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0.1

0
Field Extensions

We have previously established that a field is a commutative ring

F with unity 1 # 0 in which every non-zero element is a unit. In

this chapter, we explore the structural relationship between fields, a

subject known as field theory. This theory is fundamentally the study

of equations: specifically, whether the roots of a polynomial exist

within a given field or require a larger structure to contain them. These notes assume that you have some

experience with Matrices, Groups,
Fundamental COHCBP ts and Rings or bareminimum read my

previous notes.

Definition o.1. Field Extension.
Let F be a subfield of a field K. We call K a field extension of F, denoted
by K/F (read as “K over F”).

The structure of a field is rigidly constrained by its smallest subfield.

Remark.

Recall that for any field F, there is a unique ring homomorphism

¢ : Z — F defined by n + n - 1r. The kernel of this map character-

izes the field.

1. If keryp = {0}, then ¢ extends to a monomorphism Q — F.
Thus, F contains a copy of the rational numbers Q. In this case,
we say F has characteristic 0. A number field is a finite exten-
sion of Q (equivalently, a subfield of C of finite degree over Q).

2. Ifkeryp = pZ for a prime p, then ¢ induces an embedding IF, =
Z/pZ — F. Here, F has characteristic p. If F is finite, it is called
a finite field.

We may construct extensions by adjoining indeterminates.
Example o.1. Rational Function Field. Let F be a field and x an in-
determinate. The rational function field F(x) is defined as the field

of fractions of the polynomial ring F[x]. Its elements are formal
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fractions:

F) = { L6 | #2050 € Flal ) 20}

F(x) is a field extension of F.

0.2 Algebraic and Transcendental Elements

Let K/F be a field extension and let « € K. We denote by F(«) the
smallest subfield of K containing both F and «. More generally, for a
subset S C K, F(S) denotes the subfield generated by F and S.

To understand the structure of F(«), we analyse the relationship
between « and the polynomials in F[x]. Consider the evaluation
homomorphism:

¢u: Flx] = K, g(x) — g(a).

The image of this map is the subring F[a] = {g(«) | g(x) € F[x]} C K.
Since K is a field (and thus an integral domain), the kernel ker ¢,

is a prime ideal of the principal ideal domain F[x]. This leads to a
dichotomy comprising two distinct cases.

Definition o.2. Algebraic and Transcendental Elements.
Let K/F be an extension and « € K.
1. w is transcendental over F if ker ¢, = {0}. Thatis, f(x) # 0 for
all non-zero polynomials f(x) € Fx].
2. ais algebraic over F if ker ¢, # {0}. That is, there exists a non-
zero polynomial f(x) € F[x] such that f(«) = 0.
Example o.2. Elements in C/Q. Consider K = C and F = Q.
. The element /2 is algebraic over Q because it is a root of x2-2¢
Q[x].
- The elements 7t and e are transcendental over Q (though the
proofs are non-trivial).

bl
The classification of the element & determines the algebraic structure
of the extension F(«a).

Proposition o.1. Structure of Simple Extensions.

Let K/F be a field extension and a € K.

1. If & is transcendental over F, then F(«) is isomorphic to the ratio-
nal function field F(x).

2. If w is algebraic over F, then there exists a unique monic irreducible
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polynomial m(x) € F[x] such that

¥

P&l
Case (i): Transcendental.

If ker ¢, = {0}, the map ¢, is a monomorphism from F[x] into K.
This extends naturally to the field of fractions F(x):

5 g(x) ., gla)
¢:F(x) =K, WH@.

[as

The image of this extended map is precisely F(«). Thus F(x)
F(a).
EXIES

Case (ii): Algebraic.

If ker ¢, # {0}, then ker ¢, is generated by a single monic
polynomial m(x) because F[x] is a principal ideal domain. Since

im ¢, C K is an integral domain, the ideal (m(x)) is prime, which
in F[x] implies m(x) is irreducible. By the Fundamental Homomor-

phism Theorem for rings, we have an isomorphism:

Flx]/(m(x)) = im @, = Fla]. o

F[x] K
Since (m(x)) is a maximal ideal (generated by an irreducible poly-
nomial), the quotient F[x]/(m(x)) is a field. Therefore, the subring n
Fla] is already a field, implying F(a) = Fla]. sujective inclusion
FE B
Fla]

Definition 0.3. Minimal Polynomial.

The monic irreducible polynomial m(x) generating ker ¢, in the alge- Figure 1: The evaluation homo-
braic case is called the minimal polynomial of « over F. Any polyno- morphism factors through the
mial ¢(x) € F[x] such that g(«) = 0 is called a vanishing polyno- image Fla].

mial for a.

Proposition o.2. Divisibility of Vanishing Polynomials.

Let « be algebraic over F with minimal polynomial m(x). If g(x) € F|x]
is any vanishing polynomial for « (i.e., g(a) = 0), then m(x) divides
8(x).

3

R
Proof

By the division algorithm in F[x], we can write

g(x) =qg(x)m(x)+r(x), wherer(x)=0or degr < degm.
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Evaluating at «, we obtain:
() = g(@)m(a) +r(a) = 0=g(a) 0+r(a).

Thus r(a) = 0. Since m(x) is the polynomial of least degree vanish-
ing at «, the remainder r(x) must be the zero polynomial.
|

We classify extensions based on the nature of their elements.

Definition o.4. Types of Extensions.

Let K/F be a field extension.

1. K/F is an algebraic extension if every element a € K is algebraic
over F.

2. K/F is a transcendental extension if there exists at least one element
in K that is transcendental over F.

3. K/F is a finitely generated extension if K = F(aq,...,a,) for some
finite set of elements.

4. K/F is a simple extension if K = F(«) for a single element a.

0.3 Properties of Algebraic Extensions

Since a field K containing a subfield F is closed under addition and
scalar multiplication by elements of F, K naturally carries the struc-
ture of a vector space over F. The “size” of the extension can thus be
measured by linear algebra.

Definition o.5. Degree of Extension.
Let K/F be a field extension. The degree of K over F, denoted [K : F|,
is the dimension of K as a vector space over F:

[K: F] := dimg K.

- If [K : F] is finite, K is a finite extension.
- If [K : F] is infinite, K is an infinite extension.

Proposition 0.3. Degree of Simple Algebraic Extensions.
Let K = F(a) be a simple extension where « is algebraic over F. Let
m(x) be the minimal polynomial of « with degm = n. Then:

[F(a) : F] =n.

Moreover, the set {1,&,a2,...,a" !} forms a basis for F(a) over F.

3

T
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Proof

Recall from the structure of simple extensions that F(«)

1%

F[x]/(m(x)). Any element in the quotient ring is represented
uniquely by a polynomial 7(x) of degree less than n (the remain-
der modulo m(x)). Thus, every element § € F(«) can be written
uniquely as:

ﬁ:C0+C10(+"'+Cn_1DCn_1, c; € F.

This implies that {1,«, ..., oc”’l} spans F(a) and is linearly inde-
pendent over F.

|
Conversely, if [F(a) : F] is finite, the elements 1,a,42,... cannot be
linearly independent indefinitely; thus satisfy a linear dependence
relation, implying « is algebraic.
For a sequence of extensions, the degrees behave multiplicatively.
This result is fundamental to counting arguments in Galois theory
and constructibility problems.
Theorem o.1. The Tower Law.
Let F C M C K be a tower of fields. Then:
[K:F]=[K:M]-[M:F].
g

Proof

Let [K: M] = mand [M : F] = n. Let {ay,...,a,} be a basis for K

over M, and let {B1, ..., Bn} be a basis for M over F. We claim that

the set of products B = {a;8; | 1 <i <m,1 < j < n} is a basis for K

over F.

Spanning: Let v € K. Since {«;} spans K over M, we can write v =
Yl A with A; € M. Since {B;} spans M over F, each A; =
2;7:1 cijBj with ¢;; € F. Substituting this back:

Y= Z; ( 1Cz‘jﬁj> wi =YY cij(aip)).
i=1 \j

i=1j=1

Thus B spans K over F.
Linear Independence: Suppose }; ;c;ja;f;j = 0 for c;; € F. Rearrang-
ing terms, we have:

m n
Z Cl]ﬁ] K = 0.
i=1 \j=1

The inner sums are elements of M. Since the «; are linearly inde-

m

Figure 2: The degrees of a
tower of fields multiply.



FIELDS GALIOS MODULES ¢

pendent over M, each coefficient must be zero:

n
Cl]ﬂ] =0 foralli.
=1

]

Since the B; are linearly independent over F, it follows that ¢;; =
0 for all 7, .
Thus [K : F] = mn. The infinite case follows by a similar argument
(if either sub-degree is infinite, the total degree is infinite).

This multiplicative property imposes strong arithmetic constraints on
the degrees of elements.

Corollary o.1. Divisibility of Degrees. Let K/F be a finite extension of
degree 7, and let « € K. Then the degree of the minimal polynomial
of « over F divides n.

e
Proof

Consider the tower F C F(a) C K. By the Tower Law, [K : F] = [K :
F(w)] - [F(a) : F]. Thus [F(a) : F] divides [K : F].

|

Corollary o.2. Prime Degree Extensions. If [K : F] = p where pisa
prime number, then for any « € K\ F, K = F(«a).

e

Proof

Sincea ¢ F,[F(x) : F] > 1.Since [F(x) : F]divides the prime
p, it must equal p. Thus F(«) is a subspace of K with the same
dimension, so F(x) = K.

We can now characterise finite extensions in terms of their genera-
tors.

Proposition o.4. Finite vs Finitely Generated.
A field extension K/F is finite if and only if it is a finitely generated
algebraic extension.

»

Al
(=)

Let K/F be finite. Choose a basis {ay,...,a,}. Then K =
F(ay,...,ay).Sinceeach a; € K, [F(a;) : F] < [K : F] < 09,80

each g; is algebraic.
PLES
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(=)
Let K = F(a,...,a,) where each «; is algebraic over F. We proceed
by induction on the tower of fields:

Fo=F, F =F_q(w).

Since a; is algebraic over F, it is algebraic over F;_;. Thus [F; : F_4]
is finite. By the Tower Law applied iteratively:

[K:F]=[F,:F_1]---[F : F] < oco.

S B 4
Algebraic elements within an arbitrary extension form a coherent
substructure.

Theorem o.2. Closure of Algebraic Elements.
Let K/F be an extension. The set E = {a € K | « is algebraic over F}

is a subfield of K.
il

Proof

Leta,p € E.Thenwa and B are algebraic over F. The extension
F(a, B) is finite over F (by the previous proposition). Consequently,
any element generated by arithmetic operations on « and g (such
asa £ B, ap, a/p with B # 0) lies in F(a, B). Since F(a, B) is a finite
extension, these elements are algebraic over F, and thus belong to

E.
|

Theorem o.3. Transitivity of Algebraicity.
Let K be algebraic over M, and M be algebraic over F. Then K is alge-

braic over F.
T

Proof

Let « € K. Since K/M is algebraic, « satisfies a polynomial equation
with coefficients in M:

A"+ cpqa" Mg =0, ¢ €M.

Let My = F(co,...,cy—1). Since each c; is algebraic over F, My/F
is a finite extension. Since « is a root of a polynomial in My[x], «
is algebraic over My, so [My(x) : Mp] is finite. By the Tower Law,
[Mp(«) : F] = [Mp(«) : Mp][Mp : F] is finite. Thus « is algebraic over
F.

]




0.4 Field Homomorphisms and Isomorphisms

The structural equivalence of fields is described by isomorphisms
that preserve the base field.

Definition 0.6. F-Isomorphism.
Let K and K’ be extensions of F. A field isomorphism ¢ : K — K’ is
an F-isomorphism if it fixes F pointwise, i.e., ¢(a) = a for all a € F.
If K = K/, such a map is called an F-automorphism.
We denote the group of F-automorphisms of K by Gal(K/F) (even
when K/F is not Galois).

Proposition o0.5. Roots Map to Roots.
Let ¢ : K — K’ be an F-isomorphism. Let f(x) € F[x] be a polyno-
mial. If « € K is a root of f(x), then ¢(a) € K’ is also a root of f(x).

R
Proof
Let f(x) = Y_a;x' with a; € F. Applying ¢ to the equation f(a) =

¢ (Lan') = Coa)e@) = Lailo@) = o).
Since ¢(0) = 0, we have f(¢(a)) = 0.
|
Proposition 0.6. Automorphism Bound.
Let K/F be a finite field extension. Then
|Gal(K/F)| < [K: FJ.

Proof
By proposition 0.4, write K = F(aq,...,a,) and set fj = F,
FF = F_1(a;). Foreachi,any F;_ 1—automorphlsm of F; is deter-

mined by the image of a;, which must be a root of its minimal
polynomial over F;_;. Hence

|Gal(F;/Fi—1)| < [F; : Fiq].

Restricting automorphisms from F; to F;_; gives a group homo-
morphism, so for each automorphism of F;_; there are at most
[F; : F;_1] extensions to F;. Therefore,

m
|Gal(K/F)| < ]I : Fi-1] = [K: F]
i=1

FIELDS GALIOS MODULES

11
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by the Tower Law.
|

This property implies that algebraic structure is determined by the
minimal polynomial.

Proposition o.7. Uniqueness of Minimal Polynomials.

Let « and B be algebraic elements over F. There exists an F-isomorphism
F(x) = F(B) mapping « +— P if and only if « and p have the same
minimal polynomial over F.

3

A

(=)

Let¢p : F(a) — F(B) be such an isomorphism. Let m,(x) be the
minimal polynomial of «. By the previous proposition, p(x) = B
must be a root of ,(x). Thus the minimal polynomial of g, mg(x),
divides 11, (x). Considering ¢!, we find m,(x) divides mg(x).
Being monic, they are equal.

SE
(=)
If my(x) = mg(x) = m(x), we have the canonical isomorphisms:
F(a) = Flx]/(m(x)) = F(B)
Composing these gives the desired map.
SE

Splitting Fields and Normal Extensions

We have seen that if «, 5 are roots of the same irreducible polynomial,
the fields F(a) and F(B) are isomorphic. The detailed definitions,
existence, and uniqueness of splitting fields as well as the normality
characterisation are developed in Chapter 2. Here we only recall

that a normal extension is, by definition, one that contains all the
conjugates of its elements, so it can be realised as the splitting field of
those minimal polynomials; see definition 2.8.

While splitting fields ensure all roots exist, we must also determine if
they are distinct.

Definition o0.7. Formal Derivative.
Let f(x) = Y ya;x' € F[x]. The formal derivative is the polyno-
mial f/(x) = Y1 iax L.

Proposition 0.8. Criterion for Multiple Roots.

A non-zero polynomial f(x) € F[x] has a multiple root in some ex-
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tension if and only if f(x) and f’(x) have a non-constant common fac-
tor.

¥

Proof
Let E be a field in which f splits. Suppose f has a multiple root & €
E. Then

f(x) = (x—a)"q(x), m>2, q(a) £ 0.

Differentiating,

f(x) = m(x — )" g(x) + (x — )"q' (),

so f'(a) = 0. Hence x — « divides both f and f’ in E[x], so their ged
is non-constant.
Conversely, if ged(f, f') is non-constant, then in a splitting field
E for f thereexistsa € Ewith f(a) = f'(a) = 0. Write
f(x) = (x —a)™g(x) with m > 1 and g(a) # 0. From the expression
for f'(x) above, f'(a) = 0 forces m > 2. Thus a is a multiple root of
f.
]
Separability Proof
If a is a multiple root, f(x) = (x — a)?g(x). Differentiating shows
f'(«) = 0, so x — a divides both. Conversely, if gcd(f, f) # 1, they
share a root in a splitting field, which must be a multiple root of f.
]

Definition 0.8. Separability.

An irreducible polynomial f(x) € F[x] is separable if it has no mul-
tiple roots in its splitting field. An extension K/F is separable if the
minimal polynomial of every element in K is separable.

Remark.

In characteristic o, every irreducible polynomial is separable since
f(x) has strictly lower degree and cannot be zero. In characteristic
p, f'(x) = Oimplies f(x) = g(x*), which leads to inseparable
extensions.

Lemma o.1. Artin—Schreier Translation.
Let F be a field of characteristicp > Oandletc € F. Foranya €
Fp,
(x+a)f —(x+a)—c=xP —x—c.
If o is a root of xP — x — ¢ in some extension, then a + a is also a root

for all a € FF,. Hence if x” — x — ¢ has a root in F, it splits in F[x]. If
it has no root in F, then it is irreducible.
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I 51 3%
Proof

The identity follows from (x + a)f = xV +a? = xP +a. Ifaisa
root, then « + a is a root for each a € T, and these p roots are dis-
tinct. Let m(x) be the minimal polynomial of « over F. Then m(x)
divides x — x — c and has at least p roots, so degm > p. Since
deg(xP —x —c) = p, either degm = 1 and a € F, or degm = p and
xP — x — c is irreducible.

0.5 Algebraic Closure

We conclude this chapter by asking whether we can find a field con-
taining all possible roots of all polynomials.

Definition 0.9. Algebraic Closure.

A field K is algebraically closed if every non-constant polynomial in
K[x] splits into linear factors (i.e., has roots in K). An extension F/F
is called an algebraic closure of F if F is algebraic over F and F is al-
gebraically closed.

Before proving the existence of such a field, we establish that we can
always adjoin a root of a single polynomial.

Lemma o.2. Kronecker’s Theorem.
Let F be a field and f(x) € F[x] be a non-constant polynomial. There
exists an extension E/F in which f(x) has a root.

7|32

Proof

Let p(x) be an irreducible factor of f(x). The quotient ring
E = F[x]/(p(x)) is a field extension of F. The element ¥ =
x+ (p(x)) € E is a root of p(x), and hence of f(x).

We now generalise this to all polynomials simultaneously using a
construction due to E. Artin.

Theorem o.4. Existence of Algebraic Closure.
Every field F has an algebraic closure.
gl

First we construct a field containing roots for every polynomial in
F[x] simultaneously. For every non-constant polynomial f € F[x],
introduce a distinct indeterminate X¢. Let

S={Xys | f € Flx], degf > 1}.
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Consider the polynomial ring R = F[S] generated by these variables.
Let I be the ideal in R generated by the polynomials f(Xy) for all f.

Claim o.1. . The ideal I is proper (i.e.,, 1 & I).
EXS
Proof

Suppose for contradiction that 1 € I. Then there exists a finite sum

1=) 8 filXs), & €ER

M=

Il
—_

This relation involves only finitely many polynomials fi, ..., f,. By
iteratively applying Kronecker’s Theorem, we can construct a finite
extension E/F containing roots a1, ..., a, for these specific polyno-
mials. Evaluate the polynomial relation in E by assigning X, — «;
(and other variables arbitrarily). The right-hand side becomes o
(since f;(a;) = 0), while the left-hand side remains 1. Thus 1 = 0, a
contradiction.

[ |
Proof of theorem 0.4
Since [ is proper, it is contained in a maximal ideal m (by Zorn’s
Lemma). The quotient K; = R/mis a field extension of F in which
every polynomial f € F[x] has at least one root (the image of Xy).
However, K; might not be algebraically closed, as it may not con-
tain roots for polynomials in Kj [x]. We iterate this process to form a
chain FCK; CK, C....
Let

F=|] K.

e

n=1

Any polynomial in F[x] has coefficients in some K}, hence has a
rootin K11 C F. Thus F is algebraically closed. Each K, is alge-
braic over F, so every element of F is algebraic over F. Hence F is
an algebraic closure of F.

Theorem o.5. Uniqueness of Algebraic Closure.
Let F; and F, be two algebraic closures of F. Then there exists an F-isomorphism
b =F.
g
Proof
The proof relies on Zorn’s Lemma to extend the identity map on

F to a maximal isomorphism between subfields of F; and F,. Since
both are algebraic extensions, this maximal isomorphism must
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cover the entirety of the fields.

Exercises

1. Odd Degree Algebraic Elements. Let K/F be a field extension Consider the inclusion K(u?) C K(u)
and let u € K be an algebraic element over F of odd degree (i.e., and use the Tower Law with degrees.
[F(u) : F] is odd). Prove that F(u) = F(u?).

