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0
Vector Kinematics

In the preceding notes, we established the algebraic and geometric
foundations of vectors in Rn. We kick off these notes by demon-
strating some of its uses by applying it to the study of motion. By
treating position, velocity, and acceleration as vector quantities, we
can describe complex dynamical systems without the cumbersome
coordinate-by-coordinate analysis required in elementary calculus.

0.1 Parametric Curves and Motion

To describe motion, we require a notion of time. We assume the
existence of a time parameter t ∈ R, representing a continuum of
moments ordered from past to future. The position of a particle in
space is strictly a function of this parameter.

Definition 0.1. Trajectory.
The trajectory or path of a particle in Rn is a vector-valued function r :
I → Rn, where I ⊆ R is an interval of time.

r(t) =


x1(t)

...
xn(t)

 .

The vector r(t) is referred to as the position vector relative to a chosen
origin O.

定義

Remark.

This definition generalises the parametric equation of a line dis-
cussed in previous chapters. A line is simply a trajectory where the
dependence on t is linear.

Uniform Motion

The simplest form of motion occurs when a particle moves along a
straight line at a constant speed.
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Definition 0.2. Uniform Motion.
A particle undergoes uniform motion if its position vector satisfies:

r(t) = r0 + tv,

where r0 is the initial position (at t = 0) and v is a constant vector known
as the velocity.

定義 x

y

r0

tv

r(t)

Figure 1: Uniform motion. The
position r(t) is the vector sum
of the initial position r0 and the
displacement tv.

Geometrically, this describes a line passing through r0 in the direction
of v. If we define the speed as the magnitude ∥v∥, then the distance
travelled after time t is ∥tv∥ = |t|∥v∥, consistent with the scalar
formula distance = speed× time.

Relative Velocity

The vector nature of position allows us to define motion relative to
different observers. Consider an observer at the origin O measuring
the position of a particle P. The vector is OP.
Now, suppose a second observer O′ is observing the same particle P.
This observer defines position relative to themselves, measuring O′P.

Proposition 0.1. Composition of Position.
Let O and O′ be two reference points. For any point P:

OP = OO′ + O′P.

命題

See Chapter 3 of my Geometry 1 notes.

Proof

This is an immediate consequence of the triangle law of vector
addition.

■

If the observer O′ is moving with a constant velocity u relative to O,
then OO′ = rO′ + tu. If the particle P is moving with velocity v rela-
tive to O, then OP = rP + tv. Substituting these into the composition
law:

rP + tv = (rO′ + tu) + O′P.

Rearranging for the position relative to the moving observer:

O′P = (rP − rO′) + t(v− u).

This implies that O′ perceives the particle to be moving with velocity
v− u.

https://www.gudfit.xyz/pdfs/Geometry/Geometry1.pdf
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Theorem 0.1. Relative Velocity.
If a particle P moves with velocity v and an observer O′ moves with
velocity u (both relative to a fixed frame), the velocity of P relative to
O′ is:

vrel = v− u.

定理

Example 0.1. Galilean Relativity. Consider the motion of the Sun
relative to the Earth. Let the Sun be fixed (vS = 0) and the Earth
move with velocity vE.
1. Velocity of Sun relative to Earth: vS/E = vS − vE = −vE.
2. Velocity of Earth relative to Sun: vE/S = vE − vS = vE.
Historically, the debate over whether the Earth or Sun moved was
effectively a debate over the choice of the origin 0. The relative ve-
locity vector vrel is invariant (up to sign) regardless of the choice of
frame.

範例

Remark (Relativistic Disclaimer).

The addition of velocities v − u holds only for speeds significantly
lower than the speed of light c. As v → c, the Galilean transfor-
mation must be replaced by the Lorentz transformation of Special
Relativity.

For the purposes of this chapter, we
assume ∥v∥ ≪ c.

0.2 Vector Calculus

To describe non-uniform motion, where velocity changes direction or
magnitude, we must extend the calculus of differentiation to vector-
valued functions.

Definition 0.3. Vector Derivative.
Let r(t) be a vector function. The derivative r′(t) or dr

dt is defined by the
limit:

dr
dt

= lim
∆t→0

r(t + ∆t)− r(t)
∆t

.

Provided the limit exists, r(t) is said to be differentiable.
定義

Since vector limits are computed component-wise, the derivative is
simply the vector of scalar derivatives:

r′(t) =


x′1(t)

...
x′n(t)

 .
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Instantaneous Velocity and Acceleration

We define the kinematic quantities in terms of these derivatives.

Definition 0.4. Velocity and Acceleration.
Let r(t) be the position of a particle.
1. The instantaneous velocity v(t) is the first derivative of position:

v(t) =
dr
dt

.

The direction of v(t) is tangent to the trajectory at r(t). The mag-
nitude ∥v(t)∥ is the speed.

2. The acceleration a(t) is the first derivative of velocity (and the sec-
ond derivative of position):

a(t) =
dv
dt

=
d2r
dt2 .

定義

Path

v

a

r(t)

Figure 2: The velocity vector v
is always tangent to the path.
The acceleration a points "in-
side" the curve, reflecting the
change in velocity.

Theorem 0.2. Differentiation Rules.
For differentiable vector functions u(t), v(t) and scalar function f (t):
1. d

dt (u + v) = u′ + v′.
2. d

dt ( f u) = f ′u + f u′.
3. d

dt (u · v) = u′ · v + u · v′ (Dot Product Rule).
定理

Proof

These follow directly from the definition of the derivative and
the standard properties of limits and scalar derivatives applied
component-wise.

■

0.3 Dynamics and Constraints

Newton’s Second Law provides the link between the geometry of
motion and the physical causes of motion (forces). It states that for a
particle of constant mass m, the total force F acting on it determines
the acceleration:

F = ma = m
d2r
dt2 .

This is a second-order vector differential equation. To solve for the
motion r(t), we require the force function and two initial conditions:
position r0 and velocity v0.

Example 0.2. Projectile Motion. Consider a particle near the surface
of the Earth subject only to constant gravity. We orient the y-axis
vertically upwards. The acceleration is a = (0,−g), where g is the
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gravitational constant. Integrating a(t) with respect to t:

v(t) =
∫

a dt =

[
0
−gt

]
+ v0,

where v0 = (ux, uy) is the initial velocity. Integrating again yields
position:

r(t) =
∫

v(t) dt =

[
0

− 1
2 gt2

]
+ tv0 + r0.

In components (assuming r0 = 0):

x(t) = uxt, y(t) = uyt− 1
2

gt2.

Eliminating t (via t = x/ux) reveals the trajectory is parabolic:

y =
uy

ux
x− g

2u2
x

x2.

範例

Constrained Motion

Often, a particle is constrained to move on a specific surface or curve,
such as a sphere or a circle. This constraint imposes a geometric
condition on the velocity and acceleration vectors.

Theorem 0.3. Motion on a Sphere.
A particle moves on the surface of a sphere centered at the origin (i.e.,
∥r(t)∥ = constant) if and only if its velocity is everywhere orthogo-
nal to its position vector.

r(t) · v(t) = 0.

定理

Proof

Let c be the radius of the sphere. The condition that the particle
stays on the sphere is:

∥r(t)∥2 = r(t) · r(t) = c2.

Differentiating both sides with respect to t:

d
dt
(r · r) = d

dt
(c2).

Using the product rule for dot products:

r′ · r + r · r′ = 0 =⇒ 2v · r = 0.

Thus, v · r = 0.
■

The steps are reversible, so the converse
holds (integration yields ∥r∥2 = const).
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Example 0.3. Circular Kinematics. Consider a particle moving in
the plane R2 defined by:

x(t) = 3t2, y(t) = 2t3.

We calculate the kinematic quantities:
· Position: r(t) = (3t2, 2t3).
· Velocity: v(t) = r′(t) = (6t, 6t2) = 6t(1, t).
· Speed: ∥v(t)∥ =

√
(6t)2 + (6t2)2 = 6|t|

√
1 + t2.

· Acceleration: a(t) = v′(t) = (6, 12t).
We can determine when the particle reaches a specific speed, say
12:

6|t|
√

1 + t2 = 12 =⇒ |t|
√

1 + t2 = 2.

Squaring both sides: t2(1 + t2) = 4 =⇒ (t2)2 + t2 − 4 = 0. Solving
this quadratic in t2:

t2 =
−1±

√
1 + 16

2
=
−1 +

√
17

2

(taking the positive root since t2 ≥ 0). Thus t = ±
√√

17−1
2 .

範例 We will learn more about this later in
the mechanics notes.



1
Geometric Foundations of Determinants

In the previous volume of this text, we focused primarily on the al- See Algebra I: Matrices and Applications
for the algebraic treatment of linear
systems.

gebraic utility of matrices: representing linear maps, solving systems
of the form Ax = b, and computing inverses. We now return to the
geometric interpretation of these objects.
Specifically, as hinted at in the foundational geometry notes, deter-
minants are inextricably linked to the concepts of area and volume.
It is crucial to observe that area and volume can be formalised inde-
pendently of length (the metric axioms). One may deform a shape
thereby changing the edge lengths and internal angles, yet preserving
the area. In this sense, the concept of volume is more primitive than
that of the inner product or distance.
Orientation

The algebraic formulation of area necessitates the concept of orienta-
tion. When calculating the area of a parallelogram spanned by two
vectors u and v in R2, the result of a determinant calculation is a
signed value. The sign indicates whether the pair (u, v) is positively
oriented (typically counter-clockwise) or negatively oriented (clock-
wise).

Positive (CCW)A
B

C

Negative (CW)A
′

B′

C′

Figure 1.1: Orientation in the
plane. Triangle ABC is oriented
counter-clockwise, while A′B′C′

(where the traversal order is
reversed) is clockwise.

Thus, algebraic simplicity and generality imply geometric subtlety.
We are forced to distinguish between "clockwise" and "counter-
clockwise" in the plane if we wish to deal with areas algebraically.
This leads to a somewhat surprising realisation: area and volume are,
in a specific algebraic sense, more basic than length.

1.1 Geometric Proofs via Area

The notions of area and volume are primitive and intuitive. As soon
as we compare which container holds more or which field requires
more seed, we are invoking these concepts. We now offer some clas-
sical examples to illustrate how area arguments can prove geometric
theorems, relying on the "Sum of Parts Principle": the area of a union

https://www.gudfit.xyz/notes/matrices/
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of disjoint sets is the sum of their individual areas.
Remark.

The "Sum of Parts Principle" often functions as a slogan rather than
a axiom in elementary texts. While intuitively obvious, it requires
careful definition in measure theory. We shall use it here in the
classical geometric sense.

Example 1.1. Pythagoras via Rearrangement. Consider a square of
side length a + b. We can partition this square in two distinct ways.
1. Configuration A: Place four identical right-angled triangles

(with legs a, b and hypotenuse c) in the corners. The remaining
uncovered area is a central square of side c.

2. Configuration B: Rearrange the four triangles into two rect-
angles of dimension a × b. The remaining area consists of two
smaller squares: one of side a and one of side b.

Since the total area of the large square is invariant, and the area
occupied by the four triangles is constant, the remaining areas must
be equal.

Area(Central Square) = Area(Square a)+Area(Square b) =⇒ c2 = a2 + b2.

範例

a b

a

b

c2

Configuration A

a2

b2

Configuration B

Figure 1.2: Visual proof of
Pythagoras’ Theorem. The red
area in A (c2) must equal the
red area in B (a2 + b2) because
the four triangles (white re-
gions) are identical in both
figures.

We can also express this algebraically without explicit rearrangement,
simply by summing the parts of Configuration A.

Example 1.2. Pythagoras via Algebraic Area. Using the left side
of Figure 1.2, the area of the large outer square can be computed
directly as (a + b)2. Alternatively, it is the sum of the inner square
and the four triangles.

(a + b)2 = c2 + 4
(

1
2

ab
)

a2 + 2ab + b2 = c2 + 2ab

a2 + b2 = c2.
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This method relies on the algebraic expansion of area, linking the
geometric decomposition to polynomial arithmetic.

範例

A final example demonstrates how area relates linear dimensions
within a single figure.

Example 1.3. Altitudes of a Triangle. Consider a triangle ABC with
side lengths a, b, c and corresponding altitudes ha, hb, hc. We can
compute the area of the triangle in two ways:

Area =
1
2

aha and Area =
1
2

bhb.

Equating these expressions yields:

1
2

aha =
1
2

bhb =⇒ aha = bhb =⇒ ha

hb
=

b
a

.

This result states that the altitudes are inversely proportional to
their corresponding bases. While this can be proven using similar
triangles, the area argument is immediate and avoids the construc-
tion of auxiliary angles.

範例

c

ab

ha hb

A B

C

Figure 1.3: The altitudes of a
triangle. The length of the alti-
tude is inversely proportional
to the side it intersects.

1.2 Axiomatic Area and Orientation

Note

Before formalising, we clarify some notation. From now on, "Area"
will always mean signed area, denoted either by A(·) for trian-
gles or by the outer product [·, ·] for parallelograms. We will also
freely identify a point with its position vector from a fixed origin O,
writing A both for the point and for OA.

The intuitive "Sum of Parts Principle" used in the previous section
encounters a critical limitation when formalised algebraically. Con-
sider a triangle ABC and a point P. If P lies inside the triangle, we
intuitively accept that:

A(ABC) = A(PAB) +A(PBC) +A(PCA).

However, if P lies outside the triangle, this equality fails for positive
area. To maintain such additive laws universally, irrespective of the
point’s location, we must assign a sign to the area, much as we assign
a sign to coordinates on a line to satisfy AC = AB + BC regardless of
the order of points A, B, C.

A B

C

P
+ +

+

P inside
A B

C

P

−

+ +

P outside

Figure 1.4: When P lies inside
ABC, all sub-triangles share
the same orientation. When P
lies outside, triangle PAB has
opposite orientation, requiring
signed area for identity to hold
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Definition 1.1. Signed Area.
We postulate the existence of a signed area function A(A, B, C) for any
three points A, B, C in the plane, satisfying the following axioms:
1. Skew-Symmetry: Permuting two vertices reverses the sign.

A(ABC) = −A(BAC) = −A(ACB) = −A(CBA).

Cyclic permutations preserve the sign:

A(ABC) = A(BCA) = A(CAB).

Consequently, if two vertices coincide, the area is zero (e.g., A(AAB) =
0).

2. Additivity: For any four points A, B, C, P:

A(ABC) = A(PAB) +A(PBC) +A(PCA).

3. Normalisation: There exists at least one non-degenerate triangle (ver-
tices are not collinear) with non-zero area.

定義

The orientation is customarily defined such that A(ABC) is positive
if the traversal A → B → C is counter-clockwise, and negative
if clockwise. This convention aligns with the "right-hand rule" in
mechanics.

1.3 The Vector Formulation of Area

While the classical geometric approach relying on cutting and pasting
(dissection) provides intuitive proofs for theorems like Pythagoras’, it
is cumbersome for general calculation and lacks the algebraic struc-
ture necessary for higher dimensions. We therefore adopt a vector-
theoretic approach. Instead of treating area as a property of a static
shape, we view it as a function of the vectors that generate the shape.

The Outer Product

We consider the area of a parallelogram defined by two vectors u and
v in a 2-dimensional vector space V (conceptually R2). We denote
this oriented area by the bracket notation [u, v]. We postulate three
fundamental properties that this function must satisfy.

Definition 1.2. Area Axioms (Outer Product).
Let V be a 2-dimensional vector space. A function [·, ·] : V×V → R

is called an outer product (or an area function) if it satisfies the follow-
ing axioms for all u, v, w ∈ V and k ∈ R: (We use "outer product"
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here in the geometric sense of an oriented area function, not in the ma-
trix sense uv⊤.)
1. Skew-Symmetry: [u, v] = −[v, u].
2. Linearity in the Second Argument:

[u, v + kw] = [u, v] + k[u, w].

3. Non-Degeneracy: [u, v] = 0 if and only if u and v are linearly de-
pendent.

定義

Remark.

These axioms encode our geometric intuition:

• Skew-Symmetry captures orientation. Swapping the order of vec-
tors effectively "flips" the parallelogram over, reversing its signed
area.

• Linearity captures the effect of scaling and shearing. Scaling one
side of a parallelogram scales its area. Adding a multiple of u to
v (a shear operation parallel to the base u) preserves the height
and thus the area.

• Non-Degeneracy ensures that "flat" parallelograms have zero area
and "open" ones have non-zero area.

An immediate consequence of skew-symmetry is that the "square" of
a vector vanishes.

Proposition 1.1. Vanishing Diagonal.
For any vector u ∈ V, [u, u] = 0.

命題

Proof

By skew-symmetry, [u, u] = −[u, u]. Adding [u, u] to both sides
gives 2[u, u] = 0, implying [u, u] = 0.

■

This seemingly simple property is powerful. It allows us to perform
"algebra" with these brackets where repeated factors annihilate the
term.

Note

Linearity in the first argument follows from skew-symmetry and
linearity in the second:

[u + v, w] = −[w, u + v] = −([w, u] + [w, v]) = [u, w] + [v, w].

Thus, the outer product is a bilinear form. We see more of this later.
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Derivation of the Determinant

One might ask if such a function even exists, or if there are too many.
It turns out that once we fix a basis (a unit of measurement), the
area function is unique up to scaling. This leads us directly to the
determinant.

Theorem 1.1. Uniqueness of the Area Function.
Let {e1, e2} be a basis for V. For any two vectors u = x1e1 + y1e2 and
v = x2e1 + y2e2, the outer product is given by:

[u, v] = (x1y2 − x2y1)[e1, e2].

定理

Proof

We expand the product using bilinearity:

[u, v] = [x1e1 + y1e2, x2e1 + y2e2]

= x1[e1, x2e1 + y2e2] + y1[e2, x2e1 + y2e2]

= x1x2[e1, e1] + x1y2[e1, e2] + y1x2[e2, e1] + y1y2[e2, e2].

Using the property that [ei, ei] = 0 and [e2, e1] = −[e1, e2], this sim-
plifies to:

[u, v] = x1y2[e1, e2]− y1x2[e1, e2] = (x1y2 − x2y1)[e1, e2].

■

We therefore define the determinant in dimension 2 by

det

[
x1 x2

y1 y2

]
:= x1y2 − x2y1,

which is exactly the scalar giving the oriented area relative to the unit
square.

u

v

Area
∆

Figure 1.5: The area ∆ = [u, v]
is scaled relative to the unit
square [e1, e2].

This theorem establishes a profound connection: Determinants are
the unique scalars required to satisfy the geometric axioms of area.

Standardisation

In standard Euclidean space R2, we choose the standard basis e1 =

[1, 0]T and e2 = [0, 1]T . We normalise the area measure by declaring
the area of the unit square to be 1:

[e1, e2] = 1.

With this normalisation, the area function becomes exactly the deter-
minant: [[

x1

y1

]
,

[
x2

y2

]]
= det

[
x1 x2

y1 y2

]
.
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Example 1.4. Shearing Preserves Area. Consider the rectangle
defined by u = (2, 0)T and v = (0, 3)T . Its area is:

[u, v] = det

[
2 0
0 3

]
= 6.

Now, apply a shear operation: let v′ = v + 2u = (0, 3)T + (4, 0)T =

(4, 3)T . The new area is:

[u, v′] = det

[
2 4
0 3

]
= 6.

This algebraic result matches the geometric fact that shearing a
rectangle into a parallelogram does not change its area.

範例

u

v 6

u

v′
6

Figure 1.6: Shearing pre-
serves area. Replacing v with
v′ = v + 2u transforms the
rectangle into a parallelogram
of equal area.

Barycentric Coordinates as Area Ratios

We can apply this vector formulation to revisit the geometry of the
triangle. If we have a triangle ABC and a point P inside it, we can
express P as a linear combination of the vertices using weights that
sum to 1. These weights, known as barycentric coordinates, turn out
to be ratios of oriented areas.

Proposition 1.2. Barycentric Area Formula.
Let A, B, C be vertices of a non-degenerate triangle. Any point P in the
plane of ABC can be written as:

P = αA + βB + γC, with α + β + γ = 1.

The coefficients are given by the ratio of signed areas:

α =
A(P, B, C)
A(A, B, C)

, β =
A(A, P, C)
A(A, B, C)

, γ =
A(A, B, P)
A(A, B, C)

.

命題

Proof

Fix origin O and represent A, B, C, P by vectors a, b, c, p. From P =

αA + βB + γC and α + β + γ = 1, we have:

p = αa + βb + γc, β + γ = 1− α.

Therefore:
p− b = α(a− b) + γ(c− b).



algebra ii: determinants and linear transformation 17

We compute A(PBC) using the outer product:

A(PBC) =
1
2
[p− b, c− b]

=
1
2
[α(a− b) + γ(c− b), c− b]

=
1
2
(α[a− b, c− b] + γ[c− b, c− b]) .

The second term vanishes since the outer product of a vector
with itself is zero. The first term simplifies to αA(ABC). Thus,
α = A(PBC)/A(ABC), and similarly for β and γ.

■

Remark.

This interpretation explains why these coordinates are sometimes
called areal coordinates. It provides a coordinate-free method for
locating points relative to a simplex.

1.4 Polygonal Areas and Volume

Having established the algebraic properties of the outer product
and its relation to the determinant in theorem 1.1, we now apply this
formalism to general geometric figures. The signed area function al-
lows us to define the area of arbitrary polygons and, by extension,
volumes in higher dimensions, without resorting to geometric de-
composition (cutting and pasting) for every case.

The Area of a Triangle

We previously defined the signed area of a triangle ABC implicitly
through the additivity axiom. We now give a constructive definition
using the outer product.

Definition 1.3. Vector Area of a Triangle.
Let A, B, C be points in the plane. The signed area of the triangle △ABC
is defined as:

A(ABC) =
1
2
[AB, AC].

定義

This definition satisfies the axioms of Signed Area. Skew-symmetry
follows immediately from the properties of the outer product. We
now derive a critical formula expressing this area in terms of position
vectors relative to an arbitrary origin O.
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Proposition 1.3. Origin Expansion Formula.
Let O be any point in the plane, and let a, b, c be the position vectors
of A, B, C relative to O. Then:

A(ABC) = A(OAB) +A(OBC) +A(OCA).

命題

Proof

By definition, AB = b − a and AC = c − a. Substituting into the
area definition and using the bilinearity of the outer product:

2A(ABC) = [b− a, c− a]

= [b, c]− [b, a]− [a, c] + [a, a].

Recall that [a, a] = 0 and [u, v] = −[v, u]. Thus:

2A(ABC) = [a, b] + [b, c] + [c, a].

Dividing by 2, we recognise the terms as A(OAB), A(OBC), and
A(OCA) respectively.

■

This result provides the "natural" expression for area in terms of
position vectors. It implies that the area of a triangle is the sum of
the signed areas swept out by the position vector as it traverses the
boundary A→ B→ C→ A.

General Polygons

The Origin Expansion Formula suggests a method for defining the
area of any polygon by summing the areas of triangles formed with
the origin.

Definition 1.4. Polygon.
A polygon σ is defined by a finite sequence of vertices P1, P2, . . . , Pn in
the plane. The boundary of σ, denoted ∂σ, consists of the oriented line
segments P1P2, P2P3, . . . , PnP1.

