√

a2 + b2 =
√

z0.

Since z0 is part of a primitive triple, z0 > 1, so
√

z0 < z0. Thus
t < z0. We have constructed a solution (r, s, t) with a strictly smaller
hypotenuse value. This contradicts the minimality of z0. Therefore,
no such solution exists.

■

7.5 Sum of Two Squares

We apply the arithmetic tools developed in previous sections to the
classical problem of representing integers as sums of squares. This
investigation classifies integers n for which the Diophantine equation

x2
1 + x2

2 + · · ·+ x2
k = n

admits integer solutions. We focus on the cases k = 2, 3, 4, culminat-
ing in Lagrange’s Four-Square Theorem.
We consider the representation of a positive integer n as the sum of
two squares, n = x2 + y2. A fundamental tool is the algebraic identity
relating sums of squares to the modulus of complex numbers.

Lemma 7.1. Brahmagupta–Fibonacci Identity.
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For any integers a, b, c, d:

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.

Consequently, the set of integers representable as a sum of two squares
is closed under multiplication.

引理

Proof

Consider the complex numbers z1 = a + bi and z2 = c + di.
The identity follows immediately from the multiplicative prop-
erty of the modulus, |z1z2|2 = |z1|2|z2|2, upon observing that
|a + bi|2 = a2 + b2.

■

Since n can be decomposed into prime factors, the problem reduces
to determining which primes p are sums of two squares. The prime 2
is trivially representable as 12 + 12. For odd primes, the solvability is
dictated by their residue modulo 4.

Theorem 7.5. Fermat’s Theorem on Sums of Two Squares.
An odd prime p is expressible as a sum of two integer squares if and
only if p ≡ 1 (mod 4). Moreover, this representation is unique up to
the order and signs of x, y.

定理

Necessity.

Suppose p = x2 + y2. Since p is odd, x and y have opposite parity.
Thus, modulo 4,

p ≡ x2 + y2 ≡ 0 + 1 ≡ 1 (mod 4),

since squares are congruent to 0 or 1 (mod 4).
証明終

Sufficiency.

Let p ≡ 1 (mod 4). By the First Supplement to the Law of Quadratic
Reciprocity,

(
−1
p

)
= 1. Thus, there exists an integer z such that z2 ≡

−1 (mod p). We can choose |z| ≤ p/2. Consequently, z2 + 1 = mp
for some integer m. Since z2 < p2/4, we have

0 < mp = z2 + 1 ≤ p2

4
+ 1 < p2,

which implies 0 < m < p. Thus, a multiple of p is a sum
of two squares. Let m0 be the least positive integer such that
m0 p = x2 + y2. We claim m0 = 1. Suppose for contradiction
that m0 > 1. We proceed by infinite descent. Let u and v be the
least magnitude residues of x and y modulo m0, respectively. That
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is,

u ≡ x (mod m0), v ≡ y (mod m0), −m0

2
< u, v ≤ m0

2
.

Then
u2 + v2 ≡ x2 + y2 ≡ m0 p ≡ 0 (mod m0).

Let u2 + v2 = km0. Since |u|, |v| ≤ m0/2, we have u2 + v2 ≤ m2
0/2.

Thus km0 ≤ m2
0/2, implying 0 ≤ k ≤ m0/2 < m0. If k = 0, then u =

v = 0, so m0 | x and m0 | y. Then m2
0 | (x2 + y2) = m0 p, so m0 | p.

Since m0 < p, this forces m0 = 1, a contradiction. Thus 0 < k < m0.
Now, we multiply the representations using Lemma 7.1:

m0 p · km0 = (x2 + y2)(u2 + v2) = (xu + yv)2 + (xv − yu)2.

We verify the divisibility of the terms on the RHS by m0:

xu + yv ≡ x(x) + y(y) = x2 + y2 = m0 p ≡ 0 (mod m0),

xv − yu ≡ x(y)− y(x) = 0 (mod m0).

Thus, X = (xu + yv)/m0 and Y = (xv − yu)/m0 are integers. Sub-
stituting back:

m2
0kp = (m0X)2 + (m0Y)2 =⇒ kp = X2 + Y2.

We have found a representation of a multiple kp as a sum of two
squares with 0 < k < m0. This contradicts the minimality of m0.
Therefore, m0 = 1, and p = x2 + y2.

証明終

Uniqueness.

Suppose p = a2 + b2 = c2 + d2. Then p2 = (a2 + b2)(c2 + d2) =

(ac + bd)2 + (ad − bc)2. Also (ac + bd)(ac − bd) = a2c2 − b2d2 =

a2c2 − (p − a2)(p − c2) ≡ a2c2 − a2c2 ≡ 0 (mod p). Thus p di-
vides one of the factors. If p | (ac − bd), then (ac − bd)2 is divisi-
ble by p2. In the equation for p2, since (ac + bd)2 > 0, we must have
ad − bc = 0 (otherwise (ad − bc)2 ≥ p2, impossible). ad = bc =⇒
a/b = c/d. Since a, b are coprime (as their sum of squares is prime)
and c, d are coprime, it follows that {a, b} = {c, d}.

証明終

This characterisation allows us to classify all integers expressible as a
sum of two squares.

Theorem 7.6. Sum of Two Squares Theorem.
A positive integer n can be written as a sum of two squares if and only
if in the prime factorisation of n, every prime of the form q ≡ 3 (mod 4)
occurs with an even exponent.
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定理

Proof

Let n = 2k ∏ pei
i ∏ q

f j
j , where pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4).

Sufficiency: If all f j are even, then q
f j
j is a perfect square, say

s2
j = s2

j + 02, which is a sum of two squares. The primes pi

are sums of two squares by Theorem 7.5, and 2 = 12 + 12. By
Lemma 7.1, the set of representable integers is closed under mul-
tiplication. Thus n is a sum of two squares.

Necessity: Suppose n = x2 + y2. Let q be a prime divisor of n such
that q ≡ 3 (mod 4). Then x2 + y2 ≡ 0 (mod q). If q ∤ x,
there exists a modular inverse x−1 modulo q. Then (yx−1)2 ≡ −1
(mod q). This implies

(
−1
q

)
= 1, contradicting q ≡ 3 (mod 4)

(corollary 6.1). Therefore, q | x. Since q | (x2 + y2), it follows that
q | y2, so q | y. We can write x = qx1 and y = qy1. Then
n = q2(x2

1 + y2
1). The exponent of q in n is 2 plus the exponent of

q in x2
1 + y2

1. By infinite descent (induction on the power of q), the
total exponent of q must be even.

■

7.6 Sums of Three and Four Squares

While not every integer is a sum of two squares, the set of repre-
sentable integers expands as we allow more squares.

Sum of Three Squares

Theorem 7.7. Legendre’s Three-Square Theorem (Necessity).
If a positive integer n is of the form 4k(8m+ 7), then n cannot be ex-
pressed as the sum of three squares.

定理

Proof

We first consider the case k = 0, so n ≡ 7 (mod 8). The quadratic
residues modulo 8 are 02 ≡ 0, 12 ≡ 1, 22 ≡ 4, 32 ≡ 1.
Thus x2 ≡ 0, 1, 4 (mod 8). We examine all possible sums of three
elements from {0, 1, 4} modulo 8:
• Maximum sum: 4 + 4 + 4 ≡ 4.
• Combinations with 1: 1 + 1 + 1 = 3, 4 + 1 + 1 = 6, 4 + 4 + 1 = 1,

etc.
It is verified by exhaustion that no sum of three residues yields 7
(mod 8). Thus, n ≡ 7 (mod 8) is not a sum of three squares.
Suppose now n = 4k(8m + 7). We proceed by induction on k. The
base case is proved. Suppose n = 4N and n = x2 + y2 + z2. Then
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x2 + y2 + z2 ≡ 0 (mod 4). Since squares modulo 4 are 0 or 1, the
only solution to a + b + c ≡ 0 (mod 4) is a ≡ b ≡ c ≡ 0 (mod 4) (as
1 + 1 + 1 = 3 ̸≡ 0). Thus x, y, z must all be even. Let x = 2x1, y =

2y1, z = 2z1. Then 4N = 4(x2
1 + y2

1 + z2
1), so N = x2

1 + y2
1 +

z2
1. This reduces the problem to N. If n = 4k(8m + 7), repeated di-

vision by 4 eventually yields an integer of the form 8m + 7, which is
not representable.

