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0
Field Extensions

We have previously established that a field is a commutative ring
F with unity 1 ̸= 0 in which every non-zero element is a unit. In
this chapter, we explore the structural relationship between fields, a
subject known as field theory. This theory is fundamentally the study
of equations: specifically, whether the roots of a polynomial exist
within a given field or require a larger structure to contain them. These notes assume that you have some

experience with Matrices, Groups,
and Rings or bareminimum read my
previous notes.

0.1 Fundamental Concepts

Definition 0.1. Field Extension.
Let F be a subfield of a field K. We call K a field extension of F, denoted
by K/F (read as “K over F”).

定義

The structure of a field is rigidly constrained by its smallest subfield.
Remark.

Recall that for any field F, there is a unique ring homomorphism
ψ : Z → F defined by n 7→ n · 1F. The kernel of this map character-
izes the field.
1. If ker ψ = {0}, then ψ extends to a monomorphism Q ↪→ F.

Thus, F contains a copy of the rational numbers Q. In this case,
we say F has characteristic 0. A number field is a finite exten-
sion of Q (equivalently, a subfield of C of finite degree over Q).

2. If ker ψ = pZ for a prime p, then ψ induces an embedding Fp ∼=
Z/pZ ↪→ F. Here, F has characteristic p. If F is finite, it is called
a finite field.

We may construct extensions by adjoining indeterminates.
Example 0.1. Rational Function Field. Let F be a field and x an in-
determinate. The rational function field F(x) is defined as the field
of fractions of the polynomial ring F[x]. Its elements are formal
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fractions:

F(x) =
{

f (x)
g(x)

∣∣∣∣ f (x), g(x) ∈ F[x], g(x) ̸= 0
}

.

F(x) is a field extension of F.

範例

0.2 Algebraic and Transcendental Elements

Let K/F be a field extension and let α ∈ K. We denote by F(α) the
smallest subfield of K containing both F and α. More generally, for a
subset S ⊂ K, F(S) denotes the subfield generated by F and S.
To understand the structure of F(α), we analyse the relationship
between α and the polynomials in F[x]. Consider the evaluation
homomorphism:

φα : F[x]→ K, g(x) 7→ g(α).

The image of this map is the subring F[α] = {g(α) | g(x) ∈ F[x]} ⊆ K.
Since K is a field (and thus an integral domain), the kernel ker φα

is a prime ideal of the principal ideal domain F[x]. This leads to a
dichotomy comprising two distinct cases.

Definition 0.2. Algebraic and Transcendental Elements.
Let K/F be an extension and α ∈ K.
1. α is transcendental over F if ker φα = {0}. That is, f (α) ̸= 0 for

all non-zero polynomials f (x) ∈ F[x].
2. α is algebraic over F if ker φα ̸= {0}. That is, there exists a non-

zero polynomial f (x) ∈ F[x] such that f (α) = 0.
定義

Example 0.2. Elements in C/Q. Consider K = C and F = Q.
· The element

√
2 is algebraic over Q because it is a root of x2− 2 ∈

Q[x].
· The elements π and e are transcendental over Q (though the

proofs are non-trivial).

範例

The classification of the element α determines the algebraic structure
of the extension F(α).

Proposition 0.1. Structure of Simple Extensions.
Let K/F be a field extension and α ∈ K.
1. If α is transcendental over F, then F(α) is isomorphic to the ratio-

nal function field F(x).
2. If α is algebraic over F, then there exists a unique monic irreducible
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polynomial m(x) ∈ F[x] such that

F(α) = F[α] ∼= F[x]/(m(x)).

命題

Case (i): Transcendental.

If ker φα = {0}, the map φα is a monomorphism from F[x] into K.
This extends naturally to the field of fractions F(x):

φ̃ : F(x)→ K,
g(x)
h(x)

7→ g(α)
h(α)

.

The image of this extended map is precisely F(α). Thus F(x) ∼=
F(α).

証明終

Case (ii): Algebraic.

If ker φα ̸= {0}, then ker φα is generated by a single monic
polynomial m(x) because F[x] is a principal ideal domain. Since
im φα ⊂ K is an integral domain, the ideal (m(x)) is prime, which
in F[x] implies m(x) is irreducible. By the Fundamental Homomor-
phism Theorem for rings, we have an isomorphism:

F[x]/(m(x)) ∼−→ im φα = F[α].

Since (m(x)) is a maximal ideal (generated by an irreducible poly-
nomial), the quotient F[x]/(m(x)) is a field. Therefore, the subring
F[α] is already a field, implying F(α) = F[α].

証明終

F[x] K

F[α]

φα

surjective inclusion

Figure 1: The evaluation homo-
morphism factors through the
image F[α].

Definition 0.3. Minimal Polynomial.
The monic irreducible polynomial m(x) generating ker φα in the alge-
braic case is called the minimal polynomial of α over F. Any polyno-
mial g(x) ∈ F[x] such that g(α) = 0 is called a vanishing polyno-
mial for α.

定義

Proposition 0.2. Divisibility of Vanishing Polynomials.
Let α be algebraic over F with minimal polynomial m(x). If g(x) ∈ F[x]
is any vanishing polynomial for α (i.e., g(α) = 0), then m(x) divides
g(x).

命題

Proof

By the division algorithm in F[x], we can write

g(x) = q(x)m(x) + r(x), where r(x) = 0 or deg r < deg m.
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Evaluating at α, we obtain:

g(α) = q(α)m(α) + r(α) =⇒ 0 = q(α) · 0 + r(α).

Thus r(α) = 0. Since m(x) is the polynomial of least degree vanish-
ing at α, the remainder r(x) must be the zero polynomial.

■

We classify extensions based on the nature of their elements.

Definition 0.4. Types of Extensions.
Let K/F be a field extension.
1. K/F is an algebraic extension if every element α ∈ K is algebraic

over F.
2. K/F is a transcendental extension if there exists at least one element

in K that is transcendental over F.
3. K/F is a finitely generated extension if K = F(α1, . . . , αn) for some

finite set of elements.
4. K/F is a simple extension if K = F(α) for a single element α.

定義

0.3 Properties of Algebraic Extensions

Since a field K containing a subfield F is closed under addition and
scalar multiplication by elements of F, K naturally carries the struc-
ture of a vector space over F. The “size” of the extension can thus be
measured by linear algebra.

Definition 0.5. Degree of Extension.
Let K/F be a field extension. The degree of K over F, denoted [K : F],
is the dimension of K as a vector space over F:

[K : F] := dimF K.

· If [K : F] is finite, K is a finite extension.
· If [K : F] is infinite, K is an infinite extension.

定義

Proposition 0.3. Degree of Simple Algebraic Extensions.
Let K = F(α) be a simple extension where α is algebraic over F. Let
m(x) be the minimal polynomial of α with deg m = n. Then:

[F(α) : F] = n.

Moreover, the set {1, α, α2, . . . , αn−1} forms a basis for F(α) over F.
命題
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Proof

Recall from the structure of simple extensions that F(α) ∼=
F[x]/(m(x)). Any element in the quotient ring is represented
uniquely by a polynomial r(x) of degree less than n (the remain-
der modulo m(x)). Thus, every element β ∈ F(α) can be written
uniquely as:

β = c0 + c1α + · · ·+ cn−1αn−1, ci ∈ F.

This implies that {1, α, . . . , αn−1} spans F(α) and is linearly inde-
pendent over F.

■

Conversely, if [F(α) : F] is finite, the elements 1, α, α2, . . . cannot be
linearly independent indefinitely; thus satisfy a linear dependence
relation, implying α is algebraic.
For a sequence of extensions, the degrees behave multiplicatively.
This result is fundamental to counting arguments in Galois theory
and constructibility problems.

Theorem 0.1. The Tower Law.
Let F ⊆ M ⊆ K be a tower of fields. Then:

[K : F] = [K : M] · [M : F].

定理

K

M

F

n

m

mn

Figure 2: The degrees of a
tower of fields multiply.

Proof

Let [K : M] = m and [M : F] = n. Let {α1, . . . , αm} be a basis for K
over M, and let {β1, . . . , βn} be a basis for M over F. We claim that
the set of products B = {αiβ j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for K
over F.
Spanning: Let γ ∈ K. Since {αi} spans K over M, we can write γ =

∑m
i=1 λiαi with λi ∈ M. Since {β j} spans M over F, each λi =

∑n
j=1 cijβ j with cij ∈ F. Substituting this back:

γ =
m

∑
i=1

(
n

∑
j=1

cijβ j

)
αi =

m

∑
i=1

n

∑
j=1

cij(αiβ j).

Thus B spans K over F.
Linear Independence: Suppose ∑i,j cijαiβ j = 0 for cij ∈ F. Rearrang-

ing terms, we have:

m

∑
i=1

(
n

∑
j=1

cijβ j

)
αi = 0.

The inner sums are elements of M. Since the αi are linearly inde-
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pendent over M, each coefficient must be zero:

n

∑
j=1

cijβ j = 0 for all i.

Since the β j are linearly independent over F, it follows that cij =

0 for all i, j.
Thus [K : F] = mn. The infinite case follows by a similar argument
(if either sub-degree is infinite, the total degree is infinite).

■

This multiplicative property imposes strong arithmetic constraints on
the degrees of elements.

Corollary 0.1. Divisibility of Degrees. Let K/F be a finite extension of
degree n, and let α ∈ K. Then the degree of the minimal polynomial
of α over F divides n.

推論

Proof

Consider the tower F ⊆ F(α) ⊆ K. By the Tower Law, [K : F] = [K :
F(α)] · [F(α) : F]. Thus [F(α) : F] divides [K : F].

■

Corollary 0.2. Prime Degree Extensions. If [K : F] = p where p is a
prime number, then for any α ∈ K \ F, K = F(α).

推論

Proof

Since α /∈ F, [F(α) : F] > 1. Since [F(α) : F] divides the prime
p, it must equal p. Thus F(α) is a subspace of K with the same
dimension, so F(α) = K.

■

We can now characterise finite extensions in terms of their genera-
tors.

Proposition 0.4. Finite vs Finitely Generated.
A field extension K/F is finite if and only if it is a finitely generated
algebraic extension.

命題

( =⇒ )

Let K/F be finite. Choose a basis {a1, . . . , an}. Then K =

F(a1, . . . , an). Since each ai ∈ K, [F(ai) : F] ≤ [K : F] < ∞, so
each ai is algebraic.

証明終
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(⇐= )

Let K = F(α1, . . . , αn) where each αi is algebraic over F. We proceed
by induction on the tower of fields:

F0 = F, Fi = Fi−1(αi).

Since αi is algebraic over F, it is algebraic over Fi−1. Thus [Fi : Fi−1]

is finite. By the Tower Law applied iteratively:

[K : F] = [Fn : Fn−1] · · · [F1 : F] < ∞.

証明終

Algebraic elements within an arbitrary extension form a coherent
substructure.

Theorem 0.2. Closure of Algebraic Elements.
Let K/F be an extension. The set E = {α ∈ K | α is algebraic over F}
is a subfield of K.

定理

Proof

Let α, β ∈ E. Then α and β are algebraic over F. The extension
F(α, β) is finite over F (by the previous proposition). Consequently,
any element generated by arithmetic operations on α and β (such
as α ± β, αβ, α/β with β ̸= 0) lies in F(α, β). Since F(α, β) is a finite
extension, these elements are algebraic over F, and thus belong to
E.

■

Theorem 0.3. Transitivity of Algebraicity.
Let K be algebraic over M, and M be algebraic over F. Then K is alge-
braic over F.

定理

Proof

Let α ∈ K. Since K/M is algebraic, α satisfies a polynomial equation
with coefficients in M:

αn + cn−1αn−1 + · · ·+ c0 = 0, ci ∈ M.

Let M0 = F(c0, . . . , cn−1). Since each ci is algebraic over F, M0/F
is a finite extension. Since α is a root of a polynomial in M0[x], α

is algebraic over M0, so [M0(α) : M0] is finite. By the Tower Law,
[M0(α) : F] = [M0(α) : M0][M0 : F] is finite. Thus α is algebraic over
F.

■
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0.4 Field Homomorphisms and Isomorphisms

The structural equivalence of fields is described by isomorphisms
that preserve the base field.

Definition 0.6. F-Isomorphism.
Let K and K′ be extensions of F. A field isomorphism φ : K → K′ is
an F-isomorphism if it fixes F pointwise, i.e., φ(a) = a for all a ∈ F.
If K = K′, such a map is called an F-automorphism.

定義

We denote the group of F-automorphisms of K by Gal(K/F) (even
when K/F is not Galois).

Proposition 0.5. Roots Map to Roots.
Let φ : K → K′ be an F-isomorphism. Let f (x) ∈ F[x] be a polyno-
mial. If α ∈ K is a root of f (x), then φ(α) ∈ K′ is also a root of f (x).

命題

Proof

Let f (x) = ∑ aixi with ai ∈ F. Applying φ to the equation f (α) = 0:

φ
(
∑ aiα

i
)
= ∑ φ(ai)φ(α)i = ∑ ai(φ(α))i = f (φ(α)).

Since φ(0) = 0, we have f (φ(α)) = 0.
■

Proposition 0.6. Automorphism Bound.
Let K/F be a finite field extension. Then

|Gal(K/F)| ≤ [K : F].

命題

Proof

By proposition 0.4, write K = F(α1, . . . , αm) and set F0 = F,
Fi = Fi−1(αi). For each i, any Fi−1-automorphism of Fi is deter-
mined by the image of αi, which must be a root of its minimal
polynomial over Fi−1. Hence

|Gal(Fi/Fi−1)| ≤ [Fi : Fi−1].

Restricting automorphisms from Fi to Fi−1 gives a group homo-
morphism, so for each automorphism of Fi−1 there are at most
[Fi : Fi−1] extensions to Fi. Therefore,

|Gal(K/F)| ≤
m

∏
i=1

[Fi : Fi−1] = [K : F]
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by the Tower Law.
■

This property implies that algebraic structure is determined by the
minimal polynomial.

Proposition 0.7. Uniqueness of Minimal Polynomials.
Let α and β be algebraic elements over F. There exists an F-isomorphism
F(α) ∼= F(β) mapping α 7→ β if and only if α and β have the same
minimal polynomial over F.

命題

( =⇒ )

Let φ : F(α) → F(β) be such an isomorphism. Let mα(x) be the
minimal polynomial of α. By the previous proposition, φ(α) = β

must be a root of mα(x). Thus the minimal polynomial of β, mβ(x),
divides mα(x). Considering φ−1, we find mα(x) divides mβ(x).
Being monic, they are equal.

証明終

(⇐= )

If mα(x) = mβ(x) = m(x), we have the canonical isomorphisms:

F(α) ∼= F[x]/(m(x)) ∼= F(β).

Composing these gives the desired map.
証明終

Splitting Fields and Normal Extensions

We have seen that if α, β are roots of the same irreducible polynomial,
the fields F(α) and F(β) are isomorphic. The detailed definitions,
existence, and uniqueness of splitting fields as well as the normality
characterisation are developed in Chapter 2. Here we only recall
that a normal extension is, by definition, one that contains all the
conjugates of its elements, so it can be realised as the splitting field of
those minimal polynomials; see definition 2.8.
While splitting fields ensure all roots exist, we must also determine if
they are distinct.

Definition 0.7. Formal Derivative.
Let f (x) = ∑n

i=0 aixi ∈ F[x]. The formal derivative is the polyno-
mial f ′(x) = ∑n

i=1 iaixi−1.
定義

Proposition 0.8. Criterion for Multiple Roots.
A non-zero polynomial f (x) ∈ F[x] has a multiple root in some ex-
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tension if and only if f (x) and f ′(x) have a non-constant common fac-
tor.

命題

Proof

Let E be a field in which f splits. Suppose f has a multiple root α ∈
E. Then

f (x) = (x− α)mq(x), m ≥ 2, q(α) ̸= 0.

Differentiating,

f ′(x) = m(x− α)m−1q(x) + (x− α)mq′(x),

so f ′(α) = 0. Hence x− α divides both f and f ′ in E[x], so their gcd
is non-constant.
Conversely, if gcd( f , f ′) is non-constant, then in a splitting field
E for f there exists α ∈ E with f (α) = f ′(α) = 0. Write
f (x) = (x− α)mq(x) with m ≥ 1 and q(α) ̸= 0. From the expression
for f ′(x) above, f ′(α) = 0 forces m ≥ 2. Thus α is a multiple root of
f .

■

Separability Proof

If α is a multiple root, f (x) = (x − α)2g(x). Differentiating shows
f ′(α) = 0, so x − α divides both. Conversely, if gcd( f , f ′) ̸= 1, they
share a root in a splitting field, which must be a multiple root of f .

■

Definition 0.8. Separability.
An irreducible polynomial f (x) ∈ F[x] is separable if it has no mul-
tiple roots in its splitting field. An extension K/F is separable if the
minimal polynomial of every element in K is separable.

定義

Remark.

In characteristic 0, every irreducible polynomial is separable since
f ′(x) has strictly lower degree and cannot be zero. In characteristic
p, f ′(x) = 0 implies f (x) = g(xp), which leads to inseparable
extensions.

Lemma 0.1. Artin–Schreier Translation.
Let F be a field of characteristic p > 0 and let c ∈ F. For any a ∈
Fp,

(x + a)p − (x + a)− c = xp − x− c.

If α is a root of xp− x− c in some extension, then α+ a is also a root
for all a ∈ Fp. Hence if xp − x− c has a root in F, it splits in F[x]. If
it has no root in F, then it is irreducible.
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引理

Proof

The identity follows from (x + a)p = xp + ap = xp + a. If α is a
root, then α + a is a root for each a ∈ Fp, and these p roots are dis-
tinct. Let m(x) be the minimal polynomial of α over F. Then m(x)
divides xp − x − c and has at least p roots, so deg m ≥ p. Since
deg(xp − x− c) = p, either deg m = 1 and α ∈ F, or deg m = p and
xp − x− c is irreducible.

■

0.5 Algebraic Closure

We conclude this chapter by asking whether we can find a field con-
taining all possible roots of all polynomials.

Definition 0.9. Algebraic Closure.
A field K is algebraically closed if every non-constant polynomial in
K[x] splits into linear factors (i.e., has roots in K). An extension F̄/F
is called an algebraic closure of F if F̄ is algebraic over F and F̄ is al-
gebraically closed.

定義

Before proving the existence of such a field, we establish that we can
always adjoin a root of a single polynomial.

Lemma 0.2. Kronecker’s Theorem.
Let F be a field and f (x) ∈ F[x] be a non-constant polynomial. There
exists an extension E/F in which f (x) has a root.

引理

Proof

Let p(x) be an irreducible factor of f (x). The quotient ring
E = F[x]/(p(x)) is a field extension of F. The element x̄ =

x + (p(x)) ∈ E is a root of p(x), and hence of f (x).
■

We now generalise this to all polynomials simultaneously using a
construction due to E. Artin.

Theorem 0.4. Existence of Algebraic Closure.
Every field F has an algebraic closure.

定理

First we construct a field containing roots for every polynomial in
F[x] simultaneously. For every non-constant polynomial f ∈ F[x],
introduce a distinct indeterminate X f . Let

S = {X f | f ∈ F[x], deg f ≥ 1}.
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Consider the polynomial ring R = F[S] generated by these variables.
Let I be the ideal in R generated by the polynomials f (X f ) for all f .

Claim 0.1. . The ideal I is proper (i.e., 1 /∈ I).
主張

Proof

Suppose for contradiction that 1 ∈ I. Then there exists a finite sum

1 =
n

∑
i=1

gi · fi(X fi
), gi ∈ R.

This relation involves only finitely many polynomials f1, . . . , fn. By
iteratively applying Kronecker’s Theorem, we can construct a finite
extension E/F containing roots α1, . . . , αn for these specific polyno-
mials. Evaluate the polynomial relation in E by assigning X fi

7→ αi

(and other variables arbitrarily). The right-hand side becomes 0

(since fi(αi) = 0), while the left-hand side remains 1. Thus 1 = 0, a
contradiction.

■

Proof of theorem 0.4

Since I is proper, it is contained in a maximal ideal m (by Zorn’s
Lemma). The quotient K1 = R/m is a field extension of F in which
every polynomial f ∈ F[x] has at least one root (the image of X f ).
However, K1 might not be algebraically closed, as it may not con-
tain roots for polynomials in K1[x]. We iterate this process to form a
chain F ⊆ K1 ⊆ K2 ⊆ . . . .
Let

F̄ =
∞⋃

n=1

Kn.

Any polynomial in F̄[x] has coefficients in some Kn, hence has a
root in Kn+1 ⊂ F̄. Thus F̄ is algebraically closed. Each Kn is alge-
braic over F, so every element of F̄ is algebraic over F. Hence F̄ is
an algebraic closure of F.

■

Theorem 0.5. Uniqueness of Algebraic Closure.
Let F̄1 and F̄2 be two algebraic closures of F. Then there exists an F-isomorphism
F̄1
∼= F̄2.

定理

Proof

The proof relies on Zorn’s Lemma to extend the identity map on
F to a maximal isomorphism between subfields of F̄1 and F̄2. Since
both are algebraic extensions, this maximal isomorphism must
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cover the entirety of the fields.
■

0.6 Exercises

1. Odd Degree Algebraic Elements. Let K/F be a field extension Consider the inclusion K(u2) ⊆ K(u)
and use the Tower Law with degrees.and let u ∈ K be an algebraic element over F of odd degree (i.e.,

[F(u) : F] is odd). Prove that F(u) = F(u2).

2. Cyclotomic Degrees. Let ζn = e2πi/n be a primitive n-th root of
unity. Define the cyclotomic degree by

Φ(n) = [Q(ζn) : Q].