2. Cyclotomic Degrees. Let {,, = ¢*™/" be a primitive n-th root of
unity. Define the cyclotomic degree by

(n) = [Q(%x) : Q.

Show Q(fmn) = Q(Lm, {n) and use the
Tower Law; reduce to prime powers.

(a) Prove that ®(mn) = ®(m)P(n) when ged(m,n) = 1.

(b) Prove that ®(p*) = p*~1(p — 1) for prime p and k > 1.

(c) Compute ®(p) for prime p and P(8).

(d) Deduce a general formula for ®(1n) in terms of the prime
factorisation of n.

3. Minimal Polynomials in Towers. Determine the minimal polyno-
mial of the element & = v/2 + /3 over the field K in the following

cases:

@ K=Q

(b) K=Q(v2)
(c) K=Q(6)

4. Simple Extension Generator. Prove explicitly that Q(v/2,v/3) =
Q(V2+V3).

5. Intermediate Domains. Let K/F be an algebraic field extension.
Let D be an integral domain such that F C D C K. Prove that D is
a field.

6. Minimal Polynomial Uniqueness. Let u be algebraic over a field
F.

(a) Prove that the minimal polynomial m(x) generates the ideal
I = {g(x) € Flx] | g(u) = 0},

(b) Conversely, prove that if f(x) is a monic irreducible poly-
nomial in F[x] such that f(u) = 0, then f(x) is the minimal
polynomial of u.

7. Algebraicity via Powers. Let K/F be a field extension and let
a € K. Suppose that a € F(a™) for some integer m > 1. Prove that
a is algebraic over F.

8. Transcendental Rational Functions. Let K(x, ..., x,) be the field



10.

11.

12.

13.

14.

15.

16.

17.

18.

of fractions of the polynomial ring K[xy, ..., x,]. Prove that any
element u € K(xq,...,x,) such that u ¢ K is transcendental over
K.

Inverting Transcendental Extensions. Let K be a field and u €
K(x) such that u ¢ K. Prove that x is algebraic over the field K(u).

Computation in Cubic Fields. Let K = Q(«a) where « is a root of

3

x°> —x —1 = 0. Find the minimal polynomial of v =1 + a? over Q.

Biquadratic Extensions. Let a be a positive rational number that
is not a square in Q. Prove that [Q(v/a) : Q] = 4.

Field Arithmetic. Let u be a root of x> — 6x% + 9x + 3.

(a) Prove that [Q(u) : Q] = 3.
(b) Express u*, (u+1)"1, and (u? — 6u + 8)~! as linear combina-
tions a + bu + cu? with rational coefficients.

Rational Function Example. Let x be transcendental over Q and

letu = xfol Calculate the degree [Q(x) : Q(u)].

Constructing Finite Fields. Find a quadratic irreducible polyno-
mial f(x) over the binary field IF,. Let u be a root of f(x). List
all elements of the field IF,(u#) and construct their addition and
multiplication tables.

Composite Extensions. Let M /K be a field extension containing
algebraic elements 1 and v with degrees m = [K(u) : K] and
n = [K(v) : K]. Let F = K(u) and E = K(v).

(a) Prove that [FE : K] < mn.
(b) Prove that if ged(m,n) =1, then [FE : K| = mn.

Artin-Schreier Extensions. Let F be a field of characteristic p > 0
and letc € F.

(a) Prove that the polynomial x¥ — x — c is irreducible in F[x] if
and only if it has no root in F.
(b) Does this conclusion hold if char(F) = 0? Justify your answer.

Quadratic Extensions. Let F be a field of characteristic not equal
to 2. Prove that every extension of degree 2 over F is of the form
F(y/a) for some a € F. Does this classification hold if char(F) = 2?

Automorphisms of a Quadratic Field. Let K = Q(+/5). List all Q-
automorphisms of K and verify that |Gal(K/Q)| = [K : Q]. Then
explain why Proposition 0.6 immediately implies |Gal(K/Q)| <
[K : Q] for every simple algebraic extension.
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Establish the irreducibility of x* — a.

17



1
Applications of Field Theory

We now apply our knowledge of field extensions to a classical prob-
lem originating from Greek antiquity: which geometric constructions
are possible using only a straightedge (an unmarked ruler) and a
compass? To answer this, we must translate geometric operations
into the language of algebra.

Definition 1.1. Constructible Points and Numbers.

Let Py = {(0,0),(1,0)} C IR? be a set of initial points. A point (x,y)

is constructible if it can be obtained from P, by a finite sequence of the

following operations:

1. Drawing a line through two already constructed points.

2. Drawing a circle centred at a constructed point and passing through
another constructed point.

3. Finding the intersection points of two lines, two circles, or a line and
a circle constructed as above.

A real number « is a constructible number if the point («,0) is con-

structible.

To relate these geometric operations to field theory, we first establish
that the elementary tools of geometry allow us to perform basic
arithmetic on lengths.

Lemma 1.1. Geometric Subroutines.

Given constructible points and lines, the following constructions are

possible:

Perpendiculars: Given a line | and a point A (either on / or not), one
can construct a line through A perpendicular to /.

Parallels: Given a line | and a point A ¢ [, one can construct a line
through A parallel to /.

Length Transfer: Given a point B on a line [ and a constructible seg-

ment OA, one can construct a point C on / such that |[BC| = |OA]|.
g




Proof

Perpendiculars: It A € [, choose any other point B € [. Draw the
circle Cq (A, B) (centre A, through B) intersecting [ at C. Draw
circles C(B, C) and C3(C, B); their intersection determines a
point D. The line AD is perpendicularto [. If A ¢ [, draw a
circle centred at A intersecting [ at B and C. The perpendicular
bisector of BC (constructed as above) passes through A.

Parallels: Construct a line [y through A perpendicular to I. Then
construct a line " through A perpendicular to Iy. Clearly !’ || I.

Length Transfer: This follows from constructing a parallelogram or
by repeated application of circles if the target line is aligned with
the segment.

Proposition 1.1. The Field of Constructible Numbers.

der square roots of non-negative elements. That is:
1. Ifa,pe K, thena+B e, af € K, and (if B #0) a/p € K.
2. Ifa € Kand a > 0, then /u € K.

¥

Proof

The lengths 0 and 1 are given. Addition « +  and subtraction « —
correspond to extending a segment on a line. For multiplication
and division, we use the Intercept Theorem (Thales” Theorem). To
construct ¢y = a&f, construct a triangle with sides 1 and «. On the
side of length 1, extend to length . Draw a parallel line to scale the
side & to . A similar construction yields «/f.

For the square root, construct a segment of length1 + «. Draw a
semicircle with this segment as the diameter. The perpendicular
erected at the point joining the segments 1 and « meets the circle at
a height 1. By elementary geometry (geometric mean), k> = 1- &, so

h= /&

We now characterise these numbers algebraically. Every construction
step involves intersecting lines and circles.

Lemma 1.2. Algebraic Characterisation of Steps.

Let K be a subfield of R. Let Ay, ..., A4 be points with coordinates in

K.

1. The intersection of two lines through these points has coordinates

in K.

The set K of all constructible real numbers is a subfield of R closed un-
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Figure 1.1: Dropping a perpen-

dicular from A & 1.

Intercept Theorem: in similar triangles,
ratios of corresponding sides are equal.

Geometric mean theorem: in a right

triangle, the altitude to the hypotenuse
has length squared equal to the product

of the hypotenuse segments.
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«p Figure 1.2: Left: Constructing
P the product af via similar tri-
X9 o angles. Right: Constructing
- © V& using the geometric mean
theorem (BP?> = AB - BC).
2 . . A B ¢
1 P

0] 1 %

2. The intersection of a line and a circle (or two circles) defined by these
points has coordinates in K(+/7) for some r € K, where r > 0.

g
Proof
A line through points in K has an equation of the form ax + by +
¢ = Owithab,c € K. The intersection of two such lines is the

solution to a linear system over K, which lies in K. A circle with
centre (x9,49) € K? and radius squared R? € K has the equa-
tion (x — x0)?> + (y — yo)> = R The intersection of a line and a
circle requires substituting linear y = mx + c into the quadratic
circle equation, yielding a quadratic equation in x. The roots lie in
K(v/A) where A is the discriminant. The intersection of two circles
x>+ 1y +Dix+--- = 0and x?> + y> + Dpx + - -- = 0 can be found
by subtracting the equations to get a linear relationship (the radical

axis), reducing the problem to the line-circle case.
[

This leads to the fundamental theorem of constructibility.

Theorem 1.1. Constructible Numbers and Field Extensions.
A real number « is constructible if and only if there exists a finite tower
of subfields

Q=RhCchC<---CF =K

such that « € K, and for each i, ;11 = F;(,/7;) for some r; € F; with
r;i > 0.
TR

Proof

The forward direction follows immediately from the previous
lemma: each construction step either leaves the field unchanged
(linear intersection) or extends it by a square root (quadratic in-
tersection). Conversely, since Q constructible (contains 0,1 and is
closed under arithmetic), and square roots of constructible numbers
are constructible (figure 1.2), any element in such a tower can be

constructed.
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Corollary 1.1. Degree of Constructible Numbers. 1f a is a constructible
number, then « is algebraic over Q and its degree [Q(«) : Q] is a power
of 2.

e
Proof
Let K be the top field in the tower from the theorem. By the Tower
Law (figure 2), [K: Q] = [K : Fy_1] -+ - [F1 : Q] = 2". Since Q(a) C K,
the degree [Q(«) : Q] must divide [K : Q] = 2". Thus it must be a
power of 2.

This corollary allows us to prove the impossibility of several famous
constructions sought by ancient geometers.

Corollary 1.2. Impossibility of Angle Trisection. It is impossible to trisect
an arbitrary angle using only a straightedge and compass. Specifically,
the angle 60° cannot be trisected.

e
Proof

To trisect 60°, we would need to construct 20°, which implies con-
structing « = cos 20°. Recall the triple angle formula:

c0s 360 = 4 cos® 6 — 3 cos .

Setting 6 = 20°, we have cos 60° = 1/2. Let x = cos 20°. Then:

=4x> —3x = 8 —6x—1=0.

NI~

The polynomial P(x) = 8x3 — 6x — 1 is irreducible over Q (a change
of variable y = 2x gives y> — 3y — 1, roots are +1 test fails). Thus
[Q(cos20°) : Q] = 3. Since 3 is not a power of 2, cos20° is not con-

structible.
[ |

Corollary 1.3. Constructibility of Regular Polygons. A regular p-gon (where
p is prime) is constructible if and only if p is a Fermat prime, i.e.,, p =
2% 1.
£l
Proof
The construction of a regular p-gon is equivalent to constructing
the length cos(27t/p). Let{ =  ¢2™/P. The field extension Q({)
has degree p — 1 over Q. The real subfield containing cos(27t/p)
isQ(¢ + ¢'), which has degree (p — 1)/2. For this to be con-
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structible, (p — 1) /2 must be a power of 2,s0 p —1 = 2™. If m has
an odd factor s > 1, say m = s -r, then 2" +1 = (2")° 41 is divisible
by 2" + 1, so p would not be prime. Thus m must be a power of 2,
making p a Fermat prime.

|
Remark.

The converse (that every Fermat prime yields a constructible regu-

lar p-gon) is Exercise 5.

1.1 The Fundamental Theorem of Algebra

We now establish a result that, while analytic in nature, underpins
the structural completeness of the complex numbers: the Funda-
mental Theorem of Algebra. This theorem asserts that the field con-
struction process terminates at C; no further algebraic extensions are
necessary to contain roots of polynomials.

Theorem 1.2. Fundamental Theorem of Algebra.

Let f(z) € C[z] be a polynomial of degree n > 1. Then there exists

zg € C such that f(zp) = 0.

gl

The proof proceeds by contradiction. We assume f(z) is never zero
and exploit the topological properties of C (specifically, compactness
and the continuous nature of the modulus function) to derive an
impossibility. The argument requires two subsidiary lemmas: one
guaranteeing that |f(z)| attains a minimum, and another asserting
that this minimum cannot be non-zero.

Lemma 1.3. Existence of a Minimum.

Let f(z) € C[z]. The function |f(z)| attains a global minimum on C.

That is, there exists zg € C such that |f(z)| < |f(z)] for all z € C.
532

Proof

Let f(z) = ayz" + --- +ag with a, # 0. We examine the behaviour
of f(z) for large |z|. Factoring out the leading term:

Ay a
1f(2)] = 2" |an + 22 1+---+;2 .
As |z| — oo, the term in parentheses approaches |a,| # 0. Con-
sequently, ‘l‘im |f(z)] = oo. Choose aradius R > 0 sufficiently
Z|—r00

large such that for all |z| > R, we have |f(z)| > |f(0)|. Consider
the closed disk Dg = {z € C | |z| < R}. Since polynomial
functions are continuous, |f(z)| is a continuous real-valued func-
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tion. Since Dy is a compact set (closed and bounded), the Extreme
Value Theorem ensures that |f(z)| attains a minimum on Dy at
some point zg. Since 0 €  Dg, the minimum on the disk satisfies
|f(z0)| < |f(0)|. For any z outside the disk (|z] > R), our choice of
Rimplies [f(z)| > |f(0)] > |f(zo)|- Thus, z¢ is a global minimum
for the entire plane.

|

Lemma 1.4. d’Alembert’s Lemma.
Let f(z) € C[z] be a non-constant polynomial and let zy € C. If f(zg) #
0, then | f(zp)| is not the minimum value of |f(z)].

i

Proof

We may shift the coordinate system to the origin by defining

g(z) = f(z + zp). Clearly, if |g(z)| is not minimal atz = 0, then
|f(z)| is not minimal at zp. Furthermore, we may normalise the
function. Let h(z) = g(z)/g(0). Then h(0) = 1. It suffices to
show that there exists a point z such that |i(z)| < 1. Since h(z) is a
polynomial with constant term 1, we can write it in the form:

h(z) =1+ azr + 2 1y(z),

where a # 0 is the first non-zero coefficient after the constant term,
k > 1isan integer, and (z) is a polynomial. We wish to choose

a small perturbation z such that the term az*

is real and negative,
thereby reducing the modulus. Let a = |ale?. We set z = re'® with

r > 0. The term of interest becomes:

azk = |a|rkel(9HK0),
To make this real and negative, we choose 0 such that ¢ + k6 = 7.
Thatis, 6 = an‘P Substituting this back into h(z), we have azk =

—|a|r*, and thus:
h(z) =1— |a|r* + 2 y(2).
By the triangle inequality:
Ih(2)] < 1= lalr"| + |2 (2)| = 1 — Jalr* + 7 |p(z)].

(Note that for sufficiently small 7, |a|r** < 1, allowing us to drop
the absolute value on the first term). Since 1(z) is a polynomial, it
is bounded in a neighbourhood of o; let |(z)| < M for small |z|.
Then:

|h(z)] <1 —7*(ja] — Mr).
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Since [a| > 0, we can choose r sufficiently small such that |a| — X

Mr > 0. Forsuchanv, [h(z)] < 1. Thus, the origin is not a local /\

minimum of |h(z)|, implying z is not a local minimum of |f(z)|. g an

n \ VAN

Proof of theorem 1.2 —

By lemma 1.3, there exists a point z € C where |f(z)] attains
its global minimum. Suppose, for the sake of contradiction, that
f(z0) # 0. By lemma 1.4, zp cannot be a minimum, as there exists
a nearby point with a strictly smaller modulus. This contradiction

implies that our assumption must be false. Therefore, f(zg) = 0.
|

Figure 1.3: If f(zg) # O, there
exists a direction in which |f]|
decreases.

Remark.

This theorem implies that the field C is algebraically closed. In
the language of field theory, the algebraic closure of R is C, and
[C:R]=2.

1.2 Theory of Finite Fields

We now turn our attention to fields with a finite number of elements,
known as Galois fields. These structures are ubiquitous in number
theory, coding theory, and cryptography. Their structure is exception-
ally clean: they are completely classified by their order.

Definition 1.2. Characteristic and Order.

Let K be a finite field. Since K is finite, it must have characteristic p for
some prime p. Consequently, K contains a copy of F, = Z/pZ as its
prime subfield. K is a vector space over IF,. If [K : IF,] = n, then [K| =

P
Lemma 1.5. Order of Finite Fields.
The order of any finite field is a prime power g = p".
12

Example 1.1. A Field of Order 4. Consider the polynomial

f(x) = x*>+ x+ 1over F,. Since f(0) = land f(1) = 1,ithas
no roots in IFp. Being of degree 2, it is irreducible. The quotient ring
K = Ty[x]/(x*> + x + 1) is a field. Its elements are {0,1,a,a + 1},
where a is the image of x. Note that > = a + 1 (since =1 = 1in
characteristic 2).

£
The following theorem provides a complete structural description of
all finite fields.
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Theorem 1.3. Classification of Finite Fields.

Let p be a prime and g4 = p" for some n > 1.

Existence: There exists a field of order g, unique up to isomorphism.
We denote this field by IF,.

Subfield Structure: A field of order p" contains a subfield of order p*
if and only if k divides n.

Cyclic Multiplicative Group: The multiplicative group Fy = IFg\
{0} is cyclic of order g — 1.

Root Structure: The elements of IF; are precisely the roots of the poly-
nomial x7 — x. In the algebraic closure F,, we have:

F,={a€Fp,|al=ua}.

Polynomial Factorisation: The polynomial x?" — x factors over F) as
the product of all monic irreducible polynomials in IF,[x] whose de-
grees divide n.

T
Freshman’s Dream: in characteristic
Existence and Uniqueness. p,(a+b)P = aP + bP. Iterating gives
(a+b)P =a +0F.
Consider the polynomial f(x) = x9 — x inFp[x]. By theorem 0.4,

let () be an algebraic closure of IF,. Since () is algebraically closed,
f(x) splits completely in Q).

The derivative is f/(x) = gx7 ! —1 = —1(sinceq = p" = 0
(mod p)). Since the derivative is nowhere zero, f(x) has no re-
peated roots. Thus f(x) has exactly g distinct roots in (). Let

S={acQlal=un}.

We claim S is a field.

* Closure under multiplication: (¢f)7 = a7p7 = ap.

* Closure under addition: (« + B)7 = a7+ B9 = a + B. (Recall the
“Freshman’s Dream” (a + b)? = aP + bP in characteristic p, iter-
ated n times).

e Inverses: (a 1)1 = (a7)"! = a1

Thus S is a subfield of () with g elements. So a field of order g

exists.

For uniqueness, let K be any field of order g. The multiplicative

group K* has order g — 1, s0 a1 = 1 foralla € K*. Thus &1 = «

foralle € K. This means every element of K is a root of x7 — x.

Since K contains g roots and x7 — x can have at most g roots, K is

precisely the set of roots of x7 — x. If we embed K into (), its image

must be exactly S. Thus K = S.
BELES
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Subfields.
IFx C JFpn corresponds to the set of roots of ' x being contained

in the set of roots of x*" — x inside Fp. If k | n, then for any a with
)P = &, so every root of x¥ — x

o = &, wehavea? = (aP
is a root of x”" — x, hence x¥* — x | xP" — x in FF,[x]. Conversely, if
Xy | x?" — x, then every root of X7 — x lies in Fpyn, so ]Fpk C Fpn,
which forces k | n by the tower law.

L #

Lemma 1.6. Finite Subgroups of Fields.
Let G be a finite subgroup of the multiplicative group of a field F. Then

G is cyclic.

5132
Proof
Let G have order N. Since G is a finite abelian group, G =
Zy, X -+ X Zy, withny | ny | -+ | ny. The exponent of this

group is nx. Thus x" = 1 for all x € G. The polynomial x"** — 1 has
at most 1, roots in the field F. Since all N elements of G are roots,
we must have N < n;. However, N = nj - --ny, so clearly N > .
Thus N = ny, implying k =1 and G = Z.

|
Cyclic Group.
This relies on a general fact about finite subgroups of fields. Apply-

ing this to G = [F*, we see it is cyclic.
B

Factorisation.