■

Remark.

Legendre proved that this condition is also sufficient, though the
proof is significantly more involved than the two-square case, rely-
ing on the theory of ternary quadratic forms.

Lagrange’s Four-Square Theorem

We finally address the representation by four squares. We begin with
Euler’s four-square identity, which establishes the multiplicativity of
the form x2 + y2 + z2 + w2.

Lemma 7.2. Euler’s Four-Square Identity.
For any sets of integers (xk) and (yk):(

4

∑
i=1

x2
i

)(
4

∑
i=1

y2
i

)
=

4

∑
i=1

z2
i ,

where

z1 = x1y1 + x2y2 + x3y3 + x4y4,

z2 = x1y2 − x2y1 + x3y4 − x4y3,

z3 = x1y3 − x3y1 + x4y2 − x2y4,

z4 = x1y4 − x4y1 + x2y3 − x3y2.

引理

Remark.

This identity relates to the norm of quaternions. The norm of the
product of two quaternions is the product of their norms. Alterna-
tively, it represents the determinant of the matrix product[

x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

] [
y1 + iy2 y3 + iy4

−y3 + iy4 y1 − iy2

]
.

Since the form is multiplicative, to prove that every positive integer is
a sum of four squares, it suffices to prove the result for primes. Since
2 = 12 + 12 + 02 + 02, we focus on odd primes.
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Lemma 7.3. Existence of a Multiple.
Let p be an odd prime. There exists an integer m with 1 ≤ m < p
such that mp is a sum of four squares.

引理

Proof

Consider the sets of residues S1 = {x2 : 0 ≤ x ≤ (p − 1)/2} and
S2 = {−1 − y2 : 0 ≤ y ≤ (p − 1)/2}. Both sets contain (p + 1)/2
distinct elements (since x2 ≡ z2 (mod p) =⇒ x ≡ ±z). The total
number of elements is p + 1, which exceeds p. By the pigeonhole
principle, S1 and S2 must share a residue modulo p. Thus, there
exist x, y such that x2 ≡ −1 − y2 (mod p), or

x2 + y2 + 12 + 02 = mp

for some integer m. Since x, y < p/2,

mp = x2 + y2 + 1 <
p2

4
+

p2

4
+ 1 < p2.

Thus 0 < m < p.
■

Theorem 7.8. Lagrange’s Four-Square Theorem.
Every positive integer n can be expressed as the sum of four integer
squares.

定理

Proof

By Lemma 7.2, it suffices to prove this for primes. Let p be
an odd prime. Let m0 be the least positive integer such that
m0 p = x2

1 + x2
2 + x2

3 + x2
4. By Lemma 7.3, we know 1 ≤ m0 < p.

We assume m0 > 1 and derive a contradiction.
Case 1: m0 is even. If m0 is even, then ∑ x2

i is even. Thus, either all
xi are even, all are odd, or two are even and two are odd. In all
cases, we can reorder such that x1 ≡ x2 (mod 2) and x3 ≡ x4

(mod 2). Then

m0

2
p =

(
x1 + x2

2

)2
+

(
x1 − x2

2

)2
+

(
x3 + x4

2

)2
+

(
x3 − x4

2

)2
.

This gives a representation for a smaller multiple m0/2, contra-
dicting the minimality of m0. Thus m0 must be odd.

Case 2: m0 is odd. For each i, let yi be the numerically least residue
of xi modulo m0, i.e., yi ≡ xi (mod m0) and |yi| < m0/2 (strict
inequality holds since m0 is odd). Then

∑ y2
i ≡ ∑ x2

i = m0 p ≡ 0 (mod m0).
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Let ∑ y2
i = km0. Since |yi| < m0/2,

km0 = ∑ y2
i < 4

(m0

2

)2
= m2

0 =⇒ k < m0.

Also k > 0, for if k = 0, then yi = 0 for all i, implying m0 | xi.
This would imply m2

0 | m0 p, so m0 | p, impossible as 1 < m0 < p.
We apply Lemma 7.2 to the product (m0 p)(km0):

m2
0kp =

(
∑ x2

i

) (
∑ y2

i

)
= ∑ z2

i .

Recall the first term in Euler’s identity is z1 = ∑ xiyi. Since yi ≡
xi (mod m0),

z1 = ∑ xiyi ≡ ∑ x2
i ≡ 0 (mod m0).

Similarly, one can verify that z2, z3, z4 are divisible by m0. For
instance,

z2 = x1y2 − x2y1 + x3y4 − x4y3 ≡ x1x2 − x2x1 + · · · ≡ 0 (mod m0).

Let Zi = zi/m0. Then
kp = ∑ Z2

i .

Since 0 < k < m0, this contradicts the minimality of m0.
Therefore, m0 must be 1, so p is a sum of four squares.

■

7.7 Generalisations: Waring’s Problem and Universal Forms

Having established Theorem 7.8, which asserts that every positive
integer is the sum of at most four squares, it is natural to inquire
whether similar results hold for higher powers or more general
quadratic forms. These questions form the basis of Waring’s Prob-
lem and the theory of universal quadratic forms.

Waring’s Problem

In 1770, Edward Waring conjectured a profound generalisation of
Lagrange’s result. He proposed that for every integer k ≥ 2, there
exists a fixed integer g(k) such that every positive integer can be
expressed as the sum of at most g(k) k-th powers of non-negative
integers. Specifically, Waring posited that every integer is a sum of
9 cubes, 19 fourth powers, and so on. The existence of such a bound
was finally proven by Hilbert in 1909.

Theorem 7.9. Hilbert-Waring Theorem.
For every integer k ≥ 2, there exists a minimal positive integer g(k)
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such that every n ∈ Z+ can be written as

n = xk
1 + xk

2 + · · ·+ xk
s ,

with s = g(k) and xi ∈ Z≥0.
定理

While Hilbert established existence, determining the precise value of
g(k) is a distinct computational challenge. We know from Theorem 7.8
that g(2) = 4. For k = 3, it was proved that g(3) = 9. For k = 4, it
was established in 1986 that g(4) = 19.

Example 7.5. Inefficiency of Greedy Decompositions. The represen-
tation of integers as sums of powers is not necessarily achieved by
the greedy algorithm (subtracting the largest possible power at each
step). Consider n = 32 for sums of squares (k = 2). The greedy
algorithm yields:

32 = 25 + 7 = 25 + 4 + 3 = 25 + 4 + 1 + 1 + 1,

requiring 5 squares. However, the optimal representation is
32 = 16 + 16, which uses only 2 squares. This illustrates that
minimal decompositions often require arithmetic insight beyond
size reduction.

範例

Polygonal Numbers

A parallel generalisation considers the geometry of the summands.
Just as squares correspond to the area of a square grid, one may de-
fine polygonal numbers representing triangles, pentagons, and higher
m-gons.

Definition 7.4. Polygonal Numbers.
For m ≥ 3, the n-th m-gonal number Pm(n) is given by the formula:

Pm(n) =
(m − 2)n2 − (m − 4)n

2
.

For m = 3, these are the triangular numbers Tn = n(n+1)
2 . For m = 4,

these are the squares n2.
定義

Fermat conjectured that every positive integer is the sum of at most
m m-gonal numbers. The general conjecture was subsequently proved
by Cauchy in 1813.

Theorem 7.10. Fermat’s Polygonal Number Theorem.
For every m ≥ 3, every positive integer is the sum of at most m m-gonal
numbers.