Show Q(ζmn) = Q(ζm, ζn) and use the
Tower Law; reduce to prime powers.

(a) Prove that Φ(mn) = Φ(m)Φ(n) when gcd(m, n) = 1.
(b) Prove that Φ(pk) = pk−1(p− 1) for prime p and k ≥ 1.
(c) Compute Φ(p) for prime p and Φ(8).
(d) Deduce a general formula for Φ(n) in terms of the prime

factorisation of n.

3. Minimal Polynomials in Towers. Determine the minimal polyno-
mial of the element α =

√
2 +
√

3 over the field K in the following
cases:

(a) K = Q

(b) K = Q(
√

2)
(c) K = Q(

√
6)

4. Simple Extension Generator. Prove explicitly that Q(
√

2,
√

3) =

Q(
√

2 +
√

3).

5. Intermediate Domains. Let K/F be an algebraic field extension.
Let D be an integral domain such that F ⊆ D ⊆ K. Prove that D is
a field.

6. Minimal Polynomial Uniqueness. Let u be algebraic over a field
F.

(a) Prove that the minimal polynomial m(x) generates the ideal
Iu = {g(x) ∈ F[x] | g(u) = 0}.

(b) Conversely, prove that if f (x) is a monic irreducible poly-
nomial in F[x] such that f (u) = 0, then f (x) is the minimal
polynomial of u.

7. Algebraicity via Powers. Let K/F be a field extension and let
a ∈ K. Suppose that a ∈ F(am) for some integer m > 1. Prove that
a is algebraic over F.

8. Transcendental Rational Functions. Let K(x1, . . . , xn) be the field
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of fractions of the polynomial ring K[x1, . . . , xn]. Prove that any
element u ∈ K(x1, . . . , xn) such that u /∈ K is transcendental over
K.

9. Inverting Transcendental Extensions. Let K be a field and u ∈
K(x) such that u /∈ K. Prove that x is algebraic over the field K(u).

10. Computation in Cubic Fields. Let K = Q(α) where α is a root of
x3 − x− 1 = 0. Find the minimal polynomial of γ = 1 + α2 over Q.

11. Biquadratic Extensions. Let a be a positive rational number that Establish the irreducibility of x4 − a.

is not a square in Q. Prove that [Q( 4
√

a) : Q] = 4.

12. Field Arithmetic. Let u be a root of x3 − 6x2 + 9x + 3.

(a) Prove that [Q(u) : Q] = 3.
(b) Express u4, (u + 1)−1, and (u2 − 6u + 8)−1 as linear combina-

tions a + bu + cu2 with rational coefficients.

13. Rational Function Example. Let x be transcendental over Q and
let u = x3

x+1 . Calculate the degree [Q(x) : Q(u)].

14. Constructing Finite Fields. Find a quadratic irreducible polyno-
mial f (x) over the binary field F2. Let u be a root of f (x). List
all elements of the field F2(u) and construct their addition and
multiplication tables.

15. Composite Extensions. Let M/K be a field extension containing
algebraic elements u and v with degrees m = [K(u) : K] and
n = [K(v) : K]. Let F = K(u) and E = K(v).

(a) Prove that [FE : K] ≤ mn.
(b) Prove that if gcd(m, n) = 1, then [FE : K] = mn.

16. Artin-Schreier Extensions. Let F be a field of characteristic p > 0
and let c ∈ F.

(a) Prove that the polynomial xp − x − c is irreducible in F[x] if
and only if it has no root in F.

(b) Does this conclusion hold if char(F) = 0? Justify your answer.

17. Quadratic Extensions. Let F be a field of characteristic not equal
to 2. Prove that every extension of degree 2 over F is of the form
F(
√

a) for some a ∈ F. Does this classification hold if char(F) = 2?

18. Automorphisms of a Quadratic Field. Let K = Q(
√

5). List all Q-
automorphisms of K and verify that |Gal(K/Q)| = [K : Q]. Then
explain why Proposition 0.6 immediately implies |Gal(K/Q)| ≤
[K : Q] for every simple algebraic extension.



1
Applications of Field Theory

We now apply our knowledge of field extensions to a classical prob-
lem originating from Greek antiquity: which geometric constructions
are possible using only a straightedge (an unmarked ruler) and a
compass? To answer this, we must translate geometric operations
into the language of algebra.

Definition 1.1. Constructible Points and Numbers.
Let P0 = {(0, 0), (1, 0)} ⊂ R2 be a set of initial points. A point (x, y)
is constructible if it can be obtained from P0 by a finite sequence of the
following operations:
1. Drawing a line through two already constructed points.
2. Drawing a circle centred at a constructed point and passing through

another constructed point.
3. Finding the intersection points of two lines, two circles, or a line and

a circle constructed as above.
A real number α is a constructible number if the point (α, 0) is con-
structible.

定義

To relate these geometric operations to field theory, we first establish
that the elementary tools of geometry allow us to perform basic
arithmetic on lengths.

Lemma 1.1. Geometric Subroutines.
Given constructible points and lines, the following constructions are
possible:
Perpendiculars: Given a line l and a point A (either on l or not), one

can construct a line through A perpendicular to l.
Parallels: Given a line l and a point A /∈ l, one can construct a line

through A parallel to l.
Length Transfer: Given a point B on a line l and a constructible seg-

ment OA, one can construct a point C on l such that |BC| = |OA|.
引理
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Proof

Perpendiculars: If A ∈ l, choose any other point B ∈ l. Draw the
circle C1(A, B) (centre A, through B) intersecting l at C. Draw
circles C2(B, C) and C3(C, B); their intersection determines a
point D. The line AD is perpendicular to l. If A /∈ l, draw a
circle centred at A intersecting l at B and C. The perpendicular
bisector of BC (constructed as above) passes through A.

Parallels: Construct a line l0 through A perpendicular to l. Then
construct a line l′ through A perpendicular to l0. Clearly l′ ∥ l.

Length Transfer: This follows from constructing a parallelogram or
by repeated application of circles if the target line is aligned with
the segment.

■
l

A

B C

D

Figure 1.1: Dropping a perpen-
dicular from A /∈ l.

Proposition 1.1. The Field of Constructible Numbers.
The set K of all constructible real numbers is a subfield of R closed un-
der square roots of non-negative elements. That is:
1. If α, β ∈ K, then α± β ∈ K, αβ ∈ K, and (if β ̸= 0) α/β ∈ K.
2. If α ∈ K and α > 0, then

√
α ∈ K.

命題
Intercept Theorem: in similar triangles,
ratios of corresponding sides are equal.
Geometric mean theorem: in a right
triangle, the altitude to the hypotenuse
has length squared equal to the product
of the hypotenuse segments.

Proof

The lengths 0 and 1 are given. Addition α + β and subtraction α− β

correspond to extending a segment on a line. For multiplication
and division, we use the Intercept Theorem (Thales’ Theorem). To
construct γ = αβ, construct a triangle with sides 1 and α. On the
side of length 1, extend to length β. Draw a parallel line to scale the
side α to γ. A similar construction yields α/β.
For the square root, construct a segment of length 1 + α. Draw a
semicircle with this segment as the diameter. The perpendicular
erected at the point joining the segments 1 and α meets the circle at
a height h. By elementary geometry (geometric mean), h2 = 1 · α, so
h =
√

α.
■

We now characterise these numbers algebraically. Every construction
step involves intersecting lines and circles.

Lemma 1.2. Algebraic Characterisation of Steps.
Let K be a subfield of R. Let A1, . . . , A4 be points with coordinates in
K.
1. The intersection of two lines through these points has coordinates

in K.
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O 1 β

α

αβ

A B C

P

1 α

√
α

Figure 1.2: Left: Constructing
the product αβ via similar tri-
angles. Right: Constructing√

α using the geometric mean
theorem (BP2 = AB · BC).

2. The intersection of a line and a circle (or two circles) defined by these
points has coordinates in K(

√
r) for some r ∈ K, where r ≥ 0.

引理

Proof

A line through points in K has an equation of the form ax + by +

c = 0 with a, b, c ∈ K. The intersection of two such lines is the
solution to a linear system over K, which lies in K. A circle with
centre (x0, y0) ∈ K2 and radius squared R2 ∈ K has the equa-
tion (x − x0)

2 + (y − y0)
2 = R2. The intersection of a line and a

circle requires substituting linear y = mx + c into the quadratic
circle equation, yielding a quadratic equation in x. The roots lie in
K(
√

∆) where ∆ is the discriminant. The intersection of two circles
x2 + y2 + D1x + · · · = 0 and x2 + y2 + D2x + · · · = 0 can be found
by subtracting the equations to get a linear relationship (the radical
axis), reducing the problem to the line-circle case.

■

This leads to the fundamental theorem of constructibility.

Theorem 1.1. Constructible Numbers and Field Extensions.
A real number α is constructible if and only if there exists a finite tower
of subfields

Q = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K

such that α ∈ K, and for each i, Fi+1 = Fi(
√

ri) for some ri ∈ Fi with
ri > 0.

定理

Proof

The forward direction follows immediately from the previous
lemma: each construction step either leaves the field unchanged
(linear intersection) or extends it by a square root (quadratic in-
tersection). Conversely, since Q constructible (contains 0, 1 and is
closed under arithmetic), and square roots of constructible numbers
are constructible (figure 1.2), any element in such a tower can be
constructed.
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■

Corollary 1.1. Degree of Constructible Numbers. If α is a constructible
number, then α is algebraic over Q and its degree [Q(α) : Q] is a power
of 2.

推論

Proof

Let K be the top field in the tower from the theorem. By the Tower
Law (figure 2), [K : Q] = [K : Fn−1] · · · [F1 : Q] = 2n. Since Q(α) ⊆ K,
the degree [Q(α) : Q] must divide [K : Q] = 2n. Thus it must be a
power of 2.

■

This corollary allows us to prove the impossibility of several famous
constructions sought by ancient geometers.

Corollary 1.2. Impossibility of Angle Trisection. It is impossible to trisect
an arbitrary angle using only a straightedge and compass. Specifically,
the angle 60◦ cannot be trisected.

推論

Proof

To trisect 60◦, we would need to construct 20◦, which implies con-
structing α = cos 20◦. Recall the triple angle formula:

cos 3θ = 4 cos3 θ − 3 cos θ.

Setting θ = 20◦, we have cos 60◦ = 1/2. Let x = cos 20◦. Then:

1
2
= 4x3 − 3x =⇒ 8x3 − 6x− 1 = 0.

The polynomial P(x) = 8x3 − 6x− 1 is irreducible over Q (a change
of variable y = 2x gives y3 − 3y − 1, roots are ±1 test fails). Thus
[Q(cos 20◦) : Q] = 3. Since 3 is not a power of 2, cos 20◦ is not con-
structible.

■

Corollary 1.3. Constructibility of Regular Polygons. A regular p-gon (where
p is prime) is constructible if and only if p is a Fermat prime, i.e., p =

22k
+ 1.

推論

Proof

The construction of a regular p-gon is equivalent to constructing
the length cos(2π/p). Let ζ = e2πi/p. The field extension Q(ζ)

has degree p − 1 over Q. The real subfield containing cos(2π/p)
is Q(ζ + ζ−1), which has degree (p − 1)/2. For this to be con-
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structible, (p − 1)/2 must be a power of 2, so p − 1 = 2m. If m has
an odd factor s > 1, say m = s · r, then 2m + 1 = (2r)s + 1 is divisible
by 2r + 1, so p would not be prime. Thus m must be a power of 2,
making p a Fermat prime.

■

Remark.

The converse (that every Fermat prime yields a constructible regu-
lar p-gon) is Exercise 5.

1.1 The Fundamental Theorem of Algebra

We now establish a result that, while analytic in nature, underpins
the structural completeness of the complex numbers: the Funda-
mental Theorem of Algebra. This theorem asserts that the field con-
struction process terminates at C; no further algebraic extensions are
necessary to contain roots of polynomials.

Theorem 1.2. Fundamental Theorem of Algebra.
Let f (z) ∈ C[z] be a polynomial of degree n ≥ 1. Then there exists
z0 ∈ C such that f (z0) = 0.

定理

The proof proceeds by contradiction. We assume f (z) is never zero
and exploit the topological properties of C (specifically, compactness
and the continuous nature of the modulus function) to derive an
impossibility. The argument requires two subsidiary lemmas: one
guaranteeing that | f (z)| attains a minimum, and another asserting
that this minimum cannot be non-zero.

Lemma 1.3. Existence of a Minimum.
Let f (z) ∈ C[z]. The function | f (z)| attains a global minimum on C.
That is, there exists z0 ∈ C such that | f (z0)| ≤ | f (z)| for all z ∈ C.

引理

Proof

Let f (z) = anzn + · · · + a0 with an ̸= 0. We examine the behaviour
of f (z) for large |z|. Factoring out the leading term:

| f (z)| = |z|n
∣∣∣an +

an−1

z
+ · · ·+ a0

zn

∣∣∣ .

As |z| → ∞, the term in parentheses approaches |an| ̸= 0. Con-
sequently, lim

|z|→∞
| f (z)| = ∞. Choose a radius R > 0 sufficiently

large such that for all |z| ≥ R, we have | f (z)| > | f (0)|. Consider
the closed disk DR = {z ∈ C | |z| ≤ R}. Since polynomial
functions are continuous, | f (z)| is a continuous real-valued func-
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tion. Since DR is a compact set (closed and bounded), the Extreme
Value Theorem ensures that | f (z)| attains a minimum on DR at
some point z0. Since 0 ∈ DR, the minimum on the disk satisfies
| f (z0)| ≤ | f (0)|. For any z outside the disk (|z| > R), our choice of
R implies | f (z)| > | f (0)| ≥ | f (z0)|. Thus, z0 is a global minimum
for the entire plane.

■

Lemma 1.4. d’Alembert’s Lemma.
Let f (z) ∈ C[z] be a non-constant polynomial and let z0 ∈ C. If f (z0) ̸=
0, then | f (z0)| is not the minimum value of | f (z)|.

引理

Proof

We may shift the coordinate system to the origin by defining
g(z) = f (z + z0). Clearly, if |g(z)| is not minimal at z = 0, then
| f (z)| is not minimal at z0. Furthermore, we may normalise the
function. Let h(z) = g(z)/g(0). Then h(0) = 1. It suffices to
show that there exists a point z such that |h(z)| < 1. Since h(z) is a
polynomial with constant term 1, we can write it in the form:

h(z) = 1 + azk + zk+1ψ(z),

where a ̸= 0 is the first non-zero coefficient after the constant term,
k ≥ 1 is an integer, and ψ(z) is a polynomial. We wish to choose
a small perturbation z such that the term azk is real and negative,
thereby reducing the modulus. Let a = |a|eiϕ. We set z = reiθ with
r > 0. The term of interest becomes:

azk = |a|rkei(ϕ+kθ).

To make this real and negative, we choose θ such that ϕ + kθ = π.
That is, θ = π−ϕ

k . Substituting this back into h(z), we have azk =

−|a|rk, and thus:

h(z) = 1− |a|rk + zk+1ψ(z).

By the triangle inequality:

|h(z)| ≤ |1− |a|rk|+ |zk+1ψ(z)| = 1− |a|rk + rk+1|ψ(z)|.

(Note that for sufficiently small r, |a|rk < 1, allowing us to drop
the absolute value on the first term). Since ψ(z) is a polynomial, it
is bounded in a neighbourhood of 0; let |ψ(z)| ≤ M for small |z|.
Then:

|h(z)| ≤ 1− rk(|a| −Mr).
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Since |a| > 0, we can choose r sufficiently small such that |a| −
Mr > 0. For such an r, |h(z)| < 1. Thus, the origin is not a local
minimum of |h(z)|, implying z0 is not a local minimum of | f (z)|.

■ ℜ

ℑ

z0

z

Figure 1.3: If f (z0) ̸= 0, there
exists a direction in which | f |
decreases.

Proof of theorem 1.2

By lemma 1.3, there exists a point z0 ∈ C where | f (z)| attains
its global minimum. Suppose, for the sake of contradiction, that
f (z0) ̸= 0. By lemma 1.4, z0 cannot be a minimum, as there exists
a nearby point with a strictly smaller modulus. This contradiction
implies that our assumption must be false. Therefore, f (z0) = 0.

■

Remark.

This theorem implies that the field C is algebraically closed. In
the language of field theory, the algebraic closure of R is C, and
[C : R] = 2.

1.2 Theory of Finite Fields

We now turn our attention to fields with a finite number of elements,
known as Galois fields. These structures are ubiquitous in number
theory, coding theory, and cryptography. Their structure is exception-
ally clean: they are completely classified by their order.

Definition 1.2. Characteristic and Order.
Let K be a finite field. Since K is finite, it must have characteristic p for
some prime p. Consequently, K contains a copy of Fp ∼= Z/pZ as its
prime subfield. K is a vector space over Fp. If [K : Fp] = n, then |K| =
pn.

定義

Lemma 1.5. Order of Finite Fields.
The order of any finite field is a prime power q = pn.

引理

Example 1.1. A Field of Order 4. Consider the polynomial
f (x) = x2 + x + 1 over F2. Since f (0) = 1 and f (1) = 1, it has
no roots in F2. Being of degree 2, it is irreducible. The quotient ring
K = F2[x]/(x2 + x + 1) is a field. Its elements are {0, 1, α, α + 1},
where α is the image of x. Note that α2 = α + 1 (since −1 = 1 in
characteristic 2).

範例

The following theorem provides a complete structural description of
all finite fields.
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Theorem 1.3. Classification of Finite Fields.
Let p be a prime and q = pn for some n ≥ 1.
Existence: There exists a field of order q, unique up to isomorphism.

We denote this field by Fq.
Subfield Structure: A field of order pn contains a subfield of order pk

if and only if k divides n.
Cyclic Multiplicative Group: The multiplicative group F×q = Fq \
{0} is cyclic of order q− 1.

Root Structure: The elements of Fq are precisely the roots of the poly-
nomial xq − x. In the algebraic closure Fp, we have:

Fq = {α ∈ Fp | αq = α}.

Polynomial Factorisation: The polynomial xpn − x factors over Fp as
the product of all monic irreducible polynomials in Fp[x] whose de-
grees divide n.

定理
Freshman’s Dream: in characteristic
p, (a + b)p = ap + bp. Iterating gives
(a + b)pn

= apn
+ bpn

.
Existence and Uniqueness.

Consider the polynomial f (x) = xq − x in Fp[x]. By theorem 0.4,
let Ω be an algebraic closure of Fp. Since Ω is algebraically closed,
f (x) splits completely in Ω.
The derivative is f ′(x) = qxq−1 − 1 = −1 (since q = pn ≡ 0
(mod p)). Since the derivative is nowhere zero, f (x) has no re-
peated roots. Thus f (x) has exactly q distinct roots in Ω. Let

S = {α ∈ Ω | αq = α}.

We claim S is a field.
• Closure under multiplication: (αβ)q = αqβq = αβ.
• Closure under addition: (α + β)q = αq + βq = α + β. (Recall the

“Freshman’s Dream” (a + b)p = ap + bp in characteristic p, iter-
ated n times).

• Inverses: (α−1)q = (αq)−1 = α−1.
Thus S is a subfield of Ω with q elements. So a field of order q
exists.
For uniqueness, let K be any field of order q. The multiplicative
group K× has order q − 1, so αq−1 = 1 for all α ∈ K×. Thus αq = α

for all α ∈ K. This means every element of K is a root of xq − x.
Since K contains q roots and xq − x can have at most q roots, K is
precisely the set of roots of xq − x. If we embed K into Ω, its image
must be exactly S. Thus K ∼= S.

証明終
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Subfields.

Fpk ⊆ Fpn corresponds to the set of roots of xpk − x being contained

in the set of roots of xpn − x inside Fp. If k | n, then for any α with

αpk
= α, we have αpn

= (αpk
)pn−k

= α, so every root of xpk − x
is a root of xpn − x, hence xpk − x | xpn − x in Fp[x]. Conversely, if

xpk − x | xpn − x, then every root of xpk − x lies in Fpn , so Fpk ⊆ Fpn ,
which forces k | n by the tower law.

証明終

Lemma 1.6. Finite Subgroups of Fields.
Let G be a finite subgroup of the multiplicative group of a field F. Then
G is cyclic.

引理

Proof

Let G have order N. Since G is a finite abelian group, G ∼=
Zn1 × · · · × Znk with n1 | n2 | · · · | nk. The exponent of this
group is nk. Thus xnk = 1 for all x ∈ G. The polynomial xnk − 1 has
at most nk roots in the field F. Since all N elements of G are roots,
we must have N ≤ nk. However, N = n1 · · · nk, so clearly N ≥ nk.
Thus N = nk, implying k = 1 and G ∼= ZN .

■

Cyclic Group.

This relies on a general fact about finite subgroups of fields. Apply-
ing this to G = F×q , we see it is cyclic.

証明終

Factorisation.

Divide the polynomial xq − x by its irreducible factors in Fp[x]. An
irreducible g(x) of degree d divides xq − x iff its roots lie in Fq. The
field Fp[x]/(g(x)) ∼= Fpd embeds into Fq iff d | n. Thus xpn − x is
the product of all irreducibles of degree d where d | n.

証明終

This classification guarantees the existence of irreducible polynomials
of any degree.

Corollary 1.4. Existence of Irreducible Polynomials. For any prime p and
n ≥ 1, there exists an irreducible polynomial of degree n in Fp[x].

推論

Proof

Let K be a field of order pn (Classification of Finite Fields). Since
the multiplicative group K× is cyclic (Finite Subgroups of Fields),
K = Fp(α) for some α ∈ K. The minimal polynomial of α over Fp is
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an irreducible polynomial of degree [K : Fp] = n.
■

The automorphisms of finite fields are generated by the Frobenius
map.