Divide the polynomial x7 — x by its irreducible factors in IF,[x]. An
irreducible g(x) of degree d divides x7 — x iff its roots lie in IF;. The
field F,[x]/(g(x)) = IF . embeds into [F, iff d | n. Thus x?" — x is
the product of all irreducibles of degree d where d | n.

BLES

This classification guarantees the existence of irreducible polynomials

of any degree.

Corollary 1.4. Existence of Irreducible Polynomials. For any prime p and
n > 1, there exists an irreducible polynomial of degree 7 in IFj[x].

Proof

Let K be a field of order p" (Classification of Finite Fields). Since
the multiplicative group K* is cyclic (Finite Subgroups of Fields),

K = Fy(a) for some a € K. The minimal polynomial of « over [F, is



an irreducible polynomial of degree [K : F,] = n.

The automorphisms of finite fields are generated by the Frobenius
map.
Theorem 1.4. Automorphisms of IF,.

the Frobenius automorphism:

c: K=K, xw—xP.

T
Proof
The map ¢ is a homomorphism because (x + y)? = x? + y? and
(xy)P = xPyP. It is injective (kernel is trivial since fields have

no zero divisors) and thus surjective (since K is finite). The fixed
fieldof ris {x € K | x? = «x}, which is exactly the prime sub-
field IF,. Let a be a generator of the cyclic group K*. Its minimal
polynomial over IF, has degree n. The roots of this polynomial
are o, af, ..., a”" . These are distinct. Thus ¢ has order 1. Since
|Gal(K/Fp)| < [K : Fp] = nby proposition 0.6, the group is gener-
ated by o.

[ |

Example 1.2. Frobenius on Fy. Consider K = F; = {0,1,a,a +
1} as defined in A Field of Order 4. The Frobenius automorphism o :
x — x2 acts as:

00, 1—1 a—a’=a+1 a+l— (a+1)?=a>+1=u0.
This map permutes the elements not in the prime subfield IF,.

.49

We conclude with a practical criterion for irreducibility, often used to
construct such fields.

Proposition 1.2. Eisenstein’s Criterion.

Let f(x) = ayx" +--- 4+ ap € Z[x]. Suppose there exists a prime p
such that:

1. piag,

2. plajforall0 <i<mn,

3. p* fao.

Then f(x) is irreducible over Q.

4
&=

Let K = Fpn. The group Gal(K/IF,) is cyclic of order n, generated by

FIELDS GALIOS MODULES

27



28 GUDFIT

Proof
Suppose f(x) = g(x)h(x) over Z[x]. Reduce modulo p:

f(x) = aux".

Thus g(x)i(x) = a,x". This implies §(x) = bx and fi(x) = cx" K
for some constants. Consequently, the constant terms of ¢ and &

are both divisible by p. But then the constant term of f, which is

ap = g(0)h(0), would be divisible by p?, contradicting the assump-
tion.

Proposition 1.3. Low Degree Irreducibility.
A polynomial f(x) € K[x] of degree 2 or 3 is irreducible if and only
if it has no roots in K.

¥

Proof
If reducible, it splits into factors. At least one factor must be degree
1(since2 = 1+1and3 = 1+2o0r1+ 1+ 1), corresponding to a

root.
[ |

1.3 Exercises

1.

Constructible Numbers. Determine which of the following quan-
tities can be constructed using only a straightedge and compass.
Justify your answer using the degree of field extensions.

(@) V3+5V8
(b) 3V5

(d) The roots of the polynomial x° — 3x* + 6

Constructible Angles. Prove that angles of 45° and 54° can be
trisected with a straightedge and compass.

Doubling the Cube. Prove the impossibility of the classical prob-
lem of "doubling the cube" (constructing a cube with twice the
volume of a given cube).

Constructible Polygons. For each integer 3 < n < 10, determine
whether a regular n-gon can be constructed with straightedge and
compass.

Gauss’s Direction. Let p be a Fermat prime. Prove that a regular
p-gon is constructible by showing that cos(27t/p) lies in a tower of
quadratic extensions of Q.

To trisect 54° means constructing 18°.
Consider the constructibility of the
regular pentagon.

This corresponds to constructing /2.



6. Maximal Ideals and Geometry.

(a) Prove that there is a bijection between the maximal ideals of
C[x] and the points in the complex plane C.

(b) Describe the geometric correspondence for the maximal ide-
als of R[x].

7. Constructing Finite Fields. Explicitly construct a field of 8 ele-
ments, Fg = IF[x]/(f) for an irreducible cubic f(x). Let u be
the image of x. List the elements as powers of u, compute the
multiplication table for IFg, determine all generators of Iy, and
describe the Frobenius automorphism x ~ x> on Fg.

8. Irreducible Polynomials.

(a) List all irreducible polynomials of degree < 4 over IF,.
(b) List all quadratic irreducible polynomials over IF3.

9. Counting Irreducibles. Let p and [ be primes, and n a positive
integer. Find a formula for the number of monic irreducible poly-
nomials of degree I" in IF, [x].

10. Minimal Polynomials (computational). Let a? = 2 and a3 = 3,
and set = a1 + «ay. For each base field below, first determine
whether 2, 3, and 6 are squares, then compute [F(B) : F], the
minimal polynomial of B over F, and the minimal polynomial of
B? over F. Decide when F(B) = F(B?).

(a) TFs
(b) Fy
() Fpp

11. Primitive Polynomials. Let f(x) € [F,[x] be a monic irreducible
polynomial of degree n. Let ¢(m) denote Euler’s totient function.

(a) Let u be a root of f(x). Prove that the roots of f(x) are ex-
actly u, u, ub®, P!

(b) A polynomial is called primitive if its root u generates the
multiplicative group F ;n. Prove that if one root is a generator,
all roots are generators.

(c) Prove that the number of primitive polynomials of degree n

over IF, is ¢(p" — 1) /n.
12. Reducibility. Prove that for n > 3, the polynomial x2* + x 41 is
reducible in F;[x].
13. Subfields of FFy4.

(a) Prove that x* 4+ x + 1 is a primitive polynomial in F,[x].
(b) Let Fi4 = IF(a) where « is a root of x* + x + 1. List the
elements of the unique subfield of order 4 within [Fy.

(c) Find the minimal polynomial of « over [Fy.
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For (b): Consider the Fundamental
Theorem of Algebra and complex
conjugation.

Use the inclusion-exclusion principle on
subfields of F Pl -

Count elements of IF_» of degree
exactly I" over [Fp, then divide by /".
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14.

15.

16.

17.

18.

19.

20.

21.

22,

Generators of [Fy4.

(a) Prove that f(x) = x* 4+ x3 + x% + x + 1 is irreducible but not
primitive in IFp[x].

(b) Let u be a root of f(x). Identify which elements of F14 =
IF>(u) generate the multiplicative group IFj.

Quadratic Equations in Finite Fields. Let F be a finite field and
a,b € F*. Prove that for any ¢ € F, the equation ax? + by? = c has
a solution (x,y) in F2.

Isomorphisms of Extensions. Prove that f(x) = x> + x + 1 and
g(x) = x% + x2 + 1 are irreducible over FF,. Let K be the field
generated by a root of f, and L by a root of g. Explicitly construct
an isomorphism ¢ : K — L.

Wilson’s Theorem for Fields. Let K be a finite field. Prove that the
product of all non-zero elements of K is —1.

Factorisation in IF3. Factor the polynomials x* — x and x?” — x into
irreducibles over [F3.

Trace and Norm. Let F = F;» and G = Gal(F/TF;). Define the
Trace and Norm maps:
Tr(a) = ) o(a), N(a)=]]o(a).
ceG ceG
(a) Prove that Tr : F — IF, is a surjective group homomorphism.
(b) Prove that N : F* — IF} is a surjective group homomor-
phism.

Fixed Fields. Let F = IF;» and let H be a subgroup of Gal(F/ ]Fp)
of order m. Let K={a € F|o(a) =aforallc € H}.

(a) Prove that m divides n.
(b) Prove that K is the unique subfield of F of order p"/™.

Repeated Roots in Characteristic p. Let F be a field of character-
istic p, and let f(x) be irreducible in F[x]. (A root « in a splitting
field is called multiple if (x — a)? divides f(x).)

(a) Prove that f'(x) = 0if and only if f(x) = g(x?) for some
g(x) € Flx].

(b) If f(x) = g(x”") but not h(x?"""), prove that deg f is di-
visible by p”, and that in a splitting field f has exactly
deg(f)/p™ distinct roots, each with multiplicity p™.

Linear Groups over Finite Fields. Let F = IF,.

(a) Calculate the order of the special linear group SL,(F).

(b) Prove that the group of upper triangular matrices in GL,(IF;)
with 1s on the diagonal (the Heisenberg group for n = 3) has
order p”(”_l)/ 2 Forn =23, verify it is non-abelian of order p3.

Use a counting argument on the sets
{ax?} and {c — by?}.

Count bases column by column to
compute |GL,(F)|, then use det :
GL,(F) — F*.
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2
Galois Theory

We have previously explored field extensions K/ F by analysing the
degree [K : F] and the algebraic properties of elements. In this chap-
ter, we introduce the central object of Galois theory: the group of
automorphisms of K that fix F. This group encodes the structural
symmetry of the extension and provides a powerful bridge between
field theory and group theory. Unless otherwise specified, we assume
all extensions K/F are finite. We freely use results from the previous
chapters.

The Galois Group

Recall that an isomorphism of fields ¢ : K — K is called an auto-
morphism. If K is an extension of F, we are particularly interested in
automorphisms that respect the base field.

Definition 2.1. Galois Group.
Let K/F be a field extension. The set of all F-automorphisms of K,

Gal(K/F) ={c € Aut(K) | c(a) = a foralla € F},

forms a group under composition. This group is called the Galois group
of K over F.

The action of the Galois group is tightly constrained by the polyno-
mials defining the extension.

Remark.

Recall proposition o.5: if ¢ € Gal(K/F) and a € K is a root of a poly-
nomial f(x) € F[x], then o(«) must also be a root of f(x). Since ¢ is
injective and K is a field, ¢ permutes the roots of f(x) that lie in K.

We examine the size of this group in several standard cases.

Example 2.1. Inseparable Extension. Let F = IF,(T) be the field of
rational functions over the finite field F, and let K = F({/T). Let
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a = YT. The minimal polynomial of « over F is m(x) = x¥ —T. In
K[x], this polynomial factorises as:

xP =T =xP —af = (x —a)P.

Thus, « is the unique root of m(x) in K (with multiplicity p). For

any o € Gal(K/F), o(«) must be a root of m(x). Therefore,

o(e) = a. Since K is generated by a over F, o must be the iden-

tity map.

Gal(K/F) = {1}.
Here, [K : F] = p, but the Galois group has order 1.
£

Example 2.2. Quadratic Extensions. Let K/F be a quadratic exten-

sion, so [K : F] = 2. Let K = F(a) where a has minimal polynomial

f(x) = x? + bx + ¢ € F[x]. Let the roots of f(x) in K be a and &’. We

have the relations « + ' = —b and aa’ = ¢. Thusa’ = —b —a € K.

Any ¢ € Gal(K/F) must map « to a root of f(x).

1. If o(a) = a, then o = 1 (the identity).

2. Ifa # &, there may exist an automorphism 7 such that t(a) =
.

We distinguish cases based on the characteristic of F:

Case 1: « = /. This implies the discriminant is zero. In charac-
teristic # 2, this forces f(x) to be reducible or linear, contra-
dicting the degree 2 assumption. In characteristic 2,if b = 0,
f(x) = x? + ¢ is irreducible but has a repeated root (inseparable).
Here Gal(K/F) = {1}.

Case 2: « # . If char(F) # 2, we can complete the square. f(x)
corresponds to x> — D for some non-square D € F. ThenK =
F (ﬁ) The map VD — —+/D is a valid F-automorphism. Thus
Gal(K/F) = C,.

.41

For notation, C, denotes the cyclic group of order 2, and V; denotes
the Klein four-group.

Example 2.3. Biquadratic Extension. Assume char(F) # 2. Let K =
F(a,B) wherea? = D; € Fandp> = D, € F,suchthat [K :
F] = 4. The basis for K over F is {1,a, B, «p}. Any automorphism o
is determined by its action on the generators:

ola) =xa, o(B)==LB.

There are at most 4 such combinations. Since [K : F] = 4, it can be
shown that all 4 define valid automorphisms. Thus |Gal(K/F)| = 4.
The group is isomorphic to the Klein four-group V; = C; x C.

K
F(a) F(B) F(ap)
F

Figure 2.1: Lattice of subfields
for a biquadratic extension.
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#a )
Example 2.4. Cubic Extension. Let F = Qand K = Q(v/2). The
minimal polynomial is x> — 2. The roots in C are « = /2, wa, and
w?x, where w = ¢2™/3, Since K C R, it contains only the real root «.
Any ¢ € Gal(K/F) must map a to a root of x> — 2 contained in K.
The only choice is . Thus o(«) = &, implying o = 1.

Gal(K/F) = {1}.
Here [K : F] = 3, but the group order is 1.

X

2.2 Galois Extensions

In the examples above, we observed that |Gal(K/F)| is sometimes
equal to [K : F| (standard quadratic, biquadratic) and sometimes
strictly smaller (inseparable quadratic, cubic Q(+v/2)).

Theorem 2.1. Bound on Galois Group Size.
Let K/F be a finite field extension. Then:

|Gal(K/F)| < [K: F].
il
Remark.

This is proposition 0.6 from Chapter o. We will later reinterpret this
bound using separability and normality.

Definition 2.2. Galois Extension.
A finite extension K/F is a Galois extension if:

Gal(K/F)| = [K : F].

e
S

Based on our previous examples:

- Q(+/2)/Q is Galois (2 = 2).

- Fp({/T)/Fp(T) is not Galois (1 < p).

- Q(v/2)/Q is not Galois (1 < 3).

The Galois group acts on the field K. We can recover the base field F
from this action if the extension is Galois.

Definition 2.3. Fixed Field.
Let G be a subgroup of Aut(K). The fixed field of G is the set:

K¢ ={acK|co(a) =aforalloc € G}.
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It is easily verified that K© is a subfield of K.

Corollary 2.1. Fixed Field of Galois Extensions. Let K/F be a Galois ex-
tension with Galois group G = Gal(K/F). Then:

K¢ =F.
I

Proof

Let L = KC. By definition of the Galois group, every element of F is
fixed by every 0 € G,so F C L C K. Any ¢ € G fixes L pointwise,
soG C Gal(K/L). Conversely, by definition Gal(K/L) contains
automorphisms fixing L, so Gal(K/L) C G. Thus G = Gal(K/L).
Using the definition of a Galois extension and the bound on group
size:

[K:F|]=|G| =|Gal(K/L)| < [K: L.

By the Tower Law (figure 2), [K : F] = [K : L][L : F]. Substituting this

into the inequality: K
[K:LJ[L:F] <[K:L]. |Gl
Since [K : L] is finite and non-zero, we divide to obtain [L : F] < 1. Gl G
Thus [L : F] =1, implying L = F.
u 1
The failure of an extension to be Galois arises from two distinct is-
sues: F
Separability: The minimal polynomial has multiple roots (e.g.,
XP —T). Figure 2.2: Since [K : F] = |G| =

[K : K©], the Tower Law forces

Normality: The minimal polynomial has roots outside K (e.g., x> —
[KG : F] =1, hence K¢ = F.

2).

Separability

We observed earlier that the size of the Galois group can be dimin-
ished if the minimal polynomial has multiple roots. We now for-
malise the conditions under which this pathology is avoided.

Definition 2.4. Separable Polynomials.
We use the definition from definition 0.8. An arbitrary polynomial is sep-
arable if all its irreducible factors are separable.

We can detect multiple roots purely algebraically using the formal
derivative. Recall proposition 0.8: a is a multiple root of f(x) if and



only if f(a) = 0and f'(a) = 0. Consequently, f(x) has multiple roots
if and only if f(x) and f’(x) share a common factor, i.e., gcd(f, f') #
1.

Proposition 2.1. Criterion for Inseparability.

Let f(x) € F[x] be a monic irreducible polynomial. Then f(x) is in-
separable if and only if f'(x) = 0. This can only occur if char(F) =
p > 0and f(x) = g(x?) for some g € Fx].

¥

Rl
Proof

Since f(x) is irreducible, its only divisors are units and associates of
f(x). The greatest common divisor (f, f’) is non-trivial if and only
if f(x) divides f'(x). However, deg f’ < degf. Thus f(x) | f'(x)
implies f'(x) = 0.If char(F) = 0, then f'(x) = 0 implies f(x)
is constant, contradicting irreducibility. If char(F) = p > 0, then
f'(x) = Yiax'™! = 0implies ia; = 0 for alli. Thus a; # 0 only
when p | i. Hence f(x) is a polynomial in x”.

[ ]

This implies that for many fields, inseparability is impossible.

Definition 2.5. Perfect Fields.
A field F is perfect if every irreducible polynomial in F[x] is separa-
ble.

Proposition 2.2. Characterisation of Perfect Fields.

1. Every field of characteristic o is perfect.

2. A field of characteristic p > 0 is perfect if and only if the Frobe-
nius endomorphism x — x” is surjective (i.e., every element is a
p-th power).

¥

Rl
Proof

Case (i) follows immediately from the previous proposition (f # 0
for non-constants).
For Case (ii), suppose F is perfect. f &« €  F is not a p-th power
and m(x) is the minimal polynomial of a root of x¥  — &, then
m'(x) = 0since m(x) divides x? — a. By the previous proposi-
tion, m(x) = g(x?), so degm is a multiple of p. Asdegm < p,
we have degm = p, hence x¥ — « is irreducible, but inseparable
(ff = 0),acontradiction. Conversely, if Frobenius is surjective,
any inseparable irreducible f(x) = g(x*) = Y. a;(x?)’ can be writ-
tenas L b/ (x')P = (Lbix')P wherea; = b!. This contradicts the
irreducibility of f(x).

|
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Corollary 2.2. Finite Fields are Perfect. Every finite field IF,» is perfect.

i

Proof
The Frobenius map x ~ x? is injective on a field. Since the field is
finite, injectivity implies surjectivity.

n

We lift this concept to extensions.
Definition 2.6. Separable Extensions.

An algebraic extension K/F is separable if the minimal polynomial of
every element a € K is separable over F.

It follows that any algebraic extension of a perfect field (e.g., Q, IFp)
is separable. The standard counterexample is K = TF( {/T) over

F =F,(T), where the element {/T is inseparable.

Crucially, separability simplifies the structure of finite extensions.

Theorem 2.2. Primitive Element Theorem.
Let K/F be a finite separable extension. Then K is a simple extension;
that is, there exists a primitive element y € K such that K = F().

i
Proof
For infinite fields, the proof relies on linear algebra to find a lin-
ear combination Y = & + cf that generates the subfield F(«, )

by ensuring c avoids a finite set of ratios between roots. By induc-
tion on the number of generators, the result holds. For finite fields,
the multiplicative group K* is cyclic (Finite Subgroups of Fields). A
generator of this group generates the field.

|

2.4 Normal Extensions and Splitting Fields

The second obstruction to an extension being Galois is the lack of
roots within the field. To remedy this, we construct fields containing
all roots of a given polynomial.

Definition 2.7. Splitting Field.
Let f(x) € F[x]. A field extension K/F is a splitting field for f(x) if:
1. f(x) splits into linear factors in K[x]:

flx)=clx—ay) - (x—ay), a; €K
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2. Kis generated by these roots: K = F(aq,...,ap).

Example 2.5. Splitting Field of x> — 2. Consider f(x) = x* -2 €

Q[x]. The roots in C are « = +/2, wa, and w?x, where w = ¢2mi/3,
The field Q(«) contains only one root. It is not a splitting field.
The splitting field is K = Q(a, wa,w?a) = Q(v/2,w). Note that

[K:Q]=6.

B
To define the Galois group, we ensure splitting fields are unique up
to isomorphism. This relies on the ability to extend isomorphisms

between base fields to their extensions.

Lemma 2.1. Extension of Isomorphisms.

