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Chapter 1

Introduction

1.1 Al versus ML

Definition 1.1.1. Artificial Intelligence. Artificial Intelligence (Al) is the field dedicated to cre-
ating machines or computers capable of performing tasks that typically require human intelligence.

The pursuit of Al mirrors early attempts at human flight. One approach was to mimic nature by
designing machines that flapped like birds. The successful alternative focused on understanding
aerodynamics to design flying objects that did not resemble birds. Similarly, in Al, one path
attempts to replicate human thought processes, while another focuses on developing systems that
achieve intelligent outcomes, regardless of the underlying mechanism.

To measure machine intelligence, Alan Turing proposed the Turing Test in 1950 [1]|. It posits that
if an Al system can communicate with a human interrogator and convince them they are commu-
nicating with another human, the system exhibits intelligent behaviour. A modern application of
this concept is the CAPTCHA, a task designed to differentiate human and machine users online.

While early AI research focused on logic and rule-based systems to encode knowledge, a dominant
modern approach is Machine Learning (ML), a subfield of computer science. Traditionally, Al was
viewed as applied logic, using knowledge bases and rule-based systems. In contrast, ML is rooted in
statistical theory for prediction, while the related field of Data Mining focuses on uncovering hidden
patterns within data. Although the broader field of Al maintains the goal of achieving Artificial
General Intelligence (AGI), ML is predominantly concerned with developing systems that excel at
a single, specific task.

Two formal definitions help to characterise Machine Learning precisely:

Definition 1.1.2. Machine Learning. ML is the subfield of computer science that gives com-
puters the ability to learn without being explicitly programmed [2].

Definition 1.1.3. Learning. A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in 7', as measured
by P, improves with experience E |[3].

The process involves training, or fitting, a model on historical data. This trained model is then used
to make predictions on new, unseen data. This data-driven approach contrasts with the explicit,
5



CHAPTER 1. INTRODUCTION 6

knowledge-based programming of what is now known as Good Old-Fashioned Al (GOFAI), the
prevailing paradigm before the dominance of Machine Learning.



Chapter 2

Artificial Intelligence

2.1 Paradigms of Artificial Intelligence

2.1.1 Good Old-Fashioned AI (GOFAI)

GOFAI, prevalent from the 1950s to the 1980s, is an approach to Al based on symbolic reasoning [4],
positing that cognition is a computational process of symbol manipulation. This paradigm assumes
that intelligence can be achieved by using human-readable symbolic representations of problems
and knowledge, then applying mathematical logic or search to infer solutions. Key aspects include:

¢ Knowledge Representation. Information is encoded explicitly using symbols, such as
logical statements or if-then rules. Researchers create logic representations with stored decla-
rations about the world, allowing a computer to perform logical reasoning.

e Logic and Rule-Based Systems. Reasoning is performed by manipulating these symbols
via predefined rules. Expert systems are a prime example, where specialists define facts and
rules to create a knowledge base that users can query.

e Human-Crafted Models. GOFAI systems rely heavily on human-designed structures, such
as decision trees, ontologies, and rule sets, to guide their behaviour.

A rule-based email spam filter exemplifies this approach. Such a system uses predefined rules based
on spam characteristics, such as keywords (free, limited-time offer), excessive punctuation, or
suspicious URLs. If an email meets a certain threshold of these characteristics, it is flagged as spam.

GOFALI has notable limitations. Rule-based systems struggle to scale in complex environments and
handle the ambiguous, noisy, or incomplete information common in the real world. Crucially, they do
not learn from data; every new rule or adaptation requires direct human input. In contrast, Machine
Learning models, such as neural networks, learn patterns and representations directly from data.
While Symbolic Al is flexible and interpretable, it can struggle to capture complex patterns. An
integrated approach, such as in neuro-symbolic methods, combines the strengths of both paradigms
by using neural networks to learn from data and symbolic systems to perform logical inference [5].

2.1.2 Rational Agents

Whether the underlying methodology is symbolic like GOFAI or statistical like ML, the objective is
often to design systems that act correctly. We aim to design objects that can act rationally, termed

7
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rational agents.

An agent is an entity that perceives its environment through sensors and acts upon that environment
through actuators. As shown in Figure 2.1, an agent’s behaviour is governed by an agent function
that maps a history of percepts to an action [6]. !

Percepts (Sensors)

e

Agent Function
(f: P*> A)

Internal State
& Learning

\/Feedback

Actions
(Actuators)

Figure 2.1: The basic setup of an Al agent interacting with its environment.

Definition 2.1.1. Agent Function and Agent Program. The Agent Function is a map f :
P* — A, where P* is a sequence of percepts and A is an action. The Agent Program implements
this function, which runs on the physical architecture.

A rational agent strives to do the right thing. To formalise this, we must first define the agent’s
context.

Task Environment To create and evaluate a rational agent, we specify its task environment
using the PEAS framework:

e Performance Measure: An objective criterion for success (for a vacuum cleaner, the amount
of dirt cleaned, time taken, and electricity consumed).

e Environment: The world in which the agent operates.

e Actuators: The components of the agent for performing actions (e.g., wheels, brushes).

e Sensors: The agent’s components for perceiving the environment (e.g., camera, dirt sensor).

Task environments have several key properties that heavily influence agent design:

!This image is Al-generated, based on an image from GeeksforGeeks, and may contain inaccuracies.
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e Fully vs Partially Observable: Can the sensors access the complete state of the environ-
ment?

e Deterministic vs Stochastic: Is the next state entirely determined by the current state
and action?

e Episodic vs Sequential: Does the choice of action depend on previous actions?

e Static vs Dynamic: Does the environment change while the agent deliberates?

e Discrete vs Continuous: Does the environment have a finite number of distinct states and
actions?

e Single vs Multi-agent: Is the agent operating by itself?

The real world is typically partially observable, stochastic, sequential, dynamic, continuous, and
multi-agent.

Types of Agent Programs Implementing an agent function as a lookup table mapping every
possible percept sequence to an action is impractical due to the table’s enormous size. Instead,

agent programs are designed with more efficient structures. Four basic agent programs are detailed
in Table 2.1.

Table 2.1: Four basic kinds of agent programs.

Agent Program Description Example
Simple Reflex Maps the current percept directly to an action Thermostat: If temp >
using condition-action rules. setpoint — activate cool-
ing.
Model-Based Reflex Maintains an internal state to handle partial ob-  Autonomous vehicle:
servability and model the world’s evolution. Tracks other cars’ po-

sitions and velocities,
even when momentarily

obscured.
Goal-Based Considers future actions and their outcomes to  Route planner: Searches
find a sequence that achieves a specific goal. for a sequence of roads to
travel from an origin to a
destination.
Utility-Based Acts to maximise a utility function, enabling Mars Rover: Balances
trade-offs between conflicting objectives. maximising scientific

data collection against
minimising energy use
and risk.

A goal-based agent tries to achieve a specific goal, whereas a utility-based agent seeks to maximise
its utility, which is ideally aligned with the external performance measure. Furthermore, a learning
agent can improve its performance over time, and an autonomous agent can update its program
based on experience.

Remark. The distinction between goal-based agents and learning agents is often blurred; a learning
agent is typically designed to achieve a goal, using its experience to improve its performance. In
these notes, we focus on the design of goal-based agents and explore the two primary methodologies
for implementing their agent functions. We will begin with classical Al techniques, such as search
algorithms, which find explicit paths to a goal. Subsequently, we will delve into how modern machine
learning allows an agent to learn how to achieve its goals from data.
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2.2 Formal Logic in Artificial Intelligence (FLAI)

The symbolic approach to Al, or GOFAI, posits that intelligence can be achieved by manipulating
symbolic representations of knowledge. Rather than enumerating an intractably large state space,
logic provides a compact language for describing sets of states. For instance, the sentence "It is
raining" is a short description for the vast set of all world states in which it is raining. Logic provides
tools to implicitly manipulate these short descriptions to reason about the world. Systems built on
this paradigm, such as expert systems, rely on a logical internal representation comprising variables
and rules, the foundation of which is a formal logic.?

2.2.1 Logical Agents and Knowledge Bases

A logical agent combines the paradigms of rational agents and formal logic, using a knowledge base
(KB).

Definition 2.2.1. Knowledge Base. A Knowledge Base is a set of sentences in a formal language
that represents knowledge of the world.

The agent can TELL the KB new facts derived from percepts and ASK the KB what action to take.
The answers are derived through inference. For example, an agent might use percepts to infer
hidden properties of the world or deduce the outcome of a potential action.

Consider a simple automated weather agent whose knowledge base contains the rule:
WetUmbrella — IsRaining

If the agent perceives a person with a wet umbrella, it can TELL its KB the new fact, WetUmbrella.
Through a simple inference step, the agent can conclude that IsRaining is true, updating its un-
derstanding of the world without direct observation. This ability to derive new knowledge from
existing facts is the core of a logical agent.

Definition 2.2.2. Logic. A formal language defined by three components:

e Syntax: Rules specifying which expressions are legally formed sentences.

e Semantics: Rules determining the meaning or truth of sentences in some world or model.

e Proof System: Rules for manipulating syntactic expressions to derive new, valid sentences
from existing ones.

The process of deriving conclusions from information is formalised through inference.

Definition 2.2.3. Deduction. A mode of reasoning that demonstrates a proposition logically
follows from a set of premises. If the premises are true, the conclusion is guaranteed to be true.

Definition 2.2.4. Induction. A mode of reasoning that infers a general principle from observing
particular instances. The conclusion is probable but not guaranteed.

Definition 2.2.5. Inference. The process of deriving new conclusions from existing information
by deduction and induction through applying rules.

2For a more in-depth view, see my notes on Informal Logic, and If, Then, Set, Go (Introduction to Formal Logic
and Set Theory Part 1). It might not be complete as of 25th Aug 2025; I am only one man.


https://www.gudfit.xyz/notes/informal_logic-notes/
https://www.gudfit.xyz/notes/set-theory-notes/
https://www.gudfit.xyz/notes/set-theory-notes/
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Remark. Euclidean geometry is a powerful example of a formal deductive system, where all the-
orems are derived from a small set of axioms. The validity of Euclid’s reasoning is independent of
physical reality, highlighting that logic operates on form. For instance, in "All humans are mortal.
All Britons are humans. Therefore, all Britons are mortal," the conclusion follows from the struc-
ture "All B are C. All A are B. Therefore, all A are C," regardless of the meaning of "human" or
"mortal".

Definition 2.2.6. Axiom. A statement accepted without proof, serving as a starting point for
deducing other truths.

Definition 2.2.7. Premise. A statement in an argument presumed to be true, from which a
conclusion is drawn.

Definition 2.2.8. Proposition. A declarative statement that is either true or false.

The premise that thinking is a form of logical reasoning that can be produced mechanically underpins
the ambitions of Strong Al.

Definition 2.2.9. Weak AI. The subfield of Al focused on creating systems that can perform a
specific task which would otherwise require human intelligence. These systems simulate cognitive
processes but do not possess genuine understanding or consciousness.

Definition 2.2.10. Strong AI (AGI). Artificial General Intelligence refers to a hypothetical form
of Al possessing the ability to understand, learn, and apply its intelligence to solve any problem a
human being can. It implies consciousness and genuine cognitive abilities.

Definition 2.2.11. Artificial Superintelligence (ASI). A hypothetical agent that would possess
intelligence far surpassing that of the brightest human minds. The development of ASI is often linked
to the concept of a technological singularity.

Remark. While the Turing Test remains a conceptual benchmark for AGI, it is challenged by
thought experiments like the Chinese Room argument, which questions whether syntactic manipu-
lation alone constitutes belief. A 2023 study reported that GPT-4 outperforms 99% of humans on
the Torrance tests of creative thinking, suggesting movement towards what some define as emerging
AGI [7].

Formal logic is not monolithic; several systems exist with varying expressive power. The choice of
logic involves a trade-off between expressivity and the computational efficiency of reasoning.

Note. PL satisfiability is NP-complete; validity is coNP-complete. FOL validity is semi-decidable
(recursively enumerable) and undecidable in general.

2.2.2 Propositional Logic

Propositional logic (PL) is the most fundamental system, where every proposition is true or false.

PL: Syntax and Semantics The syntax of PL defines well-formed sentences recursively. The
constants true and false are sentences, as are propositional variables (e.g., P,Q). If ¢ and
are sentences, then so are (¢), —¢ (negation), ¢ A ¢ (conjunction), ¢ V ¢ (disjunction), ¢ —
(implication), and ¢ <> v (biconditional). From highest to lowest, operator precedence is —, A,
V, —, <. The implication ¢ — ¢ is shorthand for —¢ V v, and the biconditional ¢ < 1 for
(6 — ) A (Y — ¢). A list of key logical equivalences is provided in Table 2.2.
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Table 2.2: A table of common logical equivalences.

Equivalence Name

(anp)=(BAa) Commutativity of A
(aVvB)=(BVa) Commutativity of V
((aANB)Ay)=(aN(BAY)) Associativity of A
((avp)Vy)=(aV(BVy) Associativity of V

—(ma) =« Double-negation elimination
(a = pB)=(-8— —a) Contraposition

(a = B) = (-aVp) Implication elimination
(ae=B)={(a—=B) AL —a)) Biconditional elimination
—(aApf)=(-aV-p) De Morgan’s Law
—(aVp)=(-aA-p) De Morgan’s Law
(aAN(BVY)=({(aAnB)V(aAvy)) Distributivity of A over V
(aV(BAY))=({(aVB)A(aVy)) Distributivity of V over A

Definition 2.2.12. PL: Interpretation. An assignment of a truth value, either true (T) or false
(F), to each propositional variable.

According to the standard connectives, summarised in Table 2.3, the values of its components
determine the truth value of any complex sentence.

Table 2.3: Truth tables for the logical connectives.

p pAqg pVqg p—q prgq

HHHE A
A
oo
CESRERS
s
R

F
F
T
T

Definition 2.2.13. Valid (Tautology). A sentence that is true in all possible interpretations
(e.g., pV —p). The sentence ((PAQ) — R) <+ (P — R) V (Q — R)) is another example of a valid
sentence, as can be verified with a truth table.

Definition 2.2.14. Unsatisfiable (Contradiction). A sentence that is false in all possible in-
terpretations (e.g., p A —p).

Definition 2.2.15. Satisfiable. A true sentence under at least one interpretation. For example,
(PAQ)V—Q is satisfiable because it is true when P and @ are both true, but false when P is false
and @ is true. The problem of determining satisfiability is a classic constraint satisfaction problem.

Entailment and Proof A key task of a logical agent is to determine what follows from its
knowledge base.

Definition 2.2.16. Model. An interpretation that makes every sentence in a set I' true is a model
of I'.

Definition 2.2.17. Entailment. A KB entails a sentence ¢, written KB FE ¢, if and only if ¢ is
true in every model of the KB. This semantic notion (F) is distinct from syntactic derivability (I-)
within a proof system.
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Entailment can be checked by enumerating all models. For instance, given a KB with sentences
{poor — —worried, rich — scared, —rich — poor}, one can show KB F (worried — scared) by
constructing a truth table for all variables and verifying that the conclusion is true in every row
where the KB sentences are all true. This method, called model checking, is sound and complete
but intractable for many variables. The deduction theorem connects semantics to proof: KB F ¢ if
and only if the sentence (KB — ¢) is valid. A proof system offers a syntactic alternative to model
checking.

Definition 2.2.18. Proof. A sequence of sentences, where each sentence is either a premise from
a knowledge base or is derived from previous sentences by an inference rule.

Definition 2.2.19. Soundness and Completeness. A proof system is sound if it only derives
entailed sentences. It is complete if it can derive any sentence entailed.
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2.3 Uninformed Search

Goal-based rational agents employ search algorithms to find a sequence of actions, or a plan, leading
from an initial state to a goal state. The process involves formulating a goal and a problem, then
searching for a solution that optimises a performance measure. The agent’s core execution loop is
outlined by the SIMPLE-PROBLEM-SOLVING-AGENT procedure.

Algorithm 1: Simple-Problem-Solving-Agent (percept)

Persistent: seq, an action sequence, initially empty
Persistent: state, a description of the current world state
Persistent: goal, a goal, initially null
Persistent: problem, a problem formulation
state < UPDATE-STATE(state, percept)
if seq is empty then
goal + FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq «+— SEARCH (problem)
if seq = failure then
L return a null action

action < FIRST(seq)
seq < REST(seq)
return action

A problem is defined by its initial state, operator set, goal test, and path cost function. For instance,
finding a path from Arad to Bucharest requires formulating the goal, defining states and actions,
and finding a sequence of cities that meets the goal.

2.3.1 Goal-Based Agents

In a fully observable and deterministic environment, a goal-based agent’s problem is abstracted by:

State: A description of the environment, e.g., <Location,Status(A),Status(B)>.
Actions: The set of possible actions, e.g., Left, Right, Clean.

Transition Model: A function s’ = RESULT(s, a).

Step Cost: A function c(s,a,s’). The path cost, g(n), is the sum of step costs from the
start node to node n.

Goal State(s): A set of desirable states.

e Start State: The agent’s initial state, e.g., <RoomA,Clean,Dirty>.

Consider a static MopBot environment with two locations, A and B, and two statuses, Clean (C)
and Dirty (D). Its transition model can be represented as a state graph, as shown in Figure 2.2.
Such graphs are often specified implicitly, as their explicit form can be large. The search space
complexity is characterised by:

e b: the branching factor, the maximum number of successors of any node.
e d: the depth of the shallowest goal state.
e m: the maximum length of any path in the state space.

The problem can be abstracted as finding a minimum-cost path in this graph. Consider the state
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Left, Clean

v Left
v Left

Left, Clean Right, Clean

o]
=
=+

Clean

b

Figure 2.2: Transition model for the MopBot. A, B are locations; C, D denote Clean/Dirty.

graph in Figure 2.3, with start state Sy and goal state So. Table 2.4 lists representative paths and

Figure 2.3: A state transition graph where vertices represent states and edges represent actions with
costs.

their costs.

Table 2.4: Representative simple paths from Sy to the goal Ss in Figure 2.3.