114 gudfit

定理

Universal Quadratic Forms

Returning to quadratic forms, we define a form to be universal if it
represents every positive integer. Theorem 7.8 states that the form
x2 + y2 + z2 + w2 is universal. Conversely, Theorem 7.7 implies that
no ternary form can be universal. Thus, a universal positive definite
form must have rank at least 4.
Ramanujan (1916) systematically analysed diagonal quaternary forms
ax2 + by2 + cz2 + dw2 and identified 54 such forms that appeared to
be universal. Determining the universality of a general form is non-
trivial. However, the Conway-Schneeberger 15-Theorem provides a
remarkably simple sufficiency criterion for forms with integer matrix
coefficients.

Theorem 7.11. The 15-Theorem.
Let f be a positive definite quadratic form with integer matrix coeffi-
cients. If f represents every positive integer in the set {1, 2, . . . , 15}, then
f is universal.

定理

For general integer-valued forms (where the matrix may have half-
integer off-diagonal entries), a stronger condition is required. This
was established by Manjul Bhargava.

Theorem 7.12. The 290-Theorem.
Let f be a positive definite quadratic form that takes integer values on
Zn. If f represents every integer in the set {1, 2, . . . , 290}, then f is uni-
versal.

定理

These theorems reduce the infinite problem of universality to a finite
computation. For instance, to verify Theorem 7.8, one need only check
that x2 + y2 + z2 + w2 represents the integers up to 15.

7.8 Exercises

1. Sum of Two Squares: Computation. Determine which of the fol-
lowing integers can be expressed as the sum of two squares of
integers. For those that can, find at least one explicit representa-
tion n = x2 + y2.

(a) 54

(b) 171

(c) 282

(d) 379

(e) 487
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(f) 6291

(g) 40003

2. Difference of Two Squares.

(a) Determine necessary and sufficient conditions for an integer
n to be expressible as the difference of two integer squares,
i.e., n = x2 − y2.

(b) Prove that for any integer n, the equation x2 + y2 − z2 = n has For (b): Try setting z = y + k and
reducing the equation to a linear one in
y.

infinitely many solutions in positive integers x, y, z.

3. Sum of Three Squares Obstruction. Show that the integers 7,
15, 23, and 28 cannot be expressed as the sum of three squares of
integers.

4. Prime Powers and Sums of Squares. Let p be a prime number Distinguish between integer solutions
(where one square could be zero) and
positive integer solutions. Note that
pk = pk + 02 is a valid sum of squares
in Z, but the question asks for positive
integers.

with p ≡ 3 (mod 4). Prove that for all k ≥ 1, pk cannot be ex-
pressed as the sum of two squares of positive integers.

5. Gaps in Sums of Two Squares. Prove that for any given n ≥ 1,
there exist n consecutive positive integers such that none of them
can be expressed as the sum of two squares of integers.

6. Jacobi Symbol Computation. Let n = 77.

(a) Evaluate the Jacobi symbols
(
−1
77

)
and

( 2
77
)

using the Gener-
alised Reciprocity Laws.

(b) Verify your results by computing the Legendre symbols
( a

7
)

and
( a

11
)

directly.

7. Local Solvability Counter-Example. Verify that the equation
2x2 + 7y2 = 1 has solutions modulo m for every integer m > 1, but
has no rational solutions.

8. Pythagorean Triples. Find all primitive Pythagorean triples
(x, y, z) such that x + y + z = 40.

9. Fermat for n = 4 Variant. Show that the equation x4 − y4 = z2 has
no solutions in non-zero integers.

10. Sums of Squares in Zp. Let p be an odd prime. Prove that the set
of squares S = {x2 (mod p)} satisfies S + S = Zp. That is, every
element in Zp is the sum of two squares.

11. Waring’s Problem Bound. Prove that g(2) ≥ 4. That is, finding Consider integers of the form 2n − 1 or
similar specific structures.an integer that requires 4 squares. Prove that g(3) ≥ 9.

12. ⋆ The 15-Theorem Application. Determine whether the quadratic Check representability of integers
1, . . . , 15.form Q(x, y, z, w) = x2 + 2y2 + 5z2 + 5w2 is universal.

13. Liouville’s Formula. Let r2(n) denote the number of represen-
tations of n as a sum of two squares (counting order and signs).
Prove that r2(n) = 4(d1(n)− d3(n)), where d1(n) is the number
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of divisors of n of the form 4k + 1, and d3(n) is the number of
divisors of the form 4k + 3.



A
Appendix: Pell’s Equation

We now turn our attention to one of the most famous Diophantine
equations, the study of which bridges elementary number theory
and the arithmetic of quadratic fields. This investigation naturally
introduces the concept of algebraic integers and the group structure
of units in quadratic rings.

A.1 The Equation and Quadratic Rings

Let d ∈ Z>1 be a squarefree integer. Pell’s equation is the quadratic
Diophantine equation

x2 − dy2 = 1. (A.1)

We seek integral solutions (x, y) ∈ Z2. The factorisation of the left-
hand side over R suggests the introduction of an algebraic structure
extending the integers:

x2 − dy2 = (x + y
√

d)(x − y
√

d).

This motivates the study of the ring Z[
√

d].

Definition A.1. Ring Adjunction.
Let α ∈ C. We define Z[α] as the smallest subring of C containing α.
Equivalently, it is the intersection of all subrings of C containing α. Ex-
plicitly,

Z[α] = { f (α) | f ∈ Z[X]} = {a0 + a1α+ · · ·+ anαn | n ∈ Z≥0, ai ∈ Z}.

定義

Example A.1. Examples of Adjoined Rings.
· If α = 1, then Z[1] = Z.
· If α = i, then Z[i] = {a + bi | a, b ∈ Z}, known as the Gaussian

integers.
· Consider α = 3

√
2. The set {a + b 3

√
2 | a, b ∈ Z} is not a ring

because it is not closed under multiplication (it does not contain
( 3
√

2)2 = 3
√

4). Thus Z[ 3
√

2] = {a + b 3
√

2 + c 3
√

4 | a, b, c ∈ Z}.
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· If α = 1/p for a prime p, then Z[1/p] = {a/pn | a ∈ Z, n ≥ 0}.

範例

To study Pell’s equation systematically, we restrict our attention to
quadratic extensions.

Definition A.2. Algebraic Integers of Degree Two.
A number α ∈ C is an algebraic integer of degree two if α /∈ Z and α is
a root of a monic quadratic polynomial with integer coefficients:

X2 + aX + b = 0, a, b ∈ Z.

定義

For Pell’s equation, we are interested in α =
√

d. Since d is squarefree
and d > 1, α is a root of X2 − d = 0, satisfying the definition.

Proposition A.1. Structure of Quadratic Rings.
If α is an algebraic integer of degree two, then

Z[α] = {x + yα | x, y ∈ Z}.

命題

Proof

First, we show that α /∈ Q. Suppose α = r/s with (r, s) = 1 and s >

0. Substituting into X2 + aX + b = 0, we obtain

r2

s2 + a
r
s
+ b = 0 =⇒ r2 + ars + bs2 = 0.

Thus s | r2. Since (r, s) = 1, this implies s | 1, so s = 1 and α ∈ Z, a
contradiction.
Consequently, if x, y ∈ Z and x + yα = 0, then x = y = 0.
This ensures the representation x + yα is unique. Let S = {x + yα |
x, y ∈ Z}. Clearly S ⊆ Z[α] and S is an additive group containing
1. To show S = Z[α], it suffices to show S is closed under multipli-
cation. Let z = x + yα and w = X + Yα. Then:

zw = (x + yα)(X + Yα) = xX + (xY + yX)α + yYα2.

Since α2 = −aα − b, we substitute:

zw = (xX − byY) + (xY + yX − ayY)α.

Since a, b ∈ Z, the coefficients remain integers, so zw ∈ S.
■

We distinguish between real quadratic subrings (where α ∈ R) and
imaginary quadratic subrings (where α /∈ R). For Pell’s equation,
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Z[
√

d] is real quadratic.

Norms and Units

Associated with the quadratic equation X2 + aX + b = 0 is the
conjugation map. Let α∗ be the other root of the polynomial. For
z = x + yα ∈ Z[α], we define the conjugate z∗ = x + yα∗. Note that
α + α∗ = −a and αα∗ = b.