Theorem 1.4. Automorphisms of Fq.
Let K = Fpn . The group Gal(K/Fp) is cyclic of order n, generated by
the Frobenius automorphism:

σ : K → K, x 7→ xp.

定理

Proof

The map σ is a homomorphism because (x + y)p = xp + yp and
(xy)p = xpyp. It is injective (kernel is trivial since fields have
no zero divisors) and thus surjective (since K is finite). The fixed
field of σ is {x ∈ K | xp = x}, which is exactly the prime sub-
field Fp. Let α be a generator of the cyclic group K×. Its minimal
polynomial over Fp has degree n. The roots of this polynomial
are α, αp, . . . , αpn−1

. These are distinct. Thus σ has order n. Since
|Gal(K/Fp)| ≤ [K : Fp] = n by proposition 0.6, the group is gener-
ated by σ.

■

Example 1.2. Frobenius on F4. Consider K = F4 = {0, 1, α, α +

1} as defined in A Field of Order 4. The Frobenius automorphism σ :
x 7→ x2 acts as:

0 7→ 0, 1 7→ 1, α 7→ α2 = α + 1, α + 1 7→ (α + 1)2 = α2 + 1 = α.

This map permutes the elements not in the prime subfield F2.

範例

We conclude with a practical criterion for irreducibility, often used to
construct such fields.

Proposition 1.2. Eisenstein’s Criterion.
Let f (x) = anxn + · · · + a0 ∈ Z[x]. Suppose there exists a prime p
such that:
1. p ∤ an,
2. p | ai for all 0 ≤ i < n,
3. p2 ∤ a0.
Then f (x) is irreducible over Q.

命題
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Proof

Suppose f (x) = g(x)h(x) over Z[x]. Reduce modulo p:

f̄ (x) = ānxn.

Thus ḡ(x)h̄(x) = ānxn. This implies ḡ(x) = bxk and h̄(x) = cxn−k

for some constants. Consequently, the constant terms of g and h
are both divisible by p. But then the constant term of f , which is
a0 = g(0)h(0), would be divisible by p2, contradicting the assump-
tion.

■

Proposition 1.3. Low Degree Irreducibility.
A polynomial f (x) ∈ K[x] of degree 2 or 3 is irreducible if and only
if it has no roots in K.

命題

Proof

If reducible, it splits into factors. At least one factor must be degree
1 (since 2 = 1 + 1 and 3 = 1 + 2 or 1 + 1 + 1), corresponding to a
root.

■

1.3 Exercises

1. Constructible Numbers. Determine which of the following quan-
tities can be constructed using only a straightedge and compass.
Justify your answer using the degree of field extensions.

(a) 3
√

3 + 5 3
√

8
(b) 3

√
5√

7−4
(c) 2 + 5

√
7

(d) The roots of the polynomial x5 − 3x2 + 6

2. Constructible Angles. Prove that angles of 45◦ and 54◦ can be To trisect 54◦ means constructing 18◦.
Consider the constructibility of the
regular pentagon.

trisected with a straightedge and compass.

3. Doubling the Cube. Prove the impossibility of the classical prob- This corresponds to constructing 3√2.

lem of "doubling the cube" (constructing a cube with twice the
volume of a given cube).

4. Constructible Polygons. For each integer 3 ≤ n ≤ 10, determine
whether a regular n-gon can be constructed with straightedge and
compass.

5. Gauss’s Direction. Let p be a Fermat prime. Prove that a regular
p-gon is constructible by showing that cos(2π/p) lies in a tower of
quadratic extensions of Q.
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6. Maximal Ideals and Geometry.

(a) Prove that there is a bijection between the maximal ideals of
C[x] and the points in the complex plane C.

(b) Describe the geometric correspondence for the maximal ide-
als of R[x]. For (b): Consider the Fundamental

Theorem of Algebra and complex
conjugation.7. Constructing Finite Fields. Explicitly construct a field of 8 ele-

ments, F8 = F2[x]/( f ) for an irreducible cubic f (x). Let u be
the image of x. List the elements as powers of u, compute the
multiplication table for F×8 , determine all generators of F×8 , and
describe the Frobenius automorphism x 7→ x2 on F8.

8. Irreducible Polynomials.

(a) List all irreducible polynomials of degree ≤ 4 over F2.
(b) List all quadratic irreducible polynomials over F3.

9. Counting Irreducibles. Let p and l be primes, and n a positive Use the inclusion-exclusion principle on
subfields of Fpln .integer. Find a formula for the number of monic irreducible poly-

nomials of degree ln in Fp[x]. Count elements of Fpln of degree
exactly ln over Fp, then divide by ln.

10. Minimal Polynomials (computational). Let α2
1 = 2 and α2

2 = 3,
and set β = α1 + α2. For each base field below, first determine
whether 2, 3, and 6 are squares, then compute [ F(β) : F ], the
minimal polynomial of β over F, and the minimal polynomial of
β2 over F. Decide when F(β) = F(β2).

(a) F5

(b) F7

(c) F11

11. Primitive Polynomials. Let f (x) ∈ Fp[x] be a monic irreducible
polynomial of degree n. Let φ(m) denote Euler’s totient function.

(a) Let u be a root of f (x). Prove that the roots of f (x) are ex-
actly u, up, up2

, . . . , upn−1
.

(b) A polynomial is called primitive if its root u generates the
multiplicative group F×pn . Prove that if one root is a generator,
all roots are generators.

(c) Prove that the number of primitive polynomials of degree n
over Fp is φ(pn − 1)/n.

12. Reducibility. Prove that for n ≥ 3, the polynomial x2n
+ x + 1 is

reducible in F2[x].

13. Subfields of F16.

(a) Prove that x4 + x + 1 is a primitive polynomial in F2[x].
(b) Let F16 = F2(α) where α is a root of x4 + x + 1. List the

elements of the unique subfield of order 4 within F16.
(c) Find the minimal polynomial of α over F4.
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14. Generators of F16.

(a) Prove that f (x) = x4 + x3 + x2 + x + 1 is irreducible but not
primitive in F2[x].

(b) Let u be a root of f (x). Identify which elements of F16 =

F2(u) generate the multiplicative group F×16.

15. Quadratic Equations in Finite Fields. Let F be a finite field and Use a counting argument on the sets
{ax2} and {c− by2}.a, b ∈ F×. Prove that for any c ∈ F, the equation ax2 + by2 = c has

a solution (x, y) in F2.

16. Isomorphisms of Extensions. Prove that f (x) = x3 + x + 1 and
g(x) = x3 + x2 + 1 are irreducible over F2. Let K be the field
generated by a root of f , and L by a root of g. Explicitly construct
an isomorphism ϕ : K → L.

17. Wilson’s Theorem for Fields. Let K be a finite field. Prove that the
product of all non-zero elements of K is −1.

18. Factorisation in F3. Factor the polynomials x9− x and x27− x into
irreducibles over F3.

19. Trace and Norm. Let F = Fpn and G = Gal(F/Fp). Define the
Trace and Norm maps:

Tr(a) = ∑
σ∈G

σ(a), N(a) = ∏
σ∈G

σ(a).

(a) Prove that Tr : F→ Fp is a surjective group homomorphism.
(b) Prove that N : F× → F×p is a surjective group homomor-

phism.

20. Fixed Fields. Let F = Fpn and let H be a subgroup of Gal(F/Fp)

of order m. Let K = {a ∈ F | σ(a) = a for all σ ∈ H}.

(a) Prove that m divides n.
(b) Prove that K is the unique subfield of F of order pn/m.

21. Repeated Roots in Characteristic p. Let F be a field of character-
istic p, and let f (x) be irreducible in F[x]. (A root α in a splitting
field is called multiple if (x− α)2 divides f (x).)

(a) Prove that f ′(x) = 0 if and only if f (x) = g(xp) for some
g(x) ∈ F[x].

(b) If f (x) = g(xpm
) but not h(xpm+1

), prove that deg f is di-
visible by pm, and that in a splitting field f has exactly
deg( f )/pm distinct roots, each with multiplicity pm.

22. Linear Groups over Finite Fields. Let F = Fq. Count bases column by column to
compute |GLn(F)|, then use det :
GLn(F)→ F×.(a) Calculate the order of the special linear group SLn(F).

(b) Prove that the group of upper triangular matrices in GLn(Fp)

with 1s on the diagonal (the Heisenberg group for n = 3) has
order pn(n−1)/2. For n = 3, verify it is non-abelian of order p3.



2
Galois Theory

We have previously explored field extensions K/F by analysing the
degree [K : F] and the algebraic properties of elements. In this chap-
ter, we introduce the central object of Galois theory: the group of
automorphisms of K that fix F. This group encodes the structural
symmetry of the extension and provides a powerful bridge between
field theory and group theory. Unless otherwise specified, we assume
all extensions K/F are finite. We freely use results from the previous
chapters.

2.1 The Galois Group

Recall that an isomorphism of fields σ : K → K is called an auto-
morphism. If K is an extension of F, we are particularly interested in
automorphisms that respect the base field.

Definition 2.1. Galois Group.
Let K/F be a field extension. The set of all F-automorphisms of K,

Gal(K/F) = {σ ∈ Aut(K) | σ(a) = a for all a ∈ F},

forms a group under composition. This group is called the Galois group
of K over F.

定義

The action of the Galois group is tightly constrained by the polyno-
mials defining the extension.

Remark.

Recall proposition 0.5: if σ ∈ Gal(K/F) and α ∈ K is a root of a poly-
nomial f (x) ∈ F[x], then σ(α) must also be a root of f (x). Since σ is
injective and K is a field, σ permutes the roots of f (x) that lie in K.

We examine the size of this group in several standard cases.

Example 2.1. Inseparable Extension. Let F = Fp(T) be the field of
rational functions over the finite field Fp, and let K = F( p

√
T). Let
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α = p
√

T. The minimal polynomial of α over F is m(x) = xp − T. In
K[x], this polynomial factorises as:

xp − T = xp − αp = (x− α)p.

Thus, α is the unique root of m(x) in K (with multiplicity p). For
any σ ∈ Gal(K/F), σ(α) must be a root of m(x). Therefore,
σ(α) = α. Since K is generated by α over F, σ must be the iden-
tity map.

Gal(K/F) = {1}.

Here, [K : F] = p, but the Galois group has order 1.

範例

Example 2.2. Quadratic Extensions. Let K/F be a quadratic exten-
sion, so [K : F] = 2. Let K = F(α) where α has minimal polynomial
f (x) = x2 + bx + c ∈ F[x]. Let the roots of f (x) in K be α and α′. We
have the relations α + α′ = −b and αα′ = c. Thus α′ = −b− α ∈ K.
Any σ ∈ Gal(K/F) must map α to a root of f (x).
1. If σ(α) = α, then σ = 1 (the identity).
2. If α ̸= α′, there may exist an automorphism τ such that τ(α) =

α′.
We distinguish cases based on the characteristic of F:
Case 1: α = α′. This implies the discriminant is zero. In charac-

teristic ̸= 2, this forces f (x) to be reducible or linear, contra-
dicting the degree 2 assumption. In characteristic 2, if b = 0,
f (x) = x2 + c is irreducible but has a repeated root (inseparable).
Here Gal(K/F) = {1}.

Case 2: α ̸= α′. If char(F) ̸= 2, we can complete the square. f (x)
corresponds to x2 − D for some non-square D ∈ F. Then K =

F(
√

D). The map
√

D 7→ −
√

D is a valid F-automorphism. Thus
Gal(K/F) ∼= C2.

範例

For notation, C2 denotes the cyclic group of order 2, and V4 denotes
the Klein four-group.

K

F(α) F(β) F(αβ)

F

Figure 2.1: Lattice of subfields
for a biquadratic extension.

Example 2.3. Biquadratic Extension. Assume char(F) ̸= 2. Let K =

F(α, β) where α2 = D1 ∈ F and β2 = D2 ∈ F, such that [K :
F] = 4. The basis for K over F is {1, α, β, αβ}. Any automorphism σ

is determined by its action on the generators:

σ(α) = ±α, σ(β) = ±β.

There are at most 4 such combinations. Since [K : F] = 4, it can be
shown that all 4 define valid automorphisms. Thus |Gal(K/F)| = 4.
The group is isomorphic to the Klein four-group V4

∼= C2 × C2.
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範例

Example 2.4. Cubic Extension. Let F = Q and K = Q( 3
√

2). The
minimal polynomial is x3 − 2. The roots in C are α = 3

√
2, ωα, and

ω2α, where ω = e2πi/3. Since K ⊂ R, it contains only the real root α.
Any σ ∈ Gal(K/F) must map α to a root of x3 − 2 contained in K.
The only choice is α. Thus σ(α) = α, implying σ = 1.

Gal(K/F) = {1}.

Here [K : F] = 3, but the group order is 1.

範例

2.2 Galois Extensions

In the examples above, we observed that |Gal(K/F)| is sometimes
equal to [K : F] (standard quadratic, biquadratic) and sometimes
strictly smaller (inseparable quadratic, cubic Q( 3

√
2)).

Theorem 2.1. Bound on Galois Group Size.
Let K/F be a finite field extension. Then:

|Gal(K/F)| ≤ [K : F].

定理

Remark.

This is proposition 0.6 from Chapter 0. We will later reinterpret this
bound using separability and normality.

Definition 2.2. Galois Extension.
A finite extension K/F is a Galois extension if:

|Gal(K/F)| = [K : F].

定義

Based on our previous examples:
· Q(

√
2)/Q is Galois (2 = 2).

· Fp(
p
√

T)/Fp(T) is not Galois (1 < p).
· Q( 3

√
2)/Q is not Galois (1 < 3).

The Galois group acts on the field K. We can recover the base field F
from this action if the extension is Galois.

Definition 2.3. Fixed Field.
Let G be a subgroup of Aut(K). The fixed field of G is the set:

KG = {a ∈ K | σ(a) = a for all σ ∈ G}.
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It is easily verified that KG is a subfield of K.
定義

Corollary 2.1. Fixed Field of Galois Extensions. Let K/F be a Galois ex-
tension with Galois group G = Gal(K/F). Then:

KG = F.

推論

Proof

Let L = KG. By definition of the Galois group, every element of F is
fixed by every σ ∈ G, so F ⊆ L ⊆ K. Any σ ∈ G fixes L pointwise,
so G ⊆ Gal(K/L). Conversely, by definition Gal(K/L) contains
automorphisms fixing L, so Gal(K/L) ⊆ G. Thus G = Gal(K/L).
Using the definition of a Galois extension and the bound on group
size:

[K : F] = |G| = |Gal(K/L)| ≤ [K : L].

By the Tower Law (figure 2), [K : F] = [K : L][L : F]. Substituting this
into the inequality:

[K : L][L : F] ≤ [K : L].

Since [K : L] is finite and non-zero, we divide to obtain [L : F] ≤ 1.
Thus [L : F] = 1, implying L = F.

■

K

KG

F

1

|G|

|G|

Figure 2.2: Since [K : F] = |G| =
[K : KG], the Tower Law forces
[KG : F] = 1, hence KG = F.

The failure of an extension to be Galois arises from two distinct is-
sues:

Separability: The minimal polynomial has multiple roots (e.g.,
xp − T).

Normality: The minimal polynomial has roots outside K (e.g., x3 −
2).

2.3 Separability

We observed earlier that the size of the Galois group can be dimin-
ished if the minimal polynomial has multiple roots. We now for-
malise the conditions under which this pathology is avoided.

Definition 2.4. Separable Polynomials.
We use the definition from definition 0.8. An arbitrary polynomial is sep-
arable if all its irreducible factors are separable.

定義

We can detect multiple roots purely algebraically using the formal
derivative. Recall proposition 0.8: α is a multiple root of f (x) if and
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only if f (α) = 0 and f ′(α) = 0. Consequently, f (x) has multiple roots
if and only if f (x) and f ′(x) share a common factor, i.e., gcd( f , f ′) ̸=
1.

Proposition 2.1. Criterion for Inseparability.
Let f (x) ∈ F[x] be a monic irreducible polynomial. Then f (x) is in-
separable if and only if f ′(x) = 0. This can only occur if char(F) =

p > 0 and f (x) = g(xp) for some g ∈ F[x].
命題

Proof

Since f (x) is irreducible, its only divisors are units and associates of
f (x). The greatest common divisor ( f , f ′) is non-trivial if and only
if f (x) divides f ′(x). However, deg f ′ < deg f . Thus f (x) | f ′(x)
implies f ′(x) = 0. If char(F) = 0, then f ′(x) = 0 implies f (x)
is constant, contradicting irreducibility. If char(F) = p > 0, then
f ′(x) = ∑ iaixi−1 = 0 implies iai = 0 for all i. Thus ai ̸= 0 only
when p | i. Hence f (x) is a polynomial in xp.

■

This implies that for many fields, inseparability is impossible.

Definition 2.5. Perfect Fields.
A field F is perfect if every irreducible polynomial in F[x] is separa-
ble.

定義

Proposition 2.2. Characterisation of Perfect Fields.
1. Every field of characteristic 0 is perfect.
2. A field of characteristic p > 0 is perfect if and only if the Frobe-

nius endomorphism x 7→ xp is surjective (i.e., every element is a
p-th power).

命題

Proof

Case (i) follows immediately from the previous proposition ( f ′ ̸= 0
for non-constants).
For Case (ii), suppose F is perfect. If α ∈ F is not a p-th power
and m(x) is the minimal polynomial of a root of xp − α, then
m′(x) = 0 since m(x) divides xp − α. By the previous proposi-
tion, m(x) = g(xp), so deg m is a multiple of p. As deg m ≤ p,
we have deg m = p, hence xp − α is irreducible, but inseparable
( f ′ = 0), a contradiction. Conversely, if Frobenius is surjective,
any inseparable irreducible f (x) = g(xp) = ∑ ai(xp)i can be writ-
ten as ∑ bp

i (xi)p = (∑ bixi)p where ai = bp
i . This contradicts the

irreducibility of f (x).
■
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Corollary 2.2. Finite Fields are Perfect. Every finite field Fpn is perfect.

推論

Proof

The Frobenius map x 7→ xp is injective on a field. Since the field is
finite, injectivity implies surjectivity.

■

We lift this concept to extensions.

Definition 2.6. Separable Extensions.
An algebraic extension K/F is separable if the minimal polynomial of
every element α ∈ K is separable over F.

定義

It follows that any algebraic extension of a perfect field (e.g., Q, Fp)
is separable. The standard counterexample is K = Fp(

p
√

T) over
F = Fp(T), where the element p

√
T is inseparable.

Crucially, separability simplifies the structure of finite extensions.

Theorem 2.2. Primitive Element Theorem.
Let K/F be a finite separable extension. Then K is a simple extension;
that is, there exists a primitive element γ ∈ K such that K = F(γ).

定理

Proof

For infinite fields, the proof relies on linear algebra to find a lin-
ear combination γ = α + cβ that generates the subfield F(α, β)

by ensuring c avoids a finite set of ratios between roots. By induc-
tion on the number of generators, the result holds. For finite fields,
the multiplicative group K× is cyclic (Finite Subgroups of Fields). A
generator of this group generates the field.

■

2.4 Normal Extensions and Splitting Fields

The second obstruction to an extension being Galois is the lack of
roots within the field. To remedy this, we construct fields containing
all roots of a given polynomial.

Definition 2.7. Splitting Field.
Let f (x) ∈ F[x]. A field extension K/F is a splitting field for f (x) if:
1. f (x) splits into linear factors in K[x]:

f (x) = c(x− α1) · · · (x− αn), αi ∈ K.
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2. K is generated by these roots: K = F(α1, . . . , αn).
定義

Example 2.5. Splitting Field of x3 − 2. Consider f (x) = x3 − 2 ∈
Q[x]. The roots in C are α = 3

√
2, ωα, and ω2α, where ω = e2πi/3.

The field Q(α) contains only one root. It is not a splitting field.
The splitting field is K = Q(α, ωα, ω2α) = Q( 3

√
2, ω). Note that

[K : Q] = 6.

範例

Q( 3√2, ω)

Q( 3√2) Q(ω)

Q

3 2

2 3

Figure 2.3: The splitting field of
x3 − 2 has degree 6 over Q.

To define the Galois group, we ensure splitting fields are unique up
to isomorphism. This relies on the ability to extend isomorphisms
between base fields to their extensions.

Lemma 2.1. Extension of Isomorphisms.
Let φ : F→ F̃ be a field isomorphism. Let f (x) ∈ F[x] be irreducible
and let f̃ (x) = φ( f (x)) ∈ F̃[x]. Let α be a root of f (x) in some ex-
tension of F, and let α̃ be a root of f̃ (x) in some extension of F̃. Then
there exists a unique isomorphism φ̂ : F(α)→ F̃(α̃) such that:

φ̂|F = φ and φ̂(α) = α̃.

引理

Proof

We have natural isomorphisms induced by polynomial evaluation
and quotients:

F(α) ∼= F[x]/( f (x))
∼=−→ F̃[x]/( f̃ (x)) ∼= F̃(α̃).

The composite map satisfies the requirements.
■

Proposition 2.3. Uniqueness of Splitting Fields.
Let φ : F → F̃ be an isomorphism and let K, K̃ be splitting fields for
f (x) and φ( f (x)) respectively. Then there exists an isomorphism σ :
K → K̃ extending φ. In particular, the splitting field of a polynomial
is unique up to F-isomorphism.

