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0
Sets and Fundamentals

We begin by formalising the definitions and operations of set theory
that serve as the foundation for group theory.

0.1 Sets and Subsets

Definition o.1. Set.

A set is a collection of distinct objects, referred to as elements. We de-
note sets by uppercase letters (A, B, ...) and elements by lowercase let-
ters (a,b,...).

- If an element a belongs to a set A, we write a € A.

- If a does not belong to A, we write a ¢ A.

A set may be defined by listing its elements or by specifying a prop-
erty P(x) satisfied by all members: A = {x | P(x)}. For example,
the set of even integers is written as {a € Z | a =0 (mod 2)}.

Definition o.2. Subsets and Equality.

Let A and B be sets.

1. Ais a subset of B, denoted A C B or B D A, if every element of
A is also an element of B.

2. A and B are equal, denoted A = B, if A C Band B C A.

3. If A C Bbut A # B, then A is a proper subset of B, denoted A C
Bor A C B.

Two specific concepts regarding the size and emptiness of sets are
essential.

Definition 0.3. Empty and Finite Sets.

- The empty set, denoted o, is the set containing no elements. It is a
subset of every set and a proper subset of every non-empty set.

- A set A is finite if it contains a finite number of elements. This num-
ber is called the cardinality or order of A, denoted |A|.

- If A is not finite, we define its order as |A| = co.

)

Figure 1: Visualisation of inclu-
sion: A C B.



Remark.

One may conceptualise these definitions through an analogy: a
Class corresponds to a Set, the Students are the Elements, and a
Study Group forms a Subset. The set of all classes constitutes a
family of sets.

Definition 0.4. Power Set.
The power set of a set A, denoted P(A), is the set of all subsets of A.

Operations on Sets

We define the standard algebraic operations on sets. Let A and B be
sets, and let {A;};c; be a family of sets indexed by I.

Definition o.5. Intersection.
The intersection of A and B is the set of elements common to both:

ANB:={x|xe€ Aand x € B}.
For an indexed family, the intersection is defined as:

(VAi={x|x€ A;forallic I}.

iel

e
S

Definition 0.6. Union.
The union of A and B is the set of elements belonging to at least one

of them:
AUB:={x|x€ Aorxe B}

For an indexed family:

JAi:=={x| x € A for some i € I}.

i€l
If the sets A; are pairwise disjoint (i.e.,, A; N A; = & for i # j), their
union is called a disjoint union, denoted | |;c; A;.

Definition o.7. Difference.
Let U be a universal set (a fixed set containing all objects under dis-
cussion), and let A and B be subsets of U. The difference (or relative
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Figure 2: The intersection AN B.
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complement) of B in A is:
A—B:={x|xe€ Aand x ¢ B}.
The complement of A in U is:

A ={xelU|x¢ A}

It follows directly from the definitions that a set can be partitioned by
any subset:

A= (ANB)U(A—B).
For finite sets, the sizes of unions and intersections are related by the
Inclusion-Exclusion Principle. The base case for two sets is given by:

|AUB| = |A|+ |B| — |ANB].
This generalises to arbitrary finite collections.

Proposition o.1. Inclusion-Exclusion Principle.
Let Aq,..., A, be finite subsets of a set U. Then:
n i1
[ AL U U A = ) (=1)" Y |Ajy M- NAG
]:1 {l’l,.‘.,l']'}g{l,...,l’l}

Proof

We proceed by induction on 7, the number of sets. The base case

n = 2 is stated above. The inductive step involves applying the base
case to the union of A, and the set S = J}_; Ay, then expanding
using the inductive hypothesis.

|
The interaction between union, intersection, and complements is
governed by De Morgan’s laws.
Proposition o0.2. De Morgan’s Laws.
Let {A;}ic be a family of subsets of U. Then:
c C
N Af = (UAZ-> and [ JAf = (ﬂAi> .
iel i€l iel iel

Proof

&0

Figure 3: The set difference A —
B.
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We track the logical equivalence of element membership:

xe(Af <= Viel,xe Af <= Viel, x¢ A; < —(Jiel, xc 4
iel

— x¢|JA <= xe <UAZ->C.

iel i€l

Algebraic structures often involve pairs or tuples of elements.

Definition 0.8. Cartesian Product.
The Cartesian product of two sets A and B is the set of all ordered pairs:

AxB:={(ab)|acAbe B}

More generally, for a family {A;};c, the product is the set of sequences
(or functions I — UA;):

[TA4i = {(a)icr | ai € A;}.

iel

Throughout these notes, we adhere to the following standard nota-

tion for numerical sets:

- Z4: The set of positive integers.

- IN = Z U {0}: The set of natural numbers.

- Z: The set of integers.

- Q: The set of rational numbers.

- R: The set of real numbers.

- F[X]: The set of polynomials in variable X with coefficients in a
field F.

0.2 Mappings and Binary Operations

The concept of a function, central to analysis, is generalised in alge-
bra to the notion of a mapping between arbitrary sets.

Definition 0.9. Mapping.

Let A and B be sets. A mapping (or map) f : A — B is arule that
assigns to every element a € A a unique element b € B, denoted by
f(a) =b.

- A is the domain of f.

- The set f(A) = {f(a) | a € A} C B is the image (or range) of f.

- If f(a) = b, then b is the image of a4, and a is a preimage of b.

&,

Two mappings f,g : A — B are equal, denoted f = g, if f(a) = g(a)
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foralla € A.

Definition o.10. Properties of Mappings.
A mapping f : A — Bis:

A.

Surjective (or onto) if for every b € B, there exists at least one a €
A such that f(a) = b. Equivalently, f(A) = B.

Bijective (or a one-to-one correspondence) if it is both injective and
surjective.

Mappings can be combined sequentially.

Definition o.11. Composition.
Letf : A — Band g : B — C be mappings. The composite map-
ping go f : A — Cis defined by:

(g0 f)(a) = g(f(a)) foralla e A.

While composition is not commutative in general (i.e.,, go f # fog),
it satisfies a fundamental stability property known as associativity.

Proposition 0.3. Associativity of Composition.
Letf:A—B,g:B— C,and h: C = D be mappings. Then:

(hog)of=ho(gof).

»
&

Proof

For any a € A, we evaluate both sides:
(o g)o f)(a) = (hog)(F(a)) = h(g(f(a))).
(ho (g0 f))(a) = h((go £)(a)) = h(g(f(a)).

Since the mappings agree on every element of the domain, they are
equal.

Algebraic structures are essentially sets equipped with operations
that combine elements.

Definition o0.12. Binary Operation.

Let X be a set. An algebraic binary operation (or composition law) on

X is a function T : X x X — X. For every ordered pair (a,b) € X x

Injective (or one-to-one) if f(ay) = f(ay) implies a; = a, for all ay,a; €

f

A———>B——C
gof

Figure 4: Composition of map-
pings.



X, this map assigns a unique element T(a,b) € X.
Rather than writing T(a,b), we typically use infix notation such as
axb,aob,a+Db,orsimply ab. In group theory, we most frequently
use multiplicative notation (ab) or additive notation (a + b).
A set X equipped with a specific binary operation * is called an alge-
braic structure or algebraic system, denoted (X, *). It is important to
note that a single set can support multiple distinct operations. For in-
stance, the integers Z form different structures under addition (Z, +)
and multiplication (Z, -). One could even define exotic operations
like n * m = n +m — nm, creating yet another structure.
While one can define endless arbitrary operations, algebra focuses
on those satisfying specific, powerful axioms. One such fundamental
property is the existence of a neutral element.

Definition o0.13. Unit Element.
An element e € X is called a unit element (or neutral element) rela-
tive to the operation * if ex x = x xe = x for all x € X.

J%’(]

A

It follows immediately that such an element, if it exists, is unique.

Proposition o0.4. Uniqueness of Unit Element.
An algebraic structure (X, %) possesses at most one unit element.

>

A
Proof

Suppose e and ¢’ are unit elements. By the defining property of e,
we have e x ¢/ = ¢/. By the defining property of ¢/, we have e x ¢/ = e.
Thus e = ¢

|
Example o0.1. Arithmetic Operations. The standard operations of
addition (+), subtraction (—), and multiplication (x) are binary
operations on R. Division is not a binary operation on R because
division by zero is undefined; however, it is a binary operation on
the set of non-zero real numbers R \ {0}.

#o )
Example o.2. Function Spaces. Let X4 be the set of all mappings
from a set A to itself. The composition of mappings o is a binary
operation on X 4. Similarly, let S4 be the set of all bijections from A
to itself. Since the composition of bijections is a bijection, o is also a
binary operation on S 4.

E X

GROUPS INTRODUCTION
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Definition o0.14. Associativity and Commutativity.
Let * be a binary operation on S.
1. The operation is associative if for all a,b,c € S:

(axb)xc=uax(bxc).

2. The operation is commutative if for all a,b € S:

axb=>bxa.

bl
2

0.3 Equivalence Relations and Partitions

In many contexts, we wish to treat distinct elements as "effectively
equal" if they share a specific property (e.g., integers with the same
parity). This leads to the concept of equivalence relations.

Definition o.15. Relation.

Let A and B be sets. A relation R from A to B is a subset of A x B. If
A = B, we say R is a relation on A. We write a Rb to mean (a,b) €
R.

Definition 0.16. Equivalence Relation.

A relation ~ on a set A is an equivalence relation if it satisfies three
axioms for all a,b,c € A:

Reflexivity: a ~ a.

Symmetry: If a ~ b, then b ~ a.

Transitivity: If a ~ band b ~ c, thena ~ c.

e
S

An equivalence relation allows us to group elements together.

Definition o.17. Partition.
A partition of a set A is a decomposition of A into a disjoint union of
non-empty subsets. Thatis, A = | |;c; A;.

These two concepts are mathematically dual. Given an equivalence
relation ~, we define the equivalence class of a as:

[a] ={x€ A|x~a}.



Lemma o.1. Properties of Classes.
For any a,b € A, either [a] = [b] (if a ~ b) or [a] N [b] = @ (if a = b).
51 %

Proof
If x € [a] N [b], then x ~ aand x ~ b. By symmetry a ~ x, and by
transitivity a ~ b. Ifa ~ b,lety € [a]. Theny ~aanda ~ b =
y~b = y € [b]. Thus [a] C [b]. By symmetry, [b] C [a], so [a] =
[b].

|

Consequently, the distinct equivalence classes form a partition of A:

A= || Tal.

[a]€eA/~

Theorem o.1. Equivalence and Partitions.
There is a one-to-one correspondence between equivalence relations
on a set A and partitions of A.
- Every equivalence relation induces a partition into equivalence classes.
- Conversely, given a partition A = | |;c; A;, the relation defined by
"a ~ bif aand b belong to the same subset A;" is an equivalence
relation.
i
Example o0.3. Parity. Let A = Z. We write a = b (mod 2) to mean
a—b = 2k for some k € Z. This relation is an equivalence relation.
It partitions Z into two classes:
- [0]={...,-2,0,2,...} (the even integers).
- [1]=A...,-1,1,3,...} (the odd integers).

E X

Partitions Induced by Mappings

A natural source of equivalence relations is the "fiber" structure of
a mapping. Let f : A — B be a mapping. Forany b € f(A), the
preimage or fiber of b is:

fHb) ={a€ Al f(a) =0}.

Since every element a € A maps to exactly one image, the fibers are
pairwise disjoint and cover A. Thus, we have the partition:

A= || ).
bef(A)

The corresponding equivalence relation is defined by a ~ a’ <=

f(a) = f(a').

GROUPS INTRODUCTION
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Example 0.4. Geometric Partition. Let f : R> — R be defined by

f(x,y) = x —y. For any real number ¢ € R, the fiber f~1(c) is the

set of points satisfying x —y = ¢, ory = x — c¢. Geometrically, this

partitions the plane R? into a family of parallel lines with slope 1

(see figure 5). Points are equivalent if they lie on the same line.

#2145

0.4 Exercises

1.

Distributive Laws. Let B and {A;};c; be subsets of a universal set
Q. Prove:

@ BN (Uier Ai) = Uier(BN Ay).

(b) BU (Nier Ai) = Nier(BU Aj).
Power Set Cardinality. Let A be a finite set with n elements. Let
P(A) be the set of all subsets of A. Prove that |[P(A)| = 2".

One-Sided Inverses. Let f : A — B be a map with A # @. For
any set X, we define the identity map idyx : X — X by idx(x) = x.

(a) Prove that f is injective if and only if there exists a left inverse
g:B — Asuchthat go f =idy.

(b) Prove that f is surjective if and only if there exists a right
inverse h : B — A such that f o h = idp. For the direction =,
you may assume the existence of a choice function that selects
one preimage for each b € B.

Inverse of Composition. Let f : A — Band g : B —+ Cbe
bijections. If h : X — Y is a bijection, we define its inverse 1! :
Y — X as the unique map such that k= 1(y) = x <= h(x) = y.
Prove that g o f is a bijection and that (go f) ! = flog™L

Counting Functions. Let A and B be finite sets with |A| = m and
|B| = n.

(a) How many distinct maps f : A — B exist?
(b) How many distinct binary operations can be defined on A?

Kernel Equivalence. Let f : A — B be a map. Define a relation
~on Abya ~ a' if and only if f(a) = f(a’). Prove that this is an
equivalence relation. What are the equivalence classes?

Independence of Axioms. Prove that the three axioms of an
equivalence relation (reflexivity, symmetry, transitivity) are inde-
pendent. Specifically, for each axiom, construct a relation (i.e., a
subset of A x A) that fails that axiom but satisfies the other two.

Figure 5: The equivalence
classes of f(x,y) = x —y form
parallel lines.

Consider the correspondence between
subsets and binary strings of length n.

For example, find a relation that is
symmetric and transitive but not
reflexive.



1.1

1
Permutations

The study of permutations provides the necessary algebraic founda-
tion for abstract algebra.

The Symmetric Group

We begin by formalising the concept of rearrangement as a function.

Definition 1.1. Permutation.

Let X be a set. A permutation of X is a bijection a : X — X.
When X = {1,2,...,n}, the set of all permutations of X is denoted by
Sy. This set, equipped with function composition, forms a group. We
will formalize the group axioms in chapter 2.
Remark.

At this stage, treat this as a preview: permutations are one of the
first places where a single operation (composition) produces a rich
algebraic structure. We will define the abstract notion of a group
and its axioms later (in c/apter 2); for now, we focus on concrete
computations and structure in S,.

Notation 1.1. Symmetric Group The family of all permutations of X
is called the symmetric group on X, denoted Sx. For the specific case
where X = {1,...,n}, we write S,,. The cardinality of S, is |S,| =
nl.

ik
We initially represent elements of S, using two-line notation. If

« € Sy, we list the elements of the domain in the top row and their
corresponding images in the bottom row:

(1 2 - o1
““la) 2 - am))-

Since w is a bijection, the bottom row is a rearrangement of {1,...,n}
with no repetitions.
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Cycle Notation

The two-line notation, while explicit, obscures the structural prop-
erties of the permutation, such as its order or commutativity with
other permutations. We introduce a more compact notation by track-
ing what happens to an element under repeated application of the
permutation.

Definition 1.2. Cycle.
Let i1, iy, ..., i, be distinct integers in {1,...,n}. If « € S, satisfies:

Ix(il) = iz, Dé(iz) = i3’ sy “(ir—l) =1, D‘(ir) = il/

and a(x) = x forall x & {iy,...,i }, then a is called an r-cycle (or a
cycle of length r). We denote this by « = (i1 7y ... iy).

Remark.

A 1-cycle (i) is the identity map on the element i. Since 1-cycles

fix every element, they represent the identity permutation :. Often,
1-cycles are omitted from the notation. A 2-cycle (i j) exchanges i
and j and is called a transposition.

Because a cycle corresponds to a rotation of the indices (see fig-
ure 1.1), the notation is not unique:

(i ... dy) = (iniz ... iyi1) =+ = (iriy ... ir_1).

Composition of Permutations

The operation in S, is function composition. We adopt the conven-
tion of applying functions from right to left. That is, the product a8

means a o B, so (af)(x) = a(B(x)).
Example 1.1. Cycle Decomposition Algorithm. Consider the per-
mutation & € Sg:

To factor « into cycles:
1. Start with 1. a(1) = 6, a(6) = 1. The sequence closes: (16).

2. The smallest uncovered number is 2. «(2) = 4, a(4) = 2. This
closes: (24).

3. Nextis 3.3+~ 7 — 8+ 9 3. This gives (3789).

4. Nextis 5. #(5) = 5. This is the 1-cycle (5).
Thus, « = (16)(24)(3789)(5).

)
-

Figure 1.1: Visualisation of the
r-cycle (i1 iy...14,) as a clock-
wise rotation.
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Example 1.2. Product of Cycles. Compute ¢ =
(12)(13425)(2513) in S5. We evaluate the image of each element
by tracing it through the cycles from right to left:

C 1B, 03 (02 601 4,

- 4—4—2—1. 5S04+ 1. This closes the cycle (14).
- 2—5—1—2.S02+ 2. This is a 1-cycle (2).
+3—=+2—5—5.503~5.

- 5—1—3—3.S05+ 3. This closes the cycle (53).
The disjoint cycle form is o = (14)(53).

.49

1.3 Decomposition into Disjoint Cycles

The factorisation observed in example 1.1 is not accidental. A funda-

mental property of permutations is that they can be decomposed into
disjoint cycles.

Definition 1.3. Disjoint Permutations.
Two permutations o, 3 € S, are disjoint if every i moved by one is
fixed by the other. That iS‘

- If a(i) # i, then B(i) =
- I B(j) # j, then a(j) = j.

Lemma 1.1. Commutativity of Disjoint Permutations.
If o, B € Sy, are disjoint, then aff = fa.

1k
We show that af(i) = pua(i) foralli € {1,...,n}.
B moves i.
Let f(i) = j # i. Since B is a bijection and B(i) # i, p must also
move j (otherwise B(j) = jand B(i) = j contradicts injectivity). Be-
cause « and S are disjoint, a fixes both i and j. Thus:
ap(i) = a(j) =j, and pa(i) = B(i) = J.

S B

o 11070eS 1.

By symmetry, the same logic applies.

SE
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Neither moves 1i.
Then a(i) =i and B(i) = i, so aB(i) =i = Pu(i).
IR #

In all cases, the functions agree.

Theorem 1.1. Cycle Decomposition.
Every permutation a« € Sy, is either a cycle or a product of disjoint cy-

cles.
g
We proceed by induction on k, the number of points moved by «.
Base Case (k = 0).
If « moves o points, it is the identity, which is a 1-cycle.
S 4

Inductive Step.

Assume the statement holds for all permutations moving fewer
than k points. Let k > 0 and let i; be a point moved by «. Consider
the sequence generated by iterating a:

i1, fp=ua(iy), iz=a(ip),

Since the set is finite, there exists a smallest r such that «(iy) €
{i1,...,ir}. Since a is injective and «a(i;_;) = i; forj > 1, we must
have a(iy) = i1. Let o = (i1 iz ... ir).

* If « fixes all other points (i.e., k = 7r), thena = o, and we are
done.

e Ifr < n,letY be the set of points not in {iy, ..., }. Define o’
such that a/(x) = a(x) for x € Y and a/(x) = x otherwise. Then
a = oa’. Note that &’ moves k — r points. Since r > 2 (as « moves
i1), k — r < k. By the inductive hypothesis, a’ is a product of dis-
joint cycles B1 ... B;.

Since ¢ only moves points fixed by &’ (and thus fixed by the f’s),
o is disjoint from the B;’s. Therefore, x = 0p;...pB; is a product of
disjoint cycles.

S 4

Note

The decomposition into disjoint cycles is unique up to the order of
the factors (which commute) and the inclusion of 1-cycles.
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Uniqueness of Decomposition

Earlier we suppressed 1-cycles (fixed points) for brevity; but to rig-
orously classify permutations, we must account for every element in

the domain.

Definition 1.4. Complete Factorisation.