Definition A.3. Norm.
The norm map N : Z[α] → Z is defined by

N(z) = zz∗.

For z = x + yα, explicit calculation yields:

N(x+ yα) = (x+ yα)(x+ yα∗) = x2 + xy(α+ α∗)+ y2αα∗ = x2 − axy+ by2.

Since a, b ∈ Z, the norm is integer-valued.
定義

The norm is totally multiplicative. Since (zw)∗ = z∗w∗, we have

N(zw) = zw(zw)∗ = zz∗ww∗ = N(z)N(w).

Furthermore, N(x + yα) = 0 if and only if x = y = 0.
Remark (Pell Connection).

In the specific case α =
√

d, the roots of X2 − d are ±
√

d. Thus α∗ =

−
√

d. The norm becomes:

N(x + y
√

d) = (x + y
√

d)(x − y
√

d) = x2 − dy2.

Notice that N(
√

d) = −d < 0. In real quadratic fields, the norm
may be negative. The solutions to Pell’s equation x2 − dy2 = 1 cor-
respond precisely to elements z ∈ Z[

√
d] such that N(z) = 1.

Definition A.4. Units.
The group of units of Z[α], denoted Z[α]×, consists of elements with
multiplicative inverses in the ring:

Z[α]× = {z ∈ Z[α] | ∃w ∈ Z[α], zw = 1}.

Using the multiplicative property of the norm, z is a unit if and only
if N(z) = ±1. We define the subgroup of 1-units as:

Z[α]×,1 = {z ∈ Z[α] | N(z) = 1}.

定義
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For Z[
√

d], the set of solutions to Pell’s equation corresponds exactly
to Z[

√
d]×,1.

A.2 Structure of Solutions

We now analyse the structure of Z[
√

d]×,1. It trivially contains ±1.
We seek to determine if there are non-trivial solutions.

Lemma A.1. Sign Properties.
Let u = x + y

√
d ∈ Z[

√
d]×,1. Then:

x > 0, y > 0 ⇐⇒ u > 1,

x > 0, y < 0 ⇐⇒ 0 < u < 1,

x < 0, y > 0 ⇐⇒ −1 < u < 0,

x < 0, y < 0 ⇐⇒ u < −1.

引理

Proof

Suppose x, y > 0. Then x + y
√

d > y
√

d ≥
√

d > 1. Since N(u) = 1,
we have (x + y

√
d)(x − y

√
d) = 1. Thus x − y

√
d = u−1. Since u >

1, it follows that 0 < u−1 < 1. Replacing y with −y corresponds to
taking the inverse u−1 = x − y

√
d. Thus x > 0, y < 0 ⇐⇒ u ∈

(0, 1). The negative cases follow by considering −u = −x − y
√

d.
These four cases exhaust all possibilities for non-zero x, y.

■

Lemma A.2. Monotonicity.
Let z = x + y

√
d and z′ = x′ + y′

√
d be elements of Z[

√
d]×,1 with

z, z′ > 1 (implying x, y, x′, y′ > 0). Then z > z′ if and only if y > y′.
引理

Proof

Consider the function f (t) = t − 1/t. Its derivative is 1 + 1/t2 > 0,
so it is strictly increasing for t > 0. For any unit u = x + y

√
d with

norm 1, we have u−1 = x − y
√

d. Thus u − u−1 = (x + y
√

d)− (x −
y
√

d) = 2y
√

d. Therefore, z > z′ ⇐⇒ z − 1/z > z′ − 1/z′ ⇐⇒
2y
√

d > 2y′
√

d ⇐⇒ y > y′.
■

This monotonicity allows us to identify a generator for the group
of units. If there exists any unit z > 1, there must exist a smallest
such unit, as the integer component y must be a positive integer and
cannot decrease indefinitely.
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Definition A.5. Fundamental Unit.
The fundamental 1-unit ϵ of Z[

√
d] is the smallest element of Z[

√
d]×,1

such that ϵ > 1. By Lemma A.2, this corresponds to the solution x +

y
√

d with the minimal positive y.
定義

Proposition A.2. Structure of the Unit Group.
If Z[

√
d]×,1 ̸= {±1}, then

Z[
√

d]×,1 = {±ϵn | n ∈ Z},

where ϵ is the fundamental 1-unit.
命題

Proof

Let z ∈ Z[
√

d]×,1. If z = ±1, the claim holds with n = 0. Other-
wise, by replacing z with −z, z−1, or −z−1, we may assume z > 1.
Suppose z is not an integer power of ϵ. Since ϵ > 1, the sequence ϵn

tends to infinity. There exists a unique integer n ≥ 1 such that

ϵn < z < ϵn+1.

Multiply by ϵ−n:
1 < zϵ−n < ϵ.

Let w = zϵ−n. Since units form a group, w ∈ Z[
√

d]×,1. However,
we have found a unit w strictly between 1 and the fundamental unit
ϵ. This contradicts the minimality of ϵ. Thus, z = ϵn.

■

Example A.2. Pell’s Equation for d = 2. Consider x2 − 2y2 = 1. The
smallest positive solution is x = 3, y = 2. Thus ϵ = 3 + 2

√
2. All

other solutions are generated by powers of ϵ:
· n = 1: 3 + 2

√
2 (x = 3, y = 2).

· n = 2: (3 + 2
√

2)2 = 9 + 8 + 12
√

2 = 17 + 12
√

2. Check: 172 −
2(12)2 = 289 − 288 = 1.

範例

A.3 Existence of Solutions

We have established the structure of the solution set contingent on
the existence of at least one non-trivial solution. To prove existence,
we employ Dirichlet’s Diophantine approximation. The geometry
of the hyperbola x2 − dy2 = 1 implies that for large x, y, we have
x/y ≈

√
d.
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x

y

(3, 2)

(1, 0)

x2 − dy2 = 1

Figure A.1: The positive branch
of the hyperbola x2 − dy2 = 1.
Solutions correspond to integer
lattice points on the curve.

Theorem A.1. Dirichlet’s Approximation Theorem.
Let α ∈ R \ Q and let Q ∈ Z>1. There exist integers p, q such that

1 ≤ q < Q, |p − qα| < 1
Q

.

定理

Proof

For each k ∈ {1, . . . , Q − 1}, let ak = {kα} = kα − ⌊kα⌋ de-
note the fractional part. Clearly ak ∈ (0, 1). Consider the partition
of [0, 1] into Q sub-intervals:[

0,
1
Q

)
,
[

1
Q

,
2
Q

)
, . . . ,

[
Q − 1

Q
, 1
]

.

Consider the set of Q + 1 points:

S = {0, a1, a2, . . . , aQ−1, 1}.

By the Pigeonhole Principle, at least two points from S must fall
into the same sub-interval. The distance between these two points
is less than 1/Q.
• If one point is 1 and another is aq, then |1 − (qα − ⌊qα⌋)| < 1/Q.

Let p = ⌊qα⌋+ 1. Then |p − qα| < 1/Q.
• If one point is 0 and another is aq, then |qα − p| < 1/Q with p =

⌊qα⌋.
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• If the points are aj and ak with j < k, then |{kα} − {jα}| < 1/Q.

|(kα − ⌊kα⌋)− (jα − ⌊jα⌋)| = |(k − j)α − (⌊kα⌋ − ⌊jα⌋)| < 1
Q

.

Let q = k− j and p = ⌊kα⌋− ⌊jα⌋. Then 1 ≤ q < Q and |qα− p| <
1/Q.

■

Corollary A.1. Infinite Approximations. For any irrational α, there exist
infinitely many pairs of coprime integers (p, q) with q > 0 such that∣∣∣∣α − p

q

∣∣∣∣ < 1
q2 .

推論

Proof

By Theorem A.1, there exists at least one such pair (p, q) satisfying
|p − qα| < 1/Q ≤ 1/q, which implies |α − p/q| < 1/q2. Suppose
there were only finitely many such pairs (p1, q1), . . . , (pn, qn). Let
δ = mini |α − pi/qi|. Since α is irrational, δ > 0. Choose an integer
Q such that 1/Q < δ. By Theorem A.1, there exists a pair (p′, q′)
with 1 ≤ q′ < Q such that∣∣∣∣α − p′

q′

∣∣∣∣ < 1
q′Q

≤ 1
Q

< δ.