Let ¢ : F — F be a field isomorphism. Let f(x) € F[x] be irreducible
and let f(x) = ¢(f(x)) € F[x]. Let a be a root of f(x) in some ex- x> — 2 has degree 6 over Q.
tension of F, and let & be a root of f(x) in some extension of F. Then

there exists a unique isomorphism ¢ : F(a) — F(&) such that:

Figure 2.3: The splitting field of

Plr=¢ and ¢(a) =&
7132

Proof

We have natural isomorphisms induced by polynomial evaluation
and quotients:

F(a) = F[x]/(f(x)) = E[x]/(f(x)) = F(a).

The composite map satisfies the requirements.

Proposition 2.3. Uniqueness of Splitting Fields.

Let ¢ : F — F be an isomorphism and let K, K be splitting fields for
f(x) and ¢(f(x)) respectively. Then there exists an isomorphism ¢ :
K — K extending ¢. In particular, the splitting field of a polynomial
is unique up to F-isomorphism.

.
Proof
We proceed by induction on [K  : FJ. If the degreeis 1, K = F
and K = F,soc = ¢. Otherwise, let p(x) be an irreducible fac-

tor of f(x) with degree > 1. Leta € Kbearootof p(x)and p €
K be a root of ¢(p(x)). By lemma 2.1, there is an isomorphism ¢;

F(a) — F(B). Now K is a splitting field for f(x) over F(a), and K is
a splitting field over F(B). Since [K : F(a)] < [K : F], the induction
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hypothesis provides the required extension o : K — K.

Definition 2.8. Normal Extensions.
An algebraic extension K/F is normal if it satisfies either (and thus both)
of the following equivalent conditions:
1. K is the splitting field of some family of polynomials in F[x].
2. For every irreducible polynomial g(x) € F[x], if g(x) has one root
in K, it splits completely into linear factors in K[x].

We combine normality and separability to characterise Galois exten-

sions.

Theorem 2.3. Characterisation of Galois Extensions.

Let K/F be a finite extension. The following are equivalent:

1. K/F is a Galois extension (i.e., |Gal(K/F)| = [K : F]).

2. K is the splitting field of a separable polynomial f(x) € F[x].
3. K/F is both normal and separable.

i

This theorem allows us to construct Galois extensions easily: simply
take the splitting field of a separable polynomial.

Corollary 2.3. Galois Closure. Every finite separable extension K/F is
contained in a finite Galois extension L/F. The smallest such L is called
the Galois closure of K. L

s
Proof

Let K = F(a) (by the Primitive Element Theorem). Let m(x) be the
minimal polynomial of « over F. Let L be the splitting field of m(x)

containing K. Since K/F is separable, m(x) is separable. Thus L/F Galois K = F(a)
is Galois.

|
Corollary 2.4. Intermediate Galois Extensions. Let K/F be a Galois ex- separable
tension and L be an intermediate field (F C L C K). Then K/L is al-
ways a Galois extension.

b F

Proof Figure 2.4: The Galois closure

L is the splitting field of the

If K is the splitting field of f(x) over F, it is also the splitting field
minimal polynomial of a.

of f(x) over L. Separability is preserved in subfields. Thus K/L
is Galois. (Note: L/F is not necessarily Galois, as we saw with

Q(V2)/Q).
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The Fundamental Theorem

We now state the crowning result of the theory, establishing a struc-
tural dictionary between the lattice of intermediate fields and the
lattice of subgroups of the Galois group.

Theorem 2.4. The Fundamental Theorem of Galois Theory.

Let K/F be a finite Galois extension with Galois group G = Gal(K/F).

1. There is a one-to-one inclusion-reversing correspondence between
the subgroups of G and the intermediate fields of K/F:

H = {Subgroups of G} «+— F = {Fields L | F C L C K}
H+— K{ ={xcK|o(x)=xVoc H}
Gal(K/L) +— L

2. For any subgroup H < G and corresponding field L = KH:
[K:L]=|H| and [L:F]=(G:H),

where (G : H) is the index of H in G.

3. An intermediate field L is a normal extension of F (and thus Galois
over F) if and only if the corresponding subgroup H = Gal(K/L)
is a normal subgroup of G. In this case, there is a canonical isomor-

39

phism:
Gal(L/F) 2 G/H.
i

e + 11
K {1} Figure 2.5: The inclusion-
Galois IH| reversing correspondence

between fields and subgroups.
L4 »H
Galois? (G:H)
o e
CORRESPONDENCE

The isomorphism Gal(L/F) = G/H is given by restriction: for o € G,
the map o/, is an automorphism of L (since L is normal, o(L) = L).
The kernel of the restriction map G — Gal(L/F) is precisely the
subgroup fixing L, which is H.
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Exercises

10.

Splitting Fields over Finite Fields. Let F = IF; be a finite field
with g elements, and let n be an integer coprime to p = char(F).
Let E be the splitting field of x” — 1 over F. Prove that the degree
[E : F] is the smallest positive integer k such that g =1 (mod n).

Degree Bound. Let f(x) € F[x] be a polynomial of degree 1, and
let E be its splitting field over F. Prove that [E : F| divides n!.

Cyclotomic Extension of Q. Let E be the splitting field of x8 — 1

over Q. Factor x® — 1 into cyclotomic factors
and use the Tower Law.

(a) Determine the degree [E : Q].
(b) Determine the Galois group Gal(E/Q).

Purely Transcendental Extensions. An extension E/F is purely
transcendental if every element a € E \ F is transcendental over F.

(a) Using the result from Chapter o that any element of F(x) not

in F is transcendental over F, prove that F(x)/F is purely

transcendental. Combine proposition 0.1 with Exercise 8
(b) Prove that for any extension E/F, there exists a unique inter- in Chapter o.
mediate field M such that E/M is purely transcendental and

M/F is algebraic.

Eliminating Multiple Roots. Let F be a field of characteristic o
and f(x) a monic polynomial in F[x]. Let d(x) = ged(f, f'). Prove
that ¢(x) = f(x)/d(x) has the same roots as f(x) but no multiple
roots.

Multiplicities in Characteristic p. Let F be a field of characteristic
p > 0and f(x) € F[x] be irreducible. Prove that all roots of f(x)
have the same multiplicity, and this multiplicity is of the form p”"
for some n > 0.

Separability in Towers. Let E/F be a separable extension and M
an intermediate field. Prove that both E/M and M/F are separa-
ble.

Pure Inseparability. Let F be a field of characteristic p > 0 and
E/F an algebraic extension. Prove that for every « € E, there exists
n > 0 such that a”" is separable over F.

Non-Simple Extension. Let E = Fy(x,y) and F = IF,(x”,y").

(a) Prove that [E: F] = pz. Show {x'y/ | 0 < i,j < p} spans E over

(b) Prove that E/F is not a simple extension (i.e., E # F(vy) for F and use a minimality argument.
any 7). If E = F(7), compare F(y*) with F and

use inseparability.

Consider F(x?,y?,x + ay) with a €

Perfect Fields in Extensions. F(t).

(c) Show that E/F has infinitely many intermediate fields.



11.

12.

13.

14.
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(a) If E/F is algebraic and F is perfect, prove E is perfect.

(b) If E/F is finitely generated and E is perfect, prove F is per-
fect.

(c) Does the conclusion of (b) hold if E/F is algebraic but not
finitely generated?

Explicit Normality. Let E = Q(a) where « is a root of x> + x> —
2x —1=0.

(a) Verify that a® — 2 is also a root of the same polynomial.
(b) Prove that E/Q is a normal extension.

Compositum of Normal Extensions. Let E/F and K/F be normal
extensions contained in a common larger field. Let EK denote the
compositum, the smallest subfield containing both E and K. Prove
that EK/F is normal.

Normality in Towers.

(a) Give an example where E/M and M/F are normal, but E/F
is not normal.

(b) If E/F is normal and M is intermediate, must E/M be nor-
mal? Must M/F be normal?

Degree Condition for Normality. Let E/F be a finite algebraic
extension. Prove that E/F is normal if and only if for every irre-
ducible polynomial f(x) € Flx], all irreducible factors of f(x) in
E[x] have the same degree.

41



3
Galois Groups of Polynomials

We now apply the Fundamental Theorem of Galois Theory (f/co-

rem 2.4) to determine the Galois groups of concrete polynomials. The
Galois group of a polynomial f(x) € F[x] is defined as the Galois
group of its splitting field over F. This group acts by permuting the
roots of f(x), providing a representation of the group as a subgroup
of the symmetric group S.

The Cubic Equation

Consider a general cubic polynomial f(x) = x* + ax? + a;x + ag €
F[x]. Assuming char(F) # 3, we may eliminate the quadratic term
via the substitution x — x — 2. This yields the depressed cubic:

g(x)=x*+px+q pgeF

Let K be the splitting field of g(x) over F. Let the roots of g(x) in K
be a1, a», u3. From the relations between roots and coefficients (Vieta’s
formulae), we have:

Ya;=0
aqup +ap03 + a3 = p
X103 = —(

The Galois group G = Gal(K/F) permutes the set {a1, xp, a3}. Since
K = F(aq,ap,a3), the action is faithful, allowing us to view G as a
subgroup of S3. We have the tower of fields F C F(a;) € K. Since
[F(a1) : F] < 3and [K: F(ag)] < 2, the total degree [K : F| divides
6. To classify G, we investigate specific elements within K that are
invariant under certain permutations.

Definition 3.1. Discriminant of a Cubic.
Let the roots of the cubic be a1, ap, 3. We define the quantity A by:

A= (wg —ap)(ap —a3) (a3 — aq).

The discriminant of the polynomial is D = A2,



: % &
Assume char(F) # 2 so that the sign character takes values £1 with
+1 # F1in F. The action of S3 on A is determined by the sign of the
permutation. For any ¢ € G:

o(A) = sgn(o)A.

Thus, ¢(D) = ¢(A?) = (sgn(c)A)? = A? = D. Since the discriminant
is fixed by the entire Galois group, by the Fundamental Theorem
(corollary 2.1), D € F.

However, A itself belongs to F if and only if 0(A) = Aforall o € G.
This occurs precisely when every ¢ € G is an even permutation, i.e.,
G C As.

Theorem 3.1. Galois Group of a Cubic.
Let f(x) = x®> + px +4q € F[x] be irreducible and separable, with
discriminant D. Let K be its splitting field. Assume char(F) # 2,3.
1. If Dis asquarein F (i.e., VD € F), then G = A3 = C;.
2. If D is not a square in F, then G = S3.

il

Proof

Consider the subfield F(v/D) = F(A). If D is a square in F, then
A € F.Thusforallc € G,o(A) = A, implyingsgn(c) = 1.
Hence G C As. Since f is irreducible, 3 | [K : F],s03 | |G|. The
only subgroup of Az with order divisible by 3 is Aj itself. If D is
not a square, F(A) is a quadratic extension of F. By the Tower Law,
K : F] = [K : F(A)][F(A) : F] = 2[K : F(A)]. Since 3 divides [K : F],
it follows that [K : F| is a multiple of 6. Since G < S3, |G| < 6. Thus
|G| =6 and G = Ss.

The General Case

We extend these concepts to a monic polynomial f(x) € F[x] of
degree n with no repeated roots. Let K be the splitting field and roots
ay,..., &, € K. The Galois group G = Gal(K/F) embeds into Sj,.

Definition 3.2. General Discriminant.
The discriminant of f(x) is defined as:

D(fy= JI (ai—ap)*

1<i<j<n

As in the cubic case, D(f) # 0 if and only if f has no repeated roots.
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Case D ¢ F?

Figure 3.1: Field tower for the
splitting field of a cubic when
the discriminant is not a square.
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Proposition 3.1. Discriminant and Alternating Group.

The discriminant D(f) lies in the base field F. Furthermore, the Ga-
lois group G is a subgroup of the alternating group Aj if and only if
D(f) is the square of an element in F. Assume char(F) # 2.

GCA, — VDEeF.

Proof

Let A = [li<j(#; — aj). Then D = A?. Any permutationo € S,
acts on A by ¢(A) = sgn(c)A. Consequently, c(D) = (sgn(c)A)? =
A? = Dforallo € G. Since the Galois extension fixes elements if
and only if they are in the base field, D € F. The condition G C A,
is equivalent to sgn(c) = 1forallc € G. This holds if and only if
c(A) = Aforallc € G, which by the Fundamental Theorem im-
plies A € F, or equivalently, D is a square in F.

To utilise this proposition, we require a method to compute D with-
out knowing the roots explicitly.

Lemma 3.1. Computing the Discriminant.
Let f(x) =TT (x — ;). Then:

D(f) = (-1)" 5 T £ (w)-

i=1
1z
Proof
By the product rule, the derivative is f'(x) = Yi_;ITix(x — a;).
Evaluating at a root «; annihilates all terms in the sum except the

k =i term:

fai) =T [(@i — o).
7

The product of these values is:

Each pair of indices {i,j} withi # jappears twice in this product:
once as (#; — «;) and once as (a; — a;). Since (a; —&;) = —(a; — @),
we group them:

(i — o)) (& — o) = —(a; — ).

There are () = @ such pairs. Factoring out the —1 for each
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pair yields:
n , n(n—1) 2 n(n—1)
[Tf()=(1"7" [ (w—a)*=(-1)"7 D(f)
i=1 1<i<j<n

Multiplying by the sign factor again (which is its own inverse) gives

the result.
[ ]

Example 3.1. Discriminant of x> + px +g. For f(x) = x*>+ px + g,
we have f’(x) = 3x2 + p. The discriminant is:

3 3

3(2)
D= (=17 [TGaf +p) = —]16aF +p).
i=1 i=1
Using the fact that a3 = —pa; — g, we can reduce the powers (or use

resultants). A standard calculation yields:

D = —4p® —274%

Transitivity and Primitivity

The Galois group acts on the set of roots. The structure of the orbits
of this action reveals factorisation properties of the polynomial.

Lemma 3.2. Transitivity of the Galois Group.
Let f(x) € F[x] be a separable polynomial. The Galois group G acts
transitively on the roots of f(x) if and only if f(x) is irreducible over

F.
5132

Proof

Let «, B be distinct roots. If f is irreducible, F(a) =  F(B) via an
isomorphism fixing F. By the isomorphism extension property
(lemma 2.1), this extends to an automorphism of the splitting field
K, which is an element of G. Thus the action is transitive. Con-
versely, if the action is transitive, then for any root «, the orbit of &
is the set of all roots. The polynomial P(x) = [[,cq(x — o(a)) has
coefficients in F (fixed by G) and divides f(x). Since all roots are in
the orbit, P(x) shares all roots with f(x), so f(x) is irreducible.

We conclude with a powerful theorem due to Dedekind that allows
us to determine the Galois group of polynomials over Q by inspect-
ing their roots in C.
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Theorem 3.2. Galois Group S,.
Let p be a prime and let f(x) € Q[x] be an irreducible polynomial of
degree p. If f(x) has exactly two non-real complex roots, then:

Gal(K/Q) = S,.

g
Proof
Let G = Gal(K/Q) C Sy. Since f is irreducible, p divides [K : Q].
By Cauchy’s Theorem for groups, G contains an element of order p.
In S;, the only elements of order p are p-cycles. Thus G contains a
p-cycle.
Letc : € — C be complex conjugation. The coefficients of f are
rational (hence real), so f(c(z)) = f(z). Thus o permutes the roots
of f. Since there are exactly two non-real roots (which must be a
conjugate pair z,Z) and p — 2 real roots, o fixes p — 2 roots and
swaps two. Therefore, the restriction of ¢ to the splitting field K
corresponds to a transposition in G.
A known result from group theory states that any subgroup of S,

containing a transposition and a p-cycle must be the entire group
Sp. Consequently, G = .

|
Example 3.2. Application to S5. Consider f(x) = x° — 6x + 3. By
Eisenstein’s Criterion with p = 3, f is irreducible. Differentiation

gives f'(x) = 5x* — 6, which has real roots at £+v/6/5. The polyno-
mial f(x) has local extrema at these points.

f(V6/5) ~3—6(1.04) <0, f(—v6/5)~3+6(1.04) > 0.

Since the limits at 0o are +o0, the graph crosses the x-axis three
times. Thus there are 3 real roots and 2 complex roots. Since 5 is
prime, the Galois group is Ss.

El

3.1 Symmetric Polynomials

We have seen that the Galois group of a polynomial encodes the
permutations of its roots. In the general case, where the coefficients
are independent variables, we expect the roots to exhibit no specific
algebraic relations other than those imposed by the coefficients them-
selves. This leads to the study of symmetric polynomials.

Let E be a field and let x1, ..., x, be independent indeterminates.

We consider the field extension generated by these indeterminates,



K=E(xq,...,%3).

Definition 3.3. Elementary Symmetric Polynomials.
The elementary symmetric polynomials ey, ..., e, € E[xq,...,x,] are

defined as:
e1 = Z Xi,
1<i<n
o= ¥
1<i<j<n

& = )3 Xig =+ Xigs

1§i1<---<ik§n

en = X1X2 -+ - - Xp.

A
S

Consider the subfield F = E(ey,...,e;) C K. We observe that
X1,...,Xy are the roots of the polynomial:

n

f) =TT —x) =" —ert" L+ eat"™2 — o 4 (=1) ",
i=1
The coefficients of f(t) lie in F. Thus, K is the splitting field of f(t)
over F. Since the variables x; are distinct indeterminates, f(¢) has no
repeated roots, implying K/ F is a Galois extension.
The symmetric group S, acts naturally on K by permuting the vari-
ables:

g- f(xl, .. .,xn) = f(xg(l),. . .,xa(n)).
Clearly, this action leaves the elementary symmetric polynomials
fixed (i.e., o(ex) = ex). Thus S, C Gal(K/F). Since the Galois group
embeds into the permutation group of the roots, and the roots are
X1,...,%y, we have Gal(K/F) C S,. Therefore:

Gal(K/F) 2 S,.

This setup leads to the Fundamental Theorem of Symmetric Polyno-
mials, which asserts that the elementary symmetric polynomials form
a polynomial basis for all symmetric expressions.

Theorem 3.3. Fundamental Theorem of Symmetric Polynomials.

nomials:
E(xl,...,xn)s" =E(ey,...,en)-

2. Every symmetric polynomial f € E[xy,...,x,] (ie., fixed by S;)

1. The fixed field of the symmetric group acting on the rational func-
tion field is the field generated by the elementary symmetric poly-
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ric polynomials:

flx1,...,x0) =glex,...,en),

for a unique g € E[y1,...,Yn.
%
Part (i).
This follows from the Galois correspondence. We established that
Gal(K/F) = S,,. By the Fundamental Theorem of Galois Theory, the

fixed field of the full Galois group is the base field F = E(ey, ..., ey).
ERA %

Existence.

We proceed by induction on the number of variables 7. The case

n = 1is trivial since e; = x7. Assume the result holds for n — 1
variables. Let f(x1,...,x,) be a symmetric polynomial. Consider
the evaluation at x,, = 0. Let

f :f(xll'“/xnflro)-

The polynomial f is symmetric in variables x1,...,x,_1. By

the inductive hypothesis, there exists a polynomial Q such that
f=0Q(&,...,8,_1), where ¢ are the elementary symmetric polyno-
mials in 7 — 1 variables. Note that for k < n, &y = ex(xy,...,x,-1,0).

Define a candidate polynomial g9 = Q(ey,...,e,_1) in the origi-
nal n variables. Consider the difference h = f — go. Evaluating at
x, = 0:

h(xl,.. .,xn,l,O) = f* Q(E],. . .,én,l) =0.

Thus x; divides h. Since h is symmetric (being the difference of
symmetric polynomials), x; must divide # for all i = 1,...,n.
Since the x; are irreducible in the unique factorisation domain
E[xq,...,xy), their product e, = x1 - - - x,, divides h. So we can write
h = ey - k, where k is symmetric. Since degk = deg f —n < degf,
we can proceed by induction on the degree of the polynomial to
express k, and hence f, in terms of ¢;.

LB &

Uniqueness.