Path = # edges Total cost g(m) Notes

(So, S1,52) 2 54+5=10 Shallowest; by BFS (unequal costs).
(S0, S4, 53, 52) 3 6+1+1=8 Optimal-cost path; found by UCS.
(So, S1, 53, 52) 3 5+4+1=10 Alternative via Ss.

(S0, S5, S4, S3,.52) 4 9+3+1+1=14 Longer detour via Ss.

Note. Only simple paths (no repeated states) are listed.

An action sequence to the goal can be found by converting the graph into a search tree rooted at
the initial state, as shown in Figure 2.4. Each node in the tree represents a path from the start,
storing data such as (state, parent, action, g). A naive tree search is inefficient as it may
explore the same state multiple times via different paths. Storing explored nodes in a graph search
avoids redundant computations.
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aTiTS

Figure 2.4: Search tree corresponding to the graph in Figure 2.3. The green arrows indicate the
optimal solution path (Sp, Sy, S3, S2) with cost 8.

2.3.2 Breadth-First Search

Breadth-First Search (BFS) explores all nodes at a given depth before moving to the next level. It
uses a First-In-First-Out (FIFO) queue for the frontier and adds child nodes to the explored set
upon generation to prevent duplicates.

Algorithm 2: Breadth-First Search

1 F < Queue(start _node) // FIFO frontier
2 E <« {start _node} // Explored set (nodes discovered/enqueued)
3 while F' is not empty do

4 u < F.pop()

5 for all children v of u do
6 if GoalTest(v) then
7 L return path(v)

8 if v ¢ F then

9 E.add(v)
10 L F.push(v)

11 return Fuailure

Applying BFS to find a path to Sy in Figure 2.3 results in the states shown in Table 2.5. The
algorithm finds the suboptimal path (Sp, S1,S2). The properties of BFS are analysed below:

Table 2.5: States of the frontier F' and explored set E during BFS.

Iteration Internal State of Data Structures

i=0 F =[So], E ={S0}
=1 F = [S1,S4,S5},E={50,51,54,55}
=2 Children of S are explored. GoalTest(S2) is true, returns path to Ss.

Completeness: BFS is complete. If a path of length d exists, BFS will find it.
Optimality: BFS is optimal only if all step costs are equal.

Time Complexity: In the worst case, BF'S generates all nodes up to depth d. The number
of nodes is proportional to 1 + b4 b% + - - - + b, which is O(b?), as illustrated in Figure 2.5.
Space Complexity: The frontier can store all nodes at depth d, so space complexity is O(bd).
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b nodes

depth d

Figure 2.5: Number of nodes in a search tree with depth d and branching factor b = 3.

2.3.3 Uniform Cost Search

Uniform Cost Search (UCS) resolves the sub-optimality of BFS by expanding the node with the
lowest path cost from the frontier. It uses a priority queue and adds a node to the explored set after
it has been selected for expansion. This ensures that when a goal node is selected, the optimal path
to it has been found. Tie-breaking between nodes of equal cost does not affect optimality. When
all step costs are equal, UCS is equivalent to BFS.

Algorithm 3: Uniform Cost Search (UCS)

F + PriorityQueue(start _node) // Lowest cost node out first
E + 0 // Explored set
g[start_node] < 0
while F' is not empty do
u < F.pop()
if GoalTest(u) then
L return path(u)
E.add(u)
for all children v of u do
if v¢ E and v ¢ F then
gle] « glu] + c(u,v)
F.push(v, g[v])
else if v € F' and g[u] + ¢(u,v) < g[v] then
L glvl < glu] + ¢(u, v)
F.update priority(v, g[v])

return Failure

The properties of UCS are as follows:

e Completeness: UCS is complete provided that every edge cost exceeds some small positive
constant, € > 0.

e Optimality: UCS is optimal. When a node w is popped from the frontier, the algorithm has
found the optimal path to wu.

e Time and Space Complexity: Let C* be the cost of the optimal solution and e be the
minimum edge cost. The complexity is O(blﬂc*/ 6J). When all step costs are equal, this is
equivalent to O(b4*1).
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2.3.4 Depth-First Search

Depth-First Search (DFS) offers a space-efficient alternative by expanding the deepest node in the
current frontier. It uses a Last-In-First-Out (LIFO) stack, exploring each branch to its conclusion
before backtracking. The properties of DFS highlight a clear trade-off:

Algorithm 4: Depth-First Search (DFS)

F « Stack(start _node) // LIFO frontier
E<+ 0

while F' is not empty do

u < F.pop()

if GoalTest(u) then

L return path(u)

if u ¢ F then
E.add(u)

for all children v of u in reverse order do

L F.push(v)

return Failure

Completeness: Incomplete in infinite state spaces. Complete only for finite state spaces
with no cycles.

Optimality: Not optimal. It returns the first solution it finds.

Time Complexity: For a graph search, O(|V|+|E|). For a tree search, O(b™).

Space Complexity: DFS has a significant space advantage. It only needs to store a single
path from root to leaf, plus unexpanded siblings, giving a space complexity of O(bm).

2.3.5 Depth-Limited and Iterative Deepening Search

The primary drawback of DFS is its failure to terminate in infinite spaces or graphs with cycles.
Imposing a depth constraint leads to two related algorithms that combine the space efficiency of
DFS with the completeness of BFS.

Depth-Limited Search Depth-Limited Search (DLS) imposes a hard limit on the search depth.
Nodes at a specified depth limit [ are treated as having no successors. This prevents DFS from
exploring infinitely deep paths. The choice of [ is critical: if [ < d, DLS is incomplete; if [ > d, the
search is inefficient.

Completeness: Complete only if [ > d.
Optimality: Not optimal.

Time Complexity: O(b').

Space Complexity: O(bl).

Iterative Deepening Search Iterative Deepening Search (IDS) resolves the problem of choosing
a depth limit by trying all possible limits in increasing order. It performs a DLS for depth 0, then
1, 2, and so on, until a goal is found.
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Algorithm 5: Iterative Deepening Search (IDS)

for depth + 0,1,2,... do
result <— DLS(start_node, goal, depth)
if result # cutoff then
L return result

Although states are generated multiple times, the overhead is not costly because most nodes are in
the bottom level of the tree. The exploration process is visualised in Figure 2.6.

Limit=0
Limit=1
Limit=2

Figure 2.6: The first three iterations of an IDS. For the search to depth d = 2, nodes at depth zero
are visited three times, nodes at depth one twice, and nodes at depth two once.

The properties of IDS combine the advantages of both BFS and DFS.

Proposition 2.3.1. IDS Completeness. Iterative Deepening Search is complete.

Proof. If a goal state exists at a finite depth d, IDS is guaranteed to find it. The DLS call with limit
I = d will explore all nodes up to that depth, ensuring the shallowest goal is eventually reached. W

Proposition 2.3.2. IDS Optimality. IDS is optimal when all step costs are equal.

Proof. IDS explores the search tree level by level, similar to BFS. It is guaranteed to find the
shallowest goal state first, which is optimal if all step costs are equal. |

Proposition 2.3.3. IDS Complezity. The time complexity of IDS is O(b?) and its space complexity
is O(bd).

Proof. The space complexity is determined by the deepest DLS call, which explores to depth d,
resulting in O(bd) space. For time, the total nodes generated is N(IDS) = Zfzo(d +1 -4 =
(d+1)0° +db' +---+1-v%. For a large branching factor b, this sum is dominated by the last term,
O(b%). The cost of re-generating upper levels is asymptotically insignificant. |

Due to this combination of completeness, optimality for uniform costs, and low memory require-
ments, IDS is often the preferred uninformed search method when the search space is large and the
solution depth is unknown.

2.3.6 Advanced Topics in Uninformed Search

Bidirectional Search When the initial and goal states are known and actions are reversible,
search can be performed simultaneously from both ends. This strategy runs two searches (one
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forward from the start and one backward from the goal), terminating when their frontiers intersect,
as shown in Figure 2.7. By meeting in the middle, each search explores to a depth of approximately
d/2, reducing the time and space complexity exponentially from O(b%) to O(b%/?2).

Optimal path (shaded)

O O0O00000006

Intersection

O000LOOO0
O000® 0000
0000 Q00O0OO0
QQ@@%QQQQ
®0-0 000000

Forward search Backward search

Figure 2.7: Conceptual view of bidirectional search. Two frontiers expand from the start (S) and
goal (G), stopping when they meet (purple cells). The shortest path is highlighted.

Effective Branching Factor To compare the difficulty of problems empirically, the effective
branching factor, b*, provides a useful measure. It is the branching factor of a uniform tree that
would contain the same number of nodes as the actual search.

Definition 2.3.1. Effective Branching Factor. If a search expands N nodes to find a solution
at depth d, the effective branching factor b* is the value that solves:

d
N+1=) (b =14b"+ () +-- + ()"
=0

This concept is visualised in Figure 2.8. A value of b* close to 1 indicates an efficient search that
explores nodes mostly along a single path.

Table 2.6: Properties of uninformed search algorithms (asymptotics for tree search).

Algorithm  Complete? Optimal? Time Space Notes

BFS Yes (finite b) Yes if unit costs  O(b?) O(b?) FIFO queue

Uucs Yes if costs > € Yes OB+ /ey same PQ on g; goal on pop
DFS No (infinite spaces) No ob™) O(bm)  LIFO stack

DLS If1>d No o) O@bl)  depth limit !

IDS Yes Yes if unit costs  O(b%) O(bd) DFS to increasing limits
Bidirectional ~ Yes (if BFS used) Yes if unit costs  O(b%?) O(b%?)  Meet in the middle
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Actual Search Tree Equivalent Uniform Tree
N = 8 nodes, d = 2 1+ 4+ (b*)2=N+1=9

®/?./é\.>© @ branching factor b*
O

Figure 2.8: Visualisation of the effective branching factor b*. The irregular tree on the left (N =8,
solution at d = 2) is conceptualised as the uniform tree on the right. Solving 1+ b* + (b*)2 = 9
gives b* ~ 2.37.

Goal
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2.4 Informed Search

Informed search algorithms use problem-specific knowledge to guide the search process, significantly
reducing the number of nodes that must be expanded to find a solution. A heuristic function provides
this guidance.

Definition 2.4.1. Heuristic Function. A heuristic function, denoted h(n), estimates the cost of
the cheapest path from the state at node n to a goal state.

Heuristics are domain-specific and rely on simplified models or auxiliary information about the
problem. For instance, in a route-finding problem, the straight-line distance between two cities is a
simple and effective heuristic for the actual road distance.

2.4.1 Best-First Search

Best-first search is a general approach that uses an evaluation function, f(n), to determine the
order of node expansion. It maintains a frontier of unexpanded nodes in a priority queue, ordered
by their f-values, and always selects the node with the best value to expand next. The choice of
the evaluation function f(n) defines the specific search strategy.

Greedy Best-First Search Greedy Best-First Search (GBFS) expands the node that appears
to be closest to the goal. It evaluates nodes using only the heuristic function, meaning f(n) = h(n).
This strategy is "greedy" because it makes the locally optimal choice at each step, hoping this will
lead to a globally optimal solution.

Algorithm 6: Greedy Best-First Search (GBF'S)

1 F <+ PriorityQueue(start _node) // Lowest h(n) out first
2 E + () // Explored set of states

3 while F' is not empty do

4 u < F.pop()

5 if GoalTest(u) then

6 L return path(u)

E.add(u.state)

for all children v of u do

if v.state ¢ E and v ¢ F then
L F.push(v, h(v))

10

11 return Failure

The properties of GBFS are as follows:

e Completeness: GBFS is not complete. It can get stuck in loops or follow infinitely long
paths that never reach the goal. A graph search version is complete in finite spaces.

e Optimality: It is not optimal. The first path found may be far more costly than an alternative
path that initially seemed less promising.

e Time and Space Complexity: The worst-case complexity is O(b™), as the entire tree might
be explored. With a good heuristic, however, the complexity can be dramatically reduced. It
must keep all nodes in memory, so space complexity is also O(b™).
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2.4.2 A* Search

A* search is the most widely used informed search algorithm. It combines the strengths of Uniform
Cost Search, which prioritises low-cost paths from the start, and Greedy Best-First Search, which
prioritises paths that seem close to the goal. A* evaluates nodes by combining the cost to reach the
node, g(n), with the estimated cost from the node to the goal, h(n).

f(n) = g(n) + h(n)

Here, f(n) represents the estimated cost of the cheapest solution path that passes through node n.
Like UCS, A* uses a priority queue for the frontier and expands the node with the lowest f-value.
The algorithm is almost identical to Uniform Cost Search, with the priority queue ordered by f(n)
instead of g(n).

Algorithm 7: A* Search

F <« PriorityQueue(start node) // Lowest f(n) out first
E < 0 // Explored set of states

glstart_node] < 0

while F' is not empty do

u < F.pop()

if GoalTest(u) then

L return path(u)

E.add(u.state)
for all children v of u do
if v.state ¢ E and v ¢ F then
glv] = glu] + ¢(u, v)
F.push(v, g[v] + h(v))
Ise if v € F and g[u] + c¢(u,v) < g[v] then
glvl < glu] + ¢(u, v)
F.update priority(v, g[v] + h(v))
Ise if v.state € E and glu] + c¢(u,v) < g[v] then
E.remove(v.state)
// Needed for inconsistent h
g[v] = glu] + ¢(u, v)
| F.push(v, g[v] + h(v))

o

]

return Failure

The behaviour and guarantees of A* search depend critically on the quality of the heuristic function
h(n).

Admissibility A heuristic must be optimistic to guarantee optimality.

Definition 2.4.2. Admissible Heuristic. A heuristic h(n) is admissible if, for every node n, it
never overestimates the true cost to reach the goal. That is, h(n) < h*(n), where h*(n) is the true
cost of the optimal path from n to the goal.

For example, the straight-line distance is an admissible heuristic for road travel because the shortest
path between two points is a straight line.
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Proposition 2.4.1. A* Tree Search Optimality. If h(n) is an admissible heuristic, A* search using
a tree-search formulation is optimal.

Consistency For graph search, a stronger condition is required to ensure optimality.

Definition 2.4.3. Consistent Heuristic. A heuristic h(n) is consistent (or monotonic) if, for
every node n and every successor n’ generated by an action a, the estimated cost of reaching the
goal from n is no greater than the step cost to n’ plus the estimated cost from n’. That is,

h(n) < c(n,a,n’) + h(n').

This is a form of the triangle inequality. A consistent heuristic implies that the f-values along any
path are non-decreasing: f(n’) > f(n). If a heuristic is consistent, it is also admissible, assuming
h(goal) = 0.

Proposition 2.4.2. A* Graph Search Optimality. If h(n) is a consistent heuristic, A* search using
a graph-search formulation is optimal.

Proof. With a consistent heuristic, the sequence of f-values of the nodes expanded by A* is non-
decreasing. Consequently, the first time A* selects a goal node for expansion, it is guaranteed to
have found an optimal path. Any other path to that goal must pass through a frontier node with
an f-value at least as high. If the heuristic is only admissible but not consistent, optimality requires
that A* re-opens nodes from the explored set if a cheaper path to them is found, as included in A*
Search. |

The properties of A* search can be summarised as:

e Completeness: A* is complete, provided there are finitely many nodes with f(n) < f(G),
where G is a goal node.

e Optimality: A* is optimal if the heuristic is admissible (for tree search) or consistent (for
graph search).

e Time and Space Complexity: The complexity is exponential in the worst case, but depends
on the heuristic’s quality. A* must store all generated nodes, so its space complexity is a
significant drawback.

A* is optimally efficient, meaning no other optimal algorithm using the same heuristic is guaranteed
to expand fewer nodes. The search process of A* can be visualised as expanding "f-contours" of
nodes with equal f-cost, as shown in Figure 2.9. Compared to the circular contours of UCS, A*’s
contours are elongated towards the goal, focusing the search more effectively.

2.4.3 Heuristic Design

The performance of A* depends heavily on the chosen heuristic. An ideal heuristic would be the
optimal cost, h*(n), but this is unavailable. The goal is to design a heuristic h(n) that is as close
to h*(n) as possible without ever exceeding it.

Relaxed Problems A robust method for generating admissible heuristics is to consider a relaxed
version of the problem—a problem with fewer restrictions on actions. The cost of an optimal solution
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Figure 2.9: Conceptual illustration of search contours. UCS expands nodes in uniform circles of
path cost g(n) from the start. A* expands nodes in elliptical contours of estimated total cost
f(n) = g(n) + h(n), focusing the search towards the goal.

in the relaxed problem is an admissible heuristic for the original problem because any solution in
the original problem is also a solution in the relaxed problem and is therefore at least as expensive.

For example, consider the 8-puzzle, a sliding tile puzzle aiming to arrange tiles numerically.

e A relaxed rule could be "a tile can move from any square to any other square". The number of
misplaced tiles is the number of moves to solve this relaxed problem. This gives the heuristic
hi(n) = number of misplaced tiles.

e A slightly less relaxed rule could be "a tile can move to any adjacent square, even if occupied".
The number of moves to solve this is the sum of the Manhattan distances of each tile from its
goal position. This gives ha(n) = Zle ManhattanDistance(z).

Both Ay and hy are admissible.

Dominance When multiple admissible heuristics are available, one is often better than another.

Definition 2.4.4. Heuristic Dominance. If ho(n) and hi(n) are two admissible heuristics, hg
dominates hj if ho(n) > hi(n) for all nodes n.

An algorithm using a dominant heuristic will expand no more nodes than one that does not. For the
8-puzzle, illustrated in Figure 2.10, the Manhattan distance heuristic, ho, dominates the misplaced
tiles heuristic, h1. Using hs results in A* expanding significantly fewer nodes than h;. The trade-off
is that a more accurate heuristic may be more expensive to compute.

2.4.4 Memory-Bounded Heuristic Search

Memory-bounded algorithms address the space complexity drawback of A* by adapting heuristic
search to use only a limited amount of memory.