Also 1/(q′Q) < 1/(q′)2. This new pair (p′, q′) satisfies the inequal-
ity and is distinct from all (pi, qi) because the difference |α − p′/q′|
is strictly smaller than δ. This contradiction establishes the exis-
tence of infinitely many solutions.

■

We are now equipped to prove the solvability of Pell’s equation.

Theorem A.2. Existence of Solutions.
If d > 1 is squarefree, then there exists a non-trivial solution to x2 −
dy2 = 1.

定理

Proof

Let α =
√

d. By Corollary A.1, there exist infinitely many distinct
pairs (pk, qk) with qk > 0 such that |pk − qk

√
d| < 1/qk. For such

pairs, we bound the norm:

|pk + qk
√

d| = |pk − qk
√

d+ 2qk
√

d| < 1
qk

+ 2qk
√

d ≤ qk(1+2
√

d) < 3qk
√

d.
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(Using qk ≥ 1 and 1/qk ≤ qk). Calculating the norm:

|N(pk + qk
√

d)| = |pk − qk
√

d| · |pk + qk
√

d| < 1
qk

· 3qk
√

d = 3
√

d.

Thus, for infinitely many pairs (pk, qk), the integer value
N(pk + qk

√
d) lies in the bounded interval (−3

√
d, 3

√
d). By the Pi-

geonhole Principle, there exists an integer M ∈ (−3
√

d, 3
√

d) \ {0}
such that

N(pk + qk
√

d) = p2
k − dq2

k = M

for infinitely many k. Let this subset of pairs be SM.
Since there are infinitely many pairs in SM but only M2 possible
residue classes modulo |M|, there must exist two distinct pairs
(pi, qi) and (pj, qj) in SM such that

pi ≡ pj (mod |M|) and qi ≡ qj (mod |M|).

Let zi = pi + qi
√

d and zj = pj + qj
√

d. We construct a unit by con-
sidering their quotient u = ziz−1

j . Working in Q[
√

d]:

u =
pi + qi

√
d

pj + qj
√

d
=

(pi + qi
√

d)(pj − qj
√

d)
p2

j − dq2
j

=
(pi pj − dqiqj) + (qi pj − piqj)

√
d

M
.

We verify the integrality of the coefficients:
Coefficient of

√
d: qi pj − piqj. Since pi ≡ pj and qi ≡ qj (mod |M|),

qi pj − piqj ≡ qj pj − pjqj ≡ 0 (mod |M|).

Rational part: pi pj − dqiqj.

pi pj − dqiqj ≡ p2
i − dq2

i ≡ M ≡ 0 (mod |M|).

Thus u = x+ y
√

d with x, y ∈ Z. Finally, the norm of the quotient is
the quotient of the norms:

N(u) = N(zi/zj) = N(zi)/N(zj) = M/M = 1.

Since (pi, qi) ̸= (pj, qj), it can be shown that u ̸= ±1. Thus we have
found a non-trivial solution to Pell’s equation.

■

The Negative Pell Equation Consider the related equation

x2 − dy2 = −1.

This equation does not always have solutions. For example, if d = 3,
modulo 3 gives x2 ≡ −1 (mod 3), which is impossible. A solution
exists if and only if there exists a unit u ∈ Z[

√
d]× with norm −1. If
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such a fundamental unit u exists, all solutions to x2 − dy2 = ±1 are
of the form ±un. The even powers give solutions to the +1 equation,
and odd powers give solutions to the −1 equation.

A.4 Exercises

1. Solving Pell’s Equation. Find the fundamental solution (x1, y1)

and the next two positive solutions for the following values of d:

(a) d = 3
(b) d = 5
(c) d = 7

2. Unit Group Structure. Consider the ring Z[
√

6].

(a) Find the fundamental unit ϵ with norm 1.
(b) Prove that there is no unit with norm −1.
(c) Describe the set of all integer solutions to x2 − 6y2 = 1.

3. Negative Pell Equation Obstructions. Prove that x2 − dy2 = −1
has no integer solutions if d ≡ 3 (mod 4).

4. Approximation by Rationals. Use the continued fraction expan-
sion of

√
2 (or trial and error) to find three rational numbers p/q

such that |
√

2 − p/q| < 1/q2.

5. Units in Gaussian Integers. Determine the group of units for the
ring of Gaussian integers Z[i]. Explain why this group is finite,
unlike the real quadratic case.

6. Norm Properties. Let α =
√

d. Prove that for any z, w ∈ Z[α],
N(zw) = N(z)N(w).

7. Triangular Square Numbers. A number is called a triangular
square if it is both a triangular number (Tn = n(n + 1)/2) and a
perfect square (m2).

(a) Show that finding triangular square numbers is equivalent to
solving the Pell equation x2 − 2y2 = 1.

(b) Find the first three triangular square numbers.



B
Appendix: Continued Fractions and Approximation

Having investigated Pell’s equation x2 − dy2 = 1 using Dirichlet’s
Approximation Theorem, we now develop the general theory of con-
tinued fractions. This framework provides an algorithmic approach
to finding best rational approximations and fundamental units.

B.1 Rational Continued Fractions

We begin with the continued fraction expansion for rational numbers,
which is intimately connected to the Euclidean algorithm.

Definition B.1. Finite Continued Fraction.
Let x ∈ Q. We can write x uniquely as

x = a0 +
1

a1 +
1

. . . +
1
an

,

where a0 ∈ Z and ai ∈ Z≥1 for i ≥ 1. We denote this expansion by
[a0; a1, . . . , an]. The algorithm proceeds as follows: Let x0 = x. For i ≥
0, define ai = ⌊xi⌋. If xi ∈ Z, stop. Otherwise, define xi+1 = 1

xi−ai
.
定義

Example B.1. Expansion of 40/19. Consider x = 40
19 .

x0 =
40
19

= 2 +
2

19
=⇒ a0 = 2, r0 =

2
19

.

x1 =
1
r0

=
19
2

= 9 +
1
2

=⇒ a1 = 9, r1 =
1
2

.

x2 =
1
r1

= 2 = 2 + 0 =⇒ a2 = 2.

The process terminates, yielding 40
19 = [2; 9, 2]. Checking: 2 + 1

9+ 1
2
=

2 + 1
19/2 = 2 + 2

19 = 40
19 .

範例
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B.2 Infinite Continued Fractions

For irrational numbers, the algorithm does not terminate, leading to
an infinite sequence of coefficients.

Definition B.2. Infinite Expansion.
Let α ∈ R \ Q. We define the sequences {ai} and {ri} by:

α = a0 + r0, a0 = ⌊α⌋, 0 < r0 < 1.

For i ≥ 0, if ri ̸= 0:

1
ri

= ai+1 + ri+1, ai+1 =

⌊
1
ri

⌋
≥ 1, 0 < ri+1 < 1.

We write α = [a0; a1, a2, . . . ].
定義

Example B.2. Expansion of
√

3. Let α =
√

3 ≈ 1.732.
1. a0 = ⌊

√
3⌋ = 1. Remainder r0 =

√
3 − 1.

2. x1 = 1√
3−1

=
√

3+1
2 . Since 1 <

√
3 < 2, 2 <

√
3 + 1 < 3, so 1 <

x1 < 1.5. Thus a1 = ⌊x1⌋ = 1. Remainder r1 =
√

3+1
2 − 1 =

√
3−1
2 .

3. x2 = 1
r1

= 2√
3−1

=
√

3 + 1. Clearly 2 < x2 < 3. Thus a2 = ⌊x2⌋ =

2. Remainder r2 = (
√

3 + 1)− 2 =
√

3 − 1.
Observe that r2 = r0. The process repeats with period 2. Thus

√
3 =

[1; 1, 2, 1, 2, . . . ] = [1; 1, 2].

範例

Convergents

The truncation of an infinite continued fraction yields a sequence of
rational approximations called convergents.