It suffices to show that the elementary symmetric polynomials are
algebraically independent over E. Suppose there is a non-trivial
relation:

Zc(l)elll PR e;? =
()

We induct on n. For n = 1, ¢; = x; is an indeterminate, so indepen-

can be written uniquely as a polynomial in the elementary symmet-
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dence holds. Assume independence for n — 1. Setting x, = 0 in the
relation gives:

ZC(i)é? .. E_Znﬂii (O)i” =0.
()

Terms with i, > 0 vanish. The remaining sum is a relation among

e1,...,8,_1. By the inductive hypothesis, the coefficients (i) for

in = 0 mustbe zero. Thus, every term in the original relation con-

tains a factor of ¢,,. We can factor out e, and repeat the argument

(induction on total degree) to conclude all coefficients are zero.
BLES

This theorem allows us to determine the Galois group of the "gen-

eral" polynomial equation. This is the equation where the coefficients
are not specific numbers, but independent variables.

Theorem 3.4. The Generic Polynomial.
Let ty,...,t, be indeterminates over a field E. Let F = E(fy,...,t,).
The polynomial

flx) =x" =t x" P "2 — o (=1)"t, € Flx]

is irreducible and separable. Its Galois group over F is the symmetric

group Sy.
&

E(s1,---/8n) ===+ s [;}i 77777 P E(x ) Figure 3.2: Isomorphism be-
tween the splitting field of the
generic polynomial and the

. . field of rational functions.

E(ty,- . t) = E(er,.. en)

Proof

Let s1,...,5, be the roots of f(x) in a splitting field K. Then

n

flx) = H(x —5;).
i
Comparing coefficients, we see that ty = ex(s1,...,sn), where ¢ are
the elementary symmetric polynomials evaluated at the roots. Thus
K=E(sy,...,sp) and F = E(e1(s),...,en(s)).
Consider the field K = E(xy,...,x,) of rational functions in inde-
pendent variables x;, and let F = E(ey(x),...,e,(x)). We defined a
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map ¢ : F — Fbyt; — e;j(x). Since the t; are independent inde-
terminates, this map is a ring isomorphism, which extends to the
fields of fractions. Similarly, the map i : K — K defined by s; — x;
is a field isomorphism compatible with ¢. Since Gal(K/F) = S, (by
the previous discussion), the isomorphism of fields implies:

Gal(K/F) = Gal(K/F) = S,.

Since the Galois group S; acts transitively on the roots s;, the poly-
nomial f(x) is irreducible. Since the characteristic is arbitrary but
the s; map to distinct indeterminates x;, the roots are distinct, so
f(x) is separable.

Remark.

This result indicates that the "general" equation of degree n has
the maximum possible symmetry. Any algebraic relation between
the roots of a specific polynomial (with numeric coefficients) corre-
sponds to a reduction in the Galois group to a proper subgroup of
Su.

3.2 Examples of Galois Extensions

We now explore concrete examples of Galois extensions. These serve
as archetypes for more complex field theoretic structures.

Cyclotomic Extensions

Let F be a field and # a positive integer. Assume that the character-
istic of F does not divide n (if char(F) = p > 0, then p { n). This
ensures the polynomial x" — 1 is separable, as its derivative nx" ! is
nonzero at the roots.

Definition 3.4. Cyclotomic Extension.

The splitting field of the polynomial x" —1 over F is called the n-th cy-
clotomic extension of F, denoted by F({,), where {, is a primitive n-
th root of unity.

We define the n-th cyclotomic polynomial as

Dy (x) = H (x — gﬁ)/
1<k<n
ged(kn)=1
so that F(,) is the splitting field of ®,(x) and deg®,(x) = ¢(n)
matches the function ®(n) = [Q({,) : Q] introduced in Chapter o.
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The cyclic subgroup generated by ¢, will be denoted by C,, whenever
a group notation is convenient.

The roots of x" — 1 form a cyclic group of order n under multiplica-
tion. A generator of this group is a primitive root {,,. Thus K = F({,)
contains all n roots: {1,7,,2,...,{"'}. Since K is the splitting field
of a separable polynomial, K/ F is Galois.

An automorphism ¢ € Gal(K/F) is completely determined by its
action on the generator {,. Since ¢({,) must also be a primitive n-th
root of unity (to preserve the multiplicative order), we must have:

o(Cn) = Cy, where ged(a,n) = 1.
This defines an injective group homomorphism:
Y :Gal(K/F) — (Z/nZ)*, o+~ a (mod n).

Consequently, the Galois group is abelian and has order dividing
¢(n).

Example 3.3. Cyclotomic Extensions of Q. Consider F = Q and
n = p™ for a prime p. The primitive n-th roots of unity are roots of
the n-th cyclotomic polynomial:

P Pl
xill =Y '
xpm— 1 =

Substituting x — x 41 and applying Eisenstein’s Criterion with the
prime p shows that @, (x) is irreducible over Q. Thus, the degree
of the extension is:

Cme (x) =

[Q(Gpm) : Q] = deg @pn(x) = p™" — p" ! = (p™).

Since the size of the Galois group equals the degree of the exten-
sion, the injection ¥ must be an isomorphism:

Gal(Q(gpm)/Q) = (Z/p"Z)".

ERid)
Remark.
It is a standard result in number theory (often proved using

the irreducibility of ®,(x) for composite 1) that for any #,

Gal(Q(Zn)/Q) = (Z/nZ)*.

Proposition 3.2. Subfields of Q({).

Let p be an odd prime. The Galois group G = Gal(Q({,)/Q) is cyclic

of order p — 1.

1. The unique element of order 2 in G corresponds to complex con-
jugation o : {p — é;l.

51
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2. The fixed field of the subgroup {1,0} is the maximal real subfield
K* = Q(gp + g;l)

3. Since G is cyclic, for every divisor d of p — 1, there is a unique sub-

field of degree d over Q.
Proof
The map o(gp) = ¢, 1" = {, corresponds to the residue —1 in

(Z/pZ)*. Since (Z/pZ)* is cyclic of even order, it contains a
unique element of order 2. Consider the elementa = ), + ¢ ;1 =
2cos(27t/p). This is clearly real and fixed by o. The polynomial
satisfied by , over Q(«) is:

P —ax41=(x—7p)(x—,").

Thus [Q(p) : Q(«)] = 2. By the Fundamental Theorem, the fixed
field of (o) has index 2 in Q({}). Since Q(«) is contained in this
fixed field and has the correct index, they must be equal.

Finite Fields

The theory of finite fields, discussed in Chapter 1, can be elegantly
restated in Galois theoretic terms. Let F = IF; where g = p/. Let K be
an extension of degree 7, so K = [Fjn. K is the splitting field of X1 — x
over F, hence Galois.

Theorem 3.5. Galois Group of Finite Fields.
The Galois group of a finite extension of finite fields is cyclic. Specif-
ically:

Gal(FFyu /TF;) = Cy.

It is generated by the g-power Frobenius automorphism o : x +— x1.

gl
Proof
Write ¢ = p/. This is the same argument as t/icoren 1.4, with o =
(7{; and base field IF;.
|

Figure 3.3: The real subfield of
a cyclotomic extension.

]Fqn

g x e xl

Figure 3.4: The Galois group of

a finite field extension is cyclic,
generated by Frobenius.



3.3 Exercises

1.

Cubic Discriminant and Roots. Let F be a subfield of R. Let f(x)

be an irreducible cubic polynomial in F[x] with discriminant D(f).

(a) Prove thatif D(f) > 0, then f(x) has three real roots.
(b) Prove that if D(f) < 0, then f(x) has exactly one real root.

Galois Groups in Characteristic 2. Let F be a field of characteris-
tic 2. Determine the Galois group of f(x) over F for the following
polynomials:

(@ flx)=x3+x+1
b) f(x)=x>+x2+1
Calculating Galois Groups. Determine the Galois group of the
polynomial f(x) over the field F in each of the following cases:
(@) f(x) =x*—50ver F=Q, F=Q(v5), and F = Q(/-5).
(b) f(x) =x*—10x*>+4 over F = Q.

Affine Group Embedding. Let p be a prime and a € Q. Sup-
pose xP — a is irreducible in Q[x]. Prove that the Galois group
Gal(K/Q) of the splitting field is isomorphic to a subgroup of the
affine group over IF, specifically the matrix group:

o

Specific Quartic Extension. Let K = Q(«) where & = v/2(1 + ).

keF,;,le IF,,} C GL, ().

(a) Prove that K/Q is a quartic extension.
(b) Determine the Galois group Gal(K/Q).

Inverse Galois Problem (Finite Fields). Prove that every finite
group is the Galois group of some separable polynomial over
some field.

Binomials and Roots of Unity. Let F be a field,c € F,and p a
prime.

(a) If char(F) = p, prove that x” — ¢ is irreducible in F[x] if and
only if it has no root in F.

(b) If char(F) # p and F contains a primitive p-th root of unity,
prove that x” — ¢ is irreducible if and only if it has no root in
F.

Kummer Extensions. Let F contain a primitive n-th root of unity.
Let K = F(3/ay,..., {/ax). Describe the structure of the Galois
group Gal(K/F).

Splitting Field of x* — 2. Let E be the splitting field of x* — 2 over
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Adjoin a primitive pth root of unity g,
track 0({,) and o({/a), and use that o
permutes the roots Cé, {/a.

Consider Cayley’s theorem embedding
G into S;; and construct a generic
polynomial.

Let G act on E(xq,...,x,) by permuting

variables; use Fundamental Theorem of
Symmetric Polynomials and the fixed
field.

Show each automorphism sends {/a; to
g wa; and use relations among the a;.
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10.

11.

12.

13.

Q.
(a) Find all intermediate fields of the extension E/Q.
(b) Identify which intermediate fields are Galois extensions of Q.
(c) Identify pairs of intermediate fields that are conjugate but not
equal.

Modular Splitting Field. Let E be the splitting field of x* — 2 over
the finite field FF5. Determine the Galois group Gal(E/Fs) and list
all intermediate fields.

Cyclotomic Subfields. For n € {8,9,12}:

(a) Determine the structure of the group G = Gal(Q({,)/Q).
(b) List all subgroups of G.
(c) Determine the fixed field corresponding to each subgroup.

Maximal Real Subfield. Let n > 3. Prove that the intersection
Q(Zn) NR is the field Q(Zx + {, ). Determine its degree over Q.

Gauss Sums. Let p be an odd prime and {, = e2/P. Let (%) de-
note the Legendre symbol, where (3;) = 1if a is a square modulo
p, —1 if not, and 0 when a = 0. Define the Gauss sum:

-5 ()

a€F, p

Prove the following:

(a)
a _
Y. ¢y=0.
aclF,
(b) g&=rp. Expand gg and use the orthogonality of
(©) gz _ (_1)(;171)/2;,]. additive characters.

Relate g2 to g§ by evaluating Zﬂ(%)g’lgﬂ
for k a square or nonsquare.

(d) Consequently, Q(,) contains a unique quadratic subfield

K =Q(y/(-1)¢-/2p),



4
Solvability by Radicals

The historical impetus for the development of Galois theory was the
search for a general formula to find the roots of polynomial equa-
tions of degree n > 5. While quadratic, cubic, and quartic equations
admit solutions expressible via arithmetic operations and n-th roots
(radicals), this pattern appeared to break down for higher degrees.

In this chapter, we utilise the Fundamental Theorem of Galois Theory
to translate this problem into group theory. We establish the pre-

cise relationship between the existence of a radical formula and the
algebraic structure of the Galois group.

Radical Extensions

We begin by formalising the notion of "solving by radicals". This cor-
responds to constructing a field extension by successively adjoining
n-th roots of elements.

Definition 4.1. Radical Extension.

Let F be a field.

1. A simple radical extension is an extension K/F such that K = F(d),
where d" = a for some a € F and integer n > 1. We often write
K = F({/a).

2. An extension K/F is a radical extension (or solvable by radicals)
if there exists a finite tower of fields

F=RCHC- - CH =K

where each F;/F;_; is a simple radical extension. This tower is called
a radical tower.

Definition 4.2. Radical Solvability of Equations.

Let f(x) € F[x] be a monic polynomial of degree n > 1. The equa-
tion f(x) = 0 is radically solvable over F if the splitting field K of f(x)
is contained in some extension E which possesses a radical tower over
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F=FRCFKHC---CF,=E, withKCE.
Note

The splitting field K need not be a radical extension itself; it suf-
fices that K is contained in one. This accounts for auxiliary roots of
unity required to express solutions (e.g., the cubic formula requires

V=3).

The solvability of an equation corresponds to a specific property of
its Galois group.

Definition 4.3. Solvable Group.
A finite group G is solvable if there exists a chain of subgroups (a sub-
normal series)

{1}:Gk<1Gk,1<l"'<1G1<1G0:G,

such that each quotient group G;/G;j,1 is abelian.

Remark.

By the classification of finite abelian groups, one can refine this se-
ries such that each factor G;/G; 1 is a cyclic group of prime order.
Key properties of solvable groups include:

1. Subgroups and quotient groups of solvable groups are solvable.
2. If N < G, then G is solvable if and only if both N and G/N are

solvable.
3. The symmetric group S is solvable for n < 4, but not solvable

for n > 5 (as A, is simple and non-abelian for n > 5).

This group-theoretic distinction is the obstruction to solving general
quintic equations.

Galois’ Criterion

We now state the main equivalence theorem. Throughout this section,
we assume char(F) = 0 to avoid separability issues.

Theorem 4.1. Galois’ Solvability Theorem.
Let F be a field of characteristic o and f(x) € F[x]. Let K be the split-
ting field of f over F. The equation f(x) = 0 is radically solvable over
F if and only if Gal(K/F) is a solvable group.

L

An immediate consequence of this theorem, combined with the
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known structure of the symmetric group, is the Abel-Ruffini theo-

rem.

Theorem 4.2. Unsolvability of the General Quintic.

Let n > 5 and let ty,...,t, be independent indeterminates over a field
F of characteristic o. The general equation

fx)=a"—tx" 14 4 (=1)", =0

is not radically solvable over the field L = F(ty,...,t,).

T
Proof
By theorem 3.4, the Galois group of the general polynomial over L
is isomorphic to the symmetric group S,. Forn > 5,5, isnota
solvable group (the alternating group A, is the unique non-trivial
normal subgroup and is simple non-abelian). By t/icoren 4.1, the
equation is not solvable by radicals.

4.3 Proof of the Solvability Theorem

To prove theorem 4.1, we require several auxiliary results connecting
cyclic extensions to simple radical extensions. This connection is
mediated by roots of unity.

Kummer Extensions

Lemma 4.1. Kummer Extensions.
Let F be a field containing a primitive p-th root of unity ,, where p
is a prime. Let K/F be a cyclic extension of degree p. Then K is a rad-

ical extension of the form K = F({/a) for some a € F.
g

Proof

Let Gal(K/F) = (o) = Cp. Choose an element ¢ € K\ F. We con-
struct a "Lagrange resolvent" to diagonalise the action of ¢. Define
the elements d; € Kfori =0,...,p — 1 by:

di =c+ho(c) + {Zo*(c) + -+ Vigr=1(c).
Applying ¢ to d;:
o(d;) =o(c) + g;ﬁ(c) 4ot géP*Z)iapq(c) i gépfl)ic
=g (Gl +- )
=,'d;.
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Thus, o(dl) = (o(di))P = ({,'di)P = (gp)~'dl = df. Since d! is
fixed by the generator o, it is fixed by the entire group, so df =a; €
F.

It remains to show that for some i, d; ¢ F. We can write the defini-

tion of the d; as a matrix-vector product. Let ¢, = o*(c) fork =
0,...,.p—1
do 11 1 . 1 %
-1
dl B 1 gP g?% PN C,g C1
-1 ,2(p-1 -1)(p-1
dp_q 1 55 gp(p ) g}(qp )(p—1) Cp_1

The matrix is a Vandermonde matrix in the variables
1,¢p, ’20, .., Cﬁfl. Since {, is a primitive root, these values are
distinct, so the determinant is non-zero. Since¢ ¢  F, the vector
(co,---,cp_1) is not a multiple of (1,...,1). Specifically, K = F(c),
so not all d; can lie in F (otherwise ¢ would be a linear combination
of elements in F). Thus there exists some d = d; such that K = F(d)
and df € F.

|

Preservation of Solvability

We establish that solvability properties are robust under base change

KE
and closure.
We use the notation in Figure 4.1.

Definition 4.4. Normal Closure. K F
Let E/F be a finite extension. The normal closure of E over F is the small- \ /
F

est normal extension of F containing E (in the sense of definition 2.8).
This is the same field as the Galois Closure.

Figure 4.1: The compositum KE

Lemma 4.2. Galois Group under Base Change.

Let K be the splitting field of a polynomial f(x) € F[x]. Let E/F be
any field extension. Then the splitting field of f(x) over E is KE, and
there is an injective homomorphism:

Gal(KE/E) — Gal(K/F), o 0o|k.
1

Proof
Let K = F(ay,...,ay) where a; are the roots of f. Then
KE = E(ay,...,ay) is clearly the splitting field over E. For any
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o € Gal(KE/E), o permutes the roots «;. Since K is generated by
these roots, 0(K) = K. Thus the restriction ok is an automorphism
of K. Since o fixes E, it fixes F,so o|x € Gal(K/F). The map is a
homomorphism. If o|x = id, then o fixes all «;. Since ¢ also fixes E,
it fixes the generating set E U {«;} of KE. Thus ¢ = id.

]

Lemma 4.3. Normal Closure of Radical Towers.

Let E/F be a finite extension. If E is contained in a radical tower over
F, then the normal closure N of E over F is also contained in a radical
tower over F.

5132
Proof
LetF = Fp € Ff C --- C F, bearadical tower with E C F,,.
Let F; = F_q1(d;) with d?" € F,_1. We proceed by induction on

the length of the tower. Let M be the normal closure of F;, over F.
M is generated over F by all conjugates of the elements in F;,. Let
fi(x) be the minimal polynomial of d; over F. Let the roots of f; in M
Mbe {d;;}. If F;_; is contained in a normal radical tower M;_1, |
then adjoining all conjugates d; ; to M; 1 results in a radical exten-

\
1
|
I
1
1

sion. Specifically, if d" = a € F,_y, then forany ¢ € Gal(M/F), Fon
(0d;)" = oa € 0F,_1 C M;_1. Thus we can construct a tower for M \\\ N J
by successively adjoining roots of conjugates. S /Radical
[ ] E \\Radical )/
See 4.2 for the field diagram used in the proof. \ 0
-
1,
Proof of theorem 4.1 F

We are now equipped to prove the main theorem. Figure 4.2: Radical solvability

Sufficiency ( =) lifts to the normal closure
Suppose f(x) is radically solvable. Let K be the splitting field. By
definition and lemma 4.3, there exists a radical tower F = Fy C --- C

Fn such that K C  F, and F,/F is Galois (replacing the top field
with its normal closure). We define a refined tower by adjoining
primitive roots of unity. Let N be the least common multiple of the
exponents appearing in the radical tower. Let { be a primitive N-th
root of unity. Consider the tower:

FCFQ) =FCHC - CF,=Fu(0).

 The extension F({)/F is cyclotomic, hence abelian (and solvable).

* Each step F/ = F/_;(d;) is a radical extension where the base field
F!_, contains the requisite roots of unity. By standard Kummer
theory arguments (converse of /ennma 4.1), such extensions are
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abelian.
Thus Gal(F,,({)/F) is a solvable group (being an extension of ’
abelian groups by abelian groups). Since K  C F, C  Fu(0), /
Gal(K/F) is a quotient of a subgroup of a solvable group. Thus
Gal(K/F) is solvable.
BLES

Necessity ( <= )
Suppose G = Gal(K/F) is solvable. Let [K : F| = n.Let{bea

primitive n-th root of unity. Consider the extension K(g)/F(g). By
lemma 4.2, its Galois group H injects into G. Since G is solvable, H

is solvable. Let

Figure 4.3: Adjoining roots of
{1} = Hy<Hy_1<---<Hp=H g 3 ) 6
unity
be a composition series where factors are cyclic of prime order. By
the Fundamental Theorem of Galois Theory, this corresponds to a

tower of fields:
F(§) =Ey C Ey C -+ C Ex=K({).