Iterative-Deepening A* (IDA*) IDA* is a direct adaptation of IDS to heuristic search. Instead
of a depth limit, IDA* uses an f-cost limit. It begins with a limit equal to the heuristic of the start
state, h(Sp). Each iteration performs a depth-first search that prunes any path as soon as its f-cost,
g(n) + h(n), exceeds the current limit. If no solution is found, the new limit is set to the lowest
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Start State Goal State
1123 11213
8 4 4 1516
71615 718

hi(n) = 4 (misplaced: 4, 5, 6, 8)
ha(n) =24 242+ 2 =8 (Manhattan)

Figure 2.10: Heuristics for the 8-puzzle. The number of misplaced tiles (h1) and the sum of Man-
hattan distances (hy) are admissible. Since ha(n) > hi(n) for all n, he dominates hy.

f-cost that exceeded the old limit. This process, outlined in and visualised in Figure 2.11, repeats
until a goal is found. IDA* is complete and optimal (with an admissible heuristic) but has the low
space complexity of DFS, O(bd).

Algorithm 8: Iterative-Deepening A* (IDA*)
limit < h(start node)
while true do

result, limit < SEARCH(start _node, 0, limit)
if result is a solution then

L return result

if limit = oo then
L return Fuailure

Function SEARCH(node, g, limit):
f < g+ h(node)
if f > limit then

L return null, f

if GoalTest(node) then
L return node, limit

min_cutof f < oo
for all children v of node do
res,new _limit < SEARCH(v, g + c¢(node,v), limit)
if res is a solution then
L return res, limit

min_cutof f <+ min(min__cutof f,new _limit)

return null, min_cutof f

Recursive Best-First Search (RBFS) RBFS, shown in , is a recursive algorithm that aims to
simulate standard best-first search using only linear space. As it expands nodes down a path, it
keeps track of the f-value of the best alternative path available from any ancestor of the current
node (the fimit). If the current node’s f-value exceeds this limit, the recursion unwinds to the
alternative path. As it unwinds, RBFS replaces the f-value of each node with the best f-value of
its children. This "backed-up" value allows the search to remember the quality of paths in subtrees
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Figure 2.11: IDA* search expanding successive f-contours. The search deepens to the current f-

limit; pruned branches set the next limit.

it has explored and potentially re-explore them later if they become promising again.

Algorithm 9: Recursive Best-First Search (RBFS)

Function RBFS (problem, node, fiimit):
if GoalTest(node) then
L return node, 0

successors < Expand(node)
if successors is empty then
L return Failure, oo

for each s in successors do

L s.f < max(g(s) + h(s),node.f)
while true do
Sort successors by f-value
best < first element of successors
if best.f > fiimir then

L return Failure, best. f

alternative < second element’s f-value

if result # Failure then
L return result, 0

result, best.f < RBFS(problem, best, min( fiimst, alternative))

RBFS is more efficient than IDA* as it suffers less from redundant node generations, but it can
involve excessive node re-generation if f-values are unstable. The properties of the discussed informed

search algorithms are summarised in Table 2.7.

Table 2.7: Properties of informed search algorithms (asymptotics for tree search).

Algorithm Complete? Optimal? Time Space Notes

GBFS No (tree); Yes (graph) No o™) o™) PQ on h(n)

A* Yes Yes (with conds.) Exponential Exponential PQ on f(n) = g(n)+ h(n)
IDA* Yes Yes (with conds.) Exponential O(bd) f-cost limited DFS

RBFS Yes Yes (with conds.) Exponential O(bd) Simulates A* in linear space
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2.5 Local Search

For many optimisation problems, such as the n-queens problem or circuit layout, the path to the
solution is irrelevant; only the final configuration, or state, matters. In these cases, local search
algorithms offer an effective alternative to the path-finding methods previously discussed. Local
search operates on a single current state, iteratively moving to a neighbouring state to improve an
objective function. These algorithms are not systematic and may not find a solution, but they are
often highly efficient in space, typically using O(1) memory.

2.5.1 Hill-Climbing Search

Hill-climbing is a simple greedy local search algorithm, detailed in Hill-Climbing Search. It starts
with a random initial state and continuously moves toward increasing the objective function’s value.
It terminates when it reaches a "peak" where no neighbour has a higher value. Hill-climbing is simple
and fast, but its major drawback is that it can get stuck in local maxima, failing to find the global
maximum, as illustrated in Figure 2.12. Variants like random-restart hill-climbing can mitigate this
issue by conducting multiple searches from different random initial states.

Algorithm 10: Hil1-Climbing(problem)
Input: problem, a problem description
current < problem.InitialState
while true do
neighbour «+ Highest-Valued-Successor(current)
if Value(neighbour) < Value(current) then
L return current

current < neighbour

Value Global Maximum

Local Maximum

State Space

Figure 2.12: The problem of local maxima in hill-climbing. A search starting at the indicated point
will follow the gradient upwards and become trapped at the local maximum, failing to discover the
global maximum.

2.5.2 Simulated Annealing

Simulated annealing is a more sophisticated local search algorithm designed to escape local maxima.
It borrows its central idea from the metallurgical process of annealing, where a material is heated and
then slowly cooled to settle into a low-energy crystalline state. The algorithm, shown in Simulated
Annealing, allows for "bad" moves (moves to states with lower values), with a probability that
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decreases over time. This probability is governed by a temperature parameter, T', which starts
high and gradually lowers according to a schedule. When T is high, the algorithm explores the
state space widely. As T approaches zero, the algorithm becomes increasingly greedy, converging
towards a local, and hopefully global, optimum. Simulated annealing is guaranteed to find the
global optimum if the temperature is lowered sufficiently slowly.

Algorithm 11: Simulated-Annealing(problem, schedule)

Input: problem, a problem description
Input: schedule, a mapping from time to temperature
current < problem.InitialState
for t < 1 to co do
T < schedule(t)
if T'=0 then
L return current

next <— Randomly-Selected-Successor (current)
AFE <+ Value(next) — Value(current)
if AE > 0 then
‘ current < next
else

L current < next with probability e2E/T

2.5.3 Local Beam Search

Local beam search keeps track of k states rather than just one. It begins with k£ randomly generated
states. At each step, it generates all successors of all k states. If any successor is a goal, the
algorithm halts. Otherwise, it selects the k best successors from the complete list and repeats. This
approach, outlined in Local Beam Search, differs from running k£ independent hill-climbing searches
because information is shared among the parallel search threads. A successful search can discover
a promising region and colonise the other searches to focus on that area. A stochastic variant adds
random successors to maintain diversity.

Algorithm 12: Local-Beam-Search(problem, k)

Input: problem, a problem description
Input: k, the number of states to maintain
beam <+ Generate k initial states
while true do
successors < ()
for each state in beam do

if GoalTest(state) then

L return state

successors < successors U Successors(state)

beam < Select k best from successors
if beam has no better states than previous beam then
L return Best state seen
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2.5.4 Genetic Algorithms

A genetic algorithm (GA) is a variant of local beam search that models the process of natural
evolution. A GA maintains a population of candidate states, called individuals. An objective
function evaluates the fitness of each individual. The population evolves over successive generations
through three main operators:

e Selection: Fitter individuals are more likely to be chosen to reproduce.

e Crossover: Offspring are created by combining two parents’ genetic material (state repre-
sentation).

e Mutation: Random modifications are introduced to the offspring to maintain genetic diver-
sity.

The process, outlined in Genetic Algorithms, is well-suited for large or complex state spaces where
gradient information is unavailable.

Algorithm 13: Genetic-Algorithm(population, fitness fn)

Input: population, a set of individuals
Input: fitness fn, a function that measures an individual’s fitness
while true do
new__population < ()
for i < 1 to size(population) do
x + Selection(population, fitness _fn)
y < Selection(population, fitness fn)
child < Crossover(z,y)
if small random probability then
L child < Mutate(child)

| new_population.add(child)

population <— new _population
if an individual is fit enough or maz generations reached then
L return Best individual

The properties of these local search algorithms are summarised in Table 2.8.

Table 2.8: Properties of local search algorithms.

Algorithm Memory Key Idea / Notes

Hill-Climbing 0O(1) Greedy ascent; gets stuck in local optima.

Simulated Annealing O(1) Allows downward moves to escape local optima via a temperature schedule.
Local Beam Search O(k) Keeps k states; parallel search threads share information.

Genetic Algorithm O(k) Population-based search using selection, crossover, and mutation.
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2.6 Constraint Satisfaction Problems

Continuing with problems where the solution is a state rather than a path, Constraint Satisfaction
Problems (CSPs) provide a robust and standardised framework. A CSP is defined by a set of
variables, each with a domain of possible values, and a set of constraints that specify allowable
combinations of values for subsets of variables [5].

Formally, a CSP consists of three components:

e A set of variables, X = {X1, Xo,..., X, }.

e A set of domains, D = {Dy, Do, ..., Dy}, where D; is the domain of variable X;.

e A set of constraints, C = {C1,Cs,...,Cp}, where each constraint C; involves some subset of
the variables and specifies the allowable combinations of values for that subset.

A solution to a CSP is a complete and consistent assignment of values to all variables. An example
is the map-colouring problem shown in Figure 2.13, where the task is to assign a colour to each
region such that no two adjacent regions have the same colour.

Map-Colouring Problem Constraint Graph

B | A (8]
C e‘@

Variables: {4, B,C}
Domains: Dy = D = D¢ = {red, green, blue}
Constraints: A# B,A#C,B#C

Figure 2.13: A map-colouring problem represented as a Constraint Satisfaction Problem. Regions
become variables, and adjacency relationships become inequality constraints.

2.6.1 Backtracking Search for CSPs

CSPs can be solved using a specialised depth-first search called backtracking search.

Algorithm 14: Backtracking-Search(csp)

Function Recursive-Backtrack(assignment, csp):
if assignment is complete then
L return assignment

var < Select-Unassigned-Variable(csp)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment then
Add {var = value} to assignment
result < Recursive-Backtrack(assignment, csp)
if result # failure then
L return result

Remove {var = value} from assignment

return failure

return Recursive-Backtrack (), csp)
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The algorithm, shown in Backtracking Search for CSPs, incrementally assigns values to variables
individually. If an assignment violates a constraint, the algorithm backtracks to the preceding
variable and tries a different value. This avoids the inefficiency of generating complete assignments
and then testing them. A trace of backtracking search with forward checking for the 4-queens
problem, a classic CSP, is shown in Figure 2.14.

(Trace of assignments and domain changes:

1. Q1=1. FC prunes Q2:{1,2}, Q3:{1,3}, Q4:{1,4}.
Remaining: Do = {3,4}, Dgs = {2,4}, Doa = {2, 3}.

2. Q2=3. FC prunes Q3:{3,4}, Q4:{2,4}.

Remaining: Dgs = {2}, Dg4 = {}. Empty domain. FAIL.

root 3. Backtrack. Q2=4. FC prunes Q3:{2,3}, Q4:{3,4}.
/ \ Remaining: Dgs = {2}, Dga = {3}.
4. Q3=2. FC prunes Q4:{1,3}.
Q1=1 Q1=2 Remaining: Dgs = {}. Empty domain. FAIL.
/ \ 5. Backtrack to Q1. Q1=2. FC prunes domains.
Remaining: Dgs = {4}, Dos = {1,3}, Dos = {1,3,4}.
02=3 02=4 Q2=4 6. Q2=4. FC prunes domains.
i l Remaining: Dgs = {1}, Dgs = {3}.
7. Q3=1. FC prunes domains.
FATL FAIL Q3=1

Remaining: Dgq = {3}.
8. Q4=3. Assignment is complete. SOLUTION.

Q4=3 - J

SOLN

Figure 2.14: A partial search tree and trace for the 4-queens problem using backtracking with
forward checking. The search finds the solution (2,4, 1, 3).

2.6.2 Improving Backtracking Efficiency

The performance of standard backtracking can be dramatically improved with several techniques
that prune the search space more effectively.

Variable and Value Ordering The order in which variables are chosen and values are tried can
substantially impact performance.

e Minimum Remaining Values (MRV): This heuristic selects the variable with the fewest
legal values remaining in its domain. This "fail-fast" strategy quickly prunes large parts of
the search tree by identifying inevitable failures early.

e Degree Heuristic: As a tie-breaker for MRV, this heuristic selects the variable involved in
the largest number of constraints on other unassigned variables.

e Least Constraining Value (LCV): When selecting a value for the current variable, this
heuristic prefers the value that rules out the fewest choices for the neighbouring variables in
the constraint graph. It leaves maximal flexibility for subsequent assignments.

Inference and Constraint Propagation Beyond simple checking, we can infer the consequences
of an assignment. Constraint propagation repeatedly enforces local consistency conditions to prune
the domains of variables.
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e Forward Checking: When a value is assigned to a variable X, forward checking examines
each unassigned variable X; that is connected to X; by a constraint. It deletes any value from
X;’s domain inconsistent with the new assignment to Xj.

e Arc Consistency: A more powerful form of propagation. An arc from X; to X; is arc-
consistent if for every value in the domain of X;, there is some value in the domain of X;
that satisfies the binary constraint between them. The AC-3 algorithm is commonly used to
enforce arc consistency across the entire CSP, either as a pre-processing step or interleaved
with the search process. A trace of AC-3 reducing domains is shown in Table 2.9.

Table 2.9: Trace of the AC-3 algorithm for a simple CSP. Variables A, B,C have initial
domain {0,1,2,3,4}. Constraints are A = B + 1 and B = 2C. The initial queue is
{(A’B)’ (B7A)7(B7C)7 (C’B)}'

Arc Processed Domains After Processing Queue Notes

- Dy ={0.4},Dp = {0.4}, Dc = {0.4} ((A,B),(B,A),(B,C),(C,B)) Initial state

(A, B) A4 ={1,2,3,4} ((B,A),(B,C),(C,B)) A =0 removed (no B = —1)

(B, A) Dp=1{0,1,2,3} ((B,C),(C,B),(C,B)) B =4 removed (no A =5)

(B,C) Dp = {0,2} ((C,B), (A, B)) B = 1,3 removed (not even). Add (4, B).
(C,B) ={0,1} ((A, B)) C = 2,3,4 removed (no B =4,6,8).

(A, B) Dy ={1,3} ((C, A)) A = 2,4 removed (no B =1,3). Add (C, A).

Note. The final queue is empty after (C, A) is processed with no domain changes. Final domains: Da = {1,3}, D =
{0,2}, Dc = {0,1}.

The effect of these heuristics is demonstrated in Figure 2.15, which traces the initial steps of solving
the map-colouring problem for Australia. Initially, all states have a domain of {R, G, B}. SA is
chosen first based on the degree of heuristic. After assigning SA=Red, forward checking reduces
the domains of its neighbours—the MRV heuristic guides subsequent choices, leading to a solution
without backtracking.

Step 0: Initial domains Step 1: SA chosen (degree), SA=R Step 2: NT chosen (MRV /degree), NT=G
{(R.G, B} (R.G, B} (G, B} (G, B} e (B}

{R,G, B} {G.B} {G, B}
{R,G,B} {R,G,B} {R,G,B}
Step 3: Q chosen (MRV), Q=B Step 4: NSW chosen (MRV), NSW=G Step 7: Complete assignment

=G =B =G =B

{G, B}

{R,G, B}

Adjacencies: WA-NT, WA SA. NT SA, NT- Q SA-Q, SA-NSW, SA-V, Q-NSW, NSW-V.
Colours: R (red), G (green), B (blue)

Heuristics: MRV with degree tie-break; Forward checking }

Figure 2.15: Trace of backtracking search with forward checking and MRV (degree tie-break) on the
Australia map-colouring CSP with colours {R, G, B}. The search proceeds SA—-NT—Q—NSW,
then finishes without backtracking: WA= B, NT= G, SA= R, Q= B, NSW= G, V=B, T= R.
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2.6.3 The Structure of Problems

34

The complexity of solving a CSP is often related to the structure of its constraint graph. For
instance, if the constraint graph is a tree (i.e., contains no cycles), the CSP can be solved efficiently
in a linear time manner in the number of variables. Problems with nearly tree-structured graphs
can be solved using conditioning, where a small set of variables (a cycle cutset) is instantiated, and

the remaining problem is solved as a tree.

The key techniques for enhancing backtracking search are summarised in Table 2.10.

Table 2.10: Summary of techniques for improving CSP backtracking search.

Technique

Purpose

Description

MRV Heuristic
Degree Heuristic

LCV Heuristic
Forward Checking

Arc Consistency

Variable Ordering
Variable Ordering

Value Ordering
Inference

Inference

Choose variable with the fewest remaining legal values.
Tie-breaker: choose the variable with the most con-
straints on other variables.

Choose value that prunes the fewest values from neigh-
bours’ domains.

After assigning to X;, prune inconsistent values from
its neighbours.

Enforce that for each value of X;, a consistent value
exists for Xj.
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2.7 Adversarial Search

Whereas previous search methods operate in single-agent environments, adversarial search addresses
multi-agent environments with conflicting goals. Such scenarios are modelled as games where an
agent’s success depends on the actions of its opponents.

A game can be formally defined by the following components:

Initial State: The starting configuration of the game, Sj.

Players: A function that defines which player has the move in a given state.

Actions: A function that returns the set of legal moves in a state, ACTIONS(S).
Transition Model: A function that defines the resulting state after a move, RESULT(S, a).
Terminal Test: A function that determines if the game is over, TERMINAL(S).

Utility Function: A function that assigns a numerical value to a terminal state for a given
player, UTILITY(S).

This section focuses on two-player, deterministic, zero-sum games, such as chess or Go, where one
player’s gain is exactly the other player’s loss.

2.7.1 The Minimax Algorithm

The minimax algorithm provides a strategy for finding the optimal move in a game by assuming
the opponent will also play optimally. The two players are designated MAX, who seeks to maximise
the utility, and MIN, who seeks to minimise it. The algorithm performs a complete depth-first
exploration of the game tree. At each level, values propagate up from the terminal states: MAX
nodes choose the maximum value from their children, and MIN nodes choose the minimum. This
process is illustrated in Figure 2.16.

max{2,1} =2

best move

v =min{2,7} =2 v =min{1,8} = 1

Figure 2.16: A simple two-player game tree. MAX chooses a path (s; or s2), then MIN chooses
a terminal state. The values are propagated up the tree: MIN nodes take the minimum of their
children’s values, and MAX nodes take the maximum. MAX’s optimal move at sy is to move to s1,
guaranteeing a utility of at least 2.