定義

Definition 1.5. Area of a Polygon.
The signed area of a polygon σ = (P1, . . . , Pn) is defined by:

Area(σ) =
n

∑
i=1
A(O, Pi, Pi+1),

where Pn+1 = P1 and O is any point in the plane.
定義
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For this definition to be mathematically sound, it must be indepen-
dent of the choice of origin O.

Theorem 1.2. Independence of Origin.
The value of Area(σ) is invariant under the change of origin. That is,
for any two points O and Q:

n

∑
i=1
A(O, Pi, Pi+1) =

n

∑
i=1
A(Q, Pi, Pi+1).

定理

Proof

Using the proposition 1.3 with Q as the "origin" for the triangle
OPiPi+1, we can write:

A(Q, Pi, Pi+1) = A(O, Pi, Pi+1) +A(O, Pi+1, Q) +A(O, Q, Pi).

Summing over i = 1 to n:

n

∑
i=1
A(Q, Pi, Pi+1) =

n

∑
i=1
A(O, Pi, Pi+1)+

n

∑
i=1

(A(O, Pi+1, Q)−A(O, Pi, Q)) ,

where we have used the skew-symmetry A(O, Q, Pi) =

−A(O, Pi, Q). The second sum is a telescoping series. Since
Pn+1 = P1, all terms cancel:

n

∑
i=1

(A(O, Pi+1, Q)−A(O, Pi, Q)) = 0.

Thus, the total area remains unchanged.
■

Example 1.5. Decomposition of Complex Shapes. Consider a
non-convex polygon, such as a "star" shape or a polygon with self-
intersections. The definition above remains valid. The sign of the
resulting area reflects the direction in which the boundary winds
around the interior (counter-clockwise versus clockwise). For sim-
ple polygons, the area satisfies the "Sum of Parts Principle" via
internal cancellation.
If a polygon ABCD is decomposed into two triangles ABC and
ACD by the diagonal AC, the total area is:

Area(ABCD) = A(OAB) +A(OBC) +A(OCD) +A(ODA).

Using A(OAC) +A(OCA) = 0, we can insert these terms:

Area(ABCD) = (A(OAB)+A(OBC)+A(OCA))+ (A(OAC)+A(OCD)+A(ODA)).

Area(ABCD) = A(ABC) +A(ACD).
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Thus, the area of the union is the sum of the components.

範例

Volume and The Triple Product

The geometric intuition of determinants extends naturally to 3-
dimensional space. While the area of a parallelogram is given by a
2× 2 determinant, the volume of a parallelepiped spanned by three
vectors u, v, w is given by a 3× 3 determinant. u

v

w

V

Figure 1.7: The volume of the
parallelepiped is determined by
the scalar triple product of its
edges.

Definition 1.6. Scalar Triple Product.
For three vectors u, v, w ∈ R3, the signed volume of the parallelepiped
they generate is:

Vol(u, v, w) = det

 | | |
u v w
| | |

 .

Algebraically, this is computed via the expansion:

det

u1 v1 w1

u2 v2 w2

u3 v3 w3

 = u1 det

[
v2 w2

v3 w3

]
−u2 det

[
v1 w1

v3 w3

]
+u3 det

[
v1 w1

v2 w2

]
.

定義

Orientation in R3

Just as the sign of the 2D determinant indicates clockwise or counter-
clockwise orientation, the sign of the 3D determinant indicates hand-
edness.
· If det(u, v, w) > 0, the vectors form a right-handed system. This

is consistent with the "right-hand rule": if the fingers of the right
hand curl from u to v, the thumb points in the direction of w (as-
suming w is on that side of the uv-plane).

· If det(u, v, w) < 0, they form a left-handed system.

· If det(u, v, w) = 0, the vectors are coplanar (linearly dependent),
and the volume is zero.
Example 1.6. Volume of a Box. Consider a rectangular box with
side lengths l, w, h aligned with the axes. The defining vectors are
u = (l, 0, 0)T , v = (0, w, 0)T , and w = (0, 0, h)T . The volume is:

det

 l 0 0
0 w 0
0 0 h

 = l(w · h− 0) = lwh.
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If we swap u and v, the determinant becomes −lwh, reflecting the
change in orientation from right-handed to left-handed.

範例

Remark.

This determinant formulation unifies the cross product and dot
product from vector calculus. The scalar triple product can be
written as u · (v × w). The cross product v × w produces an area
vector normal to the base, and the dot product with u computes the
"height" projected onto this normal, scaled by the base area.

Example 1.7. Cross Product via Determinants. The cross product
a × b is often memorised using a heuristic determinant with basis
vectors in the first row:

a×b = det

e1 e2 e3

a1 a2 a3

b1 b2 b3

 = (a2b3− a3b2)e1− (a1b3− a3b1)e2 +(a1b2− a2b1)e3.

While formally an abuse of notation (mixing vectors and scalars in
a matrix), it correctly generates the algebraic expansion of the cross
product.

範例

1.5 The Geometry of Volume in R3

We now extend the axiomatic framework established for the plane in
definition 1.2 to three-dimensional space. While the signed area in R2

is a function of two vectors, the signed volume in R3 is a function of
three.

Definition 1.7. Volume Axioms (Triple Product).
Let V be a 3-dimensional vector space. A function [·, ·, ·] : V × V ×
V → R is called a volume form (or triple product) if it satisfies the fol-
lowing axioms for all u, v, w, x ∈ V and k ∈ R:
1. Alternating Property: Interchanging any two adjacent vectors re-

verses the sign.

[u, v, w] = −[v, u, w] = −[u, w, v].

2. Trilinearity: The function is linear in each argument. For the first
argument:

[u + kx, v, w] = [u, v, w] + k[x, v, w].

By the alternating property, linearity holds for the second and third
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arguments as well.
3. Non-Degeneracy: [u, v, w] ̸= 0 if and only if {u, v, w} is linearly

independent.
定義

Note

The alternating property implies that if any two vectors are
identical, the volume is zero. For instance, if u = v, then
[u, u, w] = −[u, u, w], which forces the value to be 0.

Uniqueness and the Determinant

Just as the area function in the plane is uniquely determined by the
determinant relative to a basis (see theorem 1.1), the volume function
in space is uniquely determined by the 3× 3 determinant.

Theorem 1.3. Uniqueness of the Volume Form.
Let {e1, e2, e3} be a basis for R3, normalised such that [e1, e2, e3] = 1.
Then for any three vectors u, v, w, the volume is given by the determi-
nant of the matrix formed by their components:

[u, v, w] = det

 | | |
u v w
| | |

 .

定理

Proof

Let u = ∑i uiei, v = ∑j vjej, and w = ∑k wkek. Using trilinearity, we
expand the product completely:

[u, v, w] =
3

∑
i=1

3

∑
j=1

3

∑
k=1

uivjwk[ei, ej, ek].

The sum contains 33 = 27 terms. However, by the alternating prop-
erty, any term where indices are repeated (e.g., [e1, e1, e2]) vanishes.
The only non-zero terms correspond to permutations of distinct
indices {1, 2, 3}. There are 3! = 6 such permutations. We group
them by sign:

• Even permutations (cyclic shifts of 123) preserve the sign:

[e1, e2, e3] = [e2, e3, e1] = [e3, e1, e2] = 1.

• Odd permutations (single swaps) reverse the sign:

[e2, e1, e3] = [e1, e3, e2] = [e3, e2, e1] = −1.
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Substituting these values back into the sum yields:

[u, v, w] = (u1v2w3 +u2v3w1 +u3v1w2)− (u2v1w3 +u1v3w2 +u3v2w1).

This is precisely the Leibniz expansion of the determinant
det(u, v, w).

■

This theorem provides the justification for the definition of the Scalar
Triple Product given in the previous section. The algebraic properties
of the determinant are not arbitrary; they are the necessary conse-
quences of the geometric axioms of volume.

Remark.

In more advanced contexts, this product is denoted by the wedge
product u ∧ v ∧ w. The space of such tri-vectors in R3 is 1-
dimensional, which explains why the volume is unique up to a
scalar factor.

Example 1.8. Linearly Dependent Vectors. Consider the vectors
u = [1, 2, 3]T , v = [4, 5, 6]T , and w = [7, 8, 9]T . We can compute
the volume [u, v, w] using column operations on the determinant,
relying on the property that adding a multiple of one column to
another preserves the volume (an immediate corollary of linearity
and the vanishing of repeated factors).

det

1 4 7
2 5 8
3 6 9

 C2→C2−C1−−−−−−→ det

1 3 7
2 3 8
3 3 9

 C3→C3−C1−−−−−−→ det

1 3 6
2 3 6
3 3 6

 .

Since the second and third columns are proportional (specifically
C3 = 2C2), the determinant is 0. Thus, the vectors are coplanar.

範例

The Tetrahedron

The most elementary 3-dimensional solid is the tetrahedron, deter-
mined by four vertices O, A, B, C. Just as the area of a triangle is half
the area of the parallelogram spanned by two vectors, the volume of
a tetrahedron is a fraction of the parallelepiped spanned by three.

O
A

B

C

Figure 1.8: The tetrahedron
OABC occupies exactly
1/6 of the volume of the
parallelepiped spanned by
OA, OB, OC.

Definition 1.8. Volume of a Tetrahedron.
The signed volume of the tetrahedron with vertices O, A, B, C is given
by:

Vol(OABC) =
1
6
[OA, OB, OC].

定義
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The factor of 1/6 arises from elementary calculus (or the principle
of Cavalieri): the volume of a pyramid is 1

3 × Base Area×Height.
Since the base area of the triangle OAB is 1

2 the parallelogram area,
the total factor is 1

3 ×
1
2 = 1

6 .
We can use the algebraic properties of the volume form to solve
geometric problems without explicit coordinates.

Example 1.9. The Midpoint Tetrahedron. Let OABC be a tetra-
hedron. Let P, Q, R be the midpoints of the edges OA, OB, and
OC respectively. It is immediate that the volume of OPQR is 1

8
the volume of OABC. Consider a more non-trivial construction:
Let P, Q, R be the midpoints of the edges of the face triangle ABC.
Specifically:

P =
1
2
(A + B), Q =

1
2
(B + C), R =

1
2
(C + A).

We wish to find the volume of the tetrahedron OPQR relative to
OABC. Using the definition:

Vol(OPQR) =
1
6
[OP, OQ, OR] =

1
6

[
a + b

2
,

b + c
2

,
c + a

2

]
.

Factoring out the scalars ( 1
2 from each term):

Vol(OPQR) =
1
6
· 1

8
[a + b, b + c, c + a].

We expand the bracket using linearity. Note that any term with
repeated vectors will vanish.

[a + b, b + c, c + a] = [a, b + c, c + a] + [b, b + c, c + a]

= ([a, b, c] + [a, b, a] + [a, c, c] + [a, c, a])

+ ([b, b, c] + [b, b, a] + [b, c, c] + [b, c, a]).

Terms like [a, b, a] vanish. The only survivors are:

[a, b, c] and [b, c, a].

By the cyclic property of the triple product, [b, c, a] = [a, b, c]. Thus
the sum is 2[a, b, c]. Substituting back:

Vol(OPQR) =
1

48
(2[a, b, c]) =

1
4

(
1
6
[a, b, c]

)
=

1
4

Vol(OABC).

範例

Example 1.10. Tetrahedral Volume Ratio. Let O, A, B, C be the ver-
tices of a tetrahedron. Let G be the centroid of the face triangle
ABC, given by g = 1

3 (a + b + c), where position vectors are relative
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to O. Prove that the volume of the tetrahedron OABG is one-third
the volume of OABC.
We compute the ratio:

Vol(OABG)

Vol(OABC)
=

[a, b, g]
[a, b, c]

=
[a, b, 1

3 (a + b + c)]
[a, b, c]

.

Using linearity in the third argument:

[a, b,
1
3
(a + b + c)] =

1
3
([a, b, a] + [a, b, b] + [a, b, c]) .

The first two terms vanish due to repeated vectors. We are left with
1
3 [a, b, c]. Thus the ratio is 1/3.

範例

1.6 Exercises

1. Determinant Calculation. Let A and B be the matrices defined by:

A =

2 0 −1
1 2 2
3 2 4

 , B =

 2 1 −2
−1 1 5
4 2 3

 .

Compute the values of the following determinants:

(a) det(A) and det(B).

(b) det(AB2).

(c) det(A + B).

(d) det(A−1(A + B)).

2. Cyclic Equations. Solve the equation det(M) = 0 for the variable
x, where M is given by:

M =

a− x b− x c
a− x c b− x

a b− x c− x

 .

Hint: Use row and column operations
to simplify the matrix before expand-
ing. Look for common factors.

3. Block Determinants. Let A be an n × n matrix partitioned into
blocks:

A =

[
U V
0 X

]
,

where U is a k× k matrix, X is an m×m matrix (with k + m = n),
and 0 is the zero matrix. Using the definition of the determinant
(sum over permutations), prove that:

det(A) = det(U)det(X).
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Remark.

Consider which permutations σ ∈ Sn yield non-zero terms.
If σ maps an index from the first k rows to one of the last m
columns, what is the value of the corresponding matrix entry?

4. Roots of Unity. Let ω be a complex root of the equation x3− 1 = 0
with ω ̸= 1. Consider the matrix:

C =

 1 ω ω2

ω ω2 1
ω2 1 ω

 .

(a) Evaluate det(C).

(b) Show that the columns of C form a linearly dependent set
over C.

(c) What is the geometric interpretation of the linear dependence
of these complex vectors in C3?

5. The Shoelace Formula. Let P1 = (x1, y1), P2 = (x2, y2), . . . , Pn =

(xn, yn) be the vertices of a polygon in R2 listed in counter-
clockwise order. Using the vector definition of area for a polygon
(Area = ∑A(O, Pi, Pi+1)), derive the coordinate formula:

Area =
1
2

n

∑
i=1

(xiyi+1 − xi+1yi),

where (xn+1, yn+1) = (x1, y1).

Expand the term A(O, Pi , Pi+1) using
the determinant of position vectors
relative to the origin O = (0, 0).

6. Linearity of the Triple Product. Let u, v, w be three vectors in R3.

(a) Using the linearity and alternating properties of the volume
form [·, ·, ·], prove the identity:

[u + v, v + w, w + u] = 2[u, v, w].

(b) Give a geometric interpretation of this result relating the
volume of the parallelepiped spanned by the face diagonals
to the volume of the original parallelepiped.

7. Integer Coordinates. Let △ABC be a triangle in the plane such
that the coordinates of the vertices A, B, C are all integers.

(a) Prove that the signed area A(ABC) is a rational number of
the form n/2 for some integer n.

(b) Deduce that an equilateral triangle cannot have all its vertices
on integer lattice points.

8. Cramer’s Rule via Volume. Consider the system of linear equa-
tions Ax = b, where A = [a1, a2, a3] is a 3× 3 matrix with column
vectors ai, and x = [x1, x2, x3]

T .
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(a) Express the vector b as x1a1 + x2a2 + x3a3.

(b) Compute the determinant det([b, a2, a3]) using the linearity of
the determinant in the first column.

(c) Deduce Cramer’s Rule: if det(A) ̸= 0, then

x1 =
det([b, a2, a3])

det(A)
.

9. The Vector Triple Product Identity. While the scalar triple prod-
uct gives a volume, the vector triple product a× (b× c) yields a
vector. Using the property that a× (b× c) must lie in the plane
spanned by b and c (why?), and must be orthogonal to a, prove
the expansion:

a× (b× c) = (a · c)b− (a · b)c.

You may assume the standard basis
vectors e1, e2, e3 and check the identity
component-wise, or use the determi-
nant definition of the cross product.

10. Continuity of Orientation. Let A(t) be a continuous family of
n× n invertible matrices for t ∈ [0, 1]. This means the entries aij(t)
are continuous functions of t. Prove that if det(A(0)) > 0, then
det(A(t)) > 0 for all t ∈ [0, 1].

Remark.

Use the fact that the determinant is a polynomial function of the
entries, hence continuous. What property of the intermediate
values of continuous functions prevents the determinant from
jumping from positive to negative without crossing zero?



2
General Theory of Determinants

We have established in the previous chapter that area in R2 and
volume in R3 are characterised by specific algebraic properties: skew-
symmetry, multilinearity, and normalisation. We now extend these
concepts to n-dimensional space. While our geometric intuition fal-
ters beyond three dimensions, the algebraic structure remains robust.
We formally define the determinant not as a mere formula, but as the
unique function satisfying these geometric axioms for n× n matrices.

2.1 The Determinant Axioms

Let Mn(R) denote the set of n × n matrices with real entries. We
view a matrix A ∈ Mn(R) as an ordered list of its n column vectors
a1, . . . , an ∈ Rn.

A = [a1, . . . , an] =


a11 · · · a1n
...

. . .
...

an1 · · · ann

 .

We seek a function det : Mn(R) → R, often denoted by the bracket
notation [a1, . . . , an], that generalises the volume forms of defini-
tion 1.7.

Definition 2.1. Determinant Functions.
A function D : (Rn)n → R is called a determinant function if it satis-
fies the following axioms:
1. Skew-Symmetry (Alternating): Interchanging any two adjacent columns

reverses the sign.

D(. . . , ai, ai+1, . . .) = −D(. . . , ai+1, ai, . . .).

2. Multilinearity: The function is linear in each column argument. For
the k-th column:

D(. . . , u + cv, . . .) = D(. . . , u, . . .) + cD(. . . , v, . . .).
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3. Normalisation: The determinant of the identity matrix In = [e1, . . . , en]

is 1.
D(e1, . . . , en) = 1.

定義

Note

The term "determinant" typically refers to the unique function
satisfying these axioms. We denote this value by det(A) or |A|.

Elementary Consequences

From these axioms alone, several key properties follow immediately,
mirroring those derived for the triple product.

Proposition 2.1. Basic Properties.
Let [·] be a function satisfying the skew-symmetry and multilinearity
axioms.
1. Vanishing Property: If two columns are identical, the value is zero.
2. Linear Dependence: If the columns a1, . . . , an are linearly depen-

dent, then [a1, . . . , an] = 0.
3. General Permutation: For any permutation σ of indices {1, . . . , n}:

[aσ(1), . . . , aσ(n)] = sgn(σ)[a1, . . . , an],

where sgn(σ) is +1 if σ is even and −1 if σ is odd.
命題

Proof

For (1), let ai = aj with i < j. By repeatedly swapping adjacent
columns, we can bring aj next to ai. Let the resulting value be V.
Swapping the two identical vectors gives −V, but since the vectors
are identical, the matrix is unchanged, so V = −V =⇒ V = 0.
For (2), if the columns are dependent, one vector, say ak, can be
written as a linear combination of the others: ak = ∑j ̸=k cjaj. By
multilinearity:

[. . . , ak, . . .] = ∑
j ̸=k

cj[. . . , aj, . . .].

In each term of the sum, the column aj appears twice (once at posi-
tion j and once at position k). Thus every term vanishes.
For (3), any permutation can be decomposed into a sequence of
transpositions (swaps). Each swap reverses the sign. Thus, if N
swaps are required, the sign change is (−1)N , which is precisely
the sign of the permutation.

■
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2.2 Uniqueness and the Leibniz Formula

We now address the existence and uniqueness of such a function. By
expressing the column vectors in terms of the standard basis, we can
derive an explicit formula, proving uniqueness.
Let A = [a1, . . . , an]. We write each column aj as:

aj =
n

∑
i=1

aijei.

Using multilinearity in the first column:

[a1, . . . , an] =

[
n

∑
i1=1

ai11ei1 , a2, . . . , an

]
=

n

∑
i1=1

ai11[ei1 , a2, . . . , an].

Repeating this expansion for all n columns yields:

det(A) =
n

∑
i1=1

n

∑
i2=1
· · ·

n

∑
in=1

ai11ai22 · · · ainn[ei1 , ei2 , . . . , ein ].

The term [ei1 , . . . , ein ] is non-zero only if the indices i1, . . . , in are dis-
tinct (otherwise there is a repeated column). Thus, the sum restricts
to permutations σ ∈ Sn where ik = σ(k). Using the permutation
property (proposition 2.1) and the normalisation [e1, . . . , en] = 1:

[eσ(1), . . . , eσ(n)] = sgn(σ)[e1, . . . , en] = sgn(σ).

Substituting this back, we obtain the Leibniz Formula.

Theorem 2.1. Leibniz Formula for Determinants.
There exists a unique determinant function det : Mn(R)→ R, given
by:

det(A) = ∑
σ∈Sn

sgn(σ)
n

∏
j=1

aσ(j)j.

定理

Remark.

While theorem 2.1 proves uniqueness, verifying that this formula
satisfies the axioms (Existence) is a standard exercise in combina-
torics.

1. Normalisation: For In, aij = δij. The only non-zero term in the
sum corresponds to the identity permutation, yielding 1.

2. Skew-Symmetry: Swapping columns corresponds to composing
σ with a transposition τ. Since sgn(σ ◦ τ) = −sgn(σ), the entire
sum changes sign.

3. Multilinearity: Each term in the sum contains exactly one factor
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from the k-th column, ensuring linearity with respect to that
column.

2.3 Computational Techniques via Multilinearity

Although the Leibniz formula defines the determinant, it involves
n! terms, making it computationally intractable for large n. The ax-
ioms themselves often provide a more efficient route for calculation,
particularly using the property that adding a scalar multiple of one
column to another preserves the determinant (an immediate corollary
of multilinearity and the alternating property).

Example 2.1. Multilinearity in Action. Let us evaluate the follow-
ing 4 × 4 determinant not by row reduction or cofactor expansion,
but by direct application of the linearity axioms on the column
vectors.

D = det


1 0 2 0
3 2 0 0
0 −1 0 5
0 0 4 2

 .

We identify the columns as vectors in R4. Observe the decomposi-
tion in terms of basis vectors ei:

c1 = e1 + 3e2

c2 = 2e2 − e3

c3 = 2e1 + 4e4

c4 = 5e3 + 2e4

The determinant is D = [c1, c2, c3, c4]. We expand using multilinear-
ity.

D = [e1 + 3e2, 2e2 − e3, 2e1 + 4e4, 5e3 + 2e4].

We can expand the first column:

D = [e1, c2, c3, c4] + 3[e2, c2, c3, c4].

However, let us look for terms that survive. A term survives only
if it contains distinct basis vectors e1, e2, e3, e4 in some order. Con-
sider the expansion of the determinant expression:

[e1 + 3e2, 2e2 − e3, 2e1 + 4e4, 5e3 + 2e4].

Let us distribute terms using multilinearity. From c3, the e1 term
will interact with c1. If we pick e1 from c1, we must pick 4e4 from
c3 (to avoid repeating e1). If we pick 3e2 from c1, we can pick either
2e1 or 4e4 from c3.
Let us group by the choice from c1:
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1. Select e1 from c1: We must not pick e1 from c3, so we must pick
4e4. Current basis: {e1, ·, e4, ·}. From c2 = 2e2 − e3, we can pick
either. From c4 = 5e3 + 2e4, we cannot pick e4 (already chosen).
We must pick 5e3. This forces us to pick 2e2 from c2 (since e3 is
taken by c4).

Resulting term:

[e1, 2e2, 4e4, 5e3] = (1)(2)(4)(5)[e1, e2, e4, e3].