Since H;/Hj4 is cyclic of prime order p and E; contains primitive
roots of unity (as p | |H| | n), lemma 4.1 implies that each step
E; 1/E; is a simple radical extension. Finally, F({)/F is a radical
extension (adjoining roots of unity). Thus F C F({) C --- C K(Q) is
a radical tower containing K.

SEF] #

4.4 Proofs of the Main Theorems

In this final section, we provide the rigorous proofs for the funda-
mental structural results of Galois theory. While we have utilised
these theorems to explore examples and solvability, their proofs re-
veal the deep interplay between linear algebra and field theory that
underpins the subject.

The Primitive Element Theorem

We first supply the complete proof for the existence of a single gener-
ator for finite separable extensions.

Proof of the Primitive Element Theorem

We prove Primitive Element Theorem from Chapter 2; see theorem 2.2
for the statement. Let K = F(aq,...,a,) be a finite separable ex-
tension. If F is a finite field, the multiplicative group K* is cyclic

(Finite Subgroups of Fields). Let y be a generator; then K = F(7).
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Assume F is infinite. By induction, it suffices to consider the case

K = F(a,pB). Let f(x) and g(x) be the minimal polynomials of «
and 8 over F, respectively. Let E be a splitting field for f(x)g(x)
containing K. Let a1, ..., a, be the distinct roots of f(x) in E (with
a1 = w),and let By,..., Bs be the distinct roots of g(x) in E (with
B1 = B). The roots are distinct because the extension is separable.
We seek an element of the form v = a + ¢ with ¢ € F. For this
to generate K, we essentially need to ensure that the linear combi-
nation distinguishes the roots. Specifically, we require that for any
j#1,a;+cBj # a + cp. Consider the linear equations:

a; +xfj = a+ xp.

For each pair (i,j) with j # 1, there is at most one solution for x in

E:
x= iR
P —Bj

Since F is infinite, we can choose ¢ S F distinct from these
finitely many ratios. Lety =« + cB. Clearly F(y) C F(a,p).
To show the reverse inclusion, notice that p satisfies g(8) = 0,
and also satisfies the polynomial /(x) = fly — cx) (since
h(B) = f(a) = 0). Thus B is a common root of g(x) and h(x)
in the ring F(-y)[x]. In E[x], the roots of g(x) are B,...,Bs. The
roots of h(x) = f(y — cx) are values § such that y — ¢ = a;

for some k,ie., { = (y—ag)/c = (a+cp — ag)/c. If p were a
common root other than f1, then for some j # 1, we would have
Bi = (a+cB —ar)/c, implying « + cf = ay + cf;. This contradicts
our choice of c. Therefore, ged(g(x), h(x)) = x — B. Since the GCD
of two polynomials can be computed in the field containing their
coefficients, x — B € F(v)[x]. Thus B € F(v), and consequently
a =7y —cP € F(v). Hence F(a, B) = F(7).

[ |

Linear Independence of Automorphisms

The engine driving the correspondence between fields and groups is
the linear independence of characters.

Definition 4.5. Linear Independence of Characters.
Let G be a group and K a field. A set of distinct homomorphisms x1,...,x» :
G — K* is linearly independent over K if the equation

ax1(g)+---+anxn(g) =0 forallgeG

implies 4y = --- = a, = 0.

e
S
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Lemma 4.4. Dedekind’s Lemma.
Distinct field automorphisms are linearly independent. That is, if o3, ..., 0y
are distinct automorphisms of K, they are linearly independent over

K.
7132

Proof

Suppose there exists a non-trivial relation Y ;" ; a;0;(x) = 0 for all
x € K. We choose a relation with the minimal number of non-zero
coefficients m. Clearly m > 2. By dividing by 41, we may assume
a1 = 1. Since 07 # 0y, there exists y € K such that o1 (y) # om(y).
Substitute yx into the relation:

m
Y ai0i(y)oi(x) = 0.
i=1
Multiply the original relation by oy, (v):
m
Y aiom(y)oi(x) = 0.
i=1
Subtracting these gives a new relation:
m—1
Y ai(ei(y) = om(y))oi(x) = 0.
i=1

The coefficient for oy is 01(y) — 0 (y) # 0. Thus we have found a
non-trivial relation with fewer terms, contradicting minimality.

This leads to the crucial inequality relating the degree of an extension
to the size of the automorphism group. This result is often referred to
as Artin’s Lemma.

Theorem 4.3. Artin’s Theorem on Invariant Fields.
Let G be a finite subgroup of Aut(K). Let F = KC be the fixed field.

Then:
[K: F] =|G]|.

Letn =|G|and G = {oy =1id,...,04}.
Proof that [K : F] < n.

Suppose for contradiction that [K : F|] > n.Letuy,...,u,4q be
linearly independent elements of K over F. Consider the system of




linear equations in unknowns x;:

n+1
Z O'i(l/lj)xj' = O, fori = 1,. R (%
j=1

This is a homogeneous system of n equations in n + 1 vari-
ables with coefficients in K. It must have a non-trivial solution
(c1,...,0441) in K. Let us choose a solution with the minimal num-
ber of non-zero entries. By reordering, let c; # 0. Normalising, we
may set ¢c; = 1. The equation for o7 = id is Y u;c; = 0. Since the u;
are independent over F, not all ¢; can lie in F. Suppose ¢, ¢ F. Since
ck ¢ KO, there exists 0, € G such that 0;(c;) # cx. Applying o; to
the system:

Z(Tr((ri(u]-))ar(cj) =0.
]

As 0; ranges over G, so does 0;0;. Thus (0y(c1),...,0(cy41)) is
also a solution to the system (permuted). Subtracting this from the
original solution:

n+1
Y oi(uj)(cj — ov(cj)) = 0.
j=1
The first componentis 1 — 0;(1) = 0. The k-th component is ¢, —

or(ck) # 0. Thus we have constructed a non-trivial solution with

strictly fewer non-zero entries, a contradiction. Hence [K : F] < |G]|.
ELES

Proof that [K : F| > n.

Let G = Gal(K/F). We have already established in proposition 0.6
that |G| < [K : F] for any finite extension. However, proving [K :
F] > |G| is immediate from the Primitive Element Theorem if K/F
is separable. Let K = F(7).

Let

h(x) = [T (x—c(r))

ceG

The coefficients of h are fixed by G,soh € Flx]. Since 1 is a root,
the minimal polynomial m(x) divides h(x). Thus [K : F| = degm <
degh = |G|.
Combining with the first part, if F = K¢, we must have [K : F] =
|G|

BLES

Corollary 4.1. Galois Extensions are Normal and Separable. 1f F = K&
for a finite group G, then K is a separable normal extension of F.

i
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Proof
Forany B € K, let O = {0(B) | ¢ € G} = {B1,...,B+} be its orbit.
The polynomial g(x) = TJ/_;(x — B;) is separable and invariant

under G, so g(x) € F[x]. Since f is a root, the minimal polynomial
of B divides g(x), hence splits completely in K with distinct roots.
Thus the extension is normal and separable.

|

Proof of the Fundamental Theorem

We now assemble these results to prove t/icoren 2.4. Let K/F be a
Galois extension with group G.
Proof of the Fundamental Theorem of Galois Theory

The Correspondence: Let H < G be a subgroup. Let L = K. By
theorem 4.3, [K : L] = |H|. Conversely, let L be an intermediate
field. Let H = Gal(K/L). By definition, L C KH. Since K/F is
Galois, K is the splitting field of a separable polynomial over F,
and thus also over L. Hence K/L is Galois. By the equality of
degree and group order: [K : L] = |H|. Also [K : KH] = |H| by
Artin’s Theorem. Thus [K : L] = [K : KY], implying L = KH.
Therefore, the maps H +— K and L + Gal(K/L) are inverses.

Degrees: We have [K : L] = |H|. By the Tower Law and Lagrange’s
Theorem: K:F (Gl
L:F]l=+——+=1==(G:H).
[ ] [K:L] |H] ( )
Conjugation: Let H <+ L. The field corresponding to the conjugate
subgroup cHo ! is:

KH = {x e K |oho Y(x)=x VheH}.

Lety = ¢ !(x). The condition becomes h(y) = y,ie,y € L.
Thus x € ¢(L). So cHo ™! « o(L).

Normality: L/F isnormal <= o¢(L) = Lforallc € G (since
any embedding into an algebraic closure corresponds to restric-
tion of an automorphism of K). By the conjugation relation,

o0(L) =L <= ocHo ! = H. Thus L/F is normal <= H<G. In
this case, the map G — Gal(L/F) given by restriction ¢ — oy is
a surjective homomorphism with kernel H. By the First Isomor-
phism Theorem:

Gal(L/F) = G/H.
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4.5 Exercises
1. Explicit Radicals. Express the following trigonometric values in
terms of radicals:

(a) cos20° (Note: While not constructible, it is radically solvable).
(b) cos @.

2. Cardano’s Formula. Let F be a field of characteristic 0 and f(x) =
x3 — t1x% + tyx — t3 € F(ty, tp, t3)[x]. Derive the explicit formula for
the roots x1, xp, x3 in terms of the coefficients and the cube roots of
unity w. Define p = t, — t%/3 and g = t1t/3 — 2t~i’/27 —t3. Let

O B L D AP B B I G il
“_\/ 2TV T 5_\/2 s T

Verify that x; = t;/3 + a 4 B is a root, provided af = —p/3.

3. Solving Equations. Find all complex roots of the following poly-
nomials:

(@ x®—2x+4=0
(b) x¥* —15x +4=0
() x*—2x3—8x—-3=0

4. Inseparability and Solvability. Let F = [F,(t). Consider the
equation x¥ —x —t = 0.

(a) Prove that the Galois group of the splitting field is cyclic
(hence solvable).

(b) Prove that the equation is not solvable by radicals over F.

(c) Explain why this does not contradict Galois” Solvability Theo-
rem (check the characteristic).

5. Invariant Fields of Rational Functions. Let E = C(t). Leto, T €
Aut(E) be defined by o(t) = wt (where w = ¢2™/3) and 1(t) =
L

(a) Prove that the subgroup H = (o, T) has order 6 and is iso-
morphic to S3.
(b) Determine the fixed field Ef. Show it is C(#3 + +73).

6. Artin-Schreier Invariants. Let F be a field of characteristic p. Let
o € Aut(F(x)) be defined by o(x) = x + 1. Let H = (0).

(a) Prove |H| = p.
(b) Determine the fixed field F(x)H.

7. Artin-Schreier Galois Groups. Let F be a field of characteristic
panda € F. Suppose f(x) = x? — x — a is irreducible. Let « be
a root. Prove that F(a)/F is a Galois extension and determine its
Galois group.
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8.

10.

11.

Galois Translation Theorem. Let L and M be subfields of a larger
field E. Suppose L is a finite Galois extension of L N M. Prove
that LM is a Galois extension of M and that there is a natural
isomorphism:

Gal(LM/M) = Gal(L/L N M).

Normal Closures and Intersections. Let E/F be a finite Galois
extension with intermediate fields N, M suchthat F C M C N C
E. Suppose N is the normal closure of M over F. Prove that:

Gal(E/N)= (] oGal(E/M)c "
o€Gal(E/F)

Prime Degree Extensions. Let E/F be a finite Galois extension.
Suppose that for every intermediate field K with F C K C E, the
degree [K : F| is the same. Prove that [E : F] must be a prime
number.

Multiquadratic Extensions.

(a) Prove that K = Q(\@, V3, \/5) is a Galois extension of Q and
determine its Galois group.

(b) Find the minimal polynomial of « = V6 + /10 4 /15 over Q.

(c) Prove that v/6 € Q(«).

(d) Find the minimal polynomial of v/2 + /3 over the field Q(«).



5
R-Modules

We have previously explored fields and vector spaces, where scalars
can be inverted. We now generalise this structure to rings, where
scalars need not be invertible. The resulting object, an R-module, is
the fundamental tool for algebraic number theory and homological
algebra.

5.1 Definitions and Examples

Definition 5.1. R-Module.
Let R be a ring. An R-module M is a set equipped with two operations:

Sy MXM—=M, 9 :RxM—M,
satisfying the following axioms for all 7,7’ € R and m,m’ € M:
1. (M, +p) is an abelian group with identity 0p;.
2. Distributivity over vector addition: r - (m +m') = rm + rm’.
3. Distributivity over scalar addition: (v + ') - m = rm + r'm.
4. Associativity of scalars: (rr') -m =r- (r'm).

5. Identity: 1g - m = m.

The structure of a module can be reinterpreted through the lens of
ring homomorphisms.

Remark.

For an abelian group M, let End(M) denote the set of group en-
domorphisms (homomorphisms from M to M). Under point-

wise addition and composition, End(M) forms a (generally non-
commutative) ring. The scalar multiplication on an R-module M is
equivalent to a ring homomorphism ¢ : R — End(M), defined by
¢(r)(m) = r-m. The axioms ensure that this map respects the ring
structure of R.
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Example 5.1. Basic Module Structures.

- The ring R is naturally an R-module over itself, using its internal
addition and multiplication.

- Anyideal I C Risan R-module under the operations restricted
from R.

- If R is a field, the axioms of an R-module are identical to those
of a vector space. Thus, R-modules over a field are simply vector

spaces.
E
Example 5.2. Abelian Groups. Let R = Z. Any abelian group M
admits a unique Z-module structure. The axiom 1 - m = m com-
bined with additivity forces the definition:
m—+---+m ifn>0,
n times
n-m= < 0um ifn=0,
(—=m)+---+(—m) ifn<O0.
|n| times
Thus, the study of abelian groups is equivalent to the study of
Z-modules.
E
Example 5.3. Change of Rings. Let f : R — S be a ring homomor-
phism.
- The ring S becomes an R-module via the actionr - s = f(r)s.

Here, the scalar multiplication uses the map f to interpret ele-
ments of R as elements of S.

- More generally, if M is an S-module, it inherits an R-module
structure via restriction of scalars:

r-m= f(r)-gm.

- In particular, if I is an ideal of R, the quotient map 7w : R — R/I
allows any R/I-module to be viewed as an R-module. In this
case, I acts trivially: for any r € I, r -m = 0. We say I annihilates
M.

- Conversely, if M is an R-module annihilated by I, it admits a
well-defined R/I-module structure defined by (r + I) - m = rm.
This is well-defined because if r +1 = ' + I, thenr — ' € 1, s0
(r—¢"ym = 0, implying rm = r'm.

ERl
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Example 5.4. Function Modules. Let S be a set and let Mg be the
set of all functions f : S — R. We define addition and scalar
multiplication pointwise:

(f+8)(s) = fls) +g(s),  (r-f)(s) =7-f(s).

This makes Mg into an R-module. Consider the subset of functions
with finite support:

Fs ={f € Mg | f(s) = 0 for all but finitely many s € S}.

This subset is closed under the module operations and forms the
free R-module on the set S.

Eal

5.2 Submodules and Quotients

Just as we analyse groups via subgroups and rings via ideals, we
investigate modules through submodules.

Definition 5.2. Submodule.

Let M be an R-module. A subset N C M is an R-submodule if it is
closed under addition and scalar multiplication:

1. Foralln,n’ € N,n+n' € N (ie, N is a subgroup of M).

2. Forallr e Randn € N, rn € N.

Note that the ideals of R are precisely the R-submodules of R when
viewed as a module over itself.

Definition 5.3. Generated Submodules.

Let S be a subset of an R-module M. The submodule generated by S
is the set of all finite linear combinations of elements of S with coef-
ficients in R:

rieR,sieS,ke]N}.

k
(S) = {Z risi

i=1

This is the smallest submodule of M containing S. If there exists a fi-
nite set S such that (S) = M, we say M is a finitely generated R-module.

Quotient Modules

Given a submodule N C M, we can construct a quotient structure.

69
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Definition 5.4. Quotient Module.
Let N be a submodule of M. We define a congruence relation on M by:

m=m' (mod N) <= m—m' € N.

The equivalence classes are the cosets m + N. The set of these classes,
denoted M/ N, forms an R-module under the operations:

(m+N)+(m +N)=(m+m')+N,

r-(m+ N) = (rm)+ N.
This is called the quotient of M by N.

The well-definedness of scalar multiplication follows from the sub-
module property: if m —m’ € N, then r(m —m') = rm —rm’ € N,
sorm = rm’ (mod N). The natural map 7 : M — M/N given by
m — m + N is a module homomorphism.

Direct Sums

Definition 5.5. Direct Sum.
Let M; and Mj be R-modules. The direct sum M; & M5 is the set of
ordered pairs (m1, my) with component-wise operations:

(my,mp) + (my, mb) = (my +my, my + mp),

r- (my,my) = (rmy,rmy).
Example 5.5. Quotients by Ideals. Let M be an R-module and I an

ideal of R. We can form the submodule IM generated by products
of scalars in I and vectors in M:

k
IM = { 2 l]m]
j=1

i]-GI,m]-EM}.

The quotient M/IM is an R-module. Since every element of I an-
nihilates this quotient (mapping elements to the zero coset), M/IM
naturally carries the structure of an R/I-module. The scalar multi-
plication is defined by:

(r+1)-(m+IM) =rm+ IM.

To verify this is well-defined, suppose r — ' € I and m —m’ € IM.
Then:

rm—r'm =r(m—m')+ (r—7")m'.
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The first term is in IM because m — m’ € IM and IM is a submod-
ule. The second term is in IM because r —r" € I implies (r —1")m’ €
IM. Thus the difference lies in IM.

$o19]

5.3 Homomorphisms and Free Modules

Having established the structural definitions of submodules and
quotients, we turn our attention to the maps between modules that
preserve this structure.

Module Homomorphisms

Definition 5.6. Module Homomorphism.

Let M and N be R-modules. A map f : M — N is an R-module ho-
momorphism (or simply an R-linear map) if it satisfies:

1. Additivity: f(m+m') = f(m) + f(m’) for all m,m" € M.

2. R-linearity: f(rm) =rf(m) forallr € R,m € M.

The set of all such homomorphisms is denoted Hompg (M, N).
Remark.

It is crucial to distinguish between ring homomorphisms and mod-
ule homomorphisms. A ring homomorphism¢ : R — Rmust
satisfy multiplicative splitting ¢(rr’) = ¢(r)¢(r'), whereas an

R-module homomorphism f : R — R treats the first scalar as a
coefficient: f(rr') = rf ().

The structural kernels and images behave exactly as they do in group
theory.

Definition 5.7. Kernel and Image.
Let f : M — N be an R-module homomorphism.
- The kernel of f isker f = {m € M| f(m) = 0}.

- The image of fisim f = {n € N |3Im € M, f(m) = n}.

It is a standard verification that ker f is a submodule of M and im f
is a submodule of N. Consequently, we may construct the quotient
M/ ker f.

Proposition 5.1. Universal Property of the Quotient.
Let N be a submodule of M and let t : M — M/ N be the canoni-
cal projection. Let f : M — M’ be an R-module homomorphism such
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M’ such that fo = f.

¥

Proof

The proof is identical to that for quotient rings. We define

f(m+ N) = f(m). This is well-defined because if m — m’ € N,
then f(m —m') = 0,s0 f(m) = f(m’). Linearity follows from the
linearity of f.

Free Modules

In vector spaces, the existence of a basis is guaranteed (assuming the
Axiom of Choice), allowing any vector space to be non-canonically
identified with a direct sum of copies of the field. For modules over
arbitrary rings, bases need not exist. Modules that do admit a basis
are termed free.

Definition 5.8. Basis and Free Modules.

Let M be an R-module. A subset S C M is a basis if:

1. S generates M: Every m € M can be written as a finite sum m =
Y ris;withr; € R, s; € S.

2. S is linearly independent: If ) r;s; = 0 for distinct s; € S, then r; =
0 for all i.

An R-module possessing a basis is called free. The cardinality of the

basis is the rank of M.

Remark.

If R is a field, every module is free. For general rings, this is false.