The minimax value for a state s can be defined recursively:

UTILITY (s) if TERMINAL(s)
MINIMAX(s) = { max,cacrions(s) MINIMAX(RESULT (s, a)) if player is MAX
min,eacrions(s) MINIMAX(RESULT (s, a))  if player is MIN

The The Minimax Algorithm procedure formalises this strategy. Its properties are:

e Completeness: If the game tree is finite.
e Optimality: Yes, against an optimal opponent.
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e Time Complexity: O(b™), where b is the branching factor and m is the maximum depth.
e Space Complexity: O(bm) for a depth-first implementation.

The exponential time complexity makes minimax impractical for non-trivial games.

Algorithm 15: Minimax-Decision(state)

return arg maX,c 4 crions(state) Min-Value(RESULT (state, a))

2 Function Max-Value(state):

10
11

12
13
14

15

if TERMINAL/(state) then
| return UTILITY (state)
V4 —00
for each a in ACTIONS(state) do
L v < max(v,Min-Value(RESULT (state, a)))

return v

Function Min-Value (state):
if TERMINAL(state) then
L return UTILITY (state)

V4 00
for each a in ACTIONS(state) do
L v < min(v, Max-Value(RESULT (state, a)))

return v

2.7.2 Alpha-Beta Pruning

The performance of minimax can be drastically improved by alpha-beta pruning, a technique that
eliminates large parts of the search tree that cannot influence the final decision. It maintains two
values during the search:

e «: The best value (highest score) found for MAX along the path to the root.
e [3: The best value (lowest score) found so far for MIN along the path to the root.

The search can be pruned below any MIN node once a value is found that is less than or equal to «,
and below any MAX node once a value is found that is greater than or equal to 5. An example of
this pruning process is shown in Figure 2.17; and the algorithm is formalised in Alpha-Beta Pruning.

With optimal move ordering, where the best moves are explored first, alpha-beta pruning reduces
the effective branching factor from b to approximately v/b. This allows the search to reach about
twice as deep in the same amount of time. The time complexity in the best case is O(b"/2), while
in the worst case it is the same as minimax, O(b™). If moves are ordered randomly, the average
complexity is about O(b*™/*). The space complexity remains O(bm).
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a=—00, B=max{5, 4} =5

a=—-00, f=+40c0 a=5, =+

@ B = min(co,4) =4 < o = 5 = prune

min{5,9} =5= =5

max{3,5} =5 max{6,9} =9 max{2,4} =4

% B o i

Figure 2.17: Alpha—beta pruning with left-to-right evaluation. After the left subtree returns 5, the
right MIN node inherits o« = 5. Its first child returns 4, setting 5 = 4. Since 8 < «, the remaining
sibling subtree is pruned without evaluation.

Algorithm 16: Alpha-Beta Search

Function Max-Value (state, o, )
if TERMINAL/ (state) then
| return UTILITY (state)
V4 —00
for each a in ACTIONS(state) do
v < max(v,Min-Value(RESULT (state, a), o, 3))
if v > 5 then
L return v

// Prune branch
| a < max(a,v)

return v

Function Min-Value (state, a, 8):
if TERMINAL/(state) then
| return UTILITY (state)

V4 00
for each a in ACTIONS(state) do
v < min(v, Max-Value(RESULT (state, a), o, 3))
if v < o then
L return v
// Prune branch
B min(f,v)

return v

2.7.3 Imperfect Real-Time Decisions

The search space for complex games like chess is too ample to explore fully, even with alpha-beta
pruning. In practice, algorithms must make decisions under time constraints by cutting off the
search at a predetermined depth limit, d. At this cutoff, the utility function is replaced by a
heuristic evaluation function, EVAL(S), which estimates the position’s utility. Non-terminal nodes
at the depth limit are treated as leaves.
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A good heuristic evaluation function should have the following properties:

e [t should order terminal states similarly to the true utility function.
e Its computation should be efficient.
e For non-terminal states, it should be highly correlated with the chances of winning.

For example, a common evaluation function in chess is a weighted linear function of features:
EVAL(S) = wlfl(S) + ’U)QfQ(S) +---+ wnfn(S)

where w; are weights and f;(.S) are features of the game state, such as material advantage or piece
mobility. The alpha-beta algorithm is modified to use a cutoff test and the evaluation function, as
shown in Imperfect Real-Time Decisions. With a fixed depth limit d, the time complexity becomes
O(b%?) in the best case.

Algorithm 17: Heuristic Alpha-Beta Search

Function H-Max-Value(state, «, 3, depth):
if CUTOFF-TEST (state, depth) then
L return EVAL(state)
V4 —00
for each a in ACTIONS(state) do
v < max(v, H-Min-Value(RESULT (state, a), o, B, depth + 1))
if v > 5 then
L return v

a + max(a,v)

return v

Function H-Min-Value (state, o, 3, depth):
if CUTOFF-TEST (state,depth) then
L return EVAL(state)

v 4 00
for each a in ACTIONS(state) do
v < min(v, H-Max-Value(RESULT (state, a), cv, B, depth + 1))
if v <« then
L return v

B < min(f,v)

return v

The properties of adversarial search algorithms are summarised in Table 2.11.

Table 2.11: Properties of adversarial search algorithms.

Algorithm Time Space Notes

Minimax ob™) O(bm) Optimal but impractical for large games.
Alpha-Beta Pruning ~ O(b™/?) O(bm) Optimal, same result as minimax. Time is the best-case.
Heuristic Alpha-Beta  O(b%2)  O(bd)  Suboptimal; uses depth limit d and heuristics.
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2.8 FLAI 2 - Inference in Propositional Logic

Many reasoning tasks can be cast as determining the satisfiability of a logical sentence, driving
the development of highly optimised algorithms known as SAT solvers. These algorithms typically
operate on sentences in Conjunctive Normal Form (CNF): a conjunction of clauses, where each clause
is a disjunction of literals. Any sentence can be converted to CNF using the logical equivalences in
Table 2.2. For example, the sentence (sat V sun) — (free — concert) can be converted as follows:

(sat V sun) — (—free V concert) Implication elimination

—(sat V sun) V (—free V concert) Implication elimination

(—sat A —sun) V (—free V concert) De Morgan’s Law

(—sat V —free V concert) A (—sun V —free V concert) Distributivity

The final sentence is in CNF. Since each clause has at most one positive literal, it is also in Horn
form.

The DPLL Algorithm The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a com-
plete, backtracking-based search for deciding the satisfiability of PL formulae in CNF. It improves
upon naive truth-table enumeration through several heuristics that prune the search space, as de-
tailed in .

Algorithm 18: The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function DPLL (¢):
if ¢ is empty (all clauses satisfied) then
L return {rue

if ¢ contains an empty clause then
L return false

if a pure literal | exists in ¢ then

‘ return DPLL (Simplify(¢,1))

else if a unit clause {l} exists in ¢ then
‘ return DPLL (Simplify(¢,1))
else
! < Choose-Literal(¢)
if DPLL (Simplify(¢,1)) then

L return true

else
L return DPLL (Simplify(¢,—l))

e Early Termination. The search terminates if a partial assignment makes a clause false
(failure) or if all clauses are satisfied (success).

e Pure Symbol Heuristic. A propositional variable that appears with only one polarity
(always positive or always negative) can be assigned a value that satisfies all clauses containing
it.

e Unit Clause Heuristic. A clause with only one unassigned literal forces an assignment.
This must be satisfied, so the variable is assigned accordingly.

These heuristics have direct parallels in solving general CSPs. The unit clause heuristic is a form



N N

© W g9 o w;

10

CHAPTER 2. ARTIFICIAL INTELLIGENCE 40

of forward checking related to the MRV heuristic.

Stochastic Local Search For huge problems, incomplete local search algorithms like WalkSAT
can be more practical. WalkSAT, detailed in , begins with a random assignment of variables and
iteratively flips the assignment of a variable within an unsatisfied clause. Choosing which variable
to flip mixes a greedy strategy (minimising the remaining unsatisfied clauses) with a random choice
to escape local minima.

Algorithm 19: WalkSAT (clauses,p, max_ flips)
Input: clauses, a set of clauses in propositional logic
Input: p, the probability of choosing to do a "random walk" move
Input: max_ flips, number of flips allowed before giving up
model < a random assignment of true/false to the symbols in clauses
for i < 1 to max_ flips do
if model satisfies clauses then
L return model

clause < a randomly selected clause from clauses that is false in model
if with probability p then

‘ flip the value in model of a randomly selected symbol from clause
else

L flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

While sound, WalkSAT is incomplete because its stochastic nature means it cannot prove unsatisfi-
ability; it may fail to find a satisfying assignment even if one exists. The performance of WalkSAT
can be enhanced by incorporating heuristics from DPLL. A pre-processing step can apply unit prop-
agation and pure literal assignment to simplify the problem and reduce the search space before the
local search begins. During the walk, the greedy choice can be modified to disallow flips that would
violate a satisfied unit clause, thereby guiding the search more effectively. These modifications do
not change the worst-case exponential complexity but often reduce the number of flips required in
practice.

Interestingly, for randomly generated 3-CNF sentences with m clauses and n variables, the difficulty
of satisfiability problems peaks around a critical ratio of m/n ~ 4.3. Problems in this phase
transition region are computationally challenging for most SAT solvers.

2.8.1 Resolution Theorem Proving

Resolution is a powerful proof strategy that forms the basis of many modern automated theorem
provers. It relies on a single inference rule, which, when applied systematically to a set of sentences
in Conjunctive Normal Form (CNF), provides a sound and refutation-complete proof system. The
core technique is proof by refutation.

Propositional Resolution The resolution inference rule for PL states that from two clauses
containing complementary literals, a new clause can be inferred containing the disjunction of their
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remaining literals.
(avp) (=BVy)
(V)

The process, known as resolution refutation, involves three steps:

1. Convert all sentences in the knowledge base to CNF.

2. Negate the desired conclusion (the query ¢), convert it to CNF, and add its clauses to the
KB.

3. Apply the resolution rule repeatedly to the set of clauses. If this process derives an empty
clause (OJ), which represents a contradiction, then the original query ¢ is proven to be entailed
by the KB.

If the process terminates because no further resolution steps can be made and the empty clause
has not been derived, then the query is not entailed. Consider a KB with premises {P V Q, P —
R,Q — R} and a query R. The proof is shown in Figure 2.18.

KB and Negated Query in CNF

ds, 4

Q di, 4

— & ]

El

Figure 2.18: Resolution refutation proving KB = R. Resolve (1) and (2) on P to get Q V R; with
(4) on R to get @); with (3) on @Q to get R; with (4) to derive OJ.

To improve efficiency, heuristics are often employed. The unit preference strategy prioritises
resolution steps involving a unit clause, which always produces a shorter clause. The set-of-support
strategy restricts resolutions to only those involving the negated query or clauses derived from it,
focusing the search on relevant parts of the KB.

First-Order Resolution Extending resolution to FOL requires incorporating unification to han-
dle variables. First, all sentences in the KB and the negated query must be converted to clausal
form. This multi-step process standardises sentences for the resolution algorithm:

1. Eliminate Implications: Replace all instances of o —  with —a Vv 8.
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2. Move Negation Inwards: Use De Morgan’s laws and quantifier duality rules (=Y = 3,
—3 = V=) to push — symbols so they only apply to atomic sentences.

3. Standardise Variables: Rename variables to ensure each quantifier binds a unique variable,
preventing scope confusion (e.g., Vz.P(x) A 3z.Q(x) becomes Vz.P(x) A Jy.Q(y)).

4. Skolemise: Remove existential quantifiers. An existentially quantified variable not within
the scope of any universal quantifier is replaced by a unique Skolem constant (e.g., 3z.P(x) be-
comes P(C1)). If it is within the scope of universal quantifiers, it is replaced by a unique Skolem
function of the universally quantified variables (e.g., Vz.3y.P(z,y) becomes Vx.P(z, F(z))).

5. Drop Universal Quantifiers: All remaining variables are assumed to be universally quan-
tified.

6. Distribute V over A: Convert the quantifier-free sentences into a conjunction of clauses.

With sentences in clausal form, the first-order resolution rule can be applied. It is a "lifted" version
of its propositional counterpart that incorporates unification.

(Oé V ll) (B V —|l2)
(af v 30)

where 6 = Unify(ly,12)

This rule applies to two clauses (with variables standardised apart) containing literals {1 and lo that
can be unified with an MGU 6. A new clause is inferred by taking the disjunction of the remaining
literals and applying the substitution 6.

The entire process is demonstrated in Figure 2.19 with the "Curiosity Killed the Cat" problem.

1. Knowledge Base in First-Order Logic
(a) John owns a dog: Jx.D(x) A O(J, x)
(b) Anyone who owns a dog is an animal lover: Vz.(3y.D(y) A O(x,y)) — L(x)
(¢) Animal lovers do not kill animals: Vz.L(z) — (Vy.A(y) — =K (z,y))
(d)
()
(f)

Either Jack killed Tuna or curiosity killed Tuna: K(J,T)V K(C,T)
Tuna is a cat: C(7T)
All cats are animals: Vz.C'(z) — A(x)

2. Conversion to Clausal Form
(a) From (a), after Skolemisation with constant Fido:

(a)l. D(Fido)

(a)2. O(J,Fido)
(b) From (b): =Dly) v ~0(a. 1) V L) ()
(c) From (c): ~L(x) v ~A(y) V ~K(z,y) (4)
(d) From (d): K(JT)\/K(C’ ) (5)
() From (e): C(T) (6)
(f) From (£): ~C(x) Vv A(z) (7)

3. Resolution Refutation for Query: K(C,T)
8. Negated Query: =K (C,T)

9. (5,8): K(J,T)

10. (7,6), 0 = {z/T}: A(T)

11. (4,9), 0 = {x/J,y/T}: =L(J) vV —A(T)
12. (11, 10): ~L(J)

13. (3,12), 0 = {z/J}: =D(y) VvV -O(J,y)
14. (13, 2), 9—{y/F1do} —D(Fido)

15. (14, 1): O

Figure 2.19: A complete resolution refutation proof. The derivation of the empty clause (OJ) from
the KB and the negated query proves that curiosity did kill the cat.
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2.8.2 Proving Validity

Resolution refutation can also be used to prove that a sentence is valid. A valid sentence is one that
is true in all interpretations, which means it is entailed by the empty set of axioms.

is_valid(¢) < {}E ¢

To prove validity using resolution refutation, one simply negates the sentence ¢, converts —¢ to
clausal form, and attempts to derive a contradiction. If the empty clause is derived, the original
sentence ¢ is proven to be valid.

Forward and Backward Chaining For knowledge bases restricted to Horn clauses (with at
most one positive literal), inference can be performed in linear time.

e Forward chaining is data-driven. It applies Modus Ponens, firing any rule whose premises
are satisfied in the KB to add new facts until the query is derived or a fixed point is reached.

e Backward chaining is goal-driven. It starts from the query and works backwards, find-
ing rules that conclude it and attempting to prove their premises recursively. This is the
fundamental mechanism used in logic programming systems like Prolog.

Both algorithms are sound and complete for Horn KBs.

2.8.3 FOL: Syntax and Semantics

The syntax of FOL introduces elements to denote objects and their relationships.

Definition 2.8.1. Term. An expression denoting an object. A term can be a Constant Symbol
(e.g., Fred), a Variable (e.g., x,y), or a Function Symbol applied to terms (e.g., mother_of (John)).

Sentences are built from terms. An atomic sentence (or atom) is the simplest formula, formed
by applying a predicate symbol to a tuple of terms (e.g., On(BlockA, BlockB)) or stating equality
(t1 = t2). A propositional variable is a 0-arity predicate. A complex sentence is constructed
by combining atoms using logical connectives (A, V, =, —, <>).

If ¢ is a sentence and v is a variable, then Vv.¢ (universal quantification) and Jv.¢ (existential
quantification) are sentences. Quantifiers bind variables; only closed formulas (with no free vari-
ables) have a truth value under an interpretation. The order of quantifiers is critical; Y3y is not
equivalent to JyVz. There is a duality between quantifiers: Va.P(z) = —3x.—~P(z). Conventionally,
implication (—) is the main connective with ¥ and conjunction (A) with 3. A list of common FOL
representations is provided in Table 2.12.

Table 2.12: Examples of natural language sentences represented in First-Order Logic.

Sentence First-Order Logic Representation

Anything that glitters is gold. Va. Glitters(xz) — Gold(x)

Some students took French in Spring 2001. Jz. Student(x) A Took(z, French, S2001)

Every student who takes French passes it. Vz,t. (Student(z) A Took(x, French,t)) — Passes(z, French, t)

Only one student took Greek. Jz. Student(x) A Took(z, Greek) A (Vy. (Student(y) A Took(y, Greek)) — y = x)
No person buys an expensive policy. Va,p. (Person(x) A Policy(p) A Expensive(p)) — —Buys(z, p)

All Germans speak the same languages.  Vz,y,l. (German(xz) A German(y)) — (Speaks(z,1) <+ Speaks(y, 1))
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Definition 2.8.2. FOL: Interpretation. An interpretation specifies what symbols refer to. It
consists of:

A non-empty set of objects called the universe or domain of discourse, U.
A mapping from constant symbols to objects in U.

A mapping from predicate symbols to relations on U.

A mapping from function symbols to functions on U.

The truth of a sentence is evaluated within an interpretation. An atomic sentence P(t1,...,t,)
is true in interpretation I if the tuple of objects denoted by (I(¢1),...,I(t,)) is in the relation
denoted by I(P). For example, the sentence 3z, y. x = y is valid because in any interpretation with
a non-empty domain, we can choose an element d € U and assign x = d and y = d, making the
equality true.

To handle quantifiers, we consider interpretations extended with a variable binding. Let I/, be an
interpretation identical to I except that variable z is assigned object a € U.

® Vz.¢ is true in [ if ¢ is true in I/, for every object a € U.
e dr.¢ is true in [ if ¢ is true in I, /, for at least one object a € U.

Entailment is determined by models. For example, a KB containing only P(a) and P(b) does not
entail Va.P(x), because one can construct a model with a domain {a,b,c} where P(c) is false. In
this model, the KB is true, but the conclusion is false. As illustrated in Figure 2.20, in the given
interpretation, Vx.3y.Above(y, x) is true, as for every object x, we can find a y that is above it.
However, Jy.Vz.Above(y, z) is false, as no single object is above everything.