命題

Proof

We proceed by induction on [K : F]. If the degree is 1, K = F
and K̃ = F̃, so σ = φ. Otherwise, let p(x) be an irreducible fac-
tor of f (x) with degree > 1. Let α ∈ K be a root of p(x) and β ∈
K̃ be a root of φ(p(x)). By lemma 2.1, there is an isomorphism φ1 :
F(α) → F̃(β). Now K is a splitting field for f (x) over F(α), and K̃ is
a splitting field over F̃(β). Since [K : F(α)] < [K : F], the induction
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hypothesis provides the required extension σ : K → K̃.
■

Definition 2.8. Normal Extensions.
An algebraic extension K/F is normal if it satisfies either (and thus both)
of the following equivalent conditions:
1. K is the splitting field of some family of polynomials in F[x].
2. For every irreducible polynomial g(x) ∈ F[x], if g(x) has one root

in K, it splits completely into linear factors in K[x].
定義

We combine normality and separability to characterise Galois exten-
sions.

Theorem 2.3. Characterisation of Galois Extensions.
Let K/F be a finite extension. The following are equivalent:
1. K/F is a Galois extension (i.e., |Gal(K/F)| = [K : F]).
2. K is the splitting field of a separable polynomial f (x) ∈ F[x].
3. K/F is both normal and separable.

定理

This theorem allows us to construct Galois extensions easily: simply
take the splitting field of a separable polynomial.

Corollary 2.3. Galois Closure. Every finite separable extension K/F is
contained in a finite Galois extension L/F. The smallest such L is called
the Galois closure of K.

推論

Proof

Let K = F(α) (by the Primitive Element Theorem). Let m(x) be the
minimal polynomial of α over F. Let L be the splitting field of m(x)
containing K. Since K/F is separable, m(x) is separable. Thus L/F
is Galois.

■

L

K = F(α)

F

separable

Galois

Figure 2.4: The Galois closure
L is the splitting field of the
minimal polynomial of α.

Corollary 2.4. Intermediate Galois Extensions. Let K/F be a Galois ex-
tension and L be an intermediate field (F ⊆ L ⊆ K). Then K/L is al-
ways a Galois extension.

推論

Proof

If K is the splitting field of f (x) over F, it is also the splitting field
of f (x) over L. Separability is preserved in subfields. Thus K/L
is Galois. (Note: L/F is not necessarily Galois, as we saw with
Q( 3
√

2)/Q).
■
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The Fundamental Theorem

We now state the crowning result of the theory, establishing a struc-
tural dictionary between the lattice of intermediate fields and the
lattice of subgroups of the Galois group.

Theorem 2.4. The Fundamental Theorem of Galois Theory.
Let K/F be a finite Galois extension with Galois group G = Gal(K/F).
1. There is a one-to-one inclusion-reversing correspondence between

the subgroups of G and the intermediate fields of K/F:

H = {Subgroups of G} ←→ F = {Fields L | F ⊆ L ⊆ K}
H 7−→ KH = {x ∈ K | σ(x) = x∀σ ∈ H}

Gal(K/L)←− L

2. For any subgroup H ≤ G and corresponding field L = KH :

[K : L] = |H| and [L : F] = (G : H),

where (G : H) is the index of H in G.

3. An intermediate field L is a normal extension of F (and thus Galois
over F) if and only if the corresponding subgroup H = Gal(K/L)
is a normal subgroup of G. In this case, there is a canonical isomor-
phism:

Gal(L/F) ∼= G/H.

定理

K

L

F

Galois?

Galois

{1}

H

G

|H|

(G : H)

Correspondence

Figure 2.5: The inclusion-
reversing correspondence
between fields and subgroups.

The isomorphism Gal(L/F) ∼= G/H is given by restriction: for σ ∈ G,
the map σ|L is an automorphism of L (since L is normal, σ(L) = L).
The kernel of the restriction map G → Gal(L/F) is precisely the
subgroup fixing L, which is H.
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2.5 Exercises

1. Splitting Fields over Finite Fields. Let F = Fq be a finite field
with q elements, and let n be an integer coprime to p = char(F).
Let E be the splitting field of xn − 1 over F. Prove that the degree
[E : F] is the smallest positive integer k such that qk ≡ 1 (mod n).

2. Degree Bound. Let f (x) ∈ F[x] be a polynomial of degree n, and
let E be its splitting field over F. Prove that [E : F] divides n!.

3. Cyclotomic Extension of Q. Let E be the splitting field of x8 − 1
over Q. Factor x8 − 1 into cyclotomic factors

and use the Tower Law.
(a) Determine the degree [E : Q].
(b) Determine the Galois group Gal(E/Q).

4. Purely Transcendental Extensions. An extension E/F is purely
transcendental if every element α ∈ E \ F is transcendental over F.

(a) Using the result from Chapter 0 that any element of F(x) not
in F is transcendental over F, prove that F(x)/F is purely
transcendental. Combine proposition 0.1 with Exercise 8

in Chapter 0.(b) Prove that for any extension E/F, there exists a unique inter-
mediate field M such that E/M is purely transcendental and
M/F is algebraic.

5. Eliminating Multiple Roots. Let F be a field of characteristic 0

and f (x) a monic polynomial in F[x]. Let d(x) = gcd( f , f ′). Prove
that g(x) = f (x)/d(x) has the same roots as f (x) but no multiple
roots.

6. Multiplicities in Characteristic p. Let F be a field of characteristic
p > 0 and f (x) ∈ F[x] be irreducible. Prove that all roots of f (x)
have the same multiplicity, and this multiplicity is of the form pn

for some n ≥ 0.

7. Separability in Towers. Let E/F be a separable extension and M
an intermediate field. Prove that both E/M and M/F are separa-
ble.

8. Pure Inseparability. Let F be a field of characteristic p > 0 and
E/F an algebraic extension. Prove that for every α ∈ E, there exists
n ≥ 0 such that αpn

is separable over F.

9. Non-Simple Extension. Let E = Fp(x, y) and F = Fp(xp, yp).

(a) Prove that [E : F] = p2. Show {xiyj | 0 ≤ i, j < p} spans E over
F and use a minimality argument.(b) Prove that E/F is not a simple extension (i.e., E ̸= F(γ) for

any γ). If E = F(γ), compare F(γp) with F and
use inseparability.(c) Show that E/F has infinitely many intermediate fields.
Consider F(xp, yp, x + ay) with a ∈
Fp(t).10. Perfect Fields in Extensions.
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(a) If E/F is algebraic and F is perfect, prove E is perfect.
(b) If E/F is finitely generated and E is perfect, prove F is per-

fect.
(c) Does the conclusion of (b) hold if E/F is algebraic but not

finitely generated?

11. Explicit Normality. Let E = Q(α) where α is a root of x3 + x2 −
2x− 1 = 0.

(a) Verify that α2 − 2 is also a root of the same polynomial.
(b) Prove that E/Q is a normal extension.

12. Compositum of Normal Extensions. Let E/F and K/F be normal
extensions contained in a common larger field. Let EK denote the
compositum, the smallest subfield containing both E and K. Prove
that EK/F is normal.

13. Normality in Towers.

(a) Give an example where E/M and M/F are normal, but E/F
is not normal.

(b) If E/F is normal and M is intermediate, must E/M be nor-
mal? Must M/F be normal?

14. Degree Condition for Normality. Let E/F be a finite algebraic
extension. Prove that E/F is normal if and only if for every irre-
ducible polynomial f (x) ∈ F[x], all irreducible factors of f (x) in
E[x] have the same degree.



3
Galois Groups of Polynomials

We now apply the Fundamental Theorem of Galois Theory (theo-
rem 2.4) to determine the Galois groups of concrete polynomials. The
Galois group of a polynomial f (x) ∈ F[x] is defined as the Galois
group of its splitting field over F. This group acts by permuting the
roots of f (x), providing a representation of the group as a subgroup
of the symmetric group Sn.
The Cubic Equation

Consider a general cubic polynomial f (x) = x3 + a2x2 + a1x + a0 ∈
F[x]. Assuming char(F) ̸= 3, we may eliminate the quadratic term
via the substitution x 7→ x− a2

3 . This yields the depressed cubic:

g(x) = x3 + px + q, p, q ∈ F.

Let K be the splitting field of g(x) over F. Let the roots of g(x) in K
be α1, α2, α3. From the relations between roots and coefficients (Vieta’s
formulae), we have: 

∑ αi = 0

α1α2 + α2α3 + α3α1 = p

α1α2α3 = −q

The Galois group G = Gal(K/F) permutes the set {α1, α2, α3}. Since
K = F(α1, α2, α3), the action is faithful, allowing us to view G as a
subgroup of S3. We have the tower of fields F ⊆ F(α1) ⊆ K. Since
[F(α1) : F] ≤ 3 and [K : F(α1)] ≤ 2, the total degree [K : F] divides
6. To classify G, we investigate specific elements within K that are
invariant under certain permutations.

Definition 3.1. Discriminant of a Cubic.
Let the roots of the cubic be α1, α2, α3. We define the quantity ∆ by:

∆ = (α1 − α2)(α2 − α3)(α3 − α1).

The discriminant of the polynomial is D = ∆2.
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定義

Assume char(F) ̸= 2 so that the sign character takes values ±1 with
±1 ̸= ∓1 in F. The action of S3 on ∆ is determined by the sign of the
permutation. For any σ ∈ G:

σ(∆) = sgn(σ)∆.

Thus, σ(D) = σ(∆2) = (sgn(σ)∆)2 = ∆2 = D. Since the discriminant
is fixed by the entire Galois group, by the Fundamental Theorem
(corollary 2.1), D ∈ F.
However, ∆ itself belongs to F if and only if σ(∆) = ∆ for all σ ∈ G.
This occurs precisely when every σ ∈ G is an even permutation, i.e.,
G ⊆ A3.

Theorem 3.1. Galois Group of a Cubic.
Let f (x) = x3 + px + q ∈ F[x] be irreducible and separable, with
discriminant D. Let K be its splitting field. Assume char(F) ̸= 2, 3.
1. If D is a square in F (i.e.,

√
D ∈ F), then G ∼= A3 ∼= C3.

2. If D is not a square in F, then G ∼= S3.
定理

Proof

Consider the subfield F(
√

D) = F(∆). If D is a square in F, then
∆ ∈ F. Thus for all σ ∈ G, σ(∆) = ∆, implying sgn(σ) = 1.
Hence G ⊆ A3. Since f is irreducible, 3 | [K : F], so 3 | |G|. The
only subgroup of A3 with order divisible by 3 is A3 itself. If D is
not a square, F(∆) is a quadratic extension of F. By the Tower Law,
[K : F] = [K : F(∆)][F(∆) : F] = 2[K : F(∆)]. Since 3 divides [K : F],
it follows that [K : F] is a multiple of 6. Since G ≤ S3, |G| ≤ 6. Thus
|G| = 6 and G ∼= S3.

■

K

F(
√

D)

F

2

3

S3

Case D /∈ F2

Figure 3.1: Field tower for the
splitting field of a cubic when
the discriminant is not a square.

The General Case

We extend these concepts to a monic polynomial f (x) ∈ F[x] of
degree n with no repeated roots. Let K be the splitting field and roots
α1, . . . , αn ∈ K. The Galois group G = Gal(K/F) embeds into Sn.

Definition 3.2. General Discriminant.
The discriminant of f (x) is defined as:

D( f ) = ∏
1≤i<j≤n

(αi − αj)
2.

定義

As in the cubic case, D( f ) ̸= 0 if and only if f has no repeated roots.
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Proposition 3.1. Discriminant and Alternating Group.
The discriminant D( f ) lies in the base field F. Furthermore, the Ga-
lois group G is a subgroup of the alternating group An if and only if
D( f ) is the square of an element in F. Assume char(F) ̸= 2.

G ⊆ An ⇐⇒
√

D ∈ F.

命題

Proof

Let ∆ = ∏i<j(αi − αj). Then D = ∆2. Any permutation σ ∈ Sn

acts on ∆ by σ(∆) = sgn(σ)∆. Consequently, σ(D) = (sgn(σ)∆)2 =

∆2 = D for all σ ∈ G. Since the Galois extension fixes elements if
and only if they are in the base field, D ∈ F. The condition G ⊆ An

is equivalent to sgn(σ) = 1 for all σ ∈ G. This holds if and only if
σ(∆) = ∆ for all σ ∈ G, which by the Fundamental Theorem im-
plies ∆ ∈ F, or equivalently, D is a square in F.

■

To utilise this proposition, we require a method to compute D with-
out knowing the roots explicitly.

Lemma 3.1. Computing the Discriminant.
Let f (x) = ∏n

i=1(x− αi). Then:

D( f ) = (−1)
n(n−1)

2

n

∏
i=1

f ′(αi).

引理

Proof

By the product rule, the derivative is f ′(x) = ∑n
k=1 ∏j ̸=k(x − αj).

Evaluating at a root αi annihilates all terms in the sum except the
k = i term:

f ′(αi) = ∏
j ̸=i

(αi − αj).

The product of these values is:

n

∏
i=1

f ′(αi) =
n

∏
i=1

∏
j ̸=i

(αi − αj).

Each pair of indices {i, j} with i ̸= j appears twice in this product:
once as (αi − αj) and once as (αj − αi). Since (αj − αi) = −(αi − αj),
we group them:

(αi − αj)(αj − αi) = −(αi − αj)
2.

There are (n
2) = n(n−1)

2 such pairs. Factoring out the −1 for each
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pair yields:

n

∏
i=1

f ′(αi) = (−1)
n(n−1)

2 ∏
1≤i<j≤n

(αi − αj)
2 = (−1)

n(n−1)
2 D( f ).

Multiplying by the sign factor again (which is its own inverse) gives
the result.

■

Example 3.1. Discriminant of x3 + px + q. For f (x) = x3 + px + q,
we have f ′(x) = 3x2 + p. The discriminant is:

D = (−1)
3(2)

2

3

∏
i=1

(3α2
i + p) = −

3

∏
i=1

(3α2
i + p).

Using the fact that α3
i = −pαi − q, we can reduce the powers (or use

resultants). A standard calculation yields:

D = −4p3 − 27q2.

範例

Transitivity and Primitivity

The Galois group acts on the set of roots. The structure of the orbits
of this action reveals factorisation properties of the polynomial.

Lemma 3.2. Transitivity of the Galois Group.
Let f (x) ∈ F[x] be a separable polynomial. The Galois group G acts
transitively on the roots of f (x) if and only if f (x) is irreducible over
F.

引理

Proof

Let α, β be distinct roots. If f is irreducible, F(α) ∼= F(β) via an
isomorphism fixing F. By the isomorphism extension property
(lemma 2.1), this extends to an automorphism of the splitting field
K, which is an element of G. Thus the action is transitive. Con-
versely, if the action is transitive, then for any root α, the orbit of α

is the set of all roots. The polynomial P(x) = ∏σ∈G(x − σ(α)) has
coefficients in F (fixed by G) and divides f (x). Since all roots are in
the orbit, P(x) shares all roots with f (x), so f (x) is irreducible.

■

We conclude with a powerful theorem due to Dedekind that allows
us to determine the Galois group of polynomials over Q by inspect-
ing their roots in C.
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Theorem 3.2. Galois Group Sp.
Let p be a prime and let f (x) ∈ Q[x] be an irreducible polynomial of
degree p. If f (x) has exactly two non-real complex roots, then:

Gal(K/Q) ∼= Sp.

定理

Proof

Let G = Gal(K/Q) ⊆ Sp. Since f is irreducible, p divides [K : Q].
By Cauchy’s Theorem for groups, G contains an element of order p.
In Sp, the only elements of order p are p-cycles. Thus G contains a
p-cycle.
Let σ : C → C be complex conjugation. The coefficients of f are
rational (hence real), so f (σ(z)) = f (z). Thus σ permutes the roots
of f . Since there are exactly two non-real roots (which must be a
conjugate pair z, z̄) and p − 2 real roots, σ fixes p − 2 roots and
swaps two. Therefore, the restriction of σ to the splitting field K
corresponds to a transposition in G.
A known result from group theory states that any subgroup of Sp

containing a transposition and a p-cycle must be the entire group
Sp. Consequently, G ∼= Sp.

■

Example 3.2. Application to S5. Consider f (x) = x5 − 6x + 3. By
Eisenstein’s Criterion with p = 3, f is irreducible. Differentiation
gives f ′(x) = 5x4 − 6, which has real roots at ± 4

√
6/5. The polyno-

mial f (x) has local extrema at these points.

f ( 4
√

6/5) ≈ 3− 6(1.04) < 0, f (− 4
√

6/5) ≈ 3 + 6(1.04) > 0.

Since the limits at ±∞ are ±∞, the graph crosses the x-axis three
times. Thus there are 3 real roots and 2 complex roots. Since 5 is
prime, the Galois group is S5.

範例

3.1 Symmetric Polynomials

We have seen that the Galois group of a polynomial encodes the
permutations of its roots. In the general case, where the coefficients
are independent variables, we expect the roots to exhibit no specific
algebraic relations other than those imposed by the coefficients them-
selves. This leads to the study of symmetric polynomials.
Let E be a field and let x1, . . . , xn be independent indeterminates.
We consider the field extension generated by these indeterminates,
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K = E(x1, . . . , xn).

Definition 3.3. Elementary Symmetric Polynomials.
The elementary symmetric polynomials e1, . . . , en ∈ E[x1, . . . , xn] are
defined as:

e1 = ∑
1≤i≤n

xi,

e2 = ∑
1≤i<j≤n

xixj,

...

ek = ∑
1≤i1<···<ik≤n

xi1 · · · xik ,

...

en = x1x2 · · · xn.

定義

Consider the subfield F = E(e1, . . . , en) ⊆ K. We observe that
x1, . . . , xn are the roots of the polynomial:

f (t) =
n

∏
i=1

(t− xi) = tn − e1tn−1 + e2tn−2 − · · ·+ (−1)nen.

The coefficients of f (t) lie in F. Thus, K is the splitting field of f (t)
over F. Since the variables xi are distinct indeterminates, f (t) has no
repeated roots, implying K/F is a Galois extension.
The symmetric group Sn acts naturally on K by permuting the vari-
ables:

σ · f (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)).

Clearly, this action leaves the elementary symmetric polynomials
fixed (i.e., σ(ek) = ek). Thus Sn ⊆ Gal(K/F). Since the Galois group
embeds into the permutation group of the roots, and the roots are
x1, . . . , xn, we have Gal(K/F) ⊆ Sn. Therefore:

Gal(K/F) ∼= Sn.

This setup leads to the Fundamental Theorem of Symmetric Polyno-
mials, which asserts that the elementary symmetric polynomials form
a polynomial basis for all symmetric expressions.

Theorem 3.3. Fundamental Theorem of Symmetric Polynomials.

1. The fixed field of the symmetric group acting on the rational func-
tion field is the field generated by the elementary symmetric poly-
nomials:

E(x1, . . . , xn)
Sn = E(e1, . . . , en).

2. Every symmetric polynomial f ∈ E[x1, . . . , xn] (i.e., fixed by Sn)
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can be written uniquely as a polynomial in the elementary symmet-
ric polynomials:

f (x1, . . . , xn) = g(e1, . . . , en),

for a unique g ∈ E[y1, . . . , yn].

定理

Part (i).

This follows from the Galois correspondence. We established that
Gal(K/F) ∼= Sn. By the Fundamental Theorem of Galois Theory, the
fixed field of the full Galois group is the base field F = E(e1, . . . , en).

証明終

Existence.

We proceed by induction on the number of variables n. The case
n = 1 is trivial since e1 = x1. Assume the result holds for n − 1
variables. Let f (x1, . . . , xn) be a symmetric polynomial. Consider
the evaluation at xn = 0. Let

f̄ = f (x1, . . . , xn−1, 0).

The polynomial f̄ is symmetric in variables x1, . . . , xn−1. By
the inductive hypothesis, there exists a polynomial Q such that
f̄ = Q(ē1, . . . , ēn−1), where ēk are the elementary symmetric polyno-
mials in n− 1 variables. Note that for k < n, ēk = ek(x1, . . . , xn−1, 0).
Define a candidate polynomial g0 = Q(e1, . . . , en−1) in the origi-
nal n variables. Consider the difference h = f − g0. Evaluating at
xn = 0:

h(x1, . . . , xn−1, 0) = f̄ −Q(ē1, . . . , ēn−1) = 0.

Thus xn divides h. Since h is symmetric (being the difference of
symmetric polynomials), xi must divide h for all i = 1, . . . , n.
Since the xi are irreducible in the unique factorisation domain
E[x1, . . . , xn], their product en = x1 · · · xn divides h. So we can write
h = en · k, where k is symmetric. Since deg k = deg f − n < deg f ,
we can proceed by induction on the degree of the polynomial to
express k, and hence f , in terms of ei.

証明終

Uniqueness.

It suffices to show that the elementary symmetric polynomials are
algebraically independent over E. Suppose there is a non-trivial
relation:

∑
(i)

c(i)e
i1
1 · · · e

in
n = 0.

We induct on n. For n = 1, e1 = x1 is an indeterminate, so indepen-
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dence holds. Assume independence for n − 1. Setting xn = 0 in the
relation gives:

∑
(i)

c(i) ē
i1
1 · · · ē

in−1
n−1(0)

in = 0.

Terms with in > 0 vanish. The remaining sum is a relation among
ē1, . . . , ēn−1. By the inductive hypothesis, the coefficients c(i) for
in = 0 must be zero. Thus, every term in the original relation con-
tains a factor of en. We can factor out en and repeat the argument
(induction on total degree) to conclude all coefficients are zero.

証明終

This theorem allows us to determine the Galois group of the "gen-
eral" polynomial equation. This is the equation where the coefficients
are not specific numbers, but independent variables.

Theorem 3.4. The Generic Polynomial.
Let t1, . . . , tn be indeterminates over a field E. Let F = E(t1, . . . , tn).
The polynomial

f (x) = xn − t1xn−1 + t2xn−2 − · · ·+ (−1)ntn ∈ F[x]

is irreducible and separable. Its Galois group over F is the symmetric
group Sn.