Since [e1, e2, e4, e3] = −[e1, e2, e3, e4] = −1, this term is 40(−1) =
−40.

2. Select 3e2 from c1: Current basis: {e2, ·, ·, ·}. From c2 = 2e2 − e3,
we cannot pick 2e2. We must pick −e3. Current basis:
{e2, e3, ·, ·}. From c4 = 5e3 + 2e4, we cannot pick 5e3. We must
pick 2e4. Current basis: {e2, e3, ·, e4}. From c3 = 2e1 + 4e4, we
cannot pick 4e4. We must pick 2e1.

Resulting term:

[3e2,−e3, 2e1, 2e4] = (3)(−1)(2)(2)[e2, e3, e1, e4].

To order e2, e3, e1, e4: swap e3 ↔ e1 (one swap)→ e2, e1, e3, e4.
Swap e2 ↔ e1 (second swap)→ e1, e2, e3, e4. Two swaps imply
an even permutation (+1). Term value: (−12)(1) = −12.

Total Determinant D = −40− 12 = −52.

範例

This method of "multilinear expansion" is often superior to standard
algorithms for sparse matrices where columns are linear combina-
tions of few basis vectors. It highlights that the determinant measures
how the "volume" of the standard hypercube is distorted and mixed
by the linear transformation.

2.4 Fundamental Properties of the Determinant

We now turn to the theoretical implications of the determinant ax-
ioms. Having established that the determinant is the unique alter-
nating multilinear form normalised at the identity, we can use it to
characterise linear dependence, solve systems of equations, and relate
column properties to row properties.

Linear Independence

In proposition 2.1, we established that if the columns of a matrix A are
linearly dependent, then det(A) = 0. The converse is equally true,



algebra ii: determinants and linear transformation 33

providing a complete algebraic criterion for linear independence.

Theorem 2.2. Determinant Criterion for Independence.
Let a1, . . . , an ∈ Rn. The vectors are linearly dependent if and only
if

[a1, . . . , an] = 0.

定理

Proof

The forward implication was proven in proposition 2.1. We prove the
converse by contradiction. Suppose that [a1, . . . , an] = 0 but the vec-
tors are linearly independent. Since they are n linearly independent
vectors in an n-dimensional space, they form a basis for Rn.
Consequently, the standard basis vectors e1, . . . , en can be expressed
as linear combinations of the aj’s. For each k ∈ {1, . . . , n}, there
exist scalars bki such that:

ek =
n

∑
i=1

bkiai.

Consider the determinant of the identity matrix I = [e1, . . . , en]. Us-
ing the expansion above:

1 = det(I) =

[
∑
i1

b1i1ai1 , . . . , ∑
in

bnin ain

]
.

By the multilinearity of the determinant, we may expand this into a
sum of determinants of the form:

b1i1 · · · bnin [ai1 , . . . , ain ].

If any two indices in the sequence i1, . . . , in are identical, the term
vanishes. If all indices are distinct, the sequence is a permutation of
1, . . . , n. In this case,

[ai1 , . . . , ain ] = ±[a1, . . . , an].

However, by hypothesis, [a1, . . . , an] = 0. Thus, every term in the
expansion is zero, implying det(I) = 0, which contradicts the nor-
malisation axiom (det(I) = 1). We conclude that the vectors must
be linearly dependent.

■

This theorem provides a computationally verifiable test for the invert-
ibility of a matrix. A matrix A is invertible (non-singular) if and only
if det(A) ̸= 0.
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Cramer’s Rule

The multilinearity of the determinant allows us to construct ex-
plicit formulas for the solutions of linear systems Ax = b, provided
det(A) ̸= 0.

Theorem 2.3. Cramer’s Rule.
Let A = [a1, . . . , an] be an invertible n × n matrix, and let b ∈ Rn.
The unique solution to the system

x1a1 + · · ·+ xnan = b

is given by

xk =
det(Ak)

det(A)
,

where Ak is the matrix obtained by replacing the k-th column of A with
b:

Ak = [a1, . . . , ak−1, b, ak+1, . . . , an].

定理

Proof

Since A is invertible, det(A) ̸= 0 and the columns {ai} form a basis.
The equation Ax = b is equivalent to:

b =
n

∑
i=1

xiai.

Consider the determinant of the matrix Ak. By linearity in the k-th
column:

det(Ak) = [a1, . . . , b, . . . , an]

=

[
a1, . . . ,

n

∑
i=1

xiai, . . . , an

]

=
n

∑
i=1

xi[a1, . . . , ai, . . . , an].

Observe that for i ̸= k, the column ai appears twice (at position i
and position k), causing the determinant to vanish. The only non-
zero term corresponds to i = k:

det(Ak) = xk[a1, . . . , ak, . . . , an] = xk det(A).

Solving for xk yields the result.
■

Example 2.2. Solving a System via Cramer’s Rule. Consider the
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system:

3x + y− z = 4

x + y + z = 0

2x + z = 2

We can write this in vector form xa1 + ya2 + za3 = b, with coeffi-
cient matrix A. First, we compute the determinant of coefficients:

∆ = det(A) = det

3 1 −1
1 1 1
2 0 1

 .

Using column operations: C1 → C1 − C2 and C3 → C3 − C2:

∆ = det

2 1 −2
0 1 0
2 0 1

 = 1 · det

[
2 −2
2 1

]
= 2(1)− (−2)(2) = 6.

Since ∆ ̸= 0, a unique solution exists. To find y, we replace the sec-
ond column with b = [4, 0, 2]T :

∆y = det

3 4 −1
1 0 1
2 2 1

 .

Expanding along the second row (which has a zero):

∆y = −1 det

[
4 −1
2 1

]
− 1 det

[
3 4
2 2

]
= −1(4− (−2))− 1(6− 8) = −6+ 2 = −4.

Thus, y =
∆y
∆ = −4

6 = − 2
3 . (Computing x and z is similar).

範例

The Transpose Property

The axioms of the determinant are defined in terms of columns.
However, there is a perfect duality between rows and columns.

Definition 2.2. Transpose.
Let A be an n×n matrix with entries aij. The transpose AT is the ma-
trix with entries bij = aji.

定義

Theorem 2.4. Determinant of the Transpose.
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For any square matrix A,

det(A) = det(AT).

定理

Proof

We utilise the Leibniz Formula. Let A = (aij) and AT = (bij) where
bij = aji.

det(AT) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

bσ(i)i = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

aiσ(i).

We may rearrange the product term. Let j = σ(i). Since σ is a bijec-
tion, as i ranges over {1, . . . , n}, so does j. The relation j = σ(i) im-
plies i = σ−1(j). Thus:

n

∏
i=1

aiσ(i) =
n

∏
j=1

aσ−1(j)j.

The sum is over all permutations σ ∈ Sn. As σ ranges over
the group Sn, so does its inverse τ = σ−1. Furthermore,
sgn(σ) = sgn(σ−1) (as we shall see in section 2.5, σ and σ−1 share
the same decomposition into transpositions). Substituting τ for σ−1

in the sum:

det(AT) = ∑
τ∈Sn

sgn(τ)
n

∏
j=1

aτ(j)j.

This is precisely the expression for det(A).
■

Proposition 2.2. Row Operations.
Since det(A) = det(AT), every property established for columns ap-
plies equally to rows.
1. Row Alternation: Swapping two rows reverses the sign of the de-

terminant.
2. Row Multilinearity: The determinant is linear in each row.
3. Row Operations: Adding a multiple of one row to another preserves

the determinant.
命題

Proof

Let R be a row operation (e.g., swapping rows). Performing R on
A is equivalent to performing the corresponding column operation
on AT . Since det(A) = det(AT), the effect on the determinant is
identical.

■
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Example 2.3. Determinant via Row Reduction. To evaluate

D = det

 0 3 7
1 2 3
−1 8 6

 ,

we may transpose it to work with columns, or simply apply row
operations directly. Swap R1 and R2 (sign change):

D = −det

 1 2 3
0 3 7
−1 8 6

 .

Add R1 to R3:

D = −det

1 2 3
0 3 7
0 10 9

 .

Now expand along the first column:

D = −(1)det

[
3 7

10 9

]
= −(27− 70) = −(−43) = 43.

範例

2.5 Parity and the Symmetric Group

The foundation of the determinant, specifically the Leibniz Formula,
relies entirely on the sign of a permutation. In proposition 2.1, we
asserted that a permutation σ could be classified as even or odd
based on the number of transpositions required to form it. We now
provide the combinatorial justification for this claim, ensuring that
the sign is well-defined and independent of the specific sequence of
transpositions used.

Inversions and Parity

Let Sn denote the group of permutations of the set {1, . . . , n}. We
represent a permutation σ ∈ Sn by the sequence of values σ(1), σ(2), . . . , σ(n).

Definition 2.3. Inversion.
An inversion in a permutation σ is a pair of indices (i, j) such that i <
j but σ(i) > σ(j). The inversion count N(σ) is the total number of such
pairs.

定義
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Note

Intuitively, if we write the numbers in a row, an inversion occurs
whenever a larger number precedes a smaller one. We can calculate
N(σ) by iterating through the sequence and counting how many
"strangers" (larger numbers) sit to the left of each element.

Example 2.4. Calculating Parity. Consider the permutation
σ = 53241 in S5. We count the inversions for each position j (pairs
(i, j) with i < j and σ(i) > σ(j)):
· 5: No elements to the left. (0)

· 3: Preceded by 5. (1)

· 2: Preceded by 5, 3. (2)

· 4: Preceded by 5. (1)

· 1: Preceded by 5, 3, 2, 4. (4)
Total inversions N(σ) = 0 + 1 + 2 + 1 + 4 = 8. Since 8 is even, we
call σ an even permutation.

範例

We define the sign of the permutation as sgn(σ) = (−1)N(σ). To show
that this matches the definition based on transpositions, we prove
that swapping any two elements flips the parity.

Lemma 2.1. Adjacent Transposition.
Let σ be a permutation and let τ be a transposition swapping two ad-
jacent elements at positions k and k + 1. Then:

N(σ ◦ τ) = N(σ)± 1.

Consequently, sgn(σ ◦ τ) = −sgn(σ).
引理

Proof

Let the sequence be . . . , a, b, . . ., where a = σ(k) and b = σ(k + 1).
After the swap, the sequence becomes . . . , b, a, . . .. For any element
x not at positions k or k + 1, its relative order with a and b remains
unchanged. Thus, the only inversion pair affected is (k, k + 1) itself.

• If a < b, the pair was not an inversion, but becomes one (b > a).
The count increases by 1.

• If a > b, the pair was an inversion, but ceases to be one. The
count decreases by 1.

In either case, the parity of the total count reverses.
■
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Lemma 2.2. General Transposition.
Let τ be a transposition swapping any two elements. Then sgn(σ ◦ τ) =

−sgn(σ).
引理

Proof

Suppose we wish to swap elements at positions i and j with i < j.
Let k = j− i− 1 be the number of elements between them.

. . . a x1 . . . xk︸ ︷︷ ︸
intermediate

b . . .

We can achieve this swap by a sequence of adjacent transpositions:
1. Move a to the right past each xm until it is adjacent to b. This
requires k swaps. 2. Swap a and b. (1 swap) 3. Move b (now at a’s
old position relative to x) to the left past each xm. This requires k
swaps. The total number of adjacent swaps is 2k + 1. Since each
adjacent swap reverses the sign (lemma 2.1), and 2k + 1 is odd, the
total sign change is (−1)2k+1 = −1.

■

Theorem 2.5. Well-definedness of Parity.
If a permutation σ can be written as a product of m transpositions, then
sgn(σ) = (−1)m. Thus, m is always even or always odd for a fixed
σ.

定理

Proof

The identity permutation has N(id) = 0, so sgn(id) = +1. If
σ = τm · · · τ1, we apply the transpositions sequentially to the iden-
tity. Each step flips the sign. Thus sgn(σ) = (−1)m.

■

This confirms that the determinant axiom of skew-symmetry is con-
sistent: no matter how one permutes the columns to reach a canon-
ical ordering, the resulting sign change is determined solely by the
final permutation.

2.6 Abstract Volume Forms

We now lift the concept of the determinant from the specific case
of matrices Mn(R) to general n-dimensional vector spaces. This ab-
straction allows us to discuss volume without reference to a specific
coordinate system.
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Definition 2.4. Volume Form.
Let V be an n-dimensional vector space over R. A map ω : Vn → R

is called a volume form (or an alternating n-linear form) if it satisfies:
1. Multilinearity: ω is linear in each of its n arguments.
2. Alternating: ω(v1, . . . , vn) = 0 if vi = vj for any i ̸= j.

定義

Note

Recall from proposition 2.1 that the alternating property implies
skew-symmetry: swapping arguments reverses the sign.

A key result is that the vector space of such volume forms is one-
dimensional. In geometric terms: once we decide the volume of a
single non-degenerate parallelepiped (a basis), the volumes of all
other parallelepipeds are fixed.

Theorem 2.6. Uniqueness of Volume Forms.
Let V be an n-dimensional vector space and let B = {f1, . . . , fn} be
a basis for V. For any scalar k ∈ R, there exists a unique volume form
ω such that

ω(f1, . . . , fn) = k.

定理

Uniqueness.

Let u1, . . . , un be arbitrary vectors in V. We express them in the
basis B:

uj =
n

∑
i=1

aijfi.

Substituting these into ω and using multilinearity:

ω(u1, . . . , un) = ω

(
∑
i1

ai11fi1 , . . . , ∑
in

ainnfin

)
= ∑

i1,...,in

ai11 · · · ainnω(fi1 , . . . , fin).

By the alternating property, terms vanish unless indices are distinct.
Thus the sum is over permutations σ:

ω(u1, . . . , un) = ∑
σ∈Sn

sgn(σ)

(
n

∏
j=1

aσ(j)j

)
ω(f1, . . . , fn).

The term in the parenthesis is exactly det(A), where A = (aij)

is the matrix of coordinates of the u’s relative to B. Thus:
ω(u1, . . . , un) = det(A) · k. This formula is determined solely
by k and the coordinates, proving uniqueness.

証明終
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Existence.

Define ω(u1, . . . , un) = k det(A). Since the determinant satisfies the
multilinearity and alternating axioms, so does ω. Furthermore, if
we input the basis vectors fj, the coordinate matrix A is the identity
I, and det(I) = 1, yielding ω(f1, . . . , fn) = k.

証明終

Remark.

If k ̸= 0, the form ω is non-degenerate. This theorem implies that
any two non-zero volume forms ω and ω′ on V are proportional:
ω′ = cω for some c ̸= 0. This scalar c represents a change in the
"unit of measure."

2.7 Orientation and Euclidean Volume

In a general vector space, there is no natural "standard" volume;
we must arbitrarily choose a basis and assign it a volume (usually
1). However, if the space is equipped with an inner product, the
geometry becomes rigid enough to distinguish a canonical volume
form.

Oriented Euclidean Spaces

Let V be a Euclidean space (a real vector space with an inner product
⟨·, ·⟩). Recall that an orthonormal basis is a basis {ei} where ⟨ei, ej⟩ =
δij. We know that such bases exist. A natural question arises: do all
orthonormal bases have the same "volume"?

Theorem 2.7. Determinant of Orthonormal Transition.
Let E = {e1, . . . , en} be an orthonormal basis for V, and let ω be a vol-
ume form such that ω(e1, . . . , en) = 1. If F = {f1, . . . , fn} is any other
orthonormal basis, then:

ω(f1, . . . , fn) = ±1.

定理

Proof

Let P be the transition matrix from E to F , so fj = ∑i pijei. By the
uniqueness proof above,

ω(f1, . . . , fn) = det(P) ·ω(e1, . . . , en) = det(P).

Since both bases are orthonormal, the matrix P is orthogonal,
meaning PT P = I. Taking determinants:

det(PT P) = det(PT)det(P) = (det P)2 = 1.
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Thus det(P) = ±1.
■

This dichotomy allows us to split the set of ordered orthonormal
bases into two disjoint classes: those with determinant +1 and those
with −1.

Definition 2.5. Orientation.
An orientation on a Euclidean space V is a choice of one of the two equiv-
alence classes of orthonormal bases. The bases in the chosen class are
called positively oriented (or right-handed); the others are negatively ori-
ented (or left-handed).

定義

An oriented Euclidean space is a Euclidean space equipped with a
distinguished volume form Vol such that for any positively oriented
orthonormal basis e1, . . . , en:

Vol(e1, . . . , en) = 1.

Note

This reconciles the algebraic determinant with the geometric inner
product.

• The inner product u · v measures lengths and angles.

• The volume form [u1, . . . , un] measures signed content.

In an oriented Euclidean space, we can compute the volume of
any parallelepiped using coordinates relative to any positively ori-
ented orthonormal basis. If uj = (u1j, . . . , unj)

T in such a basis, the
volume is simply the determinant of the matrix of components.

2.8 Cofactor Expansion

While the Leibniz Formula provides a closed-form expression for the
determinant, it is inefficient for practical computation. We now in-
troduce an inductive method known as Laplace expansion (or cofactor
expansion), which reduces the determinant of an n × n matrix to a
weighted sum of (n− 1)× (n− 1) determinants.

Definition 2.6. Minors and Cofactors.
Let A ∈ Mn(R).
1. The minor Mij is the determinant of the (n− 1)× (n− 1) subma-

trix obtained by deleting the i-th row and j-th column of A.
2. The cofactor Cij is the signed minor:

Cij = (−1)i+j Mij.
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定義

Theorem 2.8. Laplace Expansion.
The determinant of A can be computed by expanding along any row
i or any column j:

det(A) =
n

∑
k=1

aikCik (Expansion along row i)

det(A) =
n

∑
k=1

akjCkj (Expansion along column j)

定理

Proof

We prove the column expansion case using the multilinearity ax-
iom. Fix a column index j. We express the j-th column vector aj in
the standard basis:

aj =
n

∑
k=1

akjek.

By the linearity of the determinant in the j-th argument:

det(A) = det([a1, . . . ,
n

∑
k=1

akjek, . . . , an]) =
n

∑
k=1

akj det([a1, . . . , ek, . . . , an]).

Let Dk = det([a1, . . . , ek, . . . , an]). This matrix has the standard basis
vector ek in the j-th column. To compute Dk, we move the j-th col-
umn to the n-th position (requiring n− j swaps) and the k-th row to
the n-th position (requiring n − k swaps). Let the resulting matrix
be A′.

A′ =

[
Msub

kj 0

vT 1

]
,

where Msub
kj is the submatrix used to define the minor Mkj. The

total number of swaps is (n − j) + (n − k) = 2n − (j + k).
Since 2n is even, the sign change is (−1)−(j+k) = (−1)j+k. Thus,
Dk = (−1)j+k det(A′). By the block structure (or inductive defini-
tion), det(A′) = 1 · det(Msub

kj ) = Mkj. Substituting back:

det(A) =
n

∑
k=1

akj(−1)j+k Mkj =
n

∑
k=1

akjCkj.

Row expansion follows immediately from det(A) = det(AT).
■
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Example 2.5. Recursive Calculation. Consider the matrix

A =

1 2 3
4 5 6
7 8 9

 .

Expanding along the first row:

det(A) = 1 · C11 + 2 · C12 + 3 · C13

= 1

∣∣∣∣∣5 6
8 9

∣∣∣∣∣− 2

∣∣∣∣∣4 6
7 9

∣∣∣∣∣+ 3

∣∣∣∣∣4 5
7 8

∣∣∣∣∣
= 1(45− 48)− 2(36− 42) + 3(32− 35)

= −3 + 12− 9 = 0.

This confirms that the rows are linearly dependent (specifically,
R2 = 1

2 (R1 + R3)).

範例

Triangular Matrices

A significant consequence of the expansion theorem is the ease of
computing determinants for triangular matrices.

Proposition 2.3. Determinant of Triangular Matrices.
If A is an upper triangular, lower triangular, or diagonal matrix, its de-
terminant is the product of its diagonal entries:

det(A) =
n

∏
i=1

aii.

命題

Proof

We proceed by induction on n. For n = 1, det(A) = a11. Assume
the property holds for (n − 1) × (n − 1) matrices. Let A be lower
triangular. Expanding along the first row, the only non-zero entry is
a11 (since a1j = 0 for j > 1).

det(A) = a11C11 = a11(−1)1+1M11 = a11M11.

The submatrix corresponding to M11 is also lower triangular
with diagonal entries a22, . . . , ann. By the inductive hypothesis,
M11 = a22 · · · ann. Thus det(A) = a11a22 · · · ann. The proof for upper
triangular matrices is identical using column expansion.

■
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2.9 Algebraic Properties

Note

In this section, we will utilise two key results from our earlier notes
on matrix theory:
1. Any invertible matrix can be expressed as a product of elemen-

tary matrices.
2. A square matrix with a left or right inverse is automatically

invertible.

The geometric definition of the determinant leads to powerful mul-
tiplicative properties, connecting the determinant to the group struc-
ture of invertible matrices GLn(R).

The Product Theorem

Perhaps the most useful property of the determinant is that it pre-
serves multiplication. To prove this, we utilise the decomposition of
matrices into elementary matrices.

Lemma 2.3. Determinants of Elementary Matrices.
Let E be an elementary matrix.
1. If E swaps two rows, det(E) = −1.
2. If E scales a row by k ̸= 0, det(E) = k.
3. If E adds a multiple of one row to another, det(E) = 1.
Moreover, for any matrix B, det(EB) = det(E)det(B).

引理

Proof

proposition 2.2 establishes the effect of row operations on the deter-
minant:
1. Swapping rows negates the determinant. Thus det(EB) =

−det(B). Since E is obtained by swapping rows of I (where
det(I) = 1), det(E) = −1. Hence det(EB) = det(E)det(B).

2. Scaling a row by k scales the determinant by k. det(EB) =

k det(B) and det(E) = k.
3. Row addition leaves the determinant invariant. det(EB) =

det(B) and det(E) = 1.
In all cases, the multiplicative property holds.

■

Theorem 2.9. The Multiplicative Property.
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For any A, B ∈ Mn(R):

det(AB) = det(A)det(B).

定理

We distinguish two cases based on the invertibility of A.

Case 1: A is not invertible.

By the Determinant Criterion for Independence, det(A) = 0. If A
is singular, then AB is also singular. (If AB were invertible, then
B(AB)−1 would be a right inverse for A. In our earlier notes, we
proved that a square matrix with a right inverse is invertible, which
would contradict A being singular). Thus det(AB) = 0, and the
equality 0 = 0 · det(B) holds.

証明終

Case 2: A is invertible.

As established in our previous notes on Gaussian elimination,
any invertible matrix A can be written as a product of elementary
matrices: A = E1E2 · · · Ek. Using lemma 2.3 inductively:

det(AB) = det(E1E2 · · · EkB)

= det(E1)det(E2 · · · EkB)
...

= det(E1) · · ·det(Ek)det(B).

Setting B = I, we see that det(A) = det(E1) · · ·det(Ek). Substitut-
ing this back yields det(AB) = det(A)det(B).

証明終

Corollary 2.1. Determinant of the Inverse. If A is invertible, then

det(A−1) =
1

det(A)
.