An FOL interpretation [
Universe U: { O, [:], A }

Constant: [(Fred) = D
Predicates:

I(Circle) = { O }

I(Square) = {D }

I(Triangle) = { }

I(Above) = {(T’,5), (5,C), (C,T)}
Quantified facts in I:
Va Jy Above(y,x) = true (each object has
some predecessor in the cycle)

JyVx Above(y,x) = false (no single object
points to all)

Above(C, T) Above(T, S)

 Above(S,C)

bove

Figure 2.20: A compact world and an interpretation I for First-Order Logic. Objects (left) are
the domain elements; the binary relation Above(y,x) is shown by arrows y — x. The chosen
interpretation makes YV 3y Above(y, ) true but Jy Va Above(y, x) false.

2.8.4 Inference in First-Order Logic

Inference in FOL is more complex due to variables and quantifiers. While a FOL KB can be proposi-
tionalised by instantiating variables with ground terms, this approach is often intractable. Function
symbols can lead to infinite ground terms (the Herbrand universe), making the propositionalised



CHAPTER 2. ARTIFICIAL INTELLIGENCE 45

KB infinite. Turing and Church show that entailment in FOL is semi-decidable: an algorithm can
confirm any entailed sentence, but no algorithm can refute any non-entailed sentence in finite time.

Unification and Generalised Modus Ponens To avoid the inefficiencies of propositionalisa-
tion, modern inference in FOL uses unification.

Definition 2.8.3. Unification. The process of finding a substitution 6 that makes two logical
expressions identical. A key goal is to find the most general unifier (MGU).

For example, to unify Knows (John, x) and Knows(y, Mother(y)), the MGU is 6 = {y/John, z/Mother (John) }.

Unification is the core of the Generalised Modus Ponens (GMP) rule, which "lifts" Modus
Ponens to FOL. Given atomic sentences p/,...,p), and a rule (p1 A ... A p, = q), if a substitution
6 exists such that pi0 = p;0 for all ¢, then we can infer g6.

plla"'vp;w (pl/\/\pn:q)
qf

where p}0 = p;0

GMP allows inference to be performed directly on first-order sentences.

Forward and Backward Chaining in FOL With GMP, forward and backward chaining can
be lifted to operate on FOL KBs composed of definite clauses (Horn clauses in FOL).

e Forward Chaining in FOL repeatedly applies GMP to add new atomic sentences to the
KB until no new inferences can be made. It is sound and complete for definite clauses, but
may not terminate if the query is not entailed.

e Backward Chaining in FOL uses GMP to work backwards from the query, unifying it with
the conclusions of rules and recursively trying to prove the premises. This depth-first search
is susceptible to infinite loops, requiring checks to ensure termination.

Consider the following KB:

Vz,y,z. American(z) A Weapon(y) A Sells(z,y, z) A Hostile(z) = Criminal(z)
Jz. Owns(Nono, z) A Missile(z)

Vz. Missile(x) A Owns(Nono,z) = Sells(West,x,Nono)

Vz. Missile(x) = Weapon(z)

Vz. Enemy(z, America) = Hostile(z)

American(West)

Enemy(Nono, America)

R e

Existential instantiation on (2) introduces a Skolem constant, Mj, giving: Owns(Nono, M;) and
Missile(Mj). A forward chaining algorithm can use these facts and the rules to infer successively
that Weapon(M), Sells(West, M, Nono), Hostile(Nono), and finally the query Criminal(West).
A backward chaining system would start with the goal Criminal(West) and recursively prove the
premises of rule (1).

2.8.5 Logic Programming

I did not take notes on this section; sorry.
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2.9 Planning

Planning is the task of finding a sequence of actions to achieve a goal. While this can be framed
as a problem-solving search, as discussed in section 2.3, planning algorithms typically use more
structured representations of states and actions derived from logic. This allows them to reason
about sets of states compactly and exploit the problem structure more effectively than searching
through an explicit state space.

2.9.1 Situation Calculus

A formal approach to planning is the situation calculus, which uses first-order logic to model a
changing world.

e Situations are reified: Situations (states) are treated as objects in the logic. A predicate
that changes over time takes an extra situation argument, e.g., At(Robot, RoomB, Sp).
e Actions map situations to situations: A function, Result(a,s), denotes the situation
resulting from performing action ¢ in situation s.
e Axioms describe change:
— Effect axioms specify how actions change the world. For instance, Vs.At(Lobby, s) —
KnowsGate(Result(ReadDisplay, s)).
— Frame axioms specify what does not change. For example, Vs, c.Colour(Wall, ¢, s) —
Colour(Wall, ¢, Result(GoToGate, s)). The need to state all non-effects is known as the
frame problem.

Planning in situation calculus becomes a theorem-proving task. Given a description of the ini-
tial state Sy and a goal, the planner must prove that a situation s exists where the goal holds,
e.g., ds.At(Gatel, s) A Have(Ticket, s). The constructive proof would yield a term for s, such as
Result(GoToGate, Result(. .., Sp)), from which the plan can be extracted. While elegant, this ap-
proach is often computationally impractical.

2.9.2 The STRIPS Representation

A more efficient and widely-used alternative is the STRIPS representation, which restricts the
language for describing states, goals, and actions.

e States are conjunctions of ground, positive literals (e.g., At(Home) A Sells(SM, Milk)). Any-
thing not mentioned is unknown or assumed false (the closed-world assumption).
e Goals are conjunctions of literals, which may contain variables (e.g., Have(Milk) AHave(Bananas)).
e Actions, or operators, are defined by three components:
— Action Name: A name with parameters, e.g., Buy(z, store).
— Preconditions: A conjunction of literals that must be true for the action to be appli-
cable.
— Effects: A conjunction of literals describing the changes to the state. Positive effects
are on the add-list, and negative effects are on the delete-list.

For example, a shopping domain might include the operators shown in Table 2.13.
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Table 2.13: STRIPS operators for a simple shopping domain.

Action Buy(zx, store)
Preconditions At(store) A Sells(store, x)
Effects Have(x)

Action Go(z,y)

Preconditions  At(xz)

Effects At(y) A -At(x)

2.9.3 State-Space Planning Algorithms

With the STRIPS representation, planning can be viewed as a search problem.

e Progression Planning (Forward Search): This approach searches forward from the initial
state to the goal. A node in the search space is a state (a set of literals), and an edge is a
ground action. This is often inefficient due to a high branching factor, as many actions are
applicable in any given state.

e Regression Planning (Backward Search): This searches backward from the goal. A node
is a sub-goal (a set of literals). To move from a sub-goal G to a preceding sub-goal, an action
A is chosen that has an effect in G. The new sub-goal is formed by the preconditions of A, plus
any parts of G not achieved by A. This is more goal-directed but can still involve significant
branching.

2.9.4 Partial-Order Planning

A more flexible and often more efficient approach is partial-order planning (POP), which searches
through the space of plans rather than the space of states. This method embodies a least-commitment
strategy, only adding ordering constraints between actions when necessary.

A partial-order plan consists of four components:

. A set of steps (the actions in the plan).

. A set of ordering constraints, S; < S;, meaning step S; must execute before S;.

. A set of variable binding constraints, e.g., v = x.

. A set of causal links, S; = S;, indicating that step S; achieves precondition c¢ for step 5j.

W N

The planning process begins with a minimal plan containing only two steps: a Start step, whose
effects are the initial state literals, and a Finish step, whose preconditions are the goal literals. The
algorithm, detailed in Partial-Order Planning Algorithms, iteratively adds steps and constraints to
resolve open preconditions and threats until a complete and consistent plan is found.

Definition 2.9.1. Open Precondition. An open precondition is a precondition of a step not yet
satisfied by a causal link.

Definition 2.9.2. Threat. A threat is a step that might undo a causal link.

Specifically, a step Sy threatens a link S; = S; if Sk has an effect —c¢ and could potentially be
ordered between S; and S;. Threats are resolved by adding ordering constraints, either forcing the
threat to occur before the link’s provider (Sy < S;) or after its consumer (S; < Sk).
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Algorithm 20: POP (initial plan)
Input: plan, a partial plan
1 if no open preconditions in plan then
2 L return plan

Sheed, ¢ 4 Select-Open-Precondition(plan) // Select an open precondition
for each step Sqqq (new or existing) that can add ¢ do
plan’ + plan

Add ordering constraint S,qq < Speeq to plan’
if Syqq is new then

3

4

5

6 Add causal link S,4q = Speeq to plan’
7

8

9 Add S,4q to steps in plan’

10 Add constraints Start < S,qq < Finish to plan’

11 plan’ < Resolve-Threats(plan’) // Demote or promote any threats
12 if plan’ is not a failure then

13 result < POP(plan’)

14 if result # failure then

15 L return result

16 return failure

An example of the POP algorithm building a shopping plan is shown in Figure 2.21. The final
plan contains all necessary steps, but the ordering between buying milk and buying bananas is left
unspecified, demonstrating the least-commitment nature of the algorithm. Any valid topological
sort of this partial order, such as (Go(Home,SM), Buy(Milk,SM), Buy(Bananas,SM)), constitutes a
solution.

At(SM) A Sells(SM,Milk)

Buy(Milk, SM)

g <.
“ Have(Milk)

Ve
Z
<

%
e(Milk) A Have(Bananas)

N

Start Finish

At(Home)
Sells(SM,Milk)
Sells(SM,Bananas)

M. Bq,,
Manag) Buy(Bananas, SM)

Have(Bananas)

Figure 2.21: A complete partial-order plan for the shopping problem. Causal links (solid blue) show
how preconditions are satisfied. Ordering constraints (dashed) enforce temporal sequence. The plan
leaves the order of buying milk vs. bananas unconstrained.
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2.9.5 Partial-Order Planning Algorithms

An alternative to searching through the state space is to search through the space of plans. This
approach, known as plan-space search or partial-order planning (POP), starts with an empty plan
and iteratively adds actions and constraints until a valid solution is formed. This method decouples
the order of planning from the order of execution and embodies a least-commitment strategy, where
decisions about action ordering or variable bindings are deferred until necessary.

A partial-order plan is defined by four components:

e A set of steps (the actions in the plan).

e A set of ordering constraints, S; < §;, meaning step S; must execute before S;.

e A set of variable binding constraints, e.g., v = z.

e A set of causal links, S; = S, indicating that step S; achieves precondition c for step 5.

The planning process begins with a minimal plan containing two steps: a Start step, whose effects
are the initial state literals, and a Finish step, whose preconditions are the goal literals, with an
initial ordering constraint Start < Finish. The algorithm, outlined in Partial-Order Planning
Algorithms, then iteratively refines this plan.

Algorithm 21: POP (initial _plan)

Input: plan, a partial plan

if no open preconditions in plan then
L return plan

Sheed, ¢ < Select-Open-Precondition(plan) > Select an open precondition
for each step Sqqq (new or existing) that can add ¢ do
plan’ < plan
Add causal link S,gq — Speeq to plan’
Add ordering constraint S,qq < Speeq to plan’
if S,qq is new then
Add S,44 to steps in plan’
Add constraints Start < S,4¢ < Finish to plan’

plan’ < Resolve-Threats(plan’) > Demote or promote any threats
if plan’ is not a failure then
result < POP(plan’)
if result # failure then
L return result

return failure

The algorithm operates by repeatedly selecting an open precondition.

Definition 2.9.3. Open Precondition. Is a precondition of a step not yet satisfied by a causal
link—and finding a way to achieve it. This can be done by using an existing step in the plan or by
adding a new one. This choice represents a branch in the search space.

Once a causal link S; < S; is added, the planner must protect it from threats. A threat is a step
Sj, that has an effect =c and could potentially be ordered between S; and S;. Threats are resolved
by adding ordering constraints:
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e Demotion: Force the threatening step to occur after the link (S; < Sk).
e Promotion: Force the threatening step to occur before the link (Sy < S;).

If a threat cannot be resolved, that branch of the search fails. The process continues until there are
no open preconditions, resulting in a complete and consistent plan.

Example: Shopping Problem Consider the shopping problem with the goal Have(Milk) A
Have(Bananas) A Have(Drill). The initial state is At(Home), with knowledge that a supermarket
(SM) sells milk and bananas, and a hardware store (HW) sells drills. The POP algorithm might
produce the plan shown in Figure 2.22. In this solution, the agent must go to the hardware store
before the supermarket. However, the order of buying milk and bananas at the supermarket is left
unconstrained, demonstrating the least-commitment nature of the planner.

At(HW) A
At(Home) Sells(HW,Drill)

At(SM) A
Sells(SM, Milk)

%, Have(Milk) A
Haye(Bananas)
Have(Drill)

A
Finish
/W
7
»

e
\ Hop,

At(SM) A

At(Home) S Sells(SM,Bananas) ~ _ -~ -
Sells(SM,Milk), AN .-
Sells(SM,Bananas) ’ /
Sells(HW,Drill) Buy(Bananas, SM)

Have(Bananas)

Figure 2.22: Partial-order plan for the shopping problem with an HW — SM route. Causal links
(solid blue) satisfy preconditions; dashed constraints enforce only what’s necessary. The order of
buying milk vs. bananas remains unconstrained.

Example: The Sussman Anomaly A classic problem illustrating the power of POP is the
Sussman Anomaly, shown in Figure 2.23. The goal is to create the stack On(A,B) A 0n(B,C). A
simple planner that tries to solve sub-goals independently might achieve On(A,B) first by moving
C to the table, but this makes achieving 0n(B,C) difficult. Similarly, achieving 0n(B,C) first traps
block A. The problem requires interleaving the steps of the sub-plans. POP naturally handles such
interactions by only adding ordering constraints to resolve threats. It would correctly deduce the
optimal plan: move C to the table, then move B onto C, and finally move A onto B.

Initial State Goal State
A
C B
A B C

On(C,A), On(A,Table)
On(B,Table), Clear(C), Clear(B)

On(A,B) A On(B,C)

Figure 2.23: The Sussman Anomaly problem. The interdependent sub-goals make it challenging for
planners that do not interleave steps.
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While POP is sound and complete, its efficiency depends heavily on heuristics for selecting open
preconditions and resolving threats. Without good guidance, the search space of partial plans can
be vast.

2.9.6 GraphPlan

In contrast to the heuristic, search-based nature of POP, the GraphPlan algorithm offers a more
systematic approach. Developed in the mid-1990s, it marked a significant advance in planner per-
formance by transforming the planning problem into a search on a specialised data structure called
a plan graph. GraphPlan operates on propositional logic, meaning all actions and states are ground
(free of variables). This leads to a larger problem representation but allows for more efficient algo-
rithmic processing.

The core of GraphPlan is an iterative process:

1. Graph Expansion: Construct a plan graph forward from the initial state up to a fixed
depth, k.

2. Solution Extraction: Search backward from the goal propositions at depth & to find a valid
sub-graph that constitutes a plan.

3. Iteration: If no solution is found, increment k£ and repeat.

The Plan Graph A plan graph is a layered graph that alternates between levels of propositions
and levels of actions.

e Proposition Levels (.5;): Even-numbered levels contain all propositions that could possibly
be true at that time step. Sy contains the initial state literals.

e Action Levels (4;): Odd-numbered levels contain all ground actions whose preconditions
are present and non-mutex in the preceding proposition level. This also includes maintenance
actions (or no-ops), which carry a proposition forward unchanged.

The graph is built layer by layer. For each new layer, GraphPlan also computes mutex (mutually
exclusive) links between pairs of nodes (actions or propositions) that cannot be true at the same
time.

Mutex Propagation Mutex links are crucial for pruning the search space. They are propagated
forward through the graph as it is built.

e Two actions at level A; are mutex if:
(a) Inconsistent Effects: One action’s effect is the negation of another’s (e.g., one adds
P, the other adds —P).
(b) Interference: One action deletes a precondition of the other.
(c) Competing Needs: A pair of their preconditions is mutex at the previous level, S;_1.
e Two propositions at level S; are mutex if:
(a) One is the negation of the other.
(b) Inconsistent Support: All pairs of actions at level 4;_; that could achieve the two
propositions are themselves mutex.

As the graph grows, the number of mutex links tends to decrease or level off, representing that more
states become reachable over time.
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Solution Extraction Once the graph is expanded to a level k where all goal propositions exist and
are not mutually exclusive, a backward search begins. The search, outlined in Solution Extraction,
attempts to find a non-mutex set of actions at level Aj_1 to achieve the goals. The preconditions of
this set of actions become the sub-goals for the previous level, Si_1, and the process repeats until
the initial state at Sy is reached. If the search fails at any level, backtracking occurs. If all backward
searches from level k fail, the graph is expanded to k + 1.

Algorithm 22: GraphPlan (problem)

graph < Initialise-Graph(problem)
for K+ 1,2,... do
if Goal propositions all exist in Sy of graph and are not mutex then
solution < Extract-Solution(Goals, graph, k)
if solution # failure then
L return solution

if Graph has leveled off then
L return failure

| graph < Expand-Graph(graph)

Algorithm 23: Extract-Solution(goals, graph, k)

Function Extract-Solution(goals, graph, k)
if £k =0 then
L return empty plan

foreach non-mutex action set A in Ap_1 that achieves goals do
subgoals < preconditions of actions in A
subplan < Extract-Solution(subgoals, graph,k — 1)
if subplan # failure then
L return A U subplan

return failure

An example of a plan graph for a simple "birthday dinner" problem is shown in Table 2.14 and
Table 2.15. The goal is to have dinner ready, the present wrapped, and no garbage. At depth
1 (Action level Ay, Proposition level Ss), a plan is impossible because achieving all three goals
requires actions that are mutually exclusive (e.g., "Cook" and "Carry" interfere). At depth 2, the
mutex constraints relax, allowing for a valid two-step plan to be found: in the first step, "Cook"
and "Wrap"; in the second step, "Carry".