A complete factorisation of a permutation a € S, is a decomposition
into disjoint cycles that includes exactly one 1-cycle (i) for every ele-
ment i fixed by a.

For example, the 3-cycle (135) in S5 has the complete factorisation
(135)(2)(4).

Theorem 1.2. Uniqueness of Factorisation.
Let « € S;;. The complete factorisation of « into disjoint cycles is unique

up to the order of the factors.
i

Proof

Since the complete factorisation explicitly lists every element of
{1,...,n}, it suffices to consider factorisations into disjoint cycles of
length r > 2. Suppose « has two such decompositions:

a:ﬁl...lBt:'yl...’ys.

We proceed by induction on m = max(t,s). If m = 0, a is the iden-
tity, and the result holds. For the inductive step, let i be a specific
element moved by B;. The powers of ; determine the iterates of i:
BE(i) = ak(i). Since 71 ... s represents the same function a, some
cycle y; must also move i. Because disjoint cycles commute, we

may reorder the 7’s so that s moves i. The cycle s is determined
entirely by the iterates of i under a. Thus, s = ;. Multiplying
by B; ! (which equals 7; 1) yields B1...81~1 =  71...79s_1. By
the inductive hypothesis, the remaining factors are identical up to

order.
[ |

The cycle notation also simplifies the computation of inverses. Vi-
sually, if a cycle represents a clockwise rotation, its inverse is the
counter-clockwise rotation.

Proposition 1.1. Inverses of Cycles.
1. The inverse of a cycle (i1ip ... ir) is (ipip_q1 ... 7).

2. If v = By ... By is a product of disjoint cycles, then 7! = [31_1 .. /Sk_l =
Bt B

17
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! 48
Proof
For the first part, letc = (iyip ... )and Tt = (ipip—q ... 101). We
verify that 7o = by considering the action on each element (see

figure 1.2). Forany j € {1,...,r — 1}, applying the functions from
right to left gives:
(o (if)) = T(ijt1) = ij.

For the last element i,, we have 7(c(i;)) = t(i1) = i. Any element
x ¢ {iy,..., iy} is fixed by both ¢ and 7, so 7(¢(x)) = x. Thus 70 =
t, which implies ¢! = 1.
For the second part, note that for permutations, («f)~! = g~ la~!
since

(@p)(pla ) =a(ppa™ =aa™l =,
and similarly on the other side. By induction, v~} = ,81:1 By L
Since the cycles B, ..., Bi are disjoint, they commute. It follows
that their inverses also commute. Therefore, we may rearrange the

factors in the product to obtain ;' ... ‘3;1
|

Conjugacy

A natural question arises: when do two permutations "look the
same'? In linear algebra, matrices representing the same linear trans-
formation in different bases are similar. The analogous concept in
group theory is conjugation.

Definition 1.5. Conjugate Permutations.
Two permutations 7,y € S, are conjugate if there exists a permuta-
tion & € S, such that

o= wyofl.

1 is that we rename the elements

The geometric interpretation of aya™
of the set {1,...,n} according to &, apply -, and then translate back
via a~!. This operation preserves the "shape" of the permutation,

defined formally as follows.
Definition 1.6. Cycle Structure.
torisations contain the same number of r-cycles for each length r.

Example 1.3. Counting Cycle Structures. In S4, the possible cycle

structures partition the group into classes.

Two permutations have the same cycle structure if their complete fac-

I 12 s
x__~ 7
ol o1

Figure 1.2: The inverse reverses
the arrows.



- Identity: 14 (one element).

- Transpositions (ab): 2112 (6 elements).
- 3-cycles (abc): 3'1! (8 elements).

- g-cycles (abcd): 4' (6 elements).

- Double transpositions (ab)(cd): 22 (3 elements).

Note the counting logic for (ab)(cd): we choose 4 distinct elements

in (3) ways, partition them into pairs in 3 ways.

Xl

The following lemma provides a powerful computational tool for
conjugation: applying « to 7y essentially "applies a to the symbols
inside the cycle notation of "

Lemma 1.2. Conjugation Formula.

Then the complete factorisation of aya ™!

(w(ir) a(ia) ... aliy)).

contains the cycle

5132

Proof
Let o = aya~'. We track the image of an element k = «(i;). Recall
that we evaluate from right to left:

(k) = o(a(ij)) = (woyoa ") (aliy) = aly(i)).

Since y mapsi; +—  ij;1 (Where indices are taken modulo ), we

have:

o(w(iy)) = alis).
Thus, 0 maps a(iy) — a(ip) — --- — a(iy) — a(iy). If ¢ fixes an
element x, i.e., (x) is a 1-cycle, then o(a(x)) = a(y(x)) = a(x),

so («(x)) is a 1-cycle in . Since  is a bijection, every element in
{1,...,n} is of the form a(x) for some x, so this describes the entire
action of o.

Example 1.4. Calculating Conjugates. Lety = (13)(247)(5)(6)
anda = (256)(143) in Sy. Using lemma 1.2, we compute ¢ =

Let 7 € S;; have the complete factorisation containing the cycle (i1 iy ...
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Table 1.1: Distribution of per-

Structure  Count
(1) 1
(12) 6
(123) 8
(1234 6
(12)34) 3

19

mutations in S4 by cycle struc-

ture.

ir).
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aya~! by applying a to the symbols in 7:

(fixed by «)

Thus, o = (41)(537)(6)(2).
$45)

This leads us to the fundamental classification theorem for the sym-
metric group.

Theorem 1.3. Conjugacy and Structure.
Two permutations 7,y € S, are conjugate if and only if they have the

same cycle structure.
g

Proof

The "only if" direction is immediate from /emma 1.2: conjugation
merely relabels the entries of the cycles, preserving their lengths.
For the converse, suppose 7y and ¢ have the same cycle structure.
We construct the conjugating permutation «. List the disjoint cycles
of v and ¢ such that cycles of equal length are aligned vertically.
For example:

o= (k... k)(l...L5). ..

Define « by the "downward" mapping: a(iy) = km, &(jm) = lm, and
so on. Since the cycle structures match, every element of {1,...,n}
appears exactly once in the top row and exactly once in the bot-
tom row. Thus, « is a well-defined bijection (a permutation). By
construction and /emma 1.2:

wyat = (a(iy)...a(iy) = (ky...ky) - = 0.

Example 1.5. Constructing the Conjugator. In Ss,letp = (123)
and v = (524). Both are 3-cycles, so they are conjugate. To find «

le>k2

Figure 1.3: The commutative
diagram for conjugation. If

o =aya" !, thencox = aovy.
The "downward" map « trans-
forms the cycle structure of v
into that of ¢.
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such that v = aBa~!, we align their complete factorisations:

Define « by mapping the top to the bottom:

w= (12340 _ 534
52 4 1 3

Note that the alignment is not unique; we could rotate the cycles
(e.g., writing 7y as (245)) to find a different .

$o19]

Decomposition into Transpositions

We conclude this chapter on permutations by examining their de-
composition into the simplest building blocks: transpositions. While
disjoint cycles provide a unique and structurally revealing factorisa-
tion, transpositions (2-cycles) offer a "atomic" view of permutations.
Every rearrangement can be achieved by a sequence of swaps.

Proposition 1.2. Factorisation into Transpositions.
If n > 2, every permutation & € S, is a product of transpositions.

3

Proof
By theorem 1.1, a is a product of cycles. It suffices to show that any

r-cycle can be written as a product of transpositions. We observe
the identity:

(iria ... i) = (i1ir)(i1dy1) ... (i1i3) (i1 in).

(Recall we multiply from right to left).
[

Unlike the disjoint cycle decomposition, factorisation into transposi-
tions is far from unique.

Example 1.6. Non-uniqueness. Consider the cycle (123) € Sy.
(123) = (13)(12)
= (23)(13
=(13)(42)(12)(14).

Note that the number of factors varies (2 vs. 4), but the parity of the

count remains invariant.

21
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Exia

Sign and Parity

The invariant hidden in the example above is the parity of the num-
ber of transpositions. To formalise this, we define the sign of a per-
mutation based on its cycle structure.

Definition 1.7. Sign of a Permutation.
Leta € Sy. Let t be the number of cycles in the complete factorisa-
tion of & (including 1-cycles). The sign (or signum) of « is defined as:

sgn(a) = (—1)"*.

This definition is well-defined by the uniqueness of the complete
factorisation (theorem 1.2).

Example 1.7. Calculating Sign.

- Identity (1): n cycles (t = n). sgn(1) = (—=1)" " =1.

- Transposition T = (ab): Moves 2 elements, fixes n — 2. Thus t =

1+(n—2)=n—-1.
sgn(t) = (=1)" "V = (-1)! = 1
E

The crucial property of the sign function is that it is a group homo-
morphism from S, to the multiplicative group {1, —1}.

Theorem 1.4. Multiplicativity of Sign.
Forallw, B € Sy,

sgn(ap) = sgn(a) sgn(p).
gl
Proof

We first establish how multiplication by a transposition T = (a b) af-
fects the number of cycles t(«).
Let a and b belong to cycles C; and Cp, in the decomposition of «.

a and b are in the same cycle. Let this cycle be (acq...cpbdy...d;).
Multiplying by (ab) splits this into two:

(ab)(acl...ckbdl dl) = (acl...ck)(bdl dl)
The number of cycles increases by 1: t(ta) = f(a) + 1.

a and b are in different cycles. Let the cycles be (ac ...cx) and
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(bdy ...d;). Multiplying by (ab) merges them:
(ab)(acy...ck)(bdy...d)) = (acy...c bdy...d)).
The number of cycles decreases by 1: t(ta) = t(a) — 1.

In both cases, n — t(7a) differs fromn — f#(a) by an odd integer
(£1). Thus:

sgn(ta) = (—=1)" 1) = —(—1)"®) = _sgn(a) = sgn(7) sgn(a).

Since any permutation « is a product of transpositions T ... Ty,
repeated application gives sgn(af) = sgn(a) sgn(p).

[ |
This theorem allows us to rigorously define even and odd permuta-
tions based on their factors.
Definition 1.8. Parity.
A permutation « is even if sgn(a) = 1 and odd if sgn(a) = —1.

Theorem 1.5. Parity and Transpositions.
A permutation is even if and only if it can be written as a product of
an even number of transpositions. It is odd if and only if it is a prod-

uct of an odd number of transpositions.
il

Proof

Leta = 1...7 be any factorisation into transpositions. By the
multiplicativity of the sign:

sgn(a) = sgn(7)...sgn(7;) = (—1)7.

Thus, sgn(e) =1 <= giseven, and sgn(a) = —1 <= gis odd.
This implies that the parity of the number of factors g is invariant

for a given a.
[ |

Corollary 1.1. Parity Arithmetic. The product of two even permutations
is even. The product of two odd permutations is even. The product of
an even and an odd permutation is odd.

T
Proof

This follows directly from the rules of multiplication in {1, —1}:
1:1=1,(-1)(-1) =1,and 1-(=1) = —1.
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Exercises

1. Cycle Products. Compute the following products in cycle nota-
tion. Remember to compute from right to left.

(@) In S5: (123)(234).
(b) In Sg: (145)(23)(12)(56).
(c) In Sg: a® where a = (12)(345)(678).
2. Inverse Calculation.
(a) Find the inverse of o = (135)(24) in Ss. Verify that oo~ ! = ..

(b) Prove that for any permutation « and element 7, a(i) # i if
and only if a1 (i) # i.

3. Disjoint Decomposition. Write the following permutations as
products of disjoint cycles:

(a)123456789
347259816/

(b) (12)(13)(14)(15) in Ss.
(©) (12)*(34).

4. Order of Permutations. The order of a permutation « is the small-
est positive integer k such that af = 1.

(a) Prove that if a, § commute (i.e., af = Ba), then (aB)k = a*pF
forallk € Z.

(b) Prove that the order of an r-cycle is r.

(c) Prove thatif & = cy...cy is a product of disjoint cycles of
lengths rq, ..., 7y, then the order of a is lem(rq, ..., 7).

(d) Find the maximum order of an element in S7.

5. Finding the Conjugator. In S¢, let 0 = (13)(246) and 7 =
(36)(152).
(a) Verify that o and T are conjugate.

1:

(b) Find a permutation « € Sg such that aca™ T.

6. Conjugacy Classes. Determine the number of conjugacy classes in
Ss. List a representative cycle structure for each class.

7. Decomposition into Transpositions. Write the permutation & =
(12345) as:

(a) A product of 4 transpositions.
(b) A product of 6 transpositions.
8. Sign Properties.
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(@) Prove that sgn(a~!) = sgn(a) for any & € S,,.
(b) Show that sgn(afa~1) = sgn(B). Conclude that conjugate

permutations have the same parity.

() Ifr € S, fixessome j € {1,...,n}, defined’ € S,_1 by
restricting ¢ to the remaining n — 1 elements. Prove that
sgn(c’) = sgn(o).

Remark.

Compare the complete factorisations.

9. Sign of an r-cycle. Prove directly that the sign of an r-cycle is
(—1)"~1. Thus, an r-cycle is even if and only if its length  is odd.

10. Adjacent Transpositions. Prove that every permutation in S, can
be written as a product of adjacent transpositions s; = (i i + 1).

11. Generating the Symmetric Group. Show that S, is generated by
the two elements (12) and (12 ... n). That is, every permutation
can be written as a product involving only these two and their
powers.

25
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Groups

The study of groups allows us to unify diverse mathematical objects
(from number systems and matrices to geometric symmetries), under
a single axiomatic framework.

2.1 Axioms and Basic Properties

We begin with the formal definition.

Definition 2.1. Group.
A group is a set G equipped with a binary operation (usually denoted
multiplicatively as ab) satisfying the following three axioms.

Axiom 1. Associativity.
Forall a,b,c € G, (ab)c = a(bc).
R

Axiom 2. Identity.
There exists an element 1 € G (often denoted e or 1¢) such that for
allaeG,a-1=1-a=a.

AL

Axiom 3. Inverses.
For every a € G, there exists an element b € G such thata-b = b -
a = 1. We denote the inverse of a by a~ 1.

AL
The group is the pair (G, ).

Monoids and Semigroups

If we relax the axioms of a group, we obtain more general algebraic
structures.
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Definition 2.2. Semigroup and Monoid.
1. A pair (S, *) is called a semigroup if the operation is associative.

2. A pair (M, x) is called a monoid if it is a semigroup and possesses
a unit element.

Example 2.1. Transformation Monoid. Let Q) be any set. Let M(Q)
be the set of all maps f : Q — Q. Under function composition,
M(Q) is a monoid with the identity map idg as its unit element.

If || = n, there are n" such maps. Consider the case n = 2 with
Q = {1,2}. The set M({1,2}) contains 2> = 4 elements: the identity
e, and maps f, g, h. Their composition table is:

o‘efgh
ele f g h
flf e n g
§18 8 & &
h|h h h h

(Note: The specific labels f, g, h correspond to the maps defined by
their columns in the table). This monoid is non-commutative (e.g.,

fog#gof)

Feb)
Example 2.2. Power Set Monoids. Let P(Q2) be the power set of Q).
1. (P(Q)),U, QD) is a commutative monoid (unit is @).
2. (P(Q),N,Q) is a commutative monoid (unit is Q).

ER
Example 2.3. Matrix Monoids. Let M, (R) be the setof n x n real

matrices.
1. (My(R),+,0) is a commutative monoid (unit is the zero matrix).

2. (My(R),-, I,) is a non-commutative monoid (unit is the identity
matrix).

.41

Example 2.4. Integers Divisible by n. Let nZ = {nk | k € Z}.
1. (nZ,+,0) is a commutative monoid.

2. (nZ,-) is a commutative semigroup. If n > 1, it lacks a unit ele-
ment and is not a monoid.

$o19]
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Example 2.5. Stochastic Matrices. The set P"(IR) of stochastic ma-
trices (matrices where each row sums to 1) forms a monoid under
matrix multiplication.

X

Just as we study subgroups, we can define substructures for these
systems.

Definition 2.3. Subsemigroup and Submonoid.

Let (S, %) be a semigroup. A subset S’ C S is a subsemigroup if it is
closed under *, i.e., x xy € S’ for all x,y € S'. If (M, ) is a monoid,

a subset M’ C M is a submonoid if it is a subsemigroup and contains
the unit element of M.

Example 2.6. The Trivial Group. The set G = {1} with the opera-
tion1-1 = 1is a group. It satisfies all axioms trivially.

X

Although the axioms assert the existence of an identity and inverses,
they do not explicitly state their uniqueness. This, however, is an
immediate consequence.

Proposition 2.1. Elementary Properties.

Let G be a group.

1. The identity element 1 is unique.

2. The inverse of any element a € G is unique.
3. Cancellation Laws: For any a,b,c € G:

If ab=ac, thenb =c. If ba = ca, thenb = c.

4
&=

Proof

1. This follows directly from proposition o.4.
2. Suppose b and ¢ are both inverses of a. Then:

b=b-1="b(ac) = (ba)c=1-c=rc.
3. Suppose ab = ac. Multiply by a~! on the left:
aY(ab) =aY(ac) = (@ la)b=(ata)c = 1-b=1-c = b=c.

The right cancellation follows similarly.

Definition 2.4. Abelian Group.
A group G is called Abelian (or commutative) if the operation satis-
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fies ab = ba for all a,b € G.

Notation 2.1. For Abelian groups, we often use additive notation. The
operation is denoted by +, the identity by 0, and the inverse of a2 by —a.

sk
Numerical Groups

The standard number systems provide familiar examples of infinite
Abelian groups.
- The sets Z,Q, R, C form Abelian groups under addition.

- The non-zero elements Q* = Q \ {0} (the multiplicative group of
non-zero rationals), R* (the multiplicative group of non-zero reals),
and C* (the multiplicative group of non-zero complex numbers)
form Abelian groups under multiplication.

Modular Arithmetic

A crucial class of finite Abelian groups arises from modular arith-
metic.

Example 2.7. Integers Modulo n. Let n be a positive integer.

The set of residue classes modulo 7, denoted Z /nZ, consists of
{0,1,...,n — 1}. Under addition modulo #, this forms a finite
Abelian group of order n.

Eid)
When n = p is a prime, the structure is richer. The set IF, = Z/pZ
(the finite field with p elements) forms a field. The non-zero elements
Fy = {1,...,p — 1} (the multiplicative group of non-zero elements of
IFp) form a multiplicative Abelian group of order p — 1. This relies on
the number-theoretic result that for any 2 # 0 (mod p), there exists
an integer b such that ab =1 (mod p).

Roots of Unity
Consider the complex number {, = exp(27i/n) (the primitive n-th R
root of unity). The set / \
tn = {1,ln, %/”.,g;hl} 2 (% .:, o)
consists of all n-th roots of unity (this is the group of n-th roots of \\ /
% a

unity under multiplication). Under complex multiplication, y, is a
cyclic Abelian group of order n. Geometrically, these points form the

29

vertices of a regular n-gon inscribed in the unit circle (see figure 2.1). Figure 2.1: The group 4 of 6th

Furthermore, the entire unit circle S' = {z € C : |z| = 1} (the roots of unity forms a regular

unit circle in the complex plane) is an infinite multiplicative Abelian hexagon in the complex plane.

group.
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The General Linear Group

We now turn to non-Abelian groups. A primary example comes from
linear algebra.

Definition 2.5. General Linear Group.

Let F be a field (such as R, C or IF, where F) is the finite field with p
elements). The set of all n x n invertible matrices with entries in F is
called the general linear group, denoted GL,(F) or simply GL,.

The group operation is matrix multiplication. Since matrix multi-
plication is associative but generally not commutative (for n > 2),
GL,(F) is a non-Abelian group. The identity element is the identity
matrix I,,.

Remark.

The set of all n X n matrices M, (F) under multiplication is a
monoid, but not a group, as singular matrices lack inverses. Un-
der addition, M, (F) is an Abelian group.

Example 2.8. Order of GL,(F,). If F = [F is a finite field with
p elements, GL,(IF,) is a finite group. We determine its order by
counting the number of valid bases for the vector space F".