推論

Proof

Since AA−1 = I, we have det(A)det(A−1) = det(I) = 1.
■

Corollary 2.2. Invariance under Similarity. If A and B are similar ma-
trices, i.e., B = P−1 AP for some invertible P, then det(B) = det(A).

推論
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Proof

det(P−1 AP) = det(P−1)det(A)det(P) =
1

det(P)
det(A)det(P) = det(A).

■

Remark.

This corollary is crucial for linear algebra: it implies that the deter-
minant is an intrinsic property of the linear operator, independent of
the basis chosen to represent it.

Block Matrices

We conclude this section with a useful result for matrices with block
structures.

Proposition 2.4. Block Determinant.
Let M be a block triangular matrix of the form

M =

[
A B
0 D

]
,

where A ∈ Mk(R) and D ∈ Mn−k(R) are square matrices. Then

det(M) = det(A)det(D).

命題

Proof

We can factorise M as:[
A B
0 D

]
=

[
Ik 0
0 D

] [
A B
0 In−k

]
.

Let M1 =

[
Ik 0
0 D

]
. By applying cofactor expansion along the first k

columns (which are standard basis vectors), det(M1) = det(D).

Let M2 =

[
A B
0 In−k

]
. By expanding along the last n − k

rows, det(M2) = det(A). By the Product Theorem, det(M) =

det(M1)det(M2) = det(D)det(A).
■
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Example 2.6. Block Example. Compute the determinant of:

M =


1 2 9 8
3 4 7 6
0 0 5 0
0 0 2 3

 .

Here A =

[
1 2
3 4

]
and D =

[
5 0
2 3

]
. The zero block is in the

bottom-left.

det(M) = det(A)det(D) = (4− 6)(15− 0) = (−2)(15) = −30.

範例

2.10 The Adjugate Matrix

We have seen that the inverse of a matrix can be computed via Gaus-
sian elimination or expressed element-wise using Cramer’s rule. We
now derive a closed-form algebraic expression for the inverse, known
as the adjugate formula. This formula is of significant theoretical in-
terest, though it is computationally expensive for large matrices.

Definition 2.7. Adjugate Matrix.
Let A ∈ Mn(R). The adjugate of A, denoted adj(A), is the transpose
of the matrix of cofactors. That is,

(adj(A))ij = Cji = (−1)i+j Mji.

定義

Remark.

Historically, this matrix was called the "adjoint". However, in mod-
ern linear algebra, "adjoint" typically refers to the Hermitian con-
jugate A∗ (or A†) in the context of inner product spaces. To avoid
ambiguity, we use "adjugate".

Example 2.7. 2× 2 Adjugate. For A =

[
a b
c d

]
, the cofactors are:

C11 = d, C12 = −c, C21 = −b, C22 = a.

The matrix of cofactors is

[
d −c
−b a

]
. Transposing gives:

adj(A) =

[
d −b
−c a

]
.
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範例

The fundamental property of the adjugate is that it annihilates the
matrix A up to a scalar factor.

Theorem 2.10. Adjugate Identity.
For any A ∈ Mn(R):

A adj(A) = adj(A) A = det(A)I.

定理

Consider the product P = A adj(A). The (i, j)-th entry is the dot
product of the i-th row of A and the j-th column of adj(A) (which is
the j-th row of the cofactor matrix).

Pij =
n

∑
k=1

aik(adj(A))kj =
n

∑
k=1

aikCjk.

We analyse two cases:

Diagonal entries (i = j)

Pii =
n

∑
k=1

aikCik.

This is exactly the cofactor expansion of det(A) along the i-th row.
Thus, Pii = det(A).

証明終

Off-diagonal entries (i ̸= j)

Pij =
n

∑
k=1

aikCjk.

This sum represents the determinant of a matrix A′ obtained from
A by replacing the j-th row with a copy of the i-th row. Since A′

has two identical rows, det(A′) = 0. Thus, Pij = 0.
証明終

Consequently, P is a diagonal matrix with det(A) on the diagonal,
i.e., P = det(A)I.

Corollary 2.3. Formula for the Inverse
推論

If A is invertible (det(A) ̸= 0), then:

A−1 =
1

det(A)
adj(A).
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Proof

From theorem 2.10, A
(

1
det(A)

adj(A)
)

= I. Since the inverse is
unique, the result follows.

■

2.11 Applications of the Determinant

The determinant is not merely a criterion for invertibility; it encodes
essential geometric and algebraic information about linear transfor-
mations and systems of vectors.

Volume and Linear Maps

As established in the geometric introduction, the determinant mea-
sures the scaling factor of volume.

Theorem 2.11. Volume of a Parallelepiped.
Let T : Rn → Rn be a linear operator represented by the matrix A.
If P is a parallelepiped in Rn, then:

Vol(T(P)) = |det(A)| ·Vol(P).

定理

Proof

It suffices to verify this for the unit hypercube generated by the
standard basis vectors. Its image is the parallelepiped spanned by
the columns of A. By definition, the volume of this parallelepiped
is |det(A)|. Since T is linear, the scaling factor applies to any par-
allelepiped (which is the image of the unit hypercube under some
linear map).

■

Remark.

Using measure theory, this result extends to any measurable set S,
giving Vol(T(S)) = |det(A)| · Vol(S). We restrict our attention to
parallelepipeds here.

Example 2.8. Area of a Polygon. Consider a parallelogram in R2

defined by a linear transformation of the unit square. If the vertices
are (0, 0), (3, 0), (0, 1), (3, 1) (a rectangle of area 3) and we apply

T(x, y) = (2x, x + y), the matrix is A =

[
2 0
1 1

]
with det(A) = 2.

The new area is 2× 3 = 6.

範例
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Polynomial Interpolation

The determinant naturally appears in problems involving polyno-
mial fitting. The condition for the existence of a unique polynomial
passing through n points leads to the Vandermonde determinant.

Definition 2.8. Vandermonde Matrix.
Given n scalars x1, . . . , xn, the Vandermonde matrix V is defined by Vij =

xj−1
i :

V =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

 .

定義

Theorem 2.12. Vandermonde Determinant.
det(V) = ∏

1≤i<j≤n
(xj − xi).

定理

Proof

Let ∆n(x1, . . . , xn) = det(V). We proceed by induction on n. For
n = 1, ∆1 = det[1] = 1, which agrees with the empty product.
Assume n ≥ 2 and that the formula holds for n − 1. Perform the
column operations Ck → Ck − x1Ck−1 for k = n, n − 1, . . . , 2. These
operations preserve the determinant, so the new matrix V′ satisfies
det(V′) = ∆n.
For k ≥ 2, the (i, k)-entry of V′ is

xk−1
i − x1xk−2

i = xk−2
i (xi − x1).

When i = 1, this entry is xk−2
1 (x1 − x1) = 0, so the first row of V′

is (1, 0, . . . , 0). Expanding along the first row yields ∆n = det(W),
where W is the (n − 1) × (n − 1) matrix obtained by deleting the
first row and column of V′. Indexing rows by i = 2, . . . , n and
columns by k = 2, . . . , n, the entries are

Wi,k = xk−2
i (xi − x1).

Each row i of W contains the common factor (xi − x1). By multilin-
earity in the rows,

det(W) =

(
n

∏
i=2

(xi − x1)

)
det(U),

where U is the matrix obtained by dividing the i-th row of W by
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(xi − x1). Thus

U =


1 x2 x2

2 · · · xn−2
2

1 x3 x2
3 · · · xn−2

3
...

...
...

. . .
...

1 xn x2
n · · · xn−2

n

 ,

so det(U) = ∆n−1(x2, . . . , xn). Therefore

∆n =

(
n

∏
i=2

(xi − x1)

)
∆n−1(x2, . . . , xn).

Applying the induction hypothesis,

∆n−1(x2, . . . , xn) = ∏
2≤i<j≤n

(xj − xi),

hence

∆n =

(
n

∏
i=2

(xi − x1)

)(
∏

2≤i<j≤n
(xj − xi)

)
= ∏

1≤i<j≤n
(xj − xi).

This completes the proof.
■

This result implies that V is invertible if and only if all xi are distinct.
This guarantees that there is a unique polynomial of degree n − 1
passing through any n points with distinct x-coordinates.

Example 2.9. Equation of a Line. Three points (x, y), (x1, y1), and
(x2, y2) are collinear if and only if the triangle they form has zero
area. This condition is expressed by the vanishing of the determi-
nant:

det

1 x y
1 x1 y1

1 x2 y2

 = 0.

Performing row operations R2 → R2 − R1 and R3 → R3 − R1 leads
to the two-point form of the line equation.

範例

2.12 Exercises

In the following exercises, assume all matrices are square and have
real entries unless specified otherwise. You may use the properties
established in the chapter (multilinearity, alternating property, prod-
uct theorem, etc.).
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1. Elementary Row Operations. Using elementary row operations to
introduce zeros, compute the determinant of the following matrix:

A =


1 2 3 0
5 0 2 1
−1 1 0 3
2 1 3 −2

 .

2. Solving for Singularity. Find all values of x for which the follow-
ing matrix is singular (i.e., has determinant zero): Identify the structure of this matrix

to solve it by inspection, rather than
brute-force expansion.

M(x) =

1 x x2

1 2 4
1 5 25

 .

3. Determinant Arithmetic. Let A and B be 4 × 4 matrices with
det(A) = 3 and det(B) = −2. Compute the following values:

(a) det(ABT)

(b) det(2A−1)

(c) det(A3B−1 AT)

(d) det(adj(A))

4. Permutation Parity. Consider the permutation σ ∈ S8 defined by:

σ =

[
1 2 3 4 5 6 7 8
4 2 8 3 1 7 5 6

]
.

(a) Determine the number of inversions N(σ).
(b) Decompose σ into a product of disjoint cycles.
(c) Determine the sign sgn(σ).

5. The Arrow Matrix. Compute the determinant of the following
n × n "arrow" matrix, which has entries a on the diagonal, ones
in the last column and last row, and zeros elsewhere (except the
(n, n) entry): Use row operations to eliminate the

ones in the last column.

Dn = det


a 0 · · · 0 1
0 a · · · 0 1
...

...
. . .

...
...

0 0 · · · a 1
1 1 · · · 1 1

 .

6. Skew-Symmetric Matrices. A matrix A is called skew-symmetric if
AT = −A.

(a) Prove that if A is a skew-symmetric matrix of odd dimension
n, then det(A) = 0.

(b) Give an example of a 2× 2 skew-symmetric matrix with non-
zero determinant.
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7. The Matrix Determinant Lemma. Let A be an invertible n × n
matrix, and let u, v ∈ Rn be column vectors.

(a) Using the block matrix identity

[
I 0

vT 1

] [
I + uvT u

0 1

] [
I 0
−vT 1

]
=[

I u
0 1 + vTu

]
(or a similar decomposition), prove that:

det(I + uvT) = 1 + vTu.

(b) Deduce that for an invertible A, det(A + uvT) = det(A)(1 +

vT A−1u).

8. Integrality of the Inverse. Let A be a matrix with integer en-
tries. Prove that A−1 exists and has integer entries if and only if
det(A) = ±1.

Use the Adjugate Formula for the
sufficient condition.

9. Orthogonal Matrices. A real matrix Q is orthogonal if QTQ = I.

(a) Prove that det(Q) ∈ {1,−1}.
(b) Geometric Interpretation: If det(Q) = 1, Q represents a rota-

tion. If det(Q) = −1, Q represents a reflection (or rotation-
reflection). Verify this for 2× 2 matrices.

10. The Adjugate Determinant. Let A be an n× n matrix.

(a) Prove that det(adj(A)) = (det(A))n−1. Treat the singular and non-singular
cases separately. For the singular case,
argue that adj(A) cannot be invertible.(b) Prove that if det(A) ̸= 0, then adj(adj(A)) = (det(A))n−2 A.

11. Anti-Commuting Matrices. Let A, B be n× n matrices such that
AB = −BA.

(a) Prove that if n is odd, then at least one of A or B must be
singular.

(b) Show that for n = 2, it is possible for both A and B to be
non-singular.

12. Schur Complement. Let M =

[
A B
C D

]
be a block matrix where A

is an invertible k× k matrix.

(a) Verify the decomposition:[
A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 D− CA−1B

] [
I A−1B
0 I

]
.

(b) Deduce that det(M) = det(A)det(D− CA−1B).

(c) If A and C commute (i.e., AC = CA), prove that det(M) =

det(AD− CB).

13. Tridiagonal Recurrence. Let Tn be the determinant of the n × n
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tridiagonal matrix defined by:

Tn = det


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

 .

(a) By expanding along the first row, derive the recurrence rela-
tion Tn = 2Tn−1 − Tn−2.

(b) Calculate T1 and T2, and solve the recurrence to find a closed
form formula for Tn.

14. Nilpotent Matrices. A matrix A is called nilpotent if there exists an
integer k ≥ 1 such that Ak = 0.

(a) Prove that if A is nilpotent, then det(A) = 0.

(b) Prove that if A is nilpotent, then det(I + A) = 1. For part (b), consider the geometric
series expansion or algebraic factors.
Or, if you prefer a contrapositive
approach, assume det(I + A) ̸= 1 and
consider the eigenvalues (if known) or
characteristic polynomial properties
implied by nilpotency.



3
Linear Transformations

In the preceding chapters, we treated matrices primarily as static
algebraic objects or arrays of numbers used to compute determinants
and solve systems of linear equations. We now adopt a dynamic
perspective, viewing matrices as operators that transform vectors.
This shift in perspective from state to process is central to modern
linear algebra. The determinant, previously defined axiomatically,
will be understood as a measure of how these transformations distort
volume.

3.1 Definition and Elementary Properties

We begin by formalising the notion of a structure-preserving map
between vector spaces. While we principally work with Rn, the defi-
nitions apply to general vector spaces. A key insight from 19th century math-

ematics: study sets with structure and
the maps preserving it. Linearity means
the order of operations yields the same
result.

Definition 3.1. Linear Transformation.
Let V and W be vector spaces over R. A mapping T : V →W is called
a linear transformation (or linear map) if it satisfies the following two con-
ditions for all u, v ∈ V and scalars c ∈ R:
1. Additivity: T(u + v) = T(u) + T(v).
2. Homogeneity: T(cu) = cT(u).
These conditions can be combined into a single requirement:

T(cu + v) = cT(u) + T(v).

定義
The words map, mapping, function,
and transformation are synonymous;
transformation is preferred in linear
algebra.

The linearity conditions imply strong constraints on the behaviour of
the map. The most immediate consequence is the preservation of the
zero vector.

Proposition 3.1. Preservation of the Origin.
If T : V →W is a linear transformation, then T(0V) = 0W .

命題
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Proof

Let u ∈ V. Using additivity:

T(0V) = T(u− u) = T(u) + T(−1 · u) = T(u)− T(u) = 0W .

Alternatively, using homogeneity with c = 0: T(0) = T(0u) =

0T(u) = 0.
■

A linear transformation preserves the structure of linear combina-
tions indefinitely.

Proposition 3.2. Generalised Linearity.
Let T : V → W be a linear transformation. For any scalars c1, . . . , ck

and vectors v1, . . . , vk ∈ V:

T

(
k

∑
i=1

civi

)
=

k

∑
i=1

ciT(vi).

命題

Proof

We proceed by induction on k. The base cases k = 1, 2 follow di-
rectly from the definition of linearity. Assume the property holds
for k vectors. Consider a linear combination of k + 1 vectors:

u =
k+1

∑
i=1

civi =

(
k

∑
i=1

civi

)
+ ck+1vk+1.

By the additivity axiom and the inductive hypothesis:

T(u) = T

(
k

∑
i=1

civi

)
+ T(ck+1vk+1)

=
k

∑
i=1

ciT(vi) + ck+1T(vk+1) =
k+1

∑
i=1

ciT(vi).

By the Principle of Mathematical Induction, the property holds for
all k ∈N.

■

This proposition implies that a linear transformation maps subspaces
to subspaces. Specifically, it maps the span of a set of vectors in the The codomain W specifies the type of

output (e.g., lists of m numbers), not
which outputs actually occur — that is
the image.

domain to the span of their images in the codomain.

Proposition 3.3. Mapping of Spans.
Let S = {v1, . . . , vk} ⊂ V. Then:

T(span(S)) = span{T(v1), . . . , T(vk)}.
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命題

Proof

Let y ∈ T(span(S)). Then y = T(x) for some x ∈ span(S).
Writing x = ∑ civi, we have y = T(∑ civi) = ∑ ciT(vi), which
is in span(T(S)). Conversely, any element in span(T(S)) is of
the form ∑ ciT(vi). By linearity, this equals T(∑ civi), which is in
T(span(S)).

■

Remark.

This result is geometrically significant. If T : Rn → Rm, it ensures
that lines through the origin map to lines (or points), and planes
through the origin map to planes (or lines/points). The dimension
of the image cannot exceed the dimension of the domain.

Example 3.1. Economic Linearity. Consider a simplified economic
model of a checkout counter, defined by a map T : Rn → R. The
input v ∈ Rn represents the quantities of n distinct products in a
shopping cart. The output T(v) is the total cost. If the pricing is
strictly per-unit (no bulk discounts), the map is linear.
1. Additivity: T(u + v) = T(u) + T(v). The cost of two combined

carts is the sum of their individual costs.

2. Homogeneity: T(cv) = cT(v). Purchasing c times the quantity
results in c times the cost.

Real-world systems often violate linearity (e.g., "buy one get one
free" implies T(2v) < 2T(v)), but linearity remains the fundamental
first-order approximation in modelling.

範例

3.2 The Matrix Representation Theorem

The abstract definition of a linear transformation is theoretically
clean, but for computation in finite-dimensional spaces, we rely on
matrix representations. We now establish the fundamental corre-
spondence between linear transformations T : Rn → Rm and m× n
matrices.

Theorem 3.1. Matrix Induced Maps.
Let A ∈ Mm×n(R). The function T : Rn → Rm defined by matrix-
vector multiplication,

T(x) = Ax,

is a linear transformation.
定理
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Proof

This follows directly from the algebraic properties of matrix multi-
plication. For any x, y ∈ Rn and c ∈ R:

A(x + y) = Ax + Ay =⇒ T(x + y) = T(x) + T(y),

A(cx) = c(Ax) =⇒ T(cx) = cT(x).

Thus T satisfies definition 3.1.
■

The converse is a profound result: every linear transformation be-
tween Euclidean spaces is a matrix transformation. Furthermore, the
matrix is constructed explicitly by the action of T on the standard
basis.

We write vectors as columns so this
reads naturally. With row vectors, we
would need T(x) = x[T]⊤.

Theorem 3.2. The Standard Matrix Representation.
Let T : Rn → Rm be a linear transformation. There exists a unique
m× n matrix A, denoted by [T], such that for all x ∈ Rn:

T(x) = [T]x.

The columns of [T] are the images of the standard basis vectors e1, . . . , en

of Rn:

[T] =

 | | |
T(e1) T(e2) · · · T(en)

| | |

 .

定理

Proof

Let x ∈ Rn. We can expand x uniquely in the standard basis:

x = x1e1 + x2e2 + · · ·+ xnen =
n

∑
j=1

xjej.

Applying T and utilising proposition 3.2:

T(x) = T

(
n

∑
j=1

xjej

)
=

n

∑
j=1

xjT(ej).

Recall the definition of matrix-vector multiplication. If A is the
matrix with columns cj = T(ej), then Ax is precisely the linear
combination of columns:

Ax = x1c1 + · · ·+ xncn =
n

∑
j=1

xjT(ej).

Comparing the two expressions, we see that T(x) = Ax.
■
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Remark.

This theorem reduces the study of linear transformations on finite-
dimensional spaces to the study of matrices. The seemingly abstract
"black box" of the function is fully characterised by its outputs on
the n basis vectors.

Example 3.2. Constructing a Transformation. Suppose we wish
to define a linear map T : R2 → R2 that rotates the plane by 90◦

counter-clockwise. We determine the standard matrix by tracking
the basis vectors:

1. e1 =

[
1
0

]
rotates to

[
0
1

]
.

2. e2 =

[
0
1

]
rotates to

[
−1
0

]
.

Thus, the matrix is:

[T] =

[
0 −1
1 0

]
.

To rotate an arbitrary vector v =

[
2
3

]
, we simply multiply:

T(v) =

[
0 −1
1 0

] [
2
3

]
=

[
−3
2

]
.

範例

v

e1

e2

T(v)

T(e1)

T(e2)

Figure 3.1: A 90◦ counter-
clockwise rotation. Original
vectors (dashed blue) map to
their images (solid red).

3.3 Geometric Properties of Linear Maps

Linear transformations are rigid in their treatment of linear struc-
tures. We have already seen that they preserve subspaces. We now
examine their effect on affine structures, such as lines not passing
through the origin.

x

y

C T(C)

Figure 3.2: The matrix
[

2 0
0 1
]

stretches the unit circle into an
ellipse.

Proposition 3.4. Preservation of Line Segments.
Let L be the line segment connecting vectors p and q in Rn.

L = {p + t(q− p) | t ∈ [0, 1]}.

If T : Rn → Rm is a linear transformation, the image T(L) is the line
segment connecting T(p) and T(q).

命題

Proof
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Let y ∈ T(L). Then there exists x ∈ L such that y = T(x). We write
x = p + t(q− p) for some t ∈ [0, 1]. By linearity:

y = T(p + t(q− p)) = T(p) + t(T(q)− T(p)).

This is precisely the parameterisation of the segment from T(p) to
T(q).

■

Note

If T(p) = T(q), the segment degenerates to a single point.

Example 3.3. Shear Transformations. Consider the shear transfor-
mation S : R2 → R2 defined by S(e1) = e1 and S(e2) = e2 + ke1.
The matrix is:

[S] =

[
1 k
0 1

]
.

A vertical line segment connecting (1, 0) and (1, 1) is mapped to
the segment connecting S(1, 0) = (1, 0) and S(1, 1) = (1 + k, 1).
The vertical line is "tilted" or sheared, but it remains a straight line
segment. As noted in the previous chapter on determinants, such
operations preserve area, consistent with det([S]) = 1.

範例 x

y

A

S(A)

k

Figure 3.3: A horizontal shear
with k = 0.6. The unit square
(dashed) maps to a parallelo-
gram of equal area.

Coordinate Vectors and Change of Basis

Note

While theorem 3.2 defines the matrix with respect to the standard
basis, linearity applies to any basis. This foreshadows the general
theory of similarity transformations.

Let B = {v1, . . . , vn} be a basis for Rn. Any vector x has a unique
coordinate representation relative to B, denoted [x]B = (c1, . . . , cn)T ,
such that x = ∑ civi. The linearity of T ensures that knowledge of
T(vi) is sufficient to determine T(x) for all x. Specifically:

T(x) =
n

∑
i=1

ciT(vi).

This equation expresses the Fundamental Theorem of Linear Algebra
in its coordinate-free guise: a linear map is completely determined by
its action on a basis.
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3.4 Injectivity and Surjectivity

Having established the correspondence between linear transforma-
tions and matrices via the The Standard Matrix Representation, we now
turn to the structural properties of these maps. Specifically, we in- Injectivity asks: “Is the solution

unique?” Surjectivity asks: “Does a
solution exist?” A bijective map an-
swers both affirmatively.

vestigate how the algebraic properties of the matrix [T] dictate the
geometric behaviour of the transformation T, particularly regarding
the uniqueness and existence of solutions to the equation T(x) = b.