Table 2.14: Plan graph: nodes per level

Level Kind Contents

So Propositions G, CH, Q

Ay Actions Cook, Wrap, Carry, Dolly, noop(G), noop(CH), noop(Q)

S Propositions D, P, noG, G, CH, noCH, Q, noQ

As Actions Carry, Cook, Wrap, Dolly, noop(D), noop(P), noop(noG), noop(G), noop(CH), noop(noCH), noop(Q), noop(noQ)

S Propositions D, P, noG, G, CH, noCH, Q, noQ
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Table 2.15: Complete plan-graph summary (preconditions, effects, mutex)

(a) Action preconditions

(b) Action effects

(¢) Mutex relations (as drawn)

Level Action Requires

Ay Cook CH
Wrap Q
Carry (none)
Dolly (none)
noop(G) G
noop(CH) CH
noop(Q) Q

As Cook CH
Wrap Q
Carry (none)
Dolly (none)
noop(D) D
noop(P) P
noop(noG) noG
noop(G) G
noop(CH) CH
noop(noCH) noCH
noop(Q)
noop(noQ) noQ

Action  Effects (add-list)
Cook D

Wrap P

Carry noG, noCH
Dolly noG, noQ
noop(X) X




Chapter 3

Machine Learning

3.1 A Formal Model for Learning

To formalise what it means for an agent to learn to "do the right thing" as described earlier
(Learning), we require a mathematical framework. The statistical learning framework provides this
by defining the components of a learning problem and the criteria for success [8].

3.1.1 The Statistical Learning Framework

The core task of a supervised learning algorithm is to learn a mapping from inputs to outputs based
on a set of examples. This process can be deconstructed into several key components:

e Instance Space (X'): An arbitrary set containing the objects to be labelled. Each object, or
instance, is typically represented by a vector of features. For example, in a medical diagnosis
task, X could be the space of all possible patient measurements.

e Label Set ()): The set of possible outcomes or labels. For binary classification, this is often
Y ={0,1} or {—1,+1}.

e Training Data (S5): A finite sequence of labelled examples, S = ((x1,y1),- -, (Tm,Ym)),
where each pair (z;,y;) is an element of X x ). This data is the sole source of information
available to the learner.

The learner’s objective is to use the training data S to produce a hypothesis, h : X — Y. This
hypothesis, also called a predictor or classifier, is the function the agent will use to predict the label
of new, unseen instances from X.

This setup assumes the training data is generated from some underlying, unknown probability dis-
tribution D over X x ). This distribution represents the environment. The fundamental assumption
of statistical learning is that the training examples are sampled independently and identically dis-
tributed (i.i.d.) from D. The learner is blind to D and must infer its properties solely through the
window provided by S.

3.1.2 Risk, Minimisation, and Overfitting

To measure the success of a hypothesis, we need to define its error, or risk. There are two distinct
measures of risk.

o4
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Definition 3.1.1. Generalisation Risk. The true risk (or generalisation error) of a hypothesis
h is its expected error on new data drawn from the underlying distribution D. For classification,
this is the probability of misclassification:

LD(h) = P(w,y)ND[h(m) 7& y]

The true risk, Lp(h), is the ultimate measure of a hypothesis’s quality, but it cannot be calculated
directly because D is unknown. The learner can only measure performance on the data it has.

Definition 3.1.2. Empirical Risk. The empirical risk (or training error) of a hypothesis h is its
average error on the training set S:

m

I(h(zi) # vi)

i=1

Ls(h) = %

where I(-) is the indicator function.

This leads to a natural learning principle: since the true risk is unknowable, the learner should
instead aim to minimise the risk on the training data. This strategy is known as Empirical Risk
Minimisation (ERM).

However, naively applying ERM can lead to a significant problem. Consider a scenario where a
learner has enough flexibility to choose a highly complex hypothesis that perfectly memorises every
training example, including any noise. While its empirical risk would be zero, this hypothesis
would perform poorly on new data because it has failed to learn the true underlying pattern. This
phenomenon is known as overfitting.

3.1.3 Inductive Bias and Hypothesis Classes

To combat overfitting, the ERM principle is constrained. Rather than allowing the learner to choose
any possible function, we restrict its search to a predefined set of functions called a hypothesis
class, denoted H. By choosing a class H in advance, we introduce an inductive bias, which is a set
of assumptions about the form of the solution. The learning algorithm then becomes:

ERMy(S) € argmin Ls(h)
heH

Choosing a more restricted hypothesis class provides better protection against overfitting but may
introduce a stronger bias, potentially preventing the learner from finding a good solution if the true
pattern lies outside the class. This trade-off is a fundamental concept in machine learning.

3.1.4 Model Selection and Generalisation Control

Minimising the empirical risk on .S can understate the generalisation risk, especially when we overfit
the training data. To keep our estimate of out-of-sample performance clean, we split data into
train, validation, and test sets. We fit parameters on train; we choose hyperparameters (e.g.,
the capacity of H, regularisation strength, or an early-stopping epoch) by minimising the error on
validation; and we report final performance once on test. This protocol ensures the final risk
estimate is not biased by repeated tuning on the test data.
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We control model capacity in three primary ways. First, we constrain # directly through archi-
tecture or feature set choices, which sets the inductive bias for ERMy(S). Second, we penalise
complexity via regularisation:
h € argmin Lg(h) + AQ(h),
heH

where Q(h) encodes a simplicity preference and \ is selected on the validation set. Third, we use
early stopping: while training, we monitor the validation error and halt the process when it stops
decreasing, retaining the parameters from the epoch with the best performance.

All of these choices are consistent with the PAC framework in PAC Learnability: we are trading
estimation error against approximation error through the size of H and the strength of the bias we
impose.

3.1.5 Guarantees for Finite Hypothesis Classes

The PAC framework provides a formal guarantee that ERM can succeed. To understand how such
a guarantee is derived, we can analyse the simplest case: a finite hypothesis class H under the
realizability assumption.

Definition 3.1.3. Realizability Assumption. There exists a hypothesis h* € H such that its
true risk is zero, i.e., Lp(h*) = 0.

Lemma 3.1.1. ERM Zero Training Error Under Realizability. Assume Realizability Assumption.
For any sample S and any ERM solution hg € ERMy(S), we have Lg(hg) = 0.

Proof. By realizability, there exists h* € H with Lp(h*) = 0, which implies Lg(h*) =
probability 1 over the draw of S (and in any case Lg(h*) > 0). Therefore minpey Ls(h) < Lg(h*) =
0. Since empirical risk is nonnegative, any empirical risk minimizer hg satisfies Lg(hg) = 0. |

Our learning algorithm fails if it selects a hypothesis hg that has zero empirical risk but a high true
risk (Lp(hg) > €). The following lemmas formalise this failure condition and its probability.

Lemma 3.1.2. ERM Failure Implies a Misleading Sample. Let Hp = {h € H : Lp(h) > €}.
Under Realizability Assumption, if hg € ERMy (S) satisfies Lp(hg) > €, then S lies in the set

M = [J {S: Ls(h) =0}.

heHp
Equivalently, {S: Lp(hs) > ¢} C M.
Proof. By Lemma 3.1.1, Lg(hg) = 0. If additionally Lp(hg) > €, then hg € Hp and S € {S :
Ls(hs) =0} C M. Hence the stated inclusion. [ ]

Lemma 3.1.3. Bad Hypotheses Look Perfect With Small Probability. Fix e € (0,1) and h € H
with Lp(h) > e. For an i.i.d. sample S ~ D™,

P(Lg(h) =0) < (1—¢)™ <e .
Proof. For one fresh draw (z,y) ~ D, P[h(x) = y] =1 — Lp(h) < 1 — e. By independence over m
)

examples, P(Lg(h) = 0) = [[;~, Plh(z;) = yi] < (1 —€)™. Finally, use 1 —x < e~ ? for z € [0,1] to
obtain (1 — €)™ < e~ ™. [
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With these lemmas, we can prove the main result for finite hypothesis classes.

Lemma 3.1.4. Union Bound. For any set of events Aq,..., A, the probability of their union is
bounded by the sum of their individual probabilities:

k k
P (U Ai> <> P(Ay).
i=1

=1

Proposition 3.1.1. Finite Class Sample Complezity. For a finite hypothesis class H, if the realiz-
ability assumption holds, for any €,0 € (0, 1), if the sample size m satisfies

1 |H|
>71 RN
m p n< 5>

then with probability at least 1—4, the ERMy; algorithm will return a hypothesis hg with Lp(hg) <
€.

Proof. Let Hgp = {h € H : Lp(h) > €¢}. By Lemma 3.1.2,

P(Lp(hs) >€) < P | J {S: Le(h) =0} | < > P(Ls(h) =0),
heHp heHp

€Em

where we used the Union Bound. By Lemma 3.1.3, each summand is at most e, so

P(Lp(hs) > €) < [Hple™™ < [H]e~™.

To make this at most ¢, it suffices that [H|e™ ™ < ¢, i.e. m > %111(%'). [ ]

This result is a concrete example of Probably Approximately Correct (PAC) learning, which we
now formally define [9].

3.1.6 Probably Approximately Correct (PAC) Learning
The theory of Probably Approximately Correct (PAC) learning provides a formal guarantee that

the ERM strategy, when applied over a suitable hypothesis class H, will not overfit.

Definition 3.1.4. PAC Learnability. A hypothesis class H is PAC learnable if there is an
algorithm and a function my(e,d) such that for any distribution D, given m > my(e, d) i.i.d.

samples, the algorithm produces a hypothesis h € H that, with probability at least 1 — 9, satisfies
Lp(h) <e.

Corollary. Finite Classes are PAC Learnable. Every finite H is PAC learnable in the realizable

case with sample complexity
1 H

Proof. Instantiate Proposition 3.1.1 with m = E ln(l%‘)—‘ and use the definition of PAC learnabil-
ity. [

Definition 3.1.5. Sample Complexity. The number of samples required is known as the sample
complexity and depends on the accuracy parameter, €, and the confidence parameter, 9.
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3.1.7 Generalisations of the Learning Model

The basic PAC model can be extended to be more applicable to real-world problems.

Agnostic PAC Learning The standard PAC model’s realizability assumption is often too strong
for practical tasks. The Agnostic PAC model removes it. The goal is to find a hypothesis A whose
error is not much worse than the best possible hypothesis within the class. This requires a benchmark
for the lowest possible error. For classification, this is the Bayes optimal classifier.

Lemma 3.1.5. Bayes Optimality for 0-1 Loss. Let n(z) = Ply = 1 | z] and define the Bayes
classifier fp(z) = 1{n(x) > 1/2}. Then for any classifier g : X — {0, 1},

Lp(fp) < Lp(g).

Moreover,
Lp(9) — Lo(fp) = Euf|2n(z) — 1] Hg(z) # fp(x)}] > 0.

Proof. Condition on z. For any a € {0,1}, P(y # a | z) = a(1 —n(z)) + (1 — a)n(z). This is
minimized by choosing @ = 1 when n(z) > 1/2 and a = 0 otherwise, which is exactly fp(z). The
excess risk identity follows by writing

P(y # g(z) | 2) =Py # fo(e) | 2) = [2n(z) — 1] 1{g(z) # fp(2)},

and integrating over x. |

Since we cannot hope to outperform the Bayes optimal predictor, the agnostic guarantee is that,
with probability at least 1 — 9:
LD(h) < min Lp(h/) + €
h'eH

This provides a more robust and realistic framework.

Generalised Loss Functions The learning framework is not limited to binary classification. By
generalising the measure of error, a wide variety of tasks can be accommodated. A loss function,
0(h, z), measures the penalty for a hypothesis h on a single example z. The goal is to minimise the
expected loss, Lp(h) = E,p[l(h, z)].

Examples include:

e Multiclass Classification: The label set ) contains multiple categories. The 0-1 loss func-

tion is o1 (h, (z,y)) = 1{h(z) # y}.
e Regression: The task is to predict a real-valued outcome () C R). A common choice is the
square loss, lsq(h, (z,y)) = (h(z) — y)*.

Lemma 3.1.6. 0-1 Loss Equals Misclassification Probability. For binary or multiclass classification
with 0-1 loss, Lp(h) = P, \plh(z) # yl.

Proof. By definition of the true risk with loss ¢o1(h, (z,y)) = 1{h(z) # y} and the fact that
E[1{A}] = P(A). [ |

This generalisation allows the ERM principle and the PAC framework to provide a theoretical
foundation for a vast range of machine learning problems.
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3.2 From State-Space Search to Hypothesis-Space Search

A common thread unites all the algorithms in this §2.3: they systematically explore the state space
without any problem-specific knowledge to guide them towards a goal. This paradigm of blind,
exhaustive enumeration has a powerful analogue in the Machine Learning framework, specifically
in the ERM principle over a finite hypothesis class H.

In this analogy, the learning algorithm "searches" the hypothesis space H for the "best" hypothesis.
The goal is not a specific state, but the hypothesis h € H that minimises the true risk, Lp(h).
Since the true risk is unknowable, the algorithm uses the empirical risk, Lg(h), as a proxy. The
ERM strategy is therefore equivalent to an exhaustive search of H, evaluating each hypothesis on
the training set S and selecting one that minimises this empirical cost.

This "search" is only meaningful if the empirical risk is a reliable estimate of the true risk. If not,
finding a hypothesis with low training error provides no guarantee of good performance on new
data. The theory of uniform convergence provides the formal assurance that, given a sufficiently
large training sample, the empirical risk for all hypotheses in H will be close to their true risk. This
ensures that the minimum of the empirical landscape corresponds to a point near the minimum of
the true risk landscape.

Definition 3.2.1. e-Representative Sample. A training set S is called e-representative with
respect to a hypothesis class H, a loss function ¢, and a distribution D, if for all h € H, |Lg(h) —
Lp(h)|<e.

If a sample is representative, the ERM principle is guaranteed to yield a hypothesis with near-
optimal true risk.

Lemma 3.2.1. ERM Under Representativeness Yields Near-Optimal Risk. Assume that a training
set S is (e/2)-representative. Then, any hypothesis hg € ERMy(S) satisfies

LD(hS) < min LD(h) + €.

heH
Proof. For any h € H, we have
Lo(hs) < Ls(hs) + 5 < Ls(h) + 5 < Lo(h) + 5 + 5 = Lp(h) +«

The first and third inequalities hold because S is (€/2)-representative. The second inequality holds
by the definition of hg as an empirical risk minimiser. |

This lemma shifts the problem of guaranteeing learnability to guaranteeing that a sample will be
e-representative with high probability. This is formalised by the uniform convergence property.

Definition 3.2.2. Uniform Convergence. A hypothesis class H has the uniform convergence
property if there exists a function mY¢ (e, §) such that for any €,8 € (0,1) and any probability dis-
tribution D, if m > m%c(e, 0), then an i.i.d. sample S of size m is e-representative with probability

at least 1 — ¢.

To show that finite classes have this property, we use a concentration inequality to bound the
deviation of the empirical risk from the true risk for a single hypothesis, and then apply the Union
Bound to extend this guarantee to the entire class.
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Lemma 3.2.2. Hoeffding’s Inequality. Let 61,...,8,, be a sequence of i.i.d. random variables such
that for all ¢, E[f;] = p and Pla < 0; < b] = 1. Then, for any € > 0,

1 — —2me?
Pll= i — <2 — | .
55| ]2 (5255)

Proposition 3.2.1. Finite Classes Enjoy Uniform Convergence. Let H be a finite hypothesis class
and let the loss function ¢ : H x Z — [0,1]. Then H has the uniform convergence property with

sample complexity In(2[H|/9)
n
m5” (e,0) < [262-‘ '

Proof. Let S be a sample of m i.i.d. examples. The probability that S is not e-representative is
bounded using the Union Bound:

P(3h € H, |Ls(h) — Lp(h)|> ) < 3 P(Ls(h) — Lo(h)|> ¢).
heH

For each fixed h, Lg(h) is an average of m i.i.d. variables ¢(h,z;), each with mean Lp(h) and
bounded in [0, 1]. By Hoeffding’s Inequality, each term in the sum is at most 2 exp(—2me?). Thus,

P(S is not e-representative) < Z 2 exp(—2me?) = 2|H|exp(—2me?).
heH

Setting this bound to be at most § and solving for m gives the result. |

Corollary. Finite Classes are Agnostic PAC Learnable. For a finite hypothesis class H and a loss
function ¢ with range [0, 1], the ERM algorithm is an agnostic PAC learner with sample complexity

21n(2|7—l/5)“
b LA

€

my(€,0) < m%C(E/Q,é) < [

Proof. Follows directly from Lemma 3.2.1 and Proposition 3.2.1 by setting the representativeness
requirement to €/2. [ |

This result solidifies the analogy between uninformed search and learning. The sample complexity,
which dictates the amount of "experience" needed to learn, is logarithmic in the size of the hypothesis
space, |H|. This is the learning-theoretic counterpart to the exponential time and space complexity,
O(b%), required for uninformed state-space search. Both demonstrate that while finite domains are
tractable in principle, exhaustive enumeration is inefficient. Without further guidance—heuristics in
search, or inductive bias in learning—the complexity can become prohibitive. The need to overcome
this limitation by incorporating problem-specific guidance is the central motivation for the informed
search strategies explored in the next chapter.



Bibliography

[1]

2]

3]

4]

[5]

6]

7]

8]

19]

[10]

Turing AM. Computing machinery and intelligence. [Internet|. *Mind*. 1950;59(236):433-460.
[cited 2025 Jan 20|. Available from: https://doi.org/10.1093/mind/LIX.236.433.

Samuel AL. Some studies in machine learning using the game of checkers. [Internet|. *IBM
Journal of Research and Development*. 1959;3(3):210-229. [cited 2025 Jan 20|. Available from:
https://doi.org/10.1147/rd.33.0210.

Mitchell TM. Machine learning. New York: McGraw-Hill; 1997. (McGraw-Hill Series in
Computer Science). [cited 2025 Jan 20]. ISBN: 978-0-07-042807-2. Available from: https:
//www.cs.cmu.edu/ tom/mlbook.html.

Haugeland J. Artificial intelligence: the very idea. Cambridge, MA: MIT Press; 1985. [cited
2025 Jan 20]. ISBN: 978-0-262-58095-3. Available from: https://doi.org/10.7551/mitpress/
1170.001.0001.