$15)
Solution

A matrix A € M;([Fp) is invertible if and only if its rows are lin-

early independent.

¢ The first row r; can be any non-zero vector in F”. There are
p" —1 choices.

¢ The second row r, must be linearly independent of ry. It cannot
be a scalar multiple of r1. There are p" — p choices.

* The k-th row r; must not lie in the subspace spanned by
{ry,...,15_1}. This subspace has cardinality p*~1. Thus, there
are p" — p*~1 choices.

The total order is the product of these counts:

|GLa(Fp)| = (p" = 1)(p" = p) -~ (p" = p" 7).

Symmetry and Rigid Motions

Groups naturally encode symmetry. As established in the previous
chapter, the set of all bijections of a set X forms the symmetric group
Sx. When X = {1,...,n}, thisis S,.
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Example 2.9. Symmetries of a Tetrahedron. Let T be a regular
tetrahedron with vertices A, B, C, D. The set of rigid motions (ro-
tations) that map T to itself forms a subgroup of the permutation
group of the vertices S4.

$.15]
Solution

We classify the rotations by their axes (see figure 2.2):
Identity. 1 rotation.

Vertex-Face axes. Axes passing through a vertex and the centre of
the opposite face. There are 4 such axes. Each allows rotations by
27t/3 and 47t/3. Total: 4 x 2 = 8 rotations. These correspond to Axis through A
3-cycles like (BC D).

Edge-Edge axes. Axes connecting the midpoints of opposite edges
(e.g., AB and CD). There are 3 such axes. A rotation by 7 about
such an axis swaps A <+ B and C < D. Total: 3 rotations. These
correspond to double transpositions like (A B)(C D).

The total number of rotational symmetries is 1 + 8 +3 = 12. This
group is isomorphic to the alternating group A4 (the subgroup of
even permutations in Sy).

Axis mid AC-mid BD
|

2.2 Subgroups Figure 2.2: Rotational axes of a

. . tetrahedron.
Just as a vector space may contain subspaces, a group may contain

smaller subsets that are groups in their own right.

Definition 2.6. Subgroup.

Let G be a group. A subset H C G is called a subgroup of G, denoted
H < G, if H itself forms a group under the binary operation of G. If
H < G and H # G, we call H a proper subgroup, denoted H < G.

Example 2.10. Trivial Subgroups. For any group G, the singleton
set {1} containing only the identity is a subgroup, often called the
trivial subgroup. The group G itself is also a subgroup.

B
Example 2.11. Numerical Subgroups.
1. The set of even integers 2Z is a subgroup of the additive group

Z.1In general, nZ = {nk | k € Z} is a subgroup of Z for any
ne.




32 GUDFIT

2. The circle group S! = {z € C | |z| = 1} is a subgroup of the mul-
tiplicative group C*.

3. The group of n-th roots of unity p, is a subgroup of S!, and thus
also of C*.

Fet
To verify that a subset is a subgroup, one need not check all group

axioms from scratch. Associativity is inherited from the parent
group. We require only closure under the operation and the exis-

tence of inverses and the identity. This is efficiently summarised by
the following criterion.

Proposition 2.2. Subgroup Criterion.
A non-empty subset H C G is a subgroup if and only if for all a,b €
H, the element ab~! belongs to H.

¥

P

(=)
If H < G, then for any b € H, its inverse b~ must be in H. Since H

is closed under multiplication, a(b~!) = ab~! € H.
EXLES

(<)
We assume ab~! € H for all a,b € H.

Identity: Since H is non-empty, take any x € H. Then1 = xx~! €
H.

Inverses: For any x € H, since 1 € H, we have x1=1-x1eH
Closure: Leta,b € H. Since b~! € H, we have ab = a(b=1)~! € H.

Thus H satisfies the group axioms.

LB &
Remark.
For additive groups, the condition translates to: H < G >
Va,b€ H,a—b e H.

Example 2.12. Matrix Subgroup. Consider the set of upper triangu-
lar matrices with 1s on the diagonal:

{1

ac ]R} C GL,(R).




Solution

To check if this is a subgroup, let A = [(l) ﬂ and B = [(l) ﬂ . The

inverse of B is

_b] . Then
1

w36

Since a — b € R, the result lies in H. Thus H < GL,(R).

The Dihedral Group

We previously discussed the symmetries of a tetrahedron. We now
formalise the symmetries of a regular polygon in the plane.

Definition 2.7. Dihedral Group.

Let P, be a regular n-gon (n > 3) with vertices labelled 1,...,7n. The
dihedral group, denoted D, is the group of all rigid transformations
(isometries) of the plane that map P, to itself.

The elements of D,, consist of:
1. Rotations: The 7 rotations by angles 27tk /n fork = 0,...,n — 1
about the centre of the polygon.

2. Reflections: The n reflections across axes of symmetry.

Thus, the order of D, is 2n. Since any symmetry permutes the ver-
tices, Dy, is naturally a subgroup of the symmetric group S,.

Note

Notation for the dihedral group varies significantly across the
literature. In these notes, D, refers to the symmetries of a regu-

lar n-gon, which has order 2n. Many algebraists (e.g., Dummit &
Foote) denote this group as Dy, to emphasize its order. Conversely,
some geometers use Dj, to refer to the group of order n. Please al-
ways verify the convention when consulting external texts to avoid
confusion between the number of sides and the order of the group.

Example 2.13. Symmetries of a Triangle. Forn = 3, the group D3
represents the symmetries of an equilateral triangle. It contains 3
rotations and 3 reflections. This group is isomorphic to S3, as any
permutation of the three vertices can be realised by a rigid motion.
For n > 3, D, is non-Abelian (rotations and reflections generally do
not commute).

.41
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5

P

/

o (reflection)

4

Figure 2.3: Symmetries of a
regular pentagon (n = 5). The
axis of reflection passes through
a vertex and the midpoint of
the opposite edge.
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Direct Products

A standard method to construct larger groups from smaller ones is
the direct product.

Definition 2.8. Direct Product.

Let G; and G, be groups. The direct product G = G; x Gy is the set

of ordered pairs {(g, %) | § € G1,h € Gy} equipped with the component-
wise operation:

(81, h1) - (82, h2) = (8182, h1h2).

It is straightforward to verify that this forms a group:
- The identity is 1 = (1¢,, 1g,)-

- The inverse is (g, h) ' = (¢!, h71).
- The order is |Gy x Gy| = |G1]| - |Ga|-

Proposition 2.3. Subgroups of Products.

If H < Gjand Hy < Gy, then H; x Hj is a subgroup of G x G».
Note that not every subgroup of a product is of this form. In partic-
ular, G; x G, always contains the subgroups {1¢, } x G2 and G; x {15, },
which are isomorphic to G, and G; respectively.

¥

P

Proof

We verify the subgroup criterion. The set H; x H; is non-empty be-
cause Hj, H, contain their respective identities. Let x = (hy,hy) and
y = (ki,kp) be elements of H; x Hp. The inverse of y in the direct
productis y~! = (k;!,k;!). Then

xy = (hy, o) (kT k) = (kY haky ).

Since H; < Gj, we have hlkl_1 € H;. Similarly, hzkz_1 € H,. Thus
xy71€H1XH2,SOH1XH2§G1XG2. e @
|
Example 2.14. The Klein Four-Group. LetC, = {0,1} be the © ®
cyclic group of order 2 (isomorphic to Z/2Z). The direct product
Vs = (C; x (Cis called the Klein Four-Group. Its elements are
{(0,0),(0,1),(1,0),(1,1)}. Since x + x = Oforallx € Cy, every
non-identity element in Vj has order 2. This distinguishes it from

Cayley graph

the cyclic group C4, which contains elements of order 4. ‘T ™~

.41

Rectangle symmetries

Figure 2.4: The Klein four-
group Vy: Cayley graph (top)
and as symmetries of a rectan-
gle (bottom).
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2.3 Classical Groups

Among the subgroups of the general linear group GL;, certain fam-
ilies play a pivotal role in algebra, geometry, and physics. These are
collectively known as the classical groups. They are typically defined
as the groups of matrices that preserve specific geometric structures,
such as volume, inner products, or bilinear forms.

The Special Linear Group

The most immediate subgroup of GL, (F) arises from the determi-
nant map. Since det(AB) = det A det B, the determinant is a homo-
morphism from GL,(F) to F*. The kernel of this map consists of
matrices with unit determinant.

Definition 2.9. Special Linear Group.
The special linear group of degree n over a field F is defined as

SL,(F) = {A € GL(F) | detA = 1}.

This group preserves the oriented volume in vector spaces. We can
identify several other notable subgroups of GL, (F) based on matrix
structure:

B, (F): Invertible upper triangular matrices (the Borel subgroup).

T, (F): Upper triangular matrices with 1s on the diagonal (unipotent
matrices).

Diag, (F): Invertible diagonal matrices.

Observe that T, (F) < SL,(F) and Diag,,(F) < B, (F).

Proof

The inclusion Diag,(F) <  By,(F) is immediate, as every diag-
onal matrix is upper triangular. For the second inclusion, recall

that the determinant of an upper triangular matrix is the product

of its diagonal entries. Since A € T,(F) implies A;; = 1forall
ie€{l1,...,n}, wehave det(A) = 1" = 1,s0 A € SL,(F).

The definition extends naturally to rings. For instance, SL,(Z) con-
sists of integer matrices with determinant 1. For a positive integer
N > 1, we define the special linear group of degree 2 over Z/NZ as:

SLy(Z/NZ) = { [Z Z]

a,b,c,d € Z/NZ, ad — bc = 1}.
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When the degree 2 is changed to a general 1, we obtain the special
linear groups over Z and Z/NZ.

Orthogonal Groups

When the vector space R” is equipped with the standard Euclidean
inner product (X,Y) = X 'Y, we consider the linear transformations
that preserve lengths and angles.

Definition 2.10. Orthogonal Group.

A matrix A € GL,(R) is orthogonal if it preserves the inner prod-
uct, i.e., (AX, AY) = (X, Y) for all X,Y. This condition is equivalent
to AT A = I. The set of such matrices forms the orthogonal group:

Ou(R) = {A €GL,(R) | ATA =1}

Since det(A"T A) = (det A)? = 1, the determinant of any orthogo-
nal matrix is +1. The subgroup of rotations (orientation-preserving
isometries) is:

SO, (R) = O0,4(R) NSL,(R).

Example 2.15. The Case n = 2. The elements of SO,(IR) are rota-

eeR}.

The full orthogonal group O,(IR) consists of rotations and reflec-

tion matrices:

SOz (R) = {

cosf —sinf
sinf cosf

tions:

cosf —sinf cosf sinf
07,(R) = , feR ;.
2(R) { lsin() cos 0 ] |ﬁin9 — Cos 9] ’ }

$o19]

More generally, if V is equipped with a non-degenerate symmetric
bilinear form Q of signature (p,q) (where p + q = n), there exists
a basis where the metric tensor is J,; = diag(I,, —I;). The group
preserving this form is the generalised orthogonal group:

Opg(R) = {A € GLy(R) | AT JpqA = Jpq}.

A prominent example is the Lorentz group O3 (R) in special relativ-
ity.



Unitary Groups

For complex vector spaces C", the natural structure is the Hermitian
inner product (X,Y) = XTY.

Definition 2.11. Unitary Group.
A matrix A € GL,(C) is unitary if it preserves the Hermitian form,
ie., ATA = I. The group of such matrices is denoted:

U(n) = {A € GL,(C) | ATA =13},

where AT = AT,

The intersection with the special linear group yields the special uni-
tary group:

SuU(n) = U(n) NSL,(C).
Example 2.16. Low Dimensional Examples.

- U(1) consists of complex numbers z with |z|> = 2zz = 1. The
group U(1) is the unit circle S'.

- SU(2) consists of matrices l sz £‘| where |«|2 + |B|> = 1. This
group is topologically equivalent to the 3-sphere S°.

#2145

Finally, we consider spaces equipped with a skew-symmetric bilinear
form. Let V be a real vector space of even dimension 2n. A standard
non-degenerate skew-symmetric form () can be represented by the

matrix | = OI IS]
—1in

Definition 2.12. Symplectic Group.
The symplectic group consists of matrices that preserve the form ()

Spyn(R) = {A € GLyu(R) | ATJA =]}

Unlike the orthogonal case, it is a non-trivial theorem that for any

A € Sp,, (R), det A = 1. Thus, there is no distinct "special symplectic
group". These groups are fundamental in Hamiltonian mechanics.

2.4 Homomorphisms and Isomorphisms

To understand the structure of groups, we must study the relation-
ships between them. Just as functions relate sets, specific mappings
that preserve the algebraic structure relate groups.

GROUPS INTRODUCTION
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Definition 2.13. Group Homomorphism.
Let G; and G be groups. A mapping f : G| — G is called a group
homomorphism if it preserves the group operation. That is, for all g, €
G12

fgh) = f()f (h).
Note that the product gh is computed in Gy, while f(g) f () is computed
in G2.
- If f is injective, it is called a monomorphism.

- If f is surjective, it is called an epimorphism.

- If f is bijective, it is called an isomorphism. In this case, we write G =
Ga.

The structural preservation implies that the identity and inverses are
mapped consistently.

Proposition 2.4. Preservation Properties.
Let f : Gi — G, be a group homomorphism. Then:
1. f maps the identity of Gy to the identity of G,: f(1g,) = 1¢,-

2. f maps inverses to inverses: for any ¢ € Gy, f(g71) = f(g) .

>

bl

Proof

For the first property, observe that 15, - 1g, = 1¢,. Applying f:
f(lGl) = f(lcl ’ 1(31) = f(lcl)f(lGl)'

Multiplying both sides by the inverse f(1g,) ! in G,, we obtain

1G2 = f(]‘Gl)
For the second property, let g € G;. Then:

f@f(gH)=f(g-8s") =flg) =1g,

Similarly, f(¢7!)f(g) = 1g,. By the uniqueness of inverses in G,

flgh) ="

Examples of Homomorphisms

We provide several key examples that illustrate these concepts across
number theory and linear algebra.
Example 2.17. Inclusion. If H is a subgroup of G, the inclusion
map i : H — G defined by i(h) = h is a homomorphism. Since it is
injective, it is a monomorphism.

El
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Example 2.18. The Determinant. The determinant function
det : GL,(F) — F* satisfies det(AB) = det(A)det(B). Thus, it
is a group homomorphism. Since any non-zero scalar can be the
determinant of some matrix (e.g., a diagonal matrix), this map is an
epimorphism.

Fobl
Example 2.19. Cyclic Groups. Consider the additive group of in-

tegers modulo n, Z/nZ, and the group of n-th roots of unity, y;.
Define the map ¢ : Z/nZ — u, by:

2mim

p(m) =gl =e .

This map is well-defined and bijective, satisfying ¢(a +b) = {40 =
7%2h = @(a)@(b). Thus, ¢ is an isomorphism.

fut)
Example 2.20. Permutation Matrices. We can represent permu-
tations as matrices. For each ¢ € S, define a matrix A, € GL,

by its action on the basis vectors. Specifically, for a vector
x = (xq,. ..,xn)T, let:

n Xo-1(n)
The entries of the matrix A, = (a;;) are given by:

1 ifj=01(i) < o(j) =i,

a4 —
K 0 otherwise.

The mapping 0 — Ay is a monomorphism S, — GL,. These A, are

called permutation matrices. This allows us to view the symmetric
group as a subgroup of the general linear group.

Fe b
Example 2.21. Rotations. The circle groupS' = {z € C |

|z] = 1} is isomorphic to the special orthogonal group SO, (RR). An
explicit isomorphism is given by:

N cost) —sind
sinff  cosf |’

ERl



40 GUDFIT

Example 2.22. Exponential and Logarithm. Let R be the additive
group of real numbers, and let R’ be the multiplicative group of
positive real numbers. The exponential map:

exp: R—> R}, x—e

is an isomorphism, as e**Y = e¥eY. Its inverse is the natural loga-
rithm:
log:RY - R, yr~Iny,

which satisfies In(xy) = Inx + Iny.

E X

In group theory, we often treat isomorphic groups as identical. How-
ever, the ways in which a group can be isomorphic to itself — its
symmetries — are of independent interest.

Definition 2.14. Automorphism.
An isomorphism from a group G to itself is called an automorphism.

Proposition 2.5. The Automorphism Group.

1. The set of all automorphisms of a group G, denoted Aut(G), forms
a group under function composition.

2. If ¢ : G — H is a fixed isomorphism, then the set of all isomor-
phisms from G to H is given by the coset ¢ Aut(G) = {¢of | f €
Aut(G)}.

i

3

Proof

1. The composition of two automorphisms is an automorphism,
and the inverse of an automorphism is an automorphism. Asso-
ciativity holds for function composition, and the identity map is
the identity element.

2. Lety : G — H be any isomorphism. Then ¢l o¢ : G — G is
an automorphism, say f. Thus ¢y = ¢ o f. Conversely, for any f €
Aut(G), the composite ¢ o f is an isomorphism from G to H.
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2.5 Exercises

1.

Function Space Group. Let A be a set and G be a group. Let
Map(A, G) be the set of all functions f : A — G. Define the
product fg pointwise: (fg)(x) = f(a)g(a) for alla € A. Prove
that Map(A, G) forms a group.

Isometry Group. An isometry of the plane IR? is a function f :
R? — R? preserving distances: |f(x) — f(y)| = |x — y|. Prove
that all isometries are bijections and that they form a group under
composition.

Solving Group Equations. Let G be a group and fix 4,b € G.

(a) Show that the equation ax = b has a unique solution x € G.
(b) Show that the equation ya = b has a unique solution y € G.

Matrix Groups. Determine which of the following sets of 2 x 2
matrices form a group under matrix multiplication.

(a) Matrices of the form ? with ac # b?.
b
c
(b) Matrices of the form b with a2 # be.
a
(c) Matrices of the form a b with ac # 0.
0
c

(d) Integer matrices [a Z} with ad — bc # 0. (Check inverses!)
c

Roots of Unity. For a positive integer 1, let u, = {Z¢ | k =
0,1,...,n —1} where {, = exp(27i/n) is the primitive n-th root of
unity. These are the n-th roots of unity. Let picc = U,>1 pin be the
set of all complex roots of unity of any order. Prove that yi is a
group under multiplication.

Product Subgroups. If A < Gand B < H, prove that A x B <
G x H. Find a subgroup of Z x Z that is not of the form A x B for
subgroups A, B < Z.

Opposite Group. Let (G, -) be a group. Define a new operation o
on Gbyaob = b-a. Prove that (G, o) is a group (denoted G°P,
called the opposite group of G).

Group of Units. Give an example of a monoid M where M* is
nontrivial. Compute M* explicitly.

Finite Subsequence Product.

Let G be a finite group of order n. Let a3, ..., 4, be any sequence
of n elements in G. Prove there exist indices 1 < p < g < n such

41
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10.

11.

12.

13.

14.

15.

16.

17.

18.

that the product apay 1 ---a, =1.

Even Order Property. Prove that in any finite group of even order,
the number of elements satisfying x> = 1 is even. Deduce that
there is at least one element of order 2.

Classical Subgroups. Verify the following subgroup inclusions in
GL,(F):

(@) On(R), Opy4(R), and Sp,, (R) are subgroups of GL,(R).

(b) U(n) is a subgroup of GL,(C).

Union of Subgroups. Let A,B < G. Prove that A U B is a sub-
group if and only if A C B or B C A. Use this to show a group
cannot be the union of two proper subgroups.

Product of Subgroups. Let A,B < G. Let AB={ab |a € A,b €
B}. Prove that AB is a subgroup if and only if AB = BA.

Large Subsets Product. Let G be a finite group. Let A,B C G be
non-empty subsets such that |A| 4+ |B| > |G|. Prove that G = AB.
Specifically, if |S| > |G|/2, then every element is a product of two
elements in S.