定理

E(s1, . . . , sn) E(x1, . . . , xn)

E(t1, . . . , tn) E(e1, . . . , en)

Sn Sn

∼=
ti 7→ ei

∼=
si 7→ xi Figure 3.2: Isomorphism be-

tween the splitting field of the
generic polynomial and the
field of rational functions.

Proof

Let s1, . . . , sn be the roots of f (x) in a splitting field K. Then

f (x) =
n

∏
i=1

(x− si).

Comparing coefficients, we see that tk = ek(s1, . . . , sn), where ek are
the elementary symmetric polynomials evaluated at the roots. Thus
K = E(s1, . . . , sn) and F = E(e1(s), . . . , en(s)).
Consider the field K̃ = E(x1, . . . , xn) of rational functions in inde-
pendent variables xi, and let F̃ = E(e1(x), . . . , en(x)). We defined a
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map φ : F → F̃ by ti 7→ ei(x). Since the ti are independent inde-
terminates, this map is a ring isomorphism, which extends to the
fields of fractions. Similarly, the map ψ : K → K̃ defined by si 7→ xi

is a field isomorphism compatible with φ. Since Gal(K̃/F̃) ∼= Sn (by
the previous discussion), the isomorphism of fields implies:

Gal(K/F) ∼= Gal(K̃/F̃) ∼= Sn.

Since the Galois group Sn acts transitively on the roots si, the poly-
nomial f (x) is irreducible. Since the characteristic is arbitrary but
the si map to distinct indeterminates xi, the roots are distinct, so
f (x) is separable.

■

Remark.

This result indicates that the "general" equation of degree n has
the maximum possible symmetry. Any algebraic relation between
the roots of a specific polynomial (with numeric coefficients) corre-
sponds to a reduction in the Galois group to a proper subgroup of
Sn.

3.2 Examples of Galois Extensions

We now explore concrete examples of Galois extensions. These serve
as archetypes for more complex field theoretic structures.

Cyclotomic Extensions

Let F be a field and n a positive integer. Assume that the character-
istic of F does not divide n (if char(F) = p > 0, then p ∤ n). This
ensures the polynomial xn − 1 is separable, as its derivative nxn−1 is
nonzero at the roots.

Definition 3.4. Cyclotomic Extension.
The splitting field of the polynomial xn− 1 over F is called the n-th cy-
clotomic extension of F, denoted by F(ζn), where ζn is a primitive n-
th root of unity.

定義

We define the n-th cyclotomic polynomial as

Φn(x) = ∏
1≤k≤n

gcd(k,n)=1

(x− ζk
n),

so that F(ζn) is the splitting field of Φn(x) and deg Φn(x) = φ(n)
matches the function Φ(n) = [Q(ζn) : Q] introduced in Chapter 0.
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The cyclic subgroup generated by ζn will be denoted by Cn whenever
a group notation is convenient.
The roots of xn − 1 form a cyclic group of order n under multiplica-
tion. A generator of this group is a primitive root ζn. Thus K = F(ζn)

contains all n roots: {1, ζn, ζ2
n, . . . , ζn−1

n }. Since K is the splitting field
of a separable polynomial, K/F is Galois.
An automorphism σ ∈ Gal(K/F) is completely determined by its
action on the generator ζn. Since σ(ζn) must also be a primitive n-th
root of unity (to preserve the multiplicative order), we must have:

σ(ζn) = ζa
n, where gcd(a, n) = 1.

This defines an injective group homomorphism:

Ψ : Gal(K/F) ↪→ (Z/nZ)×, σ 7→ a (mod n).

Consequently, the Galois group is abelian and has order dividing
φ(n).

Example 3.3. Cyclotomic Extensions of Q. Consider F = Q and
n = pm for a prime p. The primitive n-th roots of unity are roots of
the n-th cyclotomic polynomial:

Φpm(x) =
xpm − 1

xpm−1 − 1
=

p−1

∑
k=0

xkpm−1
.

Substituting x 7→ x + 1 and applying Eisenstein’s Criterion with the
prime p shows that Φpm(x) is irreducible over Q. Thus, the degree
of the extension is:

[Q(ζpm) : Q] = deg Φpm(x) = pm − pm−1 = φ(pm).

Since the size of the Galois group equals the degree of the exten-
sion, the injection Ψ must be an isomorphism:

Gal(Q(ζpm)/Q) ∼= (Z/pmZ)×.

範例

Remark.

It is a standard result in number theory (often proved using
the irreducibility of Φn(x) for composite n) that for any n,
Gal(Q(ζn)/Q) ∼= (Z/nZ)×.

Proposition 3.2. Subfields of Q(ζp).
Let p be an odd prime. The Galois group G = Gal(Q(ζp)/Q) is cyclic
of order p− 1.
1. The unique element of order 2 in G corresponds to complex con-

jugation σ : ζp 7→ ζ−1
p .
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2. The fixed field of the subgroup {1, σ} is the maximal real subfield
K+ = Q(ζp + ζ−1

p ).

3. Since G is cyclic, for every divisor d of p− 1, there is a unique sub-
field of degree d over Q.

命題

Proof

The map σ(ζp) = ζ−1
p = ζ̄p corresponds to the residue −1 in

(Z/pZ)×. Since (Z/pZ)× is cyclic of even order, it contains a
unique element of order 2. Consider the element α = ζp + ζ−1

p =

2 cos(2π/p). This is clearly real and fixed by σ. The polynomial
satisfied by ζp over Q(α) is:

x2 − αx + 1 = (x− ζp)(x− ζ−1
p ).

Thus [Q(ζp) : Q(α)] = 2. By the Fundamental Theorem, the fixed
field of ⟨σ⟩ has index 2 in Q(ζp). Since Q(α) is contained in this
fixed field and has the correct index, they must be equal.

■

Q(ζp)

Q(ζp + ζ−1
p )

Q

p−1
2

2

Cp−1

Figure 3.3: The real subfield of
a cyclotomic extension.

Finite Fields

The theory of finite fields, discussed in Chapter 1, can be elegantly
restated in Galois theoretic terms. Let F = Fq where q = p f . Let K be
an extension of degree n, so K ∼= Fqn . K is the splitting field of xqn − x
over F, hence Galois.

Theorem 3.5. Galois Group of Finite Fields.
The Galois group of a finite extension of finite fields is cyclic. Specif-
ically:

Gal(Fqn /Fq) ∼= Cn.

It is generated by the q-power Frobenius automorphism σq : x 7→ xq.

定理

Proof

Write q = p f . This is the same argument as theorem 1.4, with σq =

σ
f
p and base field Fq.

■

Fqn

Fq

nCn = ⟨σq⟩ σq : x 7→ xq

Figure 3.4: The Galois group of
a finite field extension is cyclic,
generated by Frobenius.
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3.3 Exercises

1. Cubic Discriminant and Roots. Let F be a subfield of R. Let f (x)
be an irreducible cubic polynomial in F[x] with discriminant D( f ).

(a) Prove that if D( f ) > 0, then f (x) has three real roots.
(b) Prove that if D( f ) < 0, then f (x) has exactly one real root.

2. Galois Groups in Characteristic 2. Let F be a field of characteris-
tic 2. Determine the Galois group of f (x) over F for the following
polynomials:

(a) f (x) = x3 + x + 1
(b) f (x) = x3 + x2 + 1

3. Calculating Galois Groups. Determine the Galois group of the
polynomial f (x) over the field F in each of the following cases:

(a) f (x) = x4 − 5 over F = Q, F = Q(
√

5), and F = Q(
√
−5).

(b) f (x) = x4 − 10x2 + 4 over F = Q.

4. Affine Group Embedding. Let p be a prime and a ∈ Q. Sup-
pose xp − a is irreducible in Q[x]. Prove that the Galois group
Gal(K/Q) of the splitting field is isomorphic to a subgroup of the
affine group over Fp, specifically the matrix group:{[

k l
0 1

]∣∣∣∣∣ k ∈ F×p , l ∈ Fp

}
⊆ GL2(Fp).

Adjoin a primitive pth root of unity ζp,
track σ(ζp) and σ( p

√
a), and use that σ

permutes the roots ζ i
p

p
√

a.5. Specific Quartic Extension. Let K = Q(α) where α = 4
√

2(1 + i).

(a) Prove that K/Q is a quartic extension.
(b) Determine the Galois group Gal(K/Q).

6. Inverse Galois Problem (Finite Fields). Prove that every finite Consider Cayley’s theorem embedding
G into Sn and construct a generic
polynomial.

group is the Galois group of some separable polynomial over
some field. Let G act on E(x1, . . . , xn) by permuting

variables; use Fundamental Theorem of
Symmetric Polynomials and the fixed
field.

7. Binomials and Roots of Unity. Let F be a field, c ∈ F, and p a
prime.

(a) If char(F) = p, prove that xp − c is irreducible in F[x] if and
only if it has no root in F.

(b) If char(F) ̸= p and F contains a primitive p-th root of unity,
prove that xp − c is irreducible if and only if it has no root in
F.

8. Kummer Extensions. Let F contain a primitive n-th root of unity.
Let K = F( n

√
a1, . . . , n

√
ak). Describe the structure of the Galois

group Gal(K/F). Show each automorphism sends n
√

ai to
ζ

mi
n n
√

ai and use relations among the ai .
9. Splitting Field of x4 − 2. Let E be the splitting field of x4 − 2 over
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Q.

(a) Find all intermediate fields of the extension E/Q.
(b) Identify which intermediate fields are Galois extensions of Q.
(c) Identify pairs of intermediate fields that are conjugate but not

equal.

10. Modular Splitting Field. Let E be the splitting field of x4 − 2 over
the finite field F5. Determine the Galois group Gal(E/F5) and list
all intermediate fields.

11. Cyclotomic Subfields. For n ∈ {8, 9, 12}:

(a) Determine the structure of the group G = Gal(Q(ζn)/Q).
(b) List all subgroups of G.
(c) Determine the fixed field corresponding to each subgroup.

12. Maximal Real Subfield. Let n ≥ 3. Prove that the intersection
Q(ζn) ∩R is the field Q(ζn + ζ−1

n ). Determine its degree over Q.

13. Gauss Sums. Let p be an odd prime and ζp = e2πi/p. Let ( a
p ) de-

note the Legendre symbol, where ( a
p ) = 1 if a is a square modulo

p, −1 if not, and 0 when a ≡ 0. Define the Gauss sum:

g = ∑
a∈Fp

(
a
p

)
ζa

p.

Prove the following:

(a)

∑
a∈Fp

ζa
p = 0.

(b) gḡ = p. Expand gḡ and use the orthogonality of
additive characters.(c) g2 = (−1)(p−1)/2 p.
Relate g2 to gḡ by evaluating ∑a(

a
p )ζ

ka
p

for k a square or nonsquare.(d) Consequently, Q(ζp) contains a unique quadratic subfield

K = Q(
√
(−1)(p−1)/2 p).



4
Solvability by Radicals

The historical impetus for the development of Galois theory was the
search for a general formula to find the roots of polynomial equa-
tions of degree n ≥ 5. While quadratic, cubic, and quartic equations
admit solutions expressible via arithmetic operations and n-th roots
(radicals), this pattern appeared to break down for higher degrees.
In this chapter, we utilise the Fundamental Theorem of Galois Theory
to translate this problem into group theory. We establish the pre-
cise relationship between the existence of a radical formula and the
algebraic structure of the Galois group.

4.1 Radical Extensions

We begin by formalising the notion of "solving by radicals". This cor-
responds to constructing a field extension by successively adjoining
n-th roots of elements.

Definition 4.1. Radical Extension.
Let F be a field.
1. A simple radical extension is an extension K/F such that K = F(d),

where dn = a for some a ∈ F and integer n ≥ 1. We often write
K = F( n

√
a).

2. An extension K/F is a radical extension (or solvable by radicals)
if there exists a finite tower of fields

F = F0 ⊆ F1 ⊆ · · · ⊆ Fm = K,

where each Fi/Fi−1 is a simple radical extension. This tower is called
a radical tower.

定義

Definition 4.2. Radical Solvability of Equations.
Let f (x) ∈ F[x] be a monic polynomial of degree n ≥ 1. The equa-
tion f (x) = 0 is radically solvable over F if the splitting field K of f (x)
is contained in some extension E which possesses a radical tower over
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F:
F = F0 ⊆ F1 ⊆ · · · ⊆ Fm = E, with K ⊆ E.

定義

Note

The splitting field K need not be a radical extension itself; it suf-
fices that K is contained in one. This accounts for auxiliary roots of
unity required to express solutions (e.g., the cubic formula requires√
−3).

The solvability of an equation corresponds to a specific property of
its Galois group.

Definition 4.3. Solvable Group.
A finite group G is solvable if there exists a chain of subgroups (a sub-
normal series)

{1} = Gk ◁ Gk−1 ◁ · · · ◁ G1 ◁ G0 = G,

such that each quotient group Gi/Gi+1 is abelian.
定義

Remark.

By the classification of finite abelian groups, one can refine this se-
ries such that each factor Gi/Gi+1 is a cyclic group of prime order.
Key properties of solvable groups include:
1. Subgroups and quotient groups of solvable groups are solvable.
2. If N ◁ G, then G is solvable if and only if both N and G/N are

solvable.
3. The symmetric group Sn is solvable for n ≤ 4, but not solvable

for n ≥ 5 (as An is simple and non-abelian for n ≥ 5).

This group-theoretic distinction is the obstruction to solving general
quintic equations.

4.2 Galois’ Criterion

We now state the main equivalence theorem. Throughout this section,
we assume char(F) = 0 to avoid separability issues.

Theorem 4.1. Galois’ Solvability Theorem.
Let F be a field of characteristic 0 and f (x) ∈ F[x]. Let K be the split-
ting field of f over F. The equation f (x) = 0 is radically solvable over
F if and only if Gal(K/F) is a solvable group.

定理

An immediate consequence of this theorem, combined with the
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known structure of the symmetric group, is the Abel–Ruffini theo-
rem.

Theorem 4.2. Unsolvability of the General Quintic.
Let n ≥ 5 and let t1, . . . , tn be independent indeterminates over a field
F of characteristic 0. The general equation

f (x) = xn − t1xn−1 + · · ·+ (−1)ntn = 0

is not radically solvable over the field L = F(t1, . . . , tn).
定理

Proof

By theorem 3.4, the Galois group of the general polynomial over L
is isomorphic to the symmetric group Sn. For n ≥ 5, Sn is not a
solvable group (the alternating group An is the unique non-trivial
normal subgroup and is simple non-abelian). By theorem 4.1, the
equation is not solvable by radicals.

■

4.3 Proof of the Solvability Theorem

To prove theorem 4.1, we require several auxiliary results connecting
cyclic extensions to simple radical extensions. This connection is
mediated by roots of unity.

Kummer Extensions

Lemma 4.1. Kummer Extensions.
Let F be a field containing a primitive p-th root of unity ζp, where p
is a prime. Let K/F be a cyclic extension of degree p. Then K is a rad-
ical extension of the form K = F( p

√
a) for some a ∈ F.

引理

Proof

Let Gal(K/F) = ⟨σ⟩ ∼= Cp. Choose an element c ∈ K \ F. We con-
struct a "Lagrange resolvent" to diagonalise the action of σ. Define
the elements di ∈ K for i = 0, . . . , p− 1 by:

di = c + ζ i
pσ(c) + ζ2i

p σ2(c) + · · ·+ ζ
(p−1)i
p σp−1(c).

Applying σ to di:

σ(di) = σ(c) + ζ i
pσ2(c) + · · ·+ ζ

(p−2)i
p σp−1(c) + ζ

(p−1)i
p c

= ζ−i
p

(
ζ i

pσ(c) + · · ·+ c
)

= ζ−i
p di.
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Thus, σ(dp
i ) = (σ(di))

p = (ζ−i
p di)

p = (ζ
p
p)
−idp

i = dp
i . Since dp

i is
fixed by the generator σ, it is fixed by the entire group, so dp

i = ai ∈
F.
It remains to show that for some i, di /∈ F. We can write the defini-
tion of the di as a matrix-vector product. Let ck = σk(c) for k =

0, . . . , p− 1.
d0

d1
...

dp−1

 =


1 1 1 . . . 1
1 ζp ζ2

p . . . ζ
p−1
p

...
...

...
. . .

...

1 ζ
p−1
p ζ

2(p−1)
p . . . ζ

(p−1)(p−1)
p




c0

c1
...

cp−1

 .

The matrix is a Vandermonde matrix in the variables
1, ζp, ζ2

p, . . . , ζ
p−1
p . Since ζp is a primitive root, these values are

distinct, so the determinant is non-zero. Since c /∈ F, the vector
(c0, . . . , cp−1) is not a multiple of (1, . . . , 1). Specifically, K = F(c),
so not all di can lie in F (otherwise c would be a linear combination
of elements in F). Thus there exists some d = di such that K = F(d)
and dp ∈ F.

■

Preservation of Solvability

We establish that solvability properties are robust under base change
and closure.

KE

K E

F

Figure 4.1: The compositum KE

We use the notation in Figure 4.1.

Definition 4.4. Normal Closure.
Let E/F be a finite extension. The normal closure of E over F is the small-
est normal extension of F containing E (in the sense of definition 2.8).
This is the same field as the Galois Closure.

定義

Lemma 4.2. Galois Group under Base Change.
Let K be the splitting field of a polynomial f (x) ∈ F[x]. Let E/F be
any field extension. Then the splitting field of f (x) over E is KE, and
there is an injective homomorphism:

Gal(KE/E) ↪→ Gal(K/F), σ 7→ σ|K.

引理

Proof

Let K = F(α1, . . . , αn) where αi are the roots of f . Then
KE = E(α1, . . . , αn) is clearly the splitting field over E. For any
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σ ∈ Gal(KE/E), σ permutes the roots αi. Since K is generated by
these roots, σ(K) = K. Thus the restriction σ|K is an automorphism
of K. Since σ fixes E, it fixes F, so σ|K ∈ Gal(K/F). The map is a
homomorphism. If σ|K = id, then σ fixes all αi. Since σ also fixes E,
it fixes the generating set E ∪ {αi} of KE. Thus σ = id.

■

Lemma 4.3. Normal Closure of Radical Towers.
Let E/F be a finite extension. If E is contained in a radical tower over
F, then the normal closure N of E over F is also contained in a radical
tower over F.

引理

Proof

Let F = F0 ⊆ F1 ⊆ · · · ⊆ Fm be a radical tower with E ⊆ Fm.
Let Fi = Fi−1(di) with dni

i ∈ Fi−1. We proceed by induction on
the length of the tower. Let M be the normal closure of Fm over F.
M is generated over F by all conjugates of the elements in Fm. Let
fi(x) be the minimal polynomial of di over F. Let the roots of fi in
M be {di,j}. If Fi−1 is contained in a normal radical tower Mi−1,
then adjoining all conjugates di,j to Mi−1 results in a radical exten-
sion. Specifically, if dni

i = a ∈ Fi−1, then for any σ ∈ Gal(M/F),
(σdi)

ni = σa ∈ σFi−1 ⊆ Mi−1. Thus we can construct a tower for M
by successively adjoining roots of conjugates.

■

M

Fm
N

E

F

Radical
Radical

Figure 4.2: Radical solvability
lifts to the normal closure

See 4.2 for the field diagram used in the proof.

Proof of theorem 4.1

We are now equipped to prove the main theorem.

Sufficiency ( =⇒ )

Suppose f (x) is radically solvable. Let K be the splitting field. By
definition and lemma 4.3, there exists a radical tower F = F0 ⊆ · · · ⊆
Fm such that K ⊆ Fm and Fm/F is Galois (replacing the top field
with its normal closure). We define a refined tower by adjoining
primitive roots of unity. Let N be the least common multiple of the
exponents appearing in the radical tower. Let ζ be a primitive N-th
root of unity. Consider the tower:

F ⊆ F(ζ) = F′0 ⊆ F′1 ⊆ · · · ⊆ F′m = Fm(ζ).

• The extension F(ζ)/F is cyclotomic, hence abelian (and solvable).
• Each step F′i = F′i−1(di) is a radical extension where the base field

F′i−1 contains the requisite roots of unity. By standard Kummer
theory arguments (converse of lemma 4.1), such extensions are
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abelian.
Thus Gal(Fm(ζ)/F) is a solvable group (being an extension of
abelian groups by abelian groups). Since K ⊆ Fm ⊆ Fm(ζ),
Gal(K/F) is a quotient of a subgroup of a solvable group. Thus
Gal(K/F) is solvable.

証明終

K(ζ)

K

F(ζ)

F

Radical

Figure 4.3: Adjoining roots of
unity

Necessity (⇐= )

Suppose G = Gal(K/F) is solvable. Let [K : F] = n. Let ζ be a
primitive n-th root of unity. Consider the extension K(ζ)/F(ζ). By
lemma 4.2, its Galois group H injects into G. Since G is solvable, H
is solvable. Let

{1} = Hk ◁ Hk−1 ◁ · · · ◁ H0 = H

be a composition series where factors are cyclic of prime order. By
the Fundamental Theorem of Galois Theory, this corresponds to a
tower of fields:

F(ζ) = E0 ⊆ E1 ⊆ · · · ⊆ Ek = K(ζ).

Since Hi/Hi+1 is cyclic of prime order p and Ei contains primitive
roots of unity (as p | |H| | n), lemma 4.1 implies that each step
Ei+1/Ei is a simple radical extension. Finally, F(ζ)/F is a radical
extension (adjoining roots of unity). Thus F ⊆ F(ζ) ⊆ · · · ⊆ K(ζ) is
a radical tower containing K.

証明終

4.4 Proofs of the Main Theorems

In this final section, we provide the rigorous proofs for the funda-
mental structural results of Galois theory. While we have utilised
these theorems to explore examples and solvability, their proofs re-
veal the deep interplay between linear algebra and field theory that
underpins the subject.