The Kernel and Injectivity

A fundamental question for any function is whether it preserves
distinctness of inputs. In the context of linear algebra, this property
(injectivity), is inextricably linked to the mapping of the zero vector.

Definition 3.2. Kernel and Image.
Let T : V →W be a linear transformation.
1. The kernel (or nullspace) of T, denoted ker(T), is the set of all vec-

tors in V that map to the zero vector in W:

ker(T) = {v ∈ V | T(v) = 0W}.

2. The image (or range) of T, denoted Im(T), is the set of all vectors
in W that are images of vectors in V:

Im(T) = {T(v) | v ∈ V}.

定義

Theorem 3.3. Kernel Criterion for Injectivity.
A linear transformation T : V → W is injective (one-to-one) if and
only if its kernel is trivial, i.e.,

ker(T) = {0V}.

定理

We prove both implications.

(⇐)

Assume ker(T) = {0V}. Suppose T(u) = T(v) for some u, v ∈ V.
By the linearity of T:

T(u)− T(v) = 0W =⇒ T(u− v) = 0W .

This implies that u − v ∈ ker(T). By our assumption, the only ele-
ment in the kernel is 0V , so u − v = 0V , which yields u = v. Thus,
T is injective.
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証明終

(⇒)

Conversely, assume T is injective. We know from elementary prop-
erties that T(0V) = 0W . If x ∈ ker(T), then T(x) = 0W = T(0V).
Since T is injective, it must be that x = 0V . Thus, ker(T) contains
only the zero vector.

証明終

Remark.

This theorem highlights a stark difference between linear and non-
linear maps. For a general function like f (x) = x2, knowing that
f (0) = 0 is insufficient to determine injectivity. Linearity ensures
that the local behaviour at the origin dictates the global behaviour
of the map.

Matrix Characterisation

When T : Rn → Rm is represented by a matrix A = [T], the abstract
notions of injectivity and surjectivity translate directly into conditions
on the columns of A.

Theorem 3.4. Matrix Rank and Transformation Properties.
Let T : Rn → Rm be a linear transformation with standard matrix
A = [T].
1. T is injective if and only if the columns of A are linearly indepen-

dent.

2. T is surjective (onto Rm) if and only if the columns of A span Rm.
定理

Proof

For (1), recall from theorem 3.3 that T is injective if and only if
T(x) = 0 implies x = 0. In matrix terms, this equation is Ax = 0.
Let c1, . . . , cn be the columns of A. The matrix-vector product is a
linear combination of these columns:

x1c1 + · · ·+ xncn = 0.

The condition that the only solution is the trivial solution x = 0
is precisely the definition of linear independence for the set
{c1, . . . , cn}.
For (2), surjectivity means that for every b ∈ Rm, there exists
x ∈ Rn such that T(x) = b. Equivalently, the system Ax = b must
be consistent for all b. Since Ax lies in the span of the columns of
A, the condition that a solution exists for every b is equivalent to
saying that the column space of A is the entire codomain Rm.
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■

Remark.

This connects directly to the Rank-Nullity Theorem. The dimension
of the image, dim(Im(T)), is the rank of A. If the rank equals m,
the map is surjective. If the rank equals n (implying the nullity is
0), the map is injective.

Example 3.4. Analyzing a Transformation in R4. Consider the
linear transformation L : R4 → R4 defined by:

L(t, x, y, z) = (t + x + y + z, z− x, 0, 3t− z).

To analyse this map, we first construct its standard matrix [L] by
evaluating L on the standard basis vectors of R4.

L(e1) = L(1, 0, 0, 0) = (1, 0, 0, 3)T

L(e2) = L(0, 1, 0, 0) = (1,−1, 0, 0)T

L(e3) = L(0, 0, 1, 0) = (1, 0, 0, 0)T

L(e4) = L(0, 0, 0, 1) = (1, 1, 0,−1)T

Ideally, we arrange these as the columns of the matrix A:

A = [L] =


1 1 1 1
0 −1 0 1
0 0 0 0
3 0 0 −1

 .

We observe immediately that the third row consists entirely of ze-
ros. This implies that for any vector v, the third component of L(v)
is always 0. Consequently, L cannot map to any vector with a non-
zero third component (e.g., e3). Thus, the columns do not span R4,
and L is not surjective.
To check injectivity, we examine the linear independence of the
columns.

範例

Note

The matrix is square; since it is not surjective (rank < 4), it cannot
be injective either (by the Rank-Nullity Theorem (once again see
previous notes) or determinant properties). Explicitly, we can find
a non-trivial element in the kernel by solving Ax = 0, revealing the
dependency among columns.

Example 3.5. A Surjective Map. Consider the map T : R3 → R2
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given by T(x, y, z) = (x + 2y, 3y + 4z). The standard matrix is:

[T] =

[
1 2 0
0 3 4

]
.

The columns are c1 = (1, 0)T , c2 = (2, 3)T , c3 = (0, 4)T . Since c1

and c3 are clearly linearly independent (and form a basis for R2),
the column space is R2. Thus, T is surjective. However, since there
are 3 vectors in R2, they must be linearly dependent. Thus, T is not
injective.

範例

3.5 Composition and Invertibility

The algebraic power of matrices stems from the fact that matrix
multiplication corresponds to the composition of linear maps. If The order matters: T ◦ S means “apply

S first, then T.” In matrix form, this is
[T][S], reading right-to-left.

S : U → V and T : V → W are linear transformations represented by
matrices B and A respectively, then the composite map T ◦ S : U →W
is linear and is represented by the product AB.

Proposition 3.5. Composition Property.
Let S and T be linear transformations with standard matrices [S] and
[T] respectively. Then:

[T ◦ S] = [T][S].

命題

Proof

For any vector x in the domain of S:

(T ◦ S)(x) = T(S(x)) = T([S]x) = [T]([S]x) = ([T][S])x.

By the uniqueness of the standard matrix (theorem 3.2), the matrix
representing T ◦ S must be [T][S].

■

This property allows us to seamlessly transfer the concept of matrix
invertibility to linear transformations.

Theorem 3.5. Invertibility of Linear Transformations.
Let T : Rn → Rn be a linear transformation with standard matrix
A = [T]. Then T is invertible if and only if A is invertible. Further-
more, the inverse transformation T−1 is induced by the inverse matrix:

[T−1] = A−1.
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定理

(⇒)

Suppose T is invertible. Then there exists a map T−1 : Rn → Rn

such that T ◦ T−1 = id and T−1 ◦ T = id. Let B = [T−1]. Using the
composition property:

[T ◦ T−1] = [T][T−1] = AB.

Since the standard matrix of the identity map is the identity matrix
In, we have AB = In. Similarly, BA = In. Thus A is invertible and
A−1 = B.

証明終

(⇐)

Suppose A is invertible. Consider the linear transformation L in-
duced by A−1.

(T ◦ L)(x) = A(A−1x) = (AA−1)x = Inx = x.

(L ◦ T)(x) = A−1(Ax) = (A−1 A)x = Inx = x.

Thus L acts as the inverse of T, so T is invertible.
証明終

Remark.

This theorem unifies the algebraic and geometric viewpoints. A
linear transformation is an isomorphism (a bijective structure-
preserving map) precisely when its determinant is non-zero.

Example 3.6. Inverting a Coordinate Map. Let L : R3 → R3 be de-
fined by L(x, y, z) = (x, x + y, x + y + z). We wish to determine if L
is invertible and find its inverse. The standard matrix is:

A = [L] =

1 0 0
1 1 0
1 1 1

 .

Since A is lower triangular with non-zero diagonal entries,
det(A) = 1 · 1 · 1 = 1 ̸= 0. Thus L is invertible. We find A−1

using row reduction or inspection. Solving Ax = y for x:

x = y1

x + y = y2 =⇒ y = y2 − x = y2 − y1

x + y + z = y3 =⇒ z = y3 − (x + y) = y3 − y2

Thus the inverse map is L−1(u, v, w) = (u, v− u, w− v). The matrix
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corresponds to:

[L−1] =

 1 0 0
−1 1 0
0 −1 1

 ,

which is indeed A−1.

範例

3.6 The Algebra of Linear Mappings

We have established that linear transformations are the structure-
preserving maps between vector spaces. Just as we can add vectors
and multiply them by scalars, we can perform algebraic operations
on the transformations themselves. This algebraic structure on the set
of mappings, denoted L(V, W), is what justifies the rules of matrix
arithmetic derived in earlier chapters.

Composition and Matrix Multiplication

The most significant operation on functions is composition. When
those functions are linear, their composition corresponds perfectly to
the multiplication of their representative matrices. This result is not
merely a happy coincidence; it is the reason matrix multiplication is
defined the way it is.

Theorem 3.6. Composition corresponds to Matrix Multiplication.
Let U, V, W be finite-dimensional vector spaces. Suppose S : U →
V and T : V → W are linear transformations with standard matri-
ces [S] and [T] respectively. Then the composite map T ◦ S : U →W
is linear, and its standard matrix is the product of the individual ma-
trices:

[T ◦ S] = [T][S].

定理

Note

This generalizes the earlier Composition Property to general vector
spaces, confirming that the algebra of matrices mirrors the algebra
of maps.

Proof
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First, we verify linearity. Let u, v ∈ U and c ∈ R.

(T ◦ S)(u + cv) = T(S(u + cv))

= T(S(u) + cS(v)) (Linearity of S)

= T(S(u)) + cT(S(v)) (Linearity of T)

= (T ◦ S)(u) + c(T ◦ S)(v).

Thus T ◦ S is linear. To determine its matrix [T ◦ S], we recall that
the j-th column of a standard matrix is the image of the j-th basis
vector ej.

colj([T ◦ S]) = (T ◦ S)(ej) = T(S(ej)).

We know that S(ej) is simply the j-th column of [S], which we
denote sj. Thus:

colj([T ◦ S]) = T(sj) = [T]sj.

By the definition of matrix-vector multiplication, [T]sj is the j-th
column of the matrix product [T][S]. Since the matrices agree on all
columns, they are equal.

■

Remark.

This theorem allows us to visualize complex transformations as
sequences of simpler ones. It also implies the associativity of matrix
multiplication, inherited directly from the associativity of function
composition: ( f ◦ g) ◦ h = f ◦ (g ◦ h).

Example 3.7. Stretching and Rotation. Consider the linear map
S that stretches the plane by a factor of 2 in the x-direction, and
the map R that rotates the plane by π/4 (45 degrees). The matrix

for S is

[
2 0
0 1

]
. The matrix for R is

[
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

]
=[ 1√

2
− 1√

2
1√
2

1√
2

]
. The composite transformation R ◦ S (stretch then

rotate) is given by:

[R ◦ S] = [R][S] =

[ 1√
2
− 1√

2
1√
2

1√
2

] [
2 0
0 1

]
=

[√
2 − 1√

2√
2 1√

2

]
.

Geometrically, this transforms the unit square into a tilted rectangle
of length 2 and width 1.

範例 x

y

A

(R ◦ S)(A)

Figure 3.4: Stretching by 2 in
the x-direction, then rotating by
45◦. The dotted rectangle shows
the intermediate step.
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Addition and Scalar Multiplication

The set of linear transformations L(Rn, Rm) itself forms a vector
space.

Definition 3.3. Operations on Maps.
Let S, T : Rn → Rm be linear transformations and c ∈ R. We define:
1. Sum: (S + T)(x) = S(x) + T(x).

2. Scalar Multiple: (cS)(x) = c · S(x).
定義

Proposition 3.6. Linearity of Operations.
If S and T are linear, then S+T and cS are also linear. Furthermore,
their matrices satisfy:

[S + T] = [S] + [T] and [cS] = c[S].

命題

Proof

For the sum, linearity follows from the commutativity of vector
addition.

(S+T)(u+v) = S(u+v)+T(u+v) = (S(u)+S(v))+ (T(u)+T(v)).

Rearranging terms yields (S + T)(u) + (S + T)(v). Homogeneity is
similar. For the matrices, consider the action on ej:

(S + T)(ej) = S(ej) + T(ej) = colj([S]) + colj([T]).

This is precisely the definition of matrix addition.
■

3.7 Elementary Geometric Transformations

Having established the algebraic machinery, we catalogue several
fundamental linear transformations in R2 and R3. These serve as the
building blocks for more complex operators.

Scaling and Reflection

The simplest transformations act diagonally on the standard basis. Diagonal matrices are the easiest to
analyse: each coordinate axis is an
eigenvector, and the diagonal entries
are eigenvalues.

Example 3.8. Scaling. A transformation T that scales the i-th coor-
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dinate by a factor λi is represented by a diagonal matrix:

T(x) = diag(λ1, . . . , λn)x =


λ1 0

. . .
0 λn




x1
...

xn

 .

· If λi = c for all i, T is a uniform scaling (or homothety) by c. The
matrix is cIn.

· If c > 1, it is a dilation (expansion).

· If 0 < c < 1, it is a contraction.

範例 x

y

A

T(A)

1 2

Figure 3.5: Uniform scaling by
c = 2. The unit square maps to
a square of side length 2 and
area 4.

Example 3.9. Reflection. Reflections across coordinate axes (or
hyperplanes) are achieved by setting specific λi = −1. In R2:

· Reflection across the y-axis (x→ −x):

[
−1 0
0 1

]
.

· Reflection across the origin (x→ −x):

[
−1 0
0 −1

]
.

範例

x

y

AR(A)

Figure 3.6: Reflection across the
y-axis. The shape is mirrored;
note the reversal of orientation.

Rotation

Rotations are fundamental orthogonal transformations that preserve
lengths and the origin.

Theorem 3.7. Rotation Matrix in R2.
Let Rθ : R2 → R2 be the transformation that rotates the plane counter-
clockwise by an angle θ. Its matrix is:

[Rθ ] =

[
cos θ − sin θ

sin θ cos θ

]
.

定理

Proof

We compute the image of the basis vectors e1 = (1, 0) and e2 =

(0, 1). Using elementary trigonometry:

1. e1 lies on the positive x-axis. Rotating by θ moves it to
(cos θ, sin θ).

2. e2 lies on the positive y-axis (π/2 ahead of e1). Rotating by θ

moves it to (cos(θ + π/2), sin(θ + π/2)) = (− sin θ, cos θ).
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Thus, [Rθ ] = [e′1 | e′2] =

[
cos θ − sin θ

sin θ cos θ

]
.

■

x

y

e1

e2

Re1

Re2

θ

Figure 3.7: Rotation of the stan-
dard basis vectors.

Example 3.10. Trigonometric Addition Formulas. Since rotation
satisfies Rα ◦ Rβ = Rα+β, we have [Rα][Rβ] = [Rα+β].[

cα −sα

sα cα

] [
cβ −sβ

sβ cβ

]
=

[
cα+β −sα+β

sα+β cα+β

]
.

Computing the product yields the familiar identities, e.g.,
cos(α + β) = cos α cos β− sin α sin β.

範例

3.8 Coordinates and Change of Basis

In theorem 3.2, we defined the "standard matrix" of a linear map. This
assumed we were strictly using the standard basis E = {e1, . . . , en}.
However, vector spaces often admit bases that are far more natural
for a given problem (e.g., axes aligned with the symmetry of a crys-
tal). We now generalise matrix representations to arbitrary bases.

The Coordinate Map

Let V be a vector space of dimension n, and let B = {b1, . . . , bn} be
an ordered basis for V. By definition, any vector v ∈ V can be written
uniquely as:

v = c1b1 + c2b2 + · · ·+ cnbn.

Definition 3.4. Coordinate Vector.
The coordinate vector of v relative to B, denoted [v]B, is the column
vector of coefficients in Rn:

[v]B =


c1
...

cn

 .

The transformation ΦB : V → Rn defined by ΦB(v) = [v]B is a lin-
ear isomorphism called the coordinate map.

定義

Note

The order of basis vectors matters. Permuting B permutes the en-
tries of [v]B.
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Example 3.11. Non-Standard Coordinates. Let B = {(1, 0), (1, 1)}
in R2. Let v = (1, 3). We seek c1, c2 such that:[

1
3

]
= c1

[
1
0

]
+ c2

[
1
1

]
.

Solving this system (e.g., via row reduction), we find c2 = 3 and

c1 + c2 = 1 =⇒ c1 = −2. Thus, [v]B =

[
−2
3

]
. Note that [v]E =

[
1
3

]
relative to the standard basis.

範例
x

y

e1

e2

b1

b2

v

Figure 3.8: The vector v = (1, 3)
has coordinates (1, 3) in the
standard basis but (−2, 3) in
basis B.

Change of Basis for Vectors

Given two bases B and C for Rn, how do we translate coordinate
vectors from one system to the other? Since coordinate maps are
linear, the relationship must be a matrix multiplication.

Theorem 3.8. Change of Basis Matrix.
Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases for Rn. There ex-
ists a unique invertible matrix PC←B such that for all v ∈ Rn:

[v]C = PC←B[v]B.

The columns of this matrix are the coordinate vectors of the B-basis vec-
tors relative to C:

PC←B = [[b1]C | [b2]C | · · · | [bn]C ] .

定理

Proof

Let v ∈ Rn. By definition, if [v]B = (x1, . . . , xn)T , then
v = ∑n

j=1 xjbj. Applying the coordinate map ΦC (which is linear) to
both sides:

[v]C =

[
n

∑
j=1

xjbj

]
C

=
n

∑
j=1

xj[bj]C .

This is exactly the matrix-vector product of the matrix with
columns [bj]C and the vector x = [v]B.

■

Remark.

When C = E (the standard basis), the matrix PE←B is simply the
matrix formed by writing the vectors of B as columns. We often



algebra ii: determinants and linear transformation 73

denote this simply as PB. In this case:

v = PB[v]B =⇒ [v]B = P−1
B v.

Example 3.12. Calculating Coordinates via Matrices. Returning to
example 3.11, with B = {b1, b2} = {(1, 0), (1, 1)}. The change of

basis matrix to standard coordinates is PB =

[
1 1
0 1

]
. To find [v]B

from v = (1, 3)T , we compute P−1
B :

P−1
B =

1
1

[
1 −1
0 1

]
=

[
1 −1
0 1

]
.

Then:

[v]B =

[
1 −1
0 1

] [
1
3

]
=

[
1− 3

3

]
=

[
−2
3

]
.

This matches our direct calculation.

範例

Matrix Representations of Linear Transformations

Just as vectors have coordinates relative to a basis, linear transforma-
tions have matrix representations relative to pairs of bases.

Definition 3.5. General Matrix Representation.
Let T : V → W be a linear transformation. Let B = {b1, . . . , bn} be
a basis for V and C = {c1, . . . , cm} be a basis for W. The matrix of T
relative to B and C, denoted [T]C←B (or simply [T]B,C), is the m × n
matrix defined by:

[T]C←B = [[T(b1)]C | [T(b2)]C | · · · | [T(bn)]C ] .

This matrix satisfies the fundamental relation:

[T(v)]C = [T]C←B[v]B.

定義

This definition is encapsulated by the following commutative dia-
gram:

V W

Rn Rm

T

ΦB ΦC

[T]C←B

Figure 3.9: The matrix repre-
sentation commutes with the
coordinate maps.

Example 3.13. Derivative Operator. Let V = P2(R) (polynomials of
degree ≤ 2) with basis B = {1, x, x2}. Let D : V → V be the
derivative map D(p) = p′. To find [D]B, we differentiate the basis
elements and find their coordinates in B:
1. D(1) = 0 =⇒ [0]B = (0, 0, 0)T .
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2. D(x) = 1 =⇒ [1]B = (1, 0, 0)T .

3. D(x2) = 2x =⇒ [2x]B = (0, 2, 0)T .
Thus:

[D]B =

0 1 0
0 0 2
0 0 0

 .

Calculating the derivative of p(x) = 3x2 + 5x + 2 via matrices:

[p]B =

2
5
3

 =⇒ [D]B[p]B =

0 1 0
0 0 2
0 0 0


2

5
3

 =

5
6
0

 .

This corresponds to 5(1) + 6(x) + 0(x2) = 6x + 5, which is indeed
d

dx (3x2 + 5x + 2).

範例

Similarity

The most important case occurs when T : V → V is an operator on a
single space, and we perform a change of basis from B to C. How are
the matrices [T]B and [T]C related?

Theorem 3.9. Similarity Transformation.
Let T : V → V be a linear operator. Let B and C be bases for V, and
let P = PB←C be the change of basis matrix from C to B. Then:

[T]C = P−1[T]BP.

定理

Proof

Consider a vector v. We can compute [T(v)]C in two ways. 1. Di-
rectly: [T(v)]C = [T]C [v]C . 2. Via B: First convert v to B-coordinates
using P: [v]B = P[v]C . Apply [T]B to get [T(v)]B. Then convert
back to C using P−1.

[T(v)]C = P−1 ([T]B (P[v]C)) = (P−1[T]BP)[v]C .

Since this holds for all [v]C , the matrices are equal.
■

The characteristic polynomial is not merely an artifact of the matrix
A but an intrinsic property of the linear transformation T itself.

Theorem 3.10. Similarity Invariance.
Similar matrices have the same characteristic polynomial. Consequently,
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they have the same eigenvalues (with the same algebraic multiplicities),
the same determinant, and the same trace.

定理

Proof

Let B = P−1 AP. We compute the characteristic polynomial of B:

det(B− λI) = det(P−1 AP− λP−1 IP)

= det(P−1(A− λI)P)

= det(P−1)det(A− λI)det(P)

=
1

det(P)
det(A− λI)det(P)

= det(A− λI).

Thus pB(λ) = pA(λ).
■

Note

While similar matrices share the same characteristic polynomial,
the converse is false. The matrices

[
1 1
0 1
]

and
[

1 0
0 1

]
both have charac-

teristic polynomial (λ− 1)2, but they are not similar.

Definition 3.6. Similarity.
Two matrices A, B ∈ Mn(R) are called similar if there exists an in-
vertible matrix P such that B = P−1 AP.

定義

Similar matrices represent the same linear operator viewed from
different coordinate systems. Consequently, they share coordinate-
independent properties, such as the determinant, trace, and eigenval-
ues. Similarity is an equivalence relation on

matrices. The quest for canonical forms
(e.g., Jordan normal form) is the search
for the simplest representative in each
equivalence class.

Example 3.14. Diagonalisation (Preview). Consider T : R3 → R3

defined by T(x, y, z) = (2x− 2y+ 2z, x− z, 2x− 3y+ 2z). In the stan-

dard basis, [T]E =

2 −2 2
1 0 −1
2 −3 2

. If we choose a specific basis B =

{f1, f2, f3} (an eigenbasis), the matrix becomes:

[T]B =

4 0 0
0 −1 0
0 0 1

 .

This diagonal form reveals the geometric nature of T immediately:
it stretches by 4 in the f1 direction, reflects/scales by -1 in f2, and
leaves f3 invariant. Finding such a basis is the goal of spectral the-
ory.

範例
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3.9 Applications: Affine Geometry

The distinction between "linear" in the sense of calculus (y = mx + c)
and "linear" in the sense of algebra (T(cu + v) = cT(u) + T(v)) is a
common source of confusion. A function of the form f (x) = mx + c The equation y = mx + c from introduc-

tory algebra describes a line with slope
m and y-intercept c. This is the graph
of an affine function, not a linear one
(unless c = 0).

with c ̸= 0 fails the linearity test because f (0) = c ̸= 0. Such maps,
which combine a linear transformation with a translation, are termed
affine.