Integer Subgroups. Let (G, -) be a group and ¢ € G. The cyclic
subgroup generated by g, denoted (g), is the subgroup consisting
of all powersof ¢: {...,¢72,¢71,1,4,¢%,...}. If G = (g) for some
element ¢ € G, then G is called a cyclic group generated by g.

(a) Determine all subgroups of Z (under addition).
Remark.

Show that any subgroup of Z is of the form nZ for some
n >0, where nZ = {nk | k € Z}.

(b) Determine all subgroups of the finite cyclic group Z/nZ
(under addition modulo n).
Remark.
Show that any subgroup of Z/nZ is of the form (d) where
d is the residue class of d modulo 1, and d divides n.

Inversion Automorphism. Prove that the map x — x~!isan

automorphism of G if and only if G is Abelian.

Product Isomorphisms. Let G, Gy, G3 be groups. Prove:
(a) G1 X Gy 2 Gy X Gy.

(b) (G1 X Gy) X G3 2 Gy x (Gy X G3).

Decomposition Check. In each case, determine if G = H x K:



19.

20.

21.

22.

(@ G=R*,H={+1},K= IRj_.
(b) G=B,(F),H= Diagn(F), K = T, (F).
Remark.

Do elements from H and K commute?

(0 G=C*, H=S!, K=R}.
Q Structure. Prove that (Q, +) is not isomorphic to (Q*, -).

Affine Group. Let G = {(a,b) € R? | a # 0} with operation
(a,b)(c,d) = (ac,ad +b).

(a) Prove G is a group.
(b) Show G is isomorphic to the group of matrices { [g ﬂ

Centralisers. Let G be a group and fix a € G. Prove that the set
Cg(a) = {x € G| xa = ax} is a subgroup of G.

Centraliser in S4. The centraliser of ¢ is the set C(c) = {a € S, |
o =on}.

(@) Let o = (123) in S4. Find all elements in C(0).

(b) Deduce the size of the conjugacy class of & by counting di-
rectly or using the result from (a).

a;éO}.
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3
Cyclic Groups

In the preceding chapter, we introduced groups and subgroups. We
now restrict our attention to the simplest class of groups: those gen-
erated by a single element. Despite their structural simplicity, cyclic
groups serve as fundamental building blocks in the classification of
finite Abelian groups and appear ubiquitously in number theory and
cryptography.

Generated Subgroups

We begin by formalising the notion of a subgroup constructed from a
specific subset of elements.

Definition 3.1. Generated Subgroup.

Let G be a group.

1. Let g € G. The cyclic subgroup generated by g, denoted (g), is
the smallest subgroup of G containing g.

2. More generally, if S C G is a subset, the subgroup generated by
S, denoted (S), is the smallest subgroup of G containing S.

Lemma 3.1. Intersection of Subgroups.
Let {H;}ic; be a non-empty family of subgroups of G. Then N;c; H;

is a subgroup of G.
73

Proof
Let H = ;¢ H;. Since each H; contains the identity, 1 € H. If a,b €
H, then a,b € H; for every i, so ab—! € H; for every i, hence ab—1 €

H. Therefore H is a subgroup of G.
[

The term "smallest" is well-defined because the intersection of any
collection of subgroups containing S is itself a subgroup containing S.
Constructively, (g) consists of all possible powers of g.



Proposition 3.1. Structure of Cyclic Subgroups.
For any g € G,

(g) ={s" | ke z}.

>
a8

Proof

Let H = {g* | k € Z}. First, we verify H is a subgroup.

Identity: ¢° =1 ¢ H.

Closure: ¢'-¢/ = ¢/ € Hsincei+j € Z.

Inverses: (¢F)~! = ¢=* € H since —k € Z.

Thus H < G. Since any subgroup containing ¢ must contain all
its integer powers by closure, H is necessarily the smallest such
subgroup, so (g) = H.

Definition 3.2. Cyclic Group.
A group G is called cyclic if there exists an element g € G such that
G = (g). Such an element g is called a generator of G.

If a group is generated by a finite subset 5, it is called a finitely
generated group. Cyclic groups are the simplest finitely generated
groups (generated by a singleton).

Note

at+b _ Gbta _

Cyclic groups are necessarily Abelian, as g’¢" = ¢
b,a
88

Order of an Element

The structure of the subgroup (g) depends entirely on the powers of
q.

Definition 3.3. Order of an Element.

The order of an element ¢ € G, denoted |g| (some texts use 0(g)), is
the smallest positive integer k such that g = 1.

- If such a k exists, g has finite order k.

- If gk # 1 for all integers k # 0, ¢ has infinite order.

The following lemma establishes the connection between the order of
an element and modular arithmetic.

Lemma 3.2. Properties of Order.

Let g € G.

Finite Order: If |g| = k, then ¢" = 1lifand onlyif n = 0 (mod k).
Consequently, ¢' = ¢/ <= i = j (mod k). The subgroup (g)
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contains exactly k distinct elements: {1,g,...,¢"1}.
Infinite Order: If g has infinite order, then ¢' = ¢/ <= i = j. The
subgroup (g) is infinite.
1z
Proof

1. Suppose |g| = k. By the division algorithm, write n = kq + r with
0 <r < k. Then:

g =g = (g1 g =114 =4

If n = 0 (mod k), thenr = 0 and ¢" = 1. Conversely, if ¢" = 1,
then ¢" = 1. Since 0 < v < k and k is the smallest positive integer
with ¢F = 1, we must have r = 0. Thus n =0 (mod k).
For thesecond part, ¢’ = ¢/ += ¢/ =1 <= i—j=0
(mod k) <= i=j (mod k). The distinct elements are therefore
the residues modulo k, i.e., {g°,...,¢"1}.

2. If g has infinite order, suppose gi = gf . Then gi_j = 1. By def-
inition, no non-zero power is the identity, soi —j = 0, implying

i=j.

Classification of Cyclic Groups

Cyclic groups are completely classified by their order. Up to isomor-
phism, there is only one cyclic group of any given order n (finite or
infinite).

Theorem 3.1. Classification of Cyclic Groups.
Let G = (g) be a cyclic group.
1. If G is infinite, then G = (Z, +).

2. If G is finite of order n, then G = (Z/nZ, +).

il
Proof
Consider the mapping ¢ : Z — G defined by (k) = gF. Since
gk " = gk“”, this is a group homomorphism from the additive

group of integers to G. Since G is generated by g, ¢ is surjective.
We examine the kernel:

Infinite Case: If G is infinite, g has infinite order. By lemima 3.2,
¢ =1 <= k = 0. Thuskerp = {0}. The map is an isomor-
phism Z = G.

Finite Case: 1If |G| = n, then |g¢| = n (since (§) = G). By lemma 3.2,
¢f =1 <= k = 0 (mod n). Thus ker ¢ = nZ. The induced
map ¢ : Z/nZ — G givenby k (mod n) + g¢F is well-defined




and bijective. Thus Z/nZ = G.

This classification allows us to determine the generators and the
automorphism group of any cyclic group by studying Z and Z/nZ.

Theorem 3.2. Structure of Generators and Automorphisms.
Let G = (g) be a cyclic group.

Infinite Case: If G is infinite:

- The generators are ¢ and g~ !
- Aut(G) =2 Z/27Z.

Finite Case: If |G| = n:

- The set of generators is {¢" | 1 < k < n, ged(k,n) = 1}.
- Aut(G) = (Z/nZ)*.

Generators.

An element i = g generates G if and only if ¢ € (h). That is, there

exists an integer b such that i’ = g, or g = g.

e If Gisinfinite, g = ¢ = ¢* 1 =1 = ab-1=0 =
ab = 1. The only integer solutions are # = =+1. Thus generators
are ¢' and g7 1.

e If |G| = n,¢"" = ¢ = ab =1 (mod n). This linear congruence
has a solution for b if and only if ged(a,n) = 1.

Bk

Automorphisms.

Let f € Aut(G). Since G is generated by g, f is completely deter-

mined by f(g). Since f is surjective, f(g) must be a generator of G.

e If G is infinite, f(g) mustbe g or g~1. Definey : Aut(G) —
1,1} = Z/2Zby ¢(f) = 1iff(g) = gand p(f) — —1if
f(g) = ¢~ !. This is an isomorphism.

e If |G| = n, f(g) = g° for some a with ged(a,n) = 1. Define ¢ :
Aut(G) — (Z/nZ)* by ¢(f) = a (mod n). Since f1(f2(g)) =
f1(g") = (gM)™ = g"™, wehave ¢(f1 0 f,) = aaz (mod n).
This map is bijective and a homomorphism.

SEY #

Discrete Logarithms

For a finite cyclic group G of order n with a fixed generator g, we
have established an isomorphism G = Z/nZ. We define the inverse
of the map k +— g* explicitly.
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Definition 3.4. Discrete Logarithm.

Let G = (g) be a cyclic group of order n. For any a € G, the unique
integer k € Z/nZ such that a = g* is called the discrete logarithm
of a with respect to g, denoted logg a.

The map logg : G — Z/nZ is a group isomorphism:
logg(ab) = log, a +log, b (mod n).

While computing ¢* is computationally efficient (using repeated
squaring), computing logg a for large n is generally difficult. This
asymmetry is the foundation of the Discrete Logarithm Problem,
which underpins cryptographic protocols such as Diffie-Hellman key
exchange and Elliptic Curve Cryptography.

We apply this framework to solve power equations in cyclic groups.

Proposition 3.2. Roots in Cyclic Groups.
Let G be a cyclic group of order n generated by g. Leta € G and k €
Z. The equation x* = a has solutions in G if and only if

ged(k,n) | log, a.

If this condition holds, there are exactly ged(k, n) distinct solutions.

e
Proof
Let x = g¥ for some unknown y € Z/nZ. The equation x* = a be-
comes:
(gy)k =0 = gyk = glogS’a,
By lemima 3.2, this is equivalent to the linear congruence:
ky =log,a (mod n).
From elementary number theory, a linear congruence Ay = B

(mod n) has solutions if and only if d = gcd (A, n) divides B. Here,
d = ged(k, n). Thus, solutions exist if and only if d | log, a.
If the condition is met, the congruence has exactly 4 solutions mod-
ulo n. Specifically, if yq is a particular solution, the set of solutions
is:

{y0+t-g ’ t=01,...,d-1}.

These correspond to d distinct elements g¥ in G.
|

Example 3.1. Solving x¥ = 4. ConsiderG = Z/ 13Z*, which is
cyclic of order n = 12. A generator is g = 2.
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$15)
Solution

We solve x*> = 5 in G.

1. Compute discrete logs: We need log, 5. Powers of 2 mod 13 are:
21 =222 =423=824=3,2"=6,20=12,27=11,26 =9,2° =
5. Solog,5=9.

2. Setup congruence: 3y =9 (mod 12).

3. Check solvability: ged(3,12) = 3.Since3 | 9, solutions exist.
There are 3 solutions.

4. Solve: 3y = 9+ 12k == y = 3+ 4k. The solutions modulo 12
arey € {3,7,11}.

5. Map back to group: x € {23,272} (mod 13) = «x €
{8,11,7}.

3.2 Cosets and Lagrange’s Theorem

We now investigate the internal structure of groups by partitioning
them relative to a subgroup. This decomposition leads to Lagrange’s
Theorem, a fundamental result connecting the order of a finite group
to the orders of its subgroups.

Coset Decomposition

Let H be a subgroup of G. The group operation allows us to trans-
late H by an element ¢ € G, generating a "shifted" version of the
subgroup.

Definition 3.5. Cosets.

Let H< Gand g € G.

- Theset gH = {gh | h € H} is called the left coset of H in G de-
termined by g.

- The set Hg = {hg | h € H} is called the right coset of H in G de-
termined by g.

The element g is called a representative of the coset.

Lemma 3.3. Properties of Cosets.

Let H < G.

1. Two left cosets alH and bH are either identical or disjoint.

2. aH = bH if and only if b~'a € H.

3. There is a bijection between any two left cosets alH and bH. Thus,
all cosets have the same cardinality as H.

Similar properties hold for right cosets, with the equality condition ab—! €
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H.
ki

Proof

1. Suppose aH NbH # @. Letx € aHNbH. Then x = ah; = bh,
for some h1,hy € H. This implies b~'a = hzhl_1 € H. For any ele-
ment ah € aH, we have

ah = b(b~ a)h = b(hyhy})h € bH.

Thus aH C bH. By symmetry, bH C aH, so aH = bH.

2. We just showed tHNbH # @ = b la € H = aH = bH.
Conversely, if aH = bH, thena = a-1 € aH = bH, so a = bh for
some h, implying b~'a € H.

3. Define f : aH — bH by f(ah) = bh. Its inverse is ¢ : bH — aH
defined by g(bh) = ah. Thus |aH| = |bH| = |H|.

[ |
These properties imply that the left cosets of H form a partition of G.

G= |_| g,'H .
iel
The set of representatives {g;};c; is called a transversal or a system
of coset representatives.

Definition 3.6. Index of a Subgroup.
The number of distinct left cosets of H in G is called the index of H in
G, denoted [G : H] or (G : H).

It is a standard result (see lemma 3.4 below) that the number of left
cosets equals the number of right cosets, so the index is well-defined
regardless of the side chosen.

Lemma 3.4. Correspondence of Representatives.
If {gi}icr is a set of left coset representatives for H in G, then { gl-_l}l-e I
is a set of right coset representatives for H in G. Thus, [G : H] is the

same for left and right cosets.
12

Proof

Consider the map ¢ : {gH} — {Hg '} defined by gH ~ (¢H) ! =
Hg~!. This is a bijection because inversion is a bijection on G. Thus
the cardinalities of the set of left cosets and the set of right cosets
are equal.
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Lagrange’s Theorem

The partition of G into disjoint cosets of equal size yields one of the
most important counting theorems in finite group theory.

Theorem 3.3. Lagrange’s Theorem.
If G is a finite group and H < G, then

Gl = |H| -G : H].
In particular, the order of a subgroup divides the order of the group.
il

Proof

Letk = [G : H|. Let g1H,...,g¢H be the distinct left cosets. Since
these partition G:

k
G= |_| giH-
i=1
Since |g;H| = |H| for all i, we sum the cardinalities:
k k
Gl =)_IgiH| =) |H| =k-|H|.
i=1 i=1

This theorem has immediate and powerful corollaries concerning the
structure of finite groups.

Corollary 3.1. Order of Elements. Let G be a finite group. For any ¢ €
G, the order |g| divides |G|. Consequently, ¢/Cl = 1.

e
Proof
The order of g is the order of the cyclic subgroup (g). By La-
grange’s Theorem, |(g)| divides |G|. Thus |G| = k - |g| for some
integer k, and gl¢l = (glshk =1k = 1.
]

Corollary 3.2. Groups of Prime Order. 1f |G| = p where p is a prime
number, then G is cyclic and G = Z/pZ. It has no non-trivial proper
subgroups.

e
Proof

Let ¢ € G with ¢ # 1. The order |g| divides p. Since p is prime and
lg| > 1, we musthave |¢g| = p. Thus (¢) contains p elements, so

(8) =G.
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Corollary 3.3. Fermat’s Little Theorem. Let p be a prime and a be an in-
teger not divisible by p. Then

A 1=1 (mod p).

e
Proof
Consider the multiplicative group of integers modulo p, denoted
(Z/pZ)*. This group has order p  — 1. The residue class of a

is an element of this group. By the corollary on element orders,

Z/pZ)*| =1 in the group, which translates to a’~! =1 (mod p).

Al

Lagrange’s Theorem also helps classify subgroups of cyclic groups,
providing a converse to the theorem for this specific case.

Corollary 3.4. Subgroups of Cyclic Groups. Let G be a cyclic group of
order n. For every positive divisor d | 1, there exists a unique subgroup

of order d. This subgroup is cyclic.
ok

Let G = (g).
Existence.

Letk = n/d. Considerh = gk. The order of h is n/ ged(k,n) =
n/k = d. Thus (h) is a subgroup of order d.
EXLES

Uniqueness.

Let H be any subgroup of order d. Since G is cyclic, every subgroup
of G is cyclic (proof below), so H = (g“) for some a. The order of H
isn/ged(a,n) = d, implying ged(a,n) = n/d = k. Since k | a, we
have ¢ € (g*),s0 H C (g¥). Since both have order d, they must be

equal.
SEB #

Lemma 3.5. Subgroups of Cyclic Groups Are Cyclic.
Let G = (g) be a cyclic group and let H < G. If H # {1}, let m be
the smallest positive integer such that ¢" € H. Then H = (g™), so
H is cyclic.

7|32

Proof
Since H is non-empty, choose & € H with h # 1. Write h = g~. By
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the division algorithm, k = gm 4 r with 0 < r < m. Then
g =g "m=gg") e H

By minimality of 7, we must have r = 0,som | kand g* € (g").
Hence H C (g™), and the reverse inclusion is obvious.
[ |

This leads to a classic number-theoretic identity involving Euler’s

totient function ¢.

Definition 3.7. Euler’s Totient Function.
For a positive integer n, the function ¢(n) denotes the number of in-
tegers in {1,2,...,n} that are coprime to n.

Corollary 3.5. Totient Sum Identity. For any positive integer n,
n=>y o).
d|n
o

Proof

In a cyclic group of order n, every element generates a unique
cyclic subgroup of some order d where d | 1. The number of ele-
ments generating a specific subgroup of order d is ¢(d) (the num-
ber of generators of Z/dZ). Since every element belongs to exactly
one such set of generators, summing ¢(d) over all divisors d counts
every element in the group exactly once.

[
Index Multiplicativity
The index acts multiplicatively across chains of subgroups.
Theorem 3.4. Multiplicativity of the Index.
Let K < H < G be groups with finite indices. Then
[G:K]=[G:H] - [H:K].
L

Proof

Let {g;i}ic1 be coset representatives for H in G, so G = | J;c; g;H. Let
{hj}jej be coset representatives for K in H, so H = | J;cj h;K. Substi-

53
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tuting the decomposition of H into that of G:

(i

iel jej YeIx]

We verify these cosets are disjoint. Suppose g;h;K = gyhyK. Then
glh] € gi/hj/K C gyH. Thus H N gyH # o, which im-
plies i = i’ (since g; are distinct representatives). We cancel g; to get
hiK = hyK, which implies j = j'. Thus, the set {g;};} is a transver-
sal for Kin G, and its size is |I| - |J| = [G : H] - [H : K].

[ ]

Product of Subgroups

We conclude with counting results for products of subgroups, which
are not necessarily subgroups themselves.

Proposition 3.3. Order of Products.
Let H and K be finite subgroups of G. The size of the set HK = {hk |
h € H,k € K} is given by:

H]| - K]
|[HNK|"

|HK| =

¥

Proof

Consider themap f : H x K — HK defined by (h,k) ~— hk.
This map is surjective. We determine the size of the fibre for any

x € HK. Let x = hoky. Suppose hk = hoky. Then ho_lh = kok~1. Let
this element be u. Since u € H (LHS) and u € K (RHS), u € HNK.
Thush = houand k = u~'ky. Conversely, foranyu € HNK,
(hou)(u=1kg) = hoko. Therefore, every element in HK arises from

exactly |[H N K| pairs in H x K.
u

Theorem 3.5. Index Inequalities.
Let H, K < G.
[G:HNK] <[G:H]-[G:K].
Equality holds if and only if HK = G. If [G : H| and [G : K] are co-
prime, then [G: HNK] = [G : H|[G : K].
i
Proof

By the index formula, [G : HNK] = [G : H|[H : HNK]. We
claim [H : HNK] < [G : K]. Consider themap ¢ : h(HN
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K) +— hK from the left cosets of HN K in H to the left cosets of K in
G.Ifh(HNK) = hy(HNK), thenhy 'hy € HNK C K, so K =
hpK. The map is well-defined and injective. Thus [H : HN K] < [G :
K]. Multiplying by [G : H] gives the result. Equality in the injection
corresponds to surjectivity of cosets, which implies HK = G.