For example, the Z-module Z/nZ (forn > 1) has no basis. Any

single element x satisfies nx = 0, violating linear independence.

Example 5.6. Standard Free Modules.
- The ring R is a free module of rank 1 with basis {1z }. Indeed,
any unit u € R* constitutes a basis.

- Recall the module Fs of functions S — R with finite support in-
troduced in the previous section. For each s € S, define the char-
acteristic function es € Fg by:

1 ift=s,
0 ift#s.

The set {¢s}scs forms a basis for Fs. Any f € Fs is non-zero at
finitely many points sy, ...,s,. Setting r; = f(s;), we have f =

that N C ker f. Then there exists a unique homomorphism f : M/N —

’

M/N

Figure 5.1: The universal prop-
erty of the quotient module.



Y_ries;, proving generation. For independence, if } r;es, = 0 (the
zero function), evaluating at s; yields r; = 0. Thus Fj is the free
module on the set S.

$.19]
Free modules behave well under direct sums.

Proposition 5.2. Direct Sums of Free Modules.

Fi ® F, is free with basis
S = {(S,O) | s € Sl} U {(O,S,) I S, € SZ}

If F;, F, have finite ranks nq, 1y, then F; @ F, has rank ny + ny.

>

P

Proof
Let (m,m’) € F @ F,. Since S spans F; and S, spans F,, we can
write m = Y r;s; and m’ = Zr}s;. Then

(m,m") = Zri(si,O) + 2r§(0, s;)

Thus S spans. For independence, suppose Y_7;(s;,0) + Zr]’»(O, s;) =
(0,0). This implies }_r;s; = 0in F; and Zr;s;. = 0in F,. By the lin-
ear independence of S; and S, all coefficients vanish.

The defining characteristic of free modules is their universal mapping
property: to define a map out of a free module, it suffices to specify
the images of the basis elements arbitrarily.

Proposition 5.3. Universal Property of Free Modules.

Let Fs be the free R-module on a set S. For any R-module M and any
set map f : S — M, there exists a unique R-module homomorphism
¢f : Fs — M such that ¢¢(es) = f(s) forall s € S.

Proof
We construct ¢ by extending linearly: for ¢ = Y csrses € Fs

(where the sum is finite), define

¢r(8) = Zsrsf(S)-

This map is clearly R-linear. Uniqueness follows because any ho-
momorphism is determined by its action on a basis: ¢(}_rses) =

Yrsples) = L rsf(s).

Let F; and F, be free R-modules with bases S; and S; respectively. Then

FIELDS GALIOS MODULES
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Corollary 5.1. Classification by Rank. Let M be a free R-module with
basis T. If S is a set with the same cardinality as T, then M = Fs. Con-
sequently, any two free modules of the same rank are isomorphic.

e
Proof
Let g : T — S be a bijection. Using the universal property, the map

T — Fs sending t — ey (;) extends to a homomorphism ¢ : M — Fg.
Similarly, e; — ¢~ 1(s) induces an inverse homomorphism.

Generators and Relations

While not all modules are free, every module is a quotient of a
free module. Let M be an R-module generated by a finite set S =
{s1,...,5n}. The universal property yields a surjective homomor-
phism:

n

Y:Fs— M, ¢ <Z miesl) = imisi.
i=1

i=1
The kernel K = ker ¢ consists of the linear dependencies among the
generators. Elements of K are called relations.
n n

Zmiesi €K <= Zmisi =0in M.

i=1 i=1
Since K is a submodule of a free module (which, over general rings,
is not necessarily free, though it is for PIDs), we can often find a
generating set T = {t1,...,t,} for K. This gives a surjection Fr — K.
Composing with the inclusion K — Fg, we obtain a sequence of
maps:

¢ 4
Fr—=Fs —- M —0.

Here im¢ = K = ker . By the First Isomorphism Theorem, M =
Fs/ im¢. This description is called a presentation of M. If S and T
are both finite, M is finitely presented.

Definition 5.9. Cokernel.
Let f : A — B be an R-module homomorphism. The cokernel of f
is the quotient module

coker f = B/im f.

Definition 5.10. Presentation Matrix.

The map ¢ : R" — R" is determined by the images of the basis vec-

Let M be finitely presented with generators sy, ..., s, and relations t1, ...

/tm~
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tors of R™. Writing 4>(etj) = YI_q ajjes;, we form the n x m matrix A =
(a;j). The module M is isomorphic to the cokernel of the linear map
defined by A:

M = R"/AR™.
The matrix A is the presentation matrix.
Example 5.7. Simple Presentations.
- Let R =Zand M = Z/nZ. M is generated by 1, so Fs = Z. The

kernel is the ideal nZ, generated by n. The presentation matrix is
the 1 x 1 matrix (n).

- Let R = Z[v/—5]. Consider the ideal I = (2,1 + 1/—5). We treat I
as an R-module generated by s; = 2 and s, = 14 +/—5. We seek
the relations 7151 + r25p = 0. Observe that:

(1++/=5)s1 —2s5 = 2(14++/=5) —2(1++v/—=5) = 0.
351 —(1—v—-5)sp =6—(1—+/—-5)(1++v—-5) =6—(1—(=5)) = 0.

It can be shown that these two relations generate the kernel of

the map R> — I. Thus, we define¢ : R?> — R?sending the
basis of the relation module to these linear combinations. The
presentation matrix is:

_|14++V/=5 3
N -2 —14+-5|"

The columns correspond to the relations, and the rows to the

A

generators sq, Sp.

E
The presentation matrix is not unique. If A presents M, then for any
invertible matrices B € GL,(R) and C € GL,(R), the matrix BAC
also presents M. This corresponds to changing the basis of the free
modules Fg and F.

5.4 Exercises

1. Ideals as Submodules. Let R be a ring, viewed as a left R-module
over itself.

(a) Show that any ideal I C R is an R-submodule of R.

(b) Conversely, show that any R-submodule N C R is an ideal of
R.

(c) Conclude that the ideals of R are exactly the submodules of R
viewed as an R-module.
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2. Function Modules and Free Modules. Let S be a set and R a ring.
Let Fg be the set of functions f : S — R with finite support (i.e.,
f(s) # 0 for only finitely many s).

(a) Prove that Fs is an R-module under pointwise operations.

(b) Foreachs € S, definee; € Fsbyes(t) = 1ift = sand 0
otherwise. Show that every f € Fg can be uniquely written as
a finite linear combination Y rses.

(c) Deduce that {es}scs is a basis for Fs, making it a free R-
module.

3. Generating Modules. Let M be an R-module and S € M. Prove
the equivalence of the following statements:

(a) Every element of M is an R-linear combination of elements of
S.

(b) For any R-module N and homomorphisms f,g : M — N, if
fls = gls then f = g.

(c) For any R-module L and homomorphism i : L — M, if
S C im#h, then h is surjective.

4. Finite Generation. An R-module M is finitely generated if it is
generated by a finite set. Prove that if M is finitely generated, then
for any chain of submodules Ny C N, C ... such that JN; = M,
there exists k such that Ny = M.

5. Z-Modules and Abelian Groups.

(a) Prove that every abelian group A admits a unique structure
of a Z-module.

(b) Prove that for abelian groups A, B, Homy (A, B) is exactly the
set of group homomorphisms.

(c) Explain why the axiom 1-m = m forces the definition of
integer multiplication.

6. Products and Coproducts. Let {M;};c; be a family of R-modules.
Let P = [];c; M; (direct product) and S = @;c; M; (direct sum).

(a) Prove the universal property of the product: A homomor-
phism f : L — P corresponds uniquely to a family of homo-
morphisms f; : L — M;.

(b) Prove the universal property of the direct sum: A homo-
morphism g : S — N corresponds uniquely to a family of
homomorphisms g; : M; — N.

7. Submodules of Z2. View Z? as a Z-module. For each subset,

determine if it is a submodule. If so, find a finite generating set.

@ Ny ={(n2n)|nez}
(b) N» ={(24,3b) |a,beZ}



10.

11.

12.

13.
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() N3 ={(a,b) € Z?|a+biseven}
(d) Ny={(a,b) €Z?|a=b (mod 3)}

Quotients of Z2. Let M = Z? and N be the submodule generated
by (2,0) and (1, 3).

(a) Describe the quotient module M/ N as an abelian group (e.g.,
as a direct sum of cyclic groups).

(b) Find the annihilator ideal Anny(M/N) = {r € Z | r-
(M/N) = 0}.

Hom-sets. Let M, N be R-modules.

(a) Show that Homg (M, N) is an abelian group under pointwise
addition.

(b) If R is commutative, show Homg (M, N) is an R-module via
(- f)(m) =1+ £(m).

(c) Prove there is an isomorphism of R-modules Homg (R, M) =
M given by f — f(1).

Isomorphism Theorems. Let f : M — N be an R-module homo-
morphism.

(a) Prove ker f is a submodule of M and im f is a submodule of
N.
(b) Construct an isomorphism M/ ker f = im f.
(c) Show f is injective <= ker f = 0 and surjective <=
imf = N.
Homomorphisms of Cyclic Modules.

(a) Show that any group homomorphism f : Z/nZ — Z/mZ is
determined by f(1).

(b) Prove that nf(1) = 0in Z/mZ is a necessary and sufficient
condition.

(c) Deduce that Homy(Z/nZ,Z/mZ) = Z/ gcd(n, m)Z.

Non-Free Modules. Consider the Z-module M = Z/nZ with
n> 1.

(a) Prove that M cannot have a basis. (Show any element is lin-
early dependent).

(b) Conclude M is finitely generated but not free.

(c) Give another example of a finitely generated non-free Z-
module.

Presentation of Modules. Let M be generated by my, ..., my,.

(a) Definey : R" — Mby (r1,...,1,) — Y.rim;. Show 1 is
surjective.
(b) Let K = ker ¢ be the relation module. Prove M = R" /K.
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6
Noetherian Rings and Modules

We now introduce the Noetherian condition, a finiteness property
that tames the complexity of rings and modules. This concept gen-
eralises the property of Principal Ideal Domains where every ideal is
generated by a single element, to rings where ideals are generated by
finitely many elements. This finiteness is the cornerstone of algebraic
geometry and algebraic number theory.

Definitions and Basic Properties

The Noetherian property can be stated in two equivalent ways: as a
condition on chains of submodules (the ascending chain condition),
or as a condition on generators.

Definition 6.1. Noetherian Modules and Rings.

Let R be a ring.

1. An R-module M is Noetherian if every increasing sequence of sub-
modules stabilizes. That is, for any chain

MiCMCM;C...
of submodules of M, there exists an integer N such that M,, = My

forallm > N.

2. The ring R is Noetherian if it is Noetherian as a module over itself.
Since the submodules of R are its ideals, this means every ascend-
ing chain of ideals I} C I, C ... stabilizes.

The equivalence between the chain condition and finite generation is
fundamental.

Theorem 6.1. Finite Generation Criterion.
An R-module M is Noetherian if and only if every submodule of M
is finitely generated.

T



(=)

Suppose M is Noetherian. Let N be a submodule of M. We con-
struct a generating set for N inductively. If N = {0}, it is generated

by the empty set. Otherwise, choose n; € N.LetN; = ().
If Ny = N,wearedone. If not, choose n, € N \ Nj and set
N, = (n,np). Iterating this, if N is not finitely generated, we

can choose a sequence ny,ny,... such that ng,; € N \ Ni where
N¢ = (ny,...,ng). This yields a strictly ascending chain of submod-
ules:

NGCNGCN3 &

This contradicts the Noetherian hypothesis. Thus the process must

terminate, implying N = Ny for some k, so N is finitely generated.
SE B #

(=)
Suppose every submodule of M is finitely generated. Let
M; € M, C ... Dbeanascending chain. Let N = U2, M;. Itis
easily verified that the union of an ascending chain of submodules
is itself a submodule. By assumption, N is finitely generated, say
by x1,...,xx. Since each Xj € N, there exists an index i]- such that
xj € Ml-].. Let n = max{iy,...,ix}. Then all generators x1, ..., x; lie
in My, so N € M. Since M, € M;,,1 C --- C N, we must have
M, = My41 = - - - = N. The chain stabilizes.

SE ] #5

Corollary 6.1. PIDs are Noetherian. Every Principal Ideal Domain (PID)

is a Noetherian ring.

El]
Proof
In a PID, every ideal is generated by a single element, hence finitely

generated.
[ |

Example 6.1. Examples of Noetherian and Non-Noetherian Rings.
- Any field F is Noetherian (its only ideals are (0) and (1)).

- The ring of integers Z is Noetherian (it is a PID).
- The polynomial ring in infinitely many variables R =
Clx1,x2,...] is not Noetherian. The chain of ideals
(x1) € (x1,%2) & (x1,%2,%3) ...

never stabilizes. Similarly, the ideal generated by all variables is
not finitely generated.

.41
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Finitely Generated Modules over Noetherian Rings

We now investigate how the Noetherian property behaves under
standard module operations. The main goal is to show that over a
Noetherian ring, "finitely generated" is equivalent to "Noetherian".

Proposition 6.1. Inheritance of Noetherian Property.
Let M be a Noetherian R-module. Then:
1. Every submodule N C M is Noetherian.

2. Every quotient module M/ N is Noetherian.

5
=

Proof

(i) Since M is Noetherian, every submodule of M is finitely gen-
erated. A submodule of N is a submodule of M, hence finitely
generated. Thus N is Noetherian.

(ii) Let Q be a submodule of M/N. Let 1 : M — M/N be the pro-
jection. The preimage 7~ 1(Q) is a submodule of M, hence finitely
generated by some x1, ..., x;. The images 7t(x1),..., 71(xx) gener-
ate Q. Since every submodule of the quotient is finitely generated,

M/ N is Noetherian.
[ |

A crucial property is that extensions of Noetherian modules are
Noetherian.

Definition 6.2. Short Exact Sequence.
A sequence of R-module homomorphisms

0—wASBEC—0

is short exact if it is exact at each term, that is, ! is injective, 7t is sur-
jective, and im ¢ = ker 7.

A

Proposition 6.2. Extensions of Noetherian Modules.
Let0 = N - M — M/N — 0be ashort exact sequence of R-
modules. If N and M /N are Noetherian, then M is Noetherian.

junl

Proof

Let P € M be a submodule. We show P is finitely generated. The
intersection P N N is a submodule of N. Since N is Noetherian,
P N N is finitely generated, say by a3, . ..,4s. The image of P in the
quotient, (P + N)/N = P/(P N N), is a submodule of the Noethe-
rian module M/N. Thus it is finitely generated, say by the cosets
ofby,...,by € P.Weclaim {ay,...,as,by,...,b:} generates P. Let
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x € P.Itsimagein M/N can be written as }_r;(b; + N). Thus
x — Y ribj € N.Sincex € Pand } rjb; € P, the difference lies in
PN N. Thus:

t s
X — 21’]1’1] = Zqiai
j=1 i=1

for some q; € R. Hence x = } q;a; + ) r;b;, proving finite genera-
tion.

Corollary 6.2. Direct Sums. If M and N are Noetherian R-modules, then
their direct sum M @ N is Noetherian.

e
Proof
We have an exact sequence 0 -+ M - M®N — N — 0. Since M

and N are Noetherian, so is M & N.
|

Corollary 6.3. Finite Rank Free Modules. If R is a Noetherian ring, then
any free R-module of finite rank R" is Noetherian.

ek
Proof
By induction on n. Forn = 1, R is Noetherian by definition. Since
R" 2 R @ R""!, the result follows from the previous corollary.
n

We conclude with the central theorem linking the ring structure to its
modules.

Theorem 6.2. Modules over Noetherian Rings.
Let R be a Noetherian ring. An R-module M is Noetherian if and only
if M is finitely generated.

i
(=)
If M is Noetherian, then M is a submodule of itself, hence finitely
generated.
EXLES
(=)

Suppose M is finitely generated by x1, ..., x,. There exists a surjec-
tive homomorphism from the free module R" to M:
(P:Rn—)M, e — X;.

Since R is Noetherian, R" is a Noetherian module. The image of
a Noetherian module under a homomorphism is isomorphic to a
quotient, hence Noetherian. Thus M = R"/ ker ¢ is Noetherian.
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SE

6.3 Exercises

1. Ideals in Noetherian Rings. Let R be a ring. Prove that the fol-
lowing are equivalent:

(a) R is Noetherian (i.e., every ascending chain of ideals stabi-
lizes).
(b) Every ideal of R is finitely generated.
2. Submodules of Finitely Generated Modules. Let R be a Noethe- Use the fact that finitely generated

modules over a Noetherian ring are

rian ring and M a finitely generated R-module. Prove that every i
Noetherian.

submodule N C M is finitely generated.

(a) Prove the statement above using the Noetherian property.
(b) Let f : M — M be a surjective R-module homomorphism.

Prove that f is injective. Use the ascending chain ker f C
(c) Give an example showing that the conclusion of (b) can fail if kerf?C....

M is not Noetherian.

3. Infinite Direct Sums. Let R be a Noetherian ring (e.g., Z). Con-
sider the module M = @;_; R with standard basis ey, ¢, .. ..

(a) Let My = (eq,...,e). Show that M1 C M, C ... is a strictly
ascending chain.

(b) Deduce that M is not a Noetherian R-module, even though R
is Noetherian.

(c) Conclude that "finitely generated" is essential in the theorem
relating Noetherian rings to Noetherian modules.

4. Polynomial Rings in Infinite Variables. Let k be a field and R =
k[x1,xy,...] be the polynomial ring in countably many variables.

(a) Prove that the chain of ideals (x1) C (x1,x2) € ... is strictly
ascending.
(b) Conclude R is not a Noetherian ring.

(c) Show that the ideal I = (x1,xp,...) is not finitely generated.
5. Quotients of Noetherian Rings. Let R be a ring and I an ideal.

(a) If R is Noetherian, prove that R/ is Noetherian.
(b) Conversely, suppose R/ is Noetherian and I is finitely gen-

erated as an ideal. Prove that R is Noetherian. Use the short exact sequence 0 — [ —
(c) Deduce that R is Noetherian if and only if R/ is Noetherian R=R/I=0.

for every finitely generated ideal I.
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Polynomial Rings and Factorisation

Having established the general theory of Noetherian rings and mod-
ules, we now apply these concepts to the specific setting of poly-
nomial rings. This study yields two cornerstones of commutative
algebra: the Hilbert Basis Theorem, which guarantees that polyno-
mial rings over Noetherian rings retain the Noetherian property, and
the extension of unique factorisation from a ring to its polynomial
ring via Gauss’s Lemma.

The Hilbert Basis Theorem

Our primary goal is to prove that if a ring R satisfies the ascending
chain condition on ideals, so does R[X]. This result is fundamental
to algebraic geometry, as it implies that algebraic sets defined by
infinitely many polynomial equations can actually be defined by
finitely many.

We begin by analysing the structure of ideals in R[X] through the
leading coefficients of their elements. Let P(X) = Y, b; X' € R[X]
with b, # 0. We call by, the leading coefficient of P(X).

Lemma 7.1. Ideal of Leading Coefficients.
Let R be a Noetherian ring and let I C R[X] be an ideal. Let ] C R
be the set of leading coefficients of all polynomials in I, together with

0. Then ] is an ideal of R.
5] 3%

Proof

Leta € ]J.Ifa = 0, the closure properties are trivial. Assume a #
0. Then there exists P(X) € I of degree n with leading coefficient a.
Foranyr € R,if ra # 0, then ra is the leading coefficient of rP(X),
which lies in I. Thusra € J. Suppose a,b € ] are nonzero lead-
ing coefficients of P(X) € I (degree n) and Q(X) € I (degree m).
Without loss of generality, assume n > m. Consider the polynomial
S(X) = P(X)+ X" ™Q(X). This polynomial lies in I. Its term of
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degreenis (a + b)X". Ifa + b # 0, itis the leading coefficient of
S(X),soa+b € J.Ifa+b = 0, the condition holds trivially. Thus

J is an ideal.
|

The Noetherian property of R ensures ] is finitely generated. We use
these generators to reduce the degree of polynomials in I.