Russell SJ and Norvig P. Artificial intelligence: a modern approach. 4th ed. Hoboken, NJ:
Pearson; 2020. [cited 2025 Jan 20]. ISBN: 978-0-13-461099-3. Available from: https://aima.
cs.berkeley.edu/.

GeeksforGeeks.  Agents in Al [Internet|. 2025 [last updated 2025 Aug 14; cited
2025 Jan 20|. Available from: https://www.geeksforgeeks.org/artificial-intelligence/
agents-artificial-intelligence/.

Guzik EE and Byrge C and Gilde C. The originality of machines: Al takes the Torrance
Test. |Internet|. *Journal of Creativity*. 2023;33(3):100065. |cited 2025 Jan 20|. Available
from: https://doi.org/10.1016/j.yjoc.2023.100065.

Shalev-Shwartz S and Ben-David S. Understanding machine learning: from the-
ory to algorithms.  Cambridge: Cambridge University Press; 2014. |[cited 2025 Jan
20]. ISBN: 978-1-107-05713-5. Available from: https://www.cs.huji.ac.il/"shais/
UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.
pdf.

Valiant LG. A theory of the learnable. [Internet]. In: Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing (STOC); 1984 Apr 30-May 2; Washington, D.C.,
USA. New York: ACM; 1984. p. 436-445. [cited 2025 Jan 20|. Available from: https://doi.
org/10.1145/800057.808710.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin
I. Attention Is All You Need. [Internet|. arXiv. 2023. [cited 2025 Jan 24|. Available from:
https://arxiv.org/abs/1706.03762.

61


https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1147/rd.33.0210
https://www.cs.cmu.edu/~tom/mlbook.html
https://www.cs.cmu.edu/~tom/mlbook.html
https://doi.org/10.7551/mitpress/1170.001.0001
https://doi.org/10.7551/mitpress/1170.001.0001
https://aima.cs.berkeley.edu/
https://aima.cs.berkeley.edu/
https://www.geeksforgeeks.org/artificial-intelligence/agents-artificial-intelligence/
https://www.geeksforgeeks.org/artificial-intelligence/agents-artificial-intelligence/
https://doi.org/10.1016/j.yjoc.2023.100065
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://doi.org/10.1145/800057.808710
https://doi.org/10.1145/800057.808710
https://arxiv.org/abs/1706.03762

Appendix A

Appendix: Fun Addons

A.1 Advanced Logic: Completeness, Equality, and Paramodulation

This section explores several advanced topics related to the resolution proof system introduced in
§2.8.1, namely the theoretical limits of logical systems and a specialised inference rule for handling
equality.

A.1.1 Completeness, Decidability, and Incompleteness

Definition A.1.1. Complete Proof System. A proof system is complete if it can derive any
sentence that is logically entailed by the knowledge base. Formally, if KB F «, then a complete
system guarantees that KB F a. Robinson’s Completeness Theorem established that resolution
refutation is a complete proof system for First-Order Logic.

This property makes FOL semi-decidable. If a conclusion is entailed (i.e., a proof exists), a
resolution theorem prover will eventually halt and find the proof. However, if the conclusion is not
entailed, the prover is not guaranteed to halt; it may search for a proof indefinitely. This contrasts
with propositional logic, which is decidable.

The scope of completeness is limited when arithmetic is introduced. Goédel’s Incompleteness Theo-
rem states that no consistent and complete proof system can exist for FOL combined with arithmetic
(addition and multiplication). For any such system, there will either be true sentences that are not
provable (incompleteness) or provable sentences that are not true (inconsistency). The proof relies
on the ability of arithmetic to construct self-referential sentences, such as the Godel-sentence P,
which asserts its own unprovability:

P ="P is not provable."
If P is true, then the system is incomplete because it cannot prove a true sentence. If P is false,

then it must be provable, meaning the system is inconsistent because it can prove a false sentence.

A.1.2 Handling Equality in First-Order Logic

The equality symbol, =, is a special predicate with a fixed, intended meaning. One method to
handle equality is to add axioms to the knowledge base that define its properties. Equality is an
equivalence relation, which requires axioms for reflexivity, symmetry, and transitivity:

62
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1. Vz. z =2  (Reflexivity)
2. Vx,y.x =y —>y==x (Symmetry)
3. Va,y,z. (t=yAy=2z2) >z =z (Transitivity)

However, these are insufficient. The principle of substitution (that equals may be substituted for
equals), must also be captured. This requires an axiom schema for every predicate and function
symbol in the language, which is highly impractical. For example, for each predicate P:

Vo,y. x =y — (P(x) < P(y))

Due to this inefficiency, specialised inference rules are used instead of an axiomatic approach.

A.1.3 The Paramodulation Rule

Paramodulation is an inference rule that integrates reasoning about equality directly into the reso-
lution process. It allows for the substitution of equal terms within clauses. The general rule is as
follows: given two clauses, where one contains an equality statement and the other contains a term
that unifies with one side of the equality, a new clause is inferred.

Formally, from clauses o V (s = t) and 5V «[r], where v[r] is a literal containing a term 7:

av(s=t) BVl
(aVvBVvAlt])e
The substitution 6 is the most general unifier of s and 7. The resulting clause combines the disjuncts

from both parent clauses (o and f3), applies the substitution 6 to them, and includes the modified
literal [t]f, where the term 7 has been replaced by ¢.

where 6 = Unify(s,r)

Example 1: Simple Substitution Consider the premises F(z) = B and Q(y) V W (y, F(y)).
We can apply paramodulation:

e Clause 1: F(z) = B. Here, a is empty, s = F(x), and t = B.

e Clause 2: Q(y) VW (y, F(y)). Here, 5 is Q(y), the literal v[r| is W(y, F(y)), and the term r
is F(y).

e Unification: Unify(s,r) = Unify(F(x), F(y)) yields the substitution § = {z/y}.

e Result: The inferred clause is (Q(y) V W(y, B))6. Applying 6 has no effect on this clause, so
the result is Q(y) vV W (y, B).

Example 2: Complex Substitution If the first clause has additional literals, they are carried
over into the result. Consider the premises P(x) V (F(x) = B) and Q(y) V W (y, F(y)).

e Clause 1: P(z)V (F(x) = B). Here, a is P(x).

e Clause 2 and Unification are the same as in the previous example, with 0 = {z/y}.

e Result: The inferred clause is (o V 5V 7[t])0. Substituting the parts gives (P(z) V Q(y) V
W (y, B))#. Applying the substitution 6 yields the final result: P(y) vV Q(y) vV W (y, B).

Paramodulation, combined with resolution, provides a complete proof system for first-order logic
with equality.
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A.2 Natural Language Processing

Language is the primary medium through which humans exchange information about the world.
From a computational perspective, communication is an intentional process involving the production
and perception of signs drawn from a shared, conventional system. The study of Natural Language
Processing (NLP) aims to enable machines to understand, interpret, and generate human language.
This process can be deconstructed into a series of component steps, beginning with the formal
structure of language itself.

A.2.1 Formal Grammars and The Chomsky Hierarchy

A formal language is a set of strings, which may be infinite. The rules that specify which strings
belong to the language are defined by a grammar. A grammar consists of a finite set of rewrite
rules operating on a vocabulary of terminal symbols (the words of the language) and non-terminal
symbols (syntactic categories). For instance, a simple grammar might include the rule S —- NP V P,
stating that a sentence (S) can be rewritten as a noun phrase (N P) followed by a verb phrase (V P).

Grammatical formalisms can be organised by their expressive power into the Chomsky Hierarchy,
which includes four main classes:

e Type-0 (Recursively Enumerable): Defined by unrestricted grammars, where rewrite
rules are of the form o — 3, with no constraints on « or 3.

e Type-1 (Context-Sensitive): Rules are of the form aAB — a3, where a non-terminal A
can be rewritten as v only in the context of o and 8. The right-hand side must contain at
least as many symbols as the left.

e Type-2 (Context-Free): The most commonly used formalism in NLP, where the left-hand
side of a rule must be a single non-terminal symbol (e.g., S — NP V P).

e Type-3 (Regular): The most restrictive class, with rules of the form X — a or X — aY.
These grammars define regular languages and are equivalent to finite automata.

Most NLP systems are based on Context-Free Grammars (CFGs) due to their balance of expressive
power and computational tractability. A CFG consists of a lexicon of terminal symbols (words)
categorised by their part of speech (e.g., Noun, Verb) and a set of structural rewrite rules.

A.2.2 The Communication Process

Communication can be viewed as an action, or a speech act, where a speaker formulates an utterance
to achieve a specific intention in a hearer. This process involves distinct stages for both speaker and
hearer.

Speaker: Generation The speaker begins with an intention, a specific proposition they wish the
hearer to know or an action they want them to perform. This intention is transformed into a linguis-
tic form through generation, resulting in a sentence. Finally, synthesis converts this sentence into
an audible waveform or written text. For example, the intention Know(Hearer, —Alive(Wumpus))
might be generated as the sentence "The wumpus is dead."

Hearer: Analysis The hearer’s task is to reverse this process, beginning with perception and
culminating in the incorporation of the speaker’s intent. This analysis pipeline involves several
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stages:

1.
2.

Perception: The physical waveform is converted into a sequence of words.

Syntactic Analysis (Parsing): The word sequence is analysed to determine its grammatical
structure according to the rules of a grammar. The output is typically a parse tree, which
represents the hierarchical syntactic relationships between the words, as shown in Figure A.1.

. Semantic Interpretation: The meaning of the utterance is derived from the parse tree.

Using the principle of compositional semantics, the meaning of a phrase is constructed from
the meanings of its constituent parts. This stage produces a formal representation of the
sentence’s meaning, often in first-order logic.

. Pragmatic Interpretation: Contextual information is applied to the semantic interpreta-

tion to resolve indexicals (e.g., "I", "here", "now") and other context-dependent expressions.

. Disambiguation: Throughout the process, ambiguity must be resolved. The hearer must se-

lect the most likely interpretation from multiple candidates at the lexical, syntactic, semantic,
and pragmatic levels.

. Incorporation: Finally, the disambiguated, context-aware meaning is incorporated into the

hearer’s knowledge base.

A.2.3 Syntactic Analysis: Parsing

Parsing is the process of finding a valid parse tree for a string of words given a grammar. The two
primary strategies are top-down and bottom-up parsing.

e Top-down parsing begins with the start symbol (e.g., S) and applies grammar rules to

expand non-terminals, attempting to derive the input sentence.

e Bottom-up parsing starts with the input words and applies grammar rules in reverse, succes-

sively replacing sequences of symbols with a non-terminal until the start symbol S is reached.

A bottom-up parse for the sentence "the wumpus is dead" is traced in Table A.1.

Table A.1: Trace of a bottom-up parse for "the wumpus is dead".

Nodes Subsequence Rule Applied

the wumpus is dead the Article — the
Article wumpus is dead  wumpus Noun — wumpus
Article Noun is dead Article Noun NP — Article Noun
NP is dead is Verb — is

NP Verb dead dead Adjective — dead
NP Verb Adjective VP Adjective VP — VP Adjective
NP VP NP VP S—NPVP

S Success
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S
/ \
NP VP
NS

e N

Article Noun Adjective
the wumpus  Verb dead
18

Figure A.1: A parse tree for the sentence "the wumpus is dead", showing its syntactic structure.

A.2.4 Augmented Grammars and Semantic Interpretation

Standard CFGs often overgenerate, producing grammatically incorrect sentences such as "*her loves
he". To handle linguistic constraints like subject-verb agreement or pronoun case, grammars can
be augmented with features. For example, an N P non-terminal can be parameterised as N P(case),
where the case can be subjective or objective.

Definite Clause Grammars This approach is formalised in Definite Clause Grammars (DCGs),
where grammar rules are written as definite clauses in first-order logic. For example, the rule
S — NP VP can be written as:

NP(Sl) VAN VP(SQ) = S(Sl + 82)

Here, s1 and so are string representations, and parsing becomes a process of logical inference. Top-
down parsing corresponds to backward chaining from the goal S(input string), while bottom-up
parsing is a form of forward chaining.

Semantic Interpretation with DCGs DCGs can be further augmented to perform semantic
interpretation during the parse. Each grammar rule is associated with a semantic attachment that
specifies how to compute the meaning of the construction from its parts. This is often achieved
using lambda calculus. For instance, the rule for a transitive verb phrase can be written as:

V P(rel(obj)) — Verb(rel) N P(obj)

This rule states that the meaning of a verb phrase is derived by applying the verb’s meaning
(a relation, rel) to the noun phrase’s meaning (an object, obj). A full parse tree with semantic
attachments is shown in Figure A.2.
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S (Loves(John, Mary))

/\

P(John) V P(Ax.Loves(z, Mary))
| SN
Name(John) Verb(Ay.\x.Loves(z,y)) NP(Mary)
l | |
John loves Name(Mary)
|
Mary

Figure A.2: A parse tree showing compositional semantic interpretation. The lambda expression
for "loves" is applied to "Mary" to form the VP’s meaning, which is then applied to "John" to form
the sentence’s meaning.

A.2.5 Ambiguity and Discourse

A central challenge in NLP is ambiguity, which occurs at multiple levels:

e Lexical: A single word has multiple meanings (e.g., "interest" as a financial term or a state
of curiosity).

e Syntactic: A sentence has multiple valid parse trees. In "I smelled a wumpus in 2,2", the
prepositional phrase "in 2,2" could modify "smelled" (the act of smelling occurred in 2,2) or
"wumpus" (the wumpus is located in 2,2).

e Semantic: A phrase has multiple meanings even if its structure is unambiguous (e.g., "the
IBM lecture" could be a lecture about IBM or one given by IBM).

e Pragmatic: The intended meaning depends on context beyond the sentence itself.

Disambiguation involves choosing the most likely interpretation given the situational context and
world knowledge.

When processing multi-sentence discourse, an agent must also perform reference resolution to in-
terpret pronouns and definite noun phrases (e.g., in "John flagged down the waiter. He ordered
a sandwich," "He" refers to John). Coherent discourse is structured by coherence relations (e.g.,
explanation, cause, exemplification) that link sentences together, guiding the interpretation of the
overall text.
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A.3 Planning as Satisfiability: SATPlan

An alternative to search-based planning algorithms like Graphplan is to translate a planning problem
into a Boolean satisfiability (SAT) problem. This approach, known as SATPlan, constructs a
propositional logic sentence that has a satisfying assignment if and only if a valid plan of a specific
length exists. The planning process then becomes an iterative search over plan lengths, using a SAT
solver at each step.

The core idea is to create a set of propositional variables and a set of clauses that encode the entire
planning problem up to a fixed time horizon, n.

Variables The translation requires two types of propositional variables:

e Proposition Variables: For every proposition P in the planning domain and every even
time step t € {0,2,...,n}, a variable P, is created. P; is true if proposition P holds at time ¢.

e Action Variables: For every action A and every odd time step t € {1,3,...,n—1}, a variable
A; is created. A; is true if action A is executed at time ¢.

Clauses A large conjunctive sentence is constructed from several types of clauses that constrain
the possible assignments to these variables.

1. Initial State: For each proposition P that is true in the initial state, a unit clause Py is
added. For each proposition @) that is false, a clause =Q)q is added. Unlike Graphplan, which
can be agnostic about unmentioned initial propositions, SATPlan requires a complete initial
state specification.

2. Goal State: For each proposition G in the goal, a unit clause G,, is added (assuming G must
be true).

3. Action Axioms: For each action A and each odd time step ¢, an axiom is created to link
the action to its preconditions and effects. This takes the form of an implication:

A; — (Preconditions;—; A Effects;i1)

For example, Cook; — (Cleang A Dinnerg). This is converted into a set of clauses, such as
(=Cook; V Cleang) and (—Cook; V Dinners).

4. Explanatory Frame Axioms: To address the frame problem, these axioms specify the only
ways a proposition’s truth value can change. For each proposition P, an axiom states that if
P changes from true to false (or vice-versa) between two time steps, then one of the actions
that could have caused this change must have occurred. For instance:

(Pr_y A—Pyy1) = (A VA2V ..)

Here, A', A% ... are all the actions that have =P as an effect. The contrapositive of this
axiom ensures that if none of those actions occur, the proposition does not change, thereby
serving as a frame axiom.

5. Conflict Exclusion Axioms: To prevent the simultaneous execution of conflicting actions,
mutex constraints are added. Two actions conflict if one’s precondition is inconsistent with
another’s effect. For every pair of conflicting actions A and B and every time step t, a clause
is added:

_'At \% _‘Bt
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The conjunction of all these clauses forms a single SAT problem. If a satisfying assignment is
found, the action variables that are set to true constitute the plan. If not, the time horizon n is
increased, and a new, larger SAT problem is generated and solved. While this approach generates
very large formulae, modern SAT solvers like DPLL and WalkSAT can often solve them efficiently.
The performance can be further improved by using domain-specific heuristics to guide the solver,
for example, by prioritising branching on action variables within DPLL.
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A.4 Planning Under Uncertainty

Classical planning assumes a deterministic world with complete knowledge of the initial state. When
these assumptions are violated, more sophisticated techniques are required.

A.4.1 Conditional Planning

Conditional planning addresses uncertainty about the state of the world, particularly the initial
state. The planner constructs a plan with branches, where the branch taken during execution
depends on information gathered at runtime.

Consider an agent planning to fly from an airport. The agent does not know the departure gate
initially but knows it can find out by reading a display in the lobby. The operators would include
an information-gathering action like ReadGate, which has the precondition AtLobby and the ef-
fect KnowWhether (Gatel). This effect does not change the physical world but alters the agent’s
knowledge state.

A conditional planner, such as a modified Partial-Order Planning (POP) algorithm, can incorporate
such actions. When an information-gathering action is added to the plan, the plan splits into
multiple branches, one for each possible outcome. For the airport example, after ReadGate, the
plan would have a branch for the context Gatel and another for —Gatel. Subsequent planning
steps, like GoToGatel and BoardPlanel, are placed within the appropriate context. This approach
significantly increases the search space and complexity, making it impractical for all but small
problems.

A.4.2 Replanning and Execution Monitoring

An alternative to constructing complex conditional plans is to create a simple, linear plan assuming
determinism and then monitor its execution. This approach, known as replanning, is useful for
handling execution errors or for deferring planning until necessary information is available.