3.3 Exercises

1. Order Calculation. Let A =

_1]andB:lO 1]be

0 -1 -1
matrices in GL;(R).

(a) Find the orders of A and B.

(b) Compute the products AB and BA. Find their orders.

(c) Observe that A and B have finite order, but their product may

not. What does this imply about the set of elements of finite
order in a non-Abelian group?

2. Involutions. Prove that an element 2 € G has order < 2 if and

only ifa = a1

3. Commutativity via Order Relations. Leta,b € G. Suppose Note that gcd(3,7) = 1. Can you
la| = 7 and a®b = ba’. Prove that ab = ba. express @ as a power of a°?
4. Order Invariance. Let 4,b € G. Prove:
@) la| = la""].
(b) [ab| = [bal.
5. Homomorphisms and Order. Let f : G — H be a group homo-
morphism. If ¢ € G has finite order, prove that |f(g)| divides
18l-
6. Product of Elements.

(a) Let G be a finite Abelian group. Prove that the product of all
elements in G is equal to the product of all elements of order

[Te= I =

geG aeGa?2=1

< 2. Specifically:

(b) Use this to prove Wilson’s Theorem: If p is a prime, (p —
1)! = -1 (mod p).

7. Elements of Finite Order.

(a) Let G be an Abelian group. Let H be the set of elements
of finite order. Prove that H is a subgroup of G (called the
torsion subgroup).
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10.

11.

12.

13.

14.

15.

16.

(b) Show by counterexample that this is false for non-Abelian
groups.

Power Automorphisms. Let G be a finite Abelian group of odd
order. Consider the map ¢ : G — G defined by ¢(x) = x2.

(a) Prove that ¢ is an automorphism.

k

(b) Generalize: For which integers k is x — x* an automorphism?

Function Group. Let f(x) = 1/xand g(x) = (x —1)/x be
functions on R \ {0, 1}. Prove that the group generated by f and g
under composition is isomorphic to S3 (or Dj3).

Subgroups of Q and S'.

(a) Let S = {z € C | |z| = 1} be the unit circle in the complex
plane, which forms a group under complex multiplication.
Prove that every finite subgroup of S! is cyclic.

(b) Prove that the additive group Q is not cyclic, but every
finitely generated subgroup of it is cyclic.

(c) For a fixed prime p,let G = {z € C | z’" =1 for some n > 0}
be the quasicyclic group (Priifer p-group). This is the union
of all cyclic groups pipn of p"-th roots of unity for n > 0.
Prove that every proper subgroup of G is finite and cyclic.

Product of Cyclic Subgroups. Let 4,0 € G be commuting ele-
ments with orders n and m respectively. If ged(n,m) = 1, prove
that (ab) is a cyclic subgroup of order mn.

Uniqueness Implies Cyclicity. Let G be a finite group of order .
Prove that if for every divisor d | n, there is at most one subgroup
of order d, then G is cyclic.

Index Properties. Give an example of an infinite group where
every non-trivial subgroup has finite index.

Computing Automorphism Groups.

(a) Find Aut(Z).

(b) Find the group Aut(Z/20Z). List its elements.

(c) Find Aut(Vy) where Vj is the Klein four-group.

(d) Find the set of endomorphisms End(Z/20Z) and describe
the structure of this set under pointwise addition and compo-
sition.

Orders in Cyclic Groups. Let G be cyclic of order n.

(a) Show that for each divisor d | n, there are exactly ¢(d) ele-
ments of order d in G.
(b) Use this to re-derive the identity n = Y4, ¢(d).

Coprime Intersection. If H, K < G have coprime orders ((|H|, |K|) =
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1), prove that HN K = {1}.

17. Double Cosets. Let H,K < G. The set HgK = {hgk | h € H,k €
K} is called a double coset. Prove that:

H|-|K
Hgk| = LKL
g7 Hg N K|
18. Affine Solution Space. Let W be the kernel of a linear map A (a
subgroup of vector space V). Prove that the solution set to Ax = b
is a coset of W.

19. Matrix Subgroups.
(a) Prove that the set of invertible diagonal matrices in GL,(F) is
a subgroup isomorphic to (F*)".
(b) Prove that the set T,;(F) of upper triangular matrices with 1s
on the diagonal is a subgroup of GL,(F).



4.1

4

Normal Subgroups and Quotient Groups

In the previous chapter, we analysed the structure of a group G by
decomposing it into disjoint cosets relative to a subgroup H. We now
investigate whether the set of these cosets, denoted G/ H, inherits

a group structure from G. This construction parallels the theory

of vector spaces, where the quotient of a space V by a subspace W
yields the quotient space V/W.

Normal Subgroups

Let H be a subgroup of G. We wish to define a binary operation on
the set of left cosets G/H = {¢gH | ¢ € G} using the operation of G.
The natural candidate for the product of two cosets aH and bH is the
coset containing the product of their representatives:

(aH) - (bH) = (ab)H.

However, for this to be a well-defined operation on sets (where A -
B = {ab | a € A,b € B}), we require the set equality aHbH = abH.
Expanding the set product, we require that for any hy,hy € H, there
exists h € H such that

ahlbhz = abh.

Simplifying, this implies h1b = b(hh, ). Since iy and h; are arbitrary,
this condition is equivalent to requiring b"'Hb C H forall b € G.
This motivates the following definitions regarding invariance under
conjugation.

Definition 4.1. Conjugacy.

Let G be a group.

1. Let x,¢ € G. The element gxg~! is called the conjugate of x by g.

2. Two elements x, y are conjugate if there exists g € G such that y =
gxg~ . This defines an equivalence relation on G.




Definition 4.2. Normal Subgroup.
A subgroup N of G is called a normal subgroup, denoted N < G, if
it is invariant under conjugation by any element of G. That is:

gNg ' =N forallgecG.

It follows immediately that N < G if and only if gNg~! C N for all

g € G, or equivalently, if gN = Ng for all ¢ € G (left cosets equal
right cosets).

Example 4.1. Abelian Groups. If G is Abelian, then for any g,x €
G,wehave gxg! = xg¢~! = x. Thus, every subgroup of an

Abelian group is normal.

Fh)
Example 4.2. The Centre of a Group. The centre of a group G, de-
noted Z(G), is the set of elements that commute with every element

of G:
Z(G) ={ze€ G|zg=gzforall g € G}.

An element lies in the centre if and only if its conjugacy class con-
tains only itself. Z(G) is always a normal subgroup of G.

X

A fundamental source of normal subgroups arises from group homo-

morphisms.

Definition 4.3. Kernel and Image.
Let ¢ : G — H be a group homomorphism.
1. The kernel of p iskerp = {g € G | ¢(g) = 1x}.

2. The image of ¢ isim¢ = {¢(g) | g € G}.

Proposition 4.1. Normality of the Kernel.
Let ¢ : G — H be a group homomorphism. Then ker ¢ is a normal
subgroup of G, and im ¢ is a subgroup of H.

Proof
We first verify the subgroup properties. Since ¢(1g) = 1g,1c €

ker ¢. Let a,b € ker ¢. Then ¢(ab™') = ¢(a)p(b) ' =1y - 15" = 1p.
Thus ab~! € ker ¢. To check normality, letn € kerg and g € G.
Then:

p(gng ") = () p(M)e(g) ' = ¢(8) 1 - 9(g) ' =1p.

GROUPS INTRODUCTION 5’9
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Thus gng~! € ker @, so ker ¢ < G. The proof that im ¢ < H follows

directly from the homomorphism property ¢(xy 1) = ¢(x)@(y) '
[ |

Example 4.3. Special Linear Group. The determinant map

det : GL,(C) — C* isahomomorphism. Its kernel is the spe-

cial linear group SL, (C). Therefore, SL,(C) < GL,(C).

E X

When N is a normal subgroup, the arithmetic of cosets becomes well-
behaved.

Definition 4.4. Quotient Group.
Let N < G. The quotient group of G by N, denoted G/N, is the set
of all cosets {gN | ¢ € G} equipped with the operation:

(aN)(bN) = (ab)N.

We denote the class aN by 4. The operation is then 2 - b = ab. The

identity element of G/N is 1=1N = N, and the inverse of 7 is a1,

Associated with any normal subgroup is the canonical projection

map. Let 7 : G — G/N be defined by 71(¢) = ¢N. Then wisa

surjective homomorphism with ker 7 = N. This leads to a useful

characterisation: normal subgroups are precisely the kernels of group

homomorphisms.

Example 4.4. Projective Linear Groups.

1. The centre of the general linear group GL, (F) consists of scalar
matrices Z = {Al, | A € F*}. The quotient group

PGL,(F) = GL,(F)/Z

is called the projective general linear group.

2. Similarly, the centre of SL;(Z) is {+L,}. The quotient
PSLy(Z) = SLy(Z)/{+L}

is the modular group, a central object in number theory and
geometry.

ERl

4.2 The Isomorphism Theorems

The relationship between homomorphisms, normal subgroups, and
quotients is encapsulated in the Fundamental Homomorphism Theo-



rem (often called the First Isomorphism Theorem).
Theorem 4.1. Fundamental Homomorphism Theorem.
im ¢ defined by

p(gkerg) = ¢(g)

is a group isomorphism. Consequently,

G/ ker ¢ = im ¢.

Let K = ker ¢.
Well-defined.
Suppose g1 = &2. Then g1K = g K, implies g» = g1k for some k € K.

?(82) = 9(g1k) = @(g1)p(k) = ¢(g1) - 1 = @(81)-

Thus the definition is independent of the representative.
SERA #

Homomorphism.

P(3182) = 9(3182) = ¢(8182) = ¢(81)9(82) = 9(31)9(32)-
ZER &

Injectivity.

9@ =11 = ¢() =11 = geK = g=K=1gsk-
Since the kernel of ¢ is trivial, it is injective.
FER #
Surjectivity.

By definition, for any h € im ¢, there exists ¢ € G such that ¢(g) =
h. Then 9(g) = h.
LB

Corollary 4.1. Criteria for Injectivity and Surjectivity. Let ¢ : G — H
be a homomorphism.

1. ¢ is injective if and only if ker ¢ = {1}.
2. ¢ is surjective if and only if G/ ker ¢ = H.

Ham

GROUPS INTRODUCTION 61

Let ¢ : G — H be a group homomorphism. Then the map ¢ : G/ ker ¢ —

G/ ker ¢

Figure 4.1: Commutative di-
agram for the Fundamental
Homomorphism Theorem. The
map ¢ factors through the quo-
tient.
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Example 4.5. The Circle Group. Consider the map ¢ : (R, +) — S!
givenby x +— ¢2™*. This is a surjective homomorphism. The ker-
nel is the set of integers Z. By the Fundamental Homomorphism
Theorem:

R/Z =S

#o )
Example 4.6. Principal Congruence Subgroups. Let N be a positive
integer. The reduction homomorphism ¢ : SL,(Z) — SLy(Z/NZ)
is given by:
a b amod N bmod N
c d cmod N dmod N |~

This map is surjective (a non-trivial number-theoretic result). Its
kernel is the principal congruence subgroup of level N:

d=1 (mod N)}

c

a
c b

T(N) = { [“ Z] € SLy(Z) 0 (mod N)

Thus, T(N) <9 SL,(Z) and SLy(Z)/T(N) = SL,(Z/NZ). Further-
more, for N > 2, the intersection of T'(N) with the centre {£1,}

is trivial. Thus I'(N) embeds injectively into the modular group
PSLy(Z).

E
The structure of the subgroups of a quotient group G/ N is perfectly
mirrored by the subgroups of G that contain N.

Theorem 4.2. Correspondence Theorem.

Let N < G. Let M be the set of subgroups of G containing N, and let
M be the set of subgroups of G/N. There is a one-to-one correspon-
dence between M and M given by:

M M/N = {mN | m € M}.

The inverse map is M — {g € G | gN € M}.

Proof

Since N < G, itis normal in any subgroup M containing it, so
M/ N is a well-defined subgroup of G/N. Conversely, if M < G/N,
let M be its preimage under the projection 7t : G — G/N. Since 7t is

R

1€ M, N = ker t C M. The bijection follows from the definition of

G
a homomorphism, the preimage of a subgroup is a subgroup. Since M<------- > M/N
set preimages. N

n {1o/n}

Figure 4.2: The Lattice Corre-
spondence. Subgroups of G
containing N correspond to
subgroups of G/N.



We conclude with two isomorphism theorems that describe the inter-
action of subgroups with quotients.

Theorem 4.3. Second Isomorphism Theorem.
Let H< Gand N < G. Then HNN < H, and

NH/N = H/(HNN).
g
Proof
Note first that NH = {nh | n € N,h € H} is a subgroup of G
because N is normal (see previous chapter results on products NK).
Also N < NH. Define the homomorphism ¢ : H — NH/N by

@(h) = hN. This is surjective because any element of NH/N is of
the form nhN = hN = ¢(h). The kernel is:

kerop={he H|hN=N}={he€H|he N} =HNN.

The result follows from the Fundamental Homomorphism Theo-
rem.

Theorem 4.4. Third Isomorphism Theorem.
Let N, M be normal subgroups of G with N < M. Then M/N < G/N
and

(G/N)/(M/N) = G/M.

Proof

Define ¢ : G/N — G/Mby ¢(gN) = gM. This is well-defined be-
cause N < M (if gN = ¢/N, then g71¢’ € N C M, so gM = ¢'M).
The map is clearly a surjective homomorphism. The kernel is:

kerg = {gN € G/N |gM = M} = {gN | g € M} = M/N.

Applying the Fundamental Homomorphism Theorem yields the
isomorphism.

4.3 Exercises
1. Affine Group Quotient. Let G = {(a,b) | 2 € R*,b € R} with the
operation (a,b)(c,d) = (ac,ad +b). Let K = {(1,b) | b € R}.

(a) Prove that K is a normal subgroup of G.
(b) Prove that G/K = R*.

GROUPS INTRODUCTION
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10.

11.

12.

Positive Determinant Subgroup. Let H = {A € GL,(R) |
det A > 0}. Prove that H < GL,(IR). Identify the quotient group
GL4(R)/H.

Normality Transitivity. Let N <M < G.

(a) If N € G, prove that N < M (trivial, but verify).
(b) Is N necessarily normal in G? Provide a counterexample (e.g.,
in Dy or Sy).

Structural Properties.

(a) Prove that the center Z(G) is always a normal subgroup of G.
(b) Prove that any subgroup H < G of index 2 (i.e., [G : H| = 2)
is normal.

Product Normality. Let G, G’ be groups. Prove that G x {1} is a
normal subgroup of G x G/, and (G x G')/(G x {1}) = G'.

Cyclic Quotient Implies Abelian. Prove that if G/Z(G) is cyclic,
then G is Abelian.

Direct Product Centers. Let G = Gy X - - - X Gy,.
(a) Prove that Z(G) = Z(G1) X -+ x Z(Gy).
(b) Prove that G is Abelian if and only if each factor G; is Abelian.

Inner Automorphisms. For x € G, define 0 : G — G by 0y(g) =

xgx L.

(a) Prove that oy is an automorphism of G (called an inner auto-
morphism).

(b) Let Inn(G) = {0y | x € G}. Prove that Inn(G) is a normal
subgroup of Aut(G).

(c) Prove that Inn(G) = G/Z(G).

Preimage of Image. Let f : G — H be a homomorphism with
kernel K. Let M < G. Prove that f~1(f(M)) = KM.

Commuting Normal Subgroups. Let M, N < G such that M N Consider mnm~'n~! and which sub-
N = {1}. Prove that for any m € M and n € N, mn = nm. group this belongs to.
Coprime Order Element. Let N < G. Let ¢ € G be an element

whose order is finite and coprime to |G/N|. Prove that ¢ € N.

Correspondence Theorem. Let ¢ : G — G’ be a surjective ho-
momorphism. Prove that the mapping H — ¢(H) is a bijection
between the set of subgroups of G containing ker ¢ and the set
of subgroups of G’. Show that normal subgroups map to normal
subgroups.



5
Group Actions and More Permutations

The structure of algebraic objects is often revealed through their in-
teraction with other sets. From an algebraic point of view, the action
of a group on a set is a fundamental method for studying both the
group and the set.

We formalise the concept of a group ‘moving’ or permuting the ele-
ments of a set.

5.1 Group Actions

Definition 5.1. Group Action.
Let X be a set and G be a group. A (left) action of G on X is a map

GxX—=X, (gx)—g-x

satisfying the following two axioms.

Axiom 4. Identity.
Forallx € X,1-x = x.
R
Axiom 5. Associativity.
Forallx € Xand g, h € G, g (h-x) = (gh) - x.
A

A set X equipped with such an action is called a G-set.

The Symmetric Group Revisited

The most immediate example of a group action is the symmetric
group acting on its index set. The symmetric group S, acts naturally
on X, = {1,...,n} via function evaluation:

o-i=0o(i).

This action is fundamental; indeed, any action of a group G on a set
X induces a homomorphism from G to the symmetric group Sx.
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However, S, also acts on itself in a manner distinct from simple mul-
tiplication: the action of conjugation. Defined by ¢ - x = gxg~!,
this action partitions the group into disjoint subsets called conjugacy
classes.

Remark.

Recall from chapter 1 that conjugation preserves cycle structure

(Lermma 1.2), and that two permutations are conjugate in S, if and [ ]

only if they have the same cycle structure. (31)

Visualising Conjugacy Classes (2,2)

Cycle structure can be encoded by a partition of n (for example, the |

cycle structure (123)(4) corresponds to 3 + 1), and these partitions — (2,1,1)
can be visualised using Young diagrams (or Ferrers diagrams). -

5.2 Alternative Definition of Sign (L1,1,1)

In chapter 1 we developed the sign of a permutation from its cycle

structure. Here is a different viewpoint: we recover the sign from an Figure 5.1: Young diagrams for

action of S, on a polynomial ring. the partitions of n = = 4. Fach

Let P, = Z[x1,...,x,] be the set of polynomials in n variables with diagram corresponds to one

integer coefficients (equipped with standard addition and multipli- conjugacy class in 5.

cation). We define an action of S, on P, by permuting the variables’
indices. For o € S, and f € Py:

c(f)(x1,-rxn) = f(Xe@)re s Xo(n))-

Lemma 5.1. Action Properties.
This operation defines a left group action of S, on P,. That is:

L 1(f) = f.
2. o(t(f)) = (o1)(f) forall o, T € Sy.

3. It preserves algebraic structure: o(f+g) = o(f) +0(g) and ¢(fg) =

o (f)e(g)- |
513

Proof

1. The identity permutation does not change the variables, so

1) (xq, .- x0) = fx1,...,x0).

2. We verify the composition law. Let ¢ = 7(f), so g(y1,...,yn) =
f(}/r(1)/ .- -,yr(n)). Then

U(g)(xl,...,xn) :g(xg(l),...,xa(n)).

Lety; = X, The k-th argument passed to f in the definition
of g is Yr(x), which equals x,(r(x)). Thus o(7(f))(x.) = f(Xpr(.)),




which is exactly (o7)(f).
3. Both identities follow from substitution: replacing variables
respects addition and multiplication in P,.

Consider the discriminant polynomial:

Alxy, ... xn)= [ (xi— Xj).
1<i<j<n
For any ¢ € Sy, applying ¢ to A permutes the factors (x; — x;). Since
A is a product of distinct linear factors, o(A) must be £A.

Theorem 5.1. The Sign Homomorphism.
There exists a unique group homomorphism ¢ : S, — {1, =1} such
that e(7) = —1 for every transposition 7.

i

Proof
Define ¢(c) € {1, —1} by the rule

This is well-defined since o(A) is obtained by permuting the factors
of A and possibly changing the sign of some factors.
Now use the action law on A:

(@7)(8) = 0(7(A)) = 0(e(1)A) = e(1)o(A) = e(T)e(0)A.

By uniqueness of the coefficient of A, we get e(cT) = ¢(0)e(T), so €
is a homomorphism.