Affine Maps

Definition 3.7. Affine Map.
A function F : Rn → Rm is called an affine map if it can be written
in the form:

F(x) = Ax + b,

where A ∈ Mm×n(R) is a matrix (representing a linear map) and b ∈
Rm is a fixed translation vector. Equivalently, F is affine if the map L(x) =
F(x)− F(0) is linear.

定義

Geometrically, an affine transformation is a linear transformation
followed by a shift. If F maps a subspace U ⊂ Rn, the image F(U) Both affine and linear maps produce

first-degree polynomial outputs. An
affine map is linear precisely when
b = 0; conversely, every linear map is
affine (with trivial translation).

is not necessarily a subspace (as it may not contain the origin), but a
"shifted" subspace.

Example 3.15. Affine vs Linear. The map T : R2 → R2 defined by

T

([
x
y

])
=

[
x− y + 2

2x + y + 1

]

is affine, not linear. We can decompose it as:

T(x) =

[
1 −1
2 1

] [
x
y

]
+

[
2
1

]
.

The linear part stretches and rotates the plane, while the vector
(2, 1)T translates the result away from the origin.

範例

Parametrisation of Affine Subspaces

Linear algebra provides the natural language for describing flat geo-
metric objects — lines, planes, and hyperplanes — in n-dimensional
space. While a single equation (like ax + by + cz = d) describes a
surface implicitly, a parametrisation describes it explicitly as the range
of a function.
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An affine subspace of dimension k is formed by translating a k-
dimensional linear subspace.

Definition 3.8. Parametric Representation.
An affine subspace S ⊂ Rn of dimension k can be parametrised by
a function r : Rk → Rn:

r(t1, . . . , tk) = p0 + t1v1 + t2v2 + · · ·+ tkvk,

where p0 is a position vector (the "origin" of the subspace) and {v1, . . . , vk}
is a set of linearly independent direction vectors.

定義

Note

If the direction vectors are linearly dependent, the dimension of the
image collapses to less than k, and the parametrisation is redun-
dant.

Lines and Planes

1. Lines (k = 1): A line is determined by a point p0 and a direction
vector v.

r(t) = p0 + tv.

2. Planes (k = 2): A plane requires a point and two independent
direction vectors.

r(u, v) = p0 + uv1 + vv2.

Example 3.16. Degenerate Parametrisation. Consider the map X :
R2 → R3 given by:

X(u, v) =

1
1
1

+ u

1
0
1

+ v

2
0
2

 .

At first glance, this appears to describe a plane. However, the di-
rection vectors are dependent: v2 = 2v1. We can rewrite the map
as:

X(u, v) =

1
1
1

+ (u + 2v)

1
0
1

 .

Letting t = u + 2v, we see this describes a line passing through
(1, 1, 1) in the direction (1, 0, 1), not a plane. The rank of the matrix
of direction vectors determines the true dimension of the object.

範例
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This parametric perspective generalises immediately to higher di-
mensions. In relativity, for instance, the path of a particle is a "world-
line" (dimension 1) in spacetime R4, while a "world-sheet" (dimen-
sion 2) might describe a string. The condition for these objects to
be "flat" (affine) is precisely that their parametrisations are affine
maps. Complex curves and surfaces arise when the maps become
non-linear, requiring the tools of differential geometry (where the
derivative DX provides a local linear approximation).

3.10 Exercises

1. Linearity Check. Determine whether the following maps are
linear transformations. If linear, find the standard matrix. If not,
provide a counter-example violating additivity or homogeneity.

(a) T : R2 → R2 defined by T(x, y) = (2x + y, x− 3y).

(b) F : R2 → R2 defined by F(x, y) = (x + 1, y).

2. Geometric Constructions. Find the standard matrix [T] for the
following linear transformations on R2:

(a) A clockwise rotation by π/3.

(b) A reflection across the line y = x.

(c) A projection onto the x-axis followed by a rotation by π/2
counter-clockwise.

(d) A shear that maps e1 to e1 and e2 to e2 + 3e1.

3. Kernel and Image. Let T : R4 → R3 be defined by the matrix:

A =

1 2 0 1
2 4 1 4
3 6 1 5

 .

(a) Find a basis for the kernel of T. Is T injective?

(b) Find a basis for the image of T. Is T surjective?

4. Coordinates in Non-Standard Bases. Let B = {b1, b2, b3} be a
basis for R3 given by:

b1 =
1√
3
(1, 1, 1), b2 =

1√
2
(−1, 0, 1), b3 =

1√
6
(−1, 2,−1).

(a) Calculate the coordinate vector [v]B for v = (a, b, c).

5. Matrix Representation. Let B be the basis defined in Exercise 4.
Let T : R3 → R3 be the linear operator defined by:

T(xb1 + yb2 + zb3) = 6xb1 + 4yb2 + 12zb3.
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(a) Write down the matrix [T]B relative to the basis B.

(b) Find the standard matrix [T]E relative to the standard basis.

6. Polynomial Operators. Let P3(R) be the space of polynomials
of degree at most 3. Consider the differentiation operator D :
P3(R)→ P3(R) defined by D(p) = p′.

(a) Find the matrix [D]E relative to the standard basis {1, x, x2, x3}.

(b) Show that D is nilpotent (i.e., Dk = 0 for some k). What is the
smallest such k?

(c) Determine the kernel and image of D2.

7. Change of Basis. Let B = {u, v} and C = {u + v, u− v} be bases
for a vector space V.

(a) Find the change of basis matrix PC←B.

(b) If a transformation T has matrix [T]B =

[
1 2
0 1

]
, calculate

[T]C using the similarity formula.

8. Affine Parametrisation. Consider the plane W in R3 defined by
the equation x + 2y + 2z = 11.

(a) Express this plane as the image of an affine map F : R2 → R3,
explicitly identifying the translation vector and the linear
part.

(b) Find a pair of linearly independent tangent vectors u, v (vec-
tors parallel to the plane).

(c) Construct a parametrisation γ(t) for a circle of radius R lying
in W centred at (1, 2, 3).

9. Rigid Motions. A linear transformation T : Rn → Rn is called
orthogonal if it preserves lengths, i.e., ∥T(x)∥ = ∥x∥ for all x.

(a) Prove that an orthogonal transformation maps the unit
sphere to the unit sphere.

(b) Let CR(p) denote the circle in R2 of radius R centred at p.
Prove that if T is orthogonal, the image T(CR(p)) is a circle of
radius R. Where is the new centre?

10. Injectivity and Independence. Let T : V → W be a linear trans-
formation. Prove that T is injective if and only if it maps linearly
independent sets to linearly independent sets. That is, for any lin-
early independent {v1, . . . , vk} ⊂ V, the set {T(v1), . . . , T(vk)} is
linearly independent in W.

11. Rank-Nullity and Composition. Let S : U → V and T : V → W be
linear transformations.
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(a) Prove that ker(S) ⊆ ker(T ◦ S).

(b) Prove that Im(T ◦ S) ⊆ Im(T).

(c) If U = V = W are finite-dimensional, prove that rank(T ◦
S) ≤ min(rank(T), rank(S)).

12. Projections and Idempotence. A linear operator P : V → V is
called a projection (or idempotent) if P2 = P (i.e., P(P(v)) = P(v)).

(a) Prove that if P is a projection, then any vector v ∈ V can
be uniquely written as v = k + i, where k ∈ ker(P) and
i ∈ Im(P). Consider the vectors P(v) and v− P(v).

(b) Deduce that V = ker(P)⊕ Im(P).

13. Reflection across Arbitrary Lines. Let L be the line in R2 passing
through the origin with angle ϕ to the x-axis.

(a) Write the matrix for the reflection RL by viewing it as a com-
position: rotate the line to the x-axis, reflect across the x-axis,
then rotate back.

(b) Show that the resulting matrix is

[
cos(2ϕ) sin(2ϕ)

sin(2ϕ) − cos(2ϕ)

]
.

(c) Verify that det(RL) = −1 and R2
L = I.



4
Eigenvalues and Eigenvectors

When Werner Heisenberg formulated matrix mechanics in 1925, he
was initially unaware of the algebraic structure he was employing;
it was Max Born who identified the non-commutative multiplication
tables as matrix algebra. The subsequent development of quantum
mechanics relied heavily on the spectral theory of these operators.
In this chapter, we explore the decomposition of linear operators
into their fundamental components: eigenvalues and eigenvectors.
These concepts allow us to decouple complex coupled systems into
independent, manageable parts, providing deep insight into the long-
term behaviour of dynamical systems, from population models to the
geometry of linear maps.

4.1 Motivation: Matrix Powers and Fibonacci

In theorem 2.9, we established that matrix multiplication corresponds
to the composition of linear maps. A frequent objective in applied
mathematics is to evaluate the long-term behaviour of a system
evolving under a constant linear rule, represented by the repeated
application of a matrix A. That is, we wish to compute An for large n.
Direct multiplication is computationally expensive and offers little
geometric insight. However, if the matrix is diagonal, the calculation is
trivial. [

λ1 0
0 λ2

]n

=

[
λn

1 0
0 λn

2

]
.

We seek a method to transform a general matrix into a diagonal one
via a change of basis.

Example 4.1. The Fibonacci Sequence. The Fibonacci numbers are
defined recursively by a0 = 0, a1 = 1, and an+1 = an + an−1. We
propose to prove the closed-form expression (Binet’s formula):

an =
1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]
.
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This formula involves irrational numbers despite an always being
an integer. We begin by casting the recursion as a matrix system.
Let xn = [an, an+1]

T . Then:[
an

an+1

]
=

[
0 1
1 1

] [
an−1

an

]
.

Let A =

[
0 1
1 1

]
. By induction, xn = Anx0, where x0 = [0, 1]T . Con-

sider the matrix

P =

[
1 1

1+
√

5
2

1−
√

5
2

]
.

A direct calculation reveals that P diagonalises A. Specifically, if we
let ϕ = 1+

√
5

2 and ψ = 1−
√

5
2 :

P−1 AP =

[
ϕ 0
0 ψ

]
= D.

From the similarity relation A = PDP−1, we find An =

(PDP−1)n = PDnP−1.[
an

an+1

]
=

[
1 1
ϕ ψ

] [
ϕn 0
0 ψn

]
1

ψ− ϕ

[
ψ −1
−ϕ 1

] [
0
1

]

=
1
−
√

5

[
ϕn ψn

ϕn+1 ψn+1

] [
−1
1

]

=
1√
5

[
ϕn − ψn

ϕn+1 − ψn+1

]
.

Reading off the first component yields the desired formula.

範例

Note

The scalar ϕ ≈ 1.618 is the Golden Ratio. Since |ψ| ≈ 0.618 < 1, the
term ψn vanishes for large n, implying that an grows exponentially
at a rate determined solely by ϕ.

4.2 Definitions and Existence

The Fibonacci example works because there exist special vectors v
such that the action of A is simply scalar multiplication: Av = λv. In
the basis of these vectors, the matrix becomes diagonal.

Definition 4.1. Eigenvalues and Eigenvectors.
Let A ∈ Mn(R). A scalar λ ∈ C is called an eigenvalue of A if there
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exists a non-zero vector v ∈ Cn such that:

Av = λv.

The vector v is called an eigenvector corresponding to λ.
定義

Note

We exclude the zero vector from being an eigenvector, as A0 = λ0
holds for any λ. However, the eigenvalue λ itself may be zero.

To find these scalars, we rewrite the defining equation as a homoge-
neous linear system:

(A− λI)v = 0.

For a non-zero solution v to exist, the matrix A− λI must be singular.
This connects spectral theory immediately to the theory of determi-
nants established in the previous chapter.

Theorem 4.1. The Characteristic Equation.
A scalar λ is an eigenvalue of A if and only if λ satisfies the character-
istic equation:

det(A− λI) = 0.

The polynomial pA(λ) = det(A − λI) is a polynomial of degree n,
called the characteristic polynomial of A.

定理

Proof

This follows directly from the Determinant Criterion for Indepen-
dence and Matrix Rank and Transformation Properties. The equation
(A − λI)v = 0 has a non-trivial solution v ̸= 0 if and only if the
columns of A − λI are linearly dependent, which is equivalent to
the determinant vanishing.

■

Example 4.2. Calculating Eigensystems. Let A =

[
3 0
8 −1

]
.

1. Find Eigenvalues: Compute det(A− λI).

det

[
3− λ 0

8 −1− λ

]
= (3− λ)(−1− λ) = (λ− 3)(λ + 1).

The roots are λ1 = 3 and λ2 = −1.

2. Find Eigenvectors for λ1 = 3: Solve (A− 3I)v = 0.[
0 0
8 −4

] [
x
y

]
=

[
0
0

]
.

This implies 8x − 4y = 0 or y = 2x. The eigenspace is spanned
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by v1 = [1, 2]T .

3. Find Eigenvectors for λ2 = −1: Solve (A + I)v = 0.[
4 0
8 0

] [
x
y

]
=

[
0
0

]
.

This implies 4x = 0 =⇒ x = 0. The variable y is free. The
eigenspace is spanned by v2 = [0, 1]T .

Geometrically, A stretches vectors along the line y = 2x by a factor
of 3 and reflects vectors along the y-axis (x = 0) while preserving
their length.

範例

Example 4.3. Distinct Eigenvalues in R3. Consider the matrix

A =

 2 1 1
2 3 4
−1 −1 −2

 .

We compute the characteristic polynomial pA(λ) = det(A− λI):

det

2− λ 1 1
2 3− λ 4
−1 −1 −2− λ

 = (2− λ)det

[
3− λ 4
−1 −2− λ

]
− 1 det

[
2 4
−1 −2− λ

]
+ 1 det

[
2 3− λ

−1 −1

]

= (2− λ)[(3− λ)(−2− λ) + 4]− [2(−2− λ) + 4] + [−2 + (3− λ)]

= (2− λ)[λ2 − λ− 2]− [−2λ] + [1− λ]

= −λ3 + 3λ2 + λ− 3.

By inspection, λ = 1 is a root. Factoring out (λ− 1), we find:

pA(λ) = −(λ− 1)(λ + 1)(λ− 3).

The eigenvalues are 1,−1, 3. Since these are distinct, A is diagonal-
isable. We find the eigenvectors by solving (A − λI)x = 0 for each
λ:
1. For λ = 1:  1 1 1

2 2 4
−1 −1 −3

 RREF−−−→

1 1 0
0 0 1
0 0 0

 .

This yields x3 = 0 and x1 + x2 = 0. Eigenvector: v1 = (1,−1, 0)T .

2. For λ = −1: The system yields v2 = (0, 1,−1)T .

3. For λ = 3: The system yields v3 = (2, 3,−1)T .
The eigenspaces E1, E−1, E3 are all 1-dimensional.

範例
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Discrete Dynamical Systems

Eigenvalues provide a natural language for analysing discrete dy-
namical systems of the form xk+1 = Axk. The long-term behaviour
of the state vector xk is dominated by the eigenvalue with the largest
magnitude (the dominant eigenvalue).

Attractors and Repellers

Revisiting the matrix A =

[
3 0
8 −1

]
from the previous example, we

can trace the trajectory of an arbitrary point x0. Since {v1, v2} forms a
basis for R2, we can write x0 = c1v1 + c2v2. Then:

xk = Akx0 = c1(3)kv1 + c2(−1)kv2.

For large k, the term 3kv1 overwhelms (−1)kv2 (provided c1 ̸=
0). Thus, almost all trajectories tend towards the direction of the
eigenspace corresponding to λ = 3.

x

y
v1

v2

x0

x1

Figure 4.1: Trajectories are
pulled towards the eigenspace
of the dominant eigenvalue
λ = 3.

Complex Eigenvalues and Rotation

If the characteristic polynomial has no real roots, the matrix does
not scale any line in Rn simply by a real factor. Instead, the action
typically involves rotation.

Example 4.4. Rotation and Cycles. Consider A =[
1/2 −

√
3/2√

3/2 1/2

]
. The characteristic equation is:

(λ− 1/2)2 + 3/4 = 0 =⇒ λ2 − λ + 1 = 0.

The roots are λ = 1±i
√

3
2 = e±iπ/3. Since the eigenvalues are

complex numbers with modulus 1, the transformation preserves
distance but rotates vectors by 60◦ (π/3 radians). A trajectory start-
ing at x0 = [1, 0]T cycles through 6 distinct points before returning
to x0:

x0 → x1 (rotated 60◦)→ · · · → x6 = x0.

Complex eigenvalues in real matrices always occur in conjugate
pairs and signify rotational components in the linear map.

範例

Stochastic Matrices and Steady States

An important class of dynamical systems arises in probability and
statistical modelling, specifically Markov chains.
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Definition 4.2. Stochastic Matrix.
A square matrix P with non-negative entries is called a stochastic ma-
trix if the sum of the entries in each column is 1. (We use this column-
stochastic convention throughout.)

定義

This condition ensures that P maps probability vectors (vectors with
non-negative entries summing to 1) to probability vectors. A funda-
mental property of these matrices is the guaranteed existence of a
steady state.

Theorem 4.2. Steady State Existence.
If P is a stochastic matrix, then λ = 1 is an eigenvalue of P. Conse-
quently, there exists a non-zero vector q such that Pq = q.

定理

Remark.

In Markov chain applications, under additional assumptions such
as irreducibility and aperiodicity, this eigenvector can be chosen as
a unique probability vector, called the stationary distribution.

Proof

We consider the transpose PT . Since the columns of P sum to 1, the
rows of PT sum to 1. Let u = [1, 1, . . . , 1]T . Then:

PTu =


∑ p1j

...
∑ pnj

 =


1
...
1

 = 1u.

Thus, 1 is an eigenvalue of PT . By theorem 2.4, det(P − 1I) =

det(PT − 1I) = 0, so 1 is also an eigenvalue of P.
■

Example 4.5. Modelling Viral Spread. Consider a population of
laboratory mice partitioned into two states: Infected (I) and Non-
infected (N). Suppose that each week:
· An infected mouse has an 80% chance of recovering (becoming

N) and 20% chance of remaining infected.

· A non-infected mouse has a 10% chance of becoming infected
and 90% chance of remaining non-infected.

The transition matrix P acts on the state vector xk = [Ik, Nk]
T :

P =

[
0.2 0.1
0.8 0.9

]
.

(Note: Col 1 is transition from I, Col 2 from N). To find the long-
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term steady state x∗, we solve (P− I)x∗ = 0:[
−0.8 0.1
0.8 −0.1

] [
I∗

N∗

]
= 0.

This yields −0.8I∗ + 0.1N∗ = 0 =⇒ N∗ = 8I∗. The steady state
is a scalar multiple of [1, 8]T . Normalising for a population of 1000

mice:

I∗ + 8I∗ = 1000 =⇒ 9I∗ = 1000 =⇒ I∗ ≈ 111, N∗ ≈ 889.

Regardless of the initial infection rate, the system converges to this
distribution.

範例

Example 4.6. Market Share Dynamics. Consider three competing
tech companies A, B, C with a total market share. Customers switch
annually according to the stochastic matrix P:

P =

0.7 0.1 0.1
0.2 0.8 0.1
0.1 0.1 0.8

 .

We verify that columns sum to 1. To find the steady state, we solve
(P− I)q = 0.

P− I =

−0.3 0.1 0.1
0.2 −0.2 0.1
0.1 0.1 −0.2

 .

Row reducing (scaling by 10 for convenience):−3 1 1
2 −2 1
1 1 −2

 R1↔R3−−−−→

 1 1 −2
2 −2 1
−3 1 1

 R2−2R1−−−−→
R3+3R1

1 1 −2
0 −4 5
0 4 −5

 .

This implies −4q2 + 5q3 = 0 =⇒ q2 = 5
4 q3. From R1: q1 +

5
4 q3 −

2q3 = 0 =⇒ q1 = 3
4 q3. Let q3 = 4. Then q2 = 5 and q1 = 3.

The steady state vector is [3, 5, 4]T . Normalising: 3 + 5 + 4 = 12, so
the market shares stabilize at A = 25%, B ≈ 41.7%, C ≈ 33.3%.

範例

4.3 Diagonalisation

We return to the algebraic structure suggested by the Fibonacci ex-
ample. We say a matrix A is diagonalisable if it is similar to a diag-
onal matrix D. That is, there exists an invertible matrix P such that
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P−1 AP = D.

Theorem 4.3. Diagonalisation Criterion.
An n×n matrix A is diagonalisable if and only if A has n linearly in-
dependent eigenvectors. In this case, the columns of P are the eigen-
vectors, and the diagonal entries of D are the corresponding eigenval-
ues.

定理

Proof

Let P = [v1, . . . , vn] and D = diag(λ1, . . . , λn). Note that
AP = A[v1, . . . , vn] = [Av1, . . . , Avn]. Also, PD = [v1, . . . , vn]D =

[λ1v1, . . . , λnvn]. Thus, AP = PD if and only if Avi = λivi for all
i. For P to be invertible, its columns (the eigenvectors) must be lin-
early independent. If these conditions hold, multiplication by P−1

yields P−1 AP = D.
■

Corollary 4.1. Distinct Eigenvalues
推論

If an n× n matrix has n distinct eigenvalues, it is diagonalisable. Let
A ∈ Mn(R) (or Mn(C)) have n distinct eigenvalues λ1, . . . , λn. For
each λi, choose a corresponding eigenvector vi ̸= 0 such that

Avi = λivi, i = 1, . . . , n.

By the Diagonalisation Criterion, it is enough to show that the eigen-
vectors v1, . . . , vn are linearly independent. We prove this by induc-
tion on the number of eigenvectors.

Base case (m = 1).

Any single non-zero vector is linearly independent, so the state-
ment holds for one eigenvector.

証明終

Inductive step.

Assume that any collection of m − 1 eigenvectors corresponding to
m − 1 distinct eigenvalues is linearly independent. We will show
that any collection of m eigenvectors v1, . . . , vm corresponding to
distinct eigenvalues λ1, . . . , λm is also linearly independent.
Suppose, for the sake of contradiction, that v1, . . . , vm are linearly
dependent. Then there exist scalars c1, . . . , cm, not all zero, such that

c1v1 + · · ·+ cmvm = 0. (4.1)

We may assume at least one of the ci is non-zero; without loss of
generality, we will not reorder the vectors. Apply the linear map A
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to both sides of (4.1):

A (c1v1 + · · ·+ cmvm) = c1 Av1 + · · ·+ cm Avm = c1λ1v1 + · · ·+ cmλmvm = 0.

Now consider the combination

A (c1v1 + · · ·+ cmvm)− λm (c1v1 + · · ·+ cmvm) = 0.

Substituting the two expressions above, we obtain

0 =
(
c1λ1v1 + · · ·+ cmλmvm

)
− λm

(
c1v1 + · · ·+ cmvm

)
=

m

∑
i=1

ci(λi − λm)vi.

Observe that the coefficient of vm is cm(λm − λm) = 0, so the term
involving vm disappears. Thus we are left with

m−1

∑
i=1

ci(λi − λm)vi = 0.