The agent operates in a cycle:

1. Plan: Generate a plan from the current state to the goal.

2. Execute: Begin executing the plan, one action at a time.

3. Monitor: After each action, observe the resulting state of the world and compare it to the
expected state.

4. Replan: If there is a discrepancy (an execution failure), halt execution, update the current
state with the observed state, and return to step 1.

This strategy is more flexible than conditional planning as it does not attempt to anticipate all
possible contingencies. Its main drawback is the computational cost of planning, which may be
prohibitive in time-critical domains.

A.4.3 Intermediate Approaches: Universal Plans and Triangle Tables

The trade-off between pre-computation and online computation gives rise to a spectrum of strategies,
from replanning (all computation is online) to universal planning (all computation is offline).
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Universal Plan A universal plan is an extreme approach where a complete policy is computed
offline. It is a mapping from every possible state to the optimal action to take in that state. During
execution, the agent simply observes the current state, looks up the corresponding action in a pre-
computed table, and executes it. This requires no online deliberation but assumes the world is fully
observable and that the state space is small enough to be enumerated and stored, which is rarely
feasible.

Triangle Tables An intermediate approach, developed by Fikes and Nilsson for the STRIPS
planner, uses a data structure called a triangle table to create a more robust execution strategy for
a single, linear plan. A triangle table, illustrated in Figure A.3, organises a plan’s actions and the
causal links between them.

Figure A.3: A Triangle Table for a shopping plan.

Ef(AL) Ef(A2) EA(A3) EA(A4)
Tnit Sells(HW,Drill)
Pre(Al) | [ ] Go_HW
Pre(A2) At(HW) [ Buy_Drill
Pre(A3) Have(Drill) At(HW) Go_si
Pre(Ad) ) At(SM) [ 7| Buy_Bananas
Goal Have(Bananas)

Note. Each row corresponds to an action and its preconditions. Each column lists the effects of the action at the
top. The coloured bars represent different kernels.

The table is a lower-triangular matrix where rows correspond to actions in the plan, and columns
represent the effects of those actions. An entry in cell (4,j) contains a proposition that is a pre-
condition of action A; and an effect of action A;. The execution rule is to find the highest true
kernel and execute its associated action. A kernel is a rectangular block of conditions anchored at
the bottom-left of the table.

For instance, the kernel for the final action, Buy_Bananas, consists of all its preconditions (Have (Drill),
At (SM)). If this set of conditions is true, the agent executes Buy_Bananas, regardless of how that
state was reached. If not, it checks the next highest kernel (e.g., for Go_SM). This strategy allows
the agent to skip steps if their effects are already achieved serendipitously or to repeat steps if their
effects are undone, providing greater flexibility than rigid linear execution without the complexity
of full conditional planning. If even the initial conditions for the first action are not met, the table
execution fails, and a full replan is required.
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A.5 Representing Uncertainty

While formal logic, as discussed in §2.8.1, provides a rigorous framework for reasoning, its primary
mechanism for representing uncertainty is disjunction. An agent can express uncertainty by stating
that the world is in one of a set of possible states (e.g., BoxIsRed V BoxIsBlue), but it cannot
quantify the relative likelihood of these states. For an agent to make rational decisions in complex
environments, a more nuanced representation of uncertainty is required. Probability theory provides
a quantitative language for encoding and reasoning with degrees of belief.

A.5.1 Interpretations of Probability

There are two principal philosophical interpretations of what a probability value represents.

The Frequentist View The traditional, or frequentist, interpretation defines probability as a
statement about the long-run frequency of an event. A statement like "P(Heads) = 0.5" is taken
to mean that in a long series of coin flips, the proportion of heads will converge to 0.5. Probability
is seen as an objective property inherent in the random process, and its value is estimated from
repeated measurements. This view becomes problematic when applied to unique, non-repeatable
events. For example, assigning a frequentist probability to the proposition "the sun will come up
tomorrow" is difficult, as "tomorrow" is a unique event for which there are no repeated trials.

The Subjectivist (Bayesian) View An alternative, more suited to artificial intelligence, is the
subjectivist or Bayesian interpretation. Here, probability is a model of an agent’s personal degree
of belief in a proposition. A statement P(A) = 0.8 reflects the agent’s confidence in the truth
of A, given its current knowledge. Under this view, beliefs cannot be objectively "wrong" in the
same way a frequentist estimate can be; they are private to the agent. However, an agent’s beliefs
can be inconsistent. The axioms of probability provide a framework for ensuring that an agent’s
degrees of belief are coherent. This coherence can be justified pragmatically through the Dutch
Book argument, which shows that an agent with inconsistent beliefs can be exploited in a series of
bets, guaranteeing a loss.

A.5.2 The Axioms of Probability

Probability theory is built upon a small set of axioms that govern the assignment of probabilities
to events. The framework begins with a universe U of mutually exclusive and exhaustive atomic
events, which represent the possible states of the world, analogous to interpretations in logic.

Definition A.5.1. FEvent. An event is any subset of U.

Definition A.5.2. Probability Function. A probability function P maps events to the interval
[0, 1] and must satisfy the following axioms:

1. P(U) =1 and P(0) = 0. The probability of the universe (a tautology) is 1, and the probability
of the empty set (a contradiction) is 0.

2. For any event A, 0 < P(A) < 1.

3. For any two events A and B, the probability of their union is given by:

P(AV B) = P(A) + P(B) — P(AA B)
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This third axiom, illustrated in Figure A.4, corrects for double-counting the atomic events in the
intersection of A and B. From these axioms, all other laws of probability, such as P(=A) = 1—P(A),
can be derived.

P(A) + P(B) P(AAB) P(AV B)

intersection counted twice

Figure A.4: Area intuition for the addition rule. Summing P(A) and P(B) counts the overlap twice;
subtracting P(A A B) leaves exactly the union area, P(AV B).

A.5.3 Random Variables and Joint Distributions

In practice, it is convenient to work with random variables, which can be thought of as functions
mapping outcomes in the universe to a domain of values. For our purposes, we will primarily
consider propositional random variables, which take Boolean values. For a variable Cavity, the
statement P(Cavity = true) = 0.1 assigns a probability to one of its possible values.

Definition A.5.3. Joint Probability Distribution. When a domain involves multiple variables,
the complete specification of the probability distribution is the joint probability distribution. The
joint distribution assigns a probability to every possible atomic event, defined by a complete assign-
ment of values to all variables. For two variables, Cavity and Toothache, the joint distribution is
shown in Table A.2.

Table A.2: A joint probability distribution for the propositional variables Cavity and Toothache.
The four cells represent the four mutually exclusive atomic events, and their probabilities sum to 1.

‘ Toothache —Toothache

Cavity 0.04 0.06
—Cavity 0.01 0.89

The joint distribution is fundamental because it allows any probabilistic query about the domain to
be answered through a process of inference by enumeration. For example, the marginal probability
of a single variable can be calculated by summing over all other variables. From Table A.2, the
probability of having a cavity is:

P(Cavity) = P(Cavity A Toothache) + P(Cavity A =Toothache) = 0.04 + 0.06 = 0.1
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A.6 Conditional Probability and Independence

A.6.1 Conditional Probability and Bayes’ Rule

Conditional probability allows an agent to update its beliefs in light of new evidence. The conditional
probability of A given B, denoted P(A|B), is the probability of A in the subset of the universe where
B is known to be true. It is defined as:

P(ANB)

P(A|B) = W’

provided P(B) > 0

Using the joint distribution in Table A.2, we can compute the probability of a cavity given a
toothache:

P(Cavity A Toothache) 0.04  0.04
P(Toothache) ©0.04+0.01  0.05

P(Cavity|Toothache) = 0.8
Rearranging the definition of conditional probability yields the product rule, P(AAB) = P(A|B)P(B),
which leads directly to Bayes’ Rule:

P(B|A)P(A)

P(AIB) = =5

Bayes’ rule is central to diagnostic reasoning. It allows an agent to compute the probability of a
cause (e.g., a disease) given an effect (e.g., a symptom) using the causal probability P(Effect|Cause).
This is valuable because causal knowledge is often more stable and easier to acquire than diagnostic
knowledge. The term P(B) in the denominator can be computed by conditioning on A: P(B) =
P(B|A)P(A) + P(B|-A)P(—A).

A.6.2 Independence and Conditional Independence

The primary challenge of probabilistic reasoning is that the size of the joint distribution grows expo-
nentially with the number of variables. The concepts of independence and conditional independence
are crucial for creating compact representations of probability distributions and enabling efficient
inference.

Definition A.6.1. Independent Variables. Two variables A and B are independent if knowing
the value of one provides no information about the value of the other. This is formally expressed
in three equivalent ways:

Absolute independence is rare. A more common and powerful concept is conditional independence.

Definition A.6.2. Conditional Independence. Two variables A and B are conditionally in-
dependent given a third variable C' if, once the value of C' is known, B provides no additional
information about A:

P(A|B,C) = P(A|C)

For example, a Toothache and a Spot in X-ray are not independent. However, they can be
considered conditionally independent given the presence of a Cavity. The cavity is the common
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cause; once it is known to be present (or absent), the two symptoms become independent of each
other. This structure allows for the decomposition of complex probabilistic relationships. For
instance, when updating the belief in a cavity given both symptoms, the conditional independence
assumption simplifies the calculation:

P(C|T,X) x P(T, X|C)P(C) (Bayes’ Rule)
= P(T|C)P(X|C)P(C) (Conditional Independence)
This decomposition, where multiple effects are assumed to be independent given a common cause,

is the basis of the Naive Bayes model and is a foundational principle for the more complex Bayesian
networks used throughout probabilistic Al
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A.7 Large Language Models (LLMs)

The dominant paradigm in modern Natural Language Processing is the use of large, pre-trained
generative models. These models, exemplified by LLMs, learn the statistical properties of language
from vast corpora of text, enabling them to generate coherent and contextually relevant new text.
Their architecture is almost universally based on the Transformer model [10], which replaced the
recurrent structures of earlier sequence models with a mechanism based entirely on attention.

A.7.1 The Transformer Architecture

Most LLMs are autoregressive, meaning they generate text one token at a time, conditioning each
new token on the sequence of previously generated tokens. The core task is to model the condi-
tional probability distribution over a vocabulary V for a sequence of tokens x = (x1,...,z7). The
probability of the entire sequence is factorised as a product of conditional probabilities:

T

P(x) = HP(xt\:cl, ey mm130),
t=1

where 0 represents the model’s parameters.

While training is fully parallel using a causal mask, inference is necessarily sequential. During pre-
training, the objective is to maximise the log-likelihood of the training data, which corresponds to
minimising the negative log-likelihood loss function:

T
L(0) = —ZlogP(xt]ml, w13 0)
t=1

The Transformer architecture achieves this by processing the entire input context in parallel using
self-attention mechanisms. As the model has no inherent sense of sequence order, this information
is supplied via positional encodings, which are added to the input embeddings. These encodings
were originally defined using sine and cosine functions:

PEpos2i) = sin(pos/lo()()()?i/dmodel)
P E(pos,2i+1) = cos(pos/ 100002i/dmodel)
where pos is the position, i is the dimension, and dpodel is the embedding dimension. Modern

decoder-only LLMs, however, commonly use rotary position embeddings (RoPE) rather than abso-
lute sine/cosine encodings; see Figure A.5.

ROPE; rotate cach (2i,2i+1) pait of Q/K
{ da; | _ [eos0  —sind] [Tqni | position-dependent rotations of Q/K encode relative phase
U2it1 sinf  cosd | |g2it1 Ky (Q",K") = (Q, RaK) = depends on A

0 = 0(pos, i
@ (pos, i)
it

ate
P

q2i

q2i+1

- K’\‘l I7+@@ »
A/\\\\
ks

Phase rotation per position " Relative phase A drives (Q', K")

Figure A.5: RoPE rotates each (2i,2i+1) pair of Q/K on a phase circle by an angle 6(pos, i),
preserving norms. The attention score (@', K’) depends only on the relative phase A between
positions, not on absolute positions.
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Scaled Dot-Product Attention The fundamental building block of the Transformer is the at-
tention mechanism. It operates on three inputs derived from the input sequence embeddings: queries
(@), keys (K), and values (V). These are matrices obtained by multiplying the input embedding
matrix X by learned weight matrices W@, W WV . The attention function computes a weighted
sum of the values, where the weight assigned to each value is determined by the compatibility of its
corresponding key with a given query. The scaled dot-product attention, illustrated in Figure A.6,
is defined as:

Attention(Q, K, V) = softma <QKT> Vv
ntion(Q, K, V) = softmax [ ——
Vg

Here, dy, is the dimension of the key vectors. The scaling factor ﬁ is crucial for stabilising gradients

during training.

queries keys values

Q matrix multiply softmax — Rl hatrix multiply Output € RTxdv

QKT /Vdi + M

A
)
!
!
1

causal mask M (triangular)]

Figure A.6: Scaled dot-product attention. Scores QK T are scaled by 1/1/dy, masked with a causal
M, normalised by softmax, and used to weight V.

Multi-Head Attention To allow the model to focus on different aspects of the input sequence,
the Transformer employs multi-head attention. This involves running the scaled dot-product atten-
tion mechanism multiple times in parallel. The @, K, and V matrices are linearly projected into
different subspaces for each "head".

MultiHead(Q, K, V) = Concat(heady, . .., head, )W
where each head is computed as:
head; = Attention(QW2, KW/, VW)
The outputs of the heads are concatenated and projected back to the original dimension via a final
weight matrix W©. A standard Transformer layer combines a multi-head attention sub-layer with

a position-wise feed-forward network (FFN), using residual connections and layer normalisation
around each sub-layer.

A.7.2 Architectural Variants and Pre-training

While the original Transformer contained both an encoder and a decoder, many modern LLMs use
only one of these components.

e Decoder-only models, such as the GPT series, are inherently suited for autoregressive gen-
eration. They use a causal or unidirectional attention mask, where the attention matrix A is
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forced to be lower-triangular (A;; = 0 for j > 7). This ensures that the prediction for a token
at position ¢ can only depend on previous tokens.

e Encoder-only models, like BERT, use a bidirectional attention mechanism, allowing each
token to attend to all other tokens in the sequence. They are typically not used for gen-
eration but are powerful for natural language understanding tasks. They are often pre-
trained using a Masked Language Modelling (MLM) objective, where a fraction of input
tokens are masked and the model must predict them based on the surrounding context:

Lyviv = — Ziemasked log P(fﬂi|x\i)-
A.7.3 Mixture of Experts

To scale models to trillions of parameters without a commensurate increase in computational cost
per inference, the Mixture of Experts (MoE) architecture replaces dense feed-forward network (FFN)
layers with sparse MoE layers. An MoE layer comprises a set of K independent "expert" networks
and a gating network, or router, that dynamically selects which experts process each token. The
output for an input token x is a weighted sum of the outputs from the selected experts:

y= > gi(x)- Ex(2)

k€Top-m(x)

Here, Ex(x) is the output of the k-th expert, and gx(x) is the gating probability from the router,
typically computed as g(z) = softmax(Wyx). For sparsity, only the top-m experts (e.g., m = 2)
with the highest gating probabilities are activated. To prevent routing collapse, an auxiliary load-
balancing loss is added, and routing mechanisms often use a capacity factor to manage token
overflow.

Expert 1
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Figure A.7: An MoE layer. The router directs the input token to a sparse subset of experts (e.g.,
Expert 2 is chosen), and their outputs are combined to produce the final result.
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A.7.4 Model Adaptation and Optimisation

Fine-Tuning After pre-training on a general corpus, LLMs are adapted to specific tasks through
fine-tuning. This involves further training on a smaller, task-specific dataset. Parameter-Efficient
Fine-Tuning (PEFT) methods reduce computational cost. Low-Rank Adaptation (LoRA) is a pop-
ular PEFT technique that freezes the pre-trained weights W € R¥*¢ and injects trainable low-rank
matrices A € R™? and B € R**" modelling the update as AW = BA with r < min(k,d). Only
B and A are updated during fine-tuning.

Baseline (frozen) LoRA (add low-rank path)

down-projection

up-projection
W W Woz
T 0 ho = Wox r——> ©
0 0
(frozen) (frozen)

4 B + h
rxd| Az | kxr BAz \_/

AW = BA
r < min(k, d)
Figure A.8: The LoRA method. The output of the frozen pre-trained weight matrix Wy is combined
with the output of a low-rank adaptation path formed by trainable matrices A (down-projection)
and B (up-projection).

Quantisation Quantisation reduces the memory footprint and computational requirements of
LLMs by representing weights and activations with lower-precision numerical formats. Post-Training
Quantisation (PTQ) converts a trained model’s weights by applying a mapping function. Practical
setups use clipping and an optional zero-point; for LLMs, Quantisation-Aware Training (QAT) and
4-bit formats like QLoRA (using NF4 with per-group scales) are widely used for a better trade-off
between efficiency and performance.

Alignment To ensure LLMs behave in accordance with human values, they undergo alignment.
Reinforcement Learning from Human Feedback (RLHF) involves training a reward model on human
preferences, then using this model to fine-tune the LLM policy 7y with an algorithm like Proximal
Policy Optimisation (PPO). The objective maximises reward while penalising deviation from the
original policy via a KL-divergence constraint: D (mg||mef) < €. Direct Preference Optimisation
(DPO) offers a more direct method by deriving a loss function from preference data, bypassing the
explicit reward model. The objective is to increase the relative likelihood of preferred responses
(yw) over rejected ones (y;):

Tref(Yuw|T) Tref(Y1] )
where o is the sigmoid function and [ is a temperature parameter.

Lppo(0; Tret) = —E(z y0 5)~D [loga (ﬁ log

Retrieval-Augmented Generation (RAG) To mitigate hallucination and provide access to
timely or domain-specific information, RAG enhances the generation process by first retrieving
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documents from an external knowledge base. Given a query, a retriever module finds relevant
text chunks, often using dense embeddings (e.g., from sentence transformers) and cosine similarity
search, sometimes in combination with sparse methods like BM25.

_q-d
lalllld]|

The retrieved documents are then concatenated with the original prompt and fed into the LLM,
which generates a response grounded in the provided context.

sim(q, d)
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