Lett = (k) be a transposition. In 7(A), every factor not involv-
ing x or x; is unchanged. For each m ¢ {k,1}, the pair of factors
(xy — xm)and (x; — xp) is swapped; since multiplication in P,
is commutative, this swap does not change the product. The re-
maining factor (x; — x;) becomes (x; — x,) = —(xx — x;). Hence
T(A) = —A,s0¢(t) = -1

For uniqueness, transpositions generate S;, so a homomorphism is

determined by its values on them.
[

The homomorphism ¢ agrees with the usual parity sign: by definition
it sends each transposition to —1, and any permutation is a product
of transpositions. Thus ¢(c) = 1 exactly for even permutations, and
¢(o) = —1 for odd permutations.
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The Alternating Group

Since ¢ is a homomorphism, its kernel is a normal subgroup of S;,.
We write

Ay i=ker(e) ={c €S, |e(o) =1}
In chapter 2 we showed that kernels are normal; in chapter 4 we also
developed the fundamental homomorphism theorem, and one conse-
quence is that |S,, : A,| =2 for n > 2, hence |A,| = n!/2.
Just as S, is generated by transpositions, A, is generated by the
simplest even permutations: 3-cycles.

Lemma 5.2. Generators of Ay.
For n > 3, the alternating group Aj is generated by 3-cycles.

g
Proof
Any o € A, is a product of an even number of transpositions (see
chapter 1). Group the transpositions into pairs. It suffices to show
that the product of any two transpositions is a product of 3-cycles.
Letty = (ab) and 7p = (cd).
Case 1 (Disjoint). {a,b} N{c,d} = @.

(ab)(cd) = (acb)(acd).
Case 2 (Common element). b = c,buta # d.
(ab)(bd) = (abd).

Case 3 (Identical). (ab)(ab) = 1.
Thus any pair reduces to 3-cycles.

Simplicity of the Alternating Group

We now address a fundamental structural question: does A, contain
any proper normal subgroups?

Definition 5.2. Simple Group.

Example 5.1. Abelian Simple Groups. If G is Abelian and simple, it
must have no non-trivial proper subgroups. This implies G is finite
of prime order p. Thus C, = Z/pZ are the only Abelian simple
groups.

.41

A group G is simple if its only normal subgroups are {1} and G itself.
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For non-Abelian groups, the situation is more complex.

- Az = C3 is simple (Abelian).

- Ay is not simple. The Klein four-group V; = {1,(12)(34),(13)(24),(14)(23)}
is a normal subgroup of Ay.

However, for n > 5, the structure stabilises.

Theorem 5.2. Simplicity of Ay.
For n > 5, the alternating group Aj is simple.
il

The proof proceeds in two steps: first we show that 3-cycles behave
uniformly in A;,, and then we show that any non-trivial normal sub-
group must contain a 3-cycle.

Lemma 5.3. Conjugacy of 3-cycles Let n > 5. All 3-cycles are conju-

gate in A,.

g
Proof
Letoc = (ijk) and o’ = (i'j' k') be 3-cycles. Since 3-cycles have the
same cycle structure, there exists v € S, such that yoy ! = o If

v € Ay, we are done. If v € Ay, it is an odd permutation. Since n >
5, there exist distinct elements r,s € X, \ {i’,j/,k'}. Let T = (rs).
Then 7 is odd, so 7/ = Ty iseven (ie, 7y € A;). Since 7 is disjoint
from ¢/, it commutes with it:

1 1 /

Yo(y) P =t(yoy Hr =1t =0

Thus ¢ and ¢’ are conjugate in A,.
|

Lemma 5.4. Normal Subgroups Contain 3-cycles Letn > 5 and let
N < A, be a non-trivial normal subgroup. Then N contains a 3-cycle.

1

Choose 1 # a € N and write « as a product of disjoint cycles.
If « has a cycle of length > 4, then N contains a 3-cycle.

Suppose a has a cycle (a1 az a3 a4 ... ) of length at least 4. Let
T = (a1apa3) € A, and consider the element

B:=tat ta L.
Since N isnormal in A, and T € A,, we have tat~! € N; hence
B € N. To compute B, track three points in the cycle of «. Let
a, denote the element immediately preceding a; in that cycle, so
a~1(a;) = a, (and a, & {ay,ap,a3} since the cycle has length > 4).
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Then

Blay) = tat M a Hay)) = Tat " (a,) = ta(a,) = T(ay) = az.
Also a~Y(ay) = ay and T~ 1(a;) = a3, s0

Blaz) = ot} (a™ (a2)) = Tat " (a1) = Tar(a3) = T(aa) = ay.
Finally a~!(ay4) = a3 and 77 '(a3) = ay, so

Blag) = tat (o (ay)) = Tat ' (a3) = Ta(az) = T(a3) = ay.

Thus f moves a; — a; — a4 — a7 and fixes every point outside the
support of the original cycle, so p = (a1 a2 a4) is a 3-cycle in N.
BELES

Otherwise, « is a product of disjoint transpositions, and N con-
tains a 5-cycle.

If « has no cycle of length > 4 and a # 1, then « must be a prod-
uct of disjoint transpositions (and there are at least two of them
because« €  A,). Pick two disjoint transpositions (ab)(cd) oc-
curring in «. Sincen > 5, choose e distinct from a, b, ¢, d and set
T = (bce) € Ay,. Consider the element 8 = tat 'a~! € N. Using
a !l = wand tracking the images of 4,0, c, e, d (everything else is
fixed), one finds:

so f = (abced) is a5-cycle in N.

LB
Now Step 1 applies to § (since it has length > 4), and produces a
3-cycle in N. Now we prove theorem 5.2.

Proof for Simplicity of Ay

Let N < A, be non-trivial. By the previous lemma, N contains a
3-cycle. By conjugacy of 3-cycles in A;, normality forces N to con-
tain every 3-cycle. Since A, is generated by 3-cycles (lemma 5.2), we
conclude N = A;. Hence A; is simple.

5.4 Orbits and Stabilisers

We recall the definition of a group action from the previous section.
A group G acts on a set X via a map G x X — X, denoted (g, x) —
gx, satisfying 1x = x and g(hx) = (gh)x.
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Definition 5.3. Orbit and Transitivity.
Let X be a G-set and let x € X. The set

Ox=Gx={gx|geG}CX

is called the orbit of x. If there exists an x € X such that O, = X,
we say the action of G on X is transitive.

From the definition, distinct orbits are disjoint. The relation x ~ y if
y € Oy (i.e., y = gx for some g) is an equivalence relation. Thus X
is the disjoint union of its orbits. If {x;};c; is a set of representatives
from each orbit, we have:

X =] |Ox.

iel

Definition 5.4. Stabiliser.
Let x € X. The set of elements in G that fix x,

Gr={g€G|gx=x},
is called the stabiliser of x.
It is straightforward to verify that Gy is a subgroup of G.

Example 5.2. The Upper Half-Plane. LetH = {z € C | imz > 0}.
The group G = SL,(R) acts on H via

z—w where v = a b
= axd T= e al

This action is transitive. The stabiliser of the point i consists of

‘ZEIZ = i, which implies the stabiliser is SO, (RR).

matrices satisfying
ERil)

Example 5.3. Rigid Motions. Let M be the group of rigid motions

of the plane. Elements of M are generated by translations, rotations,

x| |cos® —sinf| |x
y|  |sin® cosf | |y|’

Translation: Tpv = v 4 vo where P corresponds to the vector vy.

Reflection:
=L
r = .
y -y

and reflections.
Rotation:

Lo




72 GUDFIT

M acts transitively on the set of points in the plane. The stabiliser
of the origin O is the orthogonal group O;(RR).
et
Example 5.4. Coset Action. Let H < GandletG/H = {aH | a €
G} be the set of left cosets. The map
GxG/H— G/H, (gaH)— gaH

defines a transitive action of G on the set of cosets. For the specific

coset H (the identity coset), the stabiliser is {g € G | ¢H = H} = H.
B

Example 5.5. Function Spaces. Let G = R (under addition) and

let X be the set of continuous functions on R. Define the action by
shift:

(ao f)(x) = f(x +a).

The stabiliser reveals properties of f:
- Gy =Rif and only if f is a constant function.

- Gy = tZ (witht > 0) if and only if f is periodic with minimum
positive period t.

- Gy = {0} if and only if f has no non-zero period.

$o19]

The relationship between the orbit of a point and its stabiliser is
given by the following bijection.

Proposition 5.1. Orbit-Stabiliser Correspondence.
Let X be a G-set and x € X. Let H = Gy. There exists a natural bi-
jection

¢:G/H —= Oy, aHw~— ax.

This map is compatible with the action of G, meaning ¢(g(aH)) = gp(aH).

Proof
First, we check ¢ is well-defined. If aH = bH, then a~lb € H = G,.
Thus a~'bx = x, which implies bx = ax. The definition is in-

dependent of the representative 2. Compatibility is immediate:
¢(g-aH) = ¢(gaH) = gax = g(ax) = gp(aH). Second, we check
injectivity. If ax = bx, then a~lbx = x,s0a'b € G, = H. Thus
aH = bH. Finally, since Oy = {ax | a € G}, the map is clearly
surjective. Thus ¢ is a bijection.
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Corollary 5.1. Counting Formula. Let X be a G-set.
1. Forany x € X, |Oy| =[G : G4].
2. If X is finite, then

1X] =) 0] = }_[G: G,

xel xel
where [ is a set of representatives for the distinct orbits.

ok

Proof

(1) follows directly from the bijection in the previous proposition.
(2) follows from the decomposition of X into disjoint orbits.

|
We can also describe the stabiliser of a point moved by the group.
Proposition 5.2. Conjugate Stabilisers.
Let x € X and let x’ = ax € O,. Then:
1. The set of elements mapping x to x’ is the coset aGy.
2. The stabiliser of x’ is the conjugate of Gy:
Gy = aGya = {aha™' | h € Gy}.

Proof

1. Note that gx = x’ = axif and only if a~'gx = x. This holds if
and only if a~'¢ € Gy, which means g € aGy.

2. Similarly, gx’ = x’ is equivalent to g(ax) = ax. Multiplying by
a1, we get (a~'ga)x = x. This occurs if and only if a~!ga € Gy,
org € aGya L.

|

Example 5.6. Conjugate Symmetries. Returning to the rigid mo-

tions of the plane, if P is any point, the group of symmetries fixing

Pis

Mp = Moty = 102(R)T_p,

where Tp is the translation mapping the origin O to P.

Eid)
Example 5.7. Order of the Dihedral Group. We use the count-
ing formula to determine the order of D,. D, acts transitively on
the n vertices of a regular n-gon. Let v be a vertex. The stabiliser
(Dy)o contains exactly two elements: the identity and the reflection

across the line connecting v to the center. Thus |(D,),| = 2. By the
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counting formula:
[Dn| =[O0l - |(Dn)ol =n-2=2n.

E X

5.5 Actions as Homomorphisms

An action of a group G on a set X is mathematically equivalent to a
homomorphism from G to the symmetric group Sx. This perspec-
tive allows us to "represent” abstract groups as concrete groups of
permutations.

Let X be a G-set. For any fixed ¢ € G, define the map

pg: X=X, x—g-x

Since g+ (¢7'-x) =(g¢!)-x=1-x= xand similarly g7 - (¢ x) =
x, the map py is a bijection with inverse p,—1. Thus pg € Sx.
We can therefore define a map from the group to the symmetric
group:

p:G—Sx, g+ pqg-
The axiom g - (h - x) = (gh) - x translates directly to pg o o, = pgp-
Thus, p is a group homomorphism. We call this the permutation
representation of G associated with the action.
Conversely, any homomorphism p : G — Sx defines an action by

setting g - x = p(g)(x).
The Kernel of the Action

The kernel of the homomorphism p consists of those group elements
that act trivially on every element of X.

kerp={geG|lps=idx} ={geG[Vxre X g -x=x}.

In terms of stabilisers, an element fixes everything if it belongs to
every stabiliser:

kerp = ﬂ Gy.

xeX

Since kernels are normal subgroups, this intersection is a normal
subgroup of G. By the Fundamental Homomorphism Theorem, we
obtain an embedding:

G/ kerp — Sx.

If kerp = {1}, the action is called faithful, and G is isomorphic to a
subgroup of Sx.
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Example 5.8. Kernel of the Coset Action. Let H < G. Consider the
action of G on the left cosets G/ H by left multiplication. The asso-
ciated homomorphismis p : G — Sg,p. The kernel is the set of ¢
such that g(aH) = aH for all a € G. This is equivalent to a~!ga € H
foralla,or g € aHa~ 1. Thus:

kerp = ﬂ aHa™ L.
acG
This subgroup is the largest normal subgroup of G contained in H,
often called the core of H.

E
Example 5.9. Isomorphism of Linear and Symmetric Groups. We
use an action to prove an exceptional isomorphism: GL,(IF;) = Ss,
where I, is the finite field with 2 elements. Let V. = ]F% be the

vector space of dimension 2 over the field with 2 elements. The
elements of V are the zero vector 0 and three non-zero vectors:

e = ((1)), e = ((1)), andes = e +e = (%) The general lin-
ear group G = GL,(IF;) acts on the set of non-zero vectors
X = {ey, ey €3} by matrix multiplication. This induces a homo-

morphism p : G — Sx = S3.

Injectivity: If A € kerp, then A fixes the basis vectors e; and e;.
Any linear map fixing a basis is the identity. Thus kerp = {I}.

Surjectivity: Since p is injective, |G| < |S3| = 6. By counting bases,
|GLy(Fo)| = (22— 1)(22 —2) =3 x2 = 6.

Since the orders match and the map is injective, p is an isomor-
phism.

.49

5.6 Exercises

1. Reversal Permutation. Let o € S, be defined by 0(i) =n+1—1. Count the number of transpositions

Determine the parity of ¢ as a function of n. (Gn+1—-1).

2. Counting by Type. Let the cycle type of a permutation be denoted
1h2r2 ot

(a) Prove that the number of permutations of this type is

n'/ ﬁ()xi!i)‘f).
i=1
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10.

11.

12.

13.

(b) Use this to prove the identity

L !
[T, Atid

where the sum is over all tuples (A4, ..., ;) of non-negative
integers satisfying } ;' | iA; = n.

Subgroups of A;. Prove that A4 has no subgroup of order 6.

Unique Index 2 Subgroup. Prove that for n > 2, A, is the unique
subgroup of index 2 in S.

Center of S,,. The center of a group G is the set Z(G) = {z € G |
zg = gz for all ¢ € G}. Prove that for n > 3, the center of S, is
trivial, i.e., Z(S,) = {t}.

Even/Odd Bijection. Fix a transposition T € S;. Define ® : A, —
Su \ Ap by ®(0) = 0.

(a) Prove that ® is a bijection. Conclude that [A,| = & for n > 2.
(b) Deduce that the sign map sgn : S, — {£1} is surjective for
n>2.

Derangements. Calculate the number of permutations in S, that
have no fixed points (derangements).

Transitive Action Decomposition. Let G act transitively on X. Let
N < G. Prove that all orbits of X under the restricted action of N
have the same size.

Small-Index Subgroups in Simple Groups. Let G be a simple
group. If there exists a proper subgroup H < G such that [G :
H] < 4, prove that |G| < 3.

Finite Index Forces a Proper Normal Subgroup. Let G be an
infinite group and let H be a proper subgroup of finite index.
Prove that G contains a proper normal subgroup of finite index.

Function Scaling. Let X be the set of functions f : R — R. For
a € R*, define (a- f)(x) = f(ax).

(@) Verify this is a group action.

(b) Find a function f whose stabiliser is R .

Symmetry Groups. Determine the symmetry groups of a square,
a rectangle (non-square), a rhombus (non-square), and a circle.

Burnside’s Lemma. Let G act on a finite set X. Let X8 = {x € X |
¢ - x = x} be the set of points fixed by g. Prove that the number of
orbits of X under the action of G is

1
7Z|Xg|_

|G| 8€G

This is a counterexample to the con-
verse of Lagrange’s Theorem.

Show that if « commutes with every
transposition (i f), it must fix every-
thing.

Fix a transposition T and use left-
multiplication.
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14. Coloring Problems. Let G be the rotational symmetry group of a
regular tetrahedron acting on its 4 vertices. You may use that this
action identifies G with a subgroup of S4 isomorphic to A4, and
that (as permutations of the vertices) the elements of G consist of:

(a) the identity (1 element),
(b) 3-cycles (8 elements),
(c) products of two disjoint transpositions (3 elements).

Using Burnside’s Lemma, find the number of distinct ways to
color the vertices with 4 colors, up to rotational symmetry.

15. Semidirect Product. Let N, H be groups and ¢ : H — Aut(N) a
homomorphism. Define G = N x H with operation (ny, hy)(np, hy) =
(n1¢(h1)(n2), h1hz).

(a) Prove G is a group, denoted N x, H.

(b) Show that N x {1} is a normal subgroup of G and that {1} x
H is a subgroup of G.

(c) Prove that G/(N x {1}) = H.

(d) Prove that forn > 3,5, = A, x ((12)).

16. Automorphisms of S3. Determine Aut(Ss).

17. Smallest Prime Normal Subgroup is Central. Let p be the small-
est prime factor of |G|. If a subgroup A of order p satisfies A < G,
prove that A < Z(G).
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6
The Sylow Theorems

Lagrange’s Theorem (T/eorem 3.3) imposes a strong constraint on the
structure of finite groups: the order of any subgroup must divide
the order of the group. However, the converse is false; if d divides
|G|, G does not necessarily possess a subgroup of order d. A classical
counterexample is the alternating group A4 of order 12, which has no
subgroup of order 6. The Sylow Theorems provide a partial converse.

Sylow p-Subgroups

Let G be a finite group of order n. Let p be a prime factor of n. We
write n = p"m, where p and m are coprime. A natural question
arises: does G contain an element of order p? More generally, does G
possess a subgroup of order p'?

Definition 6.1. Sylow p-subgroup.

A subgroup of G with order p” is called a Sylow p-subgroup of G.
We now proceed to prove the existence of such subgroups, their
conjugacy properties, and formulae for their count.

Theorem 6.1. Sylow’s First Theorem.
Let G be a finite group of order n = p"m with ged(p,m) = 1. Then
G contains a Sylow p-subgroup.

g
Proof
Let X be the family of all subsets of G having exactly p” elements:

X={ucc|ul=p}.

Its size is the binomial coefficient

n mp" (mp" —1)---(mp" —p" +1
N:|X‘:<r>: rimy 1?2..(.prp : )

For1 <i < p"—1, writei = p'u with p { u (so t is the largest expo-




nent of p dividing 7). Then
mp" —i=p'(p"m—u),

and since p 1 u, the largest power of p dividing mp” — i is p', the
same as for i. Thus the p-power contributions of numerator and
denominator factors cancel term-by-term (and the remaining factor
m is coprime to p), so pt N.
Let G act on X by left multiplication: g¢- U = {gu | u € U}. Since
p t |X|, there exists an orbit Oy with |Oy| coprime to p. Let G be
the stabiliser of U. By the orbit-stabiliser counting formula (|G| =
[Oul - |Gul),

Gul - [Oul = |G| = p"m.

Hence p" | |Gy|. On the other hand, for any u € U and h € Gy, we
have hu € hU = U, so U is a union of left cosets of Gy;. Therefore
|Gyl | |U| = p". Since |G| both divides and is divisible by p”, we
have |Gy| = p". Thus Gy is a Sylow p-subgroup of G.

|

Conjugacy

We now investigate the relationship between arbitrary subgroups and
Sylow subgroups.

Theorem 6.2. Sylow’s Second Theorem.
Let K be a subgroup of G, and suppose p divides the order of K. Let
H be a Sylow p-subgroup of G. Then there exists a conjugate H' = gHg™!
such that H' N K is a Sylow p-subgroup of K.
i
Proof

Consider the set of left cosets X = G/H = {¢H | ¢ € G}. The
group G acts transitively on X by left multiplication. For an ele-
ment x = aH € X, the stabiliser is the conjugate subgroup:

Gy = aHa 1.