The Primitive Element Theorem

We first supply the complete proof for the existence of a single gener-
ator for finite separable extensions.

Proof of the Primitive Element Theorem

We prove Primitive Element Theorem from Chapter 2; see theorem 2.2
for the statement. Let K = F(α1, . . . , αn) be a finite separable ex-
tension. If F is a finite field, the multiplicative group K× is cyclic
(Finite Subgroups of Fields). Let γ be a generator; then K = F(γ).
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Assume F is infinite. By induction, it suffices to consider the case
K = F(α, β). Let f (x) and g(x) be the minimal polynomials of α

and β over F, respectively. Let E be a splitting field for f (x)g(x)
containing K. Let α1, . . . , αr be the distinct roots of f (x) in E (with
α1 = α), and let β1, . . . , βs be the distinct roots of g(x) in E (with
β1 = β). The roots are distinct because the extension is separable.
We seek an element of the form γ = α + cβ with c ∈ F. For this γ

to generate K, we essentially need to ensure that the linear combi-
nation distinguishes the roots. Specifically, we require that for any
j ̸= 1, αi + cβ j ̸= α + cβ. Consider the linear equations:

αi + xβ j = α + xβ.

For each pair (i, j) with j ̸= 1, there is at most one solution for x in
E:

x =
αi − α

β− β j
.

Since F is infinite, we can choose c ∈ F distinct from these
finitely many ratios. Let γ = α + cβ. Clearly F(γ) ⊆ F(α, β).
To show the reverse inclusion, notice that β satisfies g(β) = 0,
and also satisfies the polynomial h(x) = f (γ − cx) (since
h(β) = f (α) = 0). Thus β is a common root of g(x) and h(x)
in the ring F(γ)[x]. In E[x], the roots of g(x) are β1, . . . , βs. The
roots of h(x) = f (γ − cx) are values ξ such that γ − cξ = αk

for some k, i.e., ξ = (γ − αk)/c = (α + cβ − αk)/c. If β were a
common root other than β1, then for some j ̸= 1, we would have
β j = (α + cβ − αk)/c, implying α + cβ = αk + cβ j. This contradicts
our choice of c. Therefore, gcd(g(x), h(x)) = x − β. Since the GCD
of two polynomials can be computed in the field containing their
coefficients, x − β ∈ F(γ)[x]. Thus β ∈ F(γ), and consequently
α = γ− cβ ∈ F(γ). Hence F(α, β) = F(γ).

■

Linear Independence of Automorphisms

The engine driving the correspondence between fields and groups is
the linear independence of characters.

Definition 4.5. Linear Independence of Characters.
Let G be a group and K a field. A set of distinct homomorphisms χ1, . . . , χn :
G→ K× is linearly independent over K if the equation

a1χ1(g) + · · ·+ anχn(g) = 0 for all g ∈ G

implies a1 = · · · = an = 0.
定義
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Lemma 4.4. Dedekind’s Lemma.
Distinct field automorphisms are linearly independent. That is, if σ1, . . . , σn

are distinct automorphisms of K, they are linearly independent over
K.

引理

Proof

Suppose there exists a non-trivial relation ∑m
i=1 aiσi(x) = 0 for all

x ∈ K. We choose a relation with the minimal number of non-zero
coefficients m. Clearly m ≥ 2. By dividing by a1, we may assume
a1 = 1. Since σ1 ̸= σm, there exists y ∈ K such that σ1(y) ̸= σm(y).
Substitute yx into the relation:

m

∑
i=1

aiσi(y)σi(x) = 0.

Multiply the original relation by σm(y):

m

∑
i=1

aiσm(y)σi(x) = 0.

Subtracting these gives a new relation:

m−1

∑
i=1

ai(σi(y)− σm(y))σi(x) = 0.

The coefficient for σ1 is σ1(y) − σm(y) ̸= 0. Thus we have found a
non-trivial relation with fewer terms, contradicting minimality.

■

This leads to the crucial inequality relating the degree of an extension
to the size of the automorphism group. This result is often referred to
as Artin’s Lemma.

Theorem 4.3. Artin’s Theorem on Invariant Fields.
Let G be a finite subgroup of Aut(K). Let F = KG be the fixed field.
Then:

[K : F] = |G|.

定理

Let n = |G| and G = {σ1 = id, . . . , σn}.
Proof that [K : F] ≤ n.

Suppose for contradiction that [K : F] > n. Let u1, . . . , un+1 be
linearly independent elements of K over F. Consider the system of
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linear equations in unknowns xj:

n+1

∑
j=1

σi(uj)xj = 0, for i = 1, . . . , n.

This is a homogeneous system of n equations in n + 1 vari-
ables with coefficients in K. It must have a non-trivial solution
(c1, . . . , cn+1) in K. Let us choose a solution with the minimal num-
ber of non-zero entries. By reordering, let c1 ̸= 0. Normalising, we
may set c1 = 1. The equation for σ1 = id is ∑ ujcj = 0. Since the uj

are independent over F, not all cj can lie in F. Suppose ck /∈ F. Since
ck /∈ KG, there exists σr ∈ G such that σr(ck) ̸= ck. Applying σr to
the system:

∑
j

σr(σi(uj))σr(cj) = 0.

As σi ranges over G, so does σrσi. Thus (σr(c1), . . . , σr(cn+1)) is
also a solution to the system (permuted). Subtracting this from the
original solution:

n+1

∑
j=1

σi(uj)(cj − σr(cj)) = 0.

The first component is 1 − σr(1) = 0. The k-th component is ck −
σr(ck) ̸= 0. Thus we have constructed a non-trivial solution with
strictly fewer non-zero entries, a contradiction. Hence [K : F] ≤ |G|.

証明終

Proof that [K : F] ≥ n.

Let G = Gal(K/F). We have already established in proposition 0.6
that |G| ≤ [K : F] for any finite extension. However, proving [K :
F] ≥ |G| is immediate from the Primitive Element Theorem if K/F
is separable. Let K = F(γ).
Let

h(x) = ∏
σ∈G

(x− σ(γ)).

The coefficients of h are fixed by G, so h ∈ F[x]. Since γ is a root,
the minimal polynomial m(x) divides h(x). Thus [K : F] = deg m ≤
deg h = |G|.
Combining with the first part, if F = KG, we must have [K : F] =

|G|.
証明終

Corollary 4.1. Galois Extensions are Normal and Separable. If F = KG

for a finite group G, then K is a separable normal extension of F.
推論
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Proof

For any β ∈ K, let O = {σ(β) | σ ∈ G} = {β1, . . . , βr} be its orbit.
The polynomial g(x) = ∏r

i=1(x − βi) is separable and invariant
under G, so g(x) ∈ F[x]. Since β is a root, the minimal polynomial
of β divides g(x), hence splits completely in K with distinct roots.
Thus the extension is normal and separable.

■

Proof of the Fundamental Theorem

We now assemble these results to prove theorem 2.4. Let K/F be a
Galois extension with group G.

Proof of the Fundamental Theorem of Galois Theory

The Correspondence: Let H ≤ G be a subgroup. Let L = KH . By
theorem 4.3, [K : L] = |H|. Conversely, let L be an intermediate
field. Let H = Gal(K/L). By definition, L ⊆ KH . Since K/F is
Galois, K is the splitting field of a separable polynomial over F,
and thus also over L. Hence K/L is Galois. By the equality of
degree and group order: [K : L] = |H|. Also [K : KH ] = |H| by
Artin’s Theorem. Thus [K : L] = [K : KH ], implying L = KH .
Therefore, the maps H 7→ KH and L 7→ Gal(K/L) are inverses.

Degrees: We have [K : L] = |H|. By the Tower Law and Lagrange’s
Theorem:

[L : F] =
[K : F]
[K : L]

=
|G|
|H| = (G : H).

Conjugation: Let H ↔ L. The field corresponding to the conjugate
subgroup σHσ−1 is:

KσHσ−1
= {x ∈ K | σhσ−1(x) = x ∀h ∈ H}.

Let y = σ−1(x). The condition becomes h(y) = y, i.e., y ∈ L.
Thus x ∈ σ(L). So σHσ−1 ↔ σ(L).

Normality: L/F is normal ⇐⇒ σ(L) = L for all σ ∈ G (since
any embedding into an algebraic closure corresponds to restric-
tion of an automorphism of K). By the conjugation relation,
σ(L) = L ⇐⇒ σHσ−1 = H. Thus L/F is normal ⇐⇒ H ◁ G. In
this case, the map G → Gal(L/F) given by restriction σ 7→ σ|L is
a surjective homomorphism with kernel H. By the First Isomor-
phism Theorem:

Gal(L/F) ∼= G/H.

■
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4.5 Exercises

1. Explicit Radicals. Express the following trigonometric values in
terms of radicals:

(a) cos 20◦ (Note: While not constructible, it is radically solvable).
(b) cos 360◦

7 .

2. Cardano’s Formula. Let F be a field of characteristic 0 and f (x) =
x3 − t1x2 + t2x− t3 ∈ F(t1, t2, t3)[x]. Derive the explicit formula for
the roots x1, x2, x3 in terms of the coefficients and the cube roots of
unity ω. Define p = t2 − t2

1/3 and q = t1t2/3− 2t3
1/27− t3. Let

α =
3

√
− q

2
+

√
q2

4
+

p3

27
, β =

3

√
− q

2
−
√

q2

4
+

p3

27
.

Verify that x1 = t1/3 + α + β is a root, provided αβ = −p/3.

3. Solving Equations. Find all complex roots of the following poly-
nomials:

(a) x3 − 2x + 4 = 0
(b) x3 − 15x + 4 = 0
(c) x4 − 2x3 − 8x− 3 = 0

4. Inseparability and Solvability. Let F = Fp(t). Consider the
equation xp − x− t = 0.

(a) Prove that the Galois group of the splitting field is cyclic
(hence solvable).

(b) Prove that the equation is not solvable by radicals over F.
(c) Explain why this does not contradict Galois’ Solvability Theo-

rem (check the characteristic).

5. Invariant Fields of Rational Functions. Let E = C(t). Let σ, τ ∈
Aut(E) be defined by σ(t) = ωt (where ω = e2πi/3) and τ(t) =

t−1.

(a) Prove that the subgroup H = ⟨σ, τ⟩ has order 6 and is iso-
morphic to S3.

(b) Determine the fixed field EH . Show it is C(t3 + t−3).

6. Artin-Schreier Invariants. Let F be a field of characteristic p. Let
σ ∈ Aut(F(x)) be defined by σ(x) = x + 1. Let H = ⟨σ⟩.

(a) Prove |H| = p.
(b) Determine the fixed field F(x)H .

7. Artin-Schreier Galois Groups. Let F be a field of characteristic
p and a ∈ F. Suppose f (x) = xp − x − a is irreducible. Let α be
a root. Prove that F(α)/F is a Galois extension and determine its
Galois group.
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8. Galois Translation Theorem. Let L and M be subfields of a larger
field E. Suppose L is a finite Galois extension of L ∩ M. Prove
that LM is a Galois extension of M and that there is a natural
isomorphism:

Gal(LM/M) ∼= Gal(L/L ∩M).

9. Normal Closures and Intersections. Let E/F be a finite Galois
extension with intermediate fields N, M such that F ⊆ M ⊆ N ⊆
E. Suppose N is the normal closure of M over F. Prove that:

Gal(E/N) =
⋂

σ∈Gal(E/F)

σGal(E/M)σ−1.

10. Prime Degree Extensions. Let E/F be a finite Galois extension.
Suppose that for every intermediate field K with F ⊊ K ⊆ E, the
degree [K : F] is the same. Prove that [E : F] must be a prime
number.

11. Multiquadratic Extensions.

(a) Prove that K = Q(
√

2,
√

3,
√

5) is a Galois extension of Q and
determine its Galois group.

(b) Find the minimal polynomial of α =
√

6 +
√

10 +
√

15 over Q.
(c) Prove that

√
6 ∈ Q(α).

(d) Find the minimal polynomial of
√

2 +
√

3 over the field Q(α).



5
R-Modules

We have previously explored fields and vector spaces, where scalars
can be inverted. We now generalise this structure to rings, where
scalars need not be invertible. The resulting object, an R-module, is
the fundamental tool for algebraic number theory and homological
algebra.

5.1 Definitions and Examples

Definition 5.1. R-Module.
Let R be a ring. An R-module M is a set equipped with two operations:

+M : M×M→ M, ·M : R×M→ M,

satisfying the following axioms for all r, r′ ∈ R and m, m′ ∈ M:
1. (M,+M) is an abelian group with identity 0M.

2. Distributivity over vector addition: r · (m + m′) = rm + rm′.

3. Distributivity over scalar addition: (r + r′) ·m = rm + r′m.

4. Associativity of scalars: (rr′) ·m = r · (r′m).

5. Identity: 1R ·m = m.
定義

The structure of a module can be reinterpreted through the lens of
ring homomorphisms.

Remark.

For an abelian group M, let End(M) denote the set of group en-
domorphisms (homomorphisms from M to M). Under point-
wise addition and composition, End(M) forms a (generally non-
commutative) ring. The scalar multiplication on an R-module M is
equivalent to a ring homomorphism ϕ : R → End(M), defined by
ϕ(r)(m) = r · m. The axioms ensure that this map respects the ring
structure of R.
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Example 5.1. Basic Module Structures.
· The ring R is naturally an R-module over itself, using its internal

addition and multiplication.
· Any ideal I ⊆ R is an R-module under the operations restricted

from R.
· If R is a field, the axioms of an R-module are identical to those

of a vector space. Thus, R-modules over a field are simply vector
spaces.

範例

Example 5.2. Abelian Groups. Let R = Z. Any abelian group M
admits a unique Z-module structure. The axiom 1 · m = m com-
bined with additivity forces the definition:

n ·m =



m + · · ·+ m︸ ︷︷ ︸
n times

if n > 0,

0M if n = 0,

(−m) + · · ·+ (−m)︸ ︷︷ ︸
|n| times

if n < 0.

Thus, the study of abelian groups is equivalent to the study of
Z-modules.

範例

Example 5.3. Change of Rings. Let f : R → S be a ring homomor-
phism.
· The ring S becomes an R-module via the action r · s = f (r)s.

Here, the scalar multiplication uses the map f to interpret ele-
ments of R as elements of S.

· More generally, if M is an S-module, it inherits an R-module
structure via restriction of scalars:

r ·m = f (r) ·S m.

· In particular, if I is an ideal of R, the quotient map π : R → R/I
allows any R/I-module to be viewed as an R-module. In this
case, I acts trivially: for any r ∈ I, r · m = 0. We say I annihilates
M.

· Conversely, if M is an R-module annihilated by I, it admits a
well-defined R/I-module structure defined by (r + I) · m = rm.
This is well-defined because if r + I = r′ + I, then r − r′ ∈ I, so
(r− r′)m = 0, implying rm = r′m.

範例
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Example 5.4. Function Modules. Let S be a set and let MS be the
set of all functions f : S → R. We define addition and scalar
multiplication pointwise:

( f + g)(s) = f (s) + g(s), (r · f )(s) = r · f (s).

This makes MS into an R-module. Consider the subset of functions
with finite support:

FS = { f ∈ MS | f (s) = 0 for all but finitely many s ∈ S}.

This subset is closed under the module operations and forms the
free R-module on the set S.

範例

5.2 Submodules and Quotients

Just as we analyse groups via subgroups and rings via ideals, we
investigate modules through submodules.

Definition 5.2. Submodule.
Let M be an R-module. A subset N ⊆ M is an R-submodule if it is
closed under addition and scalar multiplication:
1. For all n, n′ ∈ N, n + n′ ∈ N (i.e., N is a subgroup of M).

2. For all r ∈ R and n ∈ N, rn ∈ N.
定義

Note that the ideals of R are precisely the R-submodules of R when
viewed as a module over itself.

Definition 5.3. Generated Submodules.
Let S be a subset of an R-module M. The submodule generated by S
is the set of all finite linear combinations of elements of S with coef-
ficients in R:

⟨S⟩ =
{

k

∑
i=1

risi

∣∣∣∣∣ ri ∈ R, si ∈ S, k ∈N

}
.

This is the smallest submodule of M containing S. If there exists a fi-
nite set S such that ⟨S⟩ = M, we say M is a finitely generated R-module.

定義

Quotient Modules

Given a submodule N ⊆ M, we can construct a quotient structure.



70 gudfit

Definition 5.4. Quotient Module.
Let N be a submodule of M. We define a congruence relation on M by:

m ≡ m′ (mod N) ⇐⇒ m−m′ ∈ N.

The equivalence classes are the cosets m+ N. The set of these classes,
denoted M/N, forms an R-module under the operations:

(m + N) + (m′ + N) = (m + m′) + N,

r · (m + N) = (rm) + N.

This is called the quotient of M by N.
定義

The well-definedness of scalar multiplication follows from the sub-
module property: if m− m′ ∈ N, then r(m− m′) = rm− rm′ ∈ N,
so rm ≡ rm′ (mod N). The natural map π : M → M/N given by
m 7→ m + N is a module homomorphism.

Direct Sums

Definition 5.5. Direct Sum.
Let M1 and M2 be R-modules. The direct sum M1⊕M2 is the set of
ordered pairs (m1, m2) with component-wise operations:

(m1, m2) + (m′1, m′2) = (m1 + m′1, m2 + m′2),

r · (m1, m2) = (rm1, rm2).

定義

Example 5.5. Quotients by Ideals. Let M be an R-module and I an
ideal of R. We can form the submodule IM generated by products
of scalars in I and vectors in M:

IM =

{
k

∑
j=1

ijmj

∣∣∣∣∣ ij ∈ I, mj ∈ M

}
.

The quotient M/IM is an R-module. Since every element of I an-
nihilates this quotient (mapping elements to the zero coset), M/IM
naturally carries the structure of an R/I-module. The scalar multi-
plication is defined by:

(r + I) · (m + IM) = rm + IM.

To verify this is well-defined, suppose r − r′ ∈ I and m − m′ ∈ IM.
Then:

rm− r′m′ = r(m−m′) + (r− r′)m′.



fields galios modules 71

The first term is in IM because m − m′ ∈ IM and IM is a submod-
ule. The second term is in IM because r− r′ ∈ I implies (r− r′)m′ ∈
IM. Thus the difference lies in IM.

範例

5.3 Homomorphisms and Free Modules

Having established the structural definitions of submodules and
quotients, we turn our attention to the maps between modules that
preserve this structure.

Module Homomorphisms

Definition 5.6. Module Homomorphism.
Let M and N be R-modules. A map f : M→ N is an R-module ho-
momorphism (or simply an R-linear map) if it satisfies:
1. Additivity: f (m + m′) = f (m) + f (m′) for all m, m′ ∈ M.

2. R-linearity: f (rm) = r f (m) for all r ∈ R, m ∈ M.
The set of all such homomorphisms is denoted HomR(M, N).

定義

Remark.

It is crucial to distinguish between ring homomorphisms and mod-
ule homomorphisms. A ring homomorphism ϕ : R → R must
satisfy multiplicative splitting ϕ(rr′) = ϕ(r)ϕ(r′), whereas an
R-module homomorphism f : R → R treats the first scalar as a
coefficient: f (rr′) = r f (r′).

The structural kernels and images behave exactly as they do in group
theory.

Definition 5.7. Kernel and Image.
Let f : M→ N be an R-module homomorphism.
· The kernel of f is ker f = {m ∈ M | f (m) = 0}.

· The image of f is im f = {n ∈ N | ∃m ∈ M, f (m) = n}.
定義

It is a standard verification that ker f is a submodule of M and im f
is a submodule of N. Consequently, we may construct the quotient
M/ ker f .

Proposition 5.1. Universal Property of the Quotient.
Let N be a submodule of M and let π : M → M/N be the canoni-
cal projection. Let f : M→ M′ be an R-module homomorphism such
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that N ⊆ ker f . Then there exists a unique homomorphism f̄ : M/N →
M′ such that f̄ ◦ π = f .

命題

Proof

The proof is identical to that for quotient rings. We define
f̄ (m + N) = f (m). This is well-defined because if m − m′ ∈ N,
then f (m − m′) = 0, so f (m) = f (m′). Linearity follows from the
linearity of f .

■

M

M/N

M′

π

f

f̄

Figure 5.1: The universal prop-
erty of the quotient module.

Free Modules

In vector spaces, the existence of a basis is guaranteed (assuming the
Axiom of Choice), allowing any vector space to be non-canonically
identified with a direct sum of copies of the field. For modules over
arbitrary rings, bases need not exist. Modules that do admit a basis
are termed free.

Definition 5.8. Basis and Free Modules.
Let M be an R-module. A subset S ⊆ M is a basis if:
1. S generates M: Every m ∈ M can be written as a finite sum m =

∑ risi with ri ∈ R, si ∈ S.

2. S is linearly independent: If ∑ risi = 0 for distinct si ∈ S, then ri =

0 for all i.
An R-module possessing a basis is called free. The cardinality of the
basis is the rank of M.

定義

Remark.

If R is a field, every module is free. For general rings, this is false.
For example, the Z-module Z/nZ (for n > 1) has no basis. Any
single element x satisfies nx = 0, violating linear independence.

Example 5.6. Standard Free Modules.
· The ring R is a free module of rank 1 with basis {1R}. Indeed,

any unit u ∈ R× constitutes a basis.

· Recall the module FS of functions S → R with finite support in-
troduced in the previous section. For each s ∈ S, define the char-
acteristic function es ∈ FS by:

es(t) = δst =

1 if t = s,

0 if t ̸= s.