Definition B.3. Convergents.
Given a sequence a0, a1, . . . , we define the sequences {pn} and {qn} re-
cursively:

p0 = a0, q0 = 1,

p1 = a0a1 + 1, q1 = a1,

pn = an pn−1 + pn−2, qn = anqn−1 + qn−2 for n ≥ 2.

The n-th convergent is defined as cn = pn
qn

.
定義

Lemma B.1. Value of Finite Continued Fractions.
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For any real numbers a0, . . . , an with ai > 0 for i ≥ 1:

[a0; a1, . . . , an] =
pn

qn
.

引理

Proof

We proceed by induction on n. For n = 0, [a0] = a0/1 = p0/q0. For
n = 1, [a0; a1] = a0 +

1
a1

= a0a1+1
a1

= p1
q1

. For n > 1, observe that

[a0; a1, . . . , an] =

[
a0; a1, . . . , an−2, an−1 +

1
an

]
.

Let p′k, q′k be the sequences for the modified fraction of length n − 1.
Note that for k ≤ n − 2, the coefficients are identical, so p′k = pk and
q′k = qk. By the inductive hypothesis:

[a0; . . . , an−1 + 1/an] =
p′n−1
q′n−1

.

Using the recurrence relation for index n − 1 with the modified last
term ãn−1 = an−1 +

1
an

:

p′n−1 =

(
an−1 +

1
an

)
pn−2 + pn−3 =

(anan−1 + 1)pn−2 + an pn−3

an

=
an(an−1 pn−2 + pn−3) + pn−2

an
=

an pn−1 + pn−2

an
=

pn

an
.

Similarly, q′n−1 = qn
an

. Thus the ratio is pn/an
qn/an

= pn
qn

.
■

Since ai ≥ 1 for all i ≥ 1, the denominators qn grow at least as fast as
the Fibonacci sequence, implying exponential growth.

Lemma B.2. Determinant Identity.
For all n ≥ 1:

pnqn−1 − qn pn−1 = (−1)n−1.

Consequently, gcd(pn, qn) = 1.
引理

Proof

For n = 1: p1q0 − q1 p0 = (a0a1 + 1)(1) − a1(a0) = 1 = (−1)0. For
n > 1:

pnqn−1 − qn pn−1 = (an pn−1 + pn−2)qn−1 − (anqn−1 + qn−2)pn−1

= pn−2qn−1 − qn−2 pn−1

= −(pn−1qn−2 − qn−1 pn−2).

The result follows by induction.



algebra iiic: number theory (structures) 129

■

This identity implies that successive convergents are close:

pn

qn
− pn−1

qn−1
=

(−1)n−1

qnqn−1
.

Lemma B.3. Alternating Bounds.
Let α be an irrational number. The even convergents are strictly increas-
ing and bounded above by α, while the odd convergents are strictly de-
creasing and bounded below by α. Specifically:

p0

q0
<

p2

q2
< · · · < α < · · · < p3

q3
<

p1

q1
.

引理

Proof

From Lemma B.1, we can express α using the complete quotient
1/rn. Let αn be the tail of the continued fraction starting at index n,
so α = [a0; a1, . . . , an, αn+1], where αn+1 > 1. Then

α =
αn+1 pn + pn−1

αn+1qn + qn−1
.

. Consider the function f (x) = xpn+pn−1
xqn+qn−1

.

f ′(x) =
pn(xqn + qn−1)− qn(xpn + pn−1)

(xqn + qn−1)2 =
pnqn−1 − qn pn−1

(. . . )2 =
(−1)n−1

(. . . )2 .

.
• If n is even, f ′(x) < 0. f (x) is decreasing. Since αn+1 < ∞, α =

f (αn+1) > lim
x→∞

f (x) = pn
qn

.

• If n is odd, f ′(x) > 0. f (x) is increasing. Thus α < pn
qn

.
The monotonicity of the subsequences follows from comparing
pn/qn and pn+2/qn+2.

■

Corollary B.1. Convergence. Since

|α − pn/qn| < |pn/qn − pn+1/qn+1| =
1

qnqn+1
,

, and qn grows exponentially, lim
n→∞

pn
qn

= α.

推論

B.3 Best Approximations

The convergents provide the "best" rational approximations to α in a
strong sense.
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Theorem B.1. Best Rational Approximation I.
Let α be irrational. Let n ≥ 1. For any integers h, k with 0 < k < qn+1,

|kα − h| ≥ |qnα − pn|.

Equality implies h/k = pn/qn.
定理

Proof

Consider the system of linear equations for integers u, v:[
pn pn+1

qn qn+1

] [
u
v

]
=

[
h
k

]
.

The determinant is pnqn+1 − pn+1qn = (−1)n+1 ∈ {±1}. Thus,
unique integer solutions u, v exist. k = uqn + vqn+1. If v = 0, then
k = uqn. Since 0 < k < qn+1, we must have u ̸= 0. Then |kα −
h| = |u||qnα − pn| ≥ |qnα − pn|. If v ̸= 0, we claim u ̸= 0 and u, v
have opposite signs. Suppose u = 0. Then k = vqn+1, impossible
since k < qn+1. Suppose u, v have the same sign. Then |k| = |u|qn +

|v|qn+1 ≥ qn+1, contradiction.
Now consider the approximation error:

kα − h = u(qnα − pn) + v(qn+1α − pn+1).

Recall that qnα − pn and qn+1α − pn+1 have opposite signs
(Lemma B.3). Since u, v have opposite signs, the terms u(qnα − pn)

and v(qn+1α − pn+1) have the same sign. Thus:

|kα − h| = |u||qnα − pn|+ |v||qn+1α − pn+1| > |qnα − pn|.

■

Corollary B.2. Legendre’s Criterion. If
∣∣∣α − h

k

∣∣∣ < 1
2k2 , then h

k is a con-
vergent of the continued fraction of α.

推論

Proof

Suppose h/k is not a convergent. Then qn ≤ k < qn+1 for some n.
By Theorem B.1, |kα − h| ≥ |qnα − pn|.∣∣∣∣α − h

k

∣∣∣∣ ≥ 1
k
|qnα − pn| =

qn

k

∣∣∣∣α − pn

qn

∣∣∣∣ .

Also
∣∣∣α − pn

qn

∣∣∣ >
∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣ − ∣∣∣α − pn+1
qn+1

∣∣∣ is not the right way. In-

stead, use triangle inequality on 1
kqn

≤
∣∣∣ h

k − pn
qn

∣∣∣ ≤
∣∣∣α − h

k

∣∣∣ +∣∣∣α − pn
qn

∣∣∣. Assume |alpha − h/k| < 1
2k2 . From Theorem B.1, |kα − h| ≥
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|qnα − pn|, so |alpha − pn/qn| ≤ k
qn
|alpha − h/k| < k

qn
1

2k2 = 1
2kqn

.

Then 1
kqn

≤ 1
2k2 + 1

2kqn
. Multiply by 2kqn: 2 ≤ qn

k + 1, so 1 ≤ qn
k ,

i.e., k ≤ qn. Since we assumed qn ≤ k, we must have k = qn, so
h/k = pn/qn.

■

B.4 Connection to Pell’s Equation

We can now resolve the question of finding solutions to x2 − dy2 =

±1.

Proposition B.1. Solutions are Convergents.
Let d > 1 be squarefree. If x, y ∈ Z+ satisfy x2 − dy2 = 1, then x/y
is a convergent of the continued fraction of

√
d.

命題

Proof

x2 − dy2 = (x − y
√

d)(x + y
√

d) = 1. Since x, y > 0, x + y
√

d > 2.
Thus 0 < x − y

√
d < 1/2. This implies x > y

√
d.∣∣∣∣ xy −

√
d
∣∣∣∣ = 1

y
|x− y

√
d| = 1

y(x + y
√

d)
<

1

y(2y
√

d)
=

1

2
√

dy2
<

1
2y2 .