We restrict the action of G on X to the subgroup K. Since

|X| = [G : H] = mandged(m,p) = 1, the set X decomposes
into orbits under K. Since the total size m is coprime to p, there
exists at least one K-orbit O, such that |Oy| is coprime to p.

Let x = aH be a representative of this orbit. The stabiliser of x in K

1S:
Ky =GyNK=aHa 'NK.

Since aHa ! is a group of order p’, its intersection with K is a p-
group. Thus |Ky| is a power of p. By the counting formula for the
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action of K:
|Ox| ’ |Kx| = |K|

Since |Oy| is coprime to p, the full power of p dividing |K| must be
contained in |Ky|. Therefore, K, is a Sylow p-subgroup of K.
]

From this theorem, we deduce two fundamental properties.

Corollary 6.1. Conjugacy and Containment.
1. If K < G is a p-group, then K is contained in some Sylow p-subgroup
of G.

2. All Sylow p-subgroups of G are conjugate.
e

Proof

1. Since K is a p-group, its maximal p-subgroup is K itself. Ap-
plying theorem 6.2, there exists a conjugate H' of a Sylow p-
subgroup H such that H' N K is a Sylow p-subgroup of K. Thus
H' N K = K, which implies K < H'.

2. Let H and Hj be two Sylow p-subgroups of G. By theorem 6.2
(applied with K = Hy), there exists H' = g¢Hg~! such that
H' N Hy is a Sylow p-subgroup of Hy. Thus H' N H; = Hy, im-
plying H; < H'.Since |Hy| = |H| = |H'|, we have H; = H'.
Thus Hj is conjugate to H.

The Number of Sylow Subgroups

Let N(p) denote the number of Sylow p-subgroups of G. Since all
Sylow p-subgroups are conjugate, N(p) is the size of the set Xy =
{aHa=!| a € G}, where H is a fixed Sylow p-subgroup.

Definition 6.2. Setwise Stabiliser of a Subgroup.
For a subgroup H < G, define

Ng(H) ={g € G|gHg ' = H}.

This is the stabiliser of H under conjugation, and it is a subgroup of
G containing H.

Theorem 6.3. Sylow’s Third Theorem.
Let N(p) be the number of Sylow p-subgroups of G. Then

N(p) =1 (mod p).




| il
Proof
We know the conjugation action of G on Xp is transitive. By the
counting formula, N(p) = [G : Ng(H)], where Ng(H) is the

stabiliser of H under conjugation.
We decompose X into orbits under the conjugation action of the
subgroup H. Suppose an orbit contains only one element H;. Then
hH;h~! = H; forallh € H, which implies H < Ng(H;). However,
H; is a normal subgroup of Ng(H;) (by the definition of N (H,))
and is therefore the unique Sylow p-subgroup of Ng(H;). Since H
is a p-subgroup of N (H;) with the same maximal order, we must
have H = H;. Thus, the only orbit of size 1 is {H}.
For any other orbit Oy, (where H; ~ #  H), the counting formula
gives:

|Om;| = [H : Ng(H;) N HJ.

Since H; # H, the intersection Ng(H;) N H is a proper subgroup of
H. Therefore, the index is divisible by p. Thus, p divides the size of
every orbit except the singleton { H}. Summing the orbit sizes:

N(p) =1+)_|Og|=1 (mod p).

We synthesise the preceding results into the standard statement of
the Sylow Theorem.

Theorem 6.4. The Sylow Theorem.
Let G be a finite group of order p"m, where ged(m, p) = 1.

Existence: G contains a Sylow p-subgroup, i.e., a subgroup of order
P
Conjugacy: All Sylow p-subgroups of G are conjugate.

Counting: The number of Sylow p-subgroups, N(p), satisfies:

N(p) =1 (mod p) and N(p)|m.

il
Proof
Parts (1) and (2) are t/eorem 6.1 and corollary 6.1. For part (3), we
established N(p) = 1 (mod p) in theorem 6.3. Additionally, since

N(p) =[G : Ng(H)] and H < Ng(H), we have:
[G:H]=[G:Ng(H)]-[Ng(H) : H].

Thus N(p) divides [G : H] = m.
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Figure 6.1: The decomposition
of the set of Sylow p-subgroups
under the conjugation action

of H. There is exactly one fixed
point.
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6.2 Applications of the Sylow Theorems

The Sylow theorems are nice tools for investigating the structure of
finite groups. By counting the number of Sylow subgroups, we can
often demonstrate the existence of a normal subgroup, thereby prov-
ing that a group is not simple. We begin with a structural lemma that
allows us to decompose a group into a direct product of its normal
subgroups.

Lemma 6.1. Direct Product Decomposition.
Let H and K be normal subgroups of G such that G = HK and H N
K= {1}. Then G = H x K.

1z

Proof

Leth € Hand k € K. Consider the element x = khk~'h~1. Since
H < G, we have khk™' € H,so x = (khkk=')h~! € H. Since K < G,
we have hk~'h! € K,sox = k(hk"'h™!) € K. Thusx € HNK =
{1}, so khk~'h~' = 1, which implies hk = kh. Define the map ¢ :
H x K — G by ¢(h,k) = hk.

Homomorphism: (p((h1, kl)(l’lz, kz)) = go(h1h2, klkz) = ]’lll’lzklkz.
Since elements of H and K commute, ipk; = kihy, so this equals
hikihoko = @(h1, k1)@ (ha, k2).

Surjectivity: Follows from the assumption G = HK.

Injectivity: 1f p(h,k) = 1, then hk = 1,s0 h = k™. Since h € H and
k~1 € K, both lie in the intersection, so # = 1 and k = 1.

Thus ¢ is an isomorphism.

Criteria for Non-Simplicity

We apply the counting part of the Sylow Theorem to show that
groups of specific orders cannot be simple.

Example 6.1. Group of Order 150. Let |G| = 150 = 2-3 - 52. We ex-
amine the number of Sylow 5-subgroups, #s.

#a )
Solution
By the Sylow Theorem, n5 = 1 (mod 5) and n5 divides 6. The only

divisors of 6 satisfying the congruence are 1 and 6.

e If ns = 1, the unique Sylow 5-subgroup is normal, so G is not

simple.



* If n5 = 6,let X be the set of Sylow 5-subgroups. The conjugation
action of G on X induces a homomorphismp : G — Sg. Since
|G| = 150 and |S¢| = 720, we observe that 150 does not divide
720 (as 720 = 150 x 4.8). By the First Isomorphism Theorem,
G/kerp = imp < Sq. If p were injective (ie., kerp = {1}),
then |G| would divide |S4|. Since it does not, ker p must be a
non-trivial normal subgroup.

In either case, G is not simple.

|
We can extend this analysis to infinite families of groups.
Proposition 6.1. Groups of Order pq and pq.
Let p and g be distinct odd primes.
1. A group of order pq is not simple.
2. A group of order p2q is not simple.

Proof

Recall that p-groups have non-trivial centres (and thus are not
simple if the order is a prime power > p). We assume p # 4.

1. Assume p < q. Thenn, | pand n; =1 (mod g). Since p < g, the
only solution is n; = 1. Thus the Sylow g-subgroup is normal.

2. Assume p < q. Thenn,y | p?> and n; = 1 (mod ). Since p < g,
p # 1 (mod q). Thus n, cannot be p. This leaves n; = 1or
ng = p> Ifn; = 1, the subgroup is normal. Suppose n, = p>.
Then G contains p? distinct Sylow g-subgroups. Since 4 is prime,
these subgroups are cyclic of order g, and any two intersect only
at the identity. The number of elements of order g is therefore

p?(q — 1). The number of remaining elements is
Pa—p*a-1)=p-piq+p* =p"

These p? elements must constitute the unique (and thus normal)
Sylow p-subgroup. If p > g, a similar argument on 7, shows
ny, =1

The Smallest Non-Abelian Simple Group

It is a known fact that:

- Groups of prime order are cyclic (hence simple but Abelian).

- Groups of prime power order (p",n > 2) have non-trivial centres
(hence not simple).
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- Groups of order 2m where m is odd have a subgroup of index 2
(hence normal, so not simple).

Combining these facts with the results above, we can classify the

simple groups of small order.

Theorem 6.5. Simplicity of As.

The smallest non-Abelian simple group is isomorphic to the alternat-

ing group As (order 60).

1. If |G| < 60, G is not a non-Abelian simple group.

2. If |G| = 60 and G is a non-Abelian simple group, then G = As.
i

Elimination of Orders < 60.

Excluding prime orders, prime powers, products pq, p>q, and

2 x odd, the only remaining candidates are 24, 36, 40, 48, 56.

|G|=24=23-3. n, € {1,3}.1fn, = 3, let Hbe a Sylow 2-
subgroup. The action of G on the set of Sylow 2-subgroups
induces a homomorphism p : G — Ss. Since |G| > |S3], kerp is
non-trivial.

|G| =36 =22-32. n3 € {1,4}. If n3 = 4, the action induces p : G —
S4. Since 36 > 24, kerp # {1}.

|G| =40=23-5. n5|8and ns =1 (mod 5) = n5 = 1.

|G| = 48 = 2*-3. Analogous to the case of 24. n; € {1,3}. Map to
S3 reveals a normal subgroup.

|G| =56=2%-7. n; | 8 = ny; € {1,8}.1fn; = 8, there
are8 x (7 — 1) = 48 elements of order 7. The remaining 56 —
48 = 8 elements must form the unique Sylow 2-subgroup. Thus
either ny =1orn, = 1.

BLES

Structure of the Simple Group of Order 60.
Assume G is simple and |G| = 60.

No subgroup of small index. If G had a subgroup H of indexm <
4, the action on cosets would yield p : G — S,. Since 60 { m! for
m < 4, the kernel would be non-trivial.

Existence of a subgroup of index 5. Consider the Sylow 2-
subgroups (|P| = 4). np divides 15 and is odd. n, € {1,3,5,15}.
Since G is simple, n, # 1. By the index constraint, n, # 3 (since
the normaliser would have index 3). Thus n, € {5,15}. If n, = 5,
the normaliser of a Sylow 2-subgroup has index 5. If n, = 15,
we count elements. n15 = 6 (24 elements of order 5). n3 = 10 (20
elements of order 3). Total so far: 44. This leaves 16 elements.

If the 15 Sylow 2-subgroups were disjoint (except for 1), they
would require 15 x 3 = 45 elements, which is too many. Thus,




there must exist Sylow 2-subgroups P;, P, with non-trivial inter-
section K = Py NP, # {1}. Let H be the subgroup generated by
P; and P,. Since Py, P, are Abelian (order 4), they normalise K.
Thus H < Cg(K) (strictly, H is in the normaliser, but for Abelian
subgroups of this type, they centralise the intersection). Since G
is simple, C(K) # G. Also Py < H,so |H| > 4. Since |H| must
be a multiple of 4 dividing 60, possible orders are 12, 20. Order
20 implies index 3 (impossible). Thus |H| = 12, which has index
5.

Isomorphism. The action of G on the cosets of a subgroup of index
5 gives a homomorphism p : G — Ss. Since G is simple and the
index is > 1, p is injective. Thus G = imp, a subgroup of Ss of
order 60. The intersection imp N Az is normal in im p. Since im p
is simple, the intersection is trivial or the whole group. It cannot
be trivial (as |S5 : As| = 2),soimp < As. Since orders match,
G = As.

EXLES

6.3 Exercises

1.

Element of Order p. If p is a prime factor of |G|, prove that G has
an element of order p.

Order Six. Prove that the only non-Abelian group of order 6 is S3.

Sylow Subgroups in a Normal Subgroup. Let N < G be finite. If
gcd(p, |G/N|) = 1, prove that N contains all Sylow p-subgroups
of G.

Sylow Subgroups and Quotients. Let G be finite, N < G, and let
P be a Sylow p-subgroup of G. Prove:

(1) NNPisaSylow p-subgroup of N.
(2) PN/N is a Sylow p-subgroup of G/N.
(3) NG(P)N/N = NG/N<PN/N).

Small Cofactor. If |G| = p°a with 1 <a < p and e > 1, prove that
G has a proper normal subgroup.

Sylow Orbits in Permutation Groups. Let G be a permutation
group on a set X, and let P be a Sylow p-subgroup of G. Fora €
Y, prove that if p™ divides |Ga|, then p™ divides |Pa].

Stabiliser Action on Fixed Points. Let G be a permutation group
onaset Y. Forany a € X%, let P be a Sylow p-subgroup of the

stabiliser G,, and let A be the set of all fixed points of the orbit Ga
under the action of P. Let Ng(P) = {g € G | gPg~! = P}. Prove
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that the action of Ng(P) on A is transitive.

8. No Simple Group of Order 224. Prove that there is no simple
group of order 224.

9. Stabiliser Criterion. Let P be a Sylow p-subgroup of G and sup-
pose Ng(P) = {g € G | gPg~! = P} is normal in G. Prove that
P 4G.



/
Free Groups and Presentations

In the previous chapters, we studied groups by examining their in-
ternal structure. Given an arbitrary set S, can we construct a "most
general” group generated by S, imposing no constraints other than
the group axioms? This leads to the concept of free groups, which

serve as the universal prototypes for all groups.

Construction of Free Groups

We begin by viewing the elements of S as letters. Let S™1 = {s71 |

s € S} be a disjoint copy of S, with the formal rule (s7!)~! = 5. We

define a word to be a string formed by concatenating elements from

S U S~1. However, to obtain a group structure on F(S), we require

three properties:

Multiplication: If w; = x1...x,; and wy = Y7 ... Ym, then the product
w1 - W is the concatenation xy ... xuY1 ... Ym.

Inverses: For every x € S, there must exist an inverse x ! € F(S).
Consequently, we allow words to be formed from the alphabet
Sus

Identity: There must be an empty word, denoted 1, such that con-
catenating it with any word w yields w.

Based on these requirements, we consider the set of all words:

W(S) ={1}U{xixy...x, | x; € SUS™ 1 <i<n}.

However, a direct set of strings is insufficient because it does not
account for the group axioms, specifically the inverse property. By

-1

associativity, a subword of the form aa™" or a~1a should cancel out.

For instance, the word

should be equivalent to w’ = ... xy.... The elimination of such pairs
is a simplification process.
A potential issue arises: a word might be reduced in multiple ways.
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Consider
w=x1x(yy Hxlyz

One reduction path yields:
w— x Hax Hyz — v yz
Another path yields:
w=(x"1o)yy xlyz - (yy Hxlyz — x " lyz
To formalise this, we introduce the notion of a reduced word.

Definition 7.1. Reduced Word.
A word w is called a reduced word if w does not contain a string of the
form a='a or aa~! forany a € SUS™L.

It is natural to ask whether repeatedly applying reductions to a word

always yields the same result.

Proposition 7.1. Uniqueness of Reduced Form.
Every word w can be transformed into a unique reduced word by a fi-
nite sequence of elementary reductions.

We proceed by induction on the length n of the word w.
Base Case.
If n =0orn =1, the word is already reduced.
EXLES

Inductive Step.

Suppose the result holds for all words of length less than n. Let

w be a word of length n. If w is reduced, we are done. If not, we

perform a reduction to obtain a word w’ of lengthn  — 2. By the

induction hypothesis, w’ has a unique reduced form wy. We must
ensure that the choice of the first reduction does not affect the fi-

nal outcome. Suppose we can apply two distinct reductions to w,

eliminating pairs at positions i and j (assume i < j).

Disjoint: If the pairs are disjoint (e.g., w = ...xx"'...yy~1...), the
order of reduction is irrelevant; performing both yields the same
word of length n — 4.

Overlapping. If the pairs overlap, the subword must be of the

form xx~!x or x !xx~!. In the first case, reducing the first pair
(xx~1) leaves x; reducing the second pair (x~'x) also leaves x.

The resulting words are identical.

EXLES

Thus, all reduction paths converge to the same unique reduced word.



We define an equivalence relation ~ on the set of all words: w ~ u if
they have the same reduced form.

Proposition 7.2. Multiplication of Reduced Words.
Ifw~w and u ~ u/, then wu ~ w'u’.

>
a8

Proof

Let v be the unique reduced form of w (and w’), and z be the
unique reduced form of u (and u’). The product wu reduces to

the reduced form of vz. Similarly, w'u’ reduces to the reduced form
of vz. By the uniqueness of the reduced form, wu ~ w'u’.

Definition 7.2. The Free Group.

The free group generated by S, denoted F(S), is the set of all reduced
words on S (equivalently, W(S)/ ~). The binary operation is concate-
nation followed by reduction to the unique reduced form.

- The identity is the empty word 1.

1 -1

- The inverse of x1...x, is X, ... x] .

P
S

Example 7.1. Examples of Free Groups.

1. If S = &, F(S) = {1} is the trivial group.

2. If S = {a}, the reduced words are of the form a" for n € Z. Thus
F(S) = (a) = {a" | n € Z} (F({a}) = (Z,+)), which is an infi-
nite cyclic group.

3. If S = {a,b}, F(S) is an (infinite) non-Abelian group. The words
ab and ba are distinct reduced words, so ab  #  ba. This group
contains elements of infinite order and has a rich structure; for
instance, [a,b] = aba~'b~! is non-trivial since its reduced form
has length 4.

E X

The Universal Property

Free groups are characterised by a universal property: any map from
the set S to a group G extends uniquely to a homomorphism from
F(S) to G. This formalises the idea that there are "no relations" be-
tween the generators in F(S) other than those required by group
axioms.

Theorem 7.1. Universal Property of Free Groups.

Let S be a set and G be a group. For any set map f : S — G, there
exists a unique group homomorphism ¢ : F(S) — G such that ¢(s) =
f(s) foralls € S.
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Proof

We construct ¢ explicitly on the reduced words. Let w =
x{'...xy" € F(S), where x; € S and ¢; € {1, —1}. We define:

p(w) = flx1) .. fxn),

where f(x)~! denotes the inverse of f(x) in G. Since f maps into

a group, the operation preserves the cancellation of inverses (e.g.,
f(x)f(x)™' = 1g), so concatenation followed by reduction cor-
responds to multiplication in G. Thus ¢ is a homomorphism.
Uniqueness follows because S generates F(S); any homomorphism

is determined by its values on the generators.
|

This theorem implies that every group is a homomorphic image of a
free group.

Theorem 7.2. Quotient Theorem.
Every group G is isomorphic to a quotient of a free group. If G is finitely
generated, it is a quotient of a free group of finite rank.

il
Proof
Let S be a generating set for G (one can always take S = G). Let f :
S — G be the inclusion map. By the universal property, there exists

a homomorphism ¢ : F(S) — G. Since S generates G, im ¢ contains
S and thus equals G. By the First Isomorphism Theorem:

G = F(S)/ ker ¢.

7.2 Group Presentations

Since every group is a quotient of a free group, we can describe any
group by specifying a set of generators S and a set of relations de-
scribing the kernel N = ker ¢.

Definition 7.3. Presentation.

A presentation of a group G, denoted G = (S | R), consists of:

- A set of generators S.

- A set of relations R C F(S).

The group defined by this presentation is F(S)/N, where N is the small-
est normal subgroup of F(S) containing R.

s —— F(S)
Jle

!

!

|

|

|

|

|

|
‘:/
G

Figure 7.1: The universal prop-
erty of the free group. The map
1 is the natural inclusion of the

generators.



The notation » = 1 is often used for elements in R. For example, the

relation aba~'b~! is often written as ab = ba.
Example 7.2. Cyclic Groups. The cyclic group of order # has the

presentation:
Z/nZ = {a|a" =1).

Here S = {a} and R = {a"}. The normal subgroup generated by a"
in F({a}) = Z is simply nZ.

Feb)
Example 7.3. The Dihedral Group. We derived the structure of

D, geometrically in previous chapters. We can now define it alge-
braically via the presentation:

Dn = <0',T ‘ 0'” = 1, T2 = 1[ (0’1’)2 = 1>
o451
Solution

Let G be the group defined by this presentation. Since D, contains
elements satisfying these relations (rotation and reflection), there

is a surjective homomorphism ¢ : G — D,. To prove isomor-
phism, we show |G| < 2#n.In G, the relation (¢7)> = 1 implies

ToT = 0!