The set {es}s∈S forms a basis for FS. Any f ∈ FS is non-zero at
finitely many points s1, . . . , sn. Setting ri = f (si), we have f =
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∑ riesi , proving generation. For independence, if ∑ riesi = 0 (the
zero function), evaluating at sj yields rj = 0. Thus FS is the free
module on the set S.

範例

Free modules behave well under direct sums.

Proposition 5.2. Direct Sums of Free Modules.
Let F1 and F2 be free R-modules with bases S1 and S2 respectively. Then
F1 ⊕ F2 is free with basis

S = {(s, 0) | s ∈ S1} ∪ {(0, s′) | s′ ∈ S2}.

If F1, F2 have finite ranks n1, n2, then F1 ⊕ F2 has rank n1 + n2.
命題

Proof

Let (m, m′) ∈ F1 ⊕ F2. Since S1 spans F1 and S2 spans F2, we can
write m = ∑ risi and m′ = ∑ r′js

′
j. Then

(m, m′) = ∑ ri(si, 0) + ∑ r′j(0, s′j).

Thus S spans. For independence, suppose ∑ ri(si, 0) + ∑ r′j(0, s′j) =

(0, 0). This implies ∑ risi = 0 in F1 and ∑ r′js
′
j = 0 in F2. By the lin-

ear independence of S1 and S2, all coefficients vanish.
■

The defining characteristic of free modules is their universal mapping
property: to define a map out of a free module, it suffices to specify
the images of the basis elements arbitrarily.

Proposition 5.3. Universal Property of Free Modules.
Let FS be the free R-module on a set S. For any R-module M and any
set map f : S→ M, there exists a unique R-module homomorphism
ϕ f : FS → M such that ϕ f (es) = f (s) for all s ∈ S.

命題

Proof

We construct ϕ f by extending linearly: for g = ∑s∈S rses ∈ FS

(where the sum is finite), define

ϕ f (g) = ∑
s∈S

rs f (s).

This map is clearly R-linear. Uniqueness follows because any ho-
momorphism is determined by its action on a basis: ϕ(∑ rses) =

∑ rsϕ(es) = ∑ rs f (s).
■
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Corollary 5.1. Classification by Rank. Let M be a free R-module with
basis T. If S is a set with the same cardinality as T, then M ∼= FS. Con-
sequently, any two free modules of the same rank are isomorphic.

推論

Proof

Let g : T → S be a bijection. Using the universal property, the map
T → FS sending t 7→ eg(t) extends to a homomorphism ϕ : M→ FS.
Similarly, es 7→ g−1(s) induces an inverse homomorphism.

■

Generators and Relations

While not all modules are free, every module is a quotient of a
free module. Let M be an R-module generated by a finite set S =

{s1, . . . , sn}. The universal property yields a surjective homomor-
phism:

ψ : FS → M, ψ

(
n

∑
i=1

miesi

)
=

n

∑
i=1

misi.

The kernel K = ker ψ consists of the linear dependencies among the
generators. Elements of K are called relations.

n

∑
i=1

miesi ∈ K ⇐⇒
n

∑
i=1

misi = 0 in M.

Since K is a submodule of a free module (which, over general rings,
is not necessarily free, though it is for PIDs), we can often find a
generating set T = {t1, . . . , tm} for K. This gives a surjection FT → K.
Composing with the inclusion K ↪→ FS, we obtain a sequence of
maps:

FT
ϕ−→ FS

ψ−→ M→ 0.

Here im ϕ = K = ker ψ. By the First Isomorphism Theorem, M ∼=
FS/ im ϕ. This description is called a presentation of M. If S and T
are both finite, M is finitely presented.

Definition 5.9. Cokernel.
Let f : A → B be an R-module homomorphism. The cokernel of f
is the quotient module

coker f = B/ im f .

定義

Definition 5.10. Presentation Matrix.
Let M be finitely presented with generators s1, . . . , sn and relations t1, . . . , tm.
The map ϕ : Rm → Rn is determined by the images of the basis vec-
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tors of Rm. Writing ϕ(etj) = ∑n
i=1 aijesi , we form the n×m matrix A =

(aij). The module M is isomorphic to the cokernel of the linear map
defined by A:

M ∼= Rn/ARm.

The matrix A is the presentation matrix.
定義

Example 5.7. Simple Presentations.
· Let R = Z and M = Z/nZ. M is generated by 1, so FS ∼= Z. The

kernel is the ideal nZ, generated by n. The presentation matrix is
the 1× 1 matrix (n).

· Let R = Z[
√
−5]. Consider the ideal I = (2, 1 +

√
−5). We treat I

as an R-module generated by s1 = 2 and s2 = 1 +
√
−5. We seek

the relations r1s1 + r2s2 = 0. Observe that:

(1 +
√
−5)s1 − 2s2 = 2(1 +

√
−5)− 2(1 +

√
−5) = 0.

3s1− (1−
√
−5)s2 = 6− (1−

√
−5)(1+

√
−5) = 6− (1− (−5)) = 0.

It can be shown that these two relations generate the kernel of
the map R2 → I. Thus, we define ϕ : R2 → R2 sending the
basis of the relation module to these linear combinations. The
presentation matrix is:

A =

[
1 +
√
−5 3

−2 −1 +
√
−5

]
.

The columns correspond to the relations, and the rows to the
generators s1, s2.

範例

The presentation matrix is not unique. If A presents M, then for any
invertible matrices B ∈ GLn(R) and C ∈ GLm(R), the matrix BAC
also presents M. This corresponds to changing the basis of the free
modules FS and FT .

5.4 Exercises

1. Ideals as Submodules. Let R be a ring, viewed as a left R-module
over itself.

(a) Show that any ideal I ⊆ R is an R-submodule of R.
(b) Conversely, show that any R-submodule N ⊆ R is an ideal of

R.
(c) Conclude that the ideals of R are exactly the submodules of R

viewed as an R-module.
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2. Function Modules and Free Modules. Let S be a set and R a ring.
Let FS be the set of functions f : S → R with finite support (i.e.,
f (s) ̸= 0 for only finitely many s).

(a) Prove that FS is an R-module under pointwise operations.
(b) For each s ∈ S, define es ∈ FS by es(t) = 1 if t = s and 0

otherwise. Show that every f ∈ FS can be uniquely written as
a finite linear combination ∑ rses.

(c) Deduce that {es}s∈S is a basis for FS, making it a free R-
module.

3. Generating Modules. Let M be an R-module and S ⊆ M. Prove
the equivalence of the following statements:

(a) Every element of M is an R-linear combination of elements of
S.

(b) For any R-module N and homomorphisms f , g : M → N, if
f |S = g|S then f = g.

(c) For any R-module L and homomorphism h : L → M, if
S ⊆ im h, then h is surjective.

4. Finite Generation. An R-module M is finitely generated if it is
generated by a finite set. Prove that if M is finitely generated, then
for any chain of submodules N1 ⊆ N2 ⊆ . . . such that

⋃
Ni = M,

there exists k such that Nk = M.

5. Z-Modules and Abelian Groups.

(a) Prove that every abelian group A admits a unique structure
of a Z-module.

(b) Prove that for abelian groups A, B, HomZ(A, B) is exactly the
set of group homomorphisms.

(c) Explain why the axiom 1 · m = m forces the definition of
integer multiplication.

6. Products and Coproducts. Let {Mi}i∈I be a family of R-modules.
Let P = ∏i∈I Mi (direct product) and S =

⊕
i∈I Mi (direct sum).

(a) Prove the universal property of the product: A homomor-
phism f : L → P corresponds uniquely to a family of homo-
morphisms fi : L→ Mi.

(b) Prove the universal property of the direct sum: A homo-
morphism g : S → N corresponds uniquely to a family of
homomorphisms gi : Mi → N.

7. Submodules of Z2. View Z2 as a Z-module. For each subset,
determine if it is a submodule. If so, find a finite generating set.

(a) N1 = {(n, 2n) | n ∈ Z}
(b) N2 = {(2a, 3b) | a, b ∈ Z}
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(c) N3 = {(a, b) ∈ Z2 | a + b is even}
(d) N4 = {(a, b) ∈ Z2 | a ≡ b (mod 3)}

8. Quotients of Z2. Let M = Z2 and N be the submodule generated
by (2, 0) and (1, 3).

(a) Describe the quotient module M/N as an abelian group (e.g.,
as a direct sum of cyclic groups).

(b) Find the annihilator ideal AnnZ(M/N) = {r ∈ Z | r ·
(M/N) = 0}.

9. Hom-sets. Let M, N be R-modules.

(a) Show that HomR(M, N) is an abelian group under pointwise
addition.

(b) If R is commutative, show HomR(M, N) is an R-module via
(r · f )(m) = r · f (m).

(c) Prove there is an isomorphism of R-modules HomR(R, M) ∼=
M given by f 7→ f (1).

10. Isomorphism Theorems. Let f : M → N be an R-module homo-
morphism.

(a) Prove ker f is a submodule of M and im f is a submodule of
N.

(b) Construct an isomorphism M/ ker f ∼= im f .
(c) Show f is injective ⇐⇒ ker f = 0 and surjective ⇐⇒

im f = N.

11. Homomorphisms of Cyclic Modules.

(a) Show that any group homomorphism f : Z/nZ → Z/mZ is
determined by f (1).

(b) Prove that n f (1) = 0 in Z/mZ is a necessary and sufficient
condition.

(c) Deduce that HomZ(Z/nZ, Z/mZ) ∼= Z/ gcd(n, m)Z.

12. Non-Free Modules. Consider the Z-module M = Z/nZ with
n > 1.

(a) Prove that M cannot have a basis. (Show any element is lin-
early dependent).

(b) Conclude M is finitely generated but not free.
(c) Give another example of a finitely generated non-free Z-

module.

13. Presentation of Modules. Let M be generated by m1, . . . , mn.

(a) Define ψ : Rn → M by (r1, . . . , rn) 7→ ∑ rimi. Show ψ is
surjective.

(b) Let K = ker ψ be the relation module. Prove M ∼= Rn/K.



6
Noetherian Rings and Modules

We now introduce the Noetherian condition, a finiteness property
that tames the complexity of rings and modules. This concept gen-
eralises the property of Principal Ideal Domains where every ideal is
generated by a single element, to rings where ideals are generated by
finitely many elements. This finiteness is the cornerstone of algebraic
geometry and algebraic number theory.

6.1 Definitions and Basic Properties

The Noetherian property can be stated in two equivalent ways: as a
condition on chains of submodules (the ascending chain condition),
or as a condition on generators.

Definition 6.1. Noetherian Modules and Rings.
Let R be a ring.
1. An R-module M is Noetherian if every increasing sequence of sub-

modules stabilizes. That is, for any chain

M1 ⊆ M2 ⊆ M3 ⊆ . . .

of submodules of M, there exists an integer N such that Mn = MN

for all n ≥ N.

2. The ring R is Noetherian if it is Noetherian as a module over itself.
Since the submodules of R are its ideals, this means every ascend-
ing chain of ideals I1 ⊆ I2 ⊆ . . . stabilizes.

定義

The equivalence between the chain condition and finite generation is
fundamental.

Theorem 6.1. Finite Generation Criterion.
An R-module M is Noetherian if and only if every submodule of M
is finitely generated.

定理
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( =⇒ )

Suppose M is Noetherian. Let N be a submodule of M. We con-
struct a generating set for N inductively. If N = {0}, it is generated
by the empty set. Otherwise, choose n1 ∈ N. Let N1 = ⟨n1⟩.
If N1 = N, we are done. If not, choose n2 ∈ N \ N1 and set
N2 = ⟨n1, n2⟩. Iterating this, if N is not finitely generated, we
can choose a sequence n1, n2, . . . such that nk+1 ∈ N \ Nk where
Nk = ⟨n1, . . . , nk⟩. This yields a strictly ascending chain of submod-
ules:

N1 ⊊ N2 ⊊ N3 ⊊ . . .

This contradicts the Noetherian hypothesis. Thus the process must
terminate, implying N = Nk for some k, so N is finitely generated.

証明終

(⇐= )

Suppose every submodule of M is finitely generated. Let
M1 ⊆ M2 ⊆ . . . be an ascending chain. Let N =

⋃∞
i=1 Mi. It is

easily verified that the union of an ascending chain of submodules
is itself a submodule. By assumption, N is finitely generated, say
by x1, . . . , xk. Since each xj ∈ N, there exists an index ij such that
xj ∈ Mij . Let n = max{i1, . . . , ik}. Then all generators x1, . . . , xk lie
in Mn, so N ⊆ Mn. Since Mn ⊆ Mn+1 ⊆ · · · ⊆ N, we must have
Mn = Mn+1 = · · · = N. The chain stabilizes.

証明終

Corollary 6.1. PIDs are Noetherian. Every Principal Ideal Domain (PID)
is a Noetherian ring.

推論

Proof

In a PID, every ideal is generated by a single element, hence finitely
generated.

■

Example 6.1. Examples of Noetherian and Non-Noetherian Rings.
· Any field F is Noetherian (its only ideals are (0) and (1)).

· The ring of integers Z is Noetherian (it is a PID).

· The polynomial ring in infinitely many variables R =

C[x1, x2, . . . ] is not Noetherian. The chain of ideals

(x1) ⊊ (x1, x2) ⊊ (x1, x2, x3) ⊊ . . .

never stabilizes. Similarly, the ideal generated by all variables is
not finitely generated.

範例
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6.2 Finitely Generated Modules over Noetherian Rings

We now investigate how the Noetherian property behaves under
standard module operations. The main goal is to show that over a
Noetherian ring, "finitely generated" is equivalent to "Noetherian".

Proposition 6.1. Inheritance of Noetherian Property.
Let M be a Noetherian R-module. Then:
1. Every submodule N ⊆ M is Noetherian.

2. Every quotient module M/N is Noetherian.
命題

Proof

(i) Since M is Noetherian, every submodule of M is finitely gen-
erated. A submodule of N is a submodule of M, hence finitely
generated. Thus N is Noetherian.
(ii) Let Q be a submodule of M/N. Let π : M → M/N be the pro-
jection. The preimage π−1(Q) is a submodule of M, hence finitely
generated by some x1, . . . , xk. The images π(x1), . . . , π(xk) gener-
ate Q. Since every submodule of the quotient is finitely generated,
M/N is Noetherian.

■

A crucial property is that extensions of Noetherian modules are
Noetherian.

Definition 6.2. Short Exact Sequence.
A sequence of R-module homomorphisms

0 −→ A ι−→ B π−→ C −→ 0

is short exact if it is exact at each term, that is, ι is injective, π is sur-
jective, and im ι = ker π.

定義

Proposition 6.2. Extensions of Noetherian Modules.
Let 0 → N → M → M/N → 0 be a short exact sequence of R-
modules. If N and M/N are Noetherian, then M is Noetherian.

命題

Proof

Let P ⊆ M be a submodule. We show P is finitely generated. The
intersection P ∩ N is a submodule of N. Since N is Noetherian,
P ∩ N is finitely generated, say by a1, . . . , as. The image of P in the
quotient, (P + N)/N ∼= P/(P ∩ N), is a submodule of the Noethe-
rian module M/N. Thus it is finitely generated, say by the cosets
of b1, . . . , bt ∈ P. We claim {a1, . . . , as, b1, . . . , bt} generates P. Let
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x ∈ P. Its image in M/N can be written as ∑ rj(bj + N). Thus
x − ∑ rjbj ∈ N. Since x ∈ P and ∑ rjbj ∈ P, the difference lies in
P ∩ N. Thus:

x−
t

∑
j=1

rjbj =
s

∑
i=1

qiai

for some qi ∈ R. Hence x = ∑ qiai + ∑ rjbj, proving finite genera-
tion.

■

Corollary 6.2. Direct Sums. If M and N are Noetherian R-modules, then
their direct sum M⊕ N is Noetherian.

推論

Proof

We have an exact sequence 0 → M → M ⊕ N → N → 0. Since M
and N are Noetherian, so is M⊕ N.

■

Corollary 6.3. Finite Rank Free Modules. If R is a Noetherian ring, then
any free R-module of finite rank Rn is Noetherian.

推論

Proof

By induction on n. For n = 1, R is Noetherian by definition. Since
Rn ∼= R⊕ Rn−1, the result follows from the previous corollary.

■

We conclude with the central theorem linking the ring structure to its
modules.

Theorem 6.2. Modules over Noetherian Rings.
Let R be a Noetherian ring. An R-module M is Noetherian if and only
if M is finitely generated.

定理

( =⇒ )

If M is Noetherian, then M is a submodule of itself, hence finitely
generated.

証明終

(⇐= )

Suppose M is finitely generated by x1, . . . , xn. There exists a surjec-
tive homomorphism from the free module Rn to M:

ϕ : Rn → M, ei 7→ xi.

Since R is Noetherian, Rn is a Noetherian module. The image of
a Noetherian module under a homomorphism is isomorphic to a
quotient, hence Noetherian. Thus M ∼= Rn/ ker ϕ is Noetherian.
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証明終

6.3 Exercises

1. Ideals in Noetherian Rings. Let R be a ring. Prove that the fol-
lowing are equivalent:

(a) R is Noetherian (i.e., every ascending chain of ideals stabi-
lizes).

(b) Every ideal of R is finitely generated.

2. Submodules of Finitely Generated Modules. Let R be a Noethe- Use the fact that finitely generated
modules over a Noetherian ring are
Noetherian.

rian ring and M a finitely generated R-module. Prove that every
submodule N ⊆ M is finitely generated.

(a) Prove the statement above using the Noetherian property.
(b) Let f : M → M be a surjective R-module homomorphism.

Prove that f is injective. Use the ascending chain ker f ⊆
ker f 2 ⊆ . . . .(c) Give an example showing that the conclusion of (b) can fail if

M is not Noetherian.

3. Infinite Direct Sums. Let R be a Noetherian ring (e.g., Z). Con-
sider the module M =

⊕∞
n=1 R with standard basis e1, e2, . . . .

(a) Let Mk = ⟨e1, . . . , ek⟩. Show that M1 ⊊ M2 ⊊ . . . is a strictly
ascending chain.

(b) Deduce that M is not a Noetherian R-module, even though R
is Noetherian.

(c) Conclude that "finitely generated" is essential in the theorem
relating Noetherian rings to Noetherian modules.

4. Polynomial Rings in Infinite Variables. Let k be a field and R =

k[x1, x2, . . . ] be the polynomial ring in countably many variables.

(a) Prove that the chain of ideals (x1) ⊊ (x1, x2) ⊊ . . . is strictly
ascending.

(b) Conclude R is not a Noetherian ring.
(c) Show that the ideal I = (x1, x2, . . . ) is not finitely generated.

5. Quotients of Noetherian Rings. Let R be a ring and I an ideal.

(a) If R is Noetherian, prove that R/I is Noetherian.
(b) Conversely, suppose R/I is Noetherian and I is finitely gen-

erated as an ideal. Prove that R is Noetherian. Use the short exact sequence 0 → I →
R→ R/I → 0.(c) Deduce that R is Noetherian if and only if R/I is Noetherian

for every finitely generated ideal I.



7
Polynomial Rings and Factorisation

Having established the general theory of Noetherian rings and mod-
ules, we now apply these concepts to the specific setting of poly-
nomial rings. This study yields two cornerstones of commutative
algebra: the Hilbert Basis Theorem, which guarantees that polyno-
mial rings over Noetherian rings retain the Noetherian property, and
the extension of unique factorisation from a ring to its polynomial
ring via Gauss’s Lemma.

7.1 The Hilbert Basis Theorem

Our primary goal is to prove that if a ring R satisfies the ascending
chain condition on ideals, so does R[X]. This result is fundamental
to algebraic geometry, as it implies that algebraic sets defined by
infinitely many polynomial equations can actually be defined by
finitely many.
We begin by analysing the structure of ideals in R[X] through the
leading coefficients of their elements. Let P(X) = ∑n

i=0 biXi ∈ R[X]

with bn ̸= 0. We call bn the leading coefficient of P(X).

Lemma 7.1. Ideal of Leading Coefficients.
Let R be a Noetherian ring and let I ⊆ R[X] be an ideal. Let J ⊆ R
be the set of leading coefficients of all polynomials in I, together with
0. Then J is an ideal of R.

引理

Proof

Let a ∈ J. If a = 0, the closure properties are trivial. Assume a ̸=
0. Then there exists P(X) ∈ I of degree n with leading coefficient a.
For any r ∈ R, if ra ̸= 0, then ra is the leading coefficient of rP(X),
which lies in I. Thus ra ∈ J. Suppose a, b ∈ J are nonzero lead-
ing coefficients of P(X) ∈ I (degree n) and Q(X) ∈ I (degree m).
Without loss of generality, assume n ≥ m. Consider the polynomial
S(X) = P(X) + Xn−mQ(X). This polynomial lies in I. Its term of
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degree n is (a + b)Xn. If a + b ̸= 0, it is the leading coefficient of
S(X), so a + b ∈ J. If a + b = 0, the condition holds trivially. Thus
J is an ideal.

■

The Noetherian property of R ensures J is finitely generated. We use
these generators to reduce the degree of polynomials in I.

Lemma 7.2. Degree Reduction.
Let I ⊆ R[X] be an ideal and J its ideal of leading coefficients. Let a1, . . . , as

generate J, and let P1, . . . , Ps ∈ I be polynomials such that the lead-
ing coefficient of Pi is ai. Let N = maxi(deg Pi). For any Q(X) ∈ I
with deg Q ≥ N, there exist polynomials R1, . . . , Rs ∈ R[X] such that

deg

(
Q(X)−

s

∑
i=1

Ri(X)Pi(X)

)
< N.

引理

Proof

We proceed by induction on d = deg Q. The base case is implicit in
the inductive step. Let a be the leading coefficient of Q(X) = aXd +

. . . . Since a ∈ J, we may write a = ∑s
i=1 riai for some ri ∈ R. Con-

sider the polynomial:

H(X) =
s

∑
i=1

riXd−deg Pi Pi(X).