Lemma 7.2. Degree Reduction.

generate J, and let Py, ..., Ps € I be polynomials such that the lead-
ing coefficient of P; is a;. Let N = max;(deg P;). For any Q(X) € I
with deg Q > N, there exist polynomials Ry, ..., Rs € R[X] such that

i=1

deg (Q(X) - iRi<X>Pi<x>) <N.

1

Proof

We proceed by induction on d = deg Q. The base case is implicit in
the inductive step. Let a be the leading coefficient of Q(X) = aX“ +
....Sincea € ], we may writea = Y ;_;ria; for some r; € R. Con-
sider the polynomial:

S
H(X) =) rx?deelip(X).
i=1
Sinced > N > degP;, the powers of X are non-negative. The
leading term of H(X) is (¥ 7;a;) X = aX?. Consequently, the poly-
nomial Q(X) — H(X) has degree strictly less than d. Since H(X) is
an R[X]-linear combination of the P;, if the degree of the difference
is still > N, we repeat the process. By induction, we eventually

reduce the degree below N.
n

Theorem 7.1. Hilbert Basis Theorem.
Let R be a Noetherian ring. Then the polynomial ring R[X] is Noethe-

rian.

g
Proof
LetI C R[X]be an ideal. We define ], a;, P;, and N as in the pre-
vious lemmas. Let M = R[X]<y be the R-submodule of poly-

nomials of degree at most N. As an R-module, M is generated
by {1,X,..., XN }. Since R is Noetherian and M is finitely gen-
erated, M is a Noetherian R-module. Consider the submodule

Let I C R[X] be an ideal and ] its ideal of leading coefficients. Let a, . ..

/as
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I«y = I N M. Being a submodule of a Noetherian module, I<y
is finitely generated over R. Let Ty, ..., T} be generators of I<y.

We claim that the set {Py,..., Ps, Ty, ..., Ty} generates I as an ideal
in R[X]. Let Q € I. By the Degree Reduction Lemma, there exist
H; € R[X] such that

has degree strictly less than N. Thus Q' € INR[X]<ny = I<n. We
can therefore write Q' as an R-linear combination of Ty, ..., Ti:

k
Q(X) = ;UT]'(X)-
=

Substituting back, Q(X) is expressed as a linear combination of the

P; and T;. Thus I is finitely generated.
[

By induction on the number of variables, we immediately obtain:
Corollary 7.1. Multivariate Polynomial Rings. If R is Noetherian, then

R[Xj,..., Xy] is Noetherian. In particular, since fields and PIDs are Noethe-
rian, Q[Xj, ..., X,] and Z[Xj, ..., X;] are Noetherian rings.

b
This leads naturally to the study of finitely generated algebras.

Definition 7.1. Finitely Generated Algebra.

Let R be a ring. An R-algebra is a ring S equipped with a ring homo-
morphism ¢ : R — 5. We say S is finitely generated as an R-algebra
if there exists a finite set s1,...,s;, € S such that the evaluation ho-
momorphism

is surjective. Equivalently, S = R[Xj, ..., X,/ ker ¢. "

Corollary 7.2. Noetherian Algebras. If R is a Noetherian ring, then any
finitely generated R-algebra is Noetherian. Figure 7.1: Structure of a

Proof
Since R is Noetherian, R[Xj, ..., X,] is Noetherian. Any quotient of

a Noetherian ring is Noetherian.
|

I/J:R[Xl,...,xn]*)S, X;—s; R——— > R[Xy,..., Xu)

Bl finitely generated R-algebra.
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Factorisation in Polynomial Rings

While Z is a unique factorisation domain (UFD), the ring Z[X] is
not a PID. For instance, the ideal (2, X) is not principal. However,

Z[X] remains a UFD. To prove this generally, we relate factorisation
in R[X] to factorisation in K[X], where K is the field of fractions of R.

Gauss’s Lemma

Let R be a UFD and K its field of fractions. Factorisation in K[X] is
well-understood because K[X] is a Euclidean domain (and thus a PID
and UFD). The difficulty lies in the fact that a polynomial irreducible
in R[X] might become reducible in K[X], or vice versa.

Example 7.1. Irreducibility Dependence. The polynomial 3X + 15
factorises as 3(X + 5) in Z[X]. Both factors are non-units. How-
ever, in Q[X], 3 is a unit, so 3X + 15 is associated to X + 5, which is
irreducible.

et
To handle coefficients, we define the content of a polynomial P €
R[X] as the greatest common divisor (GCD) of its coefficients. A
polynomial is primitive if its content is a unit (i.e., the GCD of coeffi-
cients is 1).

Theorem 7.2. Gauss’s Lemma.
Let R be a UFD and K its field of fractions. Let P(X) € R[X]. If P(X) =
Q(X)T(X) is a factorisation in K[X], then there exists « € K* such
that «Q(X) € R[X] and a7 'T(X) € R[X] is a factorisation in R[X].
In particular, if a primitive polynomial in R[X] is reducible in K[X], it
is reducible in R[X].

il
Proof
Since Q, T € K[X], we can clear denominators. Choose ¢1,¢, € R
such that e; Q(X) and e, T(X) are in R[X]. Further, we may fac-
tor out the content of these polynomials to ensure they are

primitive. Thus, there existsd € R and primitive polynomials
Q'(X), T'(X) € R[X] such that:

dP(X) = Q' (X)T'(X).

We claim that if P(X) is primitive, then d must be a unit. Suppose

d is not a unit. Let g be an irreducible factor of 4 in R. Since R

is a UFD, the ideal (g) is prime, so R/ (g) is an integral domain.
Consider the reduction homomorphism 7 : R[X] — (R/{(g))[X].




Applying this to the equation:
0= n(dP) = n(Q")=(T").

Since (R/(q))[X] is an integral domain, either 77(Q’) = 0 or
n(T') = 0.If 7(Q") = 0, all coefficients of Q' are divisible by 4.
This contradicts the construction of Q' as a primitive polynomial.

Thus d must be a unit. The scalar « is constructed by redistributing

the units and the cleared denominators.
[ |

This leads to a precise criterion for irreducibility.

Proposition 7.1. Irreducibility Criterion.
Let P(X) € R[X] be a primitive polynomial. Then P(X) is irreducible
in R[X] if and only if it is irreducible in K[X].

¥

(=)
If P is irreducible in K[X], it cannot factor into polynomials of lower
degree in R[X]. The only possible factorisation in R[X] would in-
volve scalars, but since P is primitive, the only scalar divisors are
units.

EXLES
(=)
Suppose P is reducible in K[X], so P = QT with degQ,degT <
deg P. By Gauss’s Lemma, we can modify this to a factorisation
P = (aQ)(a7'T) in R[X]. Since degrees are preserved, P is re-

ducible in R[X].
SE A #

R[X] is a UFD
We now combine these results to establish the main theorem.

Theorem 7.3. Polynomial Rings over UFDs.
If R is a unique factorisation domain, then R[X] is a unique factorisa-
tion domain.

il
Existence.

Let P(X) € R[X]. Letd be the content of P, so P(X) = dQ(X)
where Q is primitive. Since R is a UFD, d factors uniquely into
irreducibles in R. These are also irreducible in R[X]. Next, con-
sider Q(X) as an element of K[X]. Since K[X] is a UFD (being a
PID), Q(X) = F(X)---F(X) where F; are irreducible in K[X].
By Gauss’s Lemma, we can scale these factors to be in R[X] and
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R[X] ———— > K[X]

reduction

R— K

Figure 7.2: Comparison of fac-
torisations.



88 GUDFIT

primitive. Let these be G;(X). Since G; is primitive and irreducible
in K[X], it is irreducible in R[X]. Thus P(X) = dG;(X)--- Gi(X) is
a factorisation into irreducibles.

LB

Uniqueness.

Suppose P(X) has two factorisations into irreducibles. We separate
the irreducible factors into two types: constant factors (irreducibles
in R) and non-constant factors (primitive polynomials in R[X]).

P:C1...Cm~ql(X)...qn(X) Zdl...d;f'tl(X)...fs(X).

The product ¢ = []¢; mustequald = []d; up to units, as these
represent the content of P. Since R is a UFD, the constant factors
match unique to units. The primitive parts []q; and []{; must be
equal. Viewed in K[X], these are irreducible factorisations. Since
K[X]isaUFD,n = s, and after reordering, g; is associated to f; in
K[X]. So g; = gt;. Since both are primitive, a/b must be a unit in R.
Thus they are associates in R[X].

BLES

Corollary 7.3. Multivariate UFDs. If R is a UFD, then R[Xj, ..., X,] is
a UFD. Consequently, Z[X3, ..., X,] and F[Xj, ..., Xn] (where F is a field)
are UFDs.

e
Remark.
It is important to note that while R[X] inherits the UFD property,
quotient rings generally do not. For example, Z[X] is a UFD, but
Z[X])/(X?> +5) = Z[y/-5]is not, as evidenced by the non-unique
factorisation 6 =2 -3 = (1++/—5)(1 — v/-5).

7.3 Irreducibility Criteria

We turn to the practical problem of determining whether a given
polynomial is irreducible. While no single algorithm solves this effi-
ciently for all rings, several powerful criteria exist.

Elementary Criteria and Finite Fields

For polynomials of low degree, irreducibility is determined simply by
the existence of roots.

Proposition 7.2. Degree 2 and 3.
Let K be a field and P(X) € K[X] a polynomial of degree 2 or 3. Then
P(X) is irreducible if and only if P(X) has no roots in K.
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' G2
Proof
If P(X) is reducible, it can be written as P(X) = A(X)B(X) with

deg A,degB > 1.SincedegP < 3, atleast one factor must have
degree 1. A linear factor in K[X] corresponds to a root in K. Con-
versely, if P(X) has a root «, then (X — «) divides P(X).

For finite fields, we can leverage the structure of the Frobenius auto-
morphism to formulate a precise criterion. Let IF; denote the finite
field with g = p® elements.

Lemma 7.3. Factorisation of X7 — X.
The polynomial X7 — X € F,[X] is the product of all monic irreducible
polynomials in IF,;[X] whose degree divides r.

7132

Proof

Let P(X) be a monic irreducible polynomial of degree d. Let a be a
root of P(X) in a splitting field. Then FF;(a) = IF 4. The elements

of IF 4 are precisely the roots of X1 — X. Furthermore, F g S Ey
if and only if d | r. Thus, & is a root of X7 — X if and only ifd | r.
Since P(X) is the minimal polynomial of a, P(X) divides X7 — X if
and only if d | r.
It remains to show that X9 — X is square-free, ensuring each irre-
ducible factor appears with multiplicity 1. The formal derivative
is:

d r rvg —1 .

E(Xq —X)=¢'XT""—-1=-1 (since char(F;) =p | q).
Since the derivative is a non-zero constant, it is coprime to the
polynomial. Thus X9 — X has no repeated roots.

[ |

Corollary 7.4. Irreducibility in IF;[X]. Let P(X) € IF;[X] have degree
d. Then P(X) is irreducible if and only if

ged(P(X), X7 —X) =1 foralll1<r<d.

ieam
Proof

If P(X) is reducible, it has an irreducible factor Q(X) of degree r
where1l < r < d/2 < d. By the previous lemma, Q(X) divides
X7 — X. Thus the GCD is divisible by Q(X) # 1. Conversely, if
P(X) is irreducible, its only divisors are units and associates of
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P(X). Since deg P = d > r, P(X) cannot divide X7 — X.

Criteria over UFDs

We now consider the case where coefficients lie in a unique factorisa-
tion domain R, such as Z. Let K be the field of fractions of R. Recall
that determining the irreducibility of P(X) € K[X] is often equiva-
lent to checking irreducibility in R[X]. Specifically, we can transform
monic polynomials in K[X] to monic polynomials in R[X].

Remark.

Let P(X) = X" + ¢, 1 X" 1+ .-+ ¢y € K[X]. For any r € R, define

Q/(X) =r"P(X/r) = X" +rc, 1 X" L - 410y,

Clearly P(X) is irreducible in K[X] if and only if Q,(X) is. By
choosing r to be a common multiple of the denominators of the ¢;,
we can ensure Q,(X) € R[X]. Thus, we focus on monic polynomials
in R[X].

The most common technique is reduction modulo a prime ideal.

Proposition 7.3. Reduction Modulo p.

Let R be a UFD and p a prime ideal of R. Let Q(X) be a monic poly-
nomial in R[X]. Let Q(X) € (R/p)[X] denote the reduction of Q(X)
modulo p. If Q(X) is irreducible in (R/p)[X], then Q(X) is irreducible
in R[X].

R
Proof
Suppose Q(X) is reducible in R[X]. Since Q is monic, we factor it
as Q(X) = A(X)B(X) where A, B are monic polynomials of pos-

itive degree. Reducing modulo p preserves the degree of monic
polynomials. Thus Q(X) = A(X)B(X) is a factorisation into monic
polynomials of positive degree in (R/p)[X]. This contradicts the
irreducibility of Q(X).

]
Example 7.2. Application to Z[X]. Consider f(X) = X?>+aX +b €
Z[X] where a,b are odd integers. Reducing modulo 2, we obtain:

f(X)=X>+X+1€ (Z/22)[X] = F[X].

This polynomial has no roots in IFp (f(0) = 1, f(1) = 1), so it is irre-
ducible. Thus f(X) is irreducible in Z[X] (and by Gauss’s Lemma,
in Q[X]).

.41



Note

This criterion is sufficient but not necessary. The polynomial X* + 1
is irreducible in Z[X] (and Q[X]), yet it is reducible modulo p for
every prime p. Forp = 2, X*+1 = (X + 1)* For odd primes, it
can be shown via elementary number theory that X* + 1 divides
XP*~1 — 1, which splits completely in IF .

A specific case of modular reduction provides a very powerful suffi-
cient condition known as Eisenstein’s Criterion.

Proposition 7.4. Eisenstein’s Criterion.

Let R be a UFD and p a prime ideal. Let Q(X) = X" +a, (X" 1 +
-+ -+ ap be a monic polynomial in R[X]. Suppose that:

1. g; €Epforall0<i<n-—1,

2. 4o é pz.

Then Q(X) is irreducible in R[X].

<
]

Proof

Suppose Q(X) is reducible. Since it is monic, we may write

Q(X) = A(X)B(X)with A,B € R[X] monic of positive degree.
Reduce modulo p. By the first condition, Q(X) = X". Since R/p is
an integral domain (as p is prime), the unique factorisation of X"
implies that A(X) = X®and B(X) = X' forsomes,t > 0with
s+t = n. Consequently, the constant terms satisfy A(0) = 0 and

B(0) = 0. This means A(0) € p and B(0) € p. However, the constant

termof Q(X)isay = A(0)B(0). Since both factors lie in p, their
product lies in p2. Thus ag € p?, contradicting the second condition.
]

Example 7.3. Irreducibility of X* + 1. Although modular reduction
failed for X* + 1, we can apply Eisenstein’s criterion after a linear
substitution. Let Q(X) = X* + 1. If Q(X) were reducible, then
Q(X + 1) would also be reducible.

OX+1)=(X+1)*+1=x*+4X3+6X2 +4X +2.

We apply Eisenstein’s criterion with the prime p = 2. The coef-
ficients 4, 6,4, 2 are all divisible by 2. The constant term 2 is not
divisible by 22 = 4. Thus Q(X + 1) is irreducible, implying X* + 1
is irreducible.

$o19]
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Multivariate Polynomials

For polynomial rings in several variables, such as F [X, Y, Z], we can
view the ring as polynomials in one variable with coefficients in a
ring of fewer variables:

FIX,Y,Z] = (F[X, Y])[Z].

Since F[X, Y] is a UFD, we can apply the techniques developed above.
Example 7.4. Using the Discriminant. Consider P(X,Y) = X* +
X2Y?2 + Y2 + XY € C[X,Y]. We view this as a polynomial in Y with
coefficients in R = C[X]. Let K = C(X) be the field of rational func-
tions.

P(X,Y) = (X2 +1)Y? + XY + X*.

Since the GCD of coefficients in C[X] is 1, P is irreducible in C[X, Y]
if and only if it is irreducible in K[Y]. Being quadratic in Y, it is
irreducible if and only if it has no roots in K, which occurs if and
only if the discriminant is not a square in K.

A=X2—4(X2+1)(X*) = X2 —4X® —4X* = X2(1 — 4X® — 4X4).

The factor (1 — 4X?> — 4X*) has simple roots in C, so it is not a
square in C[X]. Thus A is not a square in K, so P(X,Y) is irre-
ducible.

£

Example 7.5. Reduction Modulo an Ideal. Consider P(X,Y,Z) =
Z° 4+ X3Y*Z +2X2YZ3 — XYZ + Y3 € C[X,Y, Z]. We view this as a
monic polynomial in Z over the UFD R = C[X,Y]. Letp = (X) be
the ideal generated by X. This is a prime ideal since R/p = C[Y] is
an integral domain. The reduction modulo X is:

P(Y,Z) = 72> +Y? € C[Y][Z].

We check if Z5 + Y3 is irreducible in C[Z][Y] (viewing as a polyno-
mial in Y). Itis Y3 + Z°. This is irreducible if —Z° is not a cube in
C[Z]. By unique factorisation in C[Z], Z° is not a cube. Thus P is
irreducible, implying P(X,Y, Z) is irreducible.

Eal

7.4 Exercises

1. Noetherianity of Formal Power Series. Let R be a Noetherian
ring. The ring of formal power series R[[X]] consists of expres-
sions of the form f = Y%, a; X' where a; € R. Unlike polynomials,
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these sums need not be finite.

(a) Define the order of a non-zero power series f, denoted ord(f),
as the smallest n such that a, # 0. The coefficient a,.4(y) is
the lowest coefficient of f. Show that f is a unit in R[[X]] if and
only if a¢ is a unit in R.
(b) Generalise the logic of the Hilbert Basis Theorem to prove that
if R is Noetherian, then R[[XH is Noetherian. For (b): Instead of leading coefficients

. and degree reduction, consider the ideal
2. The Content Identity. Let R be a UFD. For f € R[X], let c(f)

Ji of lowest coefficients of series in I
denote its content. with order k. Show that [ C J; C
Jo € ... and use the ascending chain

(a) Prove that for any f, g € R[X], c(fg) = ¢(f)c(g) up to units in condition on R and the Jj.
R.
(b) Let f € Z[X]. Suppose there exists a prime p such that p does
not divide the leading coefficient of f. If the reduction f €
IF»[X] has no repeated factors, prove that any factorisation of
f in Z[X] must reduce to the factorisation of f.

3. The Failure of the PID Property. While K[X] is a PID for any field
K, we have seen that R[X] is rarely a PID if R is not a field.

(a) Let R be an integral domain. Prove that R[X] is a PID if and
only if R is a field.

(b) Consider the ideal I = (2, X) C Z[X]. Prove that [ is not a
principal ideal.

(c) Show that I is a maximal ideal by identifying the quotient
Z[X]/1.

(d) Generalise this: if K is a field, show that the ideal (X,Y) C
K[X,Y] is maximal but not principal.

4. Cyclotomic Irreducibility. Let p be a prime number. The p-th
cyclotomic polynomial is defined as

CXP -1
X1

@, (X) =XP 14 XP 24 X 41

(a) Show that pascals identity implies the binomial coefficient (})
is divisible by p for 1 <k <p—1.

(b) Apply the substitution X = Y 41 to ®,(X). Show that the re-
sulting polynomial in Y satisfies the conditions of Eiscnstein’s
Criterion for the prime p.

(c) Conclude that ®,(X) is irreducible in Q[X].

5. Multivariate Fermat Polygons. We investigate the irreducibility of
f(X,Y) = X"+ Y" —1 over various fields.

(a) Prove that X" + Y" — 1 is irreducible in C[X, Y] for all n > 1. For (a): View this as a polynomial

(b) For which 1 is X" 4+ Y" — 1 irreducible in IF,[X, Y]? Consider in X with coefficients in Cly] - Use
Eisenstein’s Criterion with a prime ideal

p = (Y — &) for some suitable a € C.

specifically p = 2,n = 2.
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