Since the eigenvalues are distinct, we have λi − λm ̸= 0 for i =

1, . . . , m− 1. Hence each scalar ci(λi − λm) is zero if and only if ci =

0. Therefore the above relation shows that

c1(λ1−λm) = · · · = cm−1(λm−1−λm) = 0 =⇒ c1 = · · · = cm−1 = 0.

Returning to (4.1), we now have

cmvm = 0.

But vm ̸= 0 by definition of an eigenvector, so this forces cm = 0.
Thus all coefficients c1, . . . , cm must be zero, which contradicts our
assumption that they were not all zero. Therefore v1, . . . , vm are
linearly independent.
By induction, any collection of eigenvectors corresponding to
distinct eigenvalues is linearly independent, in particular the n
eigenvectors v1, . . . , vn of A. Hence A has n linearly independent
eigenvectors. The Diagonalisation Criterion now implies that A is
diagonalisable.

証明終

Note

Not all matrices are diagonalisable. For example, J =

[
0 1
0 0

]
has

characteristic polynomial λ2. The only eigenvalue is 0. If J were di-
agonalisable, it would be similar to the zero matrix, which implies
J = P0P−1 = 0, a contradiction. Such matrices are called defective
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and require the Jordan Canonical Form for analysis.

4.4 Abstract Spectral Theory

While matrices provide a concrete computational framework, the
concept of an eigenvalue is intrinsic to the linear operator itself,
independent of any coordinate system. We therefore broaden our
definition to general vector spaces.

Definition 4.3. Eigenvalues of a Linear Operator.
Let V be a vector space and T : V → V be a linear transformation.
A scalar λ is an eigenvalue of T if there exists a non-zero vector v ∈
V such that:

T(v) = λv.

The vector v is an eigenvector (or eigenfunction, if V is a function space)
corresponding to λ.

定義

This definition allows us to analyse operators on infinite-dimensional
spaces, where the matrix determinant is not immediately available.

Example 4.7. The Derivative Operator. Let V = C∞(R) be the
space of smooth functions. Consider the derivative operator
D : V → V defined by D( f ) = f ′. The eigenvalue equation is
the differential equation:

d f
dt

= λ f .

Separation of variables yields the solution f (t) = Ceλt. Thus, for
every λ ∈ R, the function f (t) = eλt is an eigenfunction of D. The
spectrum of this operator is the entire real line.

範例

Example 4.8. The Transpose Operator. Let V = Mn(R) be the vec-
tor space of n × n matrices. Define T : V → V by T(A) = AT . We
seek scalars λ and non-zero matrices A such that AT = λA. Apply-
ing the transpose again:

A = (AT)T = (λA)T = λAT = λ2 A.

Since A ̸= 0, we must have λ2 = 1, so λ = 1 or λ = −1.
1. For λ = 1, AT = A. The eigenvectors are the symmetric matrices.

2. For λ = −1, AT = −A. The eigenvectors are the skew-symmetric
matrices.

This spectral decomposition implies that any square matrix can be
uniquely written as the sum of a symmetric and a skew-symmetric
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matrix: A = 1
2 (A + AT) + 1

2 (A− AT).

範例

4.5 Eigenspaces and Multiplicity

Returning to finite-dimensional spaces, we refine our understanding
of the solution set to (A− λI)v = 0.

Definition 4.4. Eigenspace.
The eigenspace of A corresponding to an eigenvalue λ, denoted Eλ,
is the kernel of the matrix A− λI:

Eλ = ker(A− λI) = {v ∈ Rn | Av = λv}.

定義

The eigenspace consists of the zero vector and all eigenvectors for λ.
It is a subspace of Rn.

Proposition 4.1. Equivalences for Eigenvalues.
For A ∈ Mn(R) and λ ∈ C, the following are equivalent:
1. λ is an eigenvalue of A.
2. The kernel of A− λI is non-trivial.
3. det(A− λI) = 0.
4. The system (A− λI)x = 0 has infinitely many solutions.

命題

Algebraic vs. Geometric Multiplicity

A subtle but critical distinction arises when the characteristic polyno-
mial has repeated roots.

Definition 4.5. Multiplicities.
Let λ0 be an eigenvalue of A.
1. The algebraic multiplicity, denoted ma(λ0), is the multiplicity of

λ0 as a root of the characteristic polynomial pA(λ).

2. The geometric multiplicity, denoted mg(λ0), is the dimension of
the eigenspace Eλ0 .

定義

Note

It is a fundamental result that 1 ≤ mg(λ) ≤ ma(λ). If
mg(λ) < ma(λ) for any eigenvalue, the matrix is defective and
not diagonalisable.



92 gudfit

Example 4.9. Repeated Eigenvalues (Diagonalisable Case). Con-

sider A =

0 0 −4
2 4 2
2 0 6

. The characteristic polynomial is:

det(A− λI) = det

−λ 0 −4
2 4− λ 2
2 0 6− λ


= (4− λ)det

[
−λ −4
2 6− λ

]
(Expansion along Col 2)

= (4− λ)(−λ(6− λ) + 8) = −(4− λ)(λ2 − 6λ + 8)

= −(λ− 4)(λ− 4)(λ− 2).

The eigenvalues are λ = 4 (algebraic multiplicity 2) and λ = 2 (al-
gebraic multiplicity 1).
· For λ = 2: Solving (A − 2I)v = 0 yields a 1-dimensional

eigenspace spanned by v1 = [−2, 1, 1]T .

· For λ = 4: We compute ker(A− 4I):

A− 4I =

−4 0 −4
2 0 2
2 0 2

 ∼
1 0 1

0 0 0
0 0 0

 .

The equation is x + z = 0. We have two free variables, y and z.
The general solution is:

v =

−s
t
s

 = s

−1
0
1

+ t

0
1
0

 .

The geometric multiplicity is 2, matching the algebraic multiplic-
ity. Thus, A is diagonalisable.

範例

Example 4.10. Repeated Eigenvalues (Defective Case). Consider

the shear matrix A =

[
1 1
0 1

]
. The characteristic polynomial is

(1 − λ)2, so λ = 1 has algebraic multiplicity 2. The eigenspace

is the kernel of A − I =

[
0 1
0 0

]
. The equation implies y = 0, so

eigenvectors are of the form [x, 0]T . The geometric multiplicity is 1.
Since 1 < 2, the matrix is defective and cannot be diagonalised.

範例
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4.6 Invariant Subspaces

The geometric essence of the eigenvalue problem lies in the iden-
tification of lines passing through the origin that are mapped back
onto themselves. We now formalise this concept and extend it to
subspaces of higher dimension.

Definition 4.6. Invariant Subspace.
Let T : V → V be a linear operator on a vector space V. A subspace
W ⊆ V is called invariant under T (or T-invariant) if T maps W into
itself:

T(W) ⊆W.

That is, for every w ∈W, the image T(w) is also in W.
定義

The trivial subspaces {0} and V are always invariant under any
operator. The study of eigenvalues is precisely the search for one-
dimensional invariant subspaces.

Proposition 4.2. Eigenvectors and Invariant Lines.
Let V be a vector space over F. A one-dimensional subspace W = span{v}
(where v ̸= 0) is invariant under T if and only if v is an eigenvector
of T.

命題

(⇒)

If W is invariant, then T(v) ∈ W. Since W is spanned by v, we must
have T(v) = λv for some scalar λ ∈ F. Thus v is an eigenvector.

証明終

(⇐)

If T(v) = λv, then for any w = cv ∈ W, T(w) = T(cv) = cλv ∈ W.
Thus W is invariant.

証明終

Furthermore, the eigenspaces Eλ defined in definition 4.4 are them-
selves invariant subspaces. If x ∈ Eλ, then T(x) = λx. Since Eλ is a
subspace, it is closed under scalar multiplication, so λx ∈ Eλ.

Example 4.11. The Integration Operator. We previously examined
the differentiation operator on the space of smooth functions. Con-
sider now the integration operator T : C[0, 1] → C[0, 1] defined
by:

T( f )(x) =
∫ x

0
f (t) dt.

We investigate whether T admits any eigenvalues, or equivalently,
any one-dimensional invariant subspaces. Suppose f is a non-zero
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eigenfunction with eigenvalue λ:∫ x

0
f (t) dt = λ f (x).

If λ = 0, differentiating both sides yields f (x) = 0, which contra-
dicts f ̸= 0. If λ ̸= 0, the right-hand side is differentiable, so f must
be differentiable. Differentiating with respect to x:

f (x) = λ f ′(x) =⇒ f ′(x) =
1
λ

f (x).

The general solution to this differential equation is f (x) = cex/λ.
However, we must satisfy the boundary condition implied by the
definition of T. Evaluating at x = 0:

T( f )(0) =
∫ 0

0
f (t) dt = 0 =⇒ λ f (0) = 0.

Since λ ̸= 0, we have f (0) = 0. Substituting into the general solu-
tion:

ce0 = c = 0.

Thus f (x) is the zero function. We conclude that the integration
operator has no eigenvalues and consequently no one-dimensional
invariant subspaces. This highlights a fundamental difference be-
tween finite-dimensional and infinite-dimensional spaces; in the
latter, operators need not have non-trivial invariant subspaces.

範例

Remark.

The decomposition of a vector space into a direct sum of invariant
subspaces allows us to study the operator on each subspace inde-
pendently. If V = W1 ⊕W2 where both W1 and W2 are T-invariant,
the matrix of T relative to a basis adapted to this decomposition is
block diagonal:

[T] =

[
A1 0
0 A2

]
.

Diagonalisation is the maximal case of this reduction, where each
Wi is one-dimensional.

4.7 Exercises

In the following exercises, matrices are assumed to be over R unless
specified otherwise. When asked to find eigenvectors, finding a basis
for each eigenspace is sufficient.
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1. Eigensystem Calculations. For each of the following matrices, de-
termine the characteristic polynomial, the eigenvalues, their alge-
braic and geometric multiplicities, and a basis for each eigenspace.
Determine if the matrix is diagonalisable over R. If it is, find the
transition matrix P and the diagonal matrix D.

(a) A =

2 1 2
0 0 1
0 1 0


(b) B =

 1 1 0
−1 3 0
−1 4 −1


(c) C =

2 1 1
1 2 1
1 1 2


2. Inspection and Intuition. Without performing the full determi-

nant calculation, find the eigenvalues and at least one eigenvector
for the following matrices.

(a) A =

[
−1 6
0 5

]

(b) B =

 3 0 0
−2 7 0
4 8 1


(c) C =

2 1 1
1 2 1
1 1 2

 Hint: Consider the row sums and the
effect of C− I.

3. Matrix Powers and Inverses. Let A =

7 2 3
3 10 3
2 0 6

.

(a) Find the eigenvalues and eigenspaces of A.
(b) Deduce the eigenvalues and eigenspaces of A2.
(c) Deduce the eigenvalues and eigenspaces of A−1.

4. Functions of Matrices. Let M =

[
−5 3
6 −2

]
.

(a) Find an invertible matrix P and a diagonal matrix D such that
M = PDP−1.

(b) Find a "cube root" of M, i.e., a matrix R such that R3 = M.
(c) Compute the matrix exponential eM = ∑∞

n=0
1
n! Mn. Express

the entries in terms of eλi .

5. Polynomial Spaces. Let V be the vector space of real polynomials
in x of degree at most d, where d > 0. Determine which of the
following linear operators T : V → V are diagonalisable. Find the matrix representation of each

operator in the basis {1, x, . . . , xd}.
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(a) T1( f (x)) = x f ′(x)
(b) T2( f (x)) = f ′(x)
(c) T3( f (x)) = f (x + 1)
(d) T4( f (x)) = f (−x)

6. The Transpose Operator. Let V = Mn(R). Define the operator
S : V → V by S(A) = AT .

(a) Show that the only possible eigenvalues are ±1.
(b) Describe the eigenspaces corresponding to these eigenvalues.
(c) Prove that S is diagonalisable by showing that the sum of the

dimensions of the eigenspaces equals dim(V).

7. Cayley-Hamilton Preview. Let χA(x) = det(xI − A) be the
characteristic polynomial of a matrix A.

(a) Prove that if v is an eigenvector of A with eigenvalue λ, then
χA(A)v = 0.

(b) Deduce that if A is diagonalisable, then χA(A) = 0 (the zero
matrix).

8. Simultaneous Diagonalisation. Let S, T : V → V be diagonal-
isable linear operators on a finite-dimensional space V. Suppose
that S and T commute, i.e., ST = TS.

(a) Let λ be an eigenvalue of S with eigenspace Eλ. Prove that Eλ

is invariant under T (i.e., if v ∈ Eλ, then T(v) ∈ Eλ).
(b) Deduce that there exists a common basis of eigenvectors for

both S and T.

9. Involutions. Let V be a finite-dimensional vector space and S :
V → V be a linear map such that S2 = I (an involution).

(a) Prove that the only possible eigenvalues of S are 1 and −1.
(b) Define U = {u ∈ V | Su = u} and W = {w ∈ V | Sw = −w}.

Prove that V = U ⊕W by showing that any v can be written
as v = 1

2 (v + Sv) + 1
2 (v− Sv).

(c) Conclude that S is always diagonalisable.

10. Nilpotent Operators. Let E be a square matrix such that Ek+1 = 0
for some integer k ≥ 1.

(a) Show that the only eigenvalue of E is 0.
(b) Prove that I − λE is invertible for any scalar λ. Consider the geometric series expansion

(I − X)−1 = I + X + X2 + . . . , which
terminates if X is nilpotent.11. Derivative of Matrix Powers. Let A(t) be a differentiable matrix-

valued function.

(a) Verify the product rule for matrices: d
dt (A(t)2) = A′(t)A(t) +

A(t)A′(t).

(b) Let A =

[
t t2

1 t3

]
. Calculate A2 explicitly, differentiate it, and
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verify the formula above.

12. The Spectral Mapping Theorem for Polynomials. Let T : V → V
be a linear operator and let v be an eigenvector of T correspond-
ing to the eigenvalue λ.

(a) Let S : V → V be another linear operator such that v is
also an eigenvector of S with eigenvalue µ. Prove that v is an
eigenvector of the operator aT + bS with eigenvalue aλ + bµ

for any scalars a, b.
(b) Prove by induction that v is an eigenvector of Tn with eigen-

value λn for any n ∈N.
(c) Let P(x) = anxn + · · ·+ a1x + a0 be a polynomial. Prove that

v is an eigenvector of the operator P(T) = anTn + · · ·+ a1T +

a0 I with eigenvalue P(λ). This result allows us to analyse the
convergence of matrix power series,
such as the matrix exponential eA,
by examining the eigenvalues of the
constituent terms.

13. Square Roots of Operators.

(a) Let V = R2. Let T : V → V be the rotation of the plane
anti-clockwise through an angle of π/2 radians. Show that
T possesses no eigenvalues in R. However, prove that every
non-zero vector in V is an eigenvector for the operator T2.
What is the corresponding eigenvalue?

(b) Let T : V → V be an arbitrary linear operator. Suppose that
T2 possesses a non-negative eigenvalue λ2 (where λ ≥ 0).
Prove that at least one of λ or −λ is an eigenvalue for T. Consider the factorisation T2 − λ2 I =

(T − λI)(T + λI). If (T2 − λ2 I)v = 0,
apply the operators on the right-hand
side to v.

14. Eigenvalues of Differential and Shift Operators.

(a) Let V be the vector space of all real functions differentiable
on the interval (0, 1). Let T : V → V be the operator defined
by T( f )(t) = t f ′(t). Prove that every real number λ is an
eigenvalue of T and find the corresponding eigenfunctions.

(b) Let Vn be the space of real polynomials of degree strictly less
than n. Define the shift operator T : Vn → Vn by T(p)(t) =

p(t + 1). Prove that T has only the eigenvalue 1. What are the
corresponding eigenfunctions? Consider the effect of T on the leading

coefficient of the polynomial.
15. Linear Independence and Scalar Operators.

(a) Let T : V → V be a linear operator. Suppose x and y are
eigenvectors of T corresponding to distinct eigenvalues λ

and µ. Prove that a linear combination ax + by cannot be an
eigenvector of T unless one of the scalars a or b is zero.

(b) Scalar Operators. Let T : V → V be a linear operator with
the property that every non-zero vector in V is an eigenvector
of T. Prove that T must be a scalar multiple of the identity
operator; that is, there exists a scalar c such that T(v) = cv for
all v ∈ V. Let x, y be linearly independent vectors.

We know Tx = λxx and Ty = λyy.
Consider the action of T on the sum
x + y to show λx = λy.



5
Decoupling and Geometric Evolution

The power of the eigenvector decomposition lies in its ability to de-
couple dynamical systems. If a matrix A is diagonalisable, we can
analyse the evolution of the system xn+1 = Axn by working in the
eigenbasis, where the coordinates evolve independently.
Revisiting the Fibonacci system from the previous chapter, we found
eigenvalues ϕ = 1+

√
5

2 and ψ = 1−
√

5
2 with eigenvectors v1 = [1, ϕ]T

and v2 = [1, ψ]T . Any initial state x0 can be decomposed as:

x0 = c1v1 + c2v2.

Applying A repeated n times yields:

xn = An(c1v1 + c2v2) = c1 Anv1 + c2 Anv2 = c1ϕnv1 + c2ψnv2.

This formula reveals the geometry of the state space:
1. Decoupling: The coefficient c1 grows by a factor of ϕ each step,

while c2 shrinks by a factor of ψ (since |ψ| < 1). The "interaction"
between components is an artifact of the standard basis; in the
eigenbasis, the system consists of two independent 1D systems.

2. Dominance: For large n, the term involving ψn vanishes. The state
vector xn aligns almost perfectly with v1.

xn ≈ c1ϕnv1.

v1(ϕ)

v2(ψ)

x0

x1

x3

Figure 5.1: The Fibonacci se-
quence as stepping stones. The
trajectory begins with "baby
steps" but rapidly aligns with
the dominant eigenvector v1,
effectively ignoring the con-
tracting direction v2.

This decoupling principle applies generally. For any diagonalisable
linear operator T, we can construct a basis such that the matrix of T
is diagonal. In this basis, the operator acts as a simple scaling in each
coordinate direction, stripping away the complexity of the original
coupled system.

5.1 Spectral Properties

Having established the definition of eigenvalues and their role in
diagonalisation, we now deduce several theoretical consequences that
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relate the spectrum of a matrix to its macroscopic properties, such as
the determinant and the trace.

Coefficients of the Characteristic Polynomial

The characteristic polynomial pA(λ) = det(A− λI) acts as a bridge
between the matrix entries and its eigenvalues. By the Fundamen-
tal Theorem of Algebra, any polynomial of degree n with complex
coefficients has exactly n roots in C, counting multiplicity.

Proposition 5.1. Determinant and Eigenvalues.
Let A ∈ Mn(R) with eigenvalues λ1, . . . , λn (repeated according to
algebraic multiplicity). Then:

det(A) =
n

∏
i=1

λi.

命題

Proof

Since λ1, . . . , λn are the roots of pA(λ), we can factor the polyno-
mial over C:

det(A− λI) = c(λ− λ1)(λ− λ2) · · · (λ− λn).

The leading term of det(A − λI) comes from the product of the
diagonal entries (a11 − λ) · · · (ann − λ), which is (−1)nλn. Thus
c = (−1)n. Setting λ = 0 in the factorisation:

det(A) = pA(0) = (−1)n(−λ1)(−λ2) · · · (−λn) = (−1)n(−1)n
n

∏
i=1

λi =
n

∏
i=1

λi.

■

Remark.

This proposition yields an immediate test for singularity: λ = 0 is
an eigenvalue if and only if det(A) = 0, consistent with our earlier
determinant criterion for invertibility.

While not explicitly detailed in the definitions above, examining the
coefficient of λn−1 in the expansion of det(A − λI) reveals another
invariant. The sum of the roots equals the negative of the coefficient
of λn−1, divided by the leading coefficient.

n

∑
i=1

λi = tr(A) ≡
n

∑
i=1

aii.

Thus, the sum of the eigenvalues is the trace of the matrix.
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Invariance Under Power Operations

The spectral mapping theorem states that operations applied to a
matrix translate directly to operations on its eigenvalues.

Proposition 5.2. Eigenvalues of Powers.
If λ is an eigenvalue of A with eigenvector v, then λk is an eigenvalue
of Ak with the same eigenvector v, for any integer k ≥ 1.

命題

Proof

We proceed by induction. The base case k = 1 is the definition
Av = λv. Assume Ak−1v = λk−1v. Then:

Akv = A(Ak−1v) = A(λk−1v) = λk−1(Av) = λk−1(λv) = λkv.

■

Triangular Matrices

For triangular matrices, the spectrum is immediately visible.

Proposition 5.3. Spectrum of Triangular Matrices.
Let A be an upper or lower triangular matrix. The eigenvalues of A are
exactly its diagonal entries.

命題

Proof

Consider the characteristic matrix A − λI. If A is triangular, then
A − λI is also triangular. The determinant of a triangular matrix
is the product of its diagonal entries (see Determinant of Triangular
Matrices):

det(A− λI) =
n

∏
i=1

(aii − λ).

The roots of this polynomial are precisely λ = aii.
■

Example 5.1. Determinant Calculation via LU. This property sim-
plifies determinant calculation significantly. If we perform an LU
decomposition A = LU, the eigenvalues of L are all 1 (if unit tri-
angular) and the eigenvalues of U are its diagonal entries. Since
det(A) = det(L)det(U), the determinant is simply the product of
the diagonal entries of U.

範例
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The Trace and Polynomial Coefficients

While the determinant provides the constant term of the character-
istic polynomial, the other coefficients encode equally fundamental
invariants.

Proposition 5.4. Coefficients of the Characteristic Polynomial.
Let A ∈ Mn(R). The characteristic polynomial pA(λ) = det(A −
λI) is a polynomial of degree n of the form:

pA(λ) = (−1)nλn + (−1)n−1tr(A)λn−1 + · · ·+ det(A).

命題

Proof

The term det(A − λI) is a sum of products involving entries from
the matrix. The highest powers of λ arise solely from the product of
the diagonal terms:

n

∏
i=1

(aii−λ) = (−1)nλn +(−1)n−1

(
n

∑
i=1

aii

)
λn−1 +(terms of degree < n−1).

No other term in the determinant expansion (which involves per-
mutations) contributes to λn or λn−1, as any permutation deviating
from the diagonal must involve at least two off-diagonal elements,
reducing the degree of λ by at least 2. The constant term is found
by evaluating at λ = 0: pA(0) = det(A).

■

Definition 5.1. Trace.
The trace of a square matrix A, denoted tr(A), is the sum of its diag-
onal entries:

tr(A) =
n

∑
i=1

aii.

定義

Combining proposition 5.4 with the factorisation pA(λ) = (−1)n ∏(λ−
λi), we obtain a direct relationship between the eigenvalues and the
trace.

Corollary 5.1. Trace as Sum of Eigenvalues
推論

The sum of the eigenvalues of A (counting algebraic multiplicity)
equals the trace of A:

n

∑
i=1

λi = tr(A).
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Remark.

This property, along with ∏ λi = det(A), provides a rapid sanity
check for calculated eigenvalues. In example 4.3, the eigenvalues
1,−1, 3 sum to 3. The trace of A is 2 + 3 + (−2) = 3.