Since d ≥ N ≥ deg Pi, the powers of X are non-negative. The
leading term of H(X) is (∑ riai) Xd = aXd. Consequently, the poly-
nomial Q(X) − H(X) has degree strictly less than d. Since H(X) is
an R[X]-linear combination of the Pi, if the degree of the difference
is still ≥ N, we repeat the process. By induction, we eventually
reduce the degree below N.

■

Theorem 7.1. Hilbert Basis Theorem.
Let R be a Noetherian ring. Then the polynomial ring R[X] is Noethe-
rian.

定理

Proof

Let I ⊆ R[X] be an ideal. We define J, ai, Pi, and N as in the pre-
vious lemmas. Let M = R[X]≤N be the R-submodule of poly-
nomials of degree at most N. As an R-module, M is generated
by {1, X, . . . , XN}. Since R is Noetherian and M is finitely gen-
erated, M is a Noetherian R-module. Consider the submodule



fields galios modules 85

I≤N = I ∩ M. Being a submodule of a Noetherian module, I≤N

is finitely generated over R. Let T1, . . . , Tk be generators of I≤N .
We claim that the set {P1, . . . , Ps, T1, . . . , Tk} generates I as an ideal
in R[X]. Let Q ∈ I. By the Degree Reduction Lemma, there exist
Hi ∈ R[X] such that

Q′(X) = Q(X)−
s

∑
i=1

Hi(X)Pi(X)

has degree strictly less than N. Thus Q′ ∈ I ∩ R[X]≤N = I≤N . We
can therefore write Q′ as an R-linear combination of T1, . . . , Tk:

Q′(X) =
k

∑
j=1

rjTj(X).

Substituting back, Q(X) is expressed as a linear combination of the
Pi and Tj. Thus I is finitely generated.

■

By induction on the number of variables, we immediately obtain:

Corollary 7.1. Multivariate Polynomial Rings. If R is Noetherian, then
R[X1, . . . , Xn] is Noetherian. In particular, since fields and PIDs are Noethe-
rian, Q[X1, . . . , Xn] and Z[X1, . . . , Xn] are Noetherian rings.

推論

This leads naturally to the study of finitely generated algebras.

Definition 7.1. Finitely Generated Algebra.
Let R be a ring. An R-algebra is a ring S equipped with a ring homo-
morphism ϕ : R→ S. We say S is finitely generated as an R-algebra
if there exists a finite set s1, . . . , sn ∈ S such that the evaluation ho-
momorphism

ψ : R[X1, . . . , Xn]→ S, Xi 7→ si

is surjective. Equivalently, S ∼= R[X1, . . . , Xn]/ ker ψ.
定義

R R[X1, . . . , Xn]

S

ϕ ψ

Figure 7.1: Structure of a
finitely generated R-algebra.

Corollary 7.2. Noetherian Algebras. If R is a Noetherian ring, then any
finitely generated R-algebra is Noetherian.

推論

Proof

Since R is Noetherian, R[X1, . . . , Xn] is Noetherian. Any quotient of
a Noetherian ring is Noetherian.

■
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7.2 Factorisation in Polynomial Rings

While Z is a unique factorisation domain (UFD), the ring Z[X] is
not a PID. For instance, the ideal ⟨2, X⟩ is not principal. However,
Z[X] remains a UFD. To prove this generally, we relate factorisation
in R[X] to factorisation in K[X], where K is the field of fractions of R.

Gauss’s Lemma

Let R be a UFD and K its field of fractions. Factorisation in K[X] is
well-understood because K[X] is a Euclidean domain (and thus a PID
and UFD). The difficulty lies in the fact that a polynomial irreducible
in R[X] might become reducible in K[X], or vice versa.

Example 7.1. Irreducibility Dependence. The polynomial 3X + 15
factorises as 3(X + 5) in Z[X]. Both factors are non-units. How-
ever, in Q[X], 3 is a unit, so 3X + 15 is associated to X + 5, which is
irreducible.

範例

To handle coefficients, we define the content of a polynomial P ∈
R[X] as the greatest common divisor (GCD) of its coefficients. A
polynomial is primitive if its content is a unit (i.e., the GCD of coeffi-
cients is 1).

Theorem 7.2. Gauss’s Lemma.
Let R be a UFD and K its field of fractions. Let P(X) ∈ R[X]. If P(X) =

Q(X)T(X) is a factorisation in K[X], then there exists α ∈ K× such
that αQ(X) ∈ R[X] and α−1T(X) ∈ R[X] is a factorisation in R[X].
In particular, if a primitive polynomial in R[X] is reducible in K[X], it
is reducible in R[X].

定理

Proof

Since Q, T ∈ K[X], we can clear denominators. Choose e1, e2 ∈ R
such that e1Q(X) and e2T(X) are in R[X]. Further, we may fac-
tor out the content of these polynomials to ensure they are
primitive. Thus, there exists d ∈ R and primitive polynomials
Q′(X), T′(X) ∈ R[X] such that:

dP(X) = Q′(X)T′(X).

We claim that if P(X) is primitive, then d must be a unit. Suppose
d is not a unit. Let q be an irreducible factor of d in R. Since R
is a UFD, the ideal ⟨q⟩ is prime, so R/⟨q⟩ is an integral domain.
Consider the reduction homomorphism π : R[X] → (R/⟨q⟩)[X].
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Applying this to the equation:

0 = π(dP) = π(Q′)π(T′).

Since (R/⟨q⟩)[X] is an integral domain, either π(Q′) = 0 or
π(T′) = 0. If π(Q′) = 0, all coefficients of Q′ are divisible by q.
This contradicts the construction of Q′ as a primitive polynomial.
Thus d must be a unit. The scalar α is constructed by redistributing
the units and the cleared denominators.

■

K[X]R[X]

KR

reduction

Figure 7.2: Comparison of fac-
torisations.

This leads to a precise criterion for irreducibility.

Proposition 7.1. Irreducibility Criterion.
Let P(X) ∈ R[X] be a primitive polynomial. Then P(X) is irreducible
in R[X] if and only if it is irreducible in K[X].

命題

(⇐= )

If P is irreducible in K[X], it cannot factor into polynomials of lower
degree in R[X]. The only possible factorisation in R[X] would in-
volve scalars, but since P is primitive, the only scalar divisors are
units.

証明終

( =⇒ )

Suppose P is reducible in K[X], so P = QT with deg Q, deg T <

deg P. By Gauss’s Lemma, we can modify this to a factorisation
P = (αQ)(α−1T) in R[X]. Since degrees are preserved, P is re-
ducible in R[X].

証明終

R[X] is a UFD

We now combine these results to establish the main theorem.

Theorem 7.3. Polynomial Rings over UFDs.
If R is a unique factorisation domain, then R[X] is a unique factorisa-
tion domain.

定理

Existence.

Let P(X) ∈ R[X]. Let d be the content of P, so P(X) = dQ(X)

where Q is primitive. Since R is a UFD, d factors uniquely into
irreducibles in R. These are also irreducible in R[X]. Next, con-
sider Q(X) as an element of K[X]. Since K[X] is a UFD (being a
PID), Q(X) = F1(X) · · · Fk(X) where Fi are irreducible in K[X].
By Gauss’s Lemma, we can scale these factors to be in R[X] and
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primitive. Let these be Gi(X). Since Gi is primitive and irreducible
in K[X], it is irreducible in R[X]. Thus P(X) = dG1(X) · · ·Gk(X) is
a factorisation into irreducibles.

証明終

Uniqueness.

Suppose P(X) has two factorisations into irreducibles. We separate
the irreducible factors into two types: constant factors (irreducibles
in R) and non-constant factors (primitive polynomials in R[X]).

P = c1 . . . cm · q1(X) . . . qn(X) = d1 . . . dr · t1(X) . . . ts(X).

The product c = ∏ ci must equal d = ∏ dj up to units, as these
represent the content of P. Since R is a UFD, the constant factors
match unique to units. The primitive parts ∏ qi and ∏ tj must be
equal. Viewed in K[X], these are irreducible factorisations. Since
K[X] is a UFD, n = s, and after reordering, qi is associated to ti in
K[X]. So qi = a

b ti. Since both are primitive, a/b must be a unit in R.
Thus they are associates in R[X].

証明終

Corollary 7.3. Multivariate UFDs. If R is a UFD, then R[X1, . . . , Xn] is
a UFD. Consequently, Z[X1, . . . , Xn] and F[X1, . . . , Xn] (where F is a field)
are UFDs.

推論

Remark.

It is important to note that while R[X] inherits the UFD property,
quotient rings generally do not. For example, Z[X] is a UFD, but
Z[X]/⟨X2 + 5⟩ ∼= Z[

√
−5] is not, as evidenced by the non-unique

factorisation 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

7.3 Irreducibility Criteria

We turn to the practical problem of determining whether a given
polynomial is irreducible. While no single algorithm solves this effi-
ciently for all rings, several powerful criteria exist.

Elementary Criteria and Finite Fields

For polynomials of low degree, irreducibility is determined simply by
the existence of roots.

Proposition 7.2. Degree 2 and 3.
Let K be a field and P(X) ∈ K[X] a polynomial of degree 2 or 3. Then
P(X) is irreducible if and only if P(X) has no roots in K.
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命題

Proof

If P(X) is reducible, it can be written as P(X) = A(X)B(X) with
deg A, deg B ≥ 1. Since deg P ≤ 3, at least one factor must have
degree 1. A linear factor in K[X] corresponds to a root in K. Con-
versely, if P(X) has a root α, then (X− α) divides P(X).

■

For finite fields, we can leverage the structure of the Frobenius auto-
morphism to formulate a precise criterion. Let Fq denote the finite
field with q = ps elements.

Lemma 7.3. Factorisation of Xqr − X.
The polynomial Xqr −X ∈ Fq[X] is the product of all monic irreducible
polynomials in Fq[X] whose degree divides r.

引理

Proof

Let P(X) be a monic irreducible polynomial of degree d. Let α be a
root of P(X) in a splitting field. Then Fq(α) ∼= Fqd . The elements

of Fqd are precisely the roots of Xqd − X. Furthermore, Fqd ⊆ Fqr

if and only if d | r. Thus, α is a root of Xqr − X if and only if d | r.
Since P(X) is the minimal polynomial of α, P(X) divides Xqr − X if
and only if d | r.
It remains to show that Xqr − X is square-free, ensuring each irre-
ducible factor appears with multiplicity 1. The formal derivative
is:

d
dX

(Xqr − X) = qrXqr−1 − 1 = −1 (since char(Fq) = p | q).

Since the derivative is a non-zero constant, it is coprime to the
polynomial. Thus Xqr − X has no repeated roots.

■

Corollary 7.4. Irreducibility in Fq[X]. Let P(X) ∈ Fq[X] have degree
d. Then P(X) is irreducible if and only if

gcd(P(X), Xqr − X) = 1 for all 1 ≤ r < d.

推論

Proof

If P(X) is reducible, it has an irreducible factor Q(X) of degree r
where 1 ≤ r ≤ d/2 < d. By the previous lemma, Q(X) divides
Xqr − X. Thus the GCD is divisible by Q(X) ̸= 1. Conversely, if
P(X) is irreducible, its only divisors are units and associates of
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P(X). Since deg P = d > r, P(X) cannot divide Xqr − X.
■

Criteria over UFDs

We now consider the case where coefficients lie in a unique factorisa-
tion domain R, such as Z. Let K be the field of fractions of R. Recall
that determining the irreducibility of P(X) ∈ K[X] is often equiva-
lent to checking irreducibility in R[X]. Specifically, we can transform
monic polynomials in K[X] to monic polynomials in R[X].

Remark.

Let P(X) = Xn + cn−1Xn−1 + · · ·+ c0 ∈ K[X]. For any r ∈ R, define

Qr(X) = rnP(X/r) = Xn + rcn−1Xn−1 + · · ·+ rnc0.

Clearly P(X) is irreducible in K[X] if and only if Qr(X) is. By
choosing r to be a common multiple of the denominators of the ci,
we can ensure Qr(X) ∈ R[X]. Thus, we focus on monic polynomials
in R[X].

The most common technique is reduction modulo a prime ideal.

Proposition 7.3. Reduction Modulo p.
Let R be a UFD and p a prime ideal of R. Let Q(X) be a monic poly-
nomial in R[X]. Let Q(X) ∈ (R/p)[X] denote the reduction of Q(X)

modulo p. If Q(X) is irreducible in (R/p)[X], then Q(X) is irreducible
in R[X].

命題

Proof

Suppose Q(X) is reducible in R[X]. Since Q is monic, we factor it
as Q(X) = A(X)B(X) where A, B are monic polynomials of pos-
itive degree. Reducing modulo p preserves the degree of monic
polynomials. Thus Q(X) = A(X)B(X) is a factorisation into monic
polynomials of positive degree in (R/p)[X]. This contradicts the
irreducibility of Q(X).

■

Example 7.2. Application to Z[X]. Consider f (X) = X2 + aX + b ∈
Z[X] where a, b are odd integers. Reducing modulo 2, we obtain:

f (X) = X2 + X + 1 ∈ (Z/2Z)[X] = F2[X].

This polynomial has no roots in F2 ( f (0) = 1, f (1) = 1), so it is irre-
ducible. Thus f (X) is irreducible in Z[X] (and by Gauss’s Lemma,
in Q[X]).

範例
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Note

This criterion is sufficient but not necessary. The polynomial X4 + 1
is irreducible in Z[X] (and Q[X]), yet it is reducible modulo p for
every prime p. For p = 2, X4 + 1 = (X + 1)4. For odd primes, it
can be shown via elementary number theory that X4 + 1 divides
Xp2−1 − 1, which splits completely in Fp2 .

A specific case of modular reduction provides a very powerful suffi-
cient condition known as Eisenstein’s Criterion.

Proposition 7.4. Eisenstein’s Criterion.
Let R be a UFD and p a prime ideal. Let Q(X) = Xn + an−1Xn−1 +

· · ·+ a0 be a monic polynomial in R[X]. Suppose that:
1. ai ∈ p for all 0 ≤ i ≤ n− 1,
2. a0 /∈ p2.
Then Q(X) is irreducible in R[X].

命題

Proof

Suppose Q(X) is reducible. Since it is monic, we may write
Q(X) = A(X)B(X) with A, B ∈ R[X] monic of positive degree.
Reduce modulo p. By the first condition, Q(X) = Xn. Since R/p is
an integral domain (as p is prime), the unique factorisation of Xn

implies that A(X) = Xs and B(X) = Xt for some s, t > 0 with
s + t = n. Consequently, the constant terms satisfy A(0) = 0 and
B(0) = 0. This means A(0) ∈ p and B(0) ∈ p. However, the constant
term of Q(X) is a0 = A(0)B(0). Since both factors lie in p, their
product lies in p2. Thus a0 ∈ p2, contradicting the second condition.

■

Example 7.3. Irreducibility of X4 + 1. Although modular reduction
failed for X4 + 1, we can apply Eisenstein’s criterion after a linear
substitution. Let Q(X) = X4 + 1. If Q(X) were reducible, then
Q(X + 1) would also be reducible.

Q(X + 1) = (X + 1)4 + 1 = X4 + 4X3 + 6X2 + 4X + 2.

We apply Eisenstein’s criterion with the prime p = 2. The coef-
ficients 4, 6, 4, 2 are all divisible by 2. The constant term 2 is not
divisible by 22 = 4. Thus Q(X + 1) is irreducible, implying X4 + 1
is irreducible.

範例
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Multivariate Polynomials

For polynomial rings in several variables, such as F[X, Y, Z], we can
view the ring as polynomials in one variable with coefficients in a
ring of fewer variables:

F[X, Y, Z] ∼= (F[X, Y])[Z].

Since F[X, Y] is a UFD, we can apply the techniques developed above.

Example 7.4. Using the Discriminant. Consider P(X, Y) = X4 +

X2Y2 + Y2 + XY ∈ C[X, Y]. We view this as a polynomial in Y with
coefficients in R = C[X]. Let K = C(X) be the field of rational func-
tions.

P(X, Y) = (X2 + 1)Y2 + XY + X4.

Since the GCD of coefficients in C[X] is 1, P is irreducible in C[X, Y]
if and only if it is irreducible in K[Y]. Being quadratic in Y, it is
irreducible if and only if it has no roots in K, which occurs if and
only if the discriminant is not a square in K.

∆ = X2 − 4(X2 + 1)(X4) = X2 − 4X6 − 4X4 = X2(1− 4X2 − 4X4).

The factor (1 − 4X2 − 4X4) has simple roots in C, so it is not a
square in C[X]. Thus ∆ is not a square in K, so P(X, Y) is irre-
ducible.

範例

Example 7.5. Reduction Modulo an Ideal. Consider P(X, Y, Z) =

Z5 + X3Y4Z + 2X2YZ3 − XYZ + Y3 ∈ C[X, Y, Z]. We view this as a
monic polynomial in Z over the UFD R = C[X, Y]. Let p = ⟨X⟩ be
the ideal generated by X. This is a prime ideal since R/p ∼= C[Y] is
an integral domain. The reduction modulo X is:

P(Y, Z) = Z5 + Y3 ∈ C[Y][Z].

We check if Z5 + Y3 is irreducible in C[Z][Y] (viewing as a polyno-
mial in Y). It is Y3 + Z5. This is irreducible if −Z5 is not a cube in
C[Z]. By unique factorisation in C[Z], Z5 is not a cube. Thus P is
irreducible, implying P(X, Y, Z) is irreducible.

範例

7.4 Exercises

1. Noetherianity of Formal Power Series. Let R be a Noetherian
ring. The ring of formal power series R[[X]] consists of expres-
sions of the form f = ∑∞

i=0 aiXi where ai ∈ R. Unlike polynomials,
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these sums need not be finite.

(a) Define the order of a non-zero power series f , denoted ord( f ),
as the smallest n such that an ̸= 0. The coefficient aord( f ) is
the lowest coefficient of f . Show that f is a unit in R[[X]] if and
only if a0 is a unit in R.

(b) Generalise the logic of the Hilbert Basis Theorem to prove that
if R is Noetherian, then R[[X]] is Noetherian. For (b): Instead of leading coefficients

and degree reduction, consider the ideal
Jk of lowest coefficients of series in I
with order k. Show that J0 ⊆ J1 ⊆
J2 ⊆ . . . and use the ascending chain
condition on R and the Jk .

2. The Content Identity. Let R be a UFD. For f ∈ R[X], let c( f )
denote its content.

(a) Prove that for any f , g ∈ R[X], c( f g) = c( f )c(g) up to units in
R.

(b) Let f ∈ Z[X]. Suppose there exists a prime p such that p does
not divide the leading coefficient of f . If the reduction f ∈
Fp[X] has no repeated factors, prove that any factorisation of
f in Z[X] must reduce to the factorisation of f .

3. The Failure of the PID Property. While K[X] is a PID for any field
K, we have seen that R[X] is rarely a PID if R is not a field.

(a) Let R be an integral domain. Prove that R[X] is a PID if and
only if R is a field.

(b) Consider the ideal I = ⟨2, X⟩ ⊂ Z[X]. Prove that I is not a
principal ideal.

(c) Show that I is a maximal ideal by identifying the quotient
Z[X]/I.

(d) Generalise this: if K is a field, show that the ideal ⟨X, Y⟩ ⊂
K[X, Y] is maximal but not principal.

4. Cyclotomic Irreducibility. Let p be a prime number. The p-th
cyclotomic polynomial is defined as

Φp(X) =
Xp − 1
X− 1

= Xp−1 + Xp−2 + · · ·+ X + 1.

(a) Show that pascals identity implies the binomial coefficient (p
k)

is divisible by p for 1 ≤ k ≤ p− 1.
(b) Apply the substitution X = Y + 1 to Φp(X). Show that the re-

sulting polynomial in Y satisfies the conditions of Eisenstein’s
Criterion for the prime p.

(c) Conclude that Φp(X) is irreducible in Q[X].

5. Multivariate Fermat Polygons. We investigate the irreducibility of
f (X, Y) = Xn + Yn − 1 over various fields.

(a) Prove that Xn + Yn − 1 is irreducible in C[X, Y] for all n ≥ 1. For (a): View this as a polynomial
in X with coefficients in C[Y]. Use
Eisenstein’s Criterion with a prime ideal
p = ⟨Y− α⟩ for some suitable α ∈ C.

(b) For which n is Xn + Yn − 1 irreducible in Fp[X, Y]? Consider
specifically p = 2, n = 2.


	Field Extensions
	Fundamental Concepts
	Algebraic and Transcendental Elements
	Properties of Algebraic Extensions
	Field Homomorphisms and Isomorphisms
	Algebraic Closure
	Exercises

	Applications of Field Theory
	The Fundamental Theorem of Algebra
	Theory of Finite Fields
	Exercises

	Galois Theory
	The Galois Group
	Galois Extensions
	Separability
	Normal Extensions and Splitting Fields
	Exercises

	Galois Groups of Polynomials
	Symmetric Polynomials
	Examples of Galois Extensions
	Exercises

	Solvability by Radicals
	Radical Extensions
	Galois' Criterion
	Proof of the Solvability Theorem
	Proofs of the Main Theorems
	Exercises

	R-Modules
	Definitions and Examples
	Submodules and Quotients
	Homomorphisms and Free Modules
	Exercises

	Noetherian Rings and Modules
	Definitions and Basic Properties
	Finitely Generated Modules over Noetherian Rings
	Exercises

	Polynomial Rings and Factorisation
	The Hilbert Basis Theorem
	Factorisation in Polynomial Rings
	Irreducibility Criteria
	Exercises