By Corollary B.2, x/y must be a convergent.
■

Similarly, for x2 − dy2 = −1, we have |y2 − x2/d| = 1/d, which
implies | f racyx − 1√

d
| < 1

2x2 . Thus y/x is a convergent of 1/
√

d. Since

1/
√

d = [0; a0, a1, . . . ], its convergents correspond to reciprocals of
convergents of

√
d.

Periodicity and Fundamental Units

The continued fraction of a quadratic irrational like
√

d exhibits spe-
cific structure.

Theorem B.2. Periodic Structure.
The continued fraction of

√
d is of the form

√
d = [a0; a1, a2, . . . , am−1, 2a0],

where a1, . . . , am−1 is a palindromic sequence (symmetric). The period
length is m.

定理

The fundamental unit of Z[
√

d] (and the smallest solution to Pell’s
equation) can be read directly from the convergents at the end of the
period.
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· Let m be the period length.
· If m is even, the fundamental solution to x2 − dy2 = 1 is (pm−1, qm−1).

The equation x2 − dy2 = −1 has no solution.
· If m is odd, the fundamental solution to x2 − dy2 = −1 is (pm−1, qm−1).

The fundamental solution to x2 − dy2 = 1 is (p2m−1, q2m−1).
Example B.3. Examples of Periods.
·
√

2 = [1; 2]. Period m = 1 (odd). Convergent c0 = 1/1. 12 −
2(1)2 = −1. Solution to negative Pell. Solution to positive Pell at
c2m−1 = c1: [1; 2] = 1 + 1/2 = 3/2. 32 − 2(2)2 = 1.

·
√

3 = [1; 1, 2]. Period m = 2 (even). Solution at c1: [1; 1] = 2/1.
22 − 3(1)2 = 1.

·
√

13 = [3; 1, 1, 1, 1, 6]. Period m = 5 (odd). Negative solution at c4.
Convergents: 3, 3 + 1 = 4, 4 + 3/2 . . .
Table:

i 0 1 2 3 4

ai 3 1 1 1 1

pi 3 4 7 11 18

qi 1 1 2 3 5

Check: 182 − 13(5)2 = 324 − 13(25) = 324 − 325 = −1. Funda-
mental unit for positive equation is the square of 18 + 5

√
13.

範例

B.5 Transcendence and Liouville’s Theorem

We close this chapter by observing that while quadratic irrationals
have periodic approximations, "too good" approximations imply a
number is not algebraic at all.

Theorem B.3. Liouville’s Theorem.
Let α be an algebraic number of degree d ≥ 2. There exists a constant
c(α) > 0 such that for all rationals p/q:∣∣∣∣α − p

q

∣∣∣∣ > c
qd .

定理

Proof

Let f (x) be the minimal polynomial of α over Z, of degree
d. Thus f (α) = 0. By the Mean Value Theorem, f (p/q) −
f (α) = f ′(ξ)(p/q − α) for some ξ between p/q and α. Assume
|alpha − p/q| < 1 (otherwise the bound holds for small c). Then
|xi| < |α| + 1. Since f ′ is a polynomial, | f ′(ξ)| is bounded by
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some M. Thus | f (p/q)| < M|p/q − α|. Note f (p/q) = P
qd for

some integer P. Since f is irreducible and d ≥ 2, f (p/q) ̸= 0.

Thus | f (p/q)| ≥ 1/qd. Therefore, 1
qd ≤ M

∣∣∣α − p
q

∣∣∣, implying∣∣∣α − p
q

∣∣∣ ≥ 1
Mqd .

■

Example B.4. Liouville Numbers. The number α = ∑∞
n=1 10−n! =

0.110001 . . . is transcendental. Let pk/qk be the partial sum up to
n = k. Then qk = 10k!. The error is roughly 10−(k+1)! = (qk)

−(k+1).
For any fixed d, for sufficiently large k, the error is smaller than
1/qd

k . Thus α cannot be algebraic of degree d.

範例

This result was vastly improved by Roth (1955), who showed that for
any algebraic α, the exponent can be reduced to 2 + ϵ. This implies
that algebraic numbers behave like rationals or quadratic irrationals
regarding approximation stability.

Theorem B.4. Roth’s Theorem.
If α is algebraic irrational, then for any ϵ > 0, there are only finitely
many solutions to ∣∣∣∣α − p

q

∣∣∣∣ < 1
q2+ϵ

.

定理

This confirms that the highly approximable numbers constructed by
Liouville are indeed exceptional in the landscape of real numbers.

B.6 Exercises

1. Rational Expansion. Compute the finite continued fraction expan-
sion for the following rational numbers:

(a) 187/57
(b) 71/31
(c) 1.414 (as a fraction 1414/1000)

2. Quadratic Irrationals. Find the periodic continued fraction expan-
sion for:

(a)
√

7
(b)

√
19

(c) 1+
√

5
2 (the Golden Ratio)

3. Convergents and Recurrence. Calculate the first five convergents
c0, . . . , c4 for

√
7. Verify that the determinant identity pnqn−1 −

qn pn−1 = (−1)n−1 holds for each step.
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4. Pell’s Equation via CF. Use the continued fraction expansion of√
11 to find:

(a) The fundamental unit of Z[
√

11].
(b) The smallest positive integer solution to x2 − 11y2 = 1.

5. Legendre’s Criterion Application. Determine whether 355/113 is
a convergent of the continued fraction of π ≈ 3.14159265. (Hint:
Check the error |pi − 355/113| against 1/(2 · 1132)).

6. Liouville’s Condition. Prove that the number β = ∑∞
n=1 2−3n

is
transcendental.

7. Fibonacci and CF. Show that the convergents of the Golden Ratio
ϕ = [1; 1, 1, . . . ] are given by the ratio of successive Fibonacci
numbers Fn+1/Fn.



C
Appendix: Primes in Arithmetic Progressions

A fundamental question in analytic number theory is how prime
numbers are distributed modulo n. Specifically, does the arithmetic
progression

a, a + n, a + 2n, a + 3n, . . .

contain infinitely many primes? If (a, n) = d > 1, then every term is
divisible by d, so the progression contains at most one prime. Thus, a
necessary condition is (a, n) = 1. Dirichlet’s Theorem asserts that this
condition is also sufficient.

Theorem C.1. Dirichlet’s Theorem on Primes in Arithmetic Progres-
sions.
If a and n are coprime positive integers, then there are infinitely many
primes p such that p ≡ a (mod n).

定理

While the general proof requires complex analysis (specifically,
Dirichlet L-functions), elementary methods suffice for specific cases
such as a = 1 or a = −1. We first review some classical results.

C.1 Elementary Cases

We recall the proof of the infinitude of primes, which serves as a
template for variations in specific progressions.

Theorem C.2. Infinitude of Primes.
There are infinitely many primes.

定理

Proof

See Theorem 1.5 in Chapter 1 for the classical Euclidean proof.
■

We can adapt this argument to arithmetic progressions by construct-
ing an integer Q such that its prime factors must lie in the desired
residue class.
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Theorem C.3. Primes Congruent to 3 (mod 4).
There are infinitely many primes of the form 4k + 3.

定理

Proof

Suppose there are finitely many such primes S = {p1, . . . , pk}. Let

Q = 4p1 . . . pk − 1.

Then Q ≡ −1 ≡ 3 (mod 4). Let Q = q1 . . . qr be the prime factorisa-
tion of Q. Since Q is odd, all qi are odd. If every prime factor qi ≡ 1
(mod 4), then their product Q ≡ 1 (mod 4), a contradiction. Thus,
at least one prime factor q must satisfy q ≡ 3 (mod 4). However, if
q ∈ S, then q | (Q + 1). Since q | Q, this implies q | 1, impossible.
Thus q /∈ S, a contradiction.

■

For the case p ≡ 1 (mod 4), we cannot simply use linear forms. We
rely on the quadratic character of −1.

Lemma C.1. Divisors of x2 + 1.
Let x ∈ Z. If p is an odd prime divisor of x2 + 1, then p ≡ 1 (mod 4).