= ¢"~1. This allows us to move any T to the right of any
o (using 2 = 1). Any element can be written in the form o7/ with
0<i<mnand 0 <j<2 Thus |G| < 2n. Since |D,| = 2n, the map ¢

is an isomorphism.

The Commutator Subgroup

Presentations allow us to systematically study the "Abelianisation” of
a group.

Definition 7.4. Commutator.
Let G be a group and 4,b € G. The commutator of a and b is the el-
ement

[a,b] = aba b~ L.

Note that ab = [a,b]ba. Thus a and b commute if and only if [a,b] =
1.

Definition 7.5. Commutator Subgroup.

The commutator subgroup (or derived subgroup) of G, denoted G’ or
[G, G], is the subgroup generated by all commutators {[a,b] | a,b €
G}.
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Proposition 7.3. Abelianisation.

1. G’ is a normal subgroup of G.

2. The quotient G/G’ is an Abelian group, called the Abelianisation
of G, denoted G?P.

3. G/G' is the maximal Abelian quotient of G: if A is any Abelian group
and ¢ : G — A is a homomorphism, then G’ < ker ¢, and ¢ fac-
tors uniquely through G/G'.

3

P RE
Proof

1. For any g € G, a conjugate of a commutator is a commutator:

Since G’ is generated by commutators, it is invariant under con-

jugation.

2. In the quotient G/G’, we have |[a, b] = 1, which implies
aba~1b~! =1, or ab = ba.

3. If A is Abelian, then for any a,b € G, ¢([a, b)) =

p(a)p(b)p(a) p(b)~1. Since A is commutative, this product
is 14. Thus generators of G’ liein kerp, so G’ < ker¢. The
factorisation follows from the Fundamental Homomorphism

Theorem.
[ |

The presentation of the Abelianisation is obtained simply by adding
commutators to the relations.

Proposition 7.4. Presenting the Abelianisation.
If G = (S| R), then

G/G' = (S|RU{xy =yx | x,y €S}).

¥

2
Proof

Let G = F(S)/N where N is the normal closure of R in F(S). The
quotient map 7t : F(S) — G induces a surjection F(S) — G/G'. Its
kernel contains N and also F(S)/, so it contains the normal closure
of R together with all commutators. Hence the map factors through

F($)/{R, [x,y] (x,y € S))-

The resulting quotient is Abelian and still satisfies the relations in
R, so by the universal property of presentations it is isomorphic to
G/G.

[

gla,blg ™t = glaba b )¢ = (gag ') (gbg ') (gag ) (gbg ) ! = [gag !, gbg .



In particular, the Abelianisation of the free group F(S) is the free
Abelian group on S, isomorphic to ZI5! (if S is finite).

Proposition 7.5. Commutators of Free Groups.
Let ¢ : F(S) — G be a surjective homomorphism. Then ¢ induces a
surjective homomorphism

@:F(S)/F(S) — G/G', defined by 9(3) = ¢(g).

>

bl
Proof

Consider the composition of homomorphisms ¢ : F(S) — G —
G/G'. Since G/G' is Abelian, the kernel of this composite map

must contain F(S)’ (by the previous proposition). Thus the map
factors through F(S)/F(S)’.

|
This proposition implies that if a group G has the presentation
G=(S|n=--=rm=1),
then its maximal Abelian quotient G/G’ has the presentation
G/G'=(S|rn=-=r,=1xy=yxforany x,y € S).
In particular, the group F(S)/F(S)’ has the presentation
F(S)/F(S) = (S| xy = yx for any x,y € S).
Example 7.4. Abelianisation of D,,. For D, = (0,7 | 0" = 1,72 =
1, toTr = (7_1>,the Abelianisation imposes 0T = 70. The relation
0T = 0 'becomes 07> = 07! = =01 = =1
Thus D%b is generated by o, T with relations o2 = 1,72 = 10" =

1,[o, 7] =1.
- Ifnisodd, 0> = 1 and ¢ = 1imply ¢ = 1. Thus D = C, (gen-
erated by 7).

- If nis even, ¢ = 1 is compatible with ¢" = 1. Thus D3® = Cp x
C, (Klein four-group).

.49

7.3 Finitely Generated Free Abelian Groups

We now focus on a specific class of groups derived from the free
group by imposing commutativity. These structures are the algebraic
analogues of vector spaces over the ring of integers.
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Definition 7.6. Free Abelian Group.
Let S be a set. The free Abelian group generated by S, denoted Z(S),
is the group defined by the presentation:

Z(S) = F(S)/F(S) = (S| xy = yx, Vx,y € S).

If S is a finite set, Z(S) is called a finitely generated free Abelian group.

Unlike general free groups, the structure of free Abelian groups
is remarkably simple. They are isomorphic to direct sums of the
integers. From this point on, we use additive notation for Abelian
groups.

Definition 7.7. Direct Sum of Integers.
Let S be a set. The direct sum @5 Z is the set of sequences indexed
by S:

B Z = {(ax)res | ax € Z and only finitely many a, # 0}.

x€S

Under component-wise addition, this forms an Abelian group.

If S is finite with |S| = n, this direct sum is isomorphic to Z".
We now establish the fundamental isomorphism between the free
Abelian group on S and this direct sum.

Theorem 7.3. Isomorphism Theorem for Free Abelian Groups.
1. For any set S, Z(S) = @y es Z.
2. If m # n, then Z™ 2 Z".

Proof

1. Defineamap f : S — @,c5Z by mapping x to the sequence
ex which has 1 at position x and o elsewhere. By the universal
property of free groups, f extends uniquely to a surjective ho-
momorphism ¢ : F(S) — @,egZ. Since the target group is
Abelian, any commutator maps to the identity, so the kernel of
¢ contains the commutator subgroup F(S)’. Hence ¢ factors
through the commutator quotient, inducing a surjective homo-
morphism:

9:Z(S)—~ Pz
x€S

In Z(S), the commutativity relations allow any word to be re-




ordered and combined, so every element has a normal form

o] o
xphexy"

with distinct x; € S and «; € Z. The image of such an element is
P ) = mpe, + o+ e,

This sum is zero in the direct sum if and only if all coefficients
«; are zero, which implies the original element was the identity.
Thus ¢ is injective and hence an isomorphism.

2. Suppose there exists an isomorphism 7 : Z" — Z". For any in-
teger k > 2, the subgroup kZ™ maps to kZ". Thus T induces an
isomorphism on the quotient groups:

z7Z" k72" = 2Z" /kZ".

The order of the left group is k™, while the order of the right
group is k". For these to be equal, we must have m = n, which
contradicts the assumption m # n.

This theorem justifies the classification of finitely generated free
Abelian groups by a single integer invariant.

Corollary 7.1. Uniqueness of Rank. A finitely generated free Abelian group
Z(8S) is isomorphic to Z/5!. The integer || is an invariant of the group.

e
Proof
This is the content of t/icorem 7.3(2).

|

Definition 7.8. Basis and Rank.
Let G = Z(S) be a finitely generated free Abelian group.
- The generating set S is called a basis of G.
- The size |S| is called the rank of G, denoted rank G.

T &
Remark.
Just as vector spaces have multiple bases, a free Abelian group
possesses multiple bases. Let S = {xy,...,x,} be a basis. Any
element ¢ € Z(S) has a unique representation g = x}!...x}".
IfY = {y1,...,yn} is another basis, we can express each basis in
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terms of the other:
o n Bii
yj:Hxi] and xf:Hyi]'
j i=1

Defining matrices A = (a;;) and B = (B;j) in My (Z), the substi-

tution of one basis into the other implies AB = BA = I,. Thus,
bases of Z" are related by invertible integer matrices (matrices in
GL4(2)).

7.4 Structure of Finitely Generated Abelian Groups

We are now in a position to classify all finitely generated Abelian
groups. The classification proceeds by showing that any such group
is a direct sum of cyclic groups. The first step is to understand the
structure of subgroups of free Abelian groups.

Lemma 7.1. Minimal Coefficient Lemma.
Let G be free Abelian of rank 7 and H < G non-zero. Define

I={se€Z|3basis {y1,...,yn} of Gand a € H such that a = sy; +kayo+-- - +knyn}.

Then I contains a smallest positive element d;, and there exists a ba-
sis {x1,...,x,} of G and an element « € H with & = d1x;.
5132

Remark.

Swapping basis elements shows that any coordinate appearing in
an expression for # € H can be moved into the first position, so the
same minimality argument applies to all coordinates.

Proof

Ifs € Iandt € Z,thents € IDby replacing « with ta. Since
H # 0, I contains a positive integer; let d; be the smallest such. By
definition, there exists a basis {y1,...,y»} and &« € H with

o =dy; +koyr + - +kuyn.
Write k; = g;d1 +r; with 0 < r; < dq. Then
o =di(y1+qay2+ -+ quyn) Fr2y2+ -+ TulYn.

Let x1 = y1 + qay2 + - - - + Gnyn- Since {x1,y2,...,yn} is a basis, each
r; € I (swap the coordinate containing r; into the first slot). By min-
imality of dy, all r; = 0, so &« = dqx7.

|




Lemma 7.2. Coordinate Swap Lemma.
Let G be free Abelian with basis {x1,...,x,}. If dx, € H, thend € |
(swap x1 and x; in the basis).

51 3¢
Proof

Replace the basis {x1,x2,...,x,} with {xp,x1,x3,...,x,}. Then dx;
has coefficient d in the first position, so d € I by definition.
|

Lemma 7.3. Decomposition Lemma.
Let G be free Abelian with basis {x1,...,x,} and let & = dyx; € H.
Set G = (x2,...,%y). Then

H = <0€>@(HOG1)

5132
Proof
Since (x1) NGy = {0}, we have («) N (HN Gy) = {0}. Forany h €
H, write
h=kixi+koxo+ -+ kpxy.

Since ki € I, write ky = qdq +r with 0 < r < d;. By lemma 7.2, r € I,
so minimality gives r = 0 and kyx; € (a). Hence h — kyjx; € HN Gy,
and the decomposition follows.

]

Theorem 7.4. Subgroups of Free Abelian Groups.
Let G be a finitely generated free Abelian group of rank n. Let H be
a non-zero subgroup of G. Then H is a free Abelian group of rank r <
n. Furthermore, there exists a basis {x1,...,x,} of G and positive in-
tegers dy | dy | - -+ | d; such that {dqxy,...,drx,} is a basis for H.

g

We proceed by induction on #n = rank G.
Base case: n = 1.

Then G = Z and any non-zero subgroup is d1Z, which is free of

rank 1 with basis {d; }.
EXLES

Inductive step.

Assume the result holds for rank < n. By lermma 7.1, there is a basis
{x1,...,xp} and @ = d1x1 € H. Let Gy = (xp,...,xyu). By lemma 7.3,

H = <d1x1> D (Hﬂ Gl).

IfHN Gy = {0}, weare done with r = 1. Otherwise, H N Gy is

GROUPS INTRODUCTION 97
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a non-zero subgroup of the free Abelian group G; of rankn — 1.
By induction, there exist a basis {x,...,x,} of G; and integers
dy | -+ | dysuchthat {dyxy,...,d:x,} is a basis for H N G;. Then
{x1,...,x,} is a basis of G and {dyxy,...,d,x,} is a basis of H. It
remains to show dy | dp. Sinced, € I, writed, = gqdy + r with
0 < r < dj. By lemma 7.2, swapping coordinates allows r to appear
in the first slot, so r € I, and minimality gives r = 0. Hence d; | d;.
SIE B #%

This theorem allows us to derive the invariant factor decomposition.

Theorem 7.5. Invariant Factor Decomposition.
Let A be a finitely generated Abelian group. Then

A2Z5eZ/mZ & ®&Z/mZ,

where k > 0is the rank, and my | my | --- | ms are integers greater
than 1. These integers are uniquely determined by A and are called the
invariant factors.

g
Proof
Since A is finitely generated, there is a surjective homomorphism
@ : Z" — A from a free Abelian group of rank n. Let K = ker ¢.

By the previous theorem, there is a basis {xy,...,x,} of Z" and
integers dy | - - - | d; such that {dqx1,...,drx,} generates K. Then

n r
A=7"/K= (EB le) / P zd;x;
i=1 j=1

The quotient splits component-wise:

r n
A= EDZx]/Zd]x] ©® < @ in> .
j=1 i=r+1
The terms Zx;/Zd;x; are isomorphic to Z/d;Z. If d; = 1, the group
is trivial and can be omitted. Let my, ..., ms be the values of d]- > 1.
The free part has rank k = n —r.

We defer the uniqueness of the invariant factors to the proof of the
elementary divisor theorem below.

Definition 7.9. Torsion Subgroup.
The set of elements of finite order in an Abelian group A forms a sub-
group called the torsion subgroup, denoted A;:

Ar={a€A|IneZ", na=0}.
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| T &
In the decomposition above, A; = Z/mZ & - - - & Z/msZ. The group
A splits as A = ZF @ A,

Elementary Divisors

Alternatively, we can decompose the finite cyclic factors using the
Chinese Remainder Theorem. If m = pi'... pz", then Z/mZ =

@ Z/p;Z. Applying this to each invariant factor m; yields a decom-
position into prime power orders.

Theorem 7.6. Elementary Divisor Decomposition.
Any finitely generated Abelian group A is isomorphic to:

t
A=2ZroPz/qz,
i=1

where each g; is a power of a prime p‘;". The prime powers {q1,...,4:}
are uniquely determined and are called the elementary divisors of A.

g
Proof

Write A = ZF @ T with T finite, and apply the invariant factor de-
composition to T:

T2Z/mZ& - OZ/msZ, my|---|ms.

For each j, factor mp = ]—[p peir. By the Chinese Remainder Theo-

rem,
Z/mZ=PZ/pinZ.
P

Collecting all prime power factors across the m; gives the elemen-
tary divisor decomposition.
For uniqueness, fix a prime p and define

T[pY] = {te T|p't=0}.

Then each quotient T[p"]/T[p*~1] is a vector space over FF, (the
finite field with p elements), and its dimension depends only on T.
fT=g,Z/p%Z, then

dimg, (T[p"]/T[p* ")) = #{i | e; > k}.

Hence the multiset {e;} is determined by T, so the multiset of ele-
mentary divisors is unique. Choose a prime p { |T|. Then T/pT = 0
and

A/pA = (Z/pZ)F,

99
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sok = dimp,(A/pA) (dimension as a vector space over [, the
finite field with p elements) is uniquely determined. Thus the full

decomposition is unique.
|

Theorem 7.7. Classification Theorem.
Two finitely generated Abelian groups are isomorphic if and only if they
have the same rank and the same set of elementary divisors (or equiv-
alently, the same invariant factors).

il
Proof
If two groups have the same rank and the same elementary divi-
sors, their decompositions in the previous theorem are isomorphic
term-by-term, so the groups are isomorphic. Conversely, isomor-
phic groups have the same rank and the same elementary divisors
by uniqueness, so the invariants agree.

|

Example 7.5. Groups of Order 8. We classify Abelian groups of or-
der 8. The partition of 8 into prime powers 2F gives the elementary
divisors.
1. 8: A= Z/8Z. Invariant factor: {8}.

2. 442: A= Z/4Z & Z/27Z. Invariant factors: 2 | 4.

3. 242420 AXZ/2Z ®Z/27Z $ Z/2Z. Invariant factors: 2 | 2 |
2.
There are exactly 3 isomorphism classes.

X

Example 7.6. Order 1500. Let |A| = 1500 = 223! .53 We deter-
mine the possible structures by partitioning the exponent of each
prime.

Prime 2 (22): Partitions of 2: (2) or (1,1). Possible factors: Z/4Z. or
Z7/27 ®7Z./27Z.

Prime 3 (3!): Partitions of 1: (1). Possible factor: Z/3Z.

Prime 5 (5°): Partitions of 3: (3), (2,1), or (1,1,1). Possible factors:
Z7/1257,7. /257 S Z./5Z,0r Z/5Z & Z /57 & Z./5Z.

Thus the elementary divisors are:
{2,2,3,5,5,5}, {4,3,5,5,5}, {2,2,3,525}, {4,3,5,25}, {2,2,3,125},

Hence there are exactly 6 isomorphism classes of Abelian groups of
order 1500.

.4

{4,3,125}.
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Example 7.7. Non-Abelian Groups of Order 8. Although not cov-
ered by the structure theorem, we can classify non-Abelian groups
of order 8. If G is non-Abelian, it cannot have an element of order

8 (cyclic) or exponent 2 (Abelian). Thus elements have order 1, 2, 4.
Let x be an element of order 4. (x) has index 2, so it is normal. Let
y ¢ {(x). Then y*> € (x). Since yxy~! € (x) and has order 4, and x
and y do not commute, yxy ! = x~ 1.

CIfy*=1,weget Dy = (x,y|x* =1,y> = Lyxy ' = x71).

- Ify?> = x? (order 2), we get the Quaternion group Qg = (x,y |
=1,y =x%yxy L =x7h).
Using matrices:

Qs = <[S i} , [_01 (1)]> C GLy(C).

Eal

7.5 Exercises

1. Free Group Structure. Let F = F(x,y).

(a) Prove that the subgroup generated by u = x?> and v = y° is
free on {u,v}.

(b) Prove that the subgroup generated by u = x2,0 = y2,z = xy
is free on {u,v,z}.

(c) Prove or disprove: F(x,y) = Z x Z.

2. Dihedral Presentation.

(a) Verify that the dihedral group of a regular 2n-gon is isomor-
phic to D, x Z/27Z. if n is odd.
(b) Give a presentation for D, the infinite dihedral group.

3. Symmetric Group Presentation. Show that S, has the presenta-

tion:

Sy = <0’1,. | | O'iz =1, (Ui0i+1)3 =1, (UiO']')z =1 for |l—]| > 1>

4. Isomorphism Check. For n > 3, determine if A, x Z/27Z = S,,.

5. Braid Group. Define the 3-strand braid group B3 geometrically
(strings connecting points on two planes). Prove it has the presen-
tation (07,09 | 010201 = 02010%).

6. Product Structure.

(a) Is every subgroup of Gy x - - - X Gy, of the form H;y x --- x H,?
(b) If |G;| are pairwise coprime, prove that every subgroup is a
direct product of subgroups of the factors.
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10.

11.

12.

13.

14.

Simple Factors. Let G1, G, be non-Abelian simple groups. Prove
that the only non-trivial normal subgroups of G; x G; are Gy x
{1} and {1} x Go.

Rational Group.

(a) Prove Q is not a free Abelian group.

(b) Prove that every finitely generated subgroup of Q is cyclic.

(c) Prove Q' (multiplicative) is free Abelian with basis the
primes.

Rank Inequality. Let G be a finitely generated free Abelian group
of rank r. If g1,...,gn generate G, prove n > r.

Subgroup Existence. Let A be a finite Abelian group.

(a) For every divisor d of |A|, prove A has a subgroup of order d.
(b) For every divisor d, prove A has a quotient of order d.

Structure Theorem Practice.

(a) Classify Abelian groups of order 18 and 33.

(b) Express the number of Abelian groups of order n in terms of
the prime factorization of n and the partition function p(k).

(c) Determine the invariant factors of Z/mZ & Z./nZ.

(d) Find the elementary divisors of Z /27 ® Z./97 & Z./35Z.

Vector Space Analogy. Let V = I}, (the n-dimensional vector
space over [F, the finite field with p elements).

(a) Find the number of subgroups of order p"~!.
(b) Prove the number of subgroups of order p* equals the num-
ber of subgroups of order p" ¥ (duality).

Non-Cyclic Property. Prove that if a finite Abelian group A is not
cyclic, it contains a subgroup isomorphic to Z/pZ x Z./pZ for
some prime p.

Cyclic Order. Prove that a group of order 5 -7 - 13 must be cyclic.
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