5.2 Generalized Eigenvectors and the Jordan Structure

We previously identified a class of defective matrices for which the ge-
ometric multiplicity of an eigenvalue is strictly less than its algebraic
multiplicity. In such cases, there are insufficient eigenvectors to form
a basis for Rn, and the matrix cannot be diagonalised. To remedy
this, we introduce generalized eigenvectors.

Generalized Eigenvectors

Definition 5.2. Generalized Eigenvector.
Let A ∈ Mn(R) and let λ be an eigenvalue of A. A non-zero vector
v is a generalized eigenvector of order k if

(A− λI)kv = 0 and (A− λI)k−1v ̸= 0.

定義

Note that a generalized eigenvector of order 1 is a standard eigenvec-
tor.

Jordan Chains

Generalized eigenvectors naturally organize themselves into chains
generated by the operator A− λI.

Proposition 5.5. Jordan Chain Construction.
Suppose A has an eigenvalue λ with eigenvector v1. If the equation

(A− λI)v2 = v1

has a solution v2, then v2 is a generalized eigenvector of order 2. Fur-
thermore, {v1, v2} is linearly independent.

命題

Proof

Multiplying the defining equation by A− λI gives:

(A− λI)2v2 = (A− λI)v1 = 0.
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Since (A− λI)v2 = v1 ̸= 0, v2 is of order 2. To prove independence,
assume c1v1 + c2v2 = 0. Applying A− λI to this equation:

c1(A− λI)v1 + c2(A− λI)v2 = 0 =⇒ c10 + c2v1 = 0.

Since v1 ̸= 0, we must have c2 = 0. Substituting back yields c1v1 =

0 =⇒ c1 = 0.
■

This process can be iterated. A sequence {v1, v2, . . . , vk} such that

(A− λI)vj = vj−1 (with v0 = 0)

is called a Jordan chain of length k. The vector v1 is the eigenvector,
and vk is the generalized eigenvector of order k.

Proposition 5.6. Independence of Chains.
A Jordan chain {v1, . . . , vk} consists of linearly independent vectors.

命題

The proof generalizes the argument for k = 2 by repeatedly applying
A− λI to peel off terms from a linear combination.

Example 5.2. Constructing a Jordan Basis. Consider the matrix
from example 4.10:

A =

[
1 1
0 1

]
.

We found λ = 1 with algebraic multiplicity 2 and geometric mul-
tiplicity 1. The only eigenvector is u1 = [1, 0]T (up to scaling). We
seek a generalized eigenvector u2 such that (A− I)u2 = u1.[

0 1
0 0

] [
u
v

]
=

[
1
0

]
.

This yields the equation v = 1. The variable u is free; we choose
u = 0 for simplicity. Thus u2 = [0, 1]T . The set J = {u1, u2} forms a
basis for R2. In this basis, the matrix of the transformation is:

P−1 AP =

[
1 1
0 1

]
.

This is a Jordan block.

範例

The Jordan Normal Form

The generalized eigenvectors allow us to construct a basis for Rn

even when the matrix is defective.
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Theorem 5.1. Jordan Normal Form.
Every matrix A ∈ Mn(R) with real eigenvalues is similar to a block
diagonal matrix J, called the Jordan Canonical Form:

J =


J1 0

. . .
0 Jp

 ,

where each block Ji corresponds to a Jordan chain and has the form:

Ji =


λ 1 0

λ
. . .
. . . 1

0 λ

 .

The columns of the similarity matrix P constitute a Jordan basis, con-
sisting of Jordan chains for each eigenvalue.

定理

Note

If A is diagonalisable, all Jordan blocks are 1 × 1, and J is simply a
diagonal matrix. The presence of 1s on the super-diagonal indicates
the "coupling" between generalized eigenvectors in a chain.

Example 5.3. A Larger Jordan Structure. Consider a 4 × 4 matrix A
with λ = 1 appearing 4 times as a root of pA(λ). Suppose (A − I)
row reduces to show only two free variables. This implies there are
two eigenvectors, u1 and u2. To form a basis, we need two more
vectors. We look for chains. Suppose we solve (A − I)u3 = u1

to find u3, and (A − I)u4 = u2 to find u4. The Jordan basis is
{u1, u3, u2, u4}. The resulting matrix J will have two 2× 2 blocks:

J =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

The structure of the Jordan form (number and size of blocks)
is completely determined by the dimensions of the kernels
ker(A− λI)k.

範例

Example 5.4. Explicit Jordan Construction (3x3). Let A =
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 2 1 0
−1 4 0
−1 1 3

. The characteristic polynomial is:

det(A−λI) = det

2− λ 1 0
−1 4− λ 0
−1 1 3− λ

 = (3−λ)det

[
2− λ 1
−1 4− λ

]
.

= (3− λ)((2− λ)(4− λ) + 1) = (3− λ)(λ2 − 6λ + 9) = −(λ− 3)3.

So λ = 3 with algebraic multiplicity 3. Solve (A− 3I)v = 0:

A− 3I =

−1 1 0
−1 1 0
−1 1 0

 ∼
1 −1 0

0 0 0
0 0 0

 .

The equation is x − y = 0 =⇒ x = y. z is free. Basis for
eigenspace: v1 = [1, 1, 0]T and v2 = [0, 0, 1]T . Geometric mul-
tiplicity is 2. Since 2 < 3, the matrix is defective. We need one
generalized eigenvector. We need a generalized eigenvector u2

such that (A − 3I)u2 = u1 where u1 is an eigenvector. We ob-
serve that the range of A − 3I is spanned by [−1,−1,−1]T . Our
eigenvector u1 must lie in this range. We find a linear combination
u1 = c1v1 + c2v2 = [c1, c1, c2]

T that is a multiple of [1, 1, 1]T . Setting
c1 = c2 = 1 gives u1 = [1, 1, 1]T , which is a valid eigenvector. Now
we solve (A− 3I)u2 = u1:−1 1 0

−1 1 0
−1 1 0


x

y
z

 =

1
1
1

 .

All rows imply −x + y = 1. Let x = 0, y = 1, z = 0. So
u2 = [0, 1, 0]T . We now have a Jordan chain {u1, u2}. To com-
plete the basis, we need a third vector w that is an eigenvector
linearly independent of u1. We can choose w = v2 = [0, 0, 1]T . The

Jordan basis is P = [u1, u2, w] =

1 0 0
1 1 0
1 0 1

. The Jordan form is

J =

3 1 0
0 3 0
0 0 3

.

範例
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5.3 Diagonalisation and Similarity

We have seen that if a matrix A has n linearly independent eigenvec-
tors, it can be diagonalised. However, the true utility of this decom-
position is not just computational but structural: it reveals that the
matrix A is essentially a diagonal matrix "viewed from a different
angle" (i.e., in a different basis).

Criteria for Real Diagonalisation

Proposition 5.7. Criterion for Real Diagonalisation.
Let A ∈ Mn(R). Suppose the characteristic polynomial pA(λ) factors
completely into real linear factors:

pA(λ) = (−1)n(λ− λ1)
m1 · · · (λ− λk)

mk ,

where λ1, . . . , λk are distinct real eigenvalues with algebraic multiplic-
ities mj. Let nj = dim(Eλj) be the geometric multiplicity of λj. Then
A is diagonalisable if and only if mj = nj for all j = 1, . . . , k.

命題

This condition ensures that the sum of the dimensions of the eigenspaces
is exactly n, allowing us to construct a basis of eigenvectors for Rn.

The Matrix of the Transformation

If the conditions of proposition 5.7 are met, we can explicitly construct
the diagonalising matrix.

Theorem 5.2. Diagonalisation Formula.
Suppose A has n linearly independent eigenvectors v1, . . . , vn corre-
sponding to eigenvalues λ1, . . . , λn. Let P = [v1 | · · · | vn]. Then P
is invertible and

P−1 AP = D = diag(λ1, . . . , λn).

定理

Proof

Since the columns of P are linearly independent, P is invertible.

AP = A[v1 | · · · | vn] = [λ1v1 | · · · | λnvn].

Also,

PD = [v1 | · · · | vn]


λ1

. . .
λn

 = [λ1v1 | · · · | λnvn].
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Thus AP = PD, which implies P−1 AP = D.
■

Example 5.5. Diagonalisation in Practice. Revisiting the matrix

A =

[
3 1
3 1

]
. The eigenvalues are λ1 = 0 and λ2 = 4. The eigen-

vectors are u1 = [1,−3]T and u2 = [1, 1]T . Let P =

[
1 1
−3 1

]
. The

determinant is 1− (−3) = 4, so

P−1 =
1
4

[
1 −1
3 1

]
.

Computing the product:

P−1 AP =
1
4

[
1 −1
3 1

] [
3 1
3 1

] [
1 1
−3 1

]
=

[
0 0
0 4

]
.

This confirms the diagonalisation.

範例

Remark.

Calculating the inverse P−1 is computationally expensive. However,
in many applications (such as powers Ak), we only need the decom-
position A = PDP−1, and explicit inversion might be avoidable if
we work with orthonormal bases (where P−1 = PT).

5.4 Complex Eigenvalues and Canonical Forms

When a real matrix has complex eigenvalues, it cannot be diago-
nalised over R. However, the complex eigenvectors still provide a
structural decomposition involving rotations.

Complex Conjugate Pairs

Proposition 5.8. Conjugate Eigenpairs.
Let A ∈ Mn(R). If λ = α + iβ (with β ̸= 0) is an eigenvalue with
eigenvector v = a + ib, then λ̄ = α− iβ is an eigenvalue with eigen-
vector v̄ = a− ib.

命題

Proof

Since A is real, Av = Av̄. Also λv = λ̄v̄. Thus Av̄ = λ̄v̄. Since v ̸=
0 implies a, b are not both zero, v̄ ̸= 0.

■
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Furthermore, the real vectors a and b carry significant geometric
information.

Proposition 5.9. Independence of Real and Imaginary Parts.
If v = a + ib is an eigenvector for a complex eigenvalue λ (β ̸= 0),
then {a, b} is a linearly independent set in Rn.

命題

Proof

Suppose c1a + c2b = 0. We can express a = (v + v̄)/2 and
b = (v − v̄)/2i. Substituting these into the linear combination
yields a relation between v and v̄. Since v and v̄ correspond to dis-
tinct eigenvalues λ and λ̄, they are linearly independent over C.
This forces the coefficients c1, c2 to vanish.

■

Real Canonical Form

Using the basis B = {b, a} (note the order for convention), the matrix
A restricts to a block form that makes the rotation explicit.

Theorem 5.3. Real Block Diagonalisation.
Let A have a complex eigenvalue λ = α + iβ with eigenvector v =

a + ib. Let P = [a | b | · · · ]. Then the block of P−1 AP correspond-
ing to these vectors is:

C =

[
α β

−β α

]
=
√

α2 + β2

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]
.

This represents a scaling by the magnitude |λ| =
√

α2 + β2 and a ro-
tation by the angle ϕ = arg(λ̄) (which is − arg(λ)).

定理

Proof

We have A(a + ib) = (α + iβ)(a + ib) = (αa − βb) + i(βa + αb).
Equating real and imaginary parts:

Aa = αa− βb, Ab = βa + αb.

Thus, relative to the basis {a, b}:

[A]{a,b} =

[
α β

−β α

]
.

■

Example 5.6. Complex Decomposition. Let A =

[
1 −1
1 1

]
. Eigen-
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values are 1 ± i. For λ = 1 + i, (A − (1 + i)I)v = 0 =⇒[
−i −1
1 −i

]
v = 0. This gives v1 = iv2. Let v2 = 1, so v =

[
i
1

]
=[

0
1

]
+ i

[
1
0

]
. Here a = [0, 1]T and b = [1, 0]T .

P =

[
0 1
1 0

]
.

Check:

P−1 AP =

[
0 1
1 0

] [
1 −1
1 1

] [
0 1
1 0

]
=

[
1 1
−1 1

]
.

This matches the canonical form with α = 1, β = 1.

範例

This canonical form is robust: it allows us to decompose any real lin-
ear operator into a sum of scalings and rotations, avoiding complex
arithmetic in the final result.

5.5 Polynomial Methods and Annihilating Polynomials

We have primarily determined eigenvalues by solving the characteris-
tic equation det(A− λI) = 0. We now introduce an alternative alge-
braic approach that connects the linear dependence of matrix powers
to polynomial factorisation. This framework provides a constructive
method for finding eigenvectors and offers a precise criterion for
diagonalisability based on the roots of specific polynomials.

Annihilating Polynomials of Vectors

Let A ∈ Mn(C) and let w ∈ Cn be a non-zero vector. Consider
the sequence of vectors w, Aw, A2w, . . .. Since the space is finite-
dimensional, this sequence cannot be linearly independent indefi-
nitely.

Definition 5.3. The Minimal Polynomial of a Vector.
Let m be the smallest integer such that the set {w, Aw, . . . , Amw} is lin-
early dependent. Then Amw can be uniquely expressed as a linear com-
bination of the preceding vectors:

Amw = −a0w− a1 Aw− · · · − am−1 Am−1w.
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We define the polynomial pw(t) as:

pw(t) = tm + am−1tm−1 + · · ·+ a1t + a0.

This is the monic polynomial of lowest degree such that pw(A)w =

0.
定義

Theorem 5.4. Constructive Existence of Eigenvectors.
Let pw(t) be the polynomial defined above. If λ is a root of pw(t), then
there exists a vector v constructed from w that is an eigenvector of A
with eigenvalue λ.

定理

Proof

By the Fundamental Theorem of Algebra, we factor pw(t) =

(t − λ)q(t), where q(t) has degree m − 1. Define the vector
v = q(A)w. First, we observe that v ̸= 0. Since m is the mini-
mal degree such that Akw are dependent, and deg(q) = m − 1,
the vector q(A)w is a non-trivial linear combination of linearly
independent vectors {w, . . . , Am−1w}. Second, we apply (A− λI):

(A− λI)v = (A− λI)q(A)w = pw(A)w = 0.

Thus Av = λv, and v is an eigenvector.
■

Computational Procedure via Row Reduction

Finding the coefficients ai is a problem of linear dependence, which is
efficiently solved via row reduction. Form the matrix

M = [w | Aw | A2w | · · · | Anw].

Row reducing M reveals the first non-pivotal column. If column
m + 1 (corresponding to Amw) is the first non-pivot, the coefficients
in that column relative to the pivots give the linear relation:

Amw = b0w + b1 Aw + · · ·+ bm−1 Am−1w.

The polynomial is then pw(t) = tm −∑m−1
j=0 bjtj.

Example 5.7. Eigenbasis Construction. Let A =

 1 −1 0
−1 2 −1
0 −1 1

.

We seek eigenvalues using w = e1. We compute the Krylov se-
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quence:

e1 =

1
0
0

 , Ae1 =

 1
−1
0

 , A2e1 =

 2
−3
1

 , A3e1 =

 5
−9
4

 .

Forming the matrix M = [e1, Ae1, A2e1, A3e1] and row reducing
yields:

rref(M) =

1 0 0 0
0 1 0 −3
0 0 1 4

 .

The fourth column indicates A3e1 = 0e1 − 3Ae1 + 4A2e1. Thus,
p(t) = t3 − 4t2 + 3t = t(t − 1)(t − 3). The roots are 0, 1, 3. We con-
struct eigenvectors for each:
1. λ = 0: q(t) = p(t)

t = t2 − 4t + 3. v1 = (A2 − 4A + 3I)e1 =

[1, 1, 1]T .

2. λ = 1: q(t) = p(t)
t−1 = t2 − 3t. v2 = (A2 − 3A)e1 = [−1, 0, 1]T .

3. λ = 3: q(t) = p(t)
t−3 = t2 − t. v3 = (A2 − A)e1 = [1,−2, 1]T .

範例

Criterion for the Existence of an Eigenbasis

While the standard diagonalisation theorem relies on geometric mul-
tiplicities, the polynomial perspective offers a criterion based on the
simplicity of roots. Let pi(t) denote the minimal annihilating polyno-
mial for the standard basis vector ei.

Theorem 5.5. Polynomial Roots and Diagonalisability.
Let A ∈ Mn(C). There exists an eigenbasis for A if and only if for ev-
ery i ∈ {1, . . . , n}, the roots of the polynomial pi(t) are all distinct (sim-
ple).

定理

Sufficiency:

Assume each pi(t) has distinct roots. Let Ei = span{ei, Aei, . . .}.
The dimension of Ei is deg(pi). The procedure above generates
deg(pi) linearly independent eigenvectors vi,j (one for each root of
pi) which span Ei. Since the union of subspaces Ei spans Cn (as it
contains all ei), the union of all generated eigenvectors spans Cn,
ensuring an eigenbasis exists.

証明終

Necessity:
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Let p(t) be the polynomial with distinct roots ∏(t − λk) covering
all distinct eigenvalues of A. If A is diagonalisable, then p(A) = 0
(since p(D) = 0 requires only that p vanishes on the diagonal en-
tries). Consequently, for any vector x, p(A)x = 0. The minimal
polynomial pi(t) for ei must therefore divide p(t). Since p(t) has
distinct roots, any factor pi(t) must also have distinct roots.

証明終

Remark.

This relates to the concept of the minimal polynomial of a matrix,
denoted µA(t). A matrix is diagonalisable if and only if µA(t) splits
into distinct linear factors. The polynomials pi(t) are divisors of
µA(t).

5.6 Exercises

In the following exercises, matrices are assumed to be over R unless
specified otherwise. When asked to find eigenvectors, finding a basis
for each eigenspace is sufficient.

1. Defective Matrices and Jordan Chains. Let A =

[
1 4
−1 −3

]
.

(a) Find the eigenvalue λ and show it has algebraic multiplicity 2

but geometric multiplicity 1.

(b) Find an eigenvector v1.

(c) Find a generalized eigenvector v2 such that (A− λI)v2 = v1.

(d) Form the matrix P = [v1 | v2] and compute J = P−1 AP.

2. Minimal Polynomials and Eigenbasis. Let A be a block diagonal
matrix given by A = diag(J2(7), J3(2)).

(a) Write down the matrix explicitly.

(b) Find the characteristic polynomial.

(c) Find the minimal polynomial (the lowest degree polynomial
m(t) such that m(A) = 0).

(d) Verify that the minimal polynomial has repeated roots, con-
sistent with the fact that A is not diagonalisable.

3. ⋆ The Matrix Exponential for Jordan Blocks. Let J =

[
λ 1
0 λ

]
.

(a) Write J = λI + N, where N =

[
0 1
0 0

]
.

(b) Show that (λI) and N commute.
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(c) Use the property eX+Y = eXeY (valid for commuting matrices)
to compute etJ .

(d) Generalize this to a 3× 3 Jordan block.

4. ⋆ Annihilating Polynomials. Let A =

0 1 0
0 0 1
1 −3 3

.

(a) Calculate the sequence of vectors e1, Ae1, A2e1, A3e1.

(b) Find the linear dependence relation A3e1 = c0e1 + c1 Ae1 +

c2 A2e1.

(c) Construct the polynomial p(t) = t3 − c2t2 − c1t− c0.

(d) Find the roots of p(t) and use the constructive theorem to
find the eigenvectors of A.

5. Spectral Analysis in R3. For each of the following matrices, calcu-
late the characteristic polynomial, the eigenvalues, and a basis for
each eigenspace. Determine whether the matrix is diagonalisable
over R.

(a) A =

2 1 1
2 3 2
3 3 4


(b) B =

2 −1 1
0 3 −1
2 1 3


(c) C =

0 0 −2
1 2 1
1 0 3


6. Physics Application: Pauli Matrices. The Pauli spin matrices,

fundamental to the quantum mechanical treatment of electron
spin, are defined as:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

(a) Verify that each matrix has eigenvalues 1 and −1.
(b) Prove that these matrices anti-commute (e.g., σxσy = −σyσx)

and that the square of each is the identity matrix.
(c) Generalisation: Determine the form of the most general 2× 2

matrix with complex entries having eigenvalues 1 and −1.

7. The Trace and Characteristic Coefficients. Let A be an n × n
matrix with characteristic polynomial pA(λ) = det(A − λI) =

cnλn + cn−1λn−1 + · · ·+ c0.

(a) Prove that cn = (−1)n.
(b) Prove that c0 = det(A).
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(c) Prove by induction that the coefficient of λn−1 is given by
cn−1 = (−1)n−1tr(A).

(d) Using these results, show that for 2× 2 matrices, pA(λ) =

λ2 − tr(A)λ + det(A).

8. The Spectral Mapping Theorem. Let T : V → V be a linear
operator and let v be an eigenvector of T corresponding to the
eigenvalue λ.

(a) Prove that v is an eigenvector of Tk with eigenvalue λk for
any k ∈N.

(b) Let P(x) = anxn + · · ·+ a0 be a polynomial. Prove that v is an
eigenvector of the operator P(T) with eigenvalue P(λ).

(c) Invertibility: Prove that T is invertible if and only if λ ̸= 0.
If T is invertible, show that v is an eigenvector of T−1 with
eigenvalue λ−1.

9. Commutativity of Spectra. Let A and B be n× n matrices.

(a) Prove that A and its transpose AT share the same charac-
teristic polynomial and thus the same eigenvalues. Do they
necessarily share the same eigenvectors?

(b) If A is non-singular, prove that AB and BA have the same
eigenvalues. Hint: Consider the similarity transfor-

mation using A.(c) ⋆ Argue that AB and BA share the same characteristic poly-
nomial even if A and B are singular. Consider perturbation Aϵ = A− ϵI, or

block matrix determinants.
10. Similarity vs. Spectrum. Two matrices are similar if they repre-

sent the same linear operator in different bases. Similar matrices
must share the same eigenvalues (why?).

(a) Prove that the matrices

A =

[
1 1
0 1

]
and B =

[
1 0
0 1

]

have identical eigenvalues but are not similar.
(b) Find a non-singular matrix C such that C−1MC is diagonal

for:

M =

[
4 2
3 3

]
.

(c) Explain why no such C exists for the matrix A in part (a).

11. Complex Structures on Real Spaces. Let A be an n × n matrix
with real entries such that A2 = −I.

(a) Prove that A is non-singular.
(b) Prove that A has no real eigenvalues.
(c) Prove that det(A) = 1.
(d) Deduce that n must be an even number. This algebraic structure defines a

complex structure on a real vector space,
allowing it to be treated as a complex
vector space of dimension n/2.
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12. Operator Analysis: Differential Equations. Let V = C∞(R) be
the space of smooth real functions.

(a) Let T( f ) = f ′. Show that every real number λ is an eigen-
value of T. Determine the corresponding eigenspaces.

(b) Let S( f ) = f ′′. Show that every real number µ is an eigen-
value. Describe the eigenspace for µ > 0 and µ < 0.

13. Operator Analysis: Integral Operators. Let V be the space of
continuous functions on (−∞, ∞) such that the specified integrals
exist.

(a) Let T( f )(x) =
∫ x
−∞ f (t) dt. Prove that T has no eigenvalues.

(b) ⋆ Let S( f )(x) =
∫ x
−∞ ex−t f (t) dt. Prove that every λ > 1 is an

eigenvalue for S. Find the eigenfunctions. Transform the integral equation S( f ) =
λ f into a differential equation by
differentiating with respect to x.
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