引理

Proof

Since p | (x2 + 1), we have x2 ≡ −1 (mod p). This means −1 is a
quadratic residue modulo p. By the First Supplement to the Law of

Quadratic Reciprocity (corollary 6.1),
(
−1
p

)
= 1 if and only if p ≡ 1

(mod 4).
■

Theorem C.4. Primes Congruent to 1 (mod 4).
There are infinitely many primes of the form 4k + 1.

定理

Proof

Suppose there are finitely many such primes S = {p1, . . . , pk}. Let

Q = (2p1 . . . pk)
2 + 1.

Let q be a prime divisor of Q. Since Q is odd, q ̸= 2. By Lemma C.1,
any prime divisor of x2 + 1 must be 1 (mod 4). Thus q ≡ 1
(mod 4). Clearly q /∈ S because Q ≡ 1 (mod pi) for all i. Thus
q is a new prime of the form 4k + 1.

■
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C.2 Cyclotomic Polynomials

To generalise the p ≡ 1 (mod n) case, we require polynomials whose
prime divisors satisfy specific modular properties. The natural candi-
dates are the cyclotomic polynomials Φn(X).

Definition C.1. Cyclotomic Polynomial.
For n ≥ 1, the n-th cyclotomic polynomial is defined as

Φn(X) = ∏
1≤k≤n (k,n)=1

(
X − e2πik/n

)
.

Its degree is ϕ(n), the Euler totient function.
定義

Lemma C.2. Cyclotomic Decomposition.
For any n ≥ 1:

Xn − 1 = ∏
d|n

Φd(X).

Consequently, Φn(X) ∈ Z[X].
引理

Proof

The roots of Xn − 1 are the n-th roots of unity. Grouping these roots
by their multiplicative order d (where d | n) gives the desired fac-
torisation. Integer coefficients follow by induction and monic long
division.

■

Theorem C.5. Prime Divisors of Φn(a).
Let n ∈ Z≥1 and a ∈ Z. Let p be a prime divisor of Φn(a). If p ∤ n,
then p ≡ 1 (mod n).

定理

Proof

Let p | Φn(a). Then an ≡ 1 (mod p). Let d be the order of a mod-
ulo p. Then d | n. If d < n, then p divides ad − 1. Since ad − 1 =

∏k|d Φk(a), p would divide both Φn(a) and some Φk(a) for k < n.
This would imply a is a multiple root of Xn − 1 (mod p). However,
(Xn − 1)′ = nXn−1 ̸≡ 0 (mod p) since p ∤ n and p ∤ a, so Xn − 1
has no multiple roots. Thus d = n, and since d | (p − 1) by Fermat’s
Little Theorem, n | (p − 1), or p ≡ 1 (mod n).

■

Theorem C.6. Primes Congruent to 1 (mod n).
For any integer n > 1, there are infinitely many primes p ≡ 1 (mod n).

定理
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Proof

Suppose there are finitely many such primes {p1, . . . , pk}. Let M =

np1 . . . pk. Let q be a prime divisor of Φn(M). Since q | Φn(M) |
(Mn − 1), we have q ∤ M, so q ∤ n and q /∈ {p1, . . . , pk}. By Theo-
rem C.5, q ≡ 1 (mod n). Thus q is a new prime in the progression.

■

C.3 Arithmetic Functions and M"obius Inversion

The M"obius function and inversion formula, introduced in Chap-
ter 3 exercises, provide the formal tools for evaluating cyclotomic
polynomials.

Definition C.2. M"obius Function.
The M"obius function µ(n) is defined as 1 if n = 1, (−1)k if n is the
product of k distinct primes, and 0 if n is not squarefree.

定義

Theorem C.7. M"obius Inversion Formula.
Let f , g be arithmetic functions. Then

g(n) = ∑
d|n

f (d) ⇐⇒ f (n) = ∑
d|n

µ(d)g(n/d).

定理

Example C.1. Cyclotomic Inversion. By applying multiplicative
M"obius inversion to Xn − 1 = ∏d|n Φd(X), we obtain:

Φn(X) = ∏
d|n

(Xn/d − 1)µ(d).

範例

C.4 Exercises

1. Primes modulo 6. Prove that there are infinitely many primes of
the form 6k + 5.

2. Primes modulo 3. Show that there are infinitely many primes of
the form 3k + 1. (Hint: Consider Φ3(X) = X2 + X + 1).

3. Values of Cyclotomic Polynomials. Calculate Φn(1) for all n > 1.
4. Dirichlet Convolution. Prove that if f and g are multiplicative

functions, then their Dirichlet convolution f ∗ g is also multiplica-
tive.

5. Average order of ϕ. Show that ∑n≤X ϕ(n) = 3
π2 X2 + O(X log X).
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Appendix: Distribution of Prime Numbers

We conclude these notes by exploring the asymptotic distribution of
primes, culminating in the Prime Number Theorem (PNT) and the
method of the Selberg sieve. Let π(X) denote the prime-counting
function, defined as the number of primes p such that p ≤ X.

D.1 Asymptotic Notation and Chebychev’s Bounds

To rigorously describe the growth of π(X), we recall standard asymp-
totic notation.

Definition D.1. Asymptotic Notation.
Let f , g : R → R be functions.
· f (x) ≪ g(x) (or f (x) = O(g(x))) if there exists a constant C > 0

such that | f (x)| ≤ C|g(x)| for sufficiently large x.
· f (x) = o(g(x)) if lim

x→∞
f (x)
g(x) = 0.

· f (x) ∼ g(x) if lim
x→∞

f (x)
g(x) = 1.

定義

The central result of analytic number theory is the Prime Number
Theorem.

Theorem D.1. Prime Number Theorem.
π(X) ∼ X

log X
as X → ∞.

定理

While the full proof of the PNT requires complex analysis, we can
prove weaker bounds using purely elementary methods due to
Chebychev.

Theorem D.2. Chebychev’s Bounds.
There exist positive constants c1, c2 such that for sufficiently large X:

c1
X

log X
≤ π(X) ≤ c2

X
log X

.
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定理

Lower Bound.

We analyze the central binomial coefficient (2n
n ). By Legendre’s

Formula (Chapter 1), the exponent of p in (2n
n ) is ∑(⌊2n/pk⌋ −

2⌊n/pk⌋). Since pv ≤ 2n, and v ≤ 1 for p >
√

2n, we have

4n

2n + 1
≤
(

2n
n

)
≤ (2n)π(

√
2n) ∏√

2n<p≤2n

p.

Taking logarithms and using the fact that (2n)
√

2n is small relative
to 4n, we obtain π(2n) ≫ n/ log n.

証明終

Upper Bound.

Using the bound ∏n<p≤2n p ≤ (2n
n ) < 4n, we have ∑n<p≤2n log p <

n log 4. Summing over dyadic intervals yields π(X) ≪ X/ log X.
証明終

D.2 The Brun-Titchmarsh Theorem and Selberg Sieve

The density of primes in short intervals is bounded by the Brun-
Titchmarsh theorem.

Theorem D.3. Brun-Titchmarsh Theorem.
For Y > Xϵ,

π(X + Y)− π(X) ≤ (2 + o(1))Y
log Y

.

定理

The proof using the Selberg sieve involves constructing weights λd

to minimize a quadratic form Q = ∑ Y/[d1, d2]. The solution yields
the bound 2Y/ log Y, illustrating the "parity problem" where sieve
methods often miss the true density by a factor of 2.

D.3 Exercises

1. Bertrand’s Postulate. Using Chebychev’s methods, prove that for
any n > 1, there exists a prime p such that n < p < 2n. (Note:
This requires specific values for c1, c2).

2. Sum of Reciprocal Primes. Prove that ∑p≤X
1
p = log log X + O(1).

3. Logarithmic Integral. Show that the Prime Number Theorem is
equivalent to π(X) ∼ Li(X) =

∫ X
2

dt
log t .

4. Sieve of Eratosthenes. Prove that the number of integers n ≤ X
not divisible by any prime p ≤

√
X is O(X/ log X).

5. Mertens’ Theorem. State and prove a weak form of Mertens’
product theorem: ∏p≤X(1 − 1/p) ≍ 1/ log